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Summary

In modern agriculture, machinery plays an important role to substitute manual labor and to
improve productivity and economic performance of farm households. Conventional agricultural
machinery in crop production includes tractors, cultivators, tillers, combine harvesters, pumps,
threshers, planters, fertilizer spreaders, seeders, etc. In recent years, as an innovative
agricultural machinery, unmanned aerial vehicles (UAVs) have been adopted in precision
agriculture for crop monitoring and crop spraying. However, factors influencing Chinese
farmers’ adoption of agricultural machinery and the economic impacts of the adoption have not
been adequately studied, especially regarding farm machinery in maize production and UAVs
in precision agriculture. In addition, there is limited literature that systematically summarizes
the use of UAVs in maize production. The development of UAV-based pattern management in
Chinese agriculture and the prerequisites for adopting and implementing this approach remain

unclear.

By utilizing farm household data, qualitative methods, and econometric quantitative methods,
this dissertation aims to (i) identify the factors influencing the adoption of farm machinery and
UAVs by Chinese farmers; (ii) estimate the economic impacts of adopting farm machinery and
UAVSs; (iii) provide an overview of UAV applications in maize production; (iv) study the
prerequisites for adopting and implementing UAV-based pattern management in Chinese
agriculture; (v) outline and recommend policy instruments to promote the use of farm

machinery and UAVs in China.

The empirical results indicate that the determinants of farm machinery adoption and UAV
adoption can be attributed by three major aspects: farmer characteristics (e.g., age, education
level, and perceptions about agricultural machinery), farm characteristics (e.g., farm size, land
fragmentation, and cooperative membership), and other external socio-economic factors (e.g.,
subsidies, technical assistance, and labor shortages). The adoption of farm machinery and
UAVs has shown significantly positive economic effects. However, the effects vary among
farm household types due to the heterogeneous farm characteristics and socio-economic
conditions. Farm machinery use significantly increased maize yield by 0.216 tons/ha and
improved labor productivity by 18.65%. Young, male, and better-educated farmers benefit
more from adopting farm machinery, and farms located in plain regions with cooperative
membership and rented land can gain higher economic benefits from machinery use. In

addition, the impacts of farm machinery adoption on maize yield and labor productivity slightly
%



decrease with farm size. The adoption of UAVs in pesticide application significantly increased
revenue and reduced the time spent on pesticide application by approximately 434-488 USD/ha
and 14.4-15.8 hours/ha, respectively. In terms of marginal revenue and marginal time spent on
pesticide application, the optimal area for using UAVs in pesticide spraying is estimated to be
20 hectares of arable land, suggesting that small and medium-scale farmers are the main
beneficiaries of UAV adoption. For the wide application of UAV-based pattern management in
precision agriculture, certain socio-economic and technical prerequisites are necessary. These
include farmers possessing adequate UAV-related capabilities, relatively large farm sizes,

availability of UAV-related subsidies, and superior UAV performance.

Balancing the pros and cons, the effective promotion of farm machinery in maize production
and UAVs in precision agriculture requires the establishment of a comprehensive socio-
economic institution. This institution should integrate strategies from both the public and
private sectors such as the implementation of land consolidation, the establishment of
agricultural machinery cooperatives for benefit-risk sharing, the provision of practical training
and education on agricultural machinery, and subsidies for the purchase of agricultural
machinery. Due to the heterogeneous effects of farm machinery adoption and UAV adoption,
it is necessary to develop customized extension services tailored to various types of farm

households to prevent inequity among farmers.

Vi



Zusammenfassung

In der modernen Landwirtschaft spielen Maschinen eine wichtige Rolle, indem sie manuelle
Arbeit ersetzen, sowie Produktivitdt und wirtschaftliche Leistungsfahigkeit verbessern.
Konventionelle Landmaschinen umfassen Traktoren, Kultivatoren, Pflige, Mahdrescher,
Pumpen, Dreschmaschinen, Pflanzmaschinen, Dungerstreuer, Sdmaschinen usw. In den
letzten Jahren wurden unbemannte Luftfahrzeuge (Unmanned Aerial Vehicles, UAVs) als
innovative landwirtschaftliche Maschinen in der Prazisionslandwirtschaft eingesetzt, sowohl
zur Uberwachung von Pflanzen als auch zur Schadlingsbekampfung. Jedoch wurden die
Faktoren, die die Akzeptanz landwirtschaftlicher Maschinen durch chinesische Landwirte und
die 6konomischen Auswirkungen ihrer Ubernahme, nicht ausreichend untersucht,
insbesondere im Hinblick auf Landmaschinen in der Maisproduktion und unbemannte
Luftfahrzeuge in der Prazisionslandwirtschaft. Dariiber hinaus gibt es nur wenig Literatur, die
den Einsatz von UAVs in der Maisproduktion systematisch zusammenfasst. Die Entwicklung
eines auf UAVs basierenden Managements in der chinesischen Landwirtschaft und die

Voraussetzungen fiir die Ubernahme und Umsetzung dieses Ansatzes bleiben unklar.

Unter Verwendung von Daten zu landwirtschaftlichen Haushalten, von qualitativen Methoden
und okonometrischen quantitativen Methoden zielt diese Dissertation darauf ab, (i) die
Faktoren zu identifizieren, die die Akzeptanz von landwirtschaftlichen Maschinen und UAVs
durch chinesische Landwirte beeinflussen; (ii) die wirtschaftlichen Auswirkungen der
Einfilhrung von landwirtschaftlichen Maschinen und UAVs zu schétzen; (iii) einen Uberblick
uber die Anwendungen von UAVs in der Maisproduktion geben; (iv) die VVoraussetzungen fir
die Implementierung eines UAV-basierten Managements in der chinesischen Landwirtschaft
zu untersuchen; (v) Politikinstrumente zur Forderung des Einsatzes von landwirtschaftlichen

Maschinen und UAVs in China zu formulieren.

Die empirischen Ergebnisse deuten darauf hin, dass die Determinanten der Akzeptanz von
landwirtschaftlichen Maschinen und UAVs auf drei Hauptaspekte zuriickzufiihren sind: die
Eigenschaften der Landwirte (z. B. Alter, Bildungsniveau und Wahrnehmung von
Landmaschinen), die Merkmale des landwirtschaftlichen Betriebs (z. B. BetriebsgrolRie,
Landfragmentierung und Mitgliedschaft in einer Genossenschaft) sowie andere externe
soziookonomische Faktoren (z. B. Subventionen, technische Unterstiitzung und
Arbeitskraftemangel). Der Einsatz von landwirtschaftlichen Maschinen und UAVs hat

deutlich positive wirtschaftliche Auswirkungen gezeigt. Allerdings variieren die Effekte
vii



aufgrund der unterschiedlichen Merkmale der landwirtschaftlichen Betriebe und der
soziookonomischen Bedingungen von Haushalt zu Haushalt. Der Einsatz landwirtschaftlicher
Maschinen hat den Maisertrag und die Arbeitsproduktivitét signifikant erhoht. Der Maisertrag
hat sich um 0,216 Tonnen pro Hektar erhéht und die Arbeitsproduktivitat um 18.65%. Junge,
mannliche und besser gebildete Landwirte profitieren mehr von der Akzeptanz von
Landmaschinen, und Betriebe in ebenen Regionen mit Genossenschaftsmitgliedschaft und
hoéherem Pachtanteil kdnnen hohere wirtschaftliche Vorteile durch den Maschineneinsatz
erzielen. Daruber hinaus nehmen die Auswirkungen der Akzeptanz von landwirtschaftlichen
Maschinen auf den Maisertrag und die Arbeitsproduktivitat leicht mit der BetriebsgroRe ab.
Die Akzeptanz von UAVs bei der Pestizidanwendung hat den Ertrag signifikant um etwa 434-
488 USD pro Hektar erhoht und die fiir die Pestizidanwendung aufgewendete Zeit um 14,4-
15,8 Stunden pro Hektar reduziert. In Bezug auf den marginalen Ertrag und die marginale Zeit
flr die Pestizidanwendung wird der optimale Bereich fir den Einsatz von UAVSs bei der
Pestizidapplikation auf 20 Hektar Ackerland geschéatzt, was darauf hinweist, dass kleine und
mittelgroRe Betriebe die HauptnutznieRer der Akzeptanz von UAVs sind. Fur den breiten
Einsatz des auf UAVs basierenden Muster-Managements in der Prazisionslandwirtschaft sind
bestimmte soziobkonomische und technische Voraussetzungen erforderlich. Dazu gehdren
Betriebe, die Uber ausreichende Fahigkeiten im Umgang mit UAVs verfuigen, relativ grolRe
Flachenausstattung aufweisen, die Verfiigbarkeit von UAV-bezogenen Subventionen und eine

ausreichende Leistung der UAVSs.

Bei der Abwégung der Vor- und Nachteile, erfordert die wirksame Forderung des Einsatzes
von Landmaschinen in der Maisproduktion und UAVs in der Prazisionslandwirtschaft die
Einrichtung einer umfassenden sozio6konomischen Institution. Diese Institution sollte
Strategien aus beiden Sektoren, dem 6ffentlichen und privaten Sektor, wie die Umsetzung der
Flurbereinigung, die Grindung von landwirtschaftlichen Maschinenkooperativen zur
Vorteils- und Risikoteilung, die Bereitstellung von praktischer Schulung und Ausbildung im
Umgang mit landwirtschaftlichen Maschinen sowie Subventionen fir den Kauf von
landwirtschaftlichen Maschinen integrieren. Aufgrund der unterschiedlichen Ergebnisse bei
der Ubernahme von landwirtschaftlichen Maschinen und UAVs in den Betrieben, ist es
notwendig, mafgeschneiderte Beratungsdienste zu entwickeln, die auf die verschiedenen
Arten von landwirtschaftlichen Haushalten zugeschnitten sind, um Ungleichheiten unter den

Landwirten zu vermeiden.

Vil



Chapter 1 General introduction

1.1 Introduction
1.1.1 Agricultural machinery and agricultural production

In modern agriculture, machines play an important role to substitute hand labor and to improve
productivity because they increase labor productivity and efficiency (Zhou et al., 2020).
Nowadays, in the context of resource scarcity and rural labor shortages, agricultural
mechanization is vital to enhance productivity and to ensure food security (Kienzle et al., 2013).
Agricultural machinery has been using in many agricultural processes such as land preparation,
seeding, fertilizer application, pesticide application, weeding, harvesting, threshing,
transportation, and pumping (Barrett and Just, 2021). Conventional agricultural machinery in
crop production includes tractors, cultivators, tillers, combine harvesters, pumps, threshers,
planters, fertilizer spreaders, seeders, etc. (Kienzle et al., 2013). In recent years, integrated with
artificial intelligence, internet of things, global positioning system, variable rate application
systems, and varied sensors etc., agricultural machinery has become more intelligent and more
precise. For example, unmanned aerial vehicles and agricultural robots have been partly
adopted in precision agriculture for crop monitoring, crop spraying, and harvesting, etc. (Rejeb
et al., 2022; Tsouros et al., 2019a; Yang et al., 2023). As technological progress, agricultural
machinery has shifted from conventional roughly undifferentiated operations to precise site-

specific operations.

1.1.2 Economic impacts of adopting agricultural machinery

Many studies have shown positive economic impacts of adopting agricultural machinery
(Barrett and Just, 2021). Wang et al. (2016) found that machines can significantly reduce labor
input in agricultural production in rural China because farm machinery has a strong substitution
effect on labor. Zhang et al. (2019) reported that farm machinery use improved pesticide
application efficiency and reduced pesticide expenditure in Chinese maize farming by 58.87%.
According to Pan et al. (2017), deep placement of nitrogen fertilizer through specialized
machines can enhance nitrogen use efficiency and decrease nitrogen fertilizer use in direct-
seeded rice production. Ma et al. (2018) and Zhou et al. (2020) found that farm machinery use
significantly increased maize yield by 15% and 13%, respectively. Paudel et al. (2023) reported
that farm mechanization can increase productivity and profit in Nepal’s maize production by

14% and 11%, respectively. Wang et al. (2020) showed that unmanned aerial vehicle-based



pesticide application increased the effect of pest and disease control in citrus production by
20.3% and saved cost by 266 USD/ha.

1.1.3 Agricultural mechanization and maize production in China

In 2020, maize is the most cultivated cereal crop in China in terms of 42.12% sown area and
42.26% harvested yield (National Bureau of Statistics of China, 2022). From 2008 to 2021, the
comprehensive mechanization level in China’s maize production increased from 51.78% to
90.00% (Figure 1.1). However, China’s average maize yield in 2020 was 6.31 tons/ha, which
was relatively low compared to 10.79 tons/ha in the United States (FAO, 2019). One of the
main reasons is that the USA has higher mechanization level in maize production compared to
China (Qian et al., 2016). Yang and Jiang (2023) emphasized that facilitating sustainable
mechanization in Chinese maize production to achieve higher productivity is an important task
for China in the future. Reflecting on this increasing importance of maize in Chinese crop
production and agricultural mechanization, the relationship between maize production and

agricultural mechanization in China will be thoroughly explore in this dissertation.

Comprehensive mechanization level in China's maize production

90
1

80
1

Maize comprehensive mechanization level (%)
60 70
1 1

Figure 1.1 Comprehensive mechanization level in China’s maize production.
Comprehensive mechanization level = mechanical tillage rate*0.4 + mechanical seeding rate*0.3 + mechanical
harvesting rate*0.3. Data source: National Bureau of Statistics of China (2022).

1.1.4 Unmanned aerial vehicles (UAVs) in China’s precision agriculture

As one of the most recent advanced agricultural machinery, UAVs are best known for the ability
to overcome terrain obstacles to perform field tasks rapidly and precisely. UAVs attached with
sensors or tanks can be used in many agricultural processes such as pesticide spraying, fertilizer
spraying, seeding, and crop monitoring (Figure 1.2) (Kim et al., 2019; Radoglou-Grammatikis
et al., 2020; Tsouros et al., 2019a). China started to use UAVSs in agricultural production in
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2010 (Zheng et al., 2019). Over a decade of development in China, agricultural UAVs are
cheaper, smarter, and better than before (Chung, 2019). So far, China’s agricultural UAV
industry has become the first in the world in terms of the number of UAVSs, flight control
technology, and cumulative areas of operation per year (Ministry of Agriculture and Rural
Affairs of People’s Republic of China, 2019).

In worldwide, the most common use of UAVs in agriculture is remote sensing, while aerial
application of agricultural chemicals is an emerging use of UAVs (Tsouros et al., 2019a; Van
Der Merwe et al., 2020). However, in China, pesticide spraying is the most common UAV
application in agriculture (Yang et al., 2018); other UAV applications such as seeding, fertilizer
spraying, and crop monitoring are not widespread, but are gradually growing (Chung, 2019).
In 2020, 70,344 UAVs were being used in China for plant protection purposes and they were
treating 14.48 million hectares of cropland (China Agricultural Machinery Industry
Association, 2021). Considering the increasing importance of UAVs in Chinese agriculture,
UAVs have been chosen for in-depth research in this dissertation.

Figure 1.2 An UAV used for crop monitoring in Pattern Management China (PMC) project. Source: own picture.

In addition, UAVs can be used in precision agriculture for precision spraying, crop monitoring,
and field management (Radoglou-Grammatikis et al., 2020; Sylvester et al., 2018; Tsouros et
al., 2019a). UAV-based pattern management is an innovative and holistic approach proposed
by Spohrer (2019) for sustainable and site-specific precision agriculture in respect of
fertilization, plant protection, and irrigation. Pattern management includes three pillars:
structured land management, UAV-based image acquisition, and data management. Structured
land management divides fields into different spatiotemporal patterns. UAVs attached with
sensors (e.g., infrared and hyperspectral) fly over fields to capture images and spatiotemporal
data of these patterns. Images and field spatiotemporal data are processed by modified

algorithms (Zhang and Kovacs, 2012) and stored in the database. Fertilizer, pesticide, and water
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variable-rate prescription maps are derived from the processed data to instruct fertilization,
plant protection, and irrigation (Tsouros et al., 2019b). Data management is responsible for data
storage, data retrieval, data processing, data mapping, and UAV flight control, etc. The
processed spatiotemporal data are shown on terminal devices (e.g., tablets, smartphones, and
laptops) in a straightforward way, and farmers can manage and monitor different patterns on

the field through user-friendly interfaces.

1.2 Problem statement

Many studies have analyzed the factors that influence the adoption of farm machinery or the
impacts of farm machinery use on agricultural performance, specifically in Chinese maize
farming. Zhou et al. (2020) used an unconditional quantile regression model to estimate the
heterogeneous impacts of farm machinery use across different quantiles of maize yield, while
addressing the selection bias of farm machinery use by the control function approach. They
found that farm machinery use has higher positive impacts on low productivity farmers than on
high productivity farmers. Their results also suggest that education and household size have
significant negative effects on farm machinery adoption, while farm size and the expenditures
of pesticide and fertilizer have significant positive effects on farm machinery adoption. A study
by Ma et al. (2018) found that farm machinery use has a significantly positive effect on maize
yield and averaged in a 15% increase in yield. They also found that large farm size and fertile
soil can boost the adoption of farm machinery, while large household size would discourage
the adoption of farm machinery by farmers. Jetté-Nantel et al. (2020) used production function
to estimate the impact of farm machinery use on maize yield, and the results imply that the
efficiency gains from farm machinery use is limited. Zhang et al. (2019) performed the
endogenous switching regression model to examine the factors that influence the adoption of
farm machinery in pesticide application and the effects of adoption on pesticide expenditure
among 493 Chinese maize farmers. Their findings suggest that off-farm work and farm size
have significantly positive impacts on the adoption of farm machinery in pesticide application,
and the adoption significantly reduced the total pesticide expenditure by 58.87%. However,
farmers may adopt different types of farm machinery at the same time, and these articles did
not study the interrelation among different adoption decisions. In addition, the impacts of farm
machinery use on labor productivity and the heterogeneous impacts of farm machinery use

across farm households have not been sufficiently investigated.



On the other hand, some studies have investigated the adoption of UAVs in agriculture. Zheng
et al. (2019) used a probit model involving 897 farmers in Jilin province of China to estimate
the factors influencing the adoption of UAVs for plant protection. Their results suggest that
perceived usefulness, perceived ease-of-use, UAV-related knowledge level, and agricultural
income ratio have a positive influence on UAV adoption. Caffaro et al. (2020) used a
technology acceptance model to find that perceived usefulness positively influences Italian
farmers’ adoption intention of agricultural drones, and farmers are more willing to adopt
agricultural drones if this technology can improve productivity on the farm. Chen et al., (2020)
reported that farmers’ intention to adopt UAVs in pesticide application would increase by 18%
after explaining the benefits of using UAVs to farmers. Wachenheim et al. (2021) used a probit
model to estimate the effects of social networks, resource endowment, and perceptions on
Chinese farmers’ intention to adopt UAVs for pesticide application. The results indicate that
arable land area, agricultural income share, within-family village leadership, perceived
usefulness, and credit availability have positive effects on UAV adoption. However, these
articles only focused on UAV adoption intention research and only analyzed the use of UAVs
from farmers’ perspective but did not from the view of other UAV stakeholders such as
agricultural UAV manufacturers, UAV service providers, agricultural extension staff from
government, and researchers focusing on UAVSs. In addition, there are limited studies to
quantitatively estimate the economic effects of the adoption of UAVs in China. Thus, it is
necessary to find empirical evidence to show the positive benefits of using UAVS, thereby
promoting the adoption of UAVSs. Furthermore, maize is one of the most important cereal crops
around the world, but there is limited literature that systematically summarizes the use of UAVs
in maize production. In addition, as an innovative and holistic approach, the status quo of UAV-
based pattern management in Chinese agriculture and the prerequisites for adopting and
implementing this approach remain unclear. Closing these research gaps will help to better
understand the use of UAVs in maize farming, the determinants and economic impacts of UAV
adoption, and the prerequisites for implementing UAV-based pattern management in China.

1.3 Research questions and objectives

This dissertation chooses traditional farm machinery in maize production and recent advanced
agricultural machinery, specifically UAVSs, in precision agriculture as case studies to explore
the adoption of agricultural machinery and its economic impacts, to provide an overview of
UAYV applications in maize production, and to study the prerequisites for implementing UAV-

based pattern management in Chinese agriculture. An interdisciplinarity approach which
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includes qualitative and econometric quantitative methods will be performed to address these

issues.

This dissertation mainly addresses four research questions.

Which factors can affect the adoption of farm machinery and UAVs in Chinese agriculture?
What are the economic effects of adopting farm machinery and UAVs in Chinese
agriculture?

How UAVs are being used for maize production?

How is the status quo of UAV-based pattern management in Chinese agriculture? What

are the prerequisites for adopting and implementing this approach?

The major objectives of this dissertation are to:

identify the factors influencing the adoption of farm machinery and UAVs by Chinese
farmers;

estimate the economic effects of adopting farm machinery and UAVS;

provide an overview of UAV applications in maize production;

study the prerequisites for adopting and implementing UAV-based pattern management in
Chinese agriculture;

outline and recommend policy instruments to promote the use of farm machinery and UAVs

in China.

1.4 Methodology

To address the research questions proposed in this dissertation, an interdisciplinarity approach

which includes qualitative and econometric quantitative methods was used.

e Firstly, farmers may adopt different agricultural machinery at the same time, and the
adoption decisions of different agricultural machinery might be interrelated. Univariate
probit or logit models estimate the adoption decisions independently and fail to capture
the interrelations among different adoption decisions, and it may lead to biased results
(Kassie et al., 2009; Rodriguez-Entrena and Arriaza, 2013). The multivariate probit
model can individually estimate farmers’ agricultural machinery adoption decisions and
simultaneously account for the interdependence among these adoption decisions
(Rodriguez-Entrena and Arriaza, 2013). Thus, multivariate probit models were



performed to identify the factors that affect Chinese maize farmers’ adoption of four
machinery technologies as well as the interrelation among these adoption decisions.
Secondly, the adoption of farm machinery and the impacts of adoption on outcome
variables (e.g., maize yield and labor productivity) can be estimated by probit models
(or logit models) and ordinary least squares regressions, respectively. However,
depending on farm characteristics and other factors, farmers may self-select as farm
machinery adopters and non-adopters other than randomly assigned, and this causes the
selection bias (Di Falco et al., 2011). In addition, some unobserved variables (e.g.,
farmers’ motivation, managerial ability, and experience) may influence farm machinery
adoption and outcome variables at the same time, and this will cause endogeneity and
will lead to biased estimates in ordinary least squares regressions (Huang et al., 2015).
The endogenous switching regression (ESR) model addresses selection bias and
endogeneity by constructing a two-stage estimation (Lokshin and Sajaia, 2004). In the
first stage, farm machinery adoption equation was used to explore the determinants of
adoption and to compute the inverse Mills ratios (Diiro et al., 2021). In the second stage,
inverse Mills ratios were added into outcome equations to correct the selection bias
(Abdulai and Huffman, 2014). Hence, the ESR model was adopted to explore the factors
influencing the adoption of farm machinery and to estimate the impacts of adoption on
maize yield and labor productivity.

Thirdly, most previous studies only analyzed the use of UAVs from farmers’
perspective but did not from the view of other UAV stakeholders. In addition, there is
limited data about UAV-based pattern management in China. Expert interviews
primarily focus on qualitative analysis and do not need too much statistical data and are
able to provide fresh first-hand information, specialized knowledge, and professional
opinions from specialists on specific topics (Von Soest, 2023). In order to get a holistic
view of UAV usage in Chinese agriculture, especially UAV-based pattern management,
a series of structured in-depth expert interviews were conducted with agricultural UAV
manufacturers, UAV service providers, agricultural extension staff from government,
and researchers focusing on UAVs to study the status quo of UAV use, determinants of
UAYV adoption, and development of UAV-based pattern management in China.

Lastly, the effects of using UAVs in pesticide application can be estimated by adding
UAYV adoption as a dummy variable into a simple regression model, but this approach
cannot yield consistent estimates if selection bias exists (Schreinemachers et al., 2016).

Although the ESR model can solve selection bias, the estimation results may be
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sensitive to model specification and the validity of instrumental variables (Khonje et al.,
2015). The direct comparison of outcome variables of UAV adopters and non-adopters
can lead to biased results because confounding factors are not controlled (Gitonga et al.,
2013). Propensity score matching (PSM) is a non-parametric method and does not
require the assumption of functional forms between UAV adoption and outcome
variables (El-Shater et al., 2016). PSM addresses the selection bias by matching UAV
adopters and non-adopters conditioning on the propensity score of a set of observed
covariates (Khandker et al., 2009). The average treatment effects of UAV adoption are
the mean difference of outcome variables of matched pairs (Caliendo and Kopeinig,
2008). Thus, PSM was chosen to estimate the economic effects of adopting UAVS in

pesticide application.

1.5 Dissertation structure

This cumulative doctoral dissertation includes seven chapters and addresses the research

questions raised previously one by one.

Chapter 1 is a general introduction of this dissertation, including introduction, problem
statement, research questions and objectives, methodology, and dissertation structure.

Chapter 2, entitled “Factors influencing the adoption of agricultural machinery by Chinese
maize farmers”, uses multivariate probit models to identify the factors that affect Chinese maize
farmers’ adoption of four machinery technologies as well as the interrelation among these
adoption decisions. The empirical results indicate that maize sowing area, arable land area, crop
diversity, family labor, subsidy, technical assistance, and economies of scale have positive
effects on machinery adoption, while the number of discrete fields on the farm has a negative
impact. The adoption of these four machinery technologies are interrelated and complementary.

Chapter 3, entitled “Farm machinery adoption and its impacts on maize yield and labor
productivity: insights from China”, uses farm household survey data from Chinese maize
farmers to explore the factors that influence the adoption of farm machinery and to estimate the
impacts of adoption on maize yield and labor productivity by using the endogenous switching
regression (ESR) model. In addition, the heterogeneous effects of farm machinery adoption
were analyzed across farm households. The empirical results show that rented land and
cooperative membership are main drivers of farm machinery adoption, while land
fragmentation is a barrier of adoption. Farm machinery use has significantly positive impacts
on maize yield and labor productivity, but the impacts differ across farm households.



Chapter 4, entitled “Unmanned aerial vehicle (UAV) technical applications, standard workflow,
and future developments in maize production — water stress detection, weed mapping,
nutritional status monitoring and yield prediction”, is a literature review regarding four major
applications of UAVs in maize production: (i) water stress detection, (ii) weed mapping, (iii)
nutrient status monitoring and (iv) yield prediction. This review summarizes UAV data
management methods, explains how expert systems work in UAV systems, and provides
standardized workflow data for farmers in maize production. In addition, strengths, weaknesses,
opportunities, and threats of UAV use in maize production were analyzed. This study points
out key issues of UAV usage in maize farming and research gaps that need to be filled, along
with a number of recommendations for the development of UAVs in maize production in the

future.

Chapter 5, entitled “The determinants of unmanned aerial vehicle (UAV) adoption and status
quo of UAV-based pattern management in Chinese agriculture: insights from expert
interviews”, is a qualitative research which includes a series of structured in-depth expert
interviews with 18 experts from various backgrounds related to UAVs and agriculture in China
to study the status quo of UAV use, determinants of UAV adoption, and development of UAV-
based pattern management in China. This research shows that the adoption of UAVs in China
is influenced by farmers’ production characteristics, farmers’ perceptions about UAVs, and
social factors. UAV-based pattern management is at the initial stage in China. For the
widespread implementation of this approach, certain socio-economic and technical

prerequisites are necessary.

Chapter 6, entitled “The economic effects of unmanned aerial vehicles in pesticide application:
evidence from Chinese grain farmers”, uses propensity score matching to evaluate the economic
effects of UAV adoption on outcome variables including revenue, pesticide costs, time spent
on pesticide application, and pesticide application frequency based on a dataset covering over
2,000 grain farmers across 11 provinces of China. The empirical results show that adoption of
UAYV increased revenue by approximately 434-488 USD/ha and reduced the time spent on
pesticide application in the range of 14.4-15.8 hours per hectare. In addition, generalized
propensity score matching was performed to estimate the heterogeneous effects of outcome
variables arising from differing UAV adoption intensities. In terms of marginal revenue and
marginal time spent on pesticide application, the optimal area with use of UAVs for pesticide

spraying is estimated to be 20 hectares of arable land.



Chapter 7 gives a general discussion on the key findings of research questions in this
dissertation and concludes with some recommendations for the promotion of farm machinery

in maize production and UAVSs in precision agriculture in China.
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Chapter 2 Factors influencing the adoption of agricultural machinery by

Chinese maize farmers

Authors: Xiuhao Quan, Reiner Doluschitz
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Abstract: As the major labor force has shifted from rural areas to cities, labor shortages in
agricultural production have resulted. In the context of technical progress impact, and
depending on farm resource endowments, farmers will choose effective labor saving technology
such as machinery to substitute for the missing manual labor. The reasons behind farmers’
adoption of machinery technology are worth exploring. Therefore, this study uses 4165 Chinese
maize farmers as the target group. Multivariate probit models were performed to identify the
factors that affect maize farmers’ adoption of four machinery technologies as well as the
interrelation between these adoption decisions. The empirical results indicate that maize sowing
area, arable land area, crop diversity, family labor, subsidy, technical assistance, and economies
of scale have positive effects on machinery adoption, while the number of discrete fields in the
farm has a negative impact. Maize farmers in the Northeast and North have higher machinery
adoption odds than other regions. The adoption of these four machinery technologies are
interrelated and complementary. Finally, moderate scale production, crop diversification,
subsidizing agricultural machinery and its extension education, and land consolidation, are
given as recommendations for promoting the adoption of agricultural machinery by Chinese

maize farmers.

Keywords: agricultural machinery; China; maize production; technology adoption.

2.1 Introduction

As agricultural mechanization develops, farm machinery is gradually playing an important role
in replacing manual labor and draft animals (e.g., horses, oxen, mules) and improving
agricultural productivity. The economic benefits of machinery use, however, depend highly on
economies of scale (Duffy, 2009; Li et al.,, 2018; Wang et al., 2016b). Farmers can use
agricultural machinery by purchasing, renting, or buying machinery services (Ma et al., 2018).
China, known as the second largest maize producer in the world (FAO, 2019), has adopted
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agricultural machinery in plowing, seeding, and harvesting for a long time. Figure 2.1 indicates
the growth trend of mechanization in China’s maize production at the national level.
Mechanical plowing and mechanical seeding are well developed, while mechanical harvesting
lags a little behind compared with them. In 2018, the average maize comprehensive

mechanization rate was 88.31% in all production regions of China (Mechanical Industry Press,
2018).
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Figure 2.1 Mechanization rate of maize production in China, 2001-2018.

Data source: China Agricultural Machinery Industry Yearbook (Mechanical Industry Press, 2018). Note:
mechanical plowing rate— areas of mechanical plowing (hm?)/areas that are supposed to be plowed (hm?);
mechanical seeding rate—areas of mechanical seeding (hm?)/total areas of sowing (hm?); mechanical harvesting
rate—areas of mechanical harvesting (hm?)/total areas of sowing (hm?); comprehensive mechanization rate—
0.4xmechanical plowing rate + 0.3xmechanical seeding rate + 0.3xmechanical harvesting rate.

Several studies have analyzed the factors influencing the adoption of agricultural machinery by
Chinese maize farmers (Lai et al., 2015; Ma et al., 2018; Wang et al., 2016a; Yi and Min, 2018;
Zhang et al., 2019; Zhou et al., 2020) (Table 2.1). These factors mainly include three aspects:
farmer features (e.g., age, gender, education level, farming experience, off-farm employment,
etc.), farm characteristics (e.g., farm size, location, soil fertility, etc.), and social facilitating
conditions (e.g., subsidies, extension services, farmer organizations, etc.). Probit models,
multivariable probit models, and other econometric models were performed to analyze the

quantitative relations between these factors and farmers’ adoption decisions.

12



Table 2.1 The research of agricultural technology adoption: a review

Agricultural technology Country Target I\/Iethod' of Factors af_fect the References
group analysis adoption
Education (-),
Household size (—),
A control Extension contact (+),
i . function T_ra}nsportatlon
Rotary cultivator for . Maize . condition (+), Access Zhou et
. China approach with an . A
plowing farmers : to credit (+), Irrigation al. (2020)
instrumental :
variable (+), Farm size (%),
Pesticide costs (+),
Fertilizer costs (+),
Seed costs (—)
Bivariate ordered
Several farm machines prgrl])étom;ndeeilt a_nd Gender (—), Household
which can be used in . Maize g Y™ size (-), Farm size (+), Ma et al.
. X China corrected . -
maize production and farmers . Soil fertility (+), (2018)
ordinary least .
postharvest management . Subsidy (+)
square regression
model
Number of family
members, Number of Yi and
N . . Maize Multivariable  parcels, The distance .
Mechanization services China . . Min
farmers probit model  to township, Off-farm
(2018)
employment (+), Age
. . S
Total machinery Wheat Ordinary least  Land fragmentation

horsepower used in

. . China .
plowing, sowing, and maize
harvesting farmers.
Agricultural machines for . Maize
i e China
pesticide application farmers
Three soil conservation . Olive
. Spain
practices farmers
Wheat
Conservation tillage, farmers,
. . barley
compost, and chemical Ethiopia
fertilizer farmers,
and teff
farmers

farmers and squares (OLS)

(-), Total operating Lai et al.

with instrumental area (+), Machinery  (2015)
variables (V) price (—),
Gender (—), Risk
preference (—),
Endpgepous Transportation Zhang et
switching

condition (+), Subsidy al. (2019)
(+), Extension contact
(+)
Olive grove area (+), Rodriguez
Family labor force (—), -Entrena

regression model

Multivariate L
probit model Belo_ng_to an irrigation ar_ld
district (+), Farm Arriaza
profitability (+) (2013)
Male (+), Age (—),
Labor (+), Extension
Trivariate probit org(a;)i,zzg:)nr::r( 9 Kassie et
model ' al. (2009)

Farm size (+), Plot
ownership (+), Plot

slope ()

Note: In column 5, the effects of factors are shown in the brackets. “+” means a positive effect

and “—” means a negative effect.
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Specifically, Zhou et al. (2020) estimated the impacts of farm machinery use on maize yields
by using a control function approach. In the first stage, smartphone use was employed as an
instrumental variable in the farm machinery adoption equation; in the second stage, the inverse
mills ratio estimated from the first stage was added to the maize production function as an extra
regressor to correct the endogeneity issue caused by selection bias in farm machinery adoption.
The results indicated that farmers’ educational level, household size, extension Service,
transportation convenience of farm, farm size, and production inputs (e.g., pesticides, fertilizers,
and seeds) are the main factors that affect farmers’ adoption of machinery in maize production.
Ma et al. (2018) used a bivariate ordered probit model with an instrumental variable (whether
or not receiving a machinery purchasing subsidy) to estimate farmers’ adoption of farm
machinery in the first step. In the second step, endogeneity-corrected ordinary least square
regression models were performed to test the effect of machinery use on maize yields and
agricultural expenses. The empirical results indicate that off-farm employment, farm size, and
subsidy had positive impacts on machinery adoption. Yi and Min (2018) estimated 600 maize
farmers’ adoption of agricultural mechanization services in seven regions of China with a
multivariable probit model. To overcome the endogeneity of off-farm employment on the
adoption of agricultural mechanization services, the average wage of off-farm work was used
as an instrumental variable in the adoption equation. The results showed that both population
aging and off-farm employment contributed positively to farmers’ adoption of agricultural
mechanization services. Zhang et al. (2019) used an endogenous switching regression model to
simultaneously identify the factors influencing the adoption of farm machines in pesticide
application and the impact of this adoption on pesticide expenditures. The mechanical pesticide
spraying rate in each village was used as an instrumental variable in the farm machine selection
equation to overcome the endogeneity of adoption decision caused by observed and unobserved
factors. This study shows off-farm employment and farm size would positively affect farmers’
decision to use farm machines in pesticide application. Similarly, these abovementioned studies
solved model endogeneity issues by using instrumental variables. However, it is tricky

sometimes to find appropriate instrumental variables.

In addition to research on machinery technology adoption among Chinese farmers, there are
also some papers addressing the adoption of other agricultural technologies such as
conservation and sustainable agriculture practices around the world (Kassie et al., 2009;
Rodriguez-Entrena and Arriaza, 2013) (Table 2.1). Rodriguez-Entrena and Arriaza (2013) used

a trivariate probit model to identify the determinants in the adoption of three soil conservation
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practices in Spanish olive production. Their results suggest that the farmers’ decision to adopt
a practice is correlated with other practices and that the adoption of one practice could promote
the adoption of others.

A number of papers only study farmers’ adoption of one particular technology or a set of
technologies and thus have biased results caused by ignoring the interrelation from the adoption
of different technologies (Lai et al., 2015; Ma et al., 2018; Zhang et al., 2019; Zhou et al., 2020).
Zhou et al. (2020) only studied the adoption of the rotary cultivator for plowing in maize
production among 493 farmers in Gansu, Henan, and Shandong provinces. Ma et al. (2018)
investigated the adoption of machinery in 12 maize production stages among 493 farmers in
three provinces of China by using a bivariate ordered probit model, but failed to consider the
potential interrelation from the adoption of different technologies. Moreover, most of the
existing research on Chinese maize farmers’ machinery adoption is only focused on some
specific regions with limited samples (Lai et al., 2015; Ma et al., 2018; Yi and Min, 2018; Zhou

et al., 2020). Nationwide maize farmers’ machinery adoption research is still missing in China.

The contributions of this paper are threefold: firstly, this is the first research to use nationwide
data to study Chinese maize farmers’ machinery adoption. The databases include 4165 maize
farmers across six agroecological maize regions of China: Southwest, Northeast, North,
Yellow-Huai River Valley, Northwest, and South. These samples are comprehensive and
sufficient to represent most of the maize farmers in China. And the regional differences in
machinery adoption were compared in six agroecological maize regions. Secondly, in order to
obtain a good understanding of maize farmers’ machinery adoption decisions, we investigated
their adoption of machinery technologies in four key production processes: seeding, plowing,
harvesting, and pesticide spraying. Thirdly, given the potential interrelation among these
adoption decisions, multivariate models were performed to study the factors that influence the
adoption of these machinery technologies. The aims of this paper are: (i) to identify the factors
that influence the adoption of four machinery technologies by Chinese maize farmers; (ii) to
explore the correlations among the adoption decisions of these four machinery technologies;
and (iii) to provide some policy implications based on these conclusions to promote the use of

agricultural machinery by Chinese maize farmers.
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2.2 Materials and methods
2.2.1 Data source

This study uses data from the 2017 Chinese Family Database (CFD) of Zhejiang University,
and from the 2017 China Household Finance Survey (CHFS) conducted by the Survey and
Research Center for China Household Finance at the Southwestern University of Finance and
Economics (China). These databases contain 5979 households who produced maize as one of
the main crops on their farm. After data cleaning, 669 outliers were removed if they had have
zero agricultural output values or where the areas of mechanical operation in their farm were
larger than the farm size itself. After 1145 observations with missing values were removed,
only 4165 valid maize farmers across 24 provinces were left.

2.2.2 Research study design
The 2017 CFD and 2017 CHFS are national representative surveys conducted in 2016,

including more than 40,000 households across 29 provinces in the mainland of China. The
survey adopted stratified three-stage sampling: county level, village level, and household level.

Samples were selected randomly in each stage.

The questionnaire includes household demographic characteristics, family assets, agricultural
production, family incomes and expenditures, etc. Since this study wants to explore the factors
that influence the adoption of four machinery technologies in maize production, some
explanatory variables and four dependent variables were selected from the databases (Table
2.2).
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Table 2.2 Descriptive statistics of variables

Variables Definitions Mean Std. Dev.
Dependent variables

1 if the farm used machines for plowing in maize

Mechanical plowing . . 0.580 0.494
production; 0 otherwise
Mechanical seeding 1 if the farm used mgch.lnes for se_edlng in maize 0439 0.496
production; 0 otherwise
Mechanical harvesting 1 if the farm used ma(':hlr.les for har_vestlng Inmaize g 450 (499
production; 0 otherwise
Mechanical spraying 1 if the farm u_sed machln_es for pestlcn_je sprayingin 5 120 3g3
maize production; 0 otherwise
Explanatory
variables
Maize sowing area Total areas of maize growing in the farm (mu) 6.487 12.650
Number of discrete Number of discrete fields in the farm used for agricultural
) : . 5754 6.157
fields in the farm production
Arable land area Total areas of arable land in the farm (mu) 10.001 19.446
Crop diversity Number of crops produced on the farm 2.727 1.648
Family labor Number of people participating in agricultural production 1961 0.822
in the family
Subsidy 1 if the farm received a subsidy to support agricultural 0763 0425

production; O otherwise
1 if the farm received technical assistance for agricultural
production; O otherwise
Total value of agricultural output by the farm (unit: 1000
yuan)
1 if the farm is located in Sichuan, Chongging, Guizhou

Technical assistance 0.100 0.300

Economies of scale 12.907 36.084

Southwest ) . ' 0.248 0.432
or Yunnan; 0 otherwise
Northeast 1 if the farm is located in Llaonl_ng, Jilin, or Heilongjiang; 0181 0385
0 otherwise
North 1 if the farm is located in _B(.éljlng, Tla_njm, Hebei, or Inner 0128 0334
Mongolia; O otherwise
Yellow-Huai River 1 if the farm is located in Shanxi, Shandong, Henan, 0299 0458

Valley Shaanxi, Anhui, or Jiangsu; 0 otherwise
Northwest 1 if the farm is located in Gansu or Ningxia; 0 otherwise 0.055 0.228
South 1 if the farm is _Iocated in Gufamgxu Hal_nan, Hunan, 0.089 0.285
Hubei, or Zhejiang; 0 otherwise
Number of

observations 4165

To compare regional heterogeneity, farm households were grouped together based on
agroecological maize regions in China (Meng et al., 2006) (Figure 2.2): 1032 farms (24.78%),
754 farms (18.10%), 533 farms (12.80%), 1247 farms (29.94%), 229 farms (5.50%), and 370
farms (8.88%) are located in the Southwest, Northeast, North, Yellow-Huai River Valley,

Northwest, and South respectively.
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Figure 2.2 The division of six agroecological maize regions in this study

2.2.3 Theoretical framework

Given that the adoption of the four machinery technologies in this study is not mutually
exclusive, the adoption of one technology could affect the adoption of others. Failure to
consider the correlation among adoption decisions regarding different technologies will cause
biased results (Kassie et al., 2009; Rodriguez-Entrena and Arriaza, 2013). Therefore, univariate
probit or logit models are not sufficient for use in modeling the adoption of several interrelated
technologies because they estimate the adoption of each technology independently, which
ignores the correlations among these adoption decisions. The multivariate probit (MVP) model
could overcome this problem. MVP models not only estimate the influence of a set of
independent variables on the adoption of each of the different technologies but also account for
the interdependence among these simultaneous adoption decisions (Kassie et al., 2009;
Rodriguez-Entrena and Arriaza, 2013). Hence, the MVP model was chosen for this study.

The MVP model is specified as follows (Greene, 2003):
=B Xy+a, (=1,234) (1)

1, if ;>0
ij =

0,if Y < 0 @)

where j = 1, 2, 3, 4 denotes mechanical plowing, mechanical seeding, mechanical harvesting,

and mechanical spraying. Y;; is a latent variable of the rational it" farmer, which captures the
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unobserved preferences or demand associated with the j* choice of machinery technologies.

ﬂj is the coefficient to be estimated by a simulated maximum likelihood procedure. X;; is the

vector which represents the factors that affect the adoption of machinery. Given the nature of
the latent variable, Y;; is estimated by the observable dichotomous variable Y;;. ; is the

stochastic error term following a multivariate normal distribution (MVN):

[ L Py Pis P1q]
P, 1 Pz p,,
P13 P23 1 P34
|~pl4- p24 p34 1 J

(Sill €2, €3, 8i4),N MVN /01 (3)

where Pji is the correlation coefficient of & and & (j # k). This assumption with non-zero off-
diagonal allows the correlation of error terms among these four adoption equations. If Py > 0,
the adoptions of these two technologies are complementary; if Pjx< 0, the adoptions of these

two technologies are substitutable (Rodriguez-Entrena and Arriaza, 2013).

2.3 Results and discussion
2.3.1 Descriptive statistics

Table 2.2 presents the description of variables used in the empirical analysis. The average maize
sowing area of each farm is 6.49 mu. On average, each farm has five discrete fields and arable
land areas of 10 mu. Most of the farmers produce 2 to 3 crops on the farm, while an average of
only 1 to 2 family members participated in agricultural production. A total of 76.3% of farmers
had received subsidy from the government to support agricultural production. Only 10% of
farmers received technical assistance in agricultural production. Economies of scale averaged

12,907.27 yuan, from a minimum of 60 yuan to a maximum of 1567,400 yuan.

Table 2.3 shows the adoption rates of four agricultural machinery technologies in six
agroecological maize regions. The adoption rates are differentiated by technology and region.
Compared with other regions, the Northeast has the highest average adoption rate while the
South has the lowest. The overall mechanical plowing adoption rate is 58.01% across six

regions, while mechanical spraying is only 17.82%.
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Table 2.3 Adoption rates of four agricultural machinery technologies in six agroecological
maize regions and the overall adoption rates (%)

Adoption Rates of Machinery Technologies in Six
Agroecological Maize Regions
Yellow-Huai

Southwest Northeast North . Northwest South
River Valley

Overall

Mechanical plowing ~ 13.74%  22.43% 16.80% 35.10% 6.66% 5.26% 58.01%
Mechanical seeding 2.13% 25.45% 21.46% 42.42% 7.17% 1.37% 43.87%
Mechanical harvesting 10.84%  20.85% 18.13% 38.42% 575% 6.01% 46.75%
Mechanical spraying 6.74% 48.92% 13.21% 24.53% 4.45% 2.16% 17.82%

2.3.2 Empirical results

Table 2.4 shows the correlation coefficients of the machinery technology adoption equations.
The likelihood ratio (LR) test is significant (x? (6) = 1772.26***, Hy is rejected), which suggests
the joint significance of the error correlations. This supports the idea that using MVP models is
more efficient than univariate models. All the error correlation coefficients are positive and
significantly different from zero. This result indicates the interdependence among the adoption
decisions of different machinery technologies. More specifically, the adoptions of these four
machinery technologies are complementary. The adoption of one machinery technology could

promote the adoption of other machinery technologies.

Table 2.4 Correlation coefficients of machinery technology adoption equations

p Std. Err.
Mechanical seeding vs. Mechanical plowing pa1 0.621 *** 0.021
Mechanical harvesting vs. Mechanical plowing P31 0.524 *** 0.022
Mechanical spraying vs. Mechanical plowing pa1 0.483 *** 0.030
Mechanical harvesting vs. Mechanical seeding P32 0.725 *** 0.017
Mechanical spraying vs. Mechanical seeding P42 0.448 *** 0.030
Mechanical spraying vs. Mechanical harvesting P43 0.337 *** 0.030

P21 = P31 = par = P32 = paz = paz = 0 (Ho);

Likelihood ratio test ¥? (6) = 1772.26 ***

Note: *** indicates significant at the 1% level.

The coefficients of independent variables in multivariate probit models are presented in Table
2.5. The Wald test indicates the model is significant (% (52) = 2090.25 ***). This justifies that
the model fits well. Considering the possibility of multicollinearity, a collinearity diagnostic

test was performed. The variance inflation factors of all explanatory variables are less than 3.13,
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suggesting that multicollinearity is not an issue (Curto and Pinto, 2011). Most of the explanatory
variables we considered in this study show statistical significance and their signs are as

expected.

Table 2.5 Results of multivariate probit models of adoption of four machinery technologies

Mechanical Plowing  Mechanical Seeding Mechanical Harvesting Mechanical Spraying

Variables Coeff. Std. Err. Coeff.  Std. Err. Coeff. Std. Err. Coeff. Std. Err.

Maize sowing area 0.003 (0.005) 0.019 ***  (0.004) 0.021 *** (0.004)  0.025*** (0.003)
Number of discrete
fields in the farm —0.003 (0.004) —0.020 *** (0.005) —0.012 ***  (0.004) —0.016 *** (0.006)
Arable land area 0.016 ***  (0.004) 0.004 (0.003) 0.002 (0.002) 0.000 (0.002)
Crop diversity 0.031**  (0.015) 0.002 (0.018)  0.078 **= (0.015)  0.069 *** (0.020)
Family labor 0.107***  (0.026) 0.084***  (0.028) 0.074 *** (0.026) 0.000 (0.031)

Subsidy 0.478** (0.050) 0.397*** (0.057) 0546**  (0.052) 0.119% (0.066)
Technical assistance  0.245*** (0.072) 0067  (0.076)  0.108  (0.069)  0.193** (0.079)
Economies of scale ~ 0.00L*  (0.001) 0.002** (0.001) 0.001*%  (0.001)  0.000  (0.001)
Northeast 0.775** (0.080) L1450*%* (0.096) 0589*%  (0.081) 1.300*** (0.102)
North 1141 %% (0.081) 2039* (0.097) 1.186*  (0.081) 0.669 *** (0.104)
Ye"o"{’/';:ﬂf)‘; RIVEr o876+ (0.061) 1.760* (0.080) L014*=  (0.064) 0.539*** (0.088)
Northwest 0.907 *** (0.102) L671*% (0.108) 0.722*%  (0.097) 0.53L*** (0.124)
South 0038  (0.080) 0138  (0.112) 0325*  (0.082) —0.073 (0.131)
Constant ~1215 %% (0.093) —1.983 %% (0.117) —1.614%**  (0.097) —1.940*** (0.128)
Wald 2 (52) 2090.25 ***
Log pseudo- _
likelihood 7506.263
Replications 200
Number of 4165

observations

Note: * indicates significance at the 10% level; ** indicates significance at the 5% level; *** indicates
significance at the 1% level. The Southwest is set as the base level in the regressions.

The maize sowing area has a positive effect on machinery technology adoption except for
mechanical plowing. This result is consistent with Zhou et al. (2020), Ma et al. (2018), and
Zhang et al. (2019). A greater maize sowing area promotes the adoption of agricultural
machinery because machines are even more necessary to substitute for manual labor in this
case. The number of discrete fields in the farm shows a negative impact on the adoption of
mechanical seeding, mechanical harvesting, and mechanical spraying, because scattered fields
increase the difficulty of machinery operation. Lai et al. (2015) and Wang et al. (2020) also
found that land fragmentation decreases machinery use. The total areas of arable land on the
farm indicate a positive effect on the adoption of mechanical plowing in maize production.
Plowing is a labor intensive form of agricultural production. The larger the arable land on the

farm, the more likely the farmer is to use machines for plowing.
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Crop diversity exerts a positive impact on machinery technology adoption except for
mechanical seeding. Higher crop diversity on their farms could motivate farmers to adopt more
agricultural machinery technologies and use them on different crops to improve machinery use
efficiency. Similarly, Mishra and Park (2005) revealed that farm diversification could promote
the adoption of more internet applications by U.S. farmers. More family labor participating in
agricultural production increases the likelihood of machinery adoption in plowing, seeding, and
harvesting. It could be that these farms are specializing in agricultural production. A number of
machines are used on these farms to increase productivity and profitability. On the contrary,
Zhang et al. (2019) and Ma et al. (2018) found that larger households would reduce the use of
agricultural machinery because the farms have a sufficient labor supply. Subsidy increases the
likelihood of using agricultural machinery. This result is in line with the findings from Ma et
al. (2018). Government subsidies lower the initial machinery purchase prices indirectly and

boost agricultural mechanization (Huang et al., 2013).

Technical assistance contributes positively to the adoption of mechanical plowing and spraying.
This result is parallel to the study of Carrer et al. (2017) about the adoption of computers in
citrus farming in Brazil. This is because technical assistance from agricultural professionals
gives farmers a chance to learn the application of agricultural innovations, somehow promoting
the adoption of new practices. Economies of scale affect machinery adoption positively. This
finding is in accordance with the results for the adoption of computers by Brazilian citrus
farmers (Carrer et al., 2017). Three reasons can explain this phenomenon. Firstly, China’ s
agriculture sector is predominantly small household farms whose typical size is estimated
around 7.5 mu (Wu et al., 2018). Small household farms are more willing to manage their
agricultural activities with household labor and they have less incentive to invest in agricultural
machinery than large farms. Secondly, due to the scale of production, the economic benefit that
small household farmers could obtain from using agricultural machinery is less than their larger
counterparts (Qing et al., 2019). Thirdly, large economies of scale grant farmers the financial

ability to invest in agricultural machinery.

Finally, machinery adoption also indicates regional differences in the six maize growing
regions. Farmers located in the Northeast, North, Yellow-Huai River Valley, and Northwest are
more likely to be machinery adopters than farmers in the Southwest. Farms in Southwest China
have the lowest machinery adoption probability because of the hilly or mountainous terrain,

which constrains large-scale machinery operation. Maize farmers in the Northeast and North
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may have higher machinery adoption odds than other regions because of the regions’ plain
topography and relatively large farm size. The regional differences in machinery adoption are
due to uneven resource endowments such as topography, soil fertility, farm size, labor price,

and off-farm employment among these regions.

2.4 Conclusions

In this study, household-level data on 4165 cases in six agroecological maize regions of China
were used in multivariate probit models to identify the factors that influence maize farmers’
decisions to adopt machinery technologies, with a specific focus on mechanical plowing,
mechanical seeding, mechanical harvesting, and mechanical spraying. The findings support that
the adoption of these four machinery technologies is interrelated and complementary. The
results of multivariate probit models imply that maize sowing area, arable land area, crop
diversity, family labor, subsidy, technical assistance, and economies of scale have positive
effects on machinery adoption, while the number of discrete fields in the farm has a negative
impact. Maize farmers in the Northeast and North have higher machinery adoption odds than

other regions.

Based on these empirical results, the following recommendations are given to promote the

adoption of agricultural machinery by Chinese maize farmers:
(I) Moderate scale production

Since maize sowing area, total areas of arable land in the farm, and economies of scale have
positive effects on machinery adoption, moderately increasing the scale of agricultural
production is a possible approach to reduce machinery operation costs and to facilitate
machinery adoption. Especially in large-scale agricultural production, machinery is
increasingly needed as a substitute for manual labor. We must be aware that scale production
can increase the total agricultural output, but that the output per unit area is not always increased
as the scale expands. Therefore, finding the moderate scale of production which facilitates

machinery adoption and maximizes agricultural productivity is the key.
(11) Crop diversification

Crop diversity has a positive effect on machinery adoption. To an extent, an increase in crop
varieties produced on the farm could promote the adoption of agricultural machinery and

guarantee an overall income under price volatility in some agricultural products.
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(1) Subsidizing agricultural machinery and its extension education

The adoption of machinery is influenced positively by subsidy. Obtaining subsidies from the
government could boost the adoption of machinery by Chinese maize farmers, but it is only a
temporary solution, and it also increases government administrative burdens. Farmers’ intrinsic
motivation is an important factor influencing agricultural machinery adoption. On the one hand,
government can provide subsidies to support the purchase of agricultural machinery. In
addition, agricultural machinery extension education is also necessary to make farmers realize

the importance and benefits of agricultural mechanization.
(V) Land consolidation

The number of discrete fields on the farm has a negative effect on machinery adoption. Land
fragmentation is a barrier for machinery adoption because it increases the difficulty of
mechanical operations. Considering the farm size growth, decreasing family labor, and land
fragmentation in rural China, land consolidation might be an approach to promote machinery
use. Merging scattered fields through land consolidation not only builds a convenient
environment for large-scale agricultural mechanization but also improves agricultural
productivity. However, small farms are more efficient in resource utilization than large farms.
It is important to consolidate scattered fields into a size appropriate for machinery application

but also optimal for resource utilization.

The proposals discussed above are just a general framework to promote the adoption of
agricultural machinery by maize farmers in China. As indicated by the results in this study, the
adoption of agricultural machinery shows regional differences. When it comes to a specific
region, these proposals should be adjusted correspondingly to fit well with regional resource

endowments.

There are also some shortcomings of this study. Due to data availability, this research could not
add some explanatory variables regarding farmers’ sociodemographic characteristics into the
models. This study only considers whether farmers use machinery technologies or not, but the
intensity of adoption of machinery technologies is not clear. Future work can focus on the
intensity of adoption of machinery technologies in maize production. The economic and social
impacts of using machinery in maize production compared with those who are not using it

would be an interesting direction in the future as well.
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Abstract

Farm machinery plays an important role in Chinese maize farming by replacing manual labor
and increasing productivity. However, it remains unclear how the impacts of farm machinery
use differ across farm households. Thus, this study used farm household survey data from
Chinese maize farmers to identify the factors that influence the adoption of farm machinery and
to estimate the impacts of adoption on maize yield and labor productivity by using the
endogenous switching regression (ESR) models. In addition, the heterogeneous effects of farm
machinery adoption were analyzed across farm households. The empirical results show that
rented land and cooperative membership are main drivers of farm machinery adoption, while
land fragmentation is a barrier of adoption. Farm machinery use has significantly positive
impacts on maize yield and labor productivity, but the impacts differ across farm households.
Finally, some policy implications were proposed to promote the adoption of farm machinery
and to optimize its economic effects.

Keywords: China, farm machinery, adoption, maize yield, labor productivity, endogenous

switching regression models, heterogeneous impacts, policy implications

3.1 Introduction

In modern agriculture, farm machinery is important for farmers to improve efficiency and
profitability in agricultural production (Benin, 2015). Farm machinery can substitute manual
labor and draught animals in agricultural production and reduce the need to hire workers and
increase labor productivity of each worker (Hamilton et al., 2021). With the assistance of farm
machinery, economies of scale and intensification of production are easier to realize (Benin,
2015; Ma et al., 2018; Mrema et al., 2008).

In 2020, maize is the most cultivated cereal crop in China in terms of 42.12% sown area and
42.26% harvested yield (National Bureau of Statistics of China, 2022). However, China’s
average maize yield in 2020 was 6.31 tons/ha, which was relatively low compared to the 10.79
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tons/ha in the United States (FAO, 2019). One of the main reasons is that the USA has higher
mechanization level in maize production compared to China (Qian et al., 2016). Thus,
agricultural mechanization is one of the most important approaches to achieve high productivity

of maize production in China.

In 2004, the “Law of the People's Republic of China on Promotion of Agricultural
Mechanization” was launched in China as a policy and financial framework to encourage
farmers to use agricultural machinery and to promote agricultural mechanization. The
agricultural machinery purchase subsidies provided by the Chinese government increased from
70 million yuan in 2004 to 19 billion yuan in 2021 (National Bureau of Statistics of China,
2022). From 2008 to 2021, the comprehensive mechanization level in China’s maize production
increased from 51.78% to 90.00%, and maize yield increased from 5.56 tons/ha to 6.29 tons/ha
(Figure 3.1). In addition to mechanization, other factors such as improved seeds, fertilizers, and

pesticides also contributed to the increased maize yield in China (Meng et al., 2006).

Comprehensive mechanization level in China's maize production and maize yield
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Figure 3.1 Comprehensive mechanization level in China’s maize production and maize yield.
Comprehensive mechanization level = mechanical tillage rate*0.4 + mechanical seeding rate*0.3 + mechanical

harvesting rate*0.3. Data source: National Bureau of Statistics of China (2022).

Many studies have analyzed the factors that influence the adoption of farm machinery or the
impacts of farm machinery use on agricultural performance in China’s maize production. Zhou
et al. (2020) used an unconditional quantile regression model to estimate the heterogeneous
impacts of farm machinery use across different quantiles of maize yield, while addressing the
selection bias of farm machinery use by the control function approach. They found that farm
machinery use has higher positive impacts on low productivity farmers than on high

productivity farmers. Their results also suggest that education and household size have
27



significant negative effects on farm machinery adoption, while farm size and the expenditures
of pesticide and fertilizer have significant positive effects on farm machinery adoption. A study
by Ma et al. (2018) found that farm machinery use has a significantly positive effect on maize
yield and averaged in a 15% increase in yield. They also found that large farm size and fertile
soil can boost the adoption of farm machinery, while large household size would discourage
the adoption of farm machinery by farmers. Wang et al. (2016) reveled that farm machinery
showed a strong substitution effect to labor in China’s maize production by using provincial
level panel data from 1984 to 2012. Jetté-Nantel et al. (2020) used production function to
estimate the impact of farm machinery use on maize yield, and the results imply that the
efficiency gains from farm machinery use is limited. Zhang et al. (2019) performed the
endogenous switching regression (ESR) model to examine the factors that influence the
adoption of farm machinery in pesticide application and the effects of adoption on pesticide
expenditure among 493 Chinese maize farmers. Their findings suggest that off-farm work and
farm size have significantly positive impacts on the adoption of farm machinery in pesticide
application, and the adoption can significantly reduce pesticide expenditure by increasing the

efficiency of pesticide application.

However, limited studies have been found to estimate the impacts of farm machinery use on
labor productivity in Chinese maize production, and most existing articles that estimate the
effects of farm machinery use on maize yield only showed the average treatment effects of farm
machinery adoption on maize yield but not the heterogeneous treatment effects of adoption
across farm households. This article contributes to literature in two ways. Firstly, this paper
used ESR models to identify the factors that influence the adoption of farm machinery and to
estimate the impacts of farm machinery adoption on maize yield and labor productivity in
Chinese maize production. Secondly, majority studies only estimate the homogenous impacts
of farm machinery adoption on outcome variables (e.g., maize yield and agrochemical
expenses). Nevertheless, the impacts of farm machinery adoption on outcome variables may
not be the same for all adopters, and it remains unclear how the impacts differ across farm
households. This study used the average treatment effects of farm machinery adoption on maize
yield and labor productivity, generated from the ESR model, as dependent variables in two
ordinary least squares (OLS) regressions respectively to explore the heterogeneous treatment

effects of farm machinery adoption across farm and farmer characteristics.
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3.2 Materials and methods
3.2.1 Data source

The data used in this study is based on the “National Scientific Fertilizer Application Research
Project 2019 headed by the Ministry of Agriculture and Rural Affairs of China. This national
survey focused mainly on evaluating the farm-level impact of a scientific fertilizer application
project. The survey was carried out in 2019 by the National Academy of Agriculture Green
Development, China Agricultural University and was based on face-to-face interviews with
farmers from 11 of the country’s main grain producing provinces: Heilongjiang, Jilin, Hebei,
Henan, Shandong, Shaanxi, Gansu, Anhui, Jiangsu, Hunan, and Guangxi. This survey applied
stratified multi-stage sampling and random sampling. Firstly, within each province, counties
were classified according to the cultivated area, and 4 counties were randomly selected.
Secondly, within the selected counties, townships were classified according to per capita
income, and 3 townships were randomly selected. Thirdly, within the selected townships,
villages were classified according to per capita income, and 2 villages were randomly selected.
Finally, within the selected villages, farmers were classified according to their cultivated area
and were randomly selected. The interview questions covered characteristics of farm
households, aspects of farm management, agricultural production expenditure and revenues,

pesticide application, and farmers’ knowledge about fertilizer application, etc.

This survey was assisted by the local government, and all the farmers selected participated in
the survey, i.e., 100% response rate. The sample consisted of 1,123 maize farmers. Given the
research purpose and variables of this study, missing values and invalid observations were
excluded, leaving a final sample consisting of 824 maize farmers. The sampled provinces in
this study account for 63% of China’s maize production in 2018 (National Bureau of Statistics
of China, 2022) (Figure 3.2).
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Figure 3.2 Maize yield in different provinces of China in 2018 and sample counties in this study.
Data source: National Bureau of Statistics of China (2022).

3.2.2 Definitions and descriptive statistics of variables

Table 3.1 presents the definitions and descriptive statistics of variables in this study. The t-test
was performed to check the mean differences of variables between farm machinery adopters
and non-adopters. More than half of maize farmers in this study adopted farm machinery in
land preparation, fertilizer application, or pesticide application. The outcome variables, maize
yield and labor productivity, are significantly higher for farm machinery adopters compared to
non-adopters. Generally speaking, farm machinery adopters are more educated and younger
than non-adopters. Number of agricultural workers within household for adopters is smaller
than that of non-adopters. Compared with non-adopters, farm machinery adopters are more
likely to be a member of agricultural cooperatives and are more likely to rent land from others.
Averagely, farm size of adopters is 2.05 ha compared to 0.90 ha for non-adopters. Moreover,
adopters show significant higher fertilizer expenditures compared to non-adopters. Particularly,
most of the adopters are located in North of China. However, the direct comparisons between
farm machinery adopters and non-adopters can lead to erroneous conclusions because they only
base on descriptive statistics without controlling for confounding factors. Hence, this study
accounts farm machinery adoption decisions together with other confounding factors to explore
the impacts of farm machinery adoption on maize yield and labor productivity.
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Table 3.1 Descriptive statistics

Variables Definitions Non- Adopters Mean
adopters (N =483) Difference
(N =341)
Dependent variables
Machinery adoption 1 if the farm adopted farm machinery 0 1 o el
in any of the production processes:
land preparation, fertilizer
application, or pesticide application;
0 otherwise
Maize yield Maize yield per hectare (ton/ha) 6.887 7.154 —-0.267*
Labor productivity (In) Total value of maize output per 7.189 7.680 —0.491*%**
agricultural worker (yuan/person) in
natural logarithm
Independent variables
Age Age of household head 58.352 56.791 1.561**
Gender 1 if the household head is male; 0 0.921 0.925 —0.005
otherwise
Education Education of household head in 7.968 8.402 —0.434*
years
Agricultural workers Number of agricultural workers 3.323 3.114 0.209**
within household
Cooperative 1 if the farm is a member of an 0.100 0.157 —0.058**
membership agricultural cooperative; 0 otherwise
Off-farm employment 1 if the household head has off-farm 0.188 0.219 —0.032
employment; O otherwise
Plain 1 if the farm is located in plain 0.897 0.845 0.053**
region; O otherwise
Soil fertility 1 if the soil on the farm is fertile; 0 0.390 0.340 0.050
otherwise
Land fragmentation Number of discrete field plots on the 3.493 3.540 —-0.048
farm
Rented land 1 if the farm household rented land 0.323 0.520 —0.197***
from others; 0 otherwise
Farm size Maize grown area on the farm (ha) 0.898 2.050 —1.152%**
Fertilizer expenditure Total fertilizer expenditure per 2.140 2.500 —0.360***
hectare (1000 yuan/ha)
Pesticide expenditure Total pesticide expenditure per 0.466 0.508 —0.042
hectare (1000 yuan/ha)
West 1 if the farm is located in Gansu or 0.246 0.284 —0.037
Shaanxi; 0 otherwise
Northeast 1 if the farm is located in Jilin or 0.059 0.174 —0.115***
Heilongjiang; O otherwise
North 1 if the farm is located in Shandong, 0.563 0.439 0.124***
Hebei or Henan; 0 otherwise
South 1 if the farm is located in Anhui, 0.132 0.104 0.028
Guangxi, or Hunan; 0 otherwise
Instrumental variables
Private car 1 if the farm household owns a 0.326 0.398 —0.072**
private car; O otherwise
Village cadre 1 if the farm household is a village 0.182 0.284 —0.102***

cadre; 0 otherwise

Note: yuan is the unit of Chinese currency, 1 yuan = $0.15.
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3.2.3 Empirical model

3.2.3.1 Impact evaluation and selection bias

Theoretically, farm machinery adoption decisions and their impacts on maize yield or labor
productivity can be estimated in two steps. Firstly, assuming that A3, is the expected utility of
farm machinery adoption, and Ay; is the expected utility of not adopting. M; is a latent variable
which captures the expected utility difference of farm machinery adoption (A7;) and non-
adoption (4p;). A farmer adopts farm machinery for maize production if and only if the expected
utility of adoption is higher than non-adoption: M; = Aj; — Ay; > 0. Although the latent
variable M;" is unobserved, the binary farm machinery adoption decision (M;) is observed: M;
=1if Aj; > Ap; and M; = 0 if A7; < Ajp,;. Thus, farm machinery adoption decision is specified
as follows:

1 if M; >0
0 otherwise,

M; = X,a + ; with M; = { 1)

where X; represents a vector of explanatory variables that affect farm machinery adoption
decisions (e.g., age, education, gender, soil fertility, and farm size); a is the parameter to be

estimated; and ; is the error term.

Secondly, the impact of farm machinery adoption on outcome variables is specified as:
i=ZB+My+e, (2)

where Y; is maize yield or labor productivity; Z; is a vector of explanatory variables that affect
outcome variables (e.g., farm and farmer characteristics); M; is the farm machinery adoption

denoted before; ¢; is the error term; p and y are vectors of parameters to be estimated.

Normally, equation (2) can be estimated by the ordinary least squares (OLS) if the farm
machinery adoption (M;) is exogenous. However, farmers may self-select as farm machinery
adopters or non-adopters based on their farm characteristics and other factors rather than being
stochastically assigned, and this causes the selection bias. Moreover, some unobservable
characteristics (e.g., farmers’ motivation, managerial ability, and experience) may also affect
the adoption decisions and outcome variables at the same time and cause the correlation of error
terms in the selection equation (1) and the outcome equation (2): p = corr (U, €) # 0. In these

cases, the OLS estimates of equation (2) are biased if farm machinery adoption is endogenous.
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Moreover, OLS fails to consider the possible structural differences between farm machinery

adopters and non-adopters in the outcome equation.

3.2.3.2 Endogenous switching regression (ESR) model

Hence, this study used the ESR model (Maddala, 1983) to address the endogeneity of farm
machinery adoption and to estimate the determinants and impacts of farm machinery adoption.
The ESR model consists of two stages. In the first stage, the selection equation (1) was used to
estimate the factors that affect the adoption of farm machinery. In the second stage, two regimes

were specified for adopters and non-adopters to estimate the impact of adoption:

Regime 1. Y,; =Z;B1 + &; 1TM; =1, 3)
Regime 0: Yy; = ZpiBo + €o; if M; =0, 4)
where Y; is the outcome variable (maize yield or labor productivity); Z; is a vector of variables
(e.g., age, gender, education, labor intensity, fertilizer expenditure, and pesticide expenditure)
that affect the outcome variables; ¢; is the error term; y;, &,;, and &,; are assumed to have

trivariate normal distribution with zero means.

For the identification of ESR model, X; in the selection equation (1) must have at least one
instrumental variable that does not appear in the Z;, and instrumental variables are supposed to
affect the adoption only but not the outcome variables. Here, private car and village cadre were
chosen as instrumental variables respectively. Private car and village cadre are expected to
affect a farm household’s machinery adoption decision but not a farmer’s maize yield or labor
productivity. Table Al of the appendix reports the test on the validity of instrumental variables.
Private car and village cadre both have statistically significant effects on adoption, but not of
maize yield or labor productivity by the farmers that did not adopt farm machinery. Thus, the

instrumental variables were valid.

The ESR model calculated the impacts of farm machinery adoption by constructing conditional
expectations of outcome variables in respect of actual scenarios and counterfactual scenarios:
Farm machinery adopters (actual):

EYyulM;=1) = ZyiB41 + O-lu/lli ) (5)
Farm machinery non-adopters (actual):

E(Yoil M; = 0) = ZoiBo + douhoi (6)

Farm machinery adopters if they had chosen not to adopt (counterfactual):
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EYoil My = 1) = ZiBo + 0opii (7)
Farm machinery non-adopters if they had chosen to adopt (counterfactual):

E(Yy| M; = 0) = ZoiB1 + 01,40 (8)
where o;, and oy, indicate the covariance of y; with &; and gy; respectively; 4; and 4,
represent the inverse Mills ratio derived from the selection equation (1) and are plugged into
equation (3) and (4) to correct the selection biases.

Following Heckman et al. (2001), the impact of farm machinery adoption on outcome variables
(maize yield or labor productivity) was defined in (9), which is also called the average treatment
effect on the treated (ATT).

ATT=E(Yy| M; = 1) — EVyl M; = 1) = Z1;(B1 — Bo) + (01, — 000 i, )

Similarly, the average treatment effect on the untreated (ATU) for farmers that actually did not
adopt farm machinery is defined as:
ATU = E(Yy;| M; = 0) — E(Yo;| M; = 0) = Zo;(B1 — Bo) + (014 — Top)ois (10)

Although the ESR model can be estimated by two-stage OLS or maximum likelihood
estimation, these approaches are not efficient and require complicated calculations to achieve
consistent standard errors. Thus, full information maximum likelihood (FIML), an efficient
method, developed by Lokshin and Sajaia (2004) was performed to estimate the selection

equation and two regime equations simultaneously to yield consistent standard errors.

3.3 Empirical results and discussion
3.3.1 Estimation of maize yield function

Table 3.2 reports the estimates of ESR model for farmers’ adoption of farm machinery and its
impacts on maize yield. p1 is negative and significantly different from zero which suggests the
presence of selection bias. The likelihood ratio of independence test rejects the null hypothesis
of farm machinery adoption and maize yield are independent at the 10% significance level. The
results of selection equation suggest that farm households with more agricultural workers are
less likely to be farm machinery adopters because they have sufficient labor supply in
agricultural production, and there is no need to adopt farm machinery to replace manual labor.
Likewise, Zhou et al. (2020) and Ma et al. (2018) also found that household size has a negative
effect on farm machinery adoption. Cooperative membership shows a positive effect on farm

machinery adoption may be because agricultural cooperatives often perform various field
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operations jointly among cooperative members, and are considered to stimulate the farm
machinery adoption. This result is in line with Zhang et al. (2020) and Manda et al. (2020) who
found that the cooperative membership facilitates the adoption of agricultural technology. Land
fragmentation is found to be an obstacle for farm machinery adoption because it increases the
difficulty of plot to plot machinery operation. Lai et al. (2015) also support this finding. Farm
households who rented in land have higher probability to use farm machinery in maize
production, and this may be because the expansion of farm size needs farm machinery to replace
manual labor. This result is in line with Zhou et al. (2020) and Ma et al. (2018) who found that
farm size has a significant positive effect on farm machinery adoption. Fertilizer expenditure is
significantly positive corelated with farm machinery adoption. This finding is consistent with
Zhou et al. (2020) who found that maize farmers with higher fertilizer expenditure are more
likely to adopt farm machinery. Private car has a significantly positive effect on farm machinery

adoption, and this indicates its validity as an instrumental variable.

In maize yield equations, most of the coefficients show expected signs. For non-adopters, age,
soil fertility, farm size, and fertilizer expenditure have positive effects on maize yield. This
result is consistent with the practical experience. In particular, farm size positively affects maize
yield of non-adopters but negatively affects maize yield of adopters. This may be because most
non-adopters have a relatively small farm size, and the increased farm size can boost maize
output. Compared to non-adopters, farm machinery adopters have a relatively large farm size,
and the increased farm size may lead to resource misallocation and management inefficiency
and finally to a declined maize yield (Sheng et al., 2019). However, rented land has a negative
effect on maize yield for both adopters and non-adopters. Likely, Jacoby et al. (2002) also found
that insecure land use discourages farmers to invest more on land and decreases the
productivity. On the other hand, Feng et al. (2010) argue that farmers who rented in land are
more capable of obtaining high benefits from agricultural activities, and rented land can
increase production. For adopters, maize yield is positively corelated with gender and soil
fertility because male farmers are considered to be physically superior to female farmers in
agricultural production, and fertile soil is beneficial for maize production. Interestingly, maize
yield of farm households that adopt farm machinery is positively corelated with land
fragmentation may be because more field plots provide enough space for machinery operation

that can reduce the damage to maize plants.
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Table 3.2 Estimates of ESR model for farm machinery adoption and its impacts on maize yield

Maize yield
Selection Non-adopters Adopters
Age 0.006 0.034*** 0.004
(0.006) (0.013) (0.013)
Gender -0.174 —-0.309 0.697*
(0.205) (0.483) (0.409)
Education 0.012 0.035 0.048
(0.016) (0.032) (0.029)
Number of agricultural —0.079** —0.036 0.010
workers
(0.034) (0.068) (0.066)
Cooperative 0.346** —-0.210 0.229
membership
(0.154) (0.286) (0.282)
Off-farm employment 0.211 —0.045 —-0.276
(0.132) (0.295) (0.275)
Plain -0.210 0.014 0.128
(0.155) (0.430) (0.363)
Soil fertility —-0.188* 0.619** 0.575**
(0.108) (0.240) (0.224)
Land fragmentation -0.017** —0.007 0.093***
(0.008) (0.0112) (0.027)
Rented land 0.414%** —1.016*** —0.435*
(0.114) (0.272) (0.240)
Farm size 0.002 0.117*** —-0.030*
(0.014) (0.035) (0.016)
Fertilizer expenditure 0.137*** 0.346*** 0.086
(0.050) (0.133) (0.120)
Pesticide expenditure 0.097 0.198 0.566
(0.133) (0.326) (0.406)
West 0.127 1.671*** 1.409***
(0.188) (0.401) (0.510)
Northeast 0.724%** 2.942%** 2.515%**
(0.235) (0.494) (0.541)
North 0.024 1.670%** 1.267**
(0.177) (0.322) (0.507)
Private car 1.081***
(0.101)
Constant —0.853* 2.571** 3.864***
(0.467) (1.293) (1.055)
Inco 0.628***
(0.059)
Po —0.034
(0.241)
Incy 0.788***
(0.056)
p1 —0.231**
(0.102)
Log likelihood —2106.003
Wald 2 (16) 122.35%**
Likelihood ratio of v (2)=4.77*
independence
Observations 786

Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1; south is the reference region; po is the
correlation coefficient between &,; and y;; p1 is the correlation coefficient between &;; and ;.
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3.3.2 Estimation of labor productivity function

Table 3.3 presents the estimates of ESR model for farmers’ adoption of farm machinery and its
impacts on labor productivity. p1 is negative and significantly different from zero which
suggests the presence of selection bias. The likelihood ratio of independence test rejects the null
hypothesis of farm machinery adoption and labor productivity are independent at the 1%
significance level. Similarly, the results of selection equation suggest that cooperative
membership, off-farm employment, and rented land have significantly positive effects on farm
machinery adoption, while land fragmentation has a significantly negative impact on farm
machinery adoption. Farm household heads with off-farm employment have higher chance to
adopt farm machinery may be because they need machinery to substitute the lost labor from
off-farm employment (Su et al., 2016). On the other hand, Ji et al. (2012) reported that off-farm
employment decreases farmers’ odds of owning farm machinery due to the alternative
machinery services from market. In particular, the coefficient of fertilizer expenditure is
significantly positive, indicating that more fertilizer use promotes the adoption of farm
machinery. Maize farmers from West and Northeast of China have higher probability to be farm
machinery adopters compared to farmers from South because these regions are mainly plains.
Private car and village cadre both have significantly positive effects on farm machinery

adoption, and this suggests that they are valid instrumental variables.
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Table 3.3 Estimates of ESR model for farm machinery adoption and its impacts on labor
productivity

Labor productivity (In)

Selection Non-adopters Adopters
Age 0.005 0.008 —0.005
(0.005) (0.006) (0.005)
Gender -0.193 —0.521** —-0.115
(0.200) (0.239) (0.189)
Education 0.006 0.034** 0.004
(0.016) (0.016) (0.015)
Cooperative membership 0.372** 0.074 0.146
(0.150) (0.190) (0.146)
Off-farm employment 0.257** 0.184 —-0.202*
(0.125) (0.158) (0.120)
Plain -0.162 0.111 0.202
(0.152) (0.192) (0.132)
Soil fertility -0.104 0.043 0.370***
(0.103) (0.112) (0.103)
Land fragmentation —0.015* 0.015 0.079***
(0.008) (0.020) (0.015)
Rented land 0.385*** —0.226 -0.162
(0.105) (0.160) (0.116)
Farm size 0.030 0.207*** 0.131***
(0.026) (0.030) (0.012)
Fertilizer expenditure 0.160*** —-0.018 —0.134***
(0.050) (0.061) (0.044)
Pesticide expenditure 0.134 0.152 0.422***
(0.123) (0.106) (0.118)
West 0.305* 0.184 —-0.136
(0.174) (0.193) (0.181)
Northeast 0.662*** 1.552%** 0.821***
(0.236) (0.306) (0.212)
North 0.022 0.500*** 0.027
(0.159) (0.182) (0.172)
Private car 0.184*
(0.112)
Village cadre 0.359***
(0.119)
Constant —-0.735* 5.991*** 7.693***
(0.439) (0.536) (0.492)
Inoo -0.118*
(0.066)
Po —0.214
(0.379)
Incy 0.052
(0.075)
p1 —0.667***
(0.136)
Log likelihood —1514.658
Wald 2 (15) 172.75%**
Likelihood ratio of independence v (2) = 11.20%**
Observations 786

Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1; south is the reference
region; po is the correlation coefficient between ¢y; and y;; p1 is the correlation coefficient
between &;; and ;.
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In labor productivity equations, farm size has a significant positive effect on labor productivity
of both adopters and non-adopters because increased farm size leads to more total maize output
and indirectly increases labor productivity of each agricultural worker. Soil fertility and
pesticide expenditure have positive effects on labor productivity for those who adopted farm
machinery because good pest and disease control and fertile soil can boost maize productivity.
However, off-farm employment seems to decrease the labor productivity of adopters. A
possible explanation is that farmers who have off-farm employment would invest less time and

less efforts in agricultural production, and this causes the reduction of labor productivity.

3.3.3 Impacts of farm machinery adoption on maize yield and labor productivity

The impacts of farm machinery adoption on maize yield and labor productivity are shown in
Table 3.4. The expected maize yield produced by adopters is 7.159 tons/ha, while these farmers
would have produced 6.942 tons/ha of maize yield if they did not adopt farm machinery under
the counterfactual scenario. Hence, the average impact of farm machinery adoption for adopters
is 0.216 tons/ha. Under the counterfactual scenario, farmers who did not adopt farm machinery
would increase maize yield by 0.833 tons/ha if they had adopted. These results support that
farm machinery adoption did benefit farmers through increased maize yield. Similarly, farm
machinery adoption is also found to increase the labor productivity of maize farmers. The ATT
of farm machinery adoption on adopters is 0.450, suggesting that adopters would decrease the
expected labor productivity by 5.86% (The formula is: (7.227-7.677)/7.677*100%) if they did
not adopt. Likewise, labor productivity of non-adopters would increase by 18.65% (The
formulais: (8.530—7.189)/7.189*100%) if they had adopted farm machinery.
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Table 3.4 Impacts of farm machinery adoption on maize yield and labor productivity

Decision stage
Treatment effects

To adopt Not to adopt

Maize yield (ton/ha)

Adopters 7.159 6.942 ATT=0.216***
(0.041) (0.053) (0.067)

Non-adopters 7.697 6.864 ATU= 0.833***
(0.051) (0.052) (0.072)

Labor productivity (In)(yuan/person)

Adopters 7.677 1.227 ATT=0.450***
(0.054) (0.065) (0.085)

Non-adopters 8.530 7.189 ATU= 1.341%**
(0.051) (0.045) (0.068)

*** p<0.01; standard errors in parentheses using 50 bootstrap replications.

3.3.4 Heterogeneous impacts of farm machinery adoption on maize yield and labor
productivity

The ATTs of maize yield and labor productivity in Table 3.4 only show the average impacts of
farm machinery adoption on all adopters. However, many studies have shown that the impacts
of farm machinery use may differ across farm households because of the heterogeneous farm
characteristics and social-economic conditions (Adekunle et al., 2016; Adu-Baffour et al., 2019;
Kienzle et al., 2013; Qing et al., 2019; Takeshima et al., 2020; Zhou et al., 2020). The impacts
of farm machinery adoption on maize yield and labor productivity may not be the same for all
adopters, and it remains unclear how the ATTSs differ across farm households. If farm machinery
adoption had positive effects exclusively for large farms or high productive farmers, the
undifferentiated farm machinery extension program which fails to consider the farm-level
heterogeneity would cause the inequity among farmers. Thus, understanding the heterogeneous
effects of farm machinery adoption contributes to formulate different sets of extension services

which fit various types of farm households.
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Table 3.5 Heterogeneous treatment effects of farm machinery adoption

Variables Maize yield Labor productivity (In)
ATT ATT
Age —0.031*** —0.013***
(0.002) (0.001)
Gender 0.853*** 0.295***
(0.077) (0.050)
Education 0.017*** 0.022***
(0.006) (0.004)
Number of agricultural workers 0.018
(0.015)
Cooperative membership 0.645*** 0.296***
(0.092) (0.061)
Off-farm employment —0.228*** —0.346***
(0.047) (0.032)
Plain 0.058 0.110***
(0.059) (0.035)
Rented land 0.836*** 0.278***
(0.060) (0.040)
Farm size —0.059*** —0.019
(0.019) (0.013)
Farm size square —0.002*** —0.001***
(0.001) (0.000)
West —0.415%** —0.487***
(0.092) (0.061)
Northeast —0.661*** —0.840***
(0.098) (0.064)
North —0.551*** —0.538***
(0.085) (0.056)
Constant 1.113*** 1.535***
(0.181) (0.122)
R—squared 0.779 0.675
Observations 464 464

Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1; south is the reference region.

Inspired by Verhofstadt and Maertens (2015), this study uses ATTs of maize yield and labor
productivity, generated from the ESR model, as dependent variables in two OLS regressions
respectively to explore the heterogeneous treatment effects of farm machinery adoption across
farm and farmer characteristics. Table 3.5 shows the heterogeneous treatment effects of farm
machinery adoption across farm and farmer characteristics. Young, male, and more educated
farm households gain higher maize yield and labor productivity from farm machinery adoption.
The results also imply that farm machinery adoption is more productive in increasing maize
yield and labor productivity among the farms which are located in plain regions with
cooperative membership and rented land. This can be explained by that plain regions are

favorable for mechanized operations, and jointly mechanical operations within cooperative
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members improve the effects of farm machinery use. In particular, the coefficients of farm size
square terms are significant negative and the axes of symmetry of the quadratic functions are
on the left side of y-axes. It indicates that the impacts of farm machinery adoption on maize
yield and labor productivity decrease with farm size slightly. This may be because the
expansion of farm size leads to resource misallocation and management inefficiency, and
finally to a decline in the impacts of farm machinery adoption (Sheng et al., 2019). Likewise,
Huang and Ding (2016) found an inverse relationship between farm size and maize yield in
China because of distortions in small-scale farming transformation, and policies are needed to
assist small farms to adapt to large farms by improving resource use efficiency and farming
productivity. To achieve the best economic effects of adopting farm machinery, an appropriate

farm size is better than the oversized one in the context of Chinese agriculture.

3.3.5 Robustness test

Table 3.6 Propensity score matching: impacts of farm machinery adoption on maize yield and
labor productivity

Outcome variables Matching algorithm ATT
Maize yield (ton/ha) Kernel matching 0.329*
(Bandwidth = 0.06) (0.171)
Nearest neighbor matching 0.304*
(N=10, with replacement) (0.215)
Radius matching 0.347**
(caliper=0.08) (0.171)
Labor productivity (In) Kernel matching 0.347***
(yuan/person) (Bandwidth = 0.06) (0.086)
Nearest neighbor matching 0.343***
(N=10, with replacement) (0.094)
Radius matching 0.367***
(Caliper=0.08) (0.083)

*** p<0.01; standard errors in parentheses using 50 bootstrap replications; ATT: average
treatment effect on the treated.

Propensity score matching was performed to check the robustness of results from ESR models.

The results of propensity score matching (Table 3.6) show that the impact of farm machinery
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adoption on maize yield for adopters is 0.304-0.347 tons/ha, which is close to the result of ESR
model 0.216 tons/ha. Similarly, the impact of farm machinery adoption on labor productivity
for adopters is 0.343-0.367, which is also close to the result of ESR model 0.450. Findings from

propensity score matching suggest the robustness of estimates from ESR models.

3.4 Conclusions

This article aims to identify the drivers and barriers of Chinese maize farmers’ farm machinery
adoption decisions and to estimate the impacts of farm machinery adoption on maize yield and
labor productivity by using the ESR models. Rented land and cooperative membership are main
facilitators of farm machinery adoption, while land fragmentation is a barrier for adoption. Farm
machinery use has shown significantly positive impacts on maize yield and labor productivity,
but the impacts differ across farm households and slightly decrease with farm size. To achieve
the best economic performance of adopting farm machinery, Chinese farmers need to find
appropriate scales in maize production.

Some policy implications can be drawn from this study. Firstly, promoting moderate scale
maize production. Moderate scale maize production enlarges the land scale and makes it easier
to implement large scale mechanization and promotes the adoption of farm machinery. Notably,
the land size is not the bigger the better. Farmers need to explore an appropriate scale to
maximize profitability and to avoid resource misallocation and inefficiency of management and
thus to increase the returns of farm machinery adoption. Secondly, establishing farm machinery
cooperatives or initiating mechanization services. Joint farm machinery ownership in farm
machinery cooperatives or mechanization services from the third party would significantly
reduce the investment and operation expenditure of farm machinery and can boost the adoption
of farm machinery. Thirdly, facilitating land consolidation and land circulation. Land
consolidation merges many small and discrete field plots into a relatively large field plot which
makes machinery operation easier and efficient. Flexible land circulation systems enable
farmers to expand their land scale through renting in land from free market, and enlarged land
scale would promote farmers to use farm machinery to substitute manual labor and to facilitate
mechanization. Finally, formulating customized farm machinery extension services for
different farm households to promote the adoption of farm machinery and to optimize its
economic effects. Policy makers should appreciate that farmers who are not cooperative
members, not renting in land, and having fragmented land parcels face more challenges in farm

machinery adoption.
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Table Al Test on the validity of instrumental variables

Probit model Ordinary least squares
Machinery adoption Maize yield Labor productivity (In)
(Non-adopters) (Non-adopters)
Private car 0.228** 0.006 —0.183
(0.103) (0.231) (0.118)
Village cadre 0.270** 0.239
(0.123) (0.138)
Constant —0.545 2.615** 6.207***
(0.443) (1.256) (0.526)
Wald test ¥? (18) = 83.83*** F = 6.82%** F =10.96***
R—squared Pseudo R? = 0.093 R%=0.196 R%=0.462
Observations 800 322 322

Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1. Due to brevity,
coefficients of all other variables are not reported.
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Abstract: As a consequence of rapid ongoing technological developments and increasing
integration into agricultural mechanization and agricultural intelligence, UAVs are gradually
starting to play an increasingly important role in field crop management and monitoring. This
review introduces and covers the development in four major applications of UAVs in maize
production: (i) water stress detection, (ii) weed mapping, (iii) nutrient status monitoring and
(iv) yield prediction. In addition, this review summarizes UAV data management methods,
explains how expert systems work in UAV systems, and provides standardized workflow data
for farmers in maize production. In addition, the strengths, weaknesses, opportunities, and
threats of UAV use in maize production are analyzed. Based on more than eighty publications
and our own research, the discussion and conclusions point out key issues in UAV usage in
maize cropping and research gaps that need to be filled, along with a number of
recommendations for the development of UAVs in maize production in the future.

Keywords: Unmanned aerial vehicles (UAVs), maize, field management, data management,

expert systems.

Unmanned aerial vehicles (UAVSs) can be fitted with specific functional sensors (multispectral,
hyperspectral, and thermal, etc.) suitable for agricultural purposes to enable image acquisition
and data collection while flying across crop fields at a low altitude. In addition to remote
sensing, UAVs can also be used for other agricultural activities such as field surveillance, plant
counting, weed mapping, yield prediction, irrigation management, plant disease detection, plant
health monitoring, and crop spraying (Tsouros et al., 2019a). Crop spraying is an important
application of UAVs. UAVs equipped with tanks fly to the sites where weeds grow and spray
variable rates of herbicides based on weed maps instead of uniform blanket application

45



(Castaldi et al., 2017; Yang et al., 2018). However, due to the potential environmental hazards
of pesticide drift, aerial spraying is forbidden in European countries (Remac, 2018). It is only
allowed if there are no viable alternatives but reduced impacts on human and the environment
as compared with ground-based pesticide application should be proved (Reger et al., 2018).
Nevertheless, as the progress of technology (e.g. smart drones, high-performance UAVs, and
longer flight durations, etc.) and changes of legal boundaries, UAV-based crop spraying
applications will be an important aspect in the future.

Most studies have shown that low agricultural water use efficiency (Fang et al., 2010),
excessive nitrogen application (Cui et al., 2008), and pesticide overuse (Brauns et al., 2018) are
the main problems of maize production all over the world. Given the constraints imposed by
these problems, more sustainable maize production needs to find innovative ways of solving
them. Since UAVs have so many benefits in agricultural production, it is natural to use them in
maize cropping. Moreover, maize has significant size and leaf area make it the most promising
crop to work with UAV technologies because large size and leaf area are easy for UAVs to
execute remote sensing and spraying. Some new applications of this system have been used in
maize cropping, for example, water stress detection (Shi et al., 2019), yield prediction
(Maresma et al., 2016), weed mapping (Castaldi et al., 2017), and height estimation (Wang et
al., 2019). Table 4.1 shows the differences between traditional ground level precision maize
production and UAV-based maize production in field management. Traditional ground level
precision maize production relies on tractor-mounted sensors, field deployed sensors, or
portable test devices for field monitoring. However, the movement of tractors on the field could
cause soil compaction and crop damage. On the contrary, UAV-based maize production uses
UAVs fitted with sensors to fly across crop fields at a low altitude and this avoids the problems
in ground level precision maize production. UAVs can cover more areas in a short time and can
provide more comprehensive field information than ground level precision technologies.
Furthermore, UAV-based site-specific aerial spraying is more flexible and faster than tractor-

based variable-rate spraying.
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Table 4.1 Differences between traditional ground level precision maize production and UAV-
based maize production in field management

Ground level precision maize UAV-based maize production References
production
Water stress Tractors, handheld infrared UAYV multispectral sensors Zhang et al.
detection thermometer, portable air (2019)

temperature meter

Yield prediction Yield monitors and yield maps UAV multispectral sensors Jeffries et al.
(2020); Vergara-
Diaz et al. (2016)

Weed mapping Tractors, spectrometers, UAV multispectral sensors Castaldi et al.
fluorescence sensors (2017)

Nutrient status Tractors, handheld chlorophyll leaf UAYV multispectral and Gabriel et al.
monitoring clip sensors (2017)

hyperspectral sensors

Crop spraying  Tractor-based variable-rate spraying UAV-based site-specific Castaldi et al.

spraying (2017)

However, the review of recent UAV technology progress in maize production is very limited.
Up to now, UAVs do not have a standardized workflow in maize production, and this can cause
confusion when farmers are trying to use UAV systems because a high level of expertise is
needed at different field management stages to choose the suitable strategies and to process data
(Orakwe and Okoye, 2016; Tsouros et al., 2019b; Zhang and Kovacs, 2012). This increases the
difficulty of UAV use and reduces labor productivity because not all farmers possess this kind
of professional knowledge. Therefore, a well-structured standardized workflow is urgently

needed to guide farmers and to improve system efficiency in UAV-based maize production.

This review compiles the recent UAV studies in maize production in a systematic approach,
summarizes the data acquisition and processing methods, designs a standard workflow for
maize production, and offers a clear guide for maize producers. The aims of this paper are (i)
to review scientific literature about the current use and development of UAV technologies in
maize production; (ii) to explain how UAV technologies can solve problems in maize
production; (iii) to design a standard UAV workflow for farmers in maize production; and (iv)
to provide estimations for the future development of UAVs in maize production.
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4.1 Uses of UAVs in maize production field management

Based on sixty-two studies published over the last 10 years on the use of UAVS in maize
production, UAV research can be classified as the following types (Figure 4.1): water stress
detection (10%), nutrient status monitoring (18%), weed mapping (19%), yield prediction
(27%), height estimation (13%), plant distance estimation (3%), maize lodging estimation (3%),
maize number counting (3%), and others (3%). This review focuses solely on the introduction
of UAVs in water stress detection, nutrient status monitoring, weed mapping, and yield

prediction, which are considered to be the dominant factors that impact production costs.

13%
19%
18%
= Yield prediction Weed mapping
Nutrient status monitoring Height estimation
= Water stress detection = Plant distance estimation
= | odging estimation = Number counting

= Others

Figure 4.1 Proportions of UAV application types in maize production (Based on 62 studies
published over the last 10 years).

4.1.1 Maize water stress detection

Accurate crop water stress detection is needed in a comprehensive irrigation management to
achieve maximum water use efficiency and thus reduce costs. In recent years, two methods
have been predominantly applied to detect water stress in plant: on-site measurement of soil
water content and plant-based physiological indicators measurement (lhuoma and
Madramootoo, 2017). However, these conventional methods are time-consuming, costly, and
failed to depict the crop water status of the entire field (Zhang et al., 2019a, 2019b). Due to the
benefits of being easy to operate, flexible, and non-invasive coupled with high-resolution
images, UAVs have been increasingly used as an alternative production practice in crop water
stress monitoring (Park et al., 2017; Poblete et al., 2018; Zhang et al., 2019b). Under different
water availability conditions, crop leaves reflect different light spectrums and show different
canopy temperatures and UAV sensors are able to differentiate water stress plants from water
sufficient plants (Sylvester et al., 2018).
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The research on UAV-based maize water status monitoring is very limited. Zhang et al. (2019b)
established crop water stress index regression models to map maize water status at the
reproductive and maturation stages based on nine vegetation indices (e.g. normalized difference
vegetation index, soil-adjusted vegetation index, etc.) extracted from UAV multispectral
images. Comparing the maize water stress estimation results derived from regression models
with ground-based data, the R? value could reach 0.81. It proves the feasibility of UAV-based
maize water status monitoring. However, this research does not demonstrate to what extent
these maize water stress estimation regression models can be used under varying conditions
(e.g. other maize cultivars, other locations, etc.). Furthermore, most of the UAV-based maize
water stress detection studies only concentrate on single critical growth stage instead of the
whole growth period of maize and the prediction models can only be used under certain

circumstances.

Based on the literature available so far, a general standardized procedure of UAV-based maize
water stress detection is summarized as: (i) using UAVs equipped with sensors to collect data
from maize fields, (ii) measuring field level maize ground-truth data, (iii) modelling and
calibrating the UAV data with ground level maize truth data, and (iv) generating maize water
status maps that indicate the exact amount of water which should be site-specifically irrigated
in different plots or even spots instead of widely applied.

4.1.2 Maize weed mapping

Weeds are estimated to cause approximately 30% to 60% of potential yield losses in maize
production worldwide (Castaldi et al., 2017; Chikoye et al., 2005; Oerke, 2006; Safdar et al.,
2015; Usman et al., 2001). Some farmers carry out uniform blanket herbicide spraying for weed
control instead of site-specific spraying and this causes the excessive use of synthetic chemical
herbicides on the fields (Castaldi et al., 2017; Pelosi et al., 2015). Herbicides have significantly
reduced weed infestation in fields but the excessive use of herbicides has led to environmental
and ecological problems such as groundwater pollution, soil contamination, and biodiversity
loss (Castaldi et al., 2017; Pelosi et al., 2015; Pefia et al., 2013). Consequently, site-specific and
efficient weed management is a measure of major importance when it comes to reducing the

frequency and amount of herbicide usage in maize production (Burgos-Artizzu et al., 2011).

UAVs equipped with image sensors fly at low altitudes and are capable of distinguishing weed

patches from crops in a less expensive way (Prince Czarnecki et al., 2017). Next, UAVs
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equipped with tanks filled with liquid herbicide fly to the field to spray precise amounts of
herbicide based on observed weed site, weed density, and weed spatial distribution (Pelosi et
al., 2015; Pefa et al., 2013). UAV-based weed mapping and spraying help to reduce the amount
of herbicides applied to fields and reduce environmental pollution (Castaldi et al., 2017; Pelosi
etal., 2015).

The accuracy of UAV maize weed mapping ranges from 61% to 98% in seven studies and the
accuracy is evaluated by comparing the weeds estimated from UAV images with actual on-
ground weed counting (Table 4.2). Castaldi et al. (2017) observed herbicide savings of between
14% and 39.2% in UAV-based weed map patch spraying (spraying herbicides only on the site
where weeds grow) in maize fields compared to conventional blanket application (evenly
spraying herbicides on the entire field). Due to weed heterogeneity within the field, the saved
amount of herbicide was different. Compared with uniform blanket application, site-specific
patch spraying did not identify any significant differences in maize and weed biomass (Castaldi
et al., 2017; Pelosi et al., 2015). This means that patch spraying does not compromise maize
yield and has the same weed control effects as blanket application. UAV weed mapping is a
possible option to support precision herbicide patch spraying in maize fields without any
economic yield loss. Mink et al. (2018) found that UAV weed mapping reduced herbicide use
by 90% in post-emergence maize weed treatments. They developed a canopy height model
combined with vegetation indices and crop geographic coordinates in the field to distinguish
weeds from maize by their height at maize three leaf stage. It demonstrated 96% accuracy in

maize weed mapping (Mink et al., 2018).
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Table 4.2 UAVs used in maize weed mapping

Sensors Weed mapping methods UAYV remote Accuracy References
indices
Visible light (RGB)Y,  Support vector machine NDVI® 82% Pelosi et al. (2015)
NIR? algorithm (SVM)
Visible light (RGB), Support vector machine NDVI 61% Castaldi et al. (2017)
NIR, multispectral algorithm (SVM)
Multispectral Object-based image NDVI 95% Pefia-Barragan and
analysis Kelly (2012)
Multispectral Object-based image NDVI 86% Pefia et al. (2013)
analysis
Visible light (RGB), Object-based image NDVI, ExG?Y 98% Pefia et al. (2014)
multispectral analysis
Visible light (RGB), Canopy height model, NDVI, ExRY, 96% Mink et al. (2018)
multispectral weed height model ExG
Hyperspectral Support vector machine Cnorm® and 64% Casa et al. (2019)

(SVM), machine learning GRDB"

(ML)

DRGB: red, green and blue; ? NIR: near infrared; ¥ NDVI, normalized difference vegetation index; ¥ EXG, excess
green index; » EXR, excess red index; ® Cnorm, (700 — 515) / (700 + 515); ” GRBD, band depth 540 — 690.

However, the main obstacle to UAV weed mapping is finding effective algorithms to identify
pixels which depict weeds in the digital images and remove unrelated background (Burgos-
Artizzu et al., 2011). Because some weeds are similar in appearance (e.g. shape, color, etc.) to
crops in the early stages of development, it is difficult to discriminate weeds from crops
(Burgos-Artizzu et al., 2011; Pefia-Barragan et al., 2012). The accuracy of discrimination

affects the outcomes of weed mapping and site-specific treatment (Hamuda et al., 2016).

4.1.3 Maize nutritional status monitoring

At different development stages, maize has varying nutrient demands (Rhezali and Lahlali,
2017). In order to ensure sufficient nutrient supply, it is crucial to monitor the site-specific

nutrient needs at different critical stages of maize growth. With the assistance of UAVs, maize
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real-time nutrient status in each plot can be detected by sensors. Comprehensive nutritional
status monitoring maps extracted from UAV images could be valuable tools in variable rates of

fertilizer application.

Most of the UAV nutrient monitoring studies in maize concentrated on maize nitrogen status
assessment (Cilia et al., 2014; Corti et al., 2018; Gabriel et al., 2017; Krienke et al., 2017,
Quemada et al., 2014; Rhezali and Lahlali, 2017) because nitrogen nutrient indices are the best
indicators to assess maize nutritional status (Gabriel et al., 2017) (Table 4.3). Cilia et al. (2014)
highlighted the potential of using UAVs to obtain maize nitrogen status maps of the entire field,
because the estimated nitrogen content derived from UAV images showed good correlation
with field level maize nitrogen measurements (R?>=0.70) (Cilia et al., 2014). Quemada et al.
(2014) also confirmed the reliability of UAVSs in nitrogen status assessment at maize flowering
stage because the UAV image derived index (TCARI/OSAVI) was negatively correlated with

maize nitrogen balance index (R=—0.84).

Table 4.3 UAVs used in maize nitrogen status monitoring

Sensors UAYV remote indices  Prediction models Phenology References

stage of maize

Multispectral BNDVIY, GNDVI?,  Linear regression, V6+V9 Corti et al. (2018)
GC? least square
regression
Hyperspectral MCARI/MTVI129, Ordinary least Pre-flowering stem  Cilia et al. (2014)
NNI® squares regression elongation
Hyperspectral TCARI®/OSAVIY Polynomial Flowering Gabriel et al.
regression (2017)
Hyperspectral, TCARI/OSAVI Linear regression Flowering Quemada et al.
thermal (2014)

D BNDVI: Blue Normalized Difference Vegetation Index; ? GNDVI: Green Normalized Difference Vegetation
Index; ® GC: Ground Cover; ¥ MCARI/MTVI2: Modified Chlorophyll Absorption Ratio Index/Modified
Triangular Vegetation Index 2; % NNI: nitrogen nutrition index; ® TCARI: Transformed Chlorophyll absorption
in reflectance index; ”? OSAVI: Optimized soil-adjusted vegetation index.
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Although these studies showed the feasibility of UAV-based maize nitrogen status monitoring,
the prediction accuracy can be affected by canopy structure, pigment concentration, leaf water
content, and other nutrient deficiencies except nitrogen (Gabriel et al., 2017). To minimize the
impact of these interfering factors, further research should use more UAV remote indices as
independent variables in maize nitrogen status estimation models. Using more remote indices
to predict maize nitrogen status has been proved to be more stable and more reliable than using
single one because a single index is easily affected by the factors mentioned above (Cilia et al.,
2014; Gabriel et al., 2017; Quemada et al., 2014).

Based on the four references presented in Table 4.3, the basic workflow of UAVs in maize
nitrogen monitoring is summarized as (i) UAV sensors capture images above maize fields, then
derive vegetation indices which characterize the nitrogen status of maize; (ii) determine maize
nitrogen concentration using ground level destructive measurements in some representative
plots; (iii) by means of a series of regression analyses, selecting the best index or combined
indices to predict maize nitrogen status which leads to the results that strongly correlate with

ground level maize nitrogen measurements.

4.1.4 Maize yield prediction

Maize yield prediction prior to harvest is very important for farmers to enable them to take
decisions about the input of water, fertilizers, pesticides, labor, transportation, space for storage
as well as for predicting market constellation and developing optimal economic strategies
(Geipel et al., 2014). In most cases, some farmers estimate the yield based on their experience,
yield maps, or partly field sampling (Ping and Dobermann, 2005). These methods are over-
reliance on experience and the results cannot convey accurate information about fields and
proved to be labor-intensive and time-consuming (Li et al., 2016; Wahab et al., 2018).
Compared to these methods, the UAV-based system reduces labor and there by improve
economic performance (Tsouros et al., 2019a), saves time (Tsouros et al., 2019a), and expands
the area of field investigation (Barbedo, 2019). The yield is inferred through its correlation with
UAYV data in mathematical modeling, then a maize yield prediction model can be given to
decision makers (Herrmann and Bdolach, 2019).
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Table 4.4 UAVs used in maize yield prediction

Sensors UAV remote Image/ data processing Prediction Rz  Phenology References
indices software tools models
stages of
maize
Multispectral Wide dynamic JMP Pro 12 statistical Linear and 0.92 V12 Maresma et al.
range vegetation package quadratic (2016)
index (WDRVI) regression
Visible light Excess green Curve Fitting Toolbox of Linear 0.37 R2,R3, Zhang et al.
(RGB)Y (ExG) color Matlab regression R6 (2020)
feature
Multispectral, Structure of Smart3DCapture software Random 0.78 R3, R4 Li et al. (2016)
motion (SfM)
Hyperspectral . forest
mean point .
. regression
height
Multispectral Normalized ENVI software Exponential  0.72 R2-R3 Vergara-Diaz
difference ) etal. (2016)
L regression
vegetation index
(NDVI)
Multispectral LiDAR Python 2.7, and R x 64 Linear 0.85  Jointing Zhu et al.
) 353 regression period of (2019)
point clouds
summer
maize
Visible light Vegetation Matlab 7.6, PLS-toolbox Partial 0.73 R2 Herrmann and
(RGB), indices (VIs) Bdolach
. least squares
multispectral, ) (2019)
regression
hyperspectral
Multispectral Blue and near Agisoft PhotoScan Partial 0.4- Entire Wu et al.
infrared professional software 0.69  growing (2019)
least squares
) season
wavelength regression
bands (BNDVI)
Multispectral BIOVP: Pix4D software Random 094 VI12,VT Han et al.
] forest (2019)
a volume metric .
regression

used to estimate

crop biomass

within a plot

DRGB: red, green and blue; R? is the coefficient of determination of the maize yield prediction model.
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Vegetation indices (e.g. WDRVI, BNDVI, NDVI, EXG, etc.) derived from UAV images are
considered to be effective variables in different forecast models for yield prediction (Table 4.4)
(Geipel et al., 2014; Herrmann and Bdolach, 2019; Vergara-Diaz et al., 2016; Wu et al., 2019;
Zhang et al., 2020). During vegetative growth stages, different prediction models were
developed to predict maize yield, such as linear regressions (Zhang et al., 2020; Zhu et al.,
2019), random forest regressions (Han et al., 2019; Li et al., 2016), partial least squares
regressions (Herrmann and Bdolach, 2019; Wu et al., 2019), etc. The R? ranges from 0.37 to
0.94 because the goodness of fit of the models is affected by many variables (e.g. maize growth

stages, sensor sensitivity, weather conditions, locations, etc.) (Zhang et al., 2020).

However, in case of using only UAV derived vegetation indices in maize yield prediction
models is not sufficient to get convincing results (Geipel et al., 2014). Maize height, canopy
cover, and other structural information extracted from UAV remote sensing can be considered
as independent variables in yield prediction models simultaneously with UAV derived
vegetation indices to improve yield prediction accuracy (Geipel et al., 2014; Han et al., 2019;
Zhu et al., 2019). Some studies have shown the correlation of maize yield with maize height
before mid-season stage (Katsvairo et al., 2003; Yin et al., 2011a, 2011b).

4.2 Standard workflow of UAVs in maize production

Recently, the most widespread commercial application of UAVs in maize production on the
market has followed this standard workflow: UAV-based field data collection—Farm
Management Information Systems — UAV field operation management (DJI, 2020;

PrecisionHawk, 2020; XAG, 2020).

4.2.1 UAV-based field data collection

UAVs fitted with multispectral sensors fly across the entire field at a low altitude to collect
images and data from crops. The sensors then transmit the collected information to locally
installed software such as Agisoft PhotoScan and this acommon and valid option for most UAV
users (Kaimaris et al., 2017; Radoglou-Grammatikis et al., 2020). Apart from processing the
data on local personal computers or workstations, some UAV companies provide cloud services
which can also assist in data processing (DJI, 2020; PrecisionHawk, 2020; XAG, 2020). UAVs
could be operated by farmers themselves or farmers could source professional licensed
operators nearby from an UAV commercial service platform to operate the UAVs for them
(Zhang et al., 2020).
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4.2.2 Farm Management Information Systems (FMIS)

FMIS are databases designed to manage, implement, and record farm operations systematically
(Burlacu et al., 2014; Pedersen and Lind, 2017; Sgrensen et al., 2010; Zhai et al., 2020). In
UAV-based maize production, FMIS are integrated systems with different functional
components to assist farmers in real time decision making (DJI, 2020; PrecisionHawk, 2020;
XAG, 2020): automated data processing, expert systems, user-controlled interfaces, and farm
recordkeeping systems, etc. (Sgrensen et al., 2011, 2010). The inputted farm data in FMIS are
analyzed automatically by expert systems (Boursianis et al., 2020; Kenneth and Chinecherem,
2018). Expert systems are powerful tools based on human expert analytical experience,
agronomic data from previous years, and computer simulated human expert reasoning process,
etc. to predict crop nutritional status, generate prescription maps, design customized expert
reports, and give suggestions on fertilization, irrigation, and plant protection, etc. (DJI, 2020;
Prasad and Babu, 2006; Rani et al., 2011). Other artificial intelligence methods can also involve
in UAV data processing, such as artificial neural networks for predicting crop nutritional status
(Jha et al., 2019), random forest for modelling maize above-ground biomass (Han et al., 2019),
fuzzy logic for forecasting crop water requirements (Talaviya et al., 2020), etc. User-controlled
interfaces allow farmers to control and to access processing and analysis functions (Murakami
etal., 2007). All field work executed in a plot is recorded in farm recordkeeping systems (Saiz-
Rubio and Rovira-Mas, 2020). The data generated in a current year production cycle in the
FMIS are used to assess performed field work and will be stored on local personal computers,
laptops, or cloud-based storage systems as baseline information for next season production
(XAG, 2020). All storage options are valid; farmers can choose appropriate data storag