Universität Hohenheim
 

Eingang zum Volltext

Marczak, Martyna ; Gómez, Víctor

Monthly US business cycle indicators : a new multivariate approach based on a band-pass filter

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgende
URN: urn:nbn:de:bsz:100-opus-8087
URL: http://opus.uni-hohenheim.de/volltexte/2013/808/


pdf-Format:
Dokument 1.pdf (413 KB)
Dokument in Google Scholar suchen:
Social Media:
Delicious Diese Seite zu Mister Wong hinzufügen Studi/Schüler/Mein VZ Twitter Facebook Connect
Export:
Abrufstatistik:
SWD-Schlagwörter: Konjunkturzyklus , Konjunkturindikator , USA
Freie Schlagwörter (Englisch): Business cycle , multivariate structural time series model , univariate band?pass filter , forecasts , phase angle
Institut 1: Forschungszentrum Innovation und Dienstleistung
Institut 2: Institut für Volkswirtschaftslehre
DDC-Sachgruppe: Wirtschaft
Dokumentart: ResearchPaper
Schriftenreihe: FZID discussion papers
Bandnummer: 64
Sprache: Englisch
Erstellungsjahr: 2013
Publikationsdatum: 13.02.2013
 
Lizenz: Hohenheimer Lizenzvertrag Veröffentlichungsvertrag mit der Universitätsbibliothek Hohenheim ohne Print-on-Demand
 
Kurzfassung auf Englisch: This article proposes a new multivariate method to construct business cycle indicators. The method is based on a decomposition into trend-cycle and irregular. To derive the cycle, a multivariate band-pass filter is applied to the estimated trend-cycle. The whole procedure is fully model-based. Using a set of monthly and quarterly US time series, two monthly business cycle indicators are obtained for the US. They are represented by the smoothed cycles of real GDP and the industrial production index. Both indicators are able to reproduce previous recessions very well. Series contributing to the construction of both indicators are allowed to be leading, lagging or coincident relative to the business cycle. Their behavior is assessed by means of the phase angle and the mean phase angle after cycle estimation. The proposed multivariate method can serve as an attractive tool for policy making, in particular due to its good forecasting performance and quite simple setting. The model ensures reliable realtime forecasts even though it does not involve elaborate mechanisms that account for, e.g., changes in volatility.

    © 1996 - 2016 Universität Hohenheim. Alle Rechte vorbehalten.  10.01.24