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CHAPTER 1 
 

Introduction 

 

 

1.1 Problem definition and complexity of site-specific nitrogen management 
 

Mineral nitrogen (N) fertilization is a key factor for yield formation in conventional crop farming 

(Quemada et al., 2020) and as such, it has significantly contributed to the Green Revolution and its 

accompanying benefits. At the same time, it is associated with significant emissions of greenhouse 

gases (Balafoutis et al., 2017), as well as reactive N compounds to the environment with adverse 

effects on natural ecosystems and human health (Liu et al., 2022). One of the main reasons for this 

are ever low recovery rates even in industrialised regions due to inappropriate N management and a 

mismatch of N supply to the crops’ spatially variable demand (Godinot et al., 2016; Mittermayer et 

al., 2021). Recent dramatic increases in N fertilizer prices due to natural, but also geopolitical factors 

are a threat to food security in many regions of the world (Schmidhuber, 2022) and further stress the 

need to achieve higher N efficiencies. 

Variable rate N application (VRNA) based on prevailing heterogeneities within a field could 

prove its potential for N efficiency gains, as well as environmental and economic benefits in various 

research (Gobbo et al., 2021; Koch et al., 2004; Basso et al., 2016). Even though many VRNA systems 

have reached a commercial state decades ago, this technology is still not convincing in terms of its 

overall advantageousness (Lowenberg-Deboer and Erickson, 2019). The main reason for that is the 

enormous complexity of crop production systems having severe implications on site-specific N 

management and making it still a challenging task to accomplish. This can be broken down into the 

following core issues: 

• Site-specific N management is by nature multi-parametric because it needs to consider the 

interactions between various biological, soil-borne, topographic and further management 

factors affecting crop growth (Colaço and Bramley, 2018; Corwin and Lesch, 2005).
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• It is multi-dimensional because beyond spatial heterogeneities of single parameters, especially 

the seasonal and local influence of weather is causing temporal dynamics (Zillmann et al., 

2006) that, in turn, affect the magnitude and distribution of spatial variabilities of crops and 

final yield (Stamatiadis et al., 2018; Taylor et al., 2003; Griepentrog et al., 2007). 

• It is multi-objective because crop production can follow economic, environmental protection 

and productional optimization targets or a combination of these (Jones and Barnes, 2000; 

Ebertseder et al., 2005; Heijting et al., 2011). 

In front of this background, there is an obvious need to look at it from a holistic perspective 

considering both, agronomic and more technical aspects. 

For VRNA to respond to in-field spatial variability, the development of robust agronomic 

algorithms is crucial (Shanahan et al., 2008). It is obvious that beyond the crop’s current N status, 

which can be reliably assessed with non-contact sensor technology even in real-time (Erdle et al., 

2011), further relevant parameters should be considered (Auernhammer, 2001). Abundant 

redistribution procedures as applied by Welsh et al. (2003) and Guerrero et al. (2021) can be enhanced 

by the apparent electrical conductivity (ECa) as an established indicator for soil-borne productivity 

potential (Berntsen et al., 2006). Beyond that, algorithms based on N response models (Holland and 

Schepers, 2010) or crop N uptake and yield expectation are existing (Van Loon et al., 2018; 

Weckesser et al., 2021). Still, such algorithms are often rather rigid and partly assume models for 

relationships in crop physiology that can hardly be generalized (Arnall et al., 2013; Girma et al., 

2007). 

A fusion of various measurable, biotic and abiotic parameters is explicitly done by applying 

clustering techniques to define management zones of similar productivity potential, which often 

peculates, however, information on causal relationships (Li et al., 2007; Guerrero et al., 2021; Heege, 

2013). This problem also arises in the popular use of historical yield maps, as they only represent a 

retrospective view and can fail in representing the patterns within a specific season (Adamchuk et al., 

2011). In a more implicit manner, multiple parameters are considered together with seasonal weather 

influences in crop models (Gobbo et al., 2021). However, limitations concerning accuracy until 

midseason, the transferability among different regions and the capability of addressing spatiotemporal 

dynamics of N management, are preventing their broad use (Van Evert et al., 2021; Basso and Liu, 

2019). Recent research intends to better consider the spatiotemporal variability in management zone 

delineation (Scudiero et al., 2018) and applies machine learning to respond to the inherent complexity 

of N management (Van Klompenburg et al., 2020). Still, there is a strong awareness that agronomic 

expert knowledge remains an indispensable instance for the definition of agronomic strategies, even 

though its consideration so far is all in all sparse (Zhai et al., 2020; Martínez-Casasnovas et al., 2018). 
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From a technical perspective, the complexity of site-specific N management places demands on 

providing and bundling different sources of information (Ostermeier, 2013). And when it comes to 

e.g. crop parameters or the weather, this information needs to be up to date. Further, the fusion of 

multiple sources of data has to be accomplished by a control implementation of the developed 

agronomic algorithms, which is specifically challenging, especially when the information needs to be 

processed in real-time. In such cases, the interaction with application systems also comes into play, 

whereby the magnitude of the spatial variability of different parameters has to be considered (Han et 

al., 1994). This affects on the one hand the transversal direction, where pragmatic analyses focusing 

on field-related heterogeneities concluded that common working widths are abundantly too large 

(Griepentrog et al., 2007; Morari et al., 2021). On the other hand, the longitudinal direction needs to 

be considered as the application system successively covers the field. There, application errors can 

usually be traced back to the application system’s response (Fulton et al., 2013; Sharipov et al., 2021) 

and the spatial discrepancy between sensing and application (Goense, 1999).  

From an overall view of a technical system for VRNA, it can be concluded that the most crucial 

components need to provide interfaces for human-machine interaction because full automation is still 

far ahead and consequently, the user is a core control element (Zhai et al., 2020). A big challenge 

hereby is to take out complexity by keeping the level of interaction for the user as low as possible, 

while at the same time the process to be controlled remains highly complex (Ferrise et al., 2021; 

Tummers et al., 2019). As the entire VRNA is a distributed process mainly consisting of a 

management and an execution part, which can both be subdivided into further sub-processes, there 

are also high organizational efforts needed in linking them with each other and exchanging necessary 

information. 

 

1.2 Agronomic relevance and incorporation of expert knowledge 
 

With the advancing digitisation of crop production, further improvements in sensor technology and 

automated decision-making with the aid of big data and artificial intelligence can be expected. 

However, this should not disregard the highly important potential that agronomic expert knowledge 

of a majority of farmers and advisors has in defining agronomic strategies (Wolfert et al., 2017). Their 

professional education incorporating some kind of standard scientific knowledge, as well as their 

access to various kinds of information relevant to the production enables them to accommodate 

biological, management, economic and technical requirements (Heijting et al., 2011; Quemada et al., 

2020; Oliver et al., 2012). This is leveraged by farm-specific, local and situative knowledge (Oliver 

et al., 2010; Lundström and Lindblom, 2018), which is accumulated over many years of experience 
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acquired during the work on one complex production system (Hoffmann et al., 2007). Thereby, they 

gain a feeling for the parameter interrelations under different seasonal scenarios, as well as the 

peculiarities of their fields, which is already applied in the crop and field assessment prior to every 

split N application (Isensee et al., 2003). As a consequence, the principle of precision farming has 

been adopted by many farmers since the earliest days of mechanisation as they e.g. vary N dose rates 

(DR) manually based on their intuition (Lowenberg-Deboer and Erickson, 2019). Expert knowledge 

has been employed as the main element in the definition of VRNA strategies (Ferrise et al., 2021; 

Ostermeier et al., 2007) and attempts were made to tap it for management zones delineation and 

improvement (Fleming et al., 2000; Guerrero et al., 2021). 

The technical integration of expert knowledge is in general a big challenge in agricultural 

decision support systems (DSS) (Dutta et al., 2014). A common way is using intelligent computer 

programs like expert systems and in this context, fuzzy systems are particularly suitable for generating 

robust algorithms and interpreting large amounts of spatial data (Tagarakis et al., 2014). Their 

popularity in the area of complex, multi-parametric and non-linear control problems can be attributed 

to the fact that they allow a straightforward system setup without complex mathematical models 

(López et al., 2008). The underlying theory of fuzzy logic, which goes back to Zadeh (1965), is rather 

mimicking human reasoning (Zadeh, 1983). It is working with membership functions to define fuzzy 

classes of parameter values, as well as linguistic terms and rules, which define the fuzzy system’s 

basic behavior. Therefore, it inherently considers the fact that human knowledge is affected by 

significant blurredness, subjectivity and uncertainty, which is also true for many natural phenomena 

(Guillaume et al., 2012; Ashraf et al., 2014). Fuzzy systems enable also high flexibility in adjusting 

the control strategy to varying circumstances (Van der Werf and Zimmer, 1998), which is crucial for 

agricultural DSS (Rose et al., 2016). Because of all these factors, they found numerous applications 

in multi-parametric control of agricultural processes (Assimakopoulos et al., 2003; Lavanya et al., 

2018; Rueda-Ayala et al., 2013) and particularly site-specific N management (Bouroubi et al., 2011; 

Tremblay et al., 2012). Leroux et al. (2018) presented an approach to explicitly rely on expert 

knowledge for a fusion of multiple mapped parameters with the aid of a fuzzy system. However, a 

systematic approach for a user-centered and situative N management is still pending and requires 

optimizations along the entire process chain of VRNA. 
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1.3 Technical perspective on optimized variable rate nitrogen application 
 

If one wants to address the entire VRNA process chain with an integrated technical approach, 

the agronomic algorithms have to be considered as the core component, whereby the heterogeneous 

origin of multi-parametric data is an important technical aspect (Guillaume et al., 2012). In the context 

of VRNA, the fusion of real-time sensor data with mapped parameters can be regarded as the most 

challenging out of realistic constellations and should therefore be considered as a benchmark for the 

development of multi-parametric VRNA systems. Especially when expert knowledge is to be used to 

define the VRNA system behavior, its integration plays a more important role than the technical 

aspects of real-time fusion (Ostermeier et al., 2003). Therfore, the first focus needs to be on the 

methodical realization and analysis of expert knowledge integration.  

Building on this, the execution of the VRNA at the field level can be regarded as the next main 

process step. This requires the implementation of the developed algorithms in an automatic control 

and its incorporation into an application system consisting of a real-time sensor, tractor and 

applicator, whereby for granular fertilizer, centrifugal spreaders are the most abundant ones due to 

their low cost, robustness and simplicity of use (Nørremark et al., 2017; Van Liedekerke et al., 2009). 

Ostermeier (2013) described conceptually, how a real-time data fusion based on an expert system can 

be implemented. To synchronize the fertilizer application with defined setpoint rates (SR), research 

was conducted on technical latencies within the application system (Maleki et al., 2008; Yinyan et 

al., 2018), as well as on the compensation of spatial offsets between DR definition and realization 

with temporal delays (Cai et al., 2017; Chen et al., 2018). Trajectory planning was used in robotic 

systems to account for this discrepancy (Cruz Ulloa et al., 2022) but for commercial application 

systems, a dynamic offset optimization was only formulated and examined theoretically by 

Griepentrog and Persson (2001).  

In particular, the inclusion of the user as the central element for defining the VRNA strategy 

places high demands on the entire VRNA process chain. An important focus is on the system’s 

knowledge acquisition, which finally defines its behavior and needs to be conducted close before 

each N application to respond to the specific situative circumstances. In front of this background, it 

is obvious that for such a system to be applicable, the knowledge engineer bridging the technical 

barrier between the user and the system needs to be replaced by employing an intelligent and powerful 

knowledge acquisition component that can communicate with the expert, thus heading towards direct 

knowledge acquisition (Ostermeier, 2013). For this, various challenges and requirements on DSSs as 

defined by the Software Quality Requirements and Evaluation (SQuaRE) standard (ISO/IEC 
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25010:2011) and further refined by Zhai et al. (2020) in terms of agricultural DSSs come into play. 

User interfaces are of specific importance and their design has an enormous impact on the acceptance 

and thus, the success of a user-centered VRNA system (Krishnan et al., 2016; Oliver et al., 2012). 

Currently, this is a significant bottleneck for many agricultural DSSs (Tummers et al., 2019). Further 

important aspects are the provision of the necessary information for the decision making, as well as 

feedback on its implications and options for its refinement (Weckesser et al., 2021). Especially since 

a strong user-centeredness in the VRNA strategy definition takes up a significant time budget during 

a seasonal phase of already existing work peaks, the use of digital tools is necessary to ease data 

management and automate data transfer among different subsystems (Lindblom et al., 2017). Since 

the whole VRNA process chain necessarily consists of distributed systems, a web-based design is a 

fundamental prerequisite for that (Bökle et al., 2022). 

 

1.4 Aim and objectives 
 

The aim of this work is to provide technical methods to approach the complexity of site-specific N 

management in terms of decision making, as well as the technical and organizational realization in a 

systematic manner. To fulfil this aim, the following objectives are pursued: 

• Analysis of functional limitations of established VRNA systems 

• Methodological basis of a real-time capable fuzzy expert system for VRNA 

- Valid imitation of an established system’s algorithms in a fuzzy system 

- Extension to a multi-parametric fuzzy expert system and analysis of study cases 

• Technical implementation of real-time data fusion and precise applicator control 

- Development of a real-time control with an inference engine and algorithms for spatial 

synchronization of DR determination and application in different sections 

- Incorporation into a real application system  

- Verification with comprehensive field tests and subsequent analyses 

• Design of a consistent digitized process chain for VRNA 

- System architecture description and functional analysis 

- Prototypic implementation of core components for proof of concept 

 

1.5 Appended papers 
 

The dissertation is based on the following three papers: 
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A. Heiß, A., Paraforos, D.S., Sharipov, G.M., Griepentrog, H.W., 2021. Modeling and simulation 

of a multi-parametric fuzzy expert system for variable rate nitrogen application. Computers 

and Electronics in Agriculture 182, 106008.  

https://doi.org/10.1016/j.compag.2021.106008  

B. Heiß, A., Paraforos, D.S., Sharipov, G.M., Griepentrog, H.W., 2022. Real-time control for 

multi-parametric data fusion and dynamic offset optimization in sensor-based variable rate 

nitrogen application. Computers and Electronics in Agriculture 196, 106893. 

https://doi.org/10.1016/j.compag.2022.106893  

C. Heiß A., Paraforos D.S., Sharipov G.M., Ullrich, P., Bruns, J., Abecker, A., Griepentrog, 

H.W., 2023. Versatile and user-centered concept for temporally and spatially adapted nitrogen 

application based on multiple parameters. European Journal of Agronomy 145, 126792. 

https://doi.org/10.1016/j.eja.2023.126792 

 

In Paper A, the methodical basis for a multi-parametric and real-time capable fuzzy expert system 

was described. Data were acquired under different field conditions with a marketable real-time sensor 

system and a fuzzy logic based model of its agronomic algorithms was identified, optimized and 

validated. Soil ECa data were used for the extension to a multi-parametric fuzzy expert system and 

the analysis of different realistic scenarios. In Paper B, a control system for real-time inference based 

on the fuzzy expert system, as well as an SR control compensating inherent technical latencies and 

spatiotemporal discrepancies between sensing and application in a differentiated manner was 

developed and incorporated into a sensor-tractor spreader system. Using data from a real use case, 

field tests with various driving speed scenarios were conducted and subsequently analyzed with 

regard to the control system’s performance. A consistently digital and web-based VRNA process 

chain for agile site-specific N management based on expert knowledge and multiple parameters was 

conceptualized in Paper C. User interfaces and crucial components were prototypically implemented 

for the use case of a real-time application with preceding simulation to evaluate the potentials and 

limitations of the approach and specify further requirements regarding its implementation. 
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Modeling and simulation of a multi-parametric fuzzy expert system 

for variable rate nitrogen application1 
 

Andreas Heiß, Dimitrios S. Paraforos, Galibjon M. Sharipov and  

Hans W. Griepentrog 

 

Abstract 

 

Nitrogen (N) excess due to mineral fertilization in conventional crop farming has a significant 

negative impact on the environment. Variable rate N application (VRNA) is a promising tool to 

increase N recovery rates in spatially heterogeneous fields. Real-time sensor systems for VRNA 

usually consider only the crop’s N status and their fertilization algorithms are abundantly 

deterministic. Due to their education and professional experience, farmers have a considerable 

knowledge base that should be used to describe the dynamic and non-deterministic interactions of 

multiple parameters for a locally adapted N fertilization. Fuzzy systems present an effective way to 

integrate expert knowledge into an automated multi-parametric control. This paper describes, how 

fuzzy logic can be used to fuse the plant-related information from a real-time sensor system with 

further parameters to create a multi-parametric system for VRNA. Using sets of input-output data 

acquired with a Yara N-Sensor ALS2 system, an adaptive, fuzzy logic-based model of its agronomic 

algorithms was identified, optimized and validated. The results indicated high accordance with the 

N-Sensor algorithms and good automated adaptability to different calibrations with values of the 

Pearson correlation coefficient higher than 0.99 and a maximum percentage root mean square error  

                                                           
1 The publication of Chapter 2 is done in accordance with the CC BY 4.0 open access license. The original publication 
was in: Computers and Electronics in Agriculture, Vol. 182 (2021), 106008. It can be found under the following link: 
https://doi.org/10.1016/j.compag.2021.106008 

https://doi.org/10.1016/j.compag.2021.106008


 
Chapter 2  Paper A 
 

- 24 - 

of 0.14%. In a case study, the model was combined with the apparent soil electrical conductivity 

(ECa) as an indicator for spatially varying soil productivity, as well as a case distinction for different 

weather conditions. Simulations with historic ECa data and N-Sensor recordings have shown the high 

flexibility of the multi-parametric fuzzy expert system. With the presented method, specific 

deficiencies of one-parametric approaches can be moderated and the application can be adapted to 

the prevailing conditions in a straightforward manner. Also, the target orientation could be influenced 

based on the specific preferences of the expert. 

 

Keywords: artificial intelligence, fuzzy expert systems, variable rate application, real-time sensor 

systems, multi-parametric data fusion 

 

Nomenclature 

 

CF cutoff factor 

DRFIS dose rate outputted from the FIS, kg ha-1 

DRmax  maximum dose rate, kg ha-1 

DRmin  minimum dose rate, kg ha-1 

DRYNS  dose rate outputted from the N-Sensor system, kg ha-1 

ECa  apparent electrical conductivity, mS m-1 

ECamax  maximum raster value of the interpolated ECa map, mS m-1 

ECamean  mean raster value of the interpolated ECa map, mS m-1 

ECamin  minimum raster value of the interpolated ECa map, mS m-1 

FIS  fuzzy inference system 

GS  growth stage 

N  nitrogen 

N2  second N application 

N3  third N application 

R  Pearson correlation coefficient 

RMSE  root mean square error, kg ha-1 

RMSEp  percentage root mean square error, % 

RR  reference rate, kg ha-1 

SN  normalized sensor value, kg ha-1 

SNcut  cutoff sensor value, kg ha-1 

SNref  reference sensor value, kg ha-1 
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SL  slope of the N-Sensor system’s calibration curve 

VRNA  variable rate N application  

 

2.1 Introduction 
 

On a global average, only about 50% of the mineral nitrogen (N) applied on cropland via synthetic 

fertilizer is used by the crop itself (Lassaletta et al., 2014). Excess of reactive N to the environment 

can lead to pollution of air and water resources and is causing greenhouse gas emissions. In the future, 

the use of N fertilizer as one of the main drivers of biomass production in conventional farming can 

only be justified with an increase in recovery rates. Variable rate N application (VRNA) can respond 

to in-field heterogeneities and is considered therefore as a promising approach to increase N 

exploitation (Balafoutis et al., 2017; Griepentrog and Kyhn, 2000). 

Beyond satellite-based or airborne approaches, real-time sensor systems for VRNA are on the 

market today (e.g. Claas Crop Sensor Isaria, Topcon CropSpec). They are measuring the crop’s N 

status via the spectral response at specific wavelengths, determining the N need based on deposited 

algorithms and controlling the applicator in real-time. Introduced in 1999, the Yara N-Sensor is one 

of the earliest commercially available real-time systems. Even if several studies are indicating that 

the N-Sensor system could bring economic and environmental benefits, farmers still have reservations 

about that technology because they shy away from the presumed additional cost and work or have 

doubts of the benefits (Lindblom et al., 2017). The dosing algorithms implemented in real-time sensor 

systems are rather deterministic and they can only be adapted to a limited extent to the highly varying 

circumstances prevailing at each specific application. Their behavior is still subject to controversial 

discussions among agronomic experts. As plant growth is the result of various biotic and abiotic 

factors, the sole consideration of single parameters is insufficient to deduce demand-driven dose rates 

(Colaço and Bramley, 2018; Griepentrog et al., 2007). Map-overlay approaches for real-time sensor 

systems are existing (Paraforos et al., 2019). However, they usually do not represent a numeric fusion 

of different parameters. 

Measurements of the apparent soil electrical conductivity (ECa) present an effective way to gain 

high-resolution patterns from the soil’s spatial variability. The measurements are frequently used to 

indicate soil texture and particularly the clay content in non-saline soils (Heil and Schmidhalter, 

2017). Anderson-Cook et al. (2002) stated that with ECa measurements via electromagnetic 

induction, soil zones of differing productivity potential can be delineated for use in variable rate 

fertilization strategies. The same authors found positive correlations between ECa and crop yield, 

whereas Kitchen et al. (2003) found both, positive and negative relations on different sites in the USA 
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with distinct climatic and soil conditions. Therefore, the relationship between ECa and crop 

productivity is not straightforward and ECa readings must be interpreted in the context of climate and 

soil conditions prevailing at a specific location. 

A sustainable N-fertilization must take into account the high vagueness and the dynamic 

interactions between the different parameters in the natural system. Knowledge-based and artificial 

intelligence techniques can perform better in modeling complex systems than conventional 

descriptive statistics, analytical methods and multiple regression (Abbaspour-Gilandeh and 

Abbaspour-Gilandeh, 2019; Jahangiri et al., 2019). As most of the natural phenomena are fuzzy, fuzzy 

systems present an effective and structural way of dealing with decisions involving the inherent 

uncertainties and non-linearities of environmental processes and parameters (Papadopoulos et al., 

2011; Ashraf et al., 2014; Mendes et al., 2019). Fuzzy systems are based on fuzzy logic, which is 

much closer in spirit to human thinking and natural language than traditional logical systems and 

thereby provides a mean to integrate expert knowledge via linguistic terms into an automatic control 

strategy (Lee, 2005). They show a relatively good robustness and fault tolerance, as well as a 

simplified system design with multiple features of variable relation described by practical experience 

instead of mathematical modeling (Sun et al., 2018). Sivanandam et al. (2007) are stating that fuzzy 

expert systems are flexible because the membership functions for the single parameters can be 

changed dynamically according to the specific situation and that such an adaption can be automated 

by developing self-learning modules.  

In recent years, the use of fuzzy systems in spatial problems is increasing (Ashraf et al., 2014). 

Mendes et al. (2019) presented an irrigation system based on fuzzy logic. They emphasize the 

attractiveness to farmers due to the simple system setup. A fuzzy system to reduce fertilizer 

consumption and improve crop productivity was presented by Prabakaran et al. (2018). It is 

considering soil, water and agronomy parameters, as well as expert knowledge. Papadopoulos, 

Kalivas and Hatzichristos (2011) developed a decision support system based on knowledge elicitation 

and fuzzy logic methodologies for site-specific N fertilization. The application of fuzzy logic to 

improve variable rate controller responses is presented by Liang and Wang (2010). Tremblay et al. 

(2010) included expert knowledge and experimental results in a fuzzy system for VRNA. As input 

parameters, the system used spectral crop information, as well as the ECa and topographic parameters. 

The work of Bouroubi et al. (2011) is based on that approach and respected ECa and precipitation 

together with spectral crop data. With both approaches, economically optimal N rates were estimated. 

Even they were both very much adapted to specific study fields, they present the first step towards a 

VRNA that could be adapted to varying conditions by applying expert knowledge with fuzzy logic.  
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Farmers have pronounced expert knowledge because they are working their whole working life 

on one complex farm experiment (Hoffmann et al., 2007). With a fuzzy expert system, the farmers’ 

specific site knowledge and recognition of the plant production process could be transferred to a 

multi-parametric VRNA in a straightforward manner, without the need of costly experiments to 

define the parameter interactions. In this way, the VRNA could be adapted to the varying conditions 

of a specific application, as well as to different target orientations. The use of such an approach to 

fuse the plant-related information from real-time sensor systems with further parameters is still an 

open question. This paper describes in a first step, how the agronomic algorithms of the Yara N-

Sensor system can be imitated with a fuzzy logic-based model in an automated way. Initial approaches 

to that are presented in Heiß et al. (2020). The aim is to use this as the basis for including more 

parameters towards developing a multi-parametric system. The model is extended by the soil ECa as 

a further input parameter, as well as a case distinction for different weather conditions. Specific 

objectives of the present study are the identification and optimization of the fuzzy logic-based N-

Sensor model using a recorded set of input-output data. Then, the automatically adjusting model is 

validated with further data sets. Finally, a case study is developed to simulate the outputs of a multi-

parametric fuzzy expert system using historic ECa and N-Sensor data and assuming different weather 

conditions.  

 

2.2 Materials and methods 
 

2.2.1 Instrumentation and field measurements 
 

In spring 2019, measurements were made using a Yara N-Sensor ALS-2 system operated with the N-

Sensor 4.5 software (Yara GmbH & Co. KG, Dülmen, Germany). In the N-Sensor ALS-2, two sensor 

heads are mounted on a traverse, which in turn is mounted on the tractor roof. The tractor used for 

the measurements was equipped with an Autopilot automatic steering system (Trimble Inc., 

Sunnyvale, California, USA) allowing to tap position data from the integrated RTK-GNSS for 

georeferencing the measurements. Its antenna was also placed on the tractor roof with a distance of 

0.5 m behind the N-Sensor traverse. In Figure 2.1, the system setup is shown together with a 

schematic illustration of the data flow for the N-application mode. Even there are several other 

operation modes like e.g. N-Sensor scanning or free calibration, this mode was chosen because it was 

recommended by the manufacturer for conduction of the measurements.  
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Figure 2.1. Yara N-Sensor ALS-2 system setup with schematic data flow for the N-application mode 

(blue arrows). 

 

During operation in the N-Application mode, the sensor heads are emitting light flashes and 

measuring the crop reflectance at specific wavelengths (670, 730, 740 and 770 nm). Based on that, 

the S1, which is a proprietary vegetation index from Yara, is calculated at a frequency of 1 Hz. In a 

second step, the software calculates a normalized sensor value (SN), which corresponds to the N 

uptake of the crop in kg ha-1. Using that indication about the crop’s N status, a fertilizer dose rate 

(DRYNS) is calculated, settled to the N content of the fertilizer and forwarded to the spreader control. 

From there, the actual applied rates can be sent back to the N-Sensor software. The whole process 

from spectral measurements to the control of the spreader is conducted in real-time during the 

fertilizer application. Before the application, the system needs to be calibrated. The calibration for 

the N uptake is done by giving the crop type and the Zadoks growth stage (GS) (Zadoks et al., 1974). 

For the agronomic calibration, a reference SN value (SNref) is defined and assigned to a reference rate 

(RR). The RR corresponds to the amount of N in kg ha-1, which an agronomic expert would give to 

a crop having the SNref. In order to limit the application between certain thresholds, a minimum and 

maximum can be set for DRYNS (DRmin and DRmax, respectively). Furthermore, the software is 

automatically setting a biomass cutoff value (SNcut) within the agronomic calibration. Below that 

threshold, the system is strongly decreasing the DRYNS. After starting a task, the system software 

automatically saves the calibration settings and records a range of parameters like e.g. the GNSS 

position, the SN and the DRYNS within a log file at the measurement frequency of 1 Hz.  

The measurements took place at the research farm ‘Ihinger Hof’ of the University of Hohenheim 

(48°44'41.61''N, 8°55'26.42''E). Three fields with winter wheat (Triticum aestivum L.) were chosen, 
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where the N fertilization was split into three applications at different GSs, which is common practice. 

In Figure 2.2, the field boundaries, as well as the georeferenced points of the measurements conducted 

in the scope of the second application (N2) are presented. The tracks corresponded to the tramlines 

having a spacing of 24 m and they were followed also for measurements at the third application (N3). 

For the first application, there were no measurements because the variability in the wheat’s N status 

is low at that stage and, consequently, this is not a common use case for the N-Sensor. For each 

application, specific RRs were defined for a whole field or subareas of a field based on a crop 

assessment. Reference plots were chosen within each field or subarea, respectively, to determine the 

SNref. They had a length of approx. 50 m and were supposed to reflect the crop development, to which 

the agronomic expert would assign the specific RR. During the agronomic calibration in the N-Sensor 

software, they were measured at a speed of approx. 2.2 m s-1, which was also the speed for the 

subsequent measurements. The software calculated the average SN on the plot and took it as the SNref. 

For all measurements, DRmin and DRmax were set to 0 and 120 kg ha-1, respectively.  

 

Figure 2.2. Satellite view with the field boundaries (white lines) and georeferenced measurements 

(yellow dots) from N2. 
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For N3, the yield-oriented strategy of the N-application mode was chosen, which was behaving 

in a similar way to the N2 strategy in terms of the derivation of DRYNS. The quality-oriented strategy 

for N3 would have been behaving in a rather contrary way. The recorded files were converted to CSV 

format for further processing. In order to eliminate implausible values and avoid repetitions at the 

same site, measurements recorded at zero speed or located outside the field boundaries were deleted. 

Key data from the recorded data sets are given in Table 2.1. 

 

Table 2.1. Key data of the measurements. 

Acronym Field/Subarea Date GS SNref 

[kg ha-1] 

SNcut 

[kg ha-1] 

RR  

[kg ha-1] 

Range SN 

[kg ha-1] 

N2 (Second fertilizer application) 

N21 Field 1 01 May 

2019 

31 54.3 20 30 21.7-75.2 

N22 Field 2 25 April 

2019 

31 80.4 20 40 26.9-103.7 

N23 Field 3 01 May 

2019 

31 83.5 20 40 27.7-103 

N3 (Third fertilizer application) 

N31 Field 1 31 May 

2019 

39 122.2 54 72 45.5-144 

N32NW Field 2 

North+West 

31 May 

2019 

49 142.9 54 47 6.7-194.3 

N32SE Field 2 

South+East 

31 May 

2019 

39 135.2 54 47 85.2-157.1 

N33N Field 3 North 31 May 

2019 

39 134.7 54 87 51.9-153.2 

N33S Field 3 South 31 May 

2019 

39 118.5 54 37 104-157 

 

2.2.2 Principles of Takagi-Sugeno fuzzy systems 
 

For modeling of the fuzzy expert system, Takagi-Sugeno inference was chosen because of its 

advantages in terms of working with linear, as well as optimization and adaptive techniques 
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(Sivanandam et al., 2007). In Figure 2.3, the basic operating principle of a Takagi-Sugeno fuzzy 

inference system (FIS) with two input parameters and one output parameter is schematically 

illustrated. For each input parameter, fuzzy sets are defined in advance that can be described by 

membership functions. Linguistic terms are assigned to these fuzzy sets. Thus, for each input value 

within the respected range, a certain degree of membership to each fuzzy set is defined. The degree 

of membership can have values between zero and one. For the output parameter, linguistic terms are 

assigned to singletons, which is a special characteristic for Takagi-Sugeno FISs. In the rule base, the 

behavior of the system is determined by a definition of the interrelations between input and output 

parameters. This is done by connecting the corresponding linguistic terms using ‘IF-THEN’ 

conditionals. A conjunction of the input parameters can be realized with ‘AND’ or ‘OR’ operators, 

respectively. A weight can be assigned to rules to express their trustworthiness. Consequently, also 

the relative importance of different input parameters can be taken into account. 

 

Figure 2.3. Schematic operating principle of a fuzzy system with Takagi-Sugeno inference, two input 

and one output parameters. 

 

During operation, degrees of membership are determined from crisp input values in the 

fuzzification. Depending on which fuzzy sets are affected, the corresponding rules are fired. In the 

inference, methods of propositional logic are applied to realize an implication on the output, which 

consists of weighted singletons. The fuzzy outputs resulting from the fired rules are aggregated and 

defuzzified to gain a crisp output value from the results. Different methods for these steps exist, 

whereby for the aggregation, the max-accumulation, and for the defuzzification, the formation of a 

weighted average are very common (Jantzen, 2007). 
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2.2.3 Fuzzy logic-based N-Sensor model 
 

2.2.3.1 Identification of the model 
 

Using the fuzzy logic toolbox of MATLAB R2019a (The Mathworks Inc., Natick, Massachusetts, 

USA), a fuzzy logic-based model of the N-Sensor software’s dosing algorithm was developed, which 

was supposed to be functional for the use case of N2 and a yield-oriented N3 in winter wheat. It is 

known from the technical documentation of the used N-Sensor software that the relation between SN 

and DRYNS is piecewise linear. For the defined use case, the calculated DRYNS is negatively linear to 

the SN for values above the SNcut. The specific slope (SL) of this section depends on the agronomic 

calibration, whereas the y-axis intercept varies depending on the RR and SNref. This section is then 

virtually cut by DRmin and DRmax. Below the SNcut, the DRYNS is strongly reduced with decreasing 

SN values. As a basis of the model, Takagi-Sugeno FISs with triangular and trapezoidal input 

membership functions were developed to imitate the relationship between SN and DRYNS. In 

particular, the formation of the FISs was based on the SL indicated in the log file, the SNref, the SNcut, 

the RR, the DRmin, as well as the DRmax values originating from the agronomic calibration, to ensure 

the adaptability of the model to different calibrations. Beyond that, a cutoff factor (CF) was 

introduced to better modulate the intensity of the DRYNS’s drop for SN values below the SNcut. For 

the input parameter SN, the overall considered input range of the FISs was [0  (1.5 × 𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟)].  

In a first step, the algorithm for the model was configured to create a FIS with two fuzzy sets 

with triangular membership functions (‘low’, ‘medium’) and two fuzzy sets with trapezoidal ones, 

respectively (‘cutoff’ and ‘high’). The exact shape of the membership functions can be characterized 

by parameters, whereby for a triangular function, parameters 𝑎𝑎 and 𝑐𝑐 of  [𝑎𝑎  𝑏𝑏  𝑐𝑐] define its feet, and 

b defines its peak. For trapezoidal functions, parameters 𝑏𝑏 and 𝑐𝑐 of [𝑎𝑎  𝑏𝑏  𝑐𝑐  𝑑𝑑] define the shoulders, 

and 𝑎𝑎 and 𝑑𝑑 define the feet. The parameters were set as follows: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶: [0  0  (𝐶𝐶𝐶𝐶 × 𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐)  𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐]  

𝐿𝐿𝐶𝐶𝑤𝑤: �(𝐶𝐶𝐶𝐶 × 𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐)  𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐  𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟�  

𝑀𝑀𝑀𝑀𝑑𝑑𝑀𝑀𝐶𝐶𝑀𝑀: �𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐  𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟  �𝐷𝐷𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚−𝐷𝐷𝐷𝐷+𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟×𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆

� �  

𝐻𝐻𝑀𝑀𝐻𝐻ℎ: �𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟   �𝐷𝐷𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚−𝐷𝐷𝐷𝐷+𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟×𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆

�   �1.5 × 𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟�  �1.5 × 𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟��  

In Figure 2.4, the basic setup of the input membership functions is illustrated schematically. 
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Figure 2.4. Schematic illustration of the membership function setup for the input parameter SN with 

low having a triangular shape. 

 

For the DR outputted from the FIS (DRFIS), four singletons were defined (‘cutoff’, ‘low’, ‘reference’, 

and ‘high’). For cutoff and low, the value was always DRmin, whereas reference corresponded to RR. 

For high, the calculation was as follows: 

𝐻𝐻𝑀𝑀𝐻𝐻ℎ: 𝑅𝑅𝑅𝑅 − 𝑆𝑆𝐿𝐿 × �𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐�  

The following rules were defined to imitate the behavior of the N-Sensor, whereby each rule had a 

weight of 1: 

IF SN is cutoff THEN DRFIS is cutoff 

IF SN is low THEN DRFIS is high 

IF SN is medium THEN DRFIS is reference 

IF SN is high THEN DRFIS is low 

As implication method for computing the consequent fuzzy sets, min was chosen in MATLAB’s 

Fuzzy Logic Toolbox (The Mathworks, 2019). It truncates the consequent membership functions at 

the antecedent result value. As aggregation method for combining rule consequents, max was used, 

which determines the maximum of consequent fuzzy sets. Finally, wtaver was chosen as 

defuzzification method for computing crisp output values from the aggregated output fuzzy set. It 

computes the weighted average of all rule outputs. 

The outlined configuration only covers calibrations that lead to a theoretically possible maximum 

DRFIS below the manually set DRmax. This maximum DRFIS occurs at the SNcut and corresponds to 

the value of the high output singleton. In case the DRFIS could exceed the DRmax due to the calibration, 

it must be cut off like it is done by the N-Sensor software. For that reason, a case distinction was 

implemented in the algorithm. If the value for the high output singleton exceeded the DRmax in the 

first case, a new FIS was created. For the input parameter SN, three trapezoidal (‘cutoff’, ‘low’ and 

‘high’) and one triangular membership function (‘medium’) were then defined as follows: 
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𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶: [0  0  (𝐶𝐶𝐶𝐶 × 𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐)  𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐]  

𝐿𝐿𝐶𝐶𝑤𝑤: �(𝐶𝐶𝐶𝐶 × 𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐)  𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐   �𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟×𝑆𝑆𝑆𝑆−𝐷𝐷𝐷𝐷+𝐷𝐷𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚

𝑆𝑆𝑆𝑆
�   𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟�  

𝑀𝑀𝑀𝑀𝑑𝑑𝑀𝑀𝐶𝐶𝑀𝑀: ��𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟×𝑆𝑆𝑆𝑆−𝐷𝐷𝐷𝐷+𝐷𝐷𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚

𝑆𝑆𝑆𝑆
�   𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟  �𝐷𝐷𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚−𝐷𝐷𝐷𝐷+𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟×𝑆𝑆𝑆𝑆

𝑆𝑆𝑆𝑆
��  

𝐻𝐻𝑀𝑀𝐻𝐻ℎ: �𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟   �𝐷𝐷𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚−𝐷𝐷𝐷𝐷+𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟×𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆

�   �1.5 × 𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟�  �1.5 × 𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟��  

All the output singletons stayed the same, except high, to which DRmax was assigned. Also, the same 

rules as for the first case were taken. In Figure 2.5, the basic setup of the input membership functions 

is schematically illustrated for the second case of the algorithm. 

 
Figure 2.5. Schematic illustration of the membership function setup for the input parameter SN with 

low having a trapezoidal shape. 

 

2.2.3.2 Simulation, optimization and validation of the model 
 

In Table 2.1, it is indicated that the SN recordings had the widest range in data set N32NW. That’s why 

its SN and DRYNS recordings were used as input-output data for the optimization of the model. This 

was done in a trial and error procedure by simulating the DRFIS using the SN values from N32NW, 

evaluating the accordance with the corresponding DRYNS and adapting the CF. Trial and error 

methods are a common approach for designing and tuning FISs (Jahangiri et al., 2019; Sivanandam 

et al., 2007). For evaluation of the accordance between DRFIS and DRYNS, the root mean square error 

(RMSE) was calculated. It is a very common measure to compare measured and simulated data series 

and it was calculated according to: 

 𝑅𝑅𝑀𝑀𝑆𝑆𝑅𝑅 =  �∑ �𝐷𝐷𝐷𝐷𝑌𝑌𝑌𝑌𝑌𝑌(𝑖𝑖)−𝐷𝐷𝐷𝐷𝐹𝐹𝐹𝐹𝑌𝑌(𝑖𝑖)�
2𝑌𝑌

𝑚𝑚=1
𝑆𝑆

  (2.1) 

where 𝑀𝑀 corresponds to the single measurements in the data set and 𝑆𝑆 corresponds to the total number 

of measurements. The CF was iteratively adapted with the aim to minimize the RMSE. The procedure 

was stopped at a CF of 0.26. 

For validation of the optimized model, simulations were performed with all data sets presented 

in Table 2.1. In order to enable a relative assessment of the RMSE, it was also calculated as a 

percentage of the mean DRYNS: 
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 𝑅𝑅𝑀𝑀𝑆𝑆𝑅𝑅𝑝𝑝 =  𝐷𝐷𝑅𝑅𝑆𝑆𝑅𝑅
∑ �𝐷𝐷𝐷𝐷𝑌𝑌𝑌𝑌𝑌𝑌(𝑚𝑚)�𝑌𝑌
𝑚𝑚=1

𝑌𝑌

× 100  (2.2) 

The Pearson correlation coefficient 𝑅𝑅 was calculated to assess the strength of the linear correlation 

between DRYNS and DRFIS, respectively: 

 𝑅𝑅 =  1
𝑆𝑆−1

∑ �
𝐷𝐷𝐷𝐷𝑌𝑌𝑌𝑌𝑌𝑌(𝑖𝑖)−

∑ �𝐷𝐷𝐷𝐷𝑌𝑌𝑌𝑌𝑌𝑌(𝑚𝑚)�𝑌𝑌
𝑚𝑚=1

𝑌𝑌
𝜎𝜎𝐷𝐷𝐷𝐷𝑌𝑌𝑌𝑌𝑌𝑌

��
𝐷𝐷𝐷𝐷𝐹𝐹𝐹𝐹𝑌𝑌(𝑖𝑖)−

∑ �𝐷𝐷𝐷𝐷𝐹𝐹𝐹𝐹𝑌𝑌(𝑚𝑚)�𝑌𝑌
𝑚𝑚=1

𝑌𝑌
𝜎𝜎𝐷𝐷𝐷𝐷𝐹𝐹𝐹𝐹𝑌𝑌

�𝑆𝑆
𝑖𝑖=1  (2.3) 

where σ𝐷𝐷𝐷𝐷𝑌𝑌𝑌𝑌𝑌𝑌 and σ𝐷𝐷𝐷𝐷𝐹𝐹𝐹𝐹𝑌𝑌 correspond to the standard deviations of DRYNS and DRFIS, respectively. 

 

2.2.4 Multi-parametric fuzzy expert system 
 

2.2.4.1 Input data 
 

A study case for N23 was created to simulate the computation of DRFIS considering different 

constellations of SN and ECa as input parameters under specific assumptions. N23 recorded from 

Field 3 was chosen because of its high spatial variability in terms of the ECa values. So, the 

differences in the results could be contrasted more clearly. ECa measurements were chosen because 

they are a widely acknowledged state of the art methodology to gain patterns of soil variability at a 

high resolution. For the ECa, a historical data set was used that had been recorded with an EM38 

(Geonics Limited, Mississauga, Ontario, Canada) ground conductivity meter in September 2007. The 

device had been employed in the vertical mode with depth sounding of approx. 1.5 m (Heil and 

Schmidhalter, 2015). As a preparatory step, the ECa data, which were available as georeferenced 

point values, were interpolated in a 1×1 m raster by applying Ordinary Kriging. For this, the software 

package ArcGIS Desktop 10.6 (ESRI Inc., Redlands, California, USA) was used. In Figure 2.6, the 

recorded SN measurements from N23 are shown together with the interpolated ECa map. The SN data 

are presented with a natural breaks classification, whereas ECa values are presented as stretched 

values along a color ramp. From the ECa map, the specific raster values were later on extracted at the 

positions of the recorded SN measurements. 
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Figure 2.6. Recorded SN measurements from N23 and interpolated ECa map, where also the ECa 

values were extracted from. 

 

2.2.4.2 One-parametric FISs for soil ECa 
 

The statistics of the interpolated data set indicated a minimum ECa value (ECamin) of 16.8 mS m-1, a 

maximum (ECamax) of 75.2 mS m-1 and a mean (ECamean) of 47.3 mS m-1. In terms of the interpretation 

of the ECa, it was assumed in a simplified manner that the productivity potential of the soil would 

increase with increasing ECa values in this specific field. Two FISs were created that considered only 

the ECa as the input parameter to calculate the DRFIS. For both, the input membership functions and 

output singletons were the same. Three triangular input membership functions (‘low’, ‘medium’ and 

‘high’) were defined as follows: 

𝐿𝐿𝐶𝐶𝑤𝑤: [𝑅𝑅𝐶𝐶𝑎𝑎𝑚𝑚𝑖𝑖𝑚𝑚  𝑅𝑅𝐶𝐶𝑎𝑎𝑚𝑚𝑖𝑖𝑚𝑚  𝑅𝑅𝐶𝐶𝑎𝑎𝑚𝑚𝑟𝑟𝑚𝑚𝑚𝑚]  

𝑀𝑀𝑀𝑀𝑑𝑑𝑀𝑀𝐶𝐶𝑀𝑀: [𝑅𝑅𝐶𝐶𝑎𝑎𝑚𝑚𝑖𝑖𝑚𝑚  𝑅𝑅𝐶𝐶𝑎𝑎𝑚𝑚𝑟𝑟𝑚𝑚𝑚𝑚  𝑅𝑅𝐶𝐶𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚]  

𝐻𝐻𝑀𝑀𝐻𝐻ℎ: [𝑅𝑅𝐶𝐶𝑎𝑎𝑚𝑚𝑟𝑟𝑚𝑚𝑚𝑚  𝑅𝑅𝐶𝐶𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚  𝑅𝑅𝐶𝐶𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚]  

In Figure 2.7, the basic setup of the membership functions for the input parameter ECa is presented 

schematically. 
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Figure 2.7. Schematic illustration of the membership function setup for the input parameter ECa. 

 

For the output parameter DRFIS, the reference singleton from the N-Sensor model was taken over 

and extended by two dedicated ones for the ECa (‘lowECa’ and ‘highECa’). To lowECa, a value of 

0 kg ha-1 was assigned, whereas it was 80 kg ha-1 for highECa. This was based on the assumption 

that, in terms of the ECa, the expert would give less freedom in the variation of the DRFIS compared 

to the input parameter SN. 

The difference between the two FISs was characterized by the definition of the rules, whereby 

the rule weight was always equal to one. Two different sets were defined depending on the weather 

conditions around N2. Under wet conditions with the availability of a sufficient amount of water in 

the soil, it was assumed that the expert would like to promote the plant growth in areas of high soil 

productivity. Thus, the following decisions were supposed: 

IF ECa is low THEN DRFIS is reference 

IF ECa is medium THEN DRFIS is reference 

IF ECa is high THEN DRFIS is highECa 

In case of dry weather around N2, with low water availability in the soil, it was assumed that the 

expert would like to reduce the N amount in areas of low productivity. Thus, the rules were set as 

follows: 

IF ECa is low THEN DRFIS is lowECa 

IF ECa is medium THEN DRFIS is reference 

IF ECa is high THEN DRFIS is reference 

 

2.2.4.3 Parameter fusion and simulation 
 

The FIS generated for the validation of the N-Sensor model with data set N23 served as a basis for 

two multi-parametric FISs and was maintained without any changes to represent the contribution of 

the SN to the calculation of DRFIS. It was extended with the components from the one-parametric 

FISs for the ECa under wet and dry conditions, respectively. Thus, each of the two multi-parametric 
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FISs had the input parameter SN, where the membership functions were taken from the automatically 

set configuration of the N-Sensor model for N23. For this data set, the algorithm applied the second 

case of the membership function definition outlined in section 2.2.3.1. The second input parameter 

was ECa, where the membership functions were set in the same way as for the one-parametric FISs 

for the ECa. In terms of the output parameter DRFIS, both multi-parametric FISs had the same 

singletons as the N-Sensor model for N23, extended by the two dedicated ones for the ECa. In terms 

of the rules, each FIS had the ones from the N-Sensor model. The distinction of the two multi-

parametric FISs was finally made by extending them one time by the rules for the ECa under wet and 

another time by the rules for the ECa under dry conditions. 

For simulations, an algorithm was developed in MATLAB, which extracted the corresponding 

raster value from the ECa map for every position recorded in N23. Beyond the DRFIS values coming 

from the N-Sensor model, every recorded point of the data set was extended with further DRFIS values 

considering only the ECa under wet and dry conditions, respectively. Second, further DRFIS values 

were calculated considering both, the SN and the ECa, under wet and dry conditions, respectively. 

Finally, for every recorded point, the differences between the DRFIS from the two multi-parametric 

systems to the N-Sensor model, as well as their differences to the respective FISs considering only 

the ECa were calculated. To assess the fuzzy expert system’s behavior for different configurations, 

the simulation results were mapped. The five different DRFIS results, as well as the four values 

indicating the differences, were interpolated within the field boundary in a raster size of 1×1 m using 

Inverse Distance Weighting in ArcGIS. This method was chosen due to its property as an exact 

interpolator. Additionally, using the raster values, the differences were quantified as absolute numbers 

for the whole Field 3 using MATLAB. 

 

2.3 Results and discussion 
 

2.3.1 Fuzzy logic-based N-Sensor model 
 

2.3.1.1 Basic characteristic 
 

The behavior of FISs having one input parameter can be described by a characteristic curve. In Figure 

2.8, the corresponding diagram is shown for the identification data set N32NW, as well as data set N21. 

The latter is presented because it has the biggest differences to N32NW in terms of the agronomic 

calibration. In general, the curves have a piecewise linear character and correspond to the behavior 

of the N-Sensor’s dosing algorithm for N2 and a yield-oriented N3 in winter wheat. For SN values 
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above the SNcut, the DRFIS is slightly decreasing, whereas it is strongly reduced below it. DRFIS values 

exceeding the maximum threshold were automatically set to the DRmax of 120 kg ha-1 for N32NW. The 

basic trapezoidal shape of the characteristic curve is the same for all the validation data sets having a 

theoretically possible DRFIS above DRmax. Yet, the algorithm adapted the FISs according to the 

corresponding agronomic calibration, which mainly affected the y-axis intercept of the section, where 

the DRFIS is slightly reduced with increasing SN values. 

 
Figure 2.8. Characteristic curve of the N-Sensor model FISs for data sets N32NW and N21. 

 

N21 is a representative data set, where the maximum possible DRFIS is not reaching to DRmax. 

There, the first case of the algorithm was valid, where a triangular shape was given to the low input 

membership function. It is apparent from Figure 2.8 that this was leading to a triangular shape of the 

characteristic curve. The section with a slight reduction with increasing DRFIS values has the same 

slope as for N32NW, but the y-axis intercept is shifted down. It is recognizable that the DRFIS values 

are dropping for N21 with a higher intensity for values below the SNcut. 

 

2.3.1.2 Validation results 
 

To evaluate the performance of the fuzzy logic-based N-Sensor model, simulations were done with 

the data sets presented in Table 2.1. Basic statistics are shown in Table 2.2. The mean and range 

values for DRYNS show high accordance with the ones for DRFIS for each data set. Considering the 

values for DRmin and DRmax, it is evident from the indicated ranges that the developed algorithm could 

be validated at border conditions in data sets N31, N33N and N33S. Yet, it can be seen from the SN 

ranges in Table 2.1 that, with N31 and N33N, there were only two data sets that allowed a validation 

for values below SNcut. Comparing the mean DRYNS and DRFIS, respectively, with the RRs indicated 

in Table 2.1, the values are for some data sets deviating. The most obvious explanation for this is that 

the corresponding reference plot did not properly represent the average crop N-status for the affected 

field or subarea. 
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Table 2.2. Basic statistics for the identification and validation of the fuzzy logic-based N-Sensor 

model. 

Data set Range DRYNS  

[kg ha -1] 

Mean DRYNS  

[kg ha-1] 

Range DRFIS  

[kg ha-1] 

Mean DRFIS  

[kg ha-1] 

Identification 

N32NW 0 – 120  34.7 0 – 120 34.7 

Validation – N2 

N21 2.8 – 72.4 32.4 2.8 – 72.4 32.4 

N22 9.8 – 109.5 55.3 9.7 – 109.6 55.3 

N23 14.6 – 112.5 56.8 14.7 – 112.5 56.8 

Validation – N3 

N31 43.6 – 120 79.8 43.7 – 120 79.8 

N32SE 18.6 – 112 44.1 18.5 – 112 44.1 

N33N 63 – 120 93.9 63 – 120 93.9 

N33S 0 – 55.9 25.1 0 – 55.9 25.1 

 

Also, the statistical key figures introduced in 2.2.3.2 underline the high accordance of DRFIS and 

DRYNS, as well as the good adaption of the algorithm to different conditions. All R values were above 

0.99 and all the results for the RMSE had a value of 0.04 kg ha-1. Consequently, the RMSEp was 

indirectly proportional to the mean DRYNS. The maximum value was reached for N33S with 0.14%. 

From a practical point of view, these errors can be considered as negligible for two main reasons. 

First, it is very unlikely that the agronomical effect of a variation of the N fertilizer dosing in this 

magnitude can be detected at all. Second, there are several error sources in the spreading process that 

are likely to cause more error (e.g. a limited accuracy of the spreader’s metering system and external 

error sources like wind influencing the distribution on the field). 

 

2.3.2 Simulation of the multi-parametric fuzzy expert system 
 

2.3.2.1 Characteristics and numerical simulation results 
 

With data set N23, simulations were performed using different constellations of SN and ECa as input 

parameters. The characteristic diagrams of the corresponding FISs are shown in Figure 2.9. In every 

case, the DRFIS was the only output parameter. Figure 2.9a shows the behavior of the FIS considering 

only the SN as an input parameter. The diagram originates from the validation of the fuzzy logic-
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based N-Sensor model and its basic shape is the same as for the identification data set N32NW shown 

in Figure 2.8. It is apparent that for N23, the curve is only slightly touching DRmax. For Figure 2.9b 

and c, the ECa was considered as the only input parameter, whereby for b, the rules were set in a way 

to respond to wet weather conditions and for c, they reflected a response to dry weather conditions. 

Both diagrams could be approximated by a stepwise linear function. As expected, the course of the 

diagrams is opposite to each other. Figure 2.9d and e show the FIS characteristics for a fusion of both 

input parameters assuming wet and dry conditions, respectively. Apparently, the behavior depending 

on the SN values is similar as in Figure 2.9a. Yet, the characteristic curve is virtually compressed. 

While the SN values at the shoulders and bases of the triangular shape stayed the same, their 

corresponding DRFIS values changed and therefore the slope for SN values beyond SNcut. With the 

ECa, the characteristics depending on the SN are expanded by a third dimension, which is reflecting 

the behavior shown in Figure 2.9b and c, respectively. But also here, the slopes and absolute values 

are different. So, the parameter fusion found a compromise between the characteristics depending on 

only one input parameter. 
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Figure 2.9. FIS characteristics for the data set N23 (a) N-Sensor model having only SN as input 

parameter (b) having only ECa as input parameter and assuming wet conditions (c) having only ECa 

as input parameter and assuming dry conditions (d) fusion of both input parameters and assuming wet 

conditions (e) fusion of both input parameters and assuming dry conditions. 

 

In Table 2.3, the simulation results are expressed with the ranges and mean values of the 

outputted DRFIS. For the N-Sensor model, the mean value exceeds the RR of 40 kg ha-1 and the most 

likely reason for this is the choice of a reference plot, which had a higher SN than the mean of the 

field. For the sole consideration of the ECa, the DRFIS did not fall below the RR for wet conditions, 

whereas RR was the maximum for dry conditions. This fits the characteristics presented in Figure 

2.9b and c. Assuming an approximately normal distribution of the ECa data, it is also clear then why 

the mean DRFIS value is exceeding the RR for wet conditions and is falling below it for dry conditions. 

An explanation for the different gap of the mean values to the RR is that the ECamin and ECamax values 

do not have the same difference to ECamean. The discrepancies in terms of mean DRFIS and its range 

between the N-Sensor model and the one-parametric FISs considering the ECa only are higher under 
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dry conditions. This is most likely because the behavior depending on the ECa is then most 

contradictory to the behavior depending on the SN. 

 

Table 2.3. Numerical results from the simulation of the multi-parametric fuzzy expert system. 

Input parameters  Range DRFIS  

[kg ha -1] 

Mean DRFIS  

[kg ha-1] 

SN 14.7 – 112.5 56.8 

ECa (wet) 40 – 71.6 47.2 

ECa (dry) 0.6 – 40 33.9 

SN, ECa (wet) 31 – 80.3 52 

SN, ECa (dry) 23.1 – 76 45.4 

 

For the multi-parametric FIS under wet conditions, the range of DRFIS was narrowed compared 

to the N-Sensor model. An explanation for this is that there was more freedom to change the DRFIS 

depending on the SN than on the ECa, which was already outlined in chapter 2.2.4.2. The same counts 

for the DRFIS range of the multi-parametric FIS under dry conditions, which is similar to the one 

under wet conditions, yet slightly pulled down. This can be explained by the fact, that the behavior 

depending only on the ECa is virtually mirror-inverted under wet and dry conditions, respectively. 

The mean DRFIS values of the multi-parametric systems are smaller than the mean DRFIS from the N-

Sensor simulation, indicating that the overdosing effect due to the choice of the reference plot was 

minimized with the multi-parametric FISs. However, they are higher compared to the one-parametric 

FISs considering the ECa only, showing that in the multi-parametric FISs a compromise was found 

between the contrary reasoning of the dedicated one-parametric systems. 

 

2.3.2.2 Mapped simulation results 
 

The interpolated simulation results in terms of the DRFIS are presented in Figure 2.10. The results for 

the N-Sensor model are presented in Figure 2.10a, whereby low DRFIS values correspond to high SN 

values indicated in Figure 2.6 and high DRFIS values correspond to low SN. In Figure 2.10b and c, 

the mapped DRFIS results solely depending on the ECa are shown. Under wet conditions, the distinct 

area of lowest ECa values, which can be identified from Figure 2.6, has a uniform DRFIS at the level 

of RR, whereas the rest of the field has a higher DRFIS. Under dry conditions, this distinct area has 

values below the RR, whereas large parts of the remaining area have the RR as DRFIS. There is an 

area in the very south, which would get the highest DRFIS under wet conditions, whereas under dry 
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conditions, there is an area in the north-west, which would get the lowest DRFIS. Both areas match 

with conspicuous areas in Figure 2.10a. Yet, they are interpreted contradictory to the N-Sensor model, 

which should not be considered as erroneous behavior. Although single-parametric systems are 

providing a substantial basis towards site-specific application, it is not possible for them to precisely 

define the dose rates that need to be applied since this is the outcome of a complex process involving 

multiple factors. 

 
Figure 2.10. Mapped results from the simulation of the multi-parametric fuzzy expert system. (a) N-

Sensor model considering only SN as input parameter, (b-c) considering only ECa as input parameter 

under wet and dry weather conditions, respectively, (d-e) considering both parameters under wet and 

dry weather conditions, respectively. 

 

Figure 2.10d and e show the effect of a fusion of both input parameters under different weather 

conditions. Under wet conditions, the areas with a high DRFIS from the N-Sensor model remain in 

parts pronounced, whereby they are significantly moderated to Figure 2.10a in terms of the absolute 

DRFIS values. In general, the DRFIS is balanced towards medium values. An apparent indication for 
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this is the area of comparatively high DRFIS in Figure 2.10b. It is moderated with values closer to the 

RR, which is showing that the parameter fusion harmonized the contradictory reasoning from the N-

Sensor model and the one-parametric FIS considering the ECa only. Under dry conditions, the large 

area in the mid having low DRFIS values in Figure 2.10a is enlarged, whereas the spots of high DRFIS 

are strongly shrunk in terms of size and DRFIS values. Analogously to the wet conditions, the multi-

parametric fusion again found a compromise at areas, where the results from the single-parametric 

FISs were drifting apart from each other. The results imply that the multi-parametric FISs can respond 

to remaining uncertainties in terms of the interpretation of the single parameters. 

With the difference maps presented in Figure 2.11, the contrast of the multi-parametric systems 

to the one-parametric approaches is highlighted even more. Positive values are indicating higher 

DRFIS values from the respective multi-parametric system, and thus a DRFIS increase compared to the 

N-Sensor model or the corresponding FISs considering the ECa only. Negative values are therefore 

implying a DRFIS reduction. Figure 2.11a and b show the differences in DRFIS between the N-Sensor 

model and the multi-parametric FISs. Considering also the pattern of Figure 2.10a, there is an increase 

of the DRFIS in areas of high SN under wet conditions, which is implying that the multi-parametric 

approach would expect more potential in these areas than the N-Sensor model due to favourable 

conditions in terms of water availability for the crop. In areas of lower SN, the DRFIS is decreased. 

So, the multi-parametric FIS is, in turn, damping the expectations of the N-Sensor model to gain more 

benefit by increasing the DR. As outlined in chapter 2.3.2.1, this pattern is also reflecting again the 

effect of the differing freedom in terms of changing the DRFIS, which was given in the output singleton 

definition to each parameter. Under dry conditions, the reduction of DRFIS in the areas of low SN is 

even much stronger. The areas, where there is an increase compared to the N-Sensor model are 

significantly shrunk. With the ECa, the multi-parametric approach contains a component that is 

retracting the DRFIS due to assumed unfavourable conditions in terms of water availability for the 

crop. Consequently, there are large areas, where the multi-parametric FIS is outputting remarkably 

less DRFIS. 
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Figure 2.11. Mapped DRFIS differences of multi-parametric FISs to the one-parametric ones, (a-b) 

showing the differences to the N-Sensor model under wet and dry conditions, respectively, (c-d) 

showing the differences to a sole consideration of the ECa under wet and dry conditions, respectively. 

 

The differences in terms of the outputs of the multi-parametric FISs compared to the FISs 

considering the ECa only are shown in Figure 2.11c and d. It is striking that the patterns seem to be 

exactly the same as the ones shown in Figure 2.11a and b. However, they are virtually mirror-inverted. 

So, areas that previously corresponded to a reduction compared to the N-Sensor model now 

correspond to increases compared to the respective one-parametric FIS considering the ECa only, and 

vice versa. Under wet conditions, the multi-parametric FIS would in large parts grant for more 

fertilizer than the one-parametric approach. The effect is reinforced under dry conditions, which is 

reasonable in front of the background that the asymmetric behavior of the FIS considering the ECa 

only is inevitably leading to DRFIS values below or at the level of RR. Here, it becomes apparent that 

the multi-parametric approach can catch a drop in DRFIS, if the plant-related component is reasoning 

for an increased DRFIS. For the wet, as well as for the dry scenario, again the fact comes to play that 

in the N-Sensor model the choice of a reference plot with a comparatively high SN has led to a drift 

of DRFIS towards values higher than the RR. In parts, the multi-parametric FIS is consequently 

reflecting this behavior. 

Table 2.4 indicates the absolute reductions and increases of kg N in Field 3 when comparing the 

multi-parametric FISs to the one-parametric ones. The numbers are derived from the raster values of 

the interpolated difference maps and represent a quantification of the patterns shown in Figure 2.11 
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and described above. Considering the differences to the N-Sensor model, one can state that on a field 

level, the reductions predominate. They are significant in front of the background that the total applied 

amount of N on Field 3 would have been 275.7 kg with the N-Sensor model, and 192 kg with a 

uniform application of the RR. Compared to the FISs considering the ECa only, the increases are 

consequently higher than the reductions. Once more, this indicates that the multi-parametric FISs can 

harmonize the partly contrary and biased behavior of the dedicated one-parametric systems. 

 

Table 2.4. Simulated differences of the multi-parametric FISs compared to the one-parametric FISs, 

expressed in total N on Field 3. 

Input parameters  Total N reduction  

[kg] 

Total N increase 

[kg] 

[(Input: SN, ECa (wet)) – (Input: SN)] 38.1 12.5 

[(Input: SN, ECa (dry)) – (Input: SN)] 60.2 2.9 

[(Input: SN, ECa (wet)) – (Input: ECa(wet))] 12.5 38.1 

[(Input: SN, ECa (dry)) – (Input: ECa(dry))] 2.9 60.2 

 

2.4 Conclusions 
 

Using a Yara N-Sensor ALS2 real-time sensor system, data were acquired for the cases of N2 and 

yield-oriented N3 in winter wheat. The dosing algorithm of the sensor software was modeled with a 

Takagi-Sugeno FIS using one set of input-output data. The newly developed algorithm was validated 

with seven further data sets. The validation has shown that the algorithm could automatically adapt 

the input membership functions and output singletons of the FIS to a wide range of settings because 

there was high accordance with the behavior of the N-Sensor’s dosing algorithm. With the use of 

fuzzy logic, the latter was translated into a form that allows the fusion with further agronomic 

parameters in a straightforward manner. Furthermore, by being well adapted to the perception and 

reasoning of a human, it is even possible for an expert to modify the algorithm based on the underlying 

circumstances of a specific application.  

For a multi-parametric fuzzy expert system, a study case in N2 was created. Based on specific 

assumptions in terms of the agronomic interpretation of the soil ECa, two one-parametric FISs were 

set up, which considered it as the only input parameter to derive a dose rate under different weather 

conditions. Two further FISs were created, where the model of the N-Sensor dosing algorithm was 

combined with these. With the N-Sensor model, the presented multi-parametric systems contain a 
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generic part that is supplemented by the soil ECa and weather information. The presented approach 

allows them to be interpreted by an expert for each specific field and application. This is done by 

adapting the corresponding input membership functions, output singletons, rules and rule weights. 

Simulations with an N-Sensor recording and historic ECa data have shown that the decisions 

depending only on one parameter can be refined with a fusion in a multi-parametric system. The 

underlying case distinction between wet and dry conditions was implemented with a simple adaption 

of the rules affecting the ECa. The simulation results implied that multi-parametric fusion is more 

robust and can find a compromise between the one-parametric systems and thus minimize the risk of 

partly undesired behavior due to their specific deficiencies. The presented modular approach also 

provides high flexibility in terms of the target orientation affecting e.g. environmental or economic 

aspects. 

Further development of the fuzzy logic-based N-Sensor model should encompass the transfer to 

a wider range of different settings for DRmin and DRmax, as well as different calibrations and 

application scenarios like a quality-oriented N3. With further efforts in terms of the agronomic 

interpretation of the input parameters, the presented methodology could be enhanced with further 

inputs, like e.g. topography or further soil analysis techniques. With the rule weights, the expert could 

take into account the specific relevance of an input parameter. This could be necessary in cases where 

e.g. the variability of single parameters in the field is significantly differing. Future work should deal 

with the implementation of the presented methodology in a fuzzy control to fuse multiple parameters 

with the N-Sensor data in real-time. Also, the usability should be improved by capturing the expert’s 

decision in a user-interface without the participation of a knowledge engineer. The approach should 

be tested in agronomic trials to quantify the potential benefits based on the target orientation defined 

by the expert.  
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Real-time control for multi-parametric data fusion and dynamic offset 

optimization in sensor-based variable rate nitrogen application2 
 

Andreas Heiß, Dimitrios S. Paraforos, Galibjon M. Sharipov and  

Hans W. Griepentrog 

 

Abstract 

 

Real-time sensor systems for variable rate nitrogen (N) application (VRNA) are an established 

technology nowadays but they have some shortcomings in terms of their capability to consider 

multiple parameters relevant for plant growth. Further, the abundantly lacking section control in 

centrifugal spreaders limits the accuracy of a sensor-based VRNA, especially in combination with 

the temporal and spatial offsets between sensing and fertilizer placement. 

Fuzzy inference systems were incorporated into a real-time control to numerically fuse the crop 

N uptake sensed by a real-time sensor system, as well as mapped soil electrical conductivity (ECa) 

data for the calculation of site-specific N dose rates (DR). A distinction of two subsections within the 

working width of a sensor-spreader system was made based on the ECa data. Further, by 

implementing a generic model, the control system agronomically optimized the rate control of a 

centrifugal spreader in order to compensate positional lags and technical latencies and minimize the 

spatial offset between DR determination and application in a dynamic manner.  

With field tests at different driving speed scenarios going partly beyond the usual operation 

conditions, the real-time control was verified. The differentiation of the sections has resulted in slight 

                                                           
2 The publication of Chapter 3 is done in accordance with the CC BY 4.0 open access license. The original publication 
was in: Computers and Electronics in Agriculture, Vol. 196 (2022), 106893. It can be found under the following link: 
https://doi.org/10.1016/j.compag.2022.106893 

https://doi.org/10.1016/j.compag.2022.106893
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DR differences, whereas the control system has shown a high consistency in calculating the DRs and 

sending commands to the spreader in a coordinated manner. The level of spatial concordance between 

DR determination and application had a highly stochastic character. However, the deviation was 

never beyond 1.5 m and the percentage of deviations beyond 1 m reached a maximum of 2.3% among 

the different recorded datasets, which can be considered as a sufficient performance for practical 

needs.  

 

Keywords: variable rate application, real-time sensor systems, multi-parametric data fusion, 

application accuracy, ISOBUS 

 

Nomenclature 

 

𝐷𝐷 Tractor’s wheel based machine distance, m 

𝑑𝑑1 Lateral offset of the spread pattern’s focal points to the longitudinal axis, 5.6 m  

𝑑𝑑2 Longitudinal offset of the spread pattern’s focal points to the spreading disc centers,  

 14.7 m 

𝑑𝑑3 Longitudinal offset of the GNSS antenna to the spreading disc centers, 2.1 m 

𝑑𝑑4 Longitudinal offset of the GNSS antenna to the N-Sensor traverse, 0.5 m 

𝐷𝐷𝑟𝑟 Target wheel based machine distance, m 

𝑑𝑑𝑖𝑖 Dynamic longitudinal offset between dose rate determination and corresponding 

 application, m 

DR N dose rate, kg ha-1 

ECa Apparent electrical conductivity, mS m-1 

𝐻𝐻 Acceleration of gravity, 9.81 m s-1 

ℎ Height of fertilizer fall, 0.14 m 

𝑀𝑀 Index for main processing cycles of the real-time control 

𝑗𝑗 Index for timers existing at 𝑀𝑀 in the timer cache 

𝑘𝑘 Index for started timer that had been created in 𝑀𝑀 

𝑃𝑃(𝑥𝑥|𝑦𝑦) UTM coordinates of the GNSS antenna, m 

𝑃𝑃∗(𝑥𝑥∗|𝑦𝑦∗) Projected UTM coordinates of 𝑃𝑃, m 

𝑃𝑃𝑟𝑟𝑓𝑓 Left focal point of the spread pattern 

𝑃𝑃𝑟𝑟𝑟𝑟 Right focal point of the spread pattern 

𝑃𝑃𝑓𝑓∗(𝑥𝑥𝑓𝑓∗|𝑦𝑦𝑓𝑓∗) Projected UTM coordinates of left query point, m 
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𝑃𝑃𝑝𝑝∗�𝑥𝑥𝑝𝑝∗ |𝑦𝑦𝑝𝑝∗� Projected UTM coordinates of center point between the spread pattern’s left and right 

 focal points, m 

𝑃𝑃𝑟𝑟∗(𝑥𝑥𝑟𝑟∗|𝑦𝑦𝑟𝑟∗) Projected UTM coordinates of right query point, m 

𝑃𝑃𝑠𝑠∗(𝑥𝑥𝑠𝑠∗|𝑦𝑦𝑠𝑠∗) Projected UTM coordinates of center point between the left and right query point, m 

𝑞𝑞 Fertilizer mass flow, kg min-1 

𝑟𝑟𝑠𝑠,𝑗𝑗 Fertilizer SR deposited in timer 𝑗𝑗, kg ha-1 

𝑟𝑟𝑐𝑐 Most recent SR with transmission to the spreader being verified, kg ha-1 

𝑠𝑠𝑑𝑑 Spacing between spreading discs, 1.1 m 

SN Normalised sensor value corresponding to crop N uptake, kg ha-1 

SR Fertilizer setpoint rate, kg ha-1 

𝐶𝐶𝑚𝑚 Actuator setting time, s 

𝐶𝐶𝑑𝑑 Delay time for timer start, s 

𝐶𝐶𝑟𝑟 Time for fertilizer to fall on spreading disc, 0.17 s 

𝐶𝐶𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 UNIX system time at reception of GNSS coordinates, s 

𝐶𝐶𝑆𝑆𝑆𝑆 UNIX system time at SN value reception, s 

𝑣𝑣 Tractor’s wheel based speed, m s-1 

𝑤𝑤 Working width, m 

𝜀𝜀 Deviation between point of DR determination and corresponding point of application, m 

𝜇𝜇𝑚𝑚 Mean value of normal distribution fitted to the angular fertilizer distribution, 19° 

𝜇𝜇𝑟𝑟 Mean value of normal distribution fitted to the radial fertilizer distribution, 15.5 m 

𝜓𝜓 Tractor’s heading, rad  

 

3.1 Introduction 
 

A main reason for low recovery rates in mineral nitrogen (N) fertilization and associated adverse 

environmental effects is the usually uniform application, which does not meet the spatially varying 

needs of the crop (Balafoutis et al., 2017; Shanahan et al., 2008). Variable rate N application (VRNA) 

addresses the prevailing spatial heterogeneities and can mitigate negative external effects (Argento et 

al., 2020; Griepentrog and Kyhn, 2000). However, the agronomic algorithms used for VRNA are 

subject to controversial discussions and its implementation with common applicators has significant 

limitations in terms of the application accuracy. 

Real-time sensor systems assessing the crop’s current N status by means of spectral 

measurements are one of the most established VRNA technologies. Conceptual considerations to 



 
Chapter 3  Paper B 
 

- 55 - 

combine real-time sensor with mapped information were formulated by Auernhammer (2001). Still, 

today’s systems usually only consider the N supply of the crop, even though plant growth and yield 

formation are complex processes influenced by the interaction of various biotic and abiotic factors 

causing also temporally dynamic variabilities (Griepentrog et al., 2007; Schmidhalter et al., 2008). 

The soil apparent electrical conductivity (ECa) is an established parameter to consider soilborne 

factors and it is frequently suitable for delineating zones of different soil productivity (Adamchuk et 

al., 2011; Anderson-Cook et al., 2002). Even its dependencies with various edaphic factors and 

especially the water and clay content are well researched, the implications on crop growth and yield 

are not straightforward and partly opposite, which requires the consideration of local conditions for 

its interpretation (Heil and Schmidhalter, 2017; Kitchen et al., 2003). To be more responsive to the 

complexity of N management, Heiß et al. (2021) presented a methodical basis to combine real-time 

sensor, weather, as well as ECa information in a multi-parametric fuzzy expert system for VRNA. 

Specifically in terms of the ECa, the approach was based on a situation-related interpretation of an 

agronomic expert as suggested by Martínez-Casasnovas et al. (2018). 

Ostermeier et al. (2003) and (2007) defined a conceptual framework for the incorporation of an 

expert system for VRNA based on real-time multi-sensor data fusion within the bus communication 

networks of agricultural machinery. The latter are increasingly designed according to the ISO 11783 

standard (commonly designated as ISOBUS), which defines meanwhile the possibility of using fused 

real-time and mapped information in peer control (Paraforos et al., 2019). The interaction of different 

subsystems for a real-time VRNA necessarily raises questions about the required precision of the 

application process. Focussing on the heterogeneities prevailing at the field scale, Thiessen (2002) 

found that these are mostly beyond common working widths of 24 m. In contrast, Griepentrog et al. 

(2007) concluded that the magnitude of the variability to be targeted does not justify applicator 

working widths of more than 20 m. 

With dedicated setpoint rates of fertilizer (SR) for each spinning disc, the resolution of VRNA 

can be enhanced in off-centerline centrifugal spreaders in a straightforward manner (Griepentrog and 

Persson, 2000). These spreaders are up today by far the most common applicators for granular 

fertilizer in Europe (Nørremark et al., 2017) and they have faced significant technical progress in 

recent years. Also, research is focussing on their further enhancement with e.g. optimal control 

techniques (Rußwurm et al., 2020). To minimize application errors as examined by Sharipov et al. 

(2021), the spatial discrepancy between sensed spot and application area needs to be considered. Like 

in all variable rate application systems, this involves also single latencies of different system 

components and sub-processes, as well as their interaction (Bennur and Taylor, 2010). Research was 

conducted on modeling the setting time of dosing actuators (Carrara et al., 2005) and implementing 
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control sequence optimization to improve variable rate fertilization accuracy (Zhang and Liu, 2022). 

Compensation of the positional lag was realized with static time offsets (Yinyan et al., 2018) or 

considering the GNSS based speed (Partel et al., 2021). A dynamic model to optimize the temporal 

and spatial offsets between rate determination and application in centrifugal spreaders was presented 

by Griepentrog and Persson (2001). The control implementation of such a model would allow 

considering the driving speed as a further parameter, which could be advantageous in VRNA 

(Hofstee, 1995). 

The outlined aspects of N dose rate (DR) calculation and precise fertilizer application represent 

two core challenges of sensor-based VRNA that were addressed in a research project. Its specific 

aims were significant enhancements by numerically fusing multiple parameters relevant for plant 

growth with the aid of the fuzzy expert system presented by Heiß et al. (2021) and increasing the 

precision of the application system with a combination of section control and dynamic offset 

optimization, which should compensate also the inherent technical latencies. A real-time controller 

platform was developed to bundle the necessary algorithms. Different test series were defined to 

verify the system using historic SN and ECa data. The main novelties of the presented approach lie 

in (1) the control implementation of a numeric real-time fusion of crop N and soil ECa information 

in a fuzzy inference system (FIS) to define DRs on-the-go, (2) the increase of resolution by defining 

two sections (left and right) within the data fusion and application system and (3) the optimized rate 

control of the spreader to ensure the spatial concordance of DR determination and application for 

both sections under dynamic conditions. 

 

3.2 Materials and methods 
 

3.2.1 Instrumentation 
 

The developed real-time control was embedded into a state of the art sensor-tractor-spreader system, 

which is presented in Figure 3.1. A Fendt 516 Vario tractor (AGCO GmbH, Marktoberdorf, 

Germany) was used, which was equipped with an Autopilot steering system using position data from 

the integrated RTK-GNSS (Trimble Inc., Sunnyvale, CA, USA). The latter’s accuracy is indicated 

with ±2.5 cm by the manufacturer. Together with the GNSS antenna, an N-Sensor ALS2 system 

(YARA GmbH & Co. KG, Dülmen, Germany) was mounted on the tractor’s roof. It was operated 

with the N-Sensor 4.5 software installed on a laptop with a 64-bit Windows 10 Pro operating system, 

equipped with an Intel Core i5-8250U at 1.6 GHz processor and 8 GB working RAM. The N-Sensor 
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software was supplied with position data received at 5 Hz from the tractor’s RTK-GNSS via a serial 

communication port. The same laptop was used also as a controller platform for real-time control. 

Furthermore, an AXIS-H 30.2 EMC+W two-disc centrifugal spreader (RAUCH 

Landmaschinenfabrik GmbH, Sinzheim, Germany) following the off-center-line principle was 

attached at the tractor’s rear hitch. It was equipped with a mass flow control considering the current 

driving speed, as well as the actual measured mass flow and operated with the universal virtual 

terminal function of a CCI1200 terminal (Competence Center ISOBUS e.V., Osnabrück, Germany). 

The tractor, spreader, as well as terminal, were connected via the ISOBUS network communication. 

 
Figure 3.1. Instrumentation used for field experiments. (a) showing tractor and N-Sensor and (b) 

showing the spreader. 

 

3.2.2 Fuzzy inference systems 
 

As N fertilization offers in general only a short time window during the growing season for 

experimentation, testing and evaluation of the real-time control were conducted using input data that 

had been recorded in the scope of a real N application on an experimental field (‘Riech Nord’) at the 

research farm ‘Ihinger Hof’ of the University of Hohenheim (48°44’41.61’’N, 8°55’26.42’’E). Data 

acquisition took place in spring 2020, where the whole field was cultivated with winter wheat 

(Triticum aestivum L.). To be close to field capacity and thus eliminate the influence of soil moisture, 

ECa data were acquired just before the first split N application, in March 2020. An EM38 ground 

conductivity meter (Geonics Limited, Mississauga, ON, Canada) was used at the horizontal mode, 

where the depth sounding was approximately 0.75 m (Heil and Schmidhalter, 2015). In total, 2 381 

data points were recorded by following lines with a spacing of approximately 6 m, whereby there was 

a shift of 3 m compared to the fixed 24 m tramlines to avoid any influence of soil compaction. In 

Figure 3.2a, the acquired ECa raw data are presented together with a corridor of 15 m along a subsoil 

water supply pipeline. The latter laid at a depth of approximately 1.2 m and thus should not have had 
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a significant influence on the ECa readings. Consequently, the drift towards higher ECa values within 

the corridor was most likely caused by a disturbance of the soil structure. Due to that drift, the 

subsequent ordinary kriging with ArcGIS Desktop 10.6 (ESRI Inc., Redlands, CA, USA) was 

conducted in two steps. First, the underlying geostatistical model was defined without considering 

the data points within the corridor to represent the inherent pedological pattern of the field. Second, 

this model was applied on all data points to conduct an interpolation in a 1 × 1 m raster.  

N-Sensor measurements were conducted just before the second split N application, in April 2020, 

at Zadoks growth stage 31 (Zadoks et al., 1974). A reference N rate of 80 kg ha-1 was defined by an 

agronomic advisor, which corresponded to 296 kg ha-1 of the used calcium ammonium nitrate 

fertilizer. The same N-Sensor software calibration and data acquisition process was conducted as 

described in detail by Heiß et al. (2021). Here, also detailed information on the N-Sensor system’s 

working principle can be found. In Figure 3.2b, the boundary of the experimental field is presented 

together with the interpolated ECa and the recorded point data of the normalized sensor value (SN), 

which corresponds to the N uptake of the crop in kg ha-1. Beyond that, a geofence taken from the 

national soil inventory is indicated, where there was a switch to another FIS with a dedicated 

configuration. Finally, two tramlines A and B are shown, which served as measurement tracks for the 

experiments with the real-time control. 
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Figure 3.2. Maps of the experimental field with (a) showing the acquired ECa raw data and the 

corridor along the water pipeline (red dashed line) and (b) showing the interpolated ECa and recorded 

SN data, indications for the examined tracks A and B, as well as the geofence (red dashed line). 

 

As one of the main subsystems of the real-time control two multi-parametric FISs were set up 

for the case of the second split N application using the fuzzy logic toolbox of MATLAB R2019a (The 

Mathworks Inc., Natick, MA, USA). One of them was a dedicated FIS for being used within the 

geofence and the other one was used as default FIS for the rest of the field. Both were composed of 

two one-parametric FISs as presented already by Heiß et al. (2021), whereby the fuzzy logic-based 

imitation of the N-Sensor’s dosing algorithms was slightly enhanced and the interpretation of the ECa 

in terms of the DR was adapted to the experimental field based on the assessment of the farm manager 

and an agronomic advisor. The resulted characteristics of the multi-parametric FISs are shown in 

Figure 3.3. On both subplots, the behavior of the DR depending on the SN basically corresponds to 
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the behavior of the N-Sensor with a slightly compressed characteristic curve. With the ECa, the DR 

characteristic depending on the SN is extended by a further dimension. In Figure 3.3a, it can be seen 

that for the default multi-parametric FIS, the characteristic is reflecting the intended relocation of the 

DR from high to low ECa values. On the other hand, the characteristic for the dedicated FIS for the 

geofence, which is presented in Figure 3.3b, indicates no DR variation according to the ECa, which 

is reflecting the intention that the N fertilization should react with reduced DRs to the overall low soil 

productivity assumed within this area. 

 
Figure 3.3. FIS characteristic for (a) the default multi-parametric FIS and (b) the dedicated multi-

parametric FIS for the geofence. 

 

3.2.3 Optimization of dynamic spatial offsets 
 

3.2.3.1 Construction of spatial references 
 

Within the sensor-tractor-spreader system introduced in section 3.2.1, various spatial offsets need to 

be considered to enhance the accuracy of DR determination and realization within the field. Beyond 

the FISs, a further main subsystem of the real-time control was responsible for dynamic modeling 

and compensation of these lags. As a fundamental prerequisite, relevant spatial references were 

identified. In Figure 3.4, they are illustrated schematically for the examined system. In the whole 

process from the DR determination for specific georeferenced positions to the realization in the spread 
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pattern, a subdivision into two sections left and right of the forward direction within the working 

width 𝑤𝑤 of 24 m was followed. The definition of these sections was based on results from static 

spreading tests with a single disc that were conducted by the spreader manufacturer using the same 

fertilizer as used on the experimental field and applying different settings in terms of the fertilizer 

drop point, disc speed and dosing orifice position. These datasets included the mean values of normal 

distributions fit to the angular and radial fertilizer distribution (𝜇𝜇𝑚𝑚 and 𝜇𝜇𝑟𝑟, respectively) relative to the 

disc center. These mean values approximately describe the location of the focal points of the pattern 

(𝑃𝑃𝑟𝑟𝑓𝑓 and 𝑃𝑃𝑟𝑟𝑟𝑟, respectively). A dataset with settings close to the ones applied later in the measurements 

with the real-time control was chosen and consequently, considering also the spacing 𝑠𝑠𝑑𝑑 between the 

two discs of the spreader, the measures 𝑑𝑑1 and 𝑑𝑑2 defining the relative position of 𝑃𝑃𝑟𝑟𝑓𝑓 and 𝑃𝑃𝑟𝑟𝑟𝑟 were 

defined as follows: 

 𝑑𝑑1 =  sin(𝜇𝜇𝑚𝑚) × 𝜇𝜇𝑟𝑟 + �𝑠𝑠𝑑𝑑
2
� (3.1) 

 𝑑𝑑2 =  cos(𝜇𝜇𝑚𝑚) × 𝜇𝜇𝑟𝑟 (3.2) 

With 𝜇𝜇𝑚𝑚 and 𝜇𝜇𝑟𝑟 given with 19° and 15.5 m, respectively, and 𝑠𝑠𝑑𝑑 being determined with 1.1 m, 𝑑𝑑1 and 

𝑑𝑑2 resulted in 5.6 m and 14.7 m, respectively. As a prerequisite for absolute positioning concerning 

the spread pattern and the sensor, the longitudinal offset between the GNSS antenna and the center 

of the spreading discs 𝑑𝑑3 was determined with 2.1 m, whereas the offset 𝑑𝑑4 between the antenna and 

the middle of the N-Sensor’s traverse was defined with 0.5 m. 

 
Figure 3.4. Schematic illustration of relevant spatial references within the sensor-tractor-spreader 

system. 
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The real-time control continuously received SN and GNSS position data from the N-Sensor 

software at 1 Hz and 5 Hz, respectively. Each main processing cycle 𝑀𝑀 of the real-time control was 

initiated by the reception of SN values with a UNIX system timestamp 𝐶𝐶𝑆𝑆𝑆𝑆,𝑖𝑖 in s. The next incoming 

position data and their timestamp 𝐶𝐶𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆,𝑖𝑖 were then considered for further processing. The geographic 

coordinates of the antenna given in the WGS84 datum were transformed using the UTM projection 

in order to have its position 𝑃𝑃𝑖𝑖(𝑥𝑥𝑖𝑖|𝑦𝑦𝑖𝑖) in cartesian coordinates. Then, subsequent geometric 

calculations were performed to construct necessary spatial references. For this, a methodology was 

followed, which was presented by Heiß et al. (2019). A fundamental basis for the transformations 

was the calculation of the tractor’s heading 𝜓𝜓𝑖𝑖 relative to a unit vector pointing eastwards and being 

parallel to the UTM Easting, whereby the current position, as well as the position at the third 

processing cycle before, were considered as follows: 

 𝜓𝜓𝑖𝑖 =

⎩
⎪⎪
⎨

⎪⎪
⎧

cos−1 �
�01�∘��

𝑚𝑚𝑚𝑚
𝑦𝑦𝑚𝑚
�−�𝑚𝑚𝑚𝑚−3𝑦𝑦𝑚𝑚−3

��

��01��∙���
𝑚𝑚𝑚𝑚
𝑦𝑦𝑚𝑚
�−�𝑚𝑚𝑚𝑚−3𝑦𝑦𝑚𝑚−3

���
� , (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖−3) ≥ 0

2 × π − cos−1 �
�01�∘��

𝑚𝑚𝑚𝑚
𝑦𝑦𝑚𝑚
�−�𝑚𝑚𝑚𝑚−3𝑦𝑦𝑚𝑚−3

��

��01��∙���
𝑚𝑚𝑚𝑚
𝑦𝑦𝑚𝑚
�−�𝑚𝑚𝑚𝑚−3𝑦𝑦𝑚𝑚−3

���
� , (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖−3) < 0 

  (3.3) 

The coordinates of all spatial reference points deduced by applying transformations on the initial 

absolute antenna position 𝑃𝑃𝑖𝑖 are marked hereafter with an asterisk. In general, the calculation of 𝑥𝑥∗ 

and 𝑦𝑦∗ followed the following formulas: 

 𝑥𝑥∗ = cos(𝛼𝛼) × 𝑑𝑑 + 𝑥𝑥 (3.4) 

 𝑦𝑦∗ = sin(𝛼𝛼) × 𝑑𝑑 + 𝑦𝑦 (3.5) 

where the corresponding variables 𝛼𝛼, 𝑑𝑑, 𝑥𝑥 and 𝑦𝑦 are defined in Table 3.1 for the specific spatial 

reference points of interest. 
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Table 3.1. Definitions of variables in Eq. (3.4) and (3.5) for points resulting from transformations of 

𝑃𝑃𝑖𝑖 .  

Spatial reference 

point 

𝛼𝛼  𝑑𝑑  𝑥𝑥  𝑦𝑦  

𝑃𝑃𝑖𝑖∗(𝑥𝑥𝑖𝑖∗|𝑦𝑦𝑖𝑖∗)  𝜓𝜓𝑖𝑖−1  −𝑣𝑣𝑖𝑖−1 × �𝐶𝐶𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆,𝑖𝑖−1 − 𝐶𝐶𝑆𝑆𝑆𝑆,𝑖𝑖−1�  𝑥𝑥𝑖𝑖−1  𝑦𝑦𝑖𝑖−1  

𝑃𝑃𝑓𝑓,𝑖𝑖∗  �𝑥𝑥𝑓𝑓,𝑖𝑖∗ |𝑦𝑦𝑓𝑓,𝑖𝑖∗ �  𝜓𝜓𝑖𝑖−1 + tan−1 �𝑑𝑑1
𝑑𝑑4
�  �(𝑑𝑑1)2 + (𝑑𝑑4)2  𝑥𝑥𝑖𝑖∗  𝑦𝑦𝑖𝑖∗  

𝑃𝑃𝑟𝑟,𝑖𝑖
∗  �𝑥𝑥𝑟𝑟,𝑖𝑖

∗ |𝑦𝑦𝑟𝑟,𝑖𝑖
∗ �  𝜓𝜓𝑖𝑖−1 − tan−1 �𝑑𝑑1

𝑑𝑑4
�  �(𝑑𝑑1)2 + (𝑑𝑑4)2  𝑥𝑥𝑖𝑖∗  𝑦𝑦𝑖𝑖∗  

𝑃𝑃𝑠𝑠,𝑖𝑖
∗  �𝑥𝑥𝑠𝑠,𝑖𝑖

∗ |𝑦𝑦𝑠𝑠,𝑖𝑖
∗ �  𝜓𝜓𝑖𝑖−1  𝑑𝑑4  𝑥𝑥𝑖𝑖∗  𝑦𝑦𝑖𝑖∗  

𝑃𝑃𝑝𝑝,𝑖𝑖
∗  �𝑥𝑥𝑝𝑝,𝑖𝑖

∗ |𝑦𝑦𝑝𝑝,𝑖𝑖
∗ �  𝜓𝜓𝑖𝑖  𝑑𝑑2 + 𝑑𝑑3  𝑥𝑥𝑖𝑖  𝑦𝑦𝑖𝑖  

 

Due to the internal measurement cycles of the N-Sensor system, the incoming SN data had a latency 

and had to be assigned to a location of 1 s before. Thus, within a main processing cycle 𝑀𝑀, first of all, 

the SN and GNSS data corresponding to timestamps 𝐶𝐶𝑆𝑆𝑆𝑆,𝑖𝑖−1 and 𝐶𝐶𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆,𝑖𝑖−1, respectively, were 

considered. 𝑃𝑃𝑖𝑖−1 was used directly to estimate the absolute position 𝑃𝑃𝑖𝑖∗(𝑥𝑥𝑖𝑖∗|𝑦𝑦𝑖𝑖∗) of the antenna at the 

timestamp that was assigned to the SN data being processed. As the streams of SN and GNSS position 

data were not concurrent, there was a varying span between 𝐶𝐶𝑆𝑆𝑆𝑆,𝑖𝑖−1 and 𝐶𝐶𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆,𝑖𝑖−1, which had a 

theoretical maximum of 200 ms due to the streaming frequencies. Thus, the wheel-based machine 

speed 𝑣𝑣 in m s-1
, deduced from wheel-based speed and distance (WBSD) messages as specified in 

ISO (2009a), was considered to compensate this offset and calculate the coordinates of 𝑃𝑃𝑖𝑖∗. Based on 

that, the absolute positions 𝑃𝑃𝑓𝑓,𝑖𝑖∗  �𝑥𝑥𝑓𝑓,𝑖𝑖∗ |𝑦𝑦𝑓𝑓,𝑖𝑖∗ � and 𝑃𝑃𝑟𝑟,𝑖𝑖
∗  �𝑥𝑥𝑟𝑟,𝑖𝑖

∗ |𝑦𝑦𝑟𝑟,𝑖𝑖
∗ � of the left and right query point, as well 

as the center point 𝑃𝑃𝑠𝑠,𝑖𝑖
∗  �𝑥𝑥𝑠𝑠,𝑖𝑖

∗ |𝑦𝑦𝑠𝑠,𝑖𝑖
∗ � in the middle of them were calculated. 𝑃𝑃𝑓𝑓,𝑖𝑖∗  and 𝑃𝑃𝑟𝑟,𝑖𝑖

∗  defined specific 

locations, where map-based ECa information was requested, and DR values for the left and right 

section were determined by the FISs. The DRs were subsequently settled to the N-content of the 

fertilizer, thus being expressed as SRs of kg ha-1 of fertilizer for the left and right section. 𝑃𝑃𝑠𝑠,𝑖𝑖
∗  was on 

the one hand needed to request interpolated SN data during the verification experiments of the real-

time control. On the other hand, it was one parameter needed to define the dynamic offset 𝑑𝑑𝑖𝑖. The 

second parameter needed for this was the absolute position of the spread pattern’s center point 

𝑃𝑃𝑝𝑝,𝑖𝑖
∗ �𝑥𝑥𝑝𝑝,𝑖𝑖

∗ |𝑦𝑦𝑝𝑝,𝑖𝑖
∗ �. To define this spatial reference point, again a transformation was conducted using Eq. 

(3.4) and (3.5) with the values indicated in Table 3.1. The starting point in this case was 𝑃𝑃𝑖𝑖 because 

the most recent GNSS position was used to estimate the current absolute position of the spread 

pattern. Finally, 𝑑𝑑𝑖𝑖 in m was calculated as follows: 
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 𝑑𝑑𝑖𝑖 = ��𝑥𝑥𝑠𝑠,𝑖𝑖
∗ − 𝑥𝑥𝑝𝑝,𝑖𝑖

∗ �
2

+ �𝑦𝑦𝑠𝑠,𝑖𝑖
∗ − 𝑦𝑦𝑝𝑝,𝑖𝑖

∗ �
2
 (3.6) 

 

3.2.3.2 Dynamic optimization model 
 

The dynamic offset 𝑑𝑑𝑖𝑖 varied depending on 𝑣𝑣𝑖𝑖, 𝑣𝑣𝑖𝑖−1 and the asynchronous stream of SN and GNSS 

position data. An optimization model was applied to define the time delay needed for sending the SRs 

to the spreader in order to accomplish the switching at the match of query points and the spread 

pattern’s focal points. To estimate this match in the spatial domain, the wheel-based machine distance 

𝐷𝐷 as specified in ISO (2009a) was used, which corresponds to the covered distance of the tractor in 

m. The dynamic offset 𝑑𝑑𝑖𝑖 was added to 𝐷𝐷𝑖𝑖 at each main processing cycle 𝑀𝑀 of the real-time control to 

define the target value 𝐷𝐷𝑟𝑟,𝑖𝑖. As soon as the tractor was moving, a dedicated timer for the left and right 

section was created at cycle 𝑀𝑀. Each timer function contained information about the section, the 𝐷𝐷𝑟𝑟,𝑖𝑖 

and the corresponding SR. The timers were used to trigger the transmission of SRs for each section 

in the near future and they were deleted afterwards. The starting time of each existing timer 𝑗𝑗 was 

updated within each cycle 𝑀𝑀 based on the estimated remaining time to reach 𝐷𝐷𝑟𝑟,𝑗𝑗, as well as further 

corrections that were needed to compensate temporal lags within the spreader system. Those were 

the time for the actuators to change the SR (𝐶𝐶𝑚𝑚), as well as the time for the fertilizer to drop on the 

spreading discs (𝐶𝐶𝑟𝑟). For 𝐶𝐶𝑟𝑟, a free fall was assumed and consequently, the calculation was as follows: 

 𝐶𝐶𝑟𝑟 = �2×ℎ
𝑔𝑔

  (3.7) 

where ℎ corresponds to the height of fertilizer fall, which was determined with 0.14 m, and 𝐻𝐻 

corresponds to the acceleration of gravity given with 9.81 m s-2. Thus, 𝐶𝐶𝑟𝑟 was calculated as a constant 

with 0.17 s. 

In terms of 𝐶𝐶𝑚𝑚, a dynamic calculation was performed for the timer 𝑗𝑗 being updated, based on the 

expected mass flow changes from one SR change to the next. With information provided by the 

spreader manufacturer, a lookup table could be deposited in the real-time control, which characterized 

the relationship between dosing orifice opening angle and mass flow 𝑞𝑞 given in kg min-1. Within the 

update cycle of the timers, the mass flow change ∆𝑞𝑞𝑗𝑗 was estimated for timer 𝑗𝑗. For this, the following 

formula was used: 

 ∆𝑞𝑞𝑗𝑗 = �𝑤𝑤 × 0.006 × 𝑣𝑣𝑖𝑖 × (𝑟𝑟𝑐𝑐 − 𝑟𝑟𝑠𝑠,𝑗𝑗)�  (3.8) 

where 𝑤𝑤 corresponds to the working width of 24 m, 𝑟𝑟𝑠𝑠,𝑗𝑗 corresponds to the SR deposited in timer 𝑗𝑗 

and 𝑟𝑟𝑐𝑐 corresponds to the last SR for the left or right section, respectively, which had been transmitted 

from the real-time control to the spreader. Based on ∆𝑞𝑞𝑗𝑗, the dosing orifice opening angle was 
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estimated by applying a linear interpolation on the values in the lookup table. Assuming a constant 

traversing speed given by the manufacturer, the traversing time 𝐶𝐶𝑚𝑚,𝑗𝑗 in s was defined. Then, the delay 

time 𝐶𝐶𝑑𝑑,𝑗𝑗 in s of the timer 𝑗𝑗 being updated was recalculated, whereby the calculation was as follows: 

 𝐶𝐶𝑑𝑑,𝑗𝑗 =
�𝐷𝐷𝑟𝑟,𝑗𝑗−𝐷𝐷𝑚𝑚�

𝑣𝑣𝑚𝑚
+ 𝐶𝐶𝑟𝑟 + 𝐶𝐶𝑚𝑚,𝑗𝑗 (3.9) 

 

3.2.4 Real-time control 
 

3.2.4.1 Implementation 
 

The real-time control was implemented on the controller platform by developing dedicated software 

in MATLAB, whereby the FISs described in section 3.2.2, as well as the geofence, the ECa and 

historic SN data presented in Figure 3.2b were deposited. Then, the control was embedded into the 

existing sensor-tractor-spreader system presented in section 3.2.1. The reception of SN and GNSS 

data from the N-Sensor software was established with a TCP/IP port, whereas the communication 

with the ISOBUS was realized via a CAN channel. The latter was provided by a VN1610 CAN 

interface (Vector Informatik GmbH, Stuttgart, Germany), which was linked to the ISOBUS with a 

branch between the in-cab plug and the terminal. A dedicated function of the real-time control was 

responsible for receiving and parsing the wheel-based speed and distance messages as defined in ISO 

(2009a), which were transmitted by the tractor ECU at 10 Hz. They contained information about the 

parameters 𝑣𝑣 and 𝐷𝐷, which were provided globally within the real-time control. In Figure 3.5, its 

basic working principle is illustrated schematically for a main processing cycle 𝑀𝑀. In general, relevant 

parameters were timestamped and saved in a log file for being able to provide them in subsequent 

cycles and for later analysis purposes. 
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Figure 3.5. Schematic illustration of the real-time control’s working principle. 

 

After switching the N-Sensor software to the operation mode, it was continuously streaming SN 

and GNSS position data via the TCP/IP port. Cycle 𝑀𝑀 was initiated after two dedicated SN values for 

the left and right sensor head had been sent. As outlined in section 3.2.3.1, transformations were 

conducted to define various spatial reference points. At each query point 𝑃𝑃𝑓𝑓,𝑖𝑖∗  and 𝑃𝑃𝑟𝑟,𝑖𝑖
∗ , a dedicated ECa 

value was requested from the deposited map. From the SN point data, a single value was queried at 

𝑃𝑃𝑠𝑠,𝑖𝑖
∗  using MATLAB’s scatteredInterpolant function. The reason for this was that also in a real 

application, only a mean SN value from both sensing heads would be used to eliminate potential error 

sources like e.g. the phototropic behavior of the crop, which could influence the canopy structure 

(Major et al., 2003; Vanderbilt et al., 1981). For 𝑃𝑃𝑓𝑓,𝑖𝑖∗  and 𝑃𝑃𝑟𝑟,𝑖𝑖
∗ , respectively, the real-time control 

checked separately, if the point was within the geofence and subsequently used the corresponding 

FIS to define first the DRs and settle them to SRs. 

With 𝐷𝐷𝑟𝑟,𝑖𝑖, the absolute spatial offset between DR definition and application for cycle 𝑀𝑀 was 

described. Depending on the condition that the current wheel-based speed 𝑣𝑣𝑖𝑖 was greater than zero, a 

dedicated timer object was created and stored in a timer cache. If 𝑣𝑣𝑖𝑖 was zero, the real-time control 

directly passed to update the starting time of each timer 𝑗𝑗 within the cache based on the current system 

time and the delay time 𝐶𝐶𝑑𝑑,𝑗𝑗. When the tractor was accelerating, it was likely to happen that the starting 

time of a timer was already in the past. In this case, it was configured to be started as soon as possible. 

The timers were started independently from the main processing cycles, as soon as the controller 

platform’s system time matched with their respective starting time and subsequently, the transmission 
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of the deposited SR to the ISOBUS was triggered. Hereby, the SR value was considered as a data 

dictionary entity 6 according to VDMA (2021), which corresponds to the setpoint mass per area 

application rate. Subsequently, the information was packed into a process data message predefined 

according to ISO (2009b), whereby there were two different messages for the left and right section, 

respectively. This message was then sent on the ISOBUS via the CAN channel to be read by the 

spreader ECU. To verify its transmission and evaluate the performance of the real-time control in a 

post-processing analysis, it was immediately received again as soon as it appeared on the ISOBUS. 

 

3.2.4.2 Evaluation 
 

In order to verify its functionality and define its limitations, measurements with the real-time control 

were conducted on tracks A and B indicated in Figure 3.2. They were chosen because preceding 

simulations with the FISs and the available input data indicated comparatively high SR variations to 

be expected along the tracks. Track A was always driven on from West to East, whereas it was the 

opposite direction for track B. For the measurements with the real-time control, six different variants 

in terms of the driving speed of the tractor were followed in two repetitions conducted on each track. 

Four variants were performed with the cruise control of the tractor set to a constant speed of 6, 12, 16 

and 20 km h-1. The speeds of 6 and 20 km h-1 were chosen because they were the lowest and highest 

values, respectively, for which settings were given in the spreading table provided by the 

manufacturer. The choice of 12 km h-1 represented a very common speed that also all descriptions in 

the spreader’s owner manual were based on, whereas 16 km h-1 could be considered as a high 

operating speed that is still quite common among farmers. A further variant (S) was conducted with 

a constant speed of 12 km h-1, whereby the tractor was stopped two times within the track and 

reaccelerated to the constant speed after waiting at least 10 seconds. For the last variant (V), the 

tractor was continuously accelerated from 0 km h-1 at the beginning of a track up to approx. 20 km h-

1 at the middle of the track, from where it was deaccelerated back to 0 km h-1 until the end of the 

track. Considering all different measurement setups, 24 datasets were recorded in total. After 

recording a dataset, the MATLAB script executing the real-time control was stopped and restarted at 

the beginning of a new record. Before each of the two repetitions, the tractor, spreader, terminal, as 

well as controller platform were shut down and restarted. The N-Sensor system was switched to the 

operating mode at the beginning of each repetition and remained in this mode for its whole duration. 

For further analyses on the recorded datasets, they were subdivided based on the two sections 

left and right. The designation of the datasets is following this. Every dataset is indicated with an A 

or a B for the two tracks and indexed successively with indicators for the speed variant (6, 12, 16, 20, 
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S and V), the section left and right (L and R, respectively), as well as the number of the repetition. 

So, dataset AV,L,2 for instance corresponds to the record for the left section, conducted within the 

second repetition on track A with the variable speed variant. To consider only the usual operating 

status of the system, the record for processing cycle 𝑀𝑀 was only considered if both of its timers were 

actually started and the corresponding SRs were sent on the ISOBUS. Furthermore, all recordings 

with a 𝑣𝑣𝑖𝑖 of less than 1 m s-1 were excluded. A very important parameter for the evaluation of the 

real-time control’s performance was the deviation 𝜀𝜀 expressed as a spatial offset in m between the 

query points and the corresponding focal points, which should be ideally 0 m. It was estimated as 

follows for each started timer 𝑘𝑘 that had been created in processing cycle 𝑀𝑀: 

 𝜀𝜀𝑘𝑘 = 𝐷𝐷𝑟𝑟,𝑖𝑖 − 𝐷𝐷𝑘𝑘 − 𝐶𝐶𝑑𝑑,𝑘𝑘 × 𝑣𝑣𝑘𝑘  (3.10) 

where 𝐷𝐷𝑟𝑟,𝑖𝑖 corresponds to the target wheel-based distance value defined in 𝑀𝑀 and 𝐷𝐷𝑘𝑘 corresponds to 

the wheel-based distance value at the UNIX system timestamp 𝐶𝐶𝑘𝑘, when the SR deposited in 𝑘𝑘 had 

been received again from the ISOBUS. This parameter was determined by applying a linear 

interpolation at 𝐶𝐶𝑘𝑘 on all timestamped 𝐷𝐷 values recorded from the ISOBUS. Parameter 𝐶𝐶𝑑𝑑,𝑘𝑘 

corresponds to the delay time that had been defined for 𝑘𝑘 in its last update before being started, 

whereas 𝑣𝑣𝑘𝑘 corresponds to the current wheel-based speed value at this update. The delay time 𝐶𝐶𝑑𝑑,𝑘𝑘 

was neglected in Eq. 3.10 in case the affected timer had to be sent immediately due to an obsolete 

starting time. 

 

3.3 Results and discussion 
 

3.3.1 Output generated by the fuzzy inference systems 
 

Within the real-time control, the inference engine processed the input data acquired from the query 

points based on the defined FIS characteristics. The system checked for each query point separately 

if it was within the geofence, used the corresponding FIS and calculated the SR. In Figure 3.6, the 

outputted SRs from the left and right section are plotted for each recording of exemplary edited 

datasets. As the tracks were almost exactly running along the east-west axis, the UTM Easting is 

indicated on the x-axis. Datasets from the 6 km h-1 variant were chosen because they have the highest 

resolution of SR recordings. It is apparent from Figure 3.6a that around the edges of the geofence, 

there were comparatively high differences between the left and right section, which is indicated with 

the shaded areas between the graphs. Here, the query point of one section of the application system 

was within the geofence, whereas the other one was not. Within the geofence, the SRs for the left and 
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right section were identical, which is explained by the fact that the geofence FIS did not allow a SR 

variation depending on the ECa and used only the mean SN value. It can be seen that outside the 

geofence, the SRs from the two sections were largely close to each other along track A. Only in a few 

cases, the difference reached 10 kg ha-1 or more. A similar pattern can be observed in Figure 3.6b, 

where the results from exemplary datasets recorded on track B are presented. With 5.6 m, 𝑑𝑑1 was 

close to an even lateral sampling distance, which would have been reached at 6 m considering the 

tramline width of 24 m. So, the reason for the largely small deviations between the left and right SRs 

is to be found in the fact that the SR distinction was only based on the input ECa and that this 

parameter most probably did not have big changes between the left and right query points. This 

assumption is supported by the fact that for soil parameters, lower heterogeneities can be expected 

than for the crop biomass (Griepentrog et al., 2007). 

 
Figure 3.6. Recorded left and right SR values. (a) datasets A6,L,1 and A6,R,1 and (b) datasets B6,L,1 and 

B6,R,1 

 

3.3.2 Real-time control evaluation 
 

As outlined in sections 3.2.4.1 and 3.2.4.2, the SR deposited in each started timer object was received 

again from the real-time control, as soon as it had been sent on the ISOBUS. An analysis of all edited 

datasets resulted that, except for the first recordings in datasets A12,L,2 and A12,R,2, each SR defined 

for a query point was successfully transmitted and there was none skipped. Further analyses have 

shown that for both exceptions, the functions for transmitting the SRs were called, however. So, the 

SRs were most probably transmitted but their transmission could not be verified. For the timers 

assigned to these recordings and their respective preceding ones, there was a difference of only 9 ms 

in terms of their planned starting time. So, the most reasonable explanation for this missing proof of 
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SR transmission is that the function being responsible for receiving and parsing the process data 

messages skipped the affected ones. 

The main parameter to quantitatively describe the performance of the real-time control in the 

spatial domain was the deviation 𝜀𝜀. In Figure 3.7, the results are shown for exemplary datasets from 

the different constant speed variants. On each subplot, 𝜀𝜀 in m is plotted against the index 𝑀𝑀 of the main 

processing cycles from the original, unedited dataset. It is evident from the overall pattern on all 

subplots that the error behavior has a stochastic nature. In most cases, the value for 𝜀𝜀 is negative, thus 

indicating that the corresponding SRs were sent too late. The subplots imply that the offset from the 

optimum value of 0 m tends to increase with the speed. In terms of the scattering of the results, there 

is a conspicuous increase from 6 km h-1 to 12 km h-1. Beyond that, there seem to be no systematic 

changes from the 12 km h-1 to the 16 km h-1 and 20 km h-1 variants, respectively. 

 
Figure 3.7. Deviation 𝜀𝜀 at different constant speeds. (a1)-(a4) showing datasets for the right section, 

repetition two and track A, (b1)-(b4) showing datasets for the left section, repetition one and track B. 

 

To assess the real-time control’s behavior at interruptions, a variant with a constant speed of 12 

km h-1 and two intermediate stops was conducted. In Figure 3.8, the results in terms of the deviation 

𝜀𝜀 are presented for two exemplary datasets. The processing cycles where the tractor was stopped are 

indicated and since the cyclic SR calculation was paused by the algorithm, a straight line is drawn 

from the last cycle before and the first cycle after a stop, respectively. Both subplots of Figure 3.8 

indicate a slight tendency that the scattering is smaller at the first few cycles after a stop. Apart from 

that, no saliencies can be observed for the course of ε before and after a stop. 
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Figure 3.8. Deviation 𝜀𝜀 for a constant speed of 12 km h-1 and intermediate stops. (a) showing 

exemplary dataset for the right section, repetition two and track A and (b) showing exemplary dataset 

for the left section, repetition one and track B. 

 

The results presented in Figure 3.7 already imply a dependency between the tractor speed and 

the deviation 𝜀𝜀. In Figure 3.9, the results in terms of the deviation 𝜀𝜀 are shown for exemplary datasets 

from the variable speed variant. Also, the wheel-based speed 𝑣𝑣𝑘𝑘 from the last update of the 

corresponding timer is plotted. Comparing all subplots, 𝜀𝜀 apparently increases with the speed in terms 

of the offset, as well as the scattering. This could be traced back to inherent latencies in the processed 

data streams, as well as their limited temporal resolutions, which has a higher influence on deviation 

𝜀𝜀 as the speed increases. Further, it seems that the scattering is increased in repetition two compared 

to repetition one and there seem to be positive peaks of deviation 𝜀𝜀 when the speed 𝑣𝑣𝑘𝑘 is close to the 

maximum of 20 km h-1. Both observations, however, could not be traced back to a specific cause but 

are rather related to the stochastic character of the error behavior. 
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Figure 3.9. Deviation 𝜀𝜀 for the variable speed variant. (a1)-(a2) showing exemplary datasets for track 

A, (b1)-(b2) showing exemplary datasets for track B. 

 

MATLAB’s boxplot function was used to graphically illustrate the distribution of the deviation 

𝜀𝜀 within each dataset. The corresponding results for the constant speed variants are shown in Figure 

3.10. The red mark within each box indicates the median and the bottom and top edges indicate the 

25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points not 

considered as outliers, whereas the outliers themselves are illustrated with a red cross. Outliers are all 

values that are more than 1.5 times the interquartile range away from the bottom or top of the blue 

box. A visual analysis of repetition one and two within each subplot of Figure 3.10 suggests that there 

is no systematic difference in terms of the error behavior. Comparing the datasets for the left and right 

section, respectively, from the same original records implies that there are only slight differences in 

terms of the distribution of the data values. An exception can be found with datasets A12,L,2 and A12,R,2. 

Further analyses did not suggest that there is a correlation to the fact that these were the two datasets, 

where the first SR transmission could not be verified. Also, they did not allow for any other 

conclusions on possible explanations. 
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Figure 3.10. Box plots for all datasets from the (a) 6 km h-1, (b) 12 km h-1, (c) 16 km h-1 and (d) 20 

km h-1 variant. 

 

In general, the box plots presented in Figure 3.10 confirm once more that random effects are 

inherent to the real-time control’s error behavior and that their influence tends to increase with the 

speed. The most obvious explanations for this are limited resolutions and asynchronies of the different 

data streams, as well as the software setup of the controller platform, which is basically not designed 

for handling hard real-time constraints. The complexity of different tasks being scheduled and 

executed by the operating system in the background makes it difficult to identify error sources that 

appear in specific circumstances. However, the absolute deviation is largely below 1 m and never 

exceeds a range of -1.5 m to 1 m, even within the 20 km h-1 variant, which can be considered as an 

exceptionally high speed. The percentage of recordings with an absolute deviation 𝜀𝜀 of more than 1 

m is 0, 0.48, 1.5 and 2.3% for the different constant speed variants with 6, 12, 16 and 20 km h-1. The 

highest 𝜀𝜀 was found with -1.34 m in dataset A16,R,2. From a practical perspective, the magnitude of 

these deviations can be considered negligible because there are various other technical restrictions 

that are likely to cause more error. For instance, the limitations of the dosing and metering system 

within the spreader have an effect on the adequate realization of SRs within the field. Also, varying 

ballistic properties of the fertilizer granules or external error sources like e.g. the wind or the 

unevenness of the soil along the tramline could have more significant effects on the quality of the 

fertilizer distribution. Finally, unlike e.g. pneumatic spreaders or sprayers, centrifugal spreaders have 

the unique characteristic of distributing the fertilizer over a crescent plane, whose longitudinal extent 
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is usually much larger than the travelled distance between the single SR commands given by a real-

time sensor system. This will always result in average values of applied fertilizer instead of a distinct 

realization of the SR commands. 

In Figure 3.11, the boxplots for the further two speed variants are presented, whereby in Figure 

3.11a, the datasets from the variant with 12 km h-1 and intermediate stops, and in Figure 3.11b, the 

datasets from the variable speed variant are shown. When comparing both subplots, a difference 

between the repetitions is implied in Figure 3.11a and a slight difference between the tracks is 

suggested in Figure 3.11b. Once more, no systematic reason could be identified for this but rather the 

influence of random effects has to be assumed. Both speed variants represent a test of the real-time 

control beyond its envisaged operating conditions in terms of the driving speed. Still, the deviation 𝜀𝜀 

exceeded an absolute value of 1 m in only 0.12% of the cases for the variant with 12 km h-1 and 

intermediate stops, while this value was with 0.09% even lower in the variable speed variant. 

 
Figure 3.11. Box plots for all datasets from (a) the variant with 12 km h-1 and intermediate stops and 

(b) the variable speed variant. 

 

3.4 Conclusion 
 

Two FISs for fusing the Yara N-Sensor ALS2 system’s agronomic algorithms with soil ECa data 

based on expert knowledge were incorporated into a real-time control to generate SR commands for 

two dedicated sections within a centrifugal spreader on-the-go. Measurements with SN and ECa data 
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from the real application have shown that the SR difference for the left and right section rarely 

exceeded 10 kg ha-1 because it was only based on dedicated ECa values. An algorithm, which 

scheduled the transmission of SR commands by periodically predicting the spatial concordance of 

DR determiniation and application with an odometric approach, was implemented as a further main 

component of the real-time control. In a verification with different speed variants covering also 

borderline conditions, the system has shown a high consistency. Even if the error behavior of the 

dynamic offset optimization had a highly stochastic character, the absolute deviation never exceeded 

1.5 m and deviations beyond 1 m ranged from 0.09 to 2.3% among the different recorded datasets, 

which can be considered sufficient for practical needs. The dynamic optimization of inherent spatial 

offsets and technical temporal lags offers the opportunity to increase the precision of the application 

and include the driving speed as a further control parameter. 

Due to the generic nature of the approach, it can be extended with further quantifiable latencies 

and even transferred to other applicators like e.g. pneumatic spreaders or sprayers, where the effect 

on the application accuracy is presumably higher due to the more distinct SR realization on the field. 

Also, a transfer of the methodology to prescription map based VRNA is basically possible. Future 

work could deal with analysing the impact of the offset optimization on the actually applied amounts 

on the field using simulations involving granule trajectory modeling, as conducted by Sharipov et al. 

(2021). To support the expert’s decision making process and automate the whole process of multi-

parametric real-time VRNA, suitable user interfaces and infrastructures for eased data handling 

should be developed. 
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Abstract 

 

Crop nitrogen (N) demand is defined by various physiological, management and environmental 

factors that interact with each other and involve temporal and spatial dynamics. Variable rate N 

application (VRNA) intends to address this but the underlying algorithms often remain rather rigid 

and deterministic, are partly subject to high uncertainties and largely leave the agronomic expert’s 

knowledge and experience unnoticed. 

A novel generic system architecture was conceptualized to overcome these limitations and 

respond to the complexity of N management in a straightforward and both, reactive and proactive 

manner. Having a fuzzy expert system as methodical core, the approach mainly relies on human input 

to grasp the circumstances at a specific N application and address the required parameter interactions. 

As a holistic concept, it further aims at a high versatility in terms of considered input data and 

utilization with different sensor and application technology, as well as a digitized VRNA process 

chain involving graphical user interfaces to simplify procedures for data presentation, decision 

making, application and documentation.  

Bringing the presented concept into a prototypic implementation considering real-time crop N 

sensor and mapped soil data, its consistency was verified. At the same time, potential functionalities, 

                                                           
3 The publication of Chapter 4 is done in accordance with the CC BY 4.0 open access license. The original publication 
was in: European Journal of Agronomy, Vol. 145 (2023), 126792. It can be found under the following link: 
https://doi.org/10.1016/j.eja.2023.126792  

https://doi.org/10.1016/j.eja.2023.126792
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as well as limitations were illustrated and technical requirements on specific subsystems were 

clarified by the prototype. The possible risks that stand in the way of high benefits due to a strong 

focus on expert knowledge can be countered by using digital tools and heading towards hybridization 

with other VRNA approaches. 

 

Keywords: multi-parametric data fusion, fuzzy expert systems, site-specific N management, multi-

source data, graphical user interfaces 

 

4.1 Introduction 
 

To improve synchrony between crop nitrogen (N) supply and demand, thus increasing N recovery, 

site-specific treatment with variable rate N application (VRNA) is a possible solution (Weckesser et 

al., 2021; Argento et al., 2020). Its most crucial and still critical aspects nowadays refer to the 

parameters to be considered, as well as the agronomic algorithms defining the N dose rates (DR). A 

popular and economical principle is based on delineating management zones of similar productivity 

potential and subsequent treatment via prescription maps, whereby clustering techniques can be used 

to merge geodata referring to landscape and soil attributes, historical yield or the crop’s N status 

derived from spectral airborne or satellite data (Li et al., 2007; Morari et al., 2021; Schenatto et al., 

2017). A major constraint here is the lack of functional explanations for the existence of different 

zones, as well as the limited adaption to weather-mediated variability (Heege, 2013a). 

Algorithms considering current crop information, which is a key VRNA parameter especially in 

real-time sensor systems, are abundantly based on rather deterministic N redistribution (Weckesser 

et al., 2021), while more sophisticated approaches consider the crop’s N response (Holland and 

Schepers, 2010) or aim at an N mass balance (Raun et al., 2005). A combination with management 

zones in map-overlay is considerable (Paraforos et al., 2019). However, spatially varying crop and 

further biological, edaphic and topographic factors, as well as their interaction with the weather and 

management are causing in-season and year-to-year temporal and spatial dynamics affecting N 

delivery from the soil, crop growth and N response, as well as yield formation and its relation to N 

inputs (Griepentrog et al., 2007; Scudiero et al., 2018; Colaço and Bramley, 2018; Arnall et al., 2013). 

This complexity can hardly be handled with single-parametric, mechanistic and generalized models 

(Colaço et al., 2021). Process-based or statistical crop models addressing this natural complexity in 

N management have advanced within the last decades but are still affected by significant limitations 

(Morari et al., 2021; Basso and Liu, 2019). Moving window regression and also machine learning 
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methods were applied to capture dynamic and non-linear parameter interrelations (Scudiero et al., 

2018; Chlingaryan et al., 2018). Beyond the environmental influences, however, the production target 

is an important dynamic factor to be considered as well in the VRNA strategy and apart from yield 

maximization, there are also economic or environmental protection drivers (Ebertseder et al., 2005).  

The use of expert knowledge from farmers and agronomic advisors can be helpful in handling 

these challenges. In their everyday work they need to accommodate natural, technical and economic 

factors and over many years of experience and further education, they accumulate a body of salient 

situational knowledge about the cause-effect relationships within their local crop production systems, 

which is scientifically not accessible (Lundström and Lindblom, 2018; Hoffmann et al., 2007; Oliver 

et al., 2012). Expert knowledge is considered as an important source of information to analyse and 

merge various relevant layers of spatial data and define VRNA system models (Leroux et al., 2018). 

Martínez-Casasnovas et al. (2018) consider its use as an important factor for the adoption of VRNA 

technologies. Several authors have used it in the delineation of management zones (Fleming et al., 

2000; Guerrero et al., 2021) and in a more implicit manner, it found application in the definition of 

VRNA strategies (Ferrise et al., 2021; Griepentrog and Kyhn, 2000). However, all in all expert 

knowledge has received sparse attention so far in the design of VRNA systems (Schenatto et al., 

2017). 

To incorporate it in a systematic manner as a logical core of VRNA, fuzzy systems are 

predestined as technological basis. They provide effective and straightforward means to consider 

multiple inputs in automatic control strategies, have a relatively high robustness and fault tolerance 

as they can handle imprecision and uncertainties in the parameters and can deal with the complexity 

and non-linearities in their interactions (Sun et al., 2018; Jahangiri et al., 2019). These properties 

made them find various application in the context of environmental and agricultural systems 

(Guillaume et al., 2012). Their straightforward adjustability allows a flexible adaption to different 

conditions and they are very well adapted to human cognition, thus facilitating the semantic 

integration as a major challenge to incorporate expert knowledge in VRNA (Giusti and Marsili-

Libelli, 2015; Wolfert et al., 2017). Fuzzy systems were successfully employed for region-based 

optimization of N management (Papadopoulos et al., 2011) and VRNA based on plant, soil, 

topographic as well as weather information (Bouroubi et al., 2011; Tremblay et al., 2010). A 

methodology to employ a fuzzy expert system to fuse soil apparent electrical conductivity (ECa) with 

real-time sensor data providing the crop’s N uptake was presented by Heiß et al. (2021).  

Zhai et al. (2020) systematically elaborated upcoming challenges and evaluation criteria for 

agricultural decision support systems (DSS) considering standardized requirements. Graphical user 

interfaces (GUI) are of significance in in this context and have a special importance, if expert 
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knowledge is supposed to be a core element. GUI design should be user-centered (Lindblom et al., 

2017), address simplicity (Rose et al., 2016) and spare the need for any specific technical skills for 

operation to achieve acceptance among users from the agricultural domain (Weckesser et al., 2021). 

As implied by the work of Leroux et al. (2018), beyond the data fusion process itself, a consistent 

fuzzy expert system needs to cover also spatial data visualization and information, as well as decision 

support. When it is specifically about VRNA, also the application at the field level needs to be 

considered because a high flexibility due to different available data, as well as sensor and application 

technologies is required (Shanahan et al., 2008). Further, a high level of automation is needed to 

minimize the effort and time demand for data handling and facilitate the execution of different sub-

processes of VRNA (Colaço and Bramley, 2018). 

In the present paper, a holistic framework for VRNA is conceptualized, which comprises the 

whole process chain from spatial data analysis, decision making, execution on the field and 

documentation. Main novelties of the concept lie in (1) an explicit focus on the use of expert 

knowledge from farmers and agronomic advisors to address the complexity of site-specific N 

management in terms of the relevance of different input parameters, their inherent spatiotemporal 

dynamics and different target orientations, (2) a high versatility concerning used input data and 

application approaches involving real-time, as well as prescription map based technology and (3) a 

user-centered design approach incorporating GUIs and digital tools to ease the VRNA strategy setup 

and automate process execution. A prototype of the concept, which was built for the specific use case 

of a fusion of crop N uptake data sensed by a real-time sensor system and mapped soil ECa data, aims 

at illustrating the underlying process chain, as well as potentials and limitations of the concept’s 

implementation. 

 

4.2 Conceptual system design 
 

4.2.1 Basic system architecture 
 

The conceptualized system architecture is presented in Figure 4.1 at the highest level of abstraction 

and incorporating all its potential functionalities. It provides several subsystems to support the user, 

who is the core element covering three crucial aspects of VRNA. As an agronomic expert, the user 

makes a decision on the VRNA strategy. Beyond that, the user is responsible for the supervision of 

the entire process chain, as well as the execution on the field. In many cases, it is realistic that these 

roles are distributed among different people (Welte et al., 2013). For example, it is possible that the 
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farm owner could be supported by an agronomic consultant in the decision making, while the process 

chain supervision and execution on the field are covered by the owner and further employees, 

respectively. 

 
Figure 4.1. Basic system architecture. 

 

A web application is supposed to offer tools for applying the implications of the user’s situational 

field and crop assessment to the definition of a site-specific variation of the DR considering multiple 

relevant and measurable input parameters. Via a GUI as frontend, the user should be given the 

opportunity to create and manage specific tasks for each N application. Further, the GUI should 

provide useful information to refine the analysis in terms of the specific conditions and requirements 

and thus improve the quality of the decisions (Zhai et al., 2020). This involves mainly the 

representation of relevant georeferenced input parameters, as well as geodata processed in the web 

application or returned from the execution of the N application. Further specific requirements on the 

GUI design can be deduced from the fuzzy expert system presented by Heiß et al. (2021) as this is 

the core technology used to transfer the agronomic expert’s knowledge to a machine readable 

algorithm fusing multiple parameters. As their number increases, the decision making process is 

getting more complex and abundantly, there is only a short time window before each N application 

for defining the VRNA strategy. In front of this background and especially to avoid a frustration of 

the user, a strong focus needs to be in the GUI design on facilitating the decision making by breaking 

it down to the most essential aspects and supporting it with suitable elements for decision support 

(Ferrise et al., 2021; Oliver et al., 2012; Rose et al., 2016). Further, generic algorithms automatically 

giving adjustable pre-settings could provide partial support.  
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A further main task of the web application backend is the storage and management of data. 

Beyond the geodata, this involves the N application tasks created by the user with their associated 

configurations, as well as some basic data processing routines. Apart from that, the backend is 

responsible for the setup of the fuzzy system, which is implied in the GUI frontend and is the core of 

each task configuration. According to Heiß et al. (2021), main aspects for this are the fuzzy 

classification of input parameter values and the output DR, as well as the setup and weighting of rules 

linking input and output and implying the characteristic behavior of the system. Finally, the backend 

should be able to simulate the DR outputs based on the desired input data and the current fuzzy system 

setup for a specific task. On the one hand, this is a crucial element to give an immediate feedback 

about the decisions and adapt them iteratively, which is also advocated by Leroux et al. (2018) and 

reflects the aspect of re-planning as suggested by Zhai et al. (2020). On the other hand, the simulation 

output can be used directly for generating prescription maps of fertilizer setpoint rates (SR). The core 

functionalities needed for the simulation are the construction of fuzzy inference systems and a fuzzy 

inference engine. 

The web application is considered as the pivotal point of the architecture because it channels the 

crucial decision making process concerning the behavior of the multi-parametric VRNA for the 

subsequent execution on the field. The system architecture is explicitly committed to an internet-

based solution offering versatility in the location-independent access with multiple devices, which is 

important because agronomic decision making can take place partly at the field and the office PC, as 

well as in interaction between farmers and advisors (Rose et al., 2016). Beyond that, external web 

resources providing additional agronomically relevant information or further geodata via web map 

services could be connected to the web application, thus leveraging the system’s scalability and 

interoperability (Zhai et al., 2020). In this context, also the connection to higher-level management 

systems as presented by Weckesser et al. (2021) or Kempenaar et al. (2021) is conceivable. An 

important aspect is the digital footprint in terms of accumulated data and required storage. This has 

to be considered in every case, where mapped information is being involved, and especially when 

many layers of historic mapped data are used, even if only as a supplementary source of information. 

As outlined by Kayad et al. (2022), this aspect is lately becoming more and more significant especially 

with emerging high-resolution remote sensing data and stresses once more the need of relying on 

cloud-based data management. 

For the execution of the VRNA, the system architecture provides a field application that works 

basically offline but offers the capability of automated, internet-based data exchange with the web 

application, thus reducing manual input. For this, a communication interface is provided that transfers 

configurations for scheduled N application tasks, as well as necessary geodata and prescription maps, 
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respectively, from the web to the field application. Analogously, georeferenced process data should 

be sent back to the web application for documentation purposes or the use in future N applications. 

The field application should have a GUI in the frontend to allow the user to choose the task to be 

executed for a specific field and provide some basic task information, as well as possibilities to adjust 

the configuration, if needed. Further, the GUI should present relevant geodata and process data and 

allow the user to control and supervise the application process.  

To implement the strategy defined in the web application, the field application’s backend 

interacts with the application system, which consists in its core of a fertilizer applicator and, if 

applicable, a real-time sensor system. For an application including real-time sensor data, the backend 

needs to be capable of constructing a fuzzy inference system based on the configuration associated to 

the chosen task. With control algorithms and interfaces as presented by Heiß et al. (2022), real-time 

sensor system data could be fused with mapped data in a fuzzy inference engine to generate SR 

commands for the applicator on-the-go. Alternatively, the field application should allow the 

processing of prescription maps of SRs as it is state of the art for common variable rate application 

terminals. 

 

4.2.2 Different application approaches 
 

With a multi-parametric fuzzy expert system as presented by Heiß et al. (2021) as a fundamental 

starting point, the conceptualization of the system architecture described in section 4.2.1 aimed at 

generic and flexible capabilities in terms of both, the definition of the VRNA strategy, as well as the 

used sensor and application technology and considered input data. This is of high significance because 

different farms applying precision agriculture practices employ an enormous variability of sensors 

and mapped data being associated with different informative properties and cost. In Figure 4.2, the 

necessary process steps, as well as involved data for all scenarios considered as realistic are 

systematized according to three different main approaches. 
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Figure 4.2. Flow diagram for the three main application approaches and their further differentiation 

according to the input parameters considered for VRNA. 

 

Real-time approach 

 

In terms of its technological principle, the real-time approach has analogies to common pure real-

time sensor systems or those with map overlay, respectively. Even a real-time acquisition of e.g. soil 

parameters is also considerable (Adamchuk et al., 2011; Kodaira and Shibusawa, 2013), the focus is 

laid in the following on crop parameters acquired using real-time sensor systems as these are currently 

by far more relevant in this context. With a sole consideration of real-time sensor data, the process is 

initiated by a setup of the fuzzy system via the web application. It has to be considered that for this 

application approach, the user has to define the setup off the cuff, without any information about the 

spatial distribution of the crop parameter provided by the real-time sensor system. As these 

parameters are dynamic in time, the fuzzy system setup necessarily needs to be conducted in close 
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temporal relation to the N application in order to avoid any systematic error resulting from a 

significant drift. Therefore, the user is likely to roughly pre-define the task after the field and crop 

assessment, at least in terms of the desired DR classes and rules. Based on the pre-configuration, the 

classification of the input parameter could be conducted at the field, right before the N application, 

after making measurements with the real-time sensor system at some characteristic spots. As outlined 

by Lundström and Lindblom (2018), preceding analyses of remote sensing data like e.g. satellite 

images could help to identify such areas and minimize the risk of a wrong calibration. 

The probable time pressure for finalizing the system configuration immediately before the N 

application stresses once more the need to facilitate the decision making process via the GUI. In this 

context, algorithms to give a suggestion on the classification of the parameter delivered by the real-

time sensor are considerable. Heiß et al. (2021) describe a method for giving such a suggestion with 

the aid of a fuzzy-logic based imitation of a real-time crop N sensor system’s agronomic algorithms. 

The finalized fuzzy system setup is transferred from the web to the field application, where the fuzzy 

inference system is constructed after choosing the corresponding task. Subsequently, the N 

application process is conducted. When it is finished, the georeferenced records of relevant process 

parameters like the measured input values and calculated DRs are transferred back to the web 

application for documentation purposes and possible use in subsequent N applications. 

The main distinctive feature compared to common real-time sensor systems is the full freedom 

that is given to the user in terms of the interpretation of the crop parameter concerning the DR for 

each specific N application. The difference is even more significant when additional mapped 

information is taken into account. This can include a wide variety from rather static parameters like 

quality grades from soil inventories or the field topography, but also dynamic ones like soil moisture 

or crop information from previous applications. While common systems have rather deterministic or 

simplified procedures in this context, the presented approach is theoretically capable of numerically 

fusing any amount of additional mapped information with the crop parameter acquired in real-time. 

 

Real-time approach with simulation 

 

The technological principles followed in the real-time approach and the one with a preceding 

simulation have big overlaps. However, the latter is significantly different in terms of configuring the 

VRNA’s agronomic behavior because the expert gets an immediate feedback on the impact of the 

decision making in the web application’s GUI. It is possible that, at least in certain areas of the field, 

the simulated results are adverse to the intended strategy and therefore the decisions can be adapted 

in an iterative process. In contrast to this, uncertainties about the spatial distribution of the crop 
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parameter’s values often remain in the pure real-time approach, which is a known issue and can cause 

the intended average N amount for the field to be missed significantly (Heege, 2013b).  

In case that information from a real-time crop sensor is considered, a dedicated measurement 

prior to the decision making is required, which counteracts the temporal combination of measurement 

and N application as a main advantage of such systems. Still, it seems plausible that such records 

could originate from other preceding processes like e.g. plant protection. If, especially at early stages 

of the vegetation period, the crop’s current N status is not informative enough (Heinemann and 

Schmidhalter, 2021), it can still make sense to consider solely mapped information. Even if it then 

seems more obvious to implement such a strategy with a prescription map based approach, it may 

well make sense to have the N application process being triggered by a real-time sensor system. First 

of all, the interaction with the applicator is quite different because SRs are defined at comparatively 

low time intervals. As outlined by Heiß et al. (2022), this results especially with centrifugal spreaders 

in special characteristics concerning the fertilizer distribution on the field, which might be preferred. 

Second, the user is likely to be interested in recording with the real-time sensor system to make use 

of the acquired crop data in subsequent N applications, at least as a supplementary source of 

information. In any case, when conducting an N application solely with mapped information using 

the real-time approach, the user would definitely make use of the possibility to simulate the results as 

all the necessary input for this would be given.  

Regardless of the information considered for VRNA, the real-time approach with simulation is 

initiated by the setup of the fuzzy system in the web application, which is followed by the simulation 

of the DR output based on this setup and the chosen input parameters. The setup is then transferred 

to the field application, along with mapped information, if applicable. The field application needs to 

provide a possibility to recalibrate the fuzzy system setup in case that information originating from a 

real-time sensor system is to be considered. This feature is crucial because real-time sensor systems 

process absolute values of the measured parameter, which would the pre-records used for iteratively 

setting up the fuzzy system with the aid of simulations require to be up-to-date on a daily basis. If no 

significant changes of the spatial distribution of crop parameters can be expected, simplified 

procedures can be applied to recalibrate the setup right at the field with new measurements at 

characteristic spots. The subsequent N application on the field follows the same steps as the real-time 

approach without simulation. 
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Prescription map based approach 

 

With a few more steps that can largely be considered as state of the art, the real-time approach with 

simulation can be further developed to a prescription map based approach. Alternatively, it can solely 

rely on mapped information considering crop-related parameters provided by satellite or aerial images 

acquired e.g. with UAVs. This would significantly expand the applicability of the system architecture 

presented in 4.2.1, because a majority of farmers applying precision agriculture is nowadays relying 

on such data sources for crop-related information. As in the case of a real-time approach with 

simulation, this approach raises the particular question of how mapped input data should be requested 

for the fuzzy inference and how the output DRs should be displayed as a map. When using real-time 

data, the georeferenced points of the corresponding input parameter can serve as a basis for this 

purpose, whereas when using interpolated mapped information alone, a regular point grid, adapted to 

the precision of the applicator if feasible, could be used. For the prescription map, on the other hand, 

a final interpolation of the DRs is crucial for processing in the field application. In the ideal case, this 

interpolation would take into account the used applicator’s characteristic properties in terms of 

fertilizer distribution. 

As in every other case, the fuzzy system setup is the initial process step. The subsequent 

simulation of the DR is then of particular importance because it virtually delivers the final prescription 

map. The calculated georeferenced DRs only have to be settled to the N content of the used fertilizer, 

interpolated and brought into specific required formats for further processing. For all of the 

subsequent steps, which encompass the transfer of the prescription map to the field application, its 

processing during execution of the N application in the field, as well as the feedback of recorded 

process data to the web application, commercial technology is already available. Consequently, 

today’s variable rate application terminals could completely replace the field application presented in 

Figure 4.1 for the prescription map based approach. 

 

4.3 Prototypical system implementation 
 

4.3.1 Functional flow 
 

Prior to the prototypical implementation of needed system components, a functional flow had been 

designed for the real-time approach with simulation because it covers all the elementary aspects of 
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the conceptualised system. The design of the prototypic system’s functional flow, as well as the 

subsequent GUI design involved experiences made in applying the fuzzy expert system presented by 

Heiß et al. (2021) in two seasons of field trials in winter wheat together with farmers and agronomic 

advisors. In Figure 4.3, the sequence of the individual process steps is schematically illustrated. The 

process chain started with the task management in the web application, where the possibility was 

given to reload and edit historic tasks, create new ones and give some basic task information. The 

subsequent stepwise fuzzy system setup generated key data describing the structure of a Takagi-

Sugeno fuzzy inference system. This was based on the methodology presented by Heiß et al. (2021), 

where also the functional principle of such systems is described. The starting point here was a fuzzy 

logic based imitation of the Yara N-Sensor ALS2 real-time sensor system’s agronomic algorithms, 

which was applicable for certain use cases in winter wheat and used the normalized sensor value (SN) 

corresponding to the N uptake of the crop in kg ha-1 as input. With the N-Sensor setup, the user was 

given the opportunity to automatically get a setup of a corresponding single-parametric fuzzy system 

suggested. As outlined in section 4.2.2, this can be especially useful in the real-time approach, where 

there is no information about the spatial distribution of the crop’s N uptake. 

 
Figure 4.3. Schematic flow of the process chain realized with the prototypical system implementation. 

 

In the next process steps, single-parametric fuzzy systems concerning the soil ECa and the SN, 

respectively, were manually defined. In case of the SN, an initial suggestion was given, if the N-

Sensor setup had been conducted in advance. The prototypical implementation of the web application 

provided that all defined DRs are globally available in each setup step. Therefore, the DRs defined 

for the setup concerning one parameter could be used for the other one and supplemented by further 

dedicated ones, respectively. This was of importance, if the user desired to have a different range of 

DR variation for each parameter. Subsequently, in a multi-parametric rule setup, the user got an 
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overview of all rules affecting the SN and ECa, respectively, via a matrix, which could be 

supplemented by further rules relating both parameters concurrently to the DR singletons defined 

before.  

From Figure 4.3 it can be seen that all process steps related to the fuzzy system setup had to be 

accomplished in sequence by the user, implying a wizard process like Ferrise et al. (2021). It seems 

cumbersome regarding the fact that often only one parameter is to be considered but it makes the user 

reflect all possibilities for each specific task. To skip a parameter, the user only had to refrain from 

defining rules related to it, while the configurations concerning the input value and DR classification, 

which may have originated from previous tasks, could be left untouched. Alternatively, the user might 

intended to dispense with rules that apply to a single-parametric fuzzy system but consider the 

affected parameter in the multi-parametric rule setup. For this case, the input value and DR 

classification were still crucial.  

The final process step that could be conducted before the execution of the N application on the 

field was the simulation of DRs. For this, it was needed to build a fuzzy inference system based on 

the gradually defined setup and apply it to mapped soil ECa data and SN records, respectively, in an 

inference engine. After analysing the results, the user had the opportunity to go back to the previous 

setup steps, make adaptions if needed and run the simulation again with the updated fuzzy inference 

system. In Figure 4.3, it is implied that the fuzzy system setup could be abandoned at each process 

step. For instance, the user may have wanted to conduct a bare real-time application considering the 

SN only, which would not require to define multi-parametric rules and make a simulation impossible. 

Therefore, the user was given the possibility to exit the configurations in the web application at each 

process step by saving the task with the current configuration. Via the communication interface, basic 

information and the fuzzy system setup assigned to the task, as well as the soil ECa maps assigned to 

the single fields, were transferred to the field application. If simulation results were available, it would 

have been straightforward at this point to interpolate them and transfer them as prescription maps via 

the communication interface for processing in the field application. As outlined in 4.2.2, this sub-

process was regarded as widely state of the art and therefore not considered in the prototypical system 

implementation.  

Via the field application’s frontend, the user could select the task he wanted to conduct for a 

specific field, upon which the backend constructed a fuzzy inference system based on the fuzzy 

system setup deposited in the task. In case the N application was supposed to follow the real-time 

approach with simulation considering the SN as an input, the user was given the possibility to 

recalibrate the fuzzy inference system. Otherwise, the user could go straight to starting the application 

process control, which was implemented in a very similar manner as described in Heiß et al. (2022). 
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During the conduction of the N application, the field application georeferenced and recorded relevant 

process parameters, which were used to generate an as-applied file after the N application on the field 

was accomplished. This file was fed back to the web application via the communication interface, 

where the data were archived and presented to the user in the frontend. 

 

4.3.2 Web application 
 

4.3.2.1 Technical framework 
 

For the implementation of the web application and the web-based data management, a 

containerization approach using the Docker virtualization software (Docker Inc., Palo Alto, CA, 

USA) was followed. Hereby, software code is incorporated into isolated packages containing all the 

necessary components such as libraries, frameworks and other dependencies, which basically makes 

it a fully functional portable computing environment. Within its container, the software is transferable 

to any infrastructure and can run there regardless of its environment or operating system.  

A PostgreSQL 13 database with PostGIS 3.1 and associated raster extension was created as one 

container. It contained different master data for the web application’s GUI such as fields, descriptive 

texts, ECa maps, SN records, simulation output data and trigger tables necessary for the simulation. 

While SN and simulation output data consisted of georeferenced point values, ECa data had been 

interpolated and were deposited as raster datasets. They were additionally converted to point features 

and stored with their coordinates in database tables, which was needed for conducting simulations 

considering the ECa only and had the advantage of enabling interactive adjustment of data 

presentation and evaluation in the GUI. In addition, all configurations assigned to tasks were stored 

in tables in the database. After saving a task, the associated configuration containing general 

parameters, as well as those required for the fuzzy system setup, was created based on the settings 

defined in the GUI and stored in the database. 

The web application itself was implemented with the web app design package Shiny for R 1.6.0 

(RStudio PBC, Boston, MA, USA). The framework was extended by the R package Plotly 4.9.4.1 for 

the display of map elements, whereby background maps and other information were obtained from 

OpenStreetMap. The Shiny R Studio application was also built as Docker image containing all 

necessary libraries. The content of the frontend GUI, as well as all possible operations such as value 

assignment, map evaluations and master data management were obtained from the PostgreSQL 

database. 
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4.3.2.2 Fuzzy system setup 
 

After accessing the web application frontend via a web browser, all configurations available in the 

database were presented as selection list to the user. This was at the same time the list of all tasks that 

had been configured so far. Choosing an archived task as a starting point for the creation of a new 

one for the same field was considered as a straightforward approach because, above all, it spared to 

repeat the time-consuming classification of the input ECa, which is static as long as the same map is 

used. Then, the single GUI components of all the process steps that are assigned to the web application 

in Figure 4.3, were loaded based on the information deposited in the task. The whole web application 

GUI was organised in a single web page. For the task management and the N-Sensor setup, a static 

sidebar was used, while the single fuzzy system setup steps, the simulation, as well as the 

documentation were integrated in a tab group. To assist the user’s decision making process, help 

buttons providing some basic information and instructions for operation were placed near to GUI 

elements with a higher need for explanation. In Figure 4.4, the layout of the web application GUI is 

presented. The fuzzy system setup concerning the single input parameters was the most crucial aspect 

in terms of the graphical implementation, whereby it was structured in a very similar manner for the 

SN and the ECa, respectively. To illustrate this process step by way of example, the GUI tab with the 

fuzzy system setup concerning the SN was chosen. 

 
Figure 4.4. Layout for the one-parametric fuzzy system setup concerning the SN in the web 

application GUI. 



 
Chapter 4  Paper C 
 

- 95 - 

In the sidebar, the field, the crop type, as well as the number of the split application could be 

chosen via dropdown menus. Further, the reference rate, which corresponded to the DR in kg ha-1 for 

a uniform application, as well as the N content percentage of the used fertilizer could be inserted. If 

an N-Sensor setup was desired, the user was able to provide the necessary parameters. Here, the 

reference SN corresponded to the value measured at a crop to which the expert would have assigned 

the reference rate, the cutoff SN indicated the value, below which the DR should be strongly 

decreased due to extraordinary lack of biomass and the minimum and maximum DR set the limits for 

the variation depending on the SN. After pushing the corresponding button, the web application 

backend calculated the fuzzy system setup for the SN according to the fuzzy logic based N-Sensor 

model presented by Heiß et al. (2021), whereby minor improvements were made in terms of the range 

of the input SN, which did not influence the model’s functionality. Based on the calculated 

parameters, the settings for the classification of the input parameter SN, which was realized in the 

frontend GUI with a group of slider bars, the classification of the output DR, which was realized in 

tabular form, as well as the rules and their weights, which were realized in form of a matrix, were 

automatically provided. 

According to Zhai et al. (2020), the ability to provide predictions and forecasts is an important 

quality criterion for agricultural DSS. As outlined in section 4.2.1, the weather is a crucial contextual 

information the expert needs to consider in order to adapt his decision to the prevailing conditions at 

each specific N application. Therefore, a weather service provided by the official agricultural 

administration (LTZ Augustenberg, 2022) was embedded via a HTML script as an external web 

resource into the tab for the one-parametric fuzzy system setup concerning the ECa because this was 

the first step of the fuzzy system setup according to the functional flow. The script was adapted to 

retrieve information for the weather station situated at the research farm ‘Ihinger Hof’ of the 

University of Hohenheim (48°44’41.61’’N, 8°55’26.42’’E), where also field trials had been 

conducted and experimental SN and ECa data had been acquired.  

A further, very important source of information for the expert was the map presentation of input 

parameters, whereby for the temporally static parameter ECa always the same point map associated 

to the chosen field was used and for the SN, the most recent record available was loaded in the map 

view window. Below this, using the Shiny R function summary, descriptive statistics were presented 

to the user, which were related to the presented point map and specific subareas, respectively, that 

could be selected manually.  

Map-based questioning is an effective way of collecting spatial expert knowledge (Oliver et al., 

2012) and as a fundamental aspect of decision support, the color classification of the point maps was 

functionally connected with the value classification of the input parameters in the slider bars. For the 
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ECa, three bars with associated linguistic terms (‘low’, ‘medium’ and ‘high’) were given, where the 

total range of each one was defined by the minimum and maximum value from the ECa raster file. 

For the SN, there was additionally a fourth one (‘cutoff’) and the total range of each bar reached from 

0 to the maximum SN value calculated by the N-Sensor model or adjusted manually. For each slider 

bar, and thus input class or linguistic term, respectively, the most representative value or a range of 

the most representative values could be defined based on the user’s experience and analysis of the 

input map. These values or ranges were assigned to a specific color of the colorbar associated to the 

map. For intermediate values, a shading with a gradual change from one color to the next was 

implemented. As soon as changes were made in the slider bars, the web application updated the color 

classification of the point map, thus giving an immediate visual feedback to the user. This way, the 

user was not only able to associate a linguistic term to specific areas within the field but could decide 

also how sharply the different classes should be distinguished. In Figure 4.5, the interaction of the 

input classification via the slider bars and the color classification of the map is illustrated in an 

exemplary manner with screenshots taken from the tab for the single-parametric fuzzy system setup 

concerning the soil ECa. In Figure 4.5a, the default classification with a single representative value 

for medium is shown, whereas this is changed in Figure 4.5b to a representative range significantly 

narrowing the transitions between the classes. 



 
Chapter 4  Paper C 
 

- 97 - 

 
Figure 4.5. Input classification with instant visual feedback on the mapped input data with (a) the 

initial setting and (b) an assumed exemplary configuration for illustration purposes showing the effect 

of a broad range for the medium class and consequently narrowed transitions between the classes. 

 

The consideration of blurredness in measured parameters is a characteristic principle of fuzzy 

systems and with a connection of the slider bars with the maps, a visualization tool to represent fuzzy 

zones with uncertainties in geographic and attribute space, as suggested by Guillaume et al. (2012), 

was given. Technically, fuzziness was implemented with membership functions deduced from the 

settings in the slider bars. Depending on the choice of the most representative value or range for a 

class, the feet as well as the peak or shoulders of triangular or trapezoidal membership functions, 

respectively, were defined. In Figure 4.6, this process is illustrated schematically for an exemplary 

constellation for the input parameter SN. To simplify the configuration via the slider bars as much as 

possible, thus avoiding overload of the expert, the linearly inclining parts of the membership functions 

represented straight connections between the peaks or shoulders of adjacent ones. This is a common 

approach applied in fuzzy systems for modeling and controlling agricultural processes (Bouroubi et 

al., 2011; Tagarakis et al., 2014). Further, experiences with the fuzzy system presented by Heiß et al. 
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(2021) in different fields and N application scenarios have shown that a more detailed description of 

the membership functions does not bring a gain in achieving the desired fuzzy system characteristics. 

 
Figure 4.6. Schematic illustration of the input membership function setup via the web application 

frontend. 

 

As the fuzzy systems were based on Takagi-Sugeno inference, the output DR was classified in 

singletons. As shown in Figure 4.4, this was realized by providing in each single-parametric fuzzy 

system setup a table to the user, where new DRs could be added and labelled as desired, edited or 

deleted. The definition of the interrelations between the input categories and the DR singletons, and 

thus the fuzzy system’s characteristic behavior was defined by the rules. For this, a matrix was given, 

where the expert could choose for each input category the desired DR value from all available ones 

via a drop-down menu. As described in detail by Heiß et al. (2021), the logic connection was based 

on ‘IF-THEN’ conditionals, which could be supplemented by weights ranging between 0 and 1 to 

take into account the relative significance of single rules.  

By conducting a complete fuzzy system setup for each input parameter, a multi-parametric fuzzy 

system was already characterised, which could be further refined in the dedicated GUI tab for multi-

parametric rule setup. In a two-dimensional matrix, the expert got an overview of all rules with their 
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weights that had been defined in the single-parametric fuzzy system setups. As an extension, multi-

parametric rules could be added by assigning an available DR, as well as a weight to a combination 

of fuzzy sets from the soil ECa and the SN, whereby the logic connections followed ‘IF-AND-THEN’ 

conditionals. With this feature, the user could address contradictory interpretations of input values at 

specific areas of the field and respond to different causes of plant stress, which is a major challenge 

in VRNA (Pedroso et al., 2010; Adamchuk et al., 2011). As an alternative, the possibility was offered 

to completely skip the single-parametric rules and define the system behavior only with multi-

parametric ones. In Figure 4.7, a screenshot from the GUI tab for the multi-parametric rule setup is 

shown. This originated from a specific use case of a field trial at the second split N application, where 

the expert intended to give more importance to the input SN by halving the weight of the rules 

affecting the ECa. The varying importance of single parameters even during the season was also 

stated by Isensee et al. (2003) and can easily be addressed with the weighting functionality. 

 
Figure 4.7. Matrix for setup and weighting of multi-parametric rules in the web application GUI. 

 

4.3.2.3 Simulation 
 

The simulation of DRs based on the fuzzy system setup and the available input data followed a 

specific workflow, where the data integration software Talend Open Studio 7.31 (Talend Inc., 

Redwood City, CA, USA) was used to enable the interaction of different components. Through the 

initialisation of the simulation via the GUI, a database entry was generated, which finally started the 

data integration workflow. Hereby, the soil ECa raster file, as well as CSV files containing all 

necessary parameters of a task to describe the fuzzy system setup, the ECa point map information and 

the latest N-Sensor record, respectively, were provided in a dedicated local file directory on the server. 

For downloading of the needed data from the database and providing the corresponding files, a 

communication software was developed using Python 3.9.6 with Anaconda 3. The same software was 

used also later on in a slightly modified form to accomplish the communication interface between 

web and field application. A stand-alone fuzzy inference engine processed the data deposited in the 
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file directory and dropped there a CSV file containing the georeferenced DRs. The data were uploaded 

to the database by the communication software for being presented by the GUI in a Plotly map viewer 

together with a panel of descriptive statistics. In Figure 4.8, this is illustrated with a screenshot taken 

from the simulation tab. 

 
Figure 4.8. Simulation tab in the web application GUI. 

 

The stand-alone fuzzy inference engine was developed in MATLAB R2021a (The Mathworks 

Inc., Natick, MA, USA) with the aid of its Fuzzy Logic Toolbox, then compiled as Java archive using 

its Compiler SDK and finally installed on the server as Java class together with the MATLAB runtime 

9.10. Its functional flow was first based on parsing the task file to extract the fuzzy system setup and 

construct a fuzzy inference system as described in Heiß et al. (2021). The ‘AND’ conjunction in 

multi-parametric rules, which, as mentioned in section 4.3.2.2, were an extension to this work, was 

thereby interpreted mathematically as the product of the fuzzified input values (The Mathworks, 

2021). The subsequent procedure for simulating the DRs depended on the input parameters to be 

considered. In case that the fuzzy system configured in the web application had only the soil ECa as 

an input, DRs were simulated based on the soil ECa point map deposited in the database. For fuzzy 

system setups, where the SN was involved, the real-time data fusion approach presented by Heiß et 

al. (2022) was largely adopted because the same system setup was used in the present work for 

recording N-Sensor data and as a model setup for implementing the compartment of the field 
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application, which was responsible for controlling the fertilization process. If only the SN was 

considered, for each of the recorded absolute positions of the GNSS antenna within the N-Sensor 

record, the corresponding absolute sensor position was defined and the DR calculated from the 

deposited SN value was assigned to it. In the case of a multi-parametric fuzzy system setup, DRs 

were defined for two subsections within the sensor-spreader system at each recorded point within the 

N-Sensor record. For this, two ECa values queried from the raster file were fused each with the SN 

value in the fuzzy inference system. In front of the background of corresponding considerations 

formulated in chapter 4.2.2, this framework for presenting simulated DRs can be considered as one 

that is very much adapted to a specific sensor-spreader combination. 

 

4.3.3 Field application 
 

A laptop with a 64-bit Windows 10 Pro operating system, equipped with an Intel Core i5-8250U at 

1.6 GHz processor and 8 GB working RAM was used as controller platform for the field application. 

To realise the communication interface for data exchange with the web application, a slightly 

modified version of the communication software described in section 4.3.2.3 was installed. Tasks 

were created in the Windows Task Scheduler to attempt automated exchange of the latest relevant 

data, as soon as the controller platform had network connection. Both, upload and download were 

initiated with the execution of batch files that called the necessary Python scripts for communication 

with the database on the server and execution of necessary data processing routines. In the download 

process, all available task CSV files at their latest state were retrieved and stored in a local folder. 

The folder with all the soil ECa raster data was only updated to its latest state, if there was a change 

in the datasets available in the database. In the upload procedure, all the as-applied CSV files that had 

been generated by the field application were transferred from the corresponding local folder to the 

database. There they were assigned to a specific task and presented in the documentation tab of the 

web application GUI in the same way as the simulation data. Beyond that, the controller platform was 

used to record SN data in the same way as described in Heiß et al. (2021) and transfer them to the 

database using the same procedure. 

The field application was implemented in MATLAB’s App Designer. Its frontend was structured 

in tabs and is presented in Figure 4.9, where Figure 4.9a is showing the tab for task management and 

Figure 4.9b is showing the tab for operation of the system during the fertilizer application. Via a panel 

on the right side within the task management tab, the user was given the possibility to manually 

conduct the data exchange with the web application, whereby the download and upload processes 
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were the same as described for the automated data exchange. The manually triggered data exchange 

was of special importance for the upload of N-Sensor records because the sole recording with the N-

Senor software was decoupled from the field application. Only via the data exchange menu, a record 

could be assigned to a field and transferred to the local folder for upload to the database. 

 
Figure 4.9. Field application frontend with (a) the task management and (b) operation tab. 
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Prior to the execution of a specific N application at a field, the user started in the task management 

tab with the application system setup, which was supported by information provided in a further, 

dedicated GUI container. In order to guide the user through this setup process, it was broken down to 

partial steps, where the necessary GUI elements appeared gradually and only if they were really 

needed. After choosing and loading one of the available tasks, in the GUI backend, the corresponding 

CSV file was parsed and the values of parameters, which had been defined in the web application 

GUI’s field info and N-Sensor setup sidebar, were extracted. Thereby, the task information was 

always presented and the N-Sensor setup information only, if the SN was considered as input 

parameter. Further, a fuzzy inference system was constructed in the same manner as described in 

section 4.3.2.3 for the stand-alone fuzzy inference engine on the server. In the application system 

setup container, provision has been made for the possibility of choosing between a real-time and a 

prescription map based application, whereby only the real-time approach was implemented by 

adopting the system setup and real-time control algorithm applied by Heiß et al. (2022). These were 

supplemented by the differentiation of sections depending on the considered parameters, as already 

described in section 4.3.2.3.  

If the SN was involved as an input parameter, the user was able to insert updated values for the 

growth stage, as well as the reference and cutoff SN value in the N-Sensor setup information in order 

to recalibrate the fuzzy inference system, which only affected the membership function setup of the 

SN. An algorithm in the field application’s backend defined first, if the membership function setup 

for the SN had been calculated using the fuzzy logic based N-Sensor model. In that case, it was 

recalculated using the new calibration values in the model. Otherwise, only the feet, as well as the 

peaks and shoulders, respectively, of the membership functions were adapted based on the difference 

between the initial and the new reference SN value. This simplified approach was considered 

appropriate, as long as the time period since the initial decision making in the web application was 

short enough to justify the assumption that there had been insignificant changes in the spatial 

distribution of the SN. 

Once the application system setup was complete, the user could switch to the operation tab, where 

the soil ECa map of the corresponding field was presented in case it had been considered as an input 

parameter in the fuzzy system setup. By starting the operation, the real-time control was initiated in 

the backend. The corresponding algorithm calculated SRs based on the fuzzy inference system, as 

well as incoming SN and soil ECa values, respectively, and coordinated their transmission to the 

applicator. After stopping the operation, an as-applied CSV file containing georeferenced SN, soil 

ECa and SR values was created, assigned to the active task and stored in the local folder for later 

transfer to the server. An additional functionality of the real-time control was provided to plot the 
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georeferenced DRs and SN values, respectively, in real-time. In field tests, however, it turned out that 

the prototypical implementation using the App Designer did not allow this without a significant 

deterioration of the real-time control’s performance. 

 

4.4 Discussion 
 

The strong user-centeredness of the presented system sets high requirements on their agronomic 

expertise and experience, as well as their knowledge about the conditions at a specific field. These 

factors significantly affect the reliability of their decisions and carry a significant risk for an 

inappropriate VRNA strategy, if they are not met. The need for a high quality of expert knowledge 

when incorporating it in DSSs was also given to concern by Colaço et al. (2021) and Lindblom et al. 

(2017). Especially a collaboration of farmers with professional agronomic consultants should provide 

these preconditions (Shanahan et al., 2008). An affinity for precision farming technologies, as well 

as a motivation to deal with the analysis of precision agriculture issues and achieve higher N recovery 

with the aid of VRNA are further requirements. Pesonen et al. (2008) found in a Finnish study that 

this is unconsciously present in many farmers.  

According to Guerrero et al. (2021), also the subjectivity and inaccuracy of expert knowledge 

comes with certain risks. Fuzzy systems, however, are a predestined technology to handle these. Still, 

it is never guaranteed that every possible situation can be properly interpreted by the user and even if 

all the necessary conditions regarding the user's expertise are given, as in all systems related to 

VRNA, a reliable weather forecast remains the linchpin for success (Colaço and Bramley, 2018). A 

further pitfall of the user-centeredness is the significant additional workload due to the system 

configuration during an already labor-intensive seasonal period, especially when there is no external 

support from advisors. This might be a critical factor concerning the adoption of such a technology 

(Lindblom et al., 2017).  

To cope with all these challenges, the formulation of the basic system architecture provided some 

fundamental considerations on possible technical solutions. These were further specified and 

illustrated in the prototypical system implementation, which incorporated experiences made with 

agronomic experts in applying the fuzzy expert system presented by Heiß et al. (2021). A central role 

has the web application’s frontend aiming at straightforward decision making by clear GUI design, 

efficient information supply and feedback, as well as the facultative proposal of configurations 

concerning the SN. However, the streamlined GUI design also comes along with a certain rigidity 

concerning the flexibility in the configuration. For instance, the number of input membership 
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functions and output singletons is fixed and cannot be adapted according to the user’s preferences. 

Especially as further parameters get considered, the complexity of decision making will increase 

significantly, which is likely to require substantial enhancements in the functional flow and especially 

the multi-parametric rule setup. The prototypical implementation largely meets the requirements for 

agricultural DSSs discussed by Zhai et al. (2020) and Ferrise et al. (2021) but it must be seen more 

as a first draft than as a blueprint for a qualitative system. Beyond the GUIs, which should involve 

further enhancements with user experience design and get more resilient against user mistakes, certain 

core elements of the technical framework, which bring performance and stability issues, are also 

critical. The computational efficiency of the prototype system can be considered sufficient regarding 

the usability required in the context of this research. Consequently, sufficient performance should be 

ensured a fortiori after the implementation on platforms that are suitable for a qualified system. 

Another means of relieving the user was the reduction of manual input by automating the entire 

VRNA process chain using digital tools embedded in an internet-based data infrastructure. However, 

especially for rural areas, the lack of reliable internet supply is still an issue (Paraforos and 

Griepentrog, 2021; Rose et al., 2016). This can be critical especially if the VRNA configuration via 

the web application is supposed to be conducted directly at the field. Further, the prototypical system 

implementation of the web application and the communication interface is in general still a quite 

closed system in terms of the used software interfaces and data formats, thus limiting e.g. the 

capacities of data exchange automation. Specifically for further processing in the fuzzy system, the 

alignment of heterogeneous data from various different sources, having varying spatial resolutions 

and formats is a fundamental prerequisite and not a trivial task to accomplish (Guillaume et al., 2012). 

The work of Bökle et al. (2022) describes a pathway for integrating distributed data sources and IT 

structures in a decentral digital farming system and defines possible strategies for improved 

scalability and interoperability. This affects also the controller platform and in particular the field 

application, which was tailored to a specific sensor-spreader system. 

 

4.5 Conclusions 
 

The presented conceptual system architecture describes fundamentally new opportunities to consider 

expert knowledge for a fusion of multiple relevant input parameters for VRNA. This affects not only 

the adaption to dynamic environmental conditions but also to different production targets. Further, 

the concept provided considerations on automating the entire process chain of VRNA with the aim 

of easing data management, decision making and task execution on the field, thus looking at all 
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relevant aspects of a user-centered site-specific N management system from a holistic perspective. 

The systematic reflection of various and partly unusual but still plausible scenarios has shown the 

high versatility of the approach in terms of used input data and application approaches, which is an 

important factor for its adoption considering the variety of sensors and precision agriculture data used 

by farmers. The prototypical system implementation, which was designed for the case of a real-time 

application with simulation, has verified the consistency of the concept. It has illustrated the technical 

realization of core aspects along the whole process chain and specifically concerning the decision 

making in the web application. At the same time, possible pitfalls, as well as technical requirements 

on a qualified system were revealed. 

The concept has fundamental differences to common VRNA approaches but its generic and 

flexible properties allow a straightforward combination with other techniques, which could aid in 

eliminating the weaknesses in each case. For instance, models providing mapped yield expectation 

or soil moisture could be incorporated by having them as a further input parameter among others. By 

providing basic strategies with static, universally valid pre-settings that could be further refined, 

significant reductions in the user effort for system setup could be achieved, especially if more 

parameters get involved. To validate the benefit of the approach in terms of achieving a desired 

production target, comprehensive agronomic trials including different experts need to be conducted 

in the future with the system being implemented in a qualified form. Recent promising progress in 

the field of artificial intelligence make it seem possible to integrate self-learning algorithms or use 

the system as an effective tool to combine expert knowledge with e.g. machine learning, hence 

heading towards more robust hybrid DSSs for VRNA. 
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CHAPTER 5 
 

General discussion 

 

 

5.1 Definition of variable rate nitrogen application strategies in a fuzzy expert system 
 

The broad and successful use of fuzzy systems in various research on agro-environmental systems 

and their evident suitability for the integration of expert knowledge motivated the development of a 

VRNA system with highly user-centered agronomic algorithms to be based on this technology right 

from the beginning. Regarding the entire VRNA process chain, this is the core element of deciding 

on the basic system behavior and therefore, a systematic approach was followed to develop and 

technically analyse a methodology for setting up a fuzzy expert system. As a starting point, the 

imitation of an established VRNA system’s algorithms was pursued to get an impression of how it 

would reveal itself to the user in the form of fuzzy logic and validate the usability of this approach. 

The Yara N-Sensor ALS2 system was chosen because it covers the aspect of real-time sensor systems 

as one of the main technologies used in the field of VRNA. Beyond that, the first N-Sensors had been 

commercialized more than twenty years ago and the underlying agronomic algorithms have ever since 

undergone evaluation and improvement under practical conditions.  

As these algorithms are based on piecewise linear relationships between sensed crop N uptake 

(SN) and the DR, the identification of their fuzzy logic based imitation for specific use cases in winter 

wheat was based on clear mathematical models concerning the membership function setup of the 

input parameter SN, as well as the calculation of DR output singletons. This also explains the high 

level of concordance achieved by the model in the comparison with various N-Sensor recordings 

made under real conditions with a high prevailing variation in the SN. Values of over 99% were 

consistently achieved for the Pearson correlation coefficient and the percentage root means square 

error reached a maximum of 0.14%. If the relevant calibration values are given appropriately, this 
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model provides a realistic classification of the SN in membership functions, which is specifically 

important if there is no prior information about its spatial distribution in a bare real-time application. 

Furthermore, a way to transform the algorithms into a form adapted to human cognition, allowing 

intuitive adaptation and fusion with other parameters was given. The developed principles of 

identification and validation of a fuzzy logic based model are basically transferrable to other 

agronomic algorithms. This is also where the early commitment to Takagi-Sugeno inference pays off, 

which comes with slight limitations in terms of adaptability, but is an important basis for the 

incorporation of further, and in particular automated, decision support (Sivanandam et al., 2007). 

For the extension to a multi-parametric fuzzy expert system, the soil ECa was considered 

predestined for theoretical considerations in the scope of a study case. It is a very well-researched, 

composite indicator for soil attributes that can effortlessly be acquired at a high resolution and 

requires a profound knowledge of local conditions to interpret it based on prevailing weather 

conditions in terms of productivity potential (Heil and Schmidhalter, 2017). Specific assumptions 

were made to relate to scenarios with an assumed reaction of the expert to the weather-dependent 

availability of water. The subsequent map-based and numeric analysis had a strong theoretical 

character as any validation of benefits concerning yield, economic return or environmental impact 

would require several years of comprehensive field trials. Still, the analysis revealed that by 

combining rules referring each to only one parameter, mutual interactions and the combined 

relationship to the DR can be represented in a straightforward manner and that the parameter fusion 

can find a compromise between the decisions resulting from the one-parametric systems. Further, it 

became evident that including soil information can reduce the known risk of under- or over-

fertilization due to incorrect calibration of the real-time sensor. Also, the effect of possibly erroneous 

decisions of a single-parametric system under certain conditions can be mitigated by considering 

multiple parameters.  

 

5.2 Technical implementation of data fusion and precise application  
 

In order to rapidly achieve broad impact with novel VRNA techniques, a focus must lay on their in-

field implementation, whereby from a pragmatic point of view, application systems with a current 

and foreseeable high dissemination should be considered. Therefore, the combination of an N-Sensor 

with a tractor and centrifugal spreader, which are both interconnected via ISOBUS, was chosen due 

to its exemplary nature as a basis for examinations on a control implementation of the previously 
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developed fuzzy expert system, as well as models for enhanced spatial synchronization of DR 

determination and application. 

The basic principle of a fuzzy logic based N-Sensor model in combination with a case-specific 

interpretation of the soil ECa was further pursued and applied to a real use case from a field trial. As 

a possible technical solution to address sub-field peculiarities regarding the interpretation of the ECa, 

a geofence was introduced, which is close to a hybridization of the fuzzy expert system with a 

management zone approach. Investigations on increasing the lateral resolution of sensing and DR 

determination highlighted that a compensation of the limited areal coverage of real-time sensor 

systems with an oblique arrangement of individual sensing heads usually requires them to work 

together as an overall system as there might be interactions with systematic structures in the crop 

canopy. As a consequence, due to the mere differentiation of ECa values in the scope of investigations 

based on real measured data, there were only marginal differences in the DRs within the working 

width, which had been expected also based on previous findings (Griepentrog et al., 2007).  

The analysis of technical latencies and spatial offsets within the two dedicated sections of the 

entire application system revealed the strong interdependencies between the real-time sensor and 

GNSS data acquisition, request of mapped soil ECa data, and inference on the DR and SR control of 

the spreader. Simplified procedures were applied to consider the main time-affected processes within 

the latter because the focus was not on their highly accurate determination but their basic 

representation within a generic control algorithm for dynamic offset optimization. Consequently, the 

response of the spreader was not considered either because this depends on many manufacturer-

specific uncertainties. Rather, the appearance of the SRs on the ISOBUS allowed a more accurate 

evaluation of the performance of the odometry-based control in terms of correct timing. The 

operability of the data fusion and dynamic offset optimization algorithms was proven in 

comprehensive field tests with different driving speed scenarios going in parts well beyond normal 

use. The cyclic georeferenced DR determination and theoretical application have shown a high 

consistency. Their deviation in the longitudinal direction never exceeded 1.5 m and exceeded 1 m in 

only 2.3% of the cases within the worst dataset. For a constant speed of 12 km h-1, which was 

recommended by the spreader manufacturer, the medians of the deviation were in the range of 0.25 

m, which corresponds to only 7.5% of the distance between subsequent processing cycles executed 

at 1 Hz. 

From a practical perspective, deviations in this magnitude are irrelevant because centrifugal 

spreaders are averaging the subsequent DRs in real-time application due to their characteristic of 

applying on a large plane. It is arguable whether this applicator type is therefore suitable for this kind 
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of investigation. However, inherent to their way of applying is an interpolation similar to kriging 

(Goense, 1999) and this should even be advantageous the more fuzziness is existing in the input data. 

Nevertheless, the presented offset optimization shows potential in achieving lower application errors, 

which should become even clearer when transferring it to pneumatic spreaders or sprayers. To 

mitigate the highly stochastic character in terms of the developed real-time control’s accuracy, the 

implementation on a platform that can handle hard real-time constraints would be required.  

 

5.3 Implications on a user-centered process chain for agile N management 
 

The explicit user-centeredness due to the fuzzy expert system as a functional core required an analysis 

of the user’s interaction with individual system components, as well as their integration in a consistent 

VRNA process chain. Based on that, an architecture was conceptualized, which described basic 

requirements in terms of the definition of the VRNA’s agronomic behavior, execution of the N 

application in the field, documentation and data management. At the same time, the concept left as 

much freedom as possible concerning the specific technical implementation. Even though it may have 

a rather redundant character, a systematic analysis was added to address the variability in possible 

application approaches, as well as data types for the input parameters to be considered. This 

supplementary examination was very helpful in verifying the versatile applicability of the concept 

and being aware of possible pitfalls that require further technical specifications to be addressed.  

Prior to the prototypical implementation of the concept, a functional flow of the entire process 

chain to be represented was designed. The existing framework for data fusion of N-Sensor and 

mapped soil ECa data was used as a model case for a multi-parametric real-time application with 

preceding simulation to create the most complex scenario possible for the concept’s evaluation. The 

implementation of the web application’s frontend can be considered the crucial part as this should 

provide a GUI for the efficient and direct acquisition of expert knowledge to automatically define a 

machine-readable fuzzy system setup in the backend. There, the experience gained in applying the 

fuzzy expert system together with agronomic experts in the scope of field trials was also incorporated. 

This stressed the sufficiency of using only triangular and trapezoidal membership functions, which 

had already been noted by Kahlert and Frank (1994), to keep the knowledge acquisition simple. For 

the same reason, an automatic full overlap of the legs of adjacent membership functions was used, 

which is also a common approach for fuzzy systems in the agricultural domain (Azaza et al., 2016; 

Tremblay et al., 2010). The basic structuring of the web application’s GUI in tabs made it possible to 

have all submenus, including further steps like simulation and documentation, available on one 
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interface and to switch directly between them. In general, the prototypical implementation aimed at 

an exemplary illustration of the concept and was therefore restricted e.g. regarding the data 

management, which did not allow analysis and consideration of relevant data from previous 

applications as suggested by Ostermeier et al. (2007). 

The fuzzy classification of the input parameters was supported by instant visual feedback via a 

map. Thus, in contrast to fuzzy c-means classification, which is often applied in the creation of 

management zones but is not specifically suited to geodata (Guillaume et al., 2012), a method was 

provided to represent blurredness in the input data and address dynamic spatial patterns, as well as 

areas with specific characteristics in a kind of map-based questioning as suggested by Oliver et al. 

(2012). The multi-parametric control setup provided another way to address this. Especially with 

regard to the soil ECa, this is of importance because the interpretation of this parameter can be 

contrary even within a field (Pedroso et al., 2010). The changing relevance of individual parameters 

was addressable in a simple way by assigning a corresponding weight in the rules. With the simulation 

feature in the web application, the user was given the opportunity to get immediate feedback on the 

impact of the decisions and improve them iteratively in the sense of re-planning (Zhai et al., 2020).  

The approach of a clear GUI design hiding all the functional complexity in the backend was also 

followed in the field application to relieve the user and avoid cognitive overload. Similar to the web 

application, all necessary menus were placed on one surface and, in the sense of an adaptive GUI, 

individual graphical elements were added successively as soon as they were required due to previous 

user actions. The user was given the possibility to control the exchange of configurations and geodata 

with the web application centrally from the field application. As a fallback level, there was an 

automatic cyclic data exchange in the background to cater for patchy internet coverage and also to 

have the most up-to-date data available, even if the data retrieval was accidentally forgotten by the 

user. Further, algorithms were implemented to readjust input membership functions based on new 

calibration values, which is of high practical importance with respect to real-time information. 

Agricultural DSSs are still caught between little attention to expert knowledge, which severely 

limits the possibilities of flexible adaptation to situational conditions, and the operational risks, as 

well as the potential frustration that a strong user-centeredness entails if the high demands on the 

quality of expert knowledge cannot be met and too much additional effort is required (Pashaei Kamali 

et al., 2017; Colaço and Bramley, 2018). The presented concept aimed at mitigating these as good as 

possible by technical means supporting the user in the decision making, minimizing manual effort 

along the entire process chain and staggering the overall system with a web-based infrastructure, 

which enables also the interoperability with further DSSs. It thus fulfills the essential requirements 
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as defined by Zhai et al. (2020) and in particular their demand for increased consideration of 

uncertainties and the use of expert knowledge. Still, this cannot compensate for deficiencies that arise 

with regard to the user’s basic suitability as an expert or concerning the quality of the supplementary 

information, such as weather forecasts. Another critical aspect is that with increasing automation and 

mechanization, as well as contracting, users run the risk of moving away from operational processes 

and thus losing the sense of specific relations in individual fields (Heijting et al., 2011). However, the 

presented approach explicitly addresses also consultants who can help identify these (Ostermeier, 

2013). 
 

5.4 Outlook 
 

With the fuzzy expert system as the technological core, new ways were paved for a numerical fusion 

of relevant agronomic parameters and the use of expert knowledge in an N management that can be 

adapted to the inherent spatiotemporal dynamics in a reactive and proactive manner. The 

consideration of further parameters should make the system increasingly reliable but at the same time 

more complex in terms of usability, which may require defining generic pre-settings that can then be 

supplemented by the user depending on the situation. Comprehensive agronomic validation in field 

trials is a necessary future step but requires further improvements, especially in knowledge 

acquisition, where further developments with regard to user experience need to be made in 

collaboration with versed agronomic experts (Welte et al., 2013; Oliver et al., 2012). The quality of 

expert knowledge is also expected to improve with further advances in yield, N mineralization and 

weather forecasting because these are very important parameters for decision making (Lukina et al., 

2001; Colaço and Bramley, 2018).  

The implementation as a real-time capable control algorithm enables the realization of the VRNA 

strategy in the field while also allowing the precise addressing of small-scale variations as defined by 

the user. The odometry-based approach principally opens up the possibility of including the driving 

speed as a further control variable for the applicator in the sense of tractor-implement-management 

according to ISO 11783. As an established standard for electronic communication in agricultural 

engineering systems, the latter also offers the possibility to solve multi-parametric real-time fusion 

via peer control and the exchange of relevant task information with the ISO-XML format (Paraforos 

et al., 2019). Its use should be promoted in further implementation steps together with suitable APIs 

along the whole VRNA process chain to enable better interoperability with external systems, as well 

as better integration into existing agricultural IT infrastructures (Bökle et al., 2022). 
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Although especially the strong user-centeredness of the overall system can be considered a 

radical counter-design to previous techniques, it does not question them fundamentally. Since 

reliable, fully automated decision-making is not to be expected in the mid-term either, the aim should 

rather be to harmonize different approaches to create even more robust systems. The inclusion of the 

N-Sensor’s algorithms can be regarded as the first step toward this aim and more complex algorithms 

could be incorporated using e.g. adaptive neuro-fuzzy inference systems. This finally points to future 

hybrid systems that should combine automated learning with knowledge representation capabilities 

(Chlingaryan et al., 2018). It remains to be expected that more involvement of experts in defining the 

system behavior will contribute to greater acceptance and increased engagement with VRNA systems, 

especially if it is recognized as a powerful tool to increase operational efficiency and comply with 

increasingly stringent legal requirements. 
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Summary 

 

The principle of site-specific mineral nitrogen (N) fertilization to adjust dose rates to the spatially 

varying needs of the crop has been studied for many years and has proven the potential to achieve 

economic and ecological advantages compared to uniform application. However, its widespread 

establishment has failed primarily because the used agronomic algorithms can represent the 

complexity of N management only to a limited extent. Due to inherent temporal and spatial dynamics, 

this requires an ever-new adapted interpretation of different parameters relevant for plant growth 

against the background of specific local conditions before each N application. In addition, the current 

application technology is affected by significant limitations concerning the precise realization of the 

site-specific fertilization strategy. 

The overarching aim of this cumulative dissertation was to develop an integrated technical 

approach to define and implement situational and multi-parametric site-specific fertilization strategies 

with the aid of agronomic expert knowledge. The following main aspects were investigated: (1) 

elaboration and analysis of a methodology to imitate the agronomic algorithms of an established real-

time fertilization system in a fuzzy system and to extend it to a multi-parametric expert system, (2) 

development, integration and technical verification of a real-time control system for multiple data 

fusion based on the fuzzy expert system, as well as spatial synchronization of dose rate determination 

and realization, (3) conceptualization of a consistently digital process chain to facilitate decision 

making, data management and execution in the field, and its evaluation via a prototypic 

implementation. 

This work represents the first systematic attempt to explicitly define the cause-effect relationships 

for a site-specific N application based on expert knowledge of farmers or agronomic advisors and to 

transfer them into a machine-readable algorithm. The model of a connection of crop N uptake 

information (SN) provided by a Yara N-Sensor ALS2 with mapped soil apparent electrical 

conductivity (ECa) was applied during all phases. This was representative for a fusion of real-time 

and map-based information, which is of high practical relevance. At the same time, it places 

comparatively high demands on the technical implementation and thus covers most of the challenges 

that have to be solved also for other constellations of data sources, as well as sensor and application 

technologies. 

With knowledge about their basic behavior, as well as a comprehensive data acquisition under 

different conditions, the agronomic algorithms of the N-Sensor were modeled and validated for 

specific use cases in a fuzzy system, where after simulations compared to the original data, the 

Pearson correlation coefficient was always above 99% and the percentage root mean square error did 
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not exceed 0.14%. Via this model, the N-sensor algorithms were transformed into a form adapted to 

human cognition and reasoning in order to be intuitively adapted by the user and linked to other 

parameters. Simulation studies on a fusion with the ECa under specific assumptions regarding the 

weather-dependent availability of water suggested that a multi-parametric system results in more 

robust decisions. 

The real-time fusion of SN and ECa data was implemented via a control algorithm that had the 

inference mechanisms of the previously developed fuzzy expert system incorporated. In addition, it 

included a model to compensate technical latencies in the application system and provided dynamic 

synchronization of georeferenced dose rate determination and fertilizer application via an odometric 

approach, whereby a differentiation according to sections was made. A system verification, which 

was conducted under different travel speed scenarios after the embedment in a real sensor-tractor-

spreader system, implied a high reliability of the control system. Deviations from ideal 

synchronization did not exceed 1.5 m in any case and exceeded 1 m in only 2.3% of the cases in the 

worst data set, which is a sufficient accuracy from a practical point of view. The distinction of dose 

rates was made solely based on the ECa and therefore resulted in only minor differences between the 

sections. 

In particular, due to the specific challenges arising from the strong user-centeredness, a system 

architecture for a web-based, digital process chain was designed, which included all sub-processes 

necessary for site-specific N management, such as system configuration via suitable user interfaces, 

automated data management, execution in the field and documentation. By considering different 

scenarios in terms of used data or sensor and application technologies, respectively, the concept was 

validated as consistent. The potentials and limitations, as well as specific requirements regarding the 

technical realization were clarified in a prototypical implementation. The generic properties of the 

overall concept allow it to be supplemented by established approaches and can in turn strengthen 

them with the functional integration of expert knowledge.
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Zusammenfassung 

 

Das Prinzip der teilflächenspezifischen mineralischen Stickstoff (N) -Düngung zur Anpassung der 

Düngermengen an den kleinräumig variierenden Bedarf der Kultur wird seit vielen Jahren untersucht 

und hat nachweislich das Potenzial zur Erzielung ökonomischer und ökologischer Vorteile gegenüber 

einer flächeneinheitlichen Ausbringung. Allerdings scheitert dessen breite Etablierung vor Allem 

daran, dass die verwendeten agronomischen Algorithmen die Komplexität des N Managements nur 

in begrenztem Maße abbilden können. Aufgrund inhärenter zeitlicher und räumlicher Dynamiken 

erfordert diese vor jeder Gabe eine neu angepasste Interpretation von unterschiedlichen, für das 

Pflanzenwachstum relevanten Parametern vor dem Hintergrund spezifischer, lokaler Begebenheiten. 

Darüber hinaus ergeben sich bei der heute gängigen Applikationstechnik signifikante 

Einschränkungen in der präzisen Realisierung der teilflächenspezifischen Düngestrategie.  

Übergeordnetes Ziel dieser kumulativen Dissertation war die Entwicklung eines ganzheitlichen 

technischen Ansatzes, um mithilfe von agronomischem Expertenwissen situative und 

mehrparametrische, teilflächenspezifische Düngestrategien festzulegen und zu realisieren. Dabei 

wurden im Wesentlichen folgende Teilaspekte untersucht: (1) Erarbeitung und Analyse einer 

Methodik, um die agronomischen Algorithmen eines etablierten Echtzeit-Düngesystems in einem 

Fuzzy System zu imitieren und dieses zu einem mehrparametrischen Expertensystem zu erweitern, 

(2) Entwicklung, Integration und technische Verifizierung einer Echtzeitsteuerung für die multiple 

Datenfusion basierend auf dem Fuzzy Expertensystem und die räumliche Synchronisierung von 

Dosiermengenvorgabe und –realisierung, (3) Konzeptionierung einer durchgängig digitalen 

Prozesskette zur Vereinfachung von Entscheidungsfindung, Datenmanagement und Ausführung auf 

dem Feld, sowie deren Evaluierung über eine prototypische Implementierung. 

Dieser Arbeit liegt der erstmalige systematische Versuch zugrunde, die Wirkzusammenhänge für 

eine teilflächenspezifische Düngegabe explizit auf der Basis von Expertenwissen von Landwirten 

oder agronomischen Beratern zu definieren und sie in einen maschinenlesbaren Algorithmus zu 

überführen. Dabei wurde in allen Phasen das Modell einer Verknüpfung der von einem Yara N-

Sensor ALS2 bereitgestellten Information über die N-Aufnahme des Bestandes (SN) mit der 

kartierten scheinbaren elektrischen Leitfähigkeit des Bodens (ECa) angewendet. Dieses war 

repräsentativ für eine Fusion von Echtzeit- und kartenbasierter Information, welche von hoher 

praktischer Relevanz ist. Gleichzeitig stellt es vergleichsweise hohe Anforderungen an die technische 

Umsetzung und deckt somit die meisten Herausforderungen ab, die auch bei anderen Konstellationen 

an Datenquellen, sowie Sensor- und Applikationstechnologien gelöst werden müssen. 
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Mithilfe von Kenntnis über deren grundlegendes Verhalten sowie umfassenden 

Datenerhebungen unter unterschiedlichen Bedingungen wurden die agronomischen Algorithmen des 

N-Sensors für einen bestimmten Anwendungsbereich in einem Fuzzy System modelliert und 

validiert, wobei nach Simulationen im Vergleich zu den originären Daten der Korrelationskoeffizient 

stets über 99% lag und der prozentuale mittlere quadratische Fehler 0.14% nicht überschritt. Über 

dieses Modell wurden die N-Sensor Algorithmen in eine an die menschliche Kognition und 

Schlussfolgerung angepasste Form überführt, um durch den Nutzer intuitiv angepasst und mit 

weiteren Parametern verknüpft werden zu können. Simulationsstudien zu einer Fusion mit der ECa 

unter spezifischen Annahmen bezüglich der wetterabhängigen Verfügbarkeit von Wasser ließen den 

Schluss zu, dass ein mehrparametrisches System zu robusteren Entscheidungen führt.  

Die Echtzeit-Fusion von SN- und ECa-Daten wurde über einen Steuerungsalgorithmus, der über 

die Inferenzmechanismen des zuvor entwickelten Fuzzy Expertensystems verfügte, implementiert. 

Darüber hinaus beinhaltete dieser ein Modell zur Kompensation von technischen Latenzen im 

Applikationssystem und sorgte über einen odometrischen Ansatz für eine nach Teilbreiten 

differenzierte, dynamische Synchronisation von georeferenzierter Dosiermengendefinition und 

Düngerapplikation. Die nach der Einbettung in ein reelles Sensor-Traktor-Streuer System 

durchgeführte Systemverifikation unter verschiedenen Fahrgeschwindigkeits-Szenarien ließ auf eine 

hohe Zuverlässigkeit der Steuerung schließen. Die Abweichungen von einer idealen Synchronisation 

überschritten in keinem Fall 1,5 m und lagen im schlechtesten Datensatz in nur 2,3% der Fälle über 

1 m, was eine aus praktischer Sicht ausreichende Genauigkeit darstellt. Die Unterscheidung von zwei 

Dosiermengen erfolgte allein in Abhängigkeit der ECa und führte daher nur zu geringen 

Unterschieden zwischen den Teilbreiten. 

Insbesondere aufgrund der speziellen Herausforderungen, die sich aus der starken 

Nutzerzentriertheit ergaben, wurde eine Systemarchitektur für eine web-basierte, digitale 

Prozesskette konzipiert, welche alle für das teilflächenspezifische N Management notwendigen 

Teilprozesse, wie die Systemkonfiguration über geeignete Nutzerschnittstellen, das automatisierte 

Datenmanagement, die Ausführung auf dem Feld und die Dokumentation umfasst. Mit der 

Betrachtung unterschiedlicher Szenarien hinsichtlich verwendeter Daten bzw. Sensor- und 

Applikationstechnologien wurde das Konzept als konsistent validiert. Die Potenziale und 

Einschränkungen, sowie spezifische Anforderungen hinsichtlich der technischen Umsetzung wurden 

in einer prototypischen Implementierung verdeutlicht. Die generischen Eigenschaften des 

Gesamtkonzepts erlauben eine Ergänzung um etablierte Ansätze und können diese wiederum durch 

die funktionale Einbindung von Expertenwissen stärken. 
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