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Abstract

This article proposes a new multivariate method to construct business cycle indicators.
The method is based on a decomposition into trend–cycle and irregular. To derive the
cycle, a multivariate band–pass filter is applied to the estimated trend–cycle. The whole
procedure is fully model–based. Using a set of monthly and quarterly US time series, two
monthly business cycle indicators are obtained for the US. They are represented by the
smoothed cycles of real GDP and the industrial production index. Both indicators are
able to reproduce previous recessions very well. Series contributing to the construction
of both indicators are allowed to be leading, lagging or coincident relative to the business
cycle. Their behavior is assessed by means of the phase angle and the mean phase angle
after cycle estimation. The proposed multivariate method can serve as an attractive tool
for policy making, in particular due to its good forecasting performance and quite simple
setting. The model ensures reliable realtime forecasts even though it does not involve
elaborate mechanisms that account for, e.g., changes in volatility.
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1 Introduction

Economic policy is a subject which often sparks off an active public debate. For example,

policy makers pursuing stabilization policy are expected to take appropriate actions to

stimulate the economy if it is on the brink of a crisis, or to prevent the overheating of the

economy if an expansion is likely to take place. However, such measures are risky since

wrong decisions entail high costs for the society. It is therefore all the more important to

have reliable information in the decision making process. Moreover, the decisions must

be often made early enough and thus under uncertainty about the future state of the

economy. Information available at high frequencies can thus prove helpful in revealing

the stage of the business cycle. The aim of this article is to develop a methodology that

can both provide reliable information on the course of the economy and reduce the lag in

the recognition of its future state.

To identify the course of the economy on the basis of macroeconomic data, a clear

signal supposed to represent the business cycle has to be extracted. For that purpose, it

is necessary to separate out long–term movements and noisy elements from the data. The

question as to how to accomplish this constitutes the central question of business cycle

analysis and has been investigated since the seminal work by Burns and Mitchell (1946).

They for the first time gave a more narrow definition of business cycles as fluctuations in

the economic activity that last between 1.5 and 8 years. The following research attempted

to construct business cycle indicators characterized by these periodicities. Some studies

focus on univariate approaches, like the filters proposed by Hodrick and Prescott (1997)

and Baxter and King (1999) that have become very popular mostly because of their

relatively simple implementation.

Among the univariate approaches, an alternative to these ad hoc filtering methods are

the unobserved components models that take the stochastic properties of the data into

account. As regards this signal extraction approach, two tendencies have emerged in the

literature. One direction corresponds to the structural time series models proposed by,

e.g., Harvey (1989) or their generalized version allowing for smoother cycles (see Harvey

and Trimbur, 2003). The other direction is determined by the ARIMA–model–based

approach (see, e.g., Box et al., 1978) combined with the canonical decomposition (see

Cleveland and Tiao, 1976).

1



Since in the univariate approach only one series, typically real GDP or industrial

production, can serve as a basis for the construction of a business cycle indicator, the

informational content of other macroeconomic time series cannot be exploited. In contrast,

the multivariate framework takes the contribution of different time series into account.

This advantage of a multivariate setting has been recognized by, e.g., Forni et al. (2000)

who develop a Euro area business cycle indicator in a generalized dynamic–factor model

using a large panel of macroeconomic indicators. The indicator of Valle e Azevedo et al.

(2006) for the Euro area is designed with a structural model including a common cycle,

and extracted using a moderate set of series. Creal et al. (2010) extend their approach

by taking into account time–varying volatility and adopt this method for the US.

In this article, we propose another multivariate method which is also based on a

structural time series model. However, because of the well–known difficulties in modeling

cycles directly, a model consisting only on trend plus irregular is initially specified. In this

model, the trend is assumed to capture transitory movements and to have a common slope.

For this reason, it is more appropriately referred to as a trend–cycle. After estimating the

trend–cycle, we apply to it a multivariate band–pass filter to estimate the cycle following

the methodology proposed by Gómez (2001). In fact, the filter is designed for univariate

series, but then it is extended to multivariate series using diagonal matrices. The whole

procedure is fully model–based and is applied to the same set of 11 monthly and quarterly

US time series as in Creal et al. (2010). The extracted cycles of real GDP and the industrial

production index can act as two alternative monthly business cycle indicators.

The proposed approach exhibits very appealing properties. From the modeling point

of view, it provides indicators of the economic activity which conform to the idea of the

business cycle featuring periodicities between 1.5 and 8 years. Hence, one can be sure

that these indicators are not contaminated with higher– or lower–frequency movements.

In addition, the model is flexible since only a few restrictions are imposed, and yet quite

simple in that it does not involve special constructs, like time–variant parameters, to cap-

ture specific behavior of the series components. The complexity of the proposed method

is kept at a rather low level also due to the fact that a dataset with small or moderate

number of series is sufficient in the implementation of the procedure. Moreover, the algo-

rithms used for this method are able to deal with data recorded at different frequencies,
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and can handle missing values straightforwardly.

As regards the policy relevance of the methodology, it is shown that not only previ-

ous recessions can be spotted by the resulting business cycle indicators, but also future

recessions can be very well predicted. As a reliable forecasting framework, this model

can perform better than univariate methods and some elaborate multivariate models.

Further, the indicator represented by the real GDP cycle and its predictions are given

on a monthly basis even though real GDP itself is recorded quarterly. This leads to a

more precise picture on the economic situation and makes it possible to detect changes in

the economic course early. To summarize, with its quite simple setup, good forecasting

performance and the ability to generate realtime forecasts not distorted by, e.g., highly

volatile movements, this method proves to be a well–suited tool for policy makers.

As the information stemming from different time series helps to build the business

cycle indicators, it may be of interest to know how these series are related to the business

cycle. In contrast to the idea by Stock and Watson (1989), they are not constrained to be

coincident indicators only. The behavior of the included series is examined by drawing on

the concepts of the phase angle and the mean phase angle. These spectral measures allow

for classifying the series as leading, lagging or coincident indicators as well as identifying

procyclical or countercyclical patterns.

The remainder of the article is organized as follows. In Section 2, we present the

multivariate monthly model. The model is then applied to the US data described in

Section 3.1. The resulting business cycle indicators and the behavior of other indicators

with respect to the business cycle are analyzed in Section 3.2. Section 3.3 focusses on the

forecasting performance of the proposed approach. Section 4 concludes.

2 Multivariate Monthly Model

Given a multivariate monthly time series {yt}, t = 1, . . . , n with yt = (y1t, . . . , ykt)
′, the

decomposition of yt is based on a trend plus noise model, i.e.

yt = µt + ϵt, (1)

where Var(ϵt) = Dϵ is a diagonal matrix. In the presence of a cycle, µt is not seen as a

smooth trend but rather as a component containing cyclical movements too. Therefore,

3



it will hereafter be referred to as the trend–cycle.

Alternatively, it would be possible to add a cycle component to model (1) to explicitly

model cyclical movements. However, it is well known that cycles are not easy to model

and that most of the time one ends up fixing some parameters in the cycle model to obtain

sensible results (see, e.g., Valle e Azevedo et al., 2006). The difficulty of modeling cycles

is also apparent in the univariate case when one starts with an ARIMA model fitted to

the series and the models for the components are specified according to the canonical

decomposition (see, e.g., Cleveland and Tiao, 1976). In this case, a model for the cycle

cannot usually be found using traditional tools of ARIMA modeling, such as graphs or

correlograms.

The approach in this paper consists of applying a fixed band–pass filter to the trend–

cycle component, µt in model (1), following the methodology proposed by Gómez (2001).

The filter is designed to extract the business cycle fluctuations that correspond to the

periods between 1.5 and 8 years. The procedure is fully model–based and will be described

in the following subsections.

2.1 Model for the Trend–Cycle Component

The trend–cycle component µt follows the model

µt+1 = µt +Kβt + ζt

βt+1 = βt + ηt,
(2)

where βt denotes the slope of µt, and Var(ζt) = Dζ and Var(ηt) = Dη are diagonal

matrices. Moreover, by assuming K = [1, b21, ..., bK1], ∇µt+1 = µt+1 − µt is allowed to be

driven by one common slope. This common slope acts as a common factor in a common

factor model. The rationale for imposing a common slope in model (2) is based on the

assumption that the different elements of the series {yt} have the same or a similar cyclical

behavior. It is usually accepted that the growth rate of a series is interpreted as the cycle

or is strongly related to it. For series in logs, the growth rate is given by the first difference

of the series, i.e.

∇yt = Kβt−1 + ηt−1 +∇ϵt

Since ηt−1+∇ϵt is stationary, the evolution of the cycle is strongly affected by the common

slope, βt.
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To estimate the trend–cycle µt, model (1) along with the trend–cycle specification (2)

can be first put into the state space form as described in Appendix A.1. Then, the Kalman

filter is applied to this state space form to estimate the the unknown parameters of the

state space model. Finally, the Kalman smoother yields the estimate of µt. Details on

these filtering and smoothing methodologies are given in Appendix B.

The estimated trend–cycle is used in the second step for cycle estimation. The whole

procedure is model–based, meaning that, first, the model for the trend–cycle serves as

a basis to derive the models for the trend and the cycle. Second, the parameters of the

trend–cycle model estimated in the first step are used in the estimation of the cycle. As

will be seen in the next subsection, we draw on the reduced–form model of the trend–cycle

in the derivation of the models for the trend and cycle components. A starting point to

arrive at the reduced–form is the following equation derived from model (2):

∇2µt+1 = Kηt−1 +∇ζt

Taking into account that for any square matrix M , its square root is defined as any matrix

M1/2 satisfying M1/2M1/2′ = M , we let ηt = D
1/2
η uη

t and ζt = D
1/2
ζ uζ

t . Then, the previous

equation can be rewritten as

∇2µt = Kηt−2 + (ζt−1 − ζt−2)

= KD1/2
η uη

t−1 +D
1/2
ζ uζ

t −D
1/2
ζ uζ

t−1,

where Var([uζ′

t , u
η′

t ]
′) = I. Thus, by defining vt = [uζ′

t , u
η′

t ]
′, the following reduced–form

model for µt can be obtained:

∇2µt = C0vt + C1vt−1

= C(B)vt,
(3)

where B is the backshift operator such that Bvt = vt−1, and C(B) = C0+C1B is a matrix

polynomial in B with

C0 =
[
D

1/2
ζ 0

]
, C1 =

[
−D

1/2
ζ KD

1/2
η

]
(4)

2.2 Cycle Estimation

In order to extract the cycle, a fixed band–pass filter is applied to the estimated trend–

cycle component, µt. The filter is in this article referred to as the multivariate filter but
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its use amounts to the application of the same univariate filter to each individual trend–

cycle component, µlt, l = 1, ...k. We design a two–sided version of a univariate band–pass

Butterworth filter based on the tangent function using the specification parameters δ1,

δ2, xp1, xp2, xs1 and xs2 (see Gómez, 2001). The values of these parameters determine the

shape of the gain function of the filter, G(x), where x denotes the angular frequency. To

be more specific, it holds that 1− δ1 < G(x) ≤ 1 for x ∈ [xp1, xp2] and 0 ≤ G(x) < δ2 for

x ∈ [0, xs1] and x ∈ [xs2, π].

It is possible and convenient to first design a low–pass filter and then, by means of a

transformation, to derive from it its band–pass version (see Oppenheim and Schafer, 1989,

pp. 430–434). While designing the low–pass filter, we let xp = xp2−xp1 and xs = xs2−xp1

so that the gain function of the low–pass filter, Glp(x), satisfies 1 − δ1 < Glp(x) ≤ 1 for

x ∈ [0, xp] and 0 ≤ Glp(x) < δ2 for x ∈ [xs, π]. For such a choice of the parameters

xp and xs, the appropriate transformation from a low–pass to a band–pass filter is z =

−s(s− α)/(1− αs), where α = cos((xp2 + xp1)/2)/ cos((xp2 − xp1)/2) and −1 < α < 1.

It is shown in Gómez (2001) that the band–pass filters obtained from Butterworth

filters based on the tangent function admit a model–based interpretation. According to

this interpretation, the considered band–pass filter is the Wiener–Kolmogorov filter that

estimates the signal in the signal plus noise model

zt = st + nt, (5)

where the signal, st, follows the model

(1− 2αB +B2)dst = (1−B2)dbt (6)

The parameters d, α and the quotient of the standard deviations of nt and bt, λ = σn/σb,

depend on the specification parameters δ1, δ2, xp, and xs.
1 The reduced–form model for

zt in (5) is

(1− 2αB +B2)dzt = θz(B)at,

1The parameters d and λ can be computed using the low–pass version of the filter as explained in

Gómez (2001, p. 372). It should be thereby taken into account that λ = 1/ tand(xc/2), where xc is a

frequency such that Glp(xc) = 1/2. For the filter used in this article, the values for the parameters in (6)

are d = 3, α = 0.9921 and λ = 437.19.
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where θz(B) is of degree 2d. Letting δz(B) = (1− 2αB + B2)d, the Wiener–Kolmogorov

filters to estimate st and nt in (5) are

hs =
σ2
b

σ2
a

(1−B2)d(1− F 2)d

θz(B)θz(F )
, hn =

σ2
n

σ2
a

δz(B)δz(F )

θz(B)θz(F )
,

respectively, where F is the forward operator such that Fzt = zt+1, σ
2
b = Var(bt), σ

2
n =

Var(nt) and σ2
a = Var(at).

2

The previous considerations allow for the integration of the fixed band–pass filter

described earlier into a multivariate model–based approach. To show this, we first consider

the pseudo covariance generating function (CGF) of µt. Denoted by fµ, the CGF of µt

can be decomposed as follows:

fµ = hsfµ + (1− hs)fµ

= fc + fp,

where fc = hsfµ and fp = (1−hs)fµ. This decomposition defines the decomposition of µt

into two orthogonal unobserved components, ct and pt, with CGFs fc and fp, respectively.

Since the Wiener–Kolmogorov filter to estimate ct in the model µt = ct + pt is the band–

pass filter hs = fc/fµ, the subcomponent ct is considered as the cycle, whereas the other

subcomponent, pt, represents the trend.

The models for ct and pt are obtained from their CGFs. Using the reduced–form model

for µt in eq. (3), the CGF of ct can be written as

fc = hsfµ

=
1

(1−B)2
(C0 + C1B)(C ′

0 + C ′
1F )

1

(1− F )2
σ2
b

σ2
a

(1−B2)d(1− F 2)d

θz(B)θz(F )

=
(1−B)d−2(1 +B)d

θz(B)
(C0 + C1B)

σ2
b

σ2
a

(C ′
0 + C ′

1F )
(1− F )d−2(1 + F )d

θz(F )
,

where C0 and C1 are as in (4). From this, it follows that the model for ct is

θz(B)ct = (1−B)d−2(1 +B)dC(B)vt, (7)

2The derivation of the polynomial θz(B) and the variance σ2
a is provided by Gómez (2001, p. 371).

Without loss of generality, we set for the filter used in this article σ2
b = 1. Then, for this filter σn =

437.19 and σa = 568.58.
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where C(B) = (σb/σa)C(B) and Var(vt) = I. In a similar way, it can be shown that the

model for pt is

(1−B)2θz(B)pt = δz(B)C̃(B)ṽt, (8)

where C̃(B) = (σn/σa)C(B) and Var(ṽt) = I.

Knowing the models for ct and pt, the cycle can be estimated using the state space

framework. The state space model is set up by taking into account decomposition (1)

and the decomposition of µt into ct and pt. Details on this state space representation are

provided in Appendix A.2. The matrices of this state space form contain the parameters

of the trend–cycle mode as well as the parameters of the band–pass filter. The former

have been estimated as described in the previous subsection whereas the values of the

filter parameters have been selected so as to extract the waves corresponding to business

cycle frequencies. Therefore, the matrices of the state state representation of the total

model do not have to be estimated. The covariance square root Kalman smoother applied

to this state space model yields the estimated cycle.

3 Empirical Results

3.1 Data With Mixed Frequencies and Missing Values

In this section, the proposed methodology is used to construct US business cycle indicators

on the basis of a set of US macroeconomic time series. To assess the performance of this

method, the results in Creal et al. (2010) are considered as a benchmark. For notational

convenience, we will use the acronym CKZ when referring to this study. To make the

comparison as reliable as possible, the same dataset consisting of 11 seasonally adjusted

time series from 1953.M4 to 2007.M9 is used (for details see Creal et al., 2010, p. 702). The

monthly series are: the industrial production index (IPI), the unemployment rate, average

weekly working hours in manufacturing, and two series from the retail sales category. One

of them, retail sales, is discontinued in 2001.M4 whereas the other one, retail sales and

food services, is observed between 1991.M1 and 2007.M9. The remaining series, i.e. real

GDP, consumer price index inflation, consumption, investment, productivity of the non–

farm business sector and hours of the non–farm business sector are available on a quarterly

basis. All series except for the unemployment rate and inflation are in logs and multiplied
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by 100.

An important property of the dataset is the presence of missing values. This, however,

poses no problem because the Kalman filter can easily handle missing observations. An-

other feature of the data is the different observation frequency. Even though the models

presented in the previous section as well as their corresponding state space forms are

formulated for monthly data, quarterly data can be accommodated in this framework in

a straightforward manner.

It is to be noted that different time aggregation patterns apply depending on whether

the variables are stocks, time–averaged stocks or flows. It would be possible to account for

these different types of variables by incorporating the so–called cumulator variables (see

Harvey, 1989, pp. 306–239). They are defined in terms of variables not being transformed

so that the correct use of the cumulator variables in the case of series in logs would imply

non–linear state space models. If, instead, the definitions of the cumulator variables are

assumed to hold also for series in logs as in Mariano and Murasawa (2003), this can lead to

inaccuracies in the components estimates. Due to these problems, we follow an alternative

approach. We disregard the different time aggregation schemes and treat quarterly data

as monthly data with two missing observations added between two consecutive quarterly

observations. In this way, non–linearities and larger model dimensions caused by the

cumulator variables can be avoided.

3.2 Business Cycle Indicators

Figure 1 depicts the business cycle indicators, the IPI and real GDP cycles, estimated in

the multivariate framework.3 It is apparent that the recessions implied by both cycles

are in line with the recessions dated by NBER. The IPI cycle is undoubtedly much more

volatile than the GDP cycle. Whereas the standard deviation of the GDP cycle is equal to

1.59, the corresponding value for the IPI case is 3.31, more than twice as high. However,

both cycles show a very similar pattern. This observation can be also confirmed by their

contemporary correlation of 0.945. The high degree of synchronization let them act as

alternative recession indicators. The most remarkable deviation in values of each cycle

3All computations have been performed with Matlab R2012b (64–bit) using the SSMMatlab toolbox

by Gómez (2012) and procedures written by Vı́ctor Gómez.
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within a single recession can be observed between 1973 and 1975. The strong fall from

high positive to high negative values suggests the most severe downturn in the analyzed

time span. A further, very sharp decline in the economic activity occurs in the early 1980s

and is a result of two recessions separated by a peak in 1981, as is evident from Figure 1.

Beside the dips classified by NBER as recessions, both cycles exhibit three smaller dips:

the first one in the late 1960s, the second one between 1984 and 1987 and the third one

in the mid–1990s. The IPI and GDP cycles are not only able to reproduce the previous

US history of downturns, as is made clear by Figure 1, but they also nearly coincide with

the respective cycles extracted by Creal et al. (2010).

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005
−10

−8

−6

−4

−2

0

2

4

6

8

 

 
IPI
GDP

Figure 1: Cycles of the industrial production index (IPI) and real GDP as the business cycle

indicators

Note: NBER recession dates are represented by the vertical bands.

Given the business cycle indicator, the remaining series can be classified as leading,

lagging or coincident indices depending on how they are shifted relative to the business

cycle. If the cycle is explicitly modeled in a multivariate structural model, a possible

way to identify the lead–lag pattern is to directly incorporate phase shifts into the model

with a common cycle according to the approach of Rünstler (2004) that has been applied

in Creal et al. (2010) and Valle e Azevedo et al. (2006). This, however, increases the
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number of parameters to be estimated. In order to keep the model tractable, Valle e

Azevedo et al. (2006) fixed the frequency of the common cycle to a specific value so that

the inclusion of the shift parameter necessitates additional restrictions. The Bayesian

approach for parameter estimation adopted by Creal et al. (2010) per se involves choosing

prior distributions for the parameters. The classification procedure we follow in this

article has the advantage that it does not increase the model complexity nor does it

require certain assumptions. It relies on the concept of phase angle. This measure is

well suited to establish the lead–lag relation of two time series as well as the direction

(positive or negative) of their relationship. By means of the phase angle, the behavior of

the particular cycle with respect to the business cycle can be examined.

If the value of the phase angle at the angular frequency ω, θ(ω), lies between 0 and π,

the particular series is said to lag the business cycle at ω. The opposite case is implied

by −π < θ(ω) < 0. The particular series is defined as coincident at ω, if θ(ω) equals

zero. Moreover, values of the phase angle ranging between (−π/2, π/2) point to a positive

relation between the particular cycle and the business cycle (procyclical behavior/in–phase

movement), whereas the values of θ(ω) in the interval [−π,−π/2) or (π/2, π] indicate a

negative relationship (countercyclical behavior/anti–phase movement) between them.4 In

the CKZ model, phase angle values are constrained to lie between −π/2 and π/2 due to

identifiability issues so that all series are implicitly assumed to be procyclical. However,

this cannot be a plausible assumption for the unemployment rate.

Judgement of the overall behavior can be made based on the phase angle value with

respect to a reference frequency. In the case of the CKZ model, it is the frequency of the

common cycle. It corresponds to the largest mass of the spectrum of the common cycle

and is thus the same for all series under consideration. In contrast, we allow the cycles

to have different spectral densities. The natural counterpart of the reference frequency

in the CKZ model therefore seems to be the frequency associated with the strongest

relationship between the business cycle and the particular cycle. The strength of their

frequency–by–frequency relationship is here measured using the concept of coherence.

Though the lead–lag classification approach resting on the strongest coherence creates a

4Note that the range of the phase angle is constrained to the interval [−π,−π]. The rationale for

this common practice and a comprehensive discussion on the values of the phase angle are provided by

Marczak and Beissinger (2012).
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link to the CKZ phase shift modeling, it can disregard possible countervailing patterns

in the business cycle frequency interval. This problem becomes severe, especially if the

spectrum or, in this case, the coherence displays more than one peak and contrasting

patterns can be identified among some of them. To avoid this potential problem, it

may be useful to analyze the overall behavior of the particular series by evaluating the

mean phase angle in the whole business cycle frequency interval [2π/96, 2π/18]. For that

purpose, we employ the concept of a mean appropriate for data measured on the angular

scale (see Fisher and Lewis, 1983).

The results of the lead–lag analysis pertaining to the IPI cycle as a business cycle indi-

cator can be found in Table 1. In addition to the single estimates of the phase angle based

on the reference frequency, θ(ωh), and the mean phase angles θ̄, the respective confidence

intervals are reported.5 It is evident that manufacturing working hours, productivity and

investment are leading the business cycle at the 5% significance level. According to the

statistically significant negative value of the mean phase angle, consumption can be also

classified as a leading indicator. Similar observation can be made for both series from

the retail sales category. All these results confirm the CKZ findings. One of the few

divergences relative to the CKZ results pertains to the unemployment rate. From the

significance of the negative values of θ(ωh) and θ̄, it can be inferred that this series is

leading the business cycle. However, the values of θ(ωh) and θ̄ are both very close to π, a

value for which the unemployment rate could be characterized as leading or as lagging the

business cycle. In fact, it can be observed that the unemployment rate increases before

the business cycle reaches its peak, but it also rises after a trough in the economic activity.

In the real GDP case, a coincident behavior cannot be ruled out whereas the CKZ findings

suggest a leading behavior of real GDP instead. The remaining series, inflation and, as

opposed to the CKZ results, hours in the non–farm business are lagging the business cycle

at the 5% significance level.

As regards the movements with or against the business cycle, almost all indicators

exhibit a statistically significant procyclical pattern. Only the unemployment rate is

5The confidence bounds for the estimates of the phase angle and the mean phase angles have been

constructed as described in Koopmans (1974, pp. 285–287) and Fisher and Lewis (1983), respectively.

All computations for the lead–lag analysis have been performed with Matlab R2012b (64–bit) using the

Spectran toolbox by Marczak and Gómez (2012).
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Table 1: Leading, lagging and coincident indicators relative to the IPI cyclea)

IPI and
Period τh

in years b)
θ(ωh)

95% Conf.

interval for θ(ωh)
θ̄ c)

95% Conf.

interval for θ̄

Unemployment 3.41 −0.920 −0.975 −0.865 −0.929 −0.942 −0.916

Manufacturing 3.63 −0.170 −0.237 −0.103 −0.157 −0.173 −0.140

Inflation 5.45 0.329 0.243 0.415 0.166 0.108 0.224

Retail 4.54 −0.070 −0.180 0.040 −0.086 −0.131 −0.041

Retail/food 3.41 −0.050 −0.242 0.142 −0.061 −0.089 −0.033

Productivity 4.19 −0.388 −0.508 −0.267 −0.241 −0.287 −0.195

Real GDP 7.79 −0.030 −0.076 0.016 0.007 −0.014 0.028

Hours 3.03 0.096 0.050 0.141 0.111 0.096 0.126

Consumption 4.54 0.006 −0.109 0.121 −0.146 −0.213 −0.079

Investment 7.79 −0.151 −0.210 −0.092 −0.002 −0.028 0.025

a) Angular measures are expressed in terms of shares of π.

b) τh corresponds to the frequency ωh at which the coherence between the business cycle indicator and

the respective series attains the highest value.

c) θ̄ denotes the mean phase angle computed in the frequency interval [2π/96, 2π/18].

statistically significant countercyclical. It is worth noting that the similar cyclical behavior

for both series, retail sales and retail sales with food services, is not a consequence of any

restrictions. In the CKZ model, on the other hand, the same phase shift for these both

series is imposed at the outset.

Analogously to Table 1 related to the IPI cycle, Table 2 summarizes the results related

to the GDP cycle as a business cycle indicator. It can be noticed that they do not

qualitatively differ from the ones corresponding to the IPI cycle. Hence, both business

cycle indicators can in this case serve as equivalent reference measures.

3.3 Forecasting

3.3.1 Forecasts of the Recessions

Apart from providing stylized facts about the past and the current state of the economy,

a method for extracting a business cycle indicator should perform well with respect to

forecasting. Accurate forecasts of the economic activity in the near future are of a vital

13



Table 2: Leading, lagging and coincident indicators relative to the GDP cyclea)

Real GDP and
Period τh

in years b)
θ(ωh)

95% Conf.

interval for θ(ωh)
θ̄ c)

95% Conf.

interval for θ̄

Unemployment 4.54 −0.930 −0.986 −0.874 −0.931 −0.947 −0.915

Manufacturing 6.81 −0.180 −0.255 −0.105 −0.151 −0.167 −0.135

Inflation 6.06 0.308 0.191 0.425 0.241 0.197 0.286

Retail 2.27 −0.121 −0.205 −0.036 −0.080 −0.108 −0.052

Retail/food 1.56 −0.222 −0.438 −0.006 −0.054 −0.084 −0.025

Productivity 3.63 −0.293 −0.384 −0.201 −0.217 −0.249 −0.186

IPI 7.79 0.030 −0.016 0.076 −0.007 −0.028 0.014

Hours 3.41 0.131 0.083 0.178 0.110 0.098 0.123

Consumption 4.54 −0.009 −0.095 0.077 −0.066 −0.105 −0.028

Investment 5.45 −0.101 −0.128 −0.075 −0.010 −0.030 0.011

a) Angular measures are expressed in terms of shares of π.

b) τh corresponds to the frequency ωh at which the coherence between the business cycle indicator and

the respective series attains the highest value.

c) θ̄ denotes the mean phase angle computed in the frequency interval [2π/96, 2π/18].

importance for economic policy. What is more, the timeliness of the forecasts also plays

an essential role in the decision making process, as the information at a higher frequency,

e.g. on a monthly basis, gives a more detailed picture on the future economic situation.

This aspect has become a motivation for the recently growing literature on the so–called

nowcasting dealing with real–time data (see, e.g., Giannone et al., 2008; Bańbura et al.,

2012). From the computational point of view, a simple model is advantageous over an

elaborate one since it is easier to understand, implement and adjust, and it possibly

requires less restrictions. In this section, we show that the multivariate method proposed

in this article embodies all these features of a good forecasting model as it is able to yield

good realtime predictions in a relatively simple modeling framework.

To examine the performance of the presented approach, we first compute one–year

forecasts of the IPI and GDP cycle based on the whole sample to check whether the

forecasts can reproduce the last recession starting in 2007.M12. Further, the model is

estimated with two shorter samples, until 2000.M12 and 1990.M4, respectively. In both

cases we also calculate one–year forecasts for both business cycle indicators. In this way,

14



the robustness of this methodology shall be investigated. Figure 2 depicts the smoothed

IPI and GDP cycle estimates along with the respective forecasts in three intervals. The

results make clear that the proposed method can predict the last three recessions very

well.
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Figure 2: Smoothed cycle estimates and one–year forecasts for three time intervals

Notes: NBER recession dates are represented by the vertical bands.

3.3.2 Comparison with the Model with a Structural Volatility Break

Since the focus of this article lies on developing a reliable, albeit simple, model for the

cycle extraction and forecasting, the model presented in Section 2 cannot explicitly take

into account any possible structural changes present in the data. Indeed, initiated by

the studies of Kim and Nelson (1999) and McConnell and Pérez-Quirós (2000), the recent

literature provides an evidence of a substantial reduction in the volatility of many macroe-
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conomic time series in the US. There is no consensus whether the moderation has occurred

in form of a break, as suggested by Stock and Watson (2002) (or maybe multiple breaks

discussed by Sensier and van Dijk, 2004), or rather a gradual change in the volatility, as

advocated by Blanchard and Simon (2001). Even though in this part of the study we try

to address the issue of the volatility decline, we do not aim to contribute to the literature

on the Great Moderation. We rather intend to find out whether accounting for this effect

influences the forecast performance. For this reason, a single (one–time) volatility break

is considered. we rely on the break time point in 1984.M1 initially detected for output

growth by Kim and Nelson (1999) and McConnell and Pérez-Quirós (2000). This single

volatility break is incorporated in the common slope and in the multivariate irregular

component. We thereby follow the approach proposed by Tsay (1988). For the sake of

comparison, Figure 3 presents the IPI and GDP cycles and their forecasts from the model

with the volatility break and the base model. The differences between these results refer

to the IPI case but are rather small, so that the specification without the volatility break

seems to be even better in terms of forecasting than the more complex alternative. In

contrast, the stochastic volatility specification is needed in the CKZ model to correctly

predict the last recession.
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(b) Model with the volatility break

Figure 3: Smoothed cycle estimates and one–year forecasts from 2007.M10 onwards based on

the base model and the model with the volatility break in 1984.M1, respectively

Note: NBER recession dates are represented by the vertical bands.

3.3.3 Comparison with the Univariate Model Based on a Band–Pass Filter

The obvious advantage of a multivariate model over an univariate approach is that it is

capable of yielding monthly information on the GDP cycle. Forecasts of the economic

16



situation based on real GDP are in this case more precise in terms of timing than quar-

terly forecasts resulting from an univariate model. Hence, they represent an alternative

to forecasts based on the monthly IPI. The question arises whether, apart from realtime

forecasts, the multivariate model presented in Section 2 can as well warrant an improve-

ment in the forecasts quality over univariate methods. To examine this aspect, it seems

natural to consider the univariate version of the proposed multivariate model. In so do-

ing, it can be ensured that potential differences in the outcomes are not a consequence

of fundamental differences in the modeling principles and thus in the resulting stochastic

features. In particular, the univariate structural model with trend–cycle and irregular is

estimated for the IPI and real GDP. In the second step, the univariate band–pass filter

described in Section 2.2 is applied to the estimated trend–cycle. Similarly to the mul-

tivariate counterpart, the procedure is fully model–based. To facilitate the comparison

of both approaches, the forecasts are investigated in the same time intervals as in the

multivariate case: 2007.M10–2008.M9, 2001.M1–2001.M12 and 1990.M5–1991.M4. For

real GDP, these forecasts intervals are translated to the corresponding quarters. The

smoothed IPI and GDP cycles along with their forecasts obtained with the univariate

model are depicted in Figure 4.

As regards the IPI cycle (Figures 4a, 4b and 4c), the forecasts are almost identical

with those resulting from the multivariate model (see Figures 2a, 2b and 2c). In the GDP

case, on the other hand, the forecasts misleadingly suggest an expansion in the intervals

2007.Q4–2008.Q3 and 1990.Q2–1991.Q1 as can be seen in Figures 4d and 4f, respectively.

This observation is consistent with the finding of Creal et al. (2010). They show that the

univariate version of their model (without stochastic volatility) applied to real GDP is not

capable of predicting the last recession. The preceding analysis leads to the conclusion

that the multivariate model not only can produce forecasts at a frequency higher than the

frequency of the data itself, but also offers a better framework for forecasting purposes

than the univariate counterpart, at least for real GDP.

4 Conclusions

This article presents a new multivariate model used to construct monthly business cycle

indicators for the US. This approach is based on a multivariate structural model and a
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Figure 4: Smoothed cycle estimates based on the univariate model and one–year forecasts for

three time intervals

Note: NBER recession dates are represented by the vertical bands.

univariate band–pass filter. It contributes to the literature on the business cycle analysis

in several ways. The model allows for considering series observed at different frequencies.

Therefore, advantage can be taken of the information contained in several monthly and

quarterly macroeconomic indicators which are considered in this article. The two obtained

business cycle indicators are, however, given on a monthly basis. They are represented by

the cycles of the industrial production index (IPI) and real GDP, respectively. The indi-

cators are smooth and thus consistent with the definition of a business cycle. Moreover,

they can reproduce previous recessions very well.

The different series used in the proposed procedure are not restricted to be coincident.

Their behavior in relation to the business cycle is, however, not explicitly modeled by

18



extra parameters which would increase the complexity of the model. The relationship of

other indicators with the real GDP or IPI cycle can still be analyzed after cycle estima-

tion has been performed. For that purpose, the frequency–domain concepts of the phase

angle and the mean phase angle are employed. The analysis reveals that the results are

virtually the same for both reference cycles. Manufacturing working hours, productiv-

ity and retail sales are leading the business cycle at the 5% significance level. Inflation

and hours in the non–farm business are statistically significant lagging indicators. For

the unemployment rate, the results are somewhat ambiguous. Almost all of the indica-

tors are statistically significant procyclical indicators, whereas the unemployment rate is

statistically significant countercyclical.

The greatest strength of the presented approach lies in its forecasting performance.

The ability to produce high quality forecasts provided at high frequency can represent

a valuable feature for policy making. It is demonstrated that the model is capable of

predicting not only the most recent recession but also the two previous ones. No additional

assumptions, like changes in the volatility, are needed to achieve such good results. For

the sake of completeness, the forecasts obtained with the base model are compared with

the forecasts from the model with a volatility break. This comparison cannot uncover

any differences. The comparison with the forecasts from the univariate counterpart of

the proposed model, on the other hand, shows that the multivariate version performs far

better, at least in the real GDP case.
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Appendix

A State Space Representations

A.1 Monthly Model With the Trend–Cycle

A state space form for the trend–cycle in eq. (2) is

αt+1 = Tµαt +Hµvt

µt = Zµαt,
(9)

where αt = (µ′
t, β

′
t)

′, vt is as in eq. (3), and

Tµ =

[
Ik K

0 Ir

]
, Hµ =

[
D

1/2
ζ 0

0 D
1/2
η

]
,

Zµ =
[
Ik 0

]
, r = 1

(10)

Then, a state space form for the monthly model is

αt+1 = Tαt +Hut

yt = Zαt +Gut, t = 1, . . . , n,

where ut = (v′t, ε
′
t)

′ with Var(ut) = I, T = Tµ, Z = Zµ and

H =

[
D

1/2
ζ 0 0

0 D
1/2
η 0

]
, G =

[
0 0 D

1/2
ϵ

]
The initial state vector α1 = (µ′

1, β
′
1)

′ is

α1 = Aδ + p,

where δ has dimension k + r and is diffuse, A is a suitable nonstochastic matrix, and p

has zero mean and a well defined covariance matrix.

A.2 Monthly Model Including the Cycle

For numerical reasons, the model for pt in eq. (8) is implemented in cascade form as

pt =
[
θ−1
z (B)δz(B)

]
wt, (11)

20



where wt follows the model

wt =
[
(1−B)−2C̃(B)

]
ṽt

A state space model for wt can be easily derived from (9), namely

γt+1 = Twγt +Hwṽt,

wt = Zwγt,

where Tw = Tµ, Zw = Zµ and Hw = (σn/σa)Hµ, and the matrices Tµ, Zµ and Hµ

are given in (10). As for pt in eq. (11), we select the multivariate version of the state

space representation used by Gómez and Maravall (1994), which is an extension to the

nonstationary case of the approach proposed by Akaike (1974). Thus, the state space

representation of (11) is

ξt = Tvξt−1 +Hvwt

pt = Zvξt,
(12)

where ξt = (p′t, p
′
t+1|t, ..., p

′
t+q|t)

′, θz(B) = 1 +
∑q

i=1 θz,iB
i, q = 2d is the degree of both

polynomials, θz(B) and δz(B),

Tv =


0 I 0 · · · 0

0 0 I · · · 0
...

...
...

. . .
...

0 −θz,qI −θz,q−1I · · · −θz,1I

 , Hv =


I

V1I
...

VqI

 ,

Zv =
[
I 0 · · · 0

]
,

(13)

and Vi, i = 0, ..., q, are the coefficients obtained from V (B) = δz(B)/θz(B). Thus, the

state space model for the cascade form of the model for pt described earlier is

φt+1 = Tpφt +Hpṽt+1

pt = Zpφt,
(14)

where φt = (ξ′t, γ
′
t+1)

′ and

Tp =

[
Tv HvZw

0 Tw

]
, Hp =

[
0

Hw

]
, Zp =

[
Zv 0

]
Similarly to (12), the state space form considered for ct in eq. (7) is

χt+1 = Tcχt +Hcvt+1

ct = Zcχt,
(15)
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where χt = (c′t, c
′
t+1|t, ..., c

′
t+q−1|t)

′,

Tc =


0 I 0 · · · 0

0 0 I · · · 0
...

...
...

. . .
...

−θz,qI −θz,q−1I −θz,q−2I · · · −θz,1I

 , Hc =


I

Z1I
...

Zq−1I

 ,

Zc =
[
I 0 · · · 0

]
and Zi, i = 0, ..., q − 1, are the coefficients of the following polynomial

Z(B) = (1−B)d−2(1 +B)d
C(B)

θz(B)

Taking models (14) and (15) into account, the state space form for µt = pt + ct is

αt+1 =

[
Tp 0

0 Tc

]
αt +

[
Hp 0

0 Hc

][
ṽt+1

vt+1

]
µt =

[
Zp Zc

]
αt,

where αt = (φ′
t, χ

′
t)

′. Thus, the state space form for yt is

αt+1 = Tαt +Hut

yt = Zαt +Gut, t = 1, . . . , n,

where ut = (ṽ′t+1, v
′
t+1, ε

′
t)

′, Var(ut) = I, and

T =

[
Tp 0

0 Tc

]
, H =

[
Hp 0 0

0 Hc 0

]
,

Z =
[
Zp Zc

]
, G =

[
0 0 D

1/2
ϵ

]
The initial state vector α1 = (φ′

1, χ
′
1)

′, where φ1 and χ1 are uncorrelated, is

α1 =

[
A

0

]
δ +

[
p

χ1

]

B Kalman Filter and Covariance Square Root Kalman

Smoother

Consider a state space model

xt+1 = Ttxt +Htϵt

Yt = Ztxt +Gtϵt, t = 1, ..., n
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where Var(ϵt) = I. The initial state vector x1 is specified as

x1 = c+ a+ Aδ,

where c has zero mean and covariance matrix Ω, a is a constant vector, δ is diffuse and A

is a constant matrix. In the following, it is assumed that δ = 0. Even though the model

proposed in this article implies δ ̸= 0 (see Appendices A.1 and A.2), this simplifying

assumption allows to convey the idea of the applied filtering and smoothing algorithms

in a comprehensive way. The Kalman filter is given by the recursions

Et = Yt − Ztx̂t|t−1, Σt = ZtPtZ
′
t +GtG

′
t,

Kt = (TtPtZ
′
t +HtG

′
t)Σ

−1
t , x̂t+1|t = Ttx̂t|t−1 +KtEt,

Pt+1 = (Tt −KtZt)PtT
′
t + (Ht −KtGt)H

′
t,

initialized with x̂1|0 = a and P1 = Ω. In the general case with δ ̸= 0, the so–called diffuse

Kalman filter and smoother are applied (see de Jong, 1991).

The formulae for the fixed–interval Kalman smoother are as follows. For t = n, n −
1, . . . , 1, define the so–called adjoint variable, λt, and its covariance matrix, Λt, by the

recursions

λt = T ′
p,tλt+1 + Z ′

tΣ
−1
t Et, Λt = T ′

p,tΛt+1Tp,t + Z ′
tΣ

−1
t Zt,

initialized with λn+1 = 0 and Λn+1 = 0, where Tp,t = Tt − KtZt. Then, for t = n, n −
1, . . . , 1, the projection, x̂t|n, of xt onto the whole sample {Yt : 1 ≤ t ≤ n} and its MSE,

Pt|n, satisfy the recursions

x̂t|n = x̂t|t−1 + Ptλt, Pt|n = Pt − PtΛtPt

In this article the covariance square root smoother is applied since it proves to be a

stable algorithm if the state vector has a large dimension. For square root smoothing,

let Ẑt = Σ
−1/2
t Zt and Tp,t = Tt − K̂tẐt, where K̂t = TtPtZ

′
t + HtG

′
t)Σ

−1/2′

t . Let the QR

algorithm produce an orthogonal matrix Ut such that

U ′
t

[
Ẑt

Λ
1/2′

t+1Tp,t

]
=

[
Λ′

0

]
,

where Λ′ is an upper triangular matrix. Then, Λ = Λ
1/2
t and λt = T ′

p,tλt+1 + Ẑ ′
tÊt, where

Êt = Σ
−1/2
t Et. The square root form of the fixed interval smoother used in this article is

as follows.
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Step 1 In the forward pass, compute and store the quantities Êt, K̂t, Ẑt, x̂t+1|t

and P
1/2
t+1.

Step 2 In the backward pass, compute λt recursively by means of the formula λt

= T ′
p,tλt+1 + Ẑ ′

tÊt. In addition, compute Λ
1/2
t as explained earlier.

Step 3 Finally, using the output given by steps 1 and 2, compute recursively in

the backward pass the fixed interval smoothing quantities

x̂t|n = x̂t|t−1 + P
1/2
t

(
P

1/2′

t λt

)
Pt|n = P

1/2
t

[
I −

(
P

1/2′

t Λ
1/2
t

)(
Λ

1/2′

t P
1/2
t

)]
P

1/2′

t
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Gómez, V. (2012). SSMMATLAB, a Set of MATLAB Programs for the Statistical Analysis

of State–Space Models. Downloadable at http://www.sepg.pap.minhap.gob.es/

sitios/sepg/en-GB/Presupuestos/Documentacion/Paginas/SSMMATLAB.aspx
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