Jun, Bogang ;
Yi, Seung-Kyu ;
Buchmann, Tobias ;
Mueller, Matthias
The co-evolution of innovation networks : collaboration between West and East Germany from 1972 to 2014
Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgende
URN: urn:nbn:de:bsz:100-opus-12366
URL: http://opus.uni-hohenheim.de/volltexte/2016/1236/
pdf-Format:
|
|
|
Gedruckte Ausgabe: |
|
|
Dokument in Google Scholar suchen: |
|
|
Social Media: |
|
|
Export: |
|
|
Abrufstatistik: |
|
|
SWD-Schlagwörter: |
| Wiedervereinigung , Innovation , Netzwerk |
Freie Schlagwörter (Englisch): |
| Innovation networks , Network dynamics , German reunification |
Institut: |
| Institut für Volkswirtschaftslehre |
DDC-Sachgruppe: |
| Wirtschaft |
Dokumentart: |
| ResearchPaper |
Schriftenreihe: |
| Hohenheim discussion papers in business, economics and social sciences |
Bandnummer: |
| 2016,09 |
Sprache: |
| Englisch |
Erstellungsjahr: |
| 2016 |
Publikationsdatum: |
| 06.07.2016 |
|
Lizenz: |
|
Veröffentlichungsvertrag mit der Universitätsbibliothek Hohenheim
|
|
Kurzfassung auf Englisch: |
| This paper describes the co-evolution of East and West German innovation networks after the German reunification in 1990 by analyzing publication data from 1972 to 2014. This study uses the following four benchmark models to interpret and classify German innovation networks: the random graph model, the small-world model, the Barabási–Albert model, and the evolutionary model. By comparing the network characteristics of empirical networks with the characteristics of these four benchmark models, we can increase our understanding of the particularities of German innovation networks, such as development over time as well as structural changes (i.e., new nodes or increasing/decreasing network density). We first confirm that a structural change in East–West networks occurred in the early 2000s in terms of the number of link between the two. Second, we show that regions with few collaborators dominated the properties of German innovation networks. Lastly, the change in network cliquishness, which reflects the tendency to build cohesive subgroups, and path length, which is a strong indicator of the speed of knowledge transfer in a network, compared with the four benchmark models show that East and West German regions tended to connect to new regions located in their surroundings, instead of entering distant regions. Our findings support the German federal government’s continuous efforts to build networks between East and West German regions. |
© 1996 - 2016 Universität
Hohenheim. Alle Rechte vorbehalten.
10.01.24 |