Universität Hohenheim
 

Eingang zum Volltext

Höll, Bettina

Die Rolle des Porenraums im Kohlenstoffhaushalt anthropogen beeinflusster Niedermoore des Donaurieds

Carbon turnover in fen areas of the Donauried: the role of the fore space and the different anthropogenic use

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgende
URN: urn:nbn:de:bsz:100-opus-1872
URL: http://opus.uni-hohenheim.de/volltexte/2007/187/


pdf-Format:
Dokument 1.pdf (176 KB) Dokument 2.pdf (86 KB) Dokument 3.pdf (870 KB)
Dokument 4.pdf (9.060 KB) Dokument 5.pdf (925 KB) Dokument 6.pdf (479 KB)
Dokument 7.pdf (144 KB) Dokument 8.pdf (208 KB) Dokument 9.pdf (6.678 KB)
Dokument in Google Scholar suchen:
Social Media:
Delicious Diese Seite zu Mister Wong hinzufügen Studi/Schüler/Mein VZ Twitter Facebook Connect
Export:
Abrufstatistik:
SWD-Schlagwörter: DOC , POC , Kohlenstoff , Methan , wiedervernässte Moore , Donauried
Freie Schlagwörter (Englisch): carbon balance, pore space, fen, water management, DIC
Institut: Institut für Bodenkunde und Standortslehre
Fakultät: Fakultät Agrarwissenschaften
DDC-Sachgruppe: Landwirtschaft, Veterinärmedizin
Dokumentart: Dissertation
Schriftenreihe: Hohenheimer bodenkundliche Hefte
Bandnummer: 79
Hauptberichter: Stahr, Karl Prof. Dr.
Sprache: Deutsch
Tag der mündlichen Prüfung: 22.12.2006
Erstellungsjahr: 2007
Publikationsdatum: 14.06.2007
 
Lizenz: Hohenheimer Lizenzvertrag Veröffentlichungsvertrag mit der Universitätsbibliothek Hohenheim ohne Print-on-Demand
 
Kurzfassung auf Deutsch: Die seit mehreren Jahrhunderten anhaltende Nutzung der Moore führte zu deren Degradation (Humusschwund) infolge intensiver Mineralisierung. Zum Erhalt des bestehenden Torfkörpers werden ehemals drainierte Standorte wiedervernässt. Der Ressourcenschutz könnte unter Umständen mit der Schaffung biologischer C-Senken verbunden werden, was den Schutz und Erhalt der Moore attraktiver gestalten würde.
Noch unbekannt ist, wie sich eine Wiedervernässung degradierter Niedermoore auf deren C-Pools und C-Flüsse auswirkt. Durch die Vernässung wird der ehemals luftgefüllte Porenraum mit Wasser gefüllt, was den C-Pool des Bodens aufstocken könnte. Damit könnten im Porenraum, welcher in Mooren ca. 90% einnehmen kann, zur Festsubstanz vergleichbare C-Mengen enthalten sein. Ferner ist ungeklärt, inwieweit die Zusammensetzung der C-Komponenten des Porenraums von der Moornutzung beeinflusst wird.
Die übergeordneten Ziele der vorliegenden Studie waren, (1) die zeitliche und räumliche Variabilität der C-Komponenten des Porenraums in unterschiedlich anthropogen beeinflussten Niedermooren (drainiert, wiedervernässt) zu erfassen, um (2) die Rolle des Porenraums im Kohlenstoffhaushalt bewerten zu können.
Im Schwäbischen Donaumoos wurden von April 2004 bis April 2006 im wöchentlichen Intervall die C-Komponenten der gasförmigen Phase (CO2, CH4) und der gelösten Phase (CO2/DIC, CH4, DOC, POC) im Tiefenprofil (5, 10, 20, 40, 60, 80 cm) unterschiedlich stark drainierter (tief, mäßig) und einer langfristig wiedervernässten Niedermoorfläche erfasst. Die Feldbeprobung erfolgte mittels Bodenluftsonden und geschlitzten PVC-Rohren, mit deren Hilfe in-situ Aliquote an Gasproben und Wasserproben gesammelt wurden. Die Gasanalyse erfolgte am Gaschromatographen, die Analyse des organischen Kohlenstoffs am TC-Wasseranalysator. Zur Standortcharakterisierung der Niedermoore wurden neben ausgewählten statischen Parametern der Festsubstanz dynamische Parameter wie Redoxpotentiale, Temperatur, Wasserstand, Wasserspannung und pH-Wert erfasst.
Die Nutzung der Niedermoore, welche in Verbindung steht zum Wasserhaushalt, war ein ausschlaggebendes Kriterium für die Höhe der C-Mengen des Porenraums. Obwohl die Festsubstanz der Moore weniger als 10% einnahm, beinhaltete sie höhere C-Mengen (60 -152 kg C m-3) als der Porenraum. Zugleich ist anzunehmen, dass die Festsubstanz ein längerfristiges C-Reservoir darstellt als der Porenraum, welcher möglicherweise nur als Zwischenspeicher dient. Bezüglich des Porenraums war entscheidend, ob dieser mit Luft oder Wasser gefüllt war. Die jahresdurchschnittlichen C-Mengen im luftgefüllten Porenraum erreichten nur 15 g C m-3 (tief drainierte Fläche), während der wassergefüllte Porenraum durchschnittlich 263 g C m-3 vereinnahmte (wiedervernässte Fläche).
Die unterschiedliche anthropogene Beeinflussung der Niedermoore resultierte in flächenspezifischen Randbedingungen (z.B. Grundwasserstände), welche nicht nur die Höhe der C-Mengen, sondern auch die Zusammensetzung der C-Komponenten signifikant beeinflusste. Mit durchschnittlich 55-72% am gesamten gelösten Kohlenstoff überwog in allen Flächen der gelöste anorganische Kohlenstoff (DIC) im Porenwasser. Der suspendierte organische Kohlenstoff (POC) lag in vergleichbarer Höhe des gelösten organischen Kohlenstoffs (DOC), während das gelöste Methan (CH4) nur einen geringfügigen prozentualen Anteil (< 0.1%) am gesamten Kohlenstoff der gelösten Phase einnahm.
Das DIC wies maximale Konzentrationen im Porenwasser der wiedervernässten Fläche auf. Nutzungsunabhängig zeigten sich unterschiedliche DIC-Isotopensignaturen zwischen den Grund-, Karst-, und Quellwässern (-11.7‰ bis -14.3‰) zu den Porenwässern (-16.7‰ bis -18.4‰). Die weitere Differenzierung zu den13C-Werten des CO2 der Gasphase (-23.0‰ bis -26.6‰) lies folgern, dass eine Anreicherung im Porenwasser durch biogenes CO2 stattfand.
DOC wies in der wiedervernässten Fläche die geringsten Konzentrationen auf. Die zeitliche Variabilität des DOC war verbunden mit einer Veränderung der Bioverfügbarkeit. Dieser Zusammenhang konnte auch in der mäßig drainierten Fläche festgestellt werden. Der geringere Aromatisierungsgrad (= höhere Bioverfügbarkeit) mit höheren DOC-Konzentrationen resultierte in der wiedervernässten Fläche in signifikant geringeren Werten als in der mäßig drainierten Fläche. Der mikrobiell leicht verfügbare DOC-Anteil war nicht nur zeitlich, sondern auch räumlich limitiert, was die Höhe der CO2- und CH4-Konzentrationen signifikant beeinflusste.
In jeweils vergleichbarer Tiefe konnten um das 10- bis 1000-Fache höhere CO2- als CH4-Konzentrationen der Gasphase gemessen werden (2.7-67 mg CO2-C l-1 vs. < 5.3 mg CH4-C l-1), mit den höchsten Konzentrationen in der wiedervernässten Fläche. Die CO2-C/CH4-C-Verhältnisse der Gasphase erreichten selten ein Verhältnis unter 100:1, was auf einen geringen klimarelevanten Beitrag des Methans deutet, vorausgesetzt, es finden sich ähnliche Verhältnisse in den Emissionen wieder.
Der Ressourcenschutz der Niedermoore konnte in Verbindung gebracht werden mit einer Wiederherstellung der C-Senkenfunktion (Ergebnis des Gasaustausches zur Atmosphäre) und mit einer Erhöhung der Kohlenstoffmengen im Porenraum. Für welche Zeitspanne die Kohlenstoffmengen im Porenwasser verbleiben, ist von den Umsetzungsraten und hydrologischen Gegebenheiten abhängig. Letztere sind zugleich ausschlaggebend für die Abschätzung der Höhe der indirekten Emissionen, welche in den drainierten Niedermooren eine bedeutende Rolle spielen könnten und somit deren Kohlenstoffbilanz vervollständigt.
 
Kurzfassung auf Englisch: The use of peatlands in Central Europe for hundreds of years has led to their degradation (loss of organic matter) due to intensive mineralisation. Re-wetting of formerly drained peat aereas has been a popular method of retaining existing peatlands. The effect of re-wetting of degraded fens on their C-pools and C-fluxes is unknown. The protection of these natural resources combined with the creation of biological C-sinks might render the protection and conservation of peatland ecosystems more attractive.
Water-logging leads to the accumulation of water in previously air-filled soil pores, something that might increase the C-pool of the soil. It is unknown whether the pore space, which possibly accounts for up to 90% of peatlands, contains carbon components that are similar to those found in the solid soil substance. It is also unknown how much the utilisation of peatlands affects the composition of C-components of the pore space.
The major objectives of the present study were (1) to assess the temporal and spatial variability of the C-components in the pore space in fens undergoing different anthropogenic use (drainage, re-wetting) and (2) to assess the role of the pore space in the C-budget.
In a Southern German area known as the Schwäbisches Donaumoos, carbon components of the gaseous phase (CO2, CH4) and the liquid phase (CO2/DIC, CH4, DOC, POC) were collected at different depths (5, 10, 20, 40, 60, 80 cm) from different drained (deep, moderately) fen sites and from a long-term re-wetted fen site. Sampling was done at weekly intervals between April 2004 and April 2006. The samples of the water phase and gas phase were collected at the respective sites using slotted PVC tubes and soil-air probes. Gas was analysed using a gas chromatograph and dissolved organic carbon was analysed using a TC water analyser. The fen sites were characterised by selected static parameters of the solid substance and dynamic parameters such as redox potentials, temperature, water level, soil-moisture tension and pH value.
The specific use of the fens, which is closely related to the water budget of the area, was a decisive determinant of the amounts of carbon in pore space. Although the solid soil substance in fen sites accounted for less of 10% of the total substance (solid + pores), it still contained a higher amount of carbon (60 -152 kg C m-3) than the pore space. Furthermore the amount of time that the carbon remains is eventually longer in the solid soil substance than in the pore water. Assuming the pore water works only as a short time reservoir. Filling of the pore space with either air or water had a decisive effect on the amount of C. The investigations showed that the amount of C in the air-filled pore space contained an annual average of 15 g C m-3 (deep-drained area), whereas the water-filled pore space contained on average 263 g C m-3 (re-wetted area).
The variable anthropogenic effects on fens led to area-specific situations (e.g. groundwater level) that not only affected the amount of C but also had a significant effect on the composition of C components. Dissolved inorganic carbon (DIC), with an average proportion of 55-72%, accounted for the largest proportion of dissolved carbon. Particulate organic carbon (POC) had similar concentrations to dissolved organic carbon (DOC), whereas dissolved methane (CH4) only accounted for a minor proportion (< 0.1%) of the entire carbon of the liquid phase.
The DIC concentration was highest in the water from the pores of re-wetted fen. Independent from the use of the fens, different DIC isotope signatures of the ground, karst and spring waters (-11.7‰ to -14.3‰) in comparison to the pore waters (-16.7‰ to -18.4‰) were observed. The further differentiation into the 13C ratios of CO2 contained in the gaseous phase (-23.0‰ to -26.6‰) suggests that DIC ‘accumulated’ in the pore water by way of biogenic CO2.
DOC concentrations were lowest in the re-wetted fen. The temporal variability of DOC was related to changes in the bioavailability of DOC. This was also observed in the moderately drained area. The low degree of aromatisation (= higher bioavailability) associated with higher DOC concentrations led to significantly lower values in the re-wetted area compared to the moderately drained area. The microbially easily available DOC proportion was not only temporally but also spatially limited and had a significant effect on the CO2 and CH4 concentrations.
At similar depths, CO2 values 10- to 1000-fold higher than CH4 levels could be measured in the gaseous phase (2.7-67 mg CO2-C l-1 vs. < 5.3 mg CH4-C l-1). The highest concentrations were measured in the re-wetted fen. The CO2-C/CH4-C ratios rarely achieved ratios of below 100:1. Due to the higher concentrations of CO2, it can be assumed that the carbon dioxide could compensate for the effect of methane on the climate, on the condition that comparable CO2-C/CH4-C ratios are found in the emissions.
The protection of fens as natural resources could be related to carbon uptake (results of the gas exchange to the atmosphere) and higher carbon amounts in the pore space. The amount of time that the carbon remains in the pore waters is correlated to carbon turnover and hydrological conditions. The latter are also important when assessing the indirect emissions, playing an important role in drained fens and rounding out carbon balances.

    © 1996 - 2016 Universität Hohenheim. Alle Rechte vorbehalten.  10.01.24