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Summary 

In modern agriculture, machinery plays an important role to substitute manual labor and to 

improve productivity and economic performance of farm households. Conventional agricultural 

machinery in crop production includes tractors, cultivators, tillers, combine harvesters, pumps, 

threshers, planters, fertilizer spreaders, seeders, etc. In recent years, as an innovative 

agricultural machinery, unmanned aerial vehicles (UAVs) have been adopted in precision 

agriculture for crop monitoring and crop spraying. However, factors influencing Chinese 

farmers’ adoption of agricultural machinery and the economic impacts of the adoption have not 

been adequately studied, especially regarding farm machinery in maize production and UAVs 

in precision agriculture. In addition, there is limited literature that systematically summarizes 

the use of UAVs in maize production. The development of UAV-based pattern management in 

Chinese agriculture and the prerequisites for adopting and implementing this approach remain 

unclear.  

By utilizing farm household data, qualitative methods, and econometric quantitative methods, 

this dissertation aims to (i) identify the factors influencing the adoption of farm machinery and 

UAVs by Chinese farmers; (ii) estimate the economic impacts of adopting farm machinery and 

UAVs; (iii) provide an overview of UAV applications in maize production; (iv) study the 

prerequisites for adopting and implementing UAV-based pattern management in Chinese 

agriculture; (v) outline and recommend policy instruments to promote the use of farm 

machinery and UAVs in China. 

The empirical results indicate that the determinants of farm machinery adoption and UAV 

adoption can be attributed by three major aspects: farmer characteristics (e.g., age, education 

level, and perceptions about agricultural machinery), farm characteristics (e.g., farm size, land 

fragmentation, and cooperative membership), and other external socio-economic factors (e.g., 

subsidies, technical assistance, and labor shortages). The adoption of farm machinery and 

UAVs has shown significantly positive economic effects. However, the effects vary among 

farm household types due to the heterogeneous farm characteristics and socio-economic 

conditions. Farm machinery use significantly increased maize yield by 0.216 tons/ha and 

improved labor productivity by 18.65%. Young, male, and better-educated farmers benefit 

more from adopting farm machinery, and farms located in plain regions with cooperative 

membership and rented land can gain higher economic benefits from machinery use. In 

addition, the impacts of farm machinery adoption on maize yield and labor productivity slightly 
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decrease with farm size. The adoption of UAVs in pesticide application significantly increased 

revenue and reduced the time spent on pesticide application by approximately 434-488 USD/ha 

and 14.4-15.8 hours/ha, respectively. In terms of marginal revenue and marginal time spent on 

pesticide application, the optimal area for using UAVs in pesticide spraying is estimated to be 

20 hectares of arable land, suggesting that small and medium-scale farmers are the main 

beneficiaries of UAV adoption. For the wide application of UAV-based pattern management in 

precision agriculture, certain socio-economic and technical prerequisites are necessary. These 

include farmers possessing adequate UAV-related capabilities, relatively large farm sizes, 

availability of UAV-related subsidies, and superior UAV performance.  

Balancing the pros and cons, the effective promotion of farm machinery in maize production 

and UAVs in precision agriculture requires the establishment of a comprehensive socio-

economic institution. This institution should integrate strategies from both the public and 

private sectors such as the implementation of land consolidation, the establishment of 

agricultural machinery cooperatives for benefit-risk sharing, the provision of practical training 

and education on agricultural machinery, and subsidies for the purchase of agricultural 

machinery. Due to the heterogeneous effects of farm machinery adoption and UAV adoption, 

it is necessary to develop customized extension services tailored to various types of farm 

households to prevent inequity among farmers.  
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Zusammenfassung 

In der modernen Landwirtschaft spielen Maschinen eine wichtige Rolle, indem sie manuelle 

Arbeit ersetzen, sowie Produktivität und wirtschaftliche Leistungsfähigkeit verbessern. 

Konventionelle Landmaschinen umfassen Traktoren, Kultivatoren, Pflüge, Mähdrescher, 

Pumpen, Dreschmaschinen, Pflanzmaschinen, Düngerstreuer, Sämaschinen usw. In den 

letzten Jahren wurden unbemannte Luftfahrzeuge (Unmanned Aerial Vehicles, UAVs) als 

innovative landwirtschaftliche Maschinen in der Präzisionslandwirtschaft eingesetzt, sowohl 

zur Überwachung von Pflanzen als auch zur Schädlingsbekämpfung. Jedoch wurden die 

Faktoren, die die Akzeptanz landwirtschaftlicher Maschinen durch chinesische Landwirte und 

die ökonomischen Auswirkungen ihrer Übernahme, nicht ausreichend untersucht, 

insbesondere im Hinblick auf Landmaschinen in der Maisproduktion und unbemannte 

Luftfahrzeuge in der Präzisionslandwirtschaft. Darüber hinaus gibt es nur wenig Literatur, die 

den Einsatz von UAVs in der Maisproduktion systematisch zusammenfasst. Die Entwicklung 

eines auf UAVs basierenden Managements in der chinesischen Landwirtschaft und die 

Voraussetzungen für die Übernahme und Umsetzung dieses Ansatzes bleiben unklar. 

Unter Verwendung von Daten zu landwirtschaftlichen Haushalten, von qualitativen Methoden 

und ökonometrischen quantitativen Methoden zielt diese Dissertation darauf ab, (i) die 

Faktoren zu identifizieren, die die Akzeptanz von landwirtschaftlichen Maschinen und UAVs 

durch chinesische Landwirte beeinflussen; (ii) die wirtschaftlichen Auswirkungen der 

Einführung von landwirtschaftlichen Maschinen und UAVs zu schätzen; (iii) einen Überblick 

über die Anwendungen von UAVs in der Maisproduktion geben; (iv) die Voraussetzungen für 

die Implementierung eines UAV-basierten Managements in der chinesischen Landwirtschaft 

zu untersuchen; (v) Politikinstrumente zur Förderung des Einsatzes von landwirtschaftlichen 

Maschinen und UAVs in China zu formulieren. 

Die empirischen Ergebnisse deuten darauf hin, dass die Determinanten der Akzeptanz von 

landwirtschaftlichen Maschinen und UAVs auf drei Hauptaspekte zurückzuführen sind: die 

Eigenschaften der Landwirte (z. B. Alter, Bildungsniveau und Wahrnehmung von 

Landmaschinen), die Merkmale des landwirtschaftlichen Betriebs (z. B. Betriebsgröße, 

Landfragmentierung und Mitgliedschaft in einer Genossenschaft) sowie andere externe 

sozioökonomische Faktoren (z. B. Subventionen, technische Unterstützung und 

Arbeitskräftemangel). Der Einsatz von landwirtschaftlichen Maschinen und UAVs hat 

deutlich positive wirtschaftliche Auswirkungen gezeigt. Allerdings variieren die Effekte 
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aufgrund der unterschiedlichen Merkmale der landwirtschaftlichen Betriebe und der 

sozioökonomischen Bedingungen von Haushalt zu Haushalt. Der Einsatz landwirtschaftlicher 

Maschinen hat den Maisertrag und die Arbeitsproduktivität signifikant erhöht. Der Maisertrag 

hat sich um 0,216 Tonnen pro Hektar erhöht und die Arbeitsproduktivität um 18.65%. Junge, 

männliche und besser gebildete Landwirte profitieren mehr von der Akzeptanz von 

Landmaschinen, und Betriebe in ebenen Regionen mit Genossenschaftsmitgliedschaft und 

höherem Pachtanteil können höhere wirtschaftliche Vorteile durch den Maschineneinsatz 

erzielen. Darüber hinaus nehmen die Auswirkungen der Akzeptanz von landwirtschaftlichen 

Maschinen auf den Maisertrag und die Arbeitsproduktivität leicht mit der Betriebsgröße ab. 

Die Akzeptanz von UAVs bei der Pestizidanwendung hat den Ertrag signifikant um etwa 434-

488 USD pro Hektar erhöht und die für die Pestizidanwendung aufgewendete Zeit um 14,4-

15,8 Stunden pro Hektar reduziert. In Bezug auf den marginalen Ertrag und die marginale Zeit 

für die Pestizidanwendung wird der optimale Bereich für den Einsatz von UAVs bei der 

Pestizidapplikation auf 20 Hektar Ackerland geschätzt, was darauf hinweist, dass kleine und 

mittelgroße Betriebe die Hauptnutznießer der Akzeptanz von UAVs sind. Für den breiten 

Einsatz des auf UAVs basierenden Muster-Managements in der Präzisionslandwirtschaft sind 

bestimmte sozioökonomische und technische Voraussetzungen erforderlich. Dazu gehören 

Betriebe, die über ausreichende Fähigkeiten im Umgang mit UAVs verfügen, relativ große 

Flächenausstattung aufweisen, die Verfügbarkeit von UAV-bezogenen Subventionen und eine 

ausreichende Leistung der UAVs.  

Bei der Abwägung der Vor- und Nachteile, erfordert die wirksame Förderung des Einsatzes 

von Landmaschinen in der Maisproduktion und UAVs in der Präzisionslandwirtschaft die 

Einrichtung einer umfassenden sozioökonomischen Institution. Diese Institution sollte 

Strategien aus beiden Sektoren, dem öffentlichen und privaten Sektor, wie die Umsetzung der 

Flurbereinigung, die Gründung von landwirtschaftlichen Maschinenkooperativen zur 

Vorteils- und Risikoteilung, die Bereitstellung von praktischer Schulung und Ausbildung im 

Umgang mit landwirtschaftlichen Maschinen sowie Subventionen für den Kauf von 

landwirtschaftlichen Maschinen integrieren. Aufgrund der unterschiedlichen Ergebnisse bei 

der Übernahme von landwirtschaftlichen Maschinen und UAVs in den Betrieben, ist es 

notwendig, maßgeschneiderte Beratungsdienste zu entwickeln, die auf die verschiedenen 

Arten von landwirtschaftlichen Haushalten zugeschnitten sind, um Ungleichheiten unter den 

Landwirten zu vermeiden. 
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Chapter 1 General introduction 

1.1 Introduction 

1.1.1 Agricultural machinery and agricultural production  

In modern agriculture, machines play an important role to substitute hand labor and to improve 

productivity because they increase labor productivity and efficiency (Zhou et al., 2020). 

Nowadays, in the context of resource scarcity and rural labor shortages, agricultural 

mechanization is vital to enhance productivity and to ensure food security (Kienzle et al., 2013). 

Agricultural machinery has been using in many agricultural processes such as land preparation, 

seeding, fertilizer application, pesticide application, weeding, harvesting, threshing, 

transportation, and pumping (Barrett and Just, 2021). Conventional agricultural machinery in 

crop production includes tractors, cultivators, tillers, combine harvesters, pumps, threshers, 

planters, fertilizer spreaders, seeders, etc. (Kienzle et al., 2013). In recent years, integrated with 

artificial intelligence, internet of things, global positioning system, variable rate application 

systems, and varied sensors etc., agricultural machinery has become more intelligent and more 

precise. For example, unmanned aerial vehicles and agricultural robots have been partly 

adopted in precision agriculture for crop monitoring, crop spraying, and harvesting, etc. (Rejeb 

et al., 2022; Tsouros et al., 2019a; Yang et al., 2023). As technological progress, agricultural 

machinery has shifted from conventional roughly undifferentiated operations to precise site-

specific operations. 

1.1.2 Economic impacts of adopting agricultural machinery  

Many studies have shown positive economic impacts of adopting agricultural machinery 

(Barrett and Just, 2021). Wang et al. (2016) found that machines can significantly reduce labor 

input in agricultural production in rural China because farm machinery has a strong substitution 

effect on labor. Zhang et al. (2019) reported that farm machinery use improved pesticide 

application efficiency and reduced pesticide expenditure in Chinese maize farming by 58.87%. 

According to Pan et al. (2017), deep placement of nitrogen fertilizer through specialized 

machines can enhance nitrogen use efficiency and decrease nitrogen fertilizer use in direct-

seeded rice production. Ma et al. (2018) and Zhou et al. (2020) found that farm machinery use 

significantly increased maize yield by 15% and 13%, respectively. Paudel et al. (2023) reported 

that farm mechanization can increase productivity and profit in Nepal’s maize production by 

14% and 11%, respectively. Wang et al. (2020) showed that unmanned aerial vehicle-based 
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pesticide application increased the effect of pest and disease control in citrus production by 

20.3% and saved cost by 266 USD/ha.  

1.1.3 Agricultural mechanization and maize production in China 

In 2020, maize is the most cultivated cereal crop in China in terms of 42.12% sown area and 

42.26% harvested yield (National Bureau of Statistics of China, 2022). From 2008 to 2021, the 

comprehensive mechanization level in China’s maize production increased from 51.78% to 

90.00% (Figure 1.1). However, China’s average maize yield in 2020 was 6.31 tons/ha, which 

was relatively low compared to 10.79 tons/ha in the United States (FAO, 2019). One of the 

main reasons is that the USA has higher mechanization level in maize production compared to 

China (Qian et al., 2016). Yang and Jiang (2023) emphasized that facilitating sustainable 

mechanization in Chinese maize production to achieve higher productivity is an important task 

for China in the future. Reflecting on this increasing importance of maize in Chinese crop 

production and agricultural mechanization, the relationship between maize production and 

agricultural mechanization in China will be thoroughly explore in this dissertation.  

 

Figure 1.1 Comprehensive mechanization level in China’s maize production.  

Comprehensive mechanization level = mechanical tillage rate*0.4 + mechanical seeding rate*0.3 + mechanical 

harvesting rate*0.3. Data source: National Bureau of Statistics of China (2022). 

1.1.4 Unmanned aerial vehicles (UAVs) in China’s precision agriculture 

As one of the most recent advanced agricultural machinery, UAVs are best known for the ability 

to overcome terrain obstacles to perform field tasks rapidly and precisely. UAVs attached with 

sensors or tanks can be used in many agricultural processes such as pesticide spraying, fertilizer 

spraying, seeding, and crop monitoring (Figure 1.2) (Kim et al., 2019; Radoglou-Grammatikis 

et al., 2020; Tsouros et al., 2019a). China started to use UAVs in agricultural production in 
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2010 (Zheng et al., 2019). Over a decade of development in China, agricultural UAVs are 

cheaper, smarter, and better than before (Chung, 2019). So far, China’s agricultural UAV 

industry has become the first in the world in terms of the number of UAVs, flight control 

technology, and cumulative areas of operation per year (Ministry of Agriculture and Rural 

Affairs of People’s Republic of China, 2019).  

In worldwide, the most common use of UAVs in agriculture is remote sensing, while aerial 

application of agricultural chemicals is an emerging use of UAVs (Tsouros et al., 2019a; Van 

Der Merwe et al., 2020). However, in China, pesticide spraying is the most common UAV 

application in agriculture (Yang et al., 2018); other UAV applications such as seeding, fertilizer 

spraying, and crop monitoring are not widespread, but are gradually growing (Chung, 2019). 

In 2020, 70,344 UAVs were being used in China for plant protection purposes and they were 

treating 14.48 million hectares of cropland (China Agricultural Machinery Industry 

Association, 2021). Considering the increasing importance of UAVs in Chinese agriculture, 

UAVs have been chosen for in-depth research in this dissertation. 

 

Figure 1.2 An UAV used for crop monitoring in Pattern Management China (PMC) project.  Source: own picture. 

In addition, UAVs can be used in precision agriculture for precision spraying, crop monitoring, 

and field management (Radoglou-Grammatikis et al., 2020; Sylvester et al., 2018; Tsouros et 

al., 2019a). UAV-based pattern management is an innovative and holistic approach proposed 

by Spohrer (2019) for sustainable and site-specific precision agriculture in respect of 

fertilization, plant protection, and irrigation. Pattern management includes three pillars: 

structured land management, UAV-based image acquisition, and data management. Structured 

land management divides fields into different spatiotemporal patterns. UAVs attached with 

sensors (e.g., infrared and hyperspectral) fly over fields to capture images and spatiotemporal 

data of these patterns. Images and field spatiotemporal data are processed by modified 

algorithms (Zhang and Kovacs, 2012) and stored in the database. Fertilizer, pesticide, and water 
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variable-rate prescription maps are derived from the processed data to instruct fertilization, 

plant protection, and irrigation (Tsouros et al., 2019b). Data management is responsible for data 

storage, data retrieval, data processing, data mapping, and UAV flight control, etc. The 

processed spatiotemporal data are shown on terminal devices (e.g., tablets, smartphones, and 

laptops) in a straightforward way, and farmers can manage and monitor different patterns on 

the field through user-friendly interfaces.  

1.2 Problem statement  

Many studies have analyzed the factors that influence the adoption of farm machinery or the 

impacts of farm machinery use on agricultural performance, specifically in Chinese maize 

farming. Zhou et al. (2020) used an unconditional quantile regression model to estimate the 

heterogeneous impacts of farm machinery use across different quantiles of maize yield, while 

addressing the selection bias of farm machinery use by the control function approach. They 

found that farm machinery use has higher positive impacts on low productivity farmers than on 

high productivity farmers. Their results also suggest that education and household size have 

significant negative effects on farm machinery adoption, while farm size and the expenditures 

of pesticide and fertilizer have significant positive effects on farm machinery adoption. A study 

by Ma et al. (2018) found that farm machinery use has a significantly positive effect on maize 

yield and averaged in a 15% increase in yield. They also found that large farm size and fertile 

soil can boost the adoption of farm machinery, while large household size would discourage 

the adoption of farm machinery by farmers. Jetté-Nantel et al. (2020) used production function 

to estimate the impact of farm machinery use on maize yield, and the results imply that the 

efficiency gains from farm machinery use is limited. Zhang et al. (2019) performed the 

endogenous switching regression model to examine the factors that influence the adoption of 

farm machinery in pesticide application and the effects of adoption on pesticide expenditure 

among 493 Chinese maize farmers. Their findings suggest that off-farm work and farm size 

have significantly positive impacts on the adoption of farm machinery in pesticide application, 

and the adoption significantly reduced the total pesticide expenditure by 58.87%. However, 

farmers may adopt different types of farm machinery at the same time, and these articles did 

not study the interrelation among different adoption decisions. In addition, the impacts of farm 

machinery use on labor productivity and the heterogeneous impacts of farm machinery use 

across farm households have not been sufficiently investigated.  
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On the other hand, some studies have investigated the adoption of UAVs in agriculture. Zheng 

et al. (2019) used a probit model involving 897 farmers in Jilin province of China to estimate 

the factors influencing the adoption of UAVs for plant protection. Their results suggest that 

perceived usefulness, perceived ease-of-use, UAV-related knowledge level, and agricultural 

income ratio have a positive influence on UAV adoption. Caffaro et al. (2020) used a 

technology acceptance model to find that perceived usefulness positively influences Italian 

farmers’ adoption intention of agricultural drones, and farmers are more willing to adopt 

agricultural drones if this technology can improve productivity on the farm. Chen et al., (2020) 

reported that farmers’ intention to adopt UAVs in pesticide application would increase by 18% 

after explaining the benefits of using UAVs to farmers. Wachenheim et al. (2021) used a probit 

model to estimate the effects of social networks, resource endowment, and perceptions on 

Chinese farmers’ intention to adopt UAVs for pesticide application. The results indicate that 

arable land area, agricultural income share, within-family village leadership, perceived 

usefulness, and credit availability have positive effects on UAV adoption. However, these 

articles only focused on UAV adoption intention research and only analyzed the use of UAVs 

from farmers’ perspective but did not from the view of other UAV stakeholders such as 

agricultural UAV manufacturers, UAV service providers, agricultural extension staff from 

government, and researchers focusing on UAVs. In addition, there are limited studies to 

quantitatively estimate the economic effects of the adoption of UAVs in China. Thus, it is 

necessary to find empirical evidence to show the positive benefits of using UAVs, thereby 

promoting the adoption of UAVs. Furthermore, maize is one of the most important cereal crops 

around the world, but there is limited literature that systematically summarizes the use of UAVs 

in maize production. In addition, as an innovative and holistic approach, the status quo of UAV-

based pattern management in Chinese agriculture and the prerequisites for adopting and 

implementing this approach remain unclear. Closing these research gaps will help to better 

understand the use of UAVs in maize farming, the determinants and economic impacts of UAV 

adoption, and the prerequisites for implementing UAV-based pattern management in China.  

1.3 Research questions and objectives 

This dissertation chooses traditional farm machinery in maize production and recent advanced 

agricultural machinery, specifically UAVs, in precision agriculture as case studies to explore 

the adoption of agricultural machinery and its economic impacts, to provide an overview of 

UAV applications in maize production, and to study the prerequisites for implementing UAV-

based pattern management in Chinese agriculture. An interdisciplinarity approach which 
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includes qualitative and econometric quantitative methods will be performed to address these 

issues.  

This dissertation mainly addresses four research questions. 

• Which factors can affect the adoption of farm machinery and UAVs in Chinese agriculture? 

• What are the economic effects of adopting farm machinery and UAVs in Chinese 

agriculture? 

• How UAVs are being used for maize production?  

• How is the status quo of UAV-based pattern management in Chinese agriculture? What 

are the prerequisites for adopting and implementing this approach? 

The major objectives of this dissertation are to: 

• identify the factors influencing the adoption of farm machinery and UAVs by Chinese 

farmers; 

• estimate the economic effects of adopting farm machinery and UAVs; 

• provide an overview of UAV applications in maize production; 

• study the prerequisites for adopting and implementing UAV-based pattern management in 

Chinese agriculture; 

• outline and recommend policy instruments to promote the use of farm machinery and UAVs 

in China. 

1.4 Methodology 

To address the research questions proposed in this dissertation, an interdisciplinarity approach 

which includes qualitative and econometric quantitative methods was used.  

• Firstly, farmers may adopt different agricultural machinery at the same time, and the 

adoption decisions of different agricultural machinery might be interrelated. Univariate 

probit or logit models estimate the adoption decisions independently and fail to capture 

the interrelations among different adoption decisions, and it may lead to biased results 

(Kassie et al., 2009; Rodríguez-Entrena and Arriaza, 2013). The multivariate probit 

model can individually estimate farmers’ agricultural machinery adoption decisions and 

simultaneously account for the interdependence among these adoption decisions 

(Rodríguez-Entrena and Arriaza, 2013). Thus, multivariate probit models were 
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performed to identify the factors that affect Chinese maize farmers’ adoption of four 

machinery technologies as well as the interrelation among these adoption decisions.  

• Secondly, the adoption of farm machinery and the impacts of adoption on outcome 

variables (e.g., maize yield and labor productivity) can be estimated by probit models 

(or logit models) and ordinary least squares regressions, respectively. However, 

depending on farm characteristics and other factors, farmers may self-select as farm 

machinery adopters and non-adopters other than randomly assigned, and this causes the 

selection bias (Di Falco et al., 2011). In addition, some unobserved variables (e.g., 

farmers’ motivation, managerial ability, and experience) may influence farm machinery 

adoption and outcome variables at the same time, and this will cause endogeneity and 

will lead to biased estimates in ordinary least squares regressions (Huang et al., 2015). 

The endogenous switching regression (ESR) model addresses selection bias and 

endogeneity by constructing a two-stage estimation (Lokshin and Sajaia, 2004). In the 

first stage, farm machinery adoption equation was used to explore the determinants of 

adoption and to compute the inverse Mills ratios (Diiro et al., 2021). In the second stage, 

inverse Mills ratios were added into outcome equations to correct the selection bias 

(Abdulai and Huffman, 2014). Hence, the ESR model was adopted to explore the factors 

influencing the adoption of farm machinery and to estimate the impacts of adoption on 

maize yield and labor productivity.  

• Thirdly, most previous studies only analyzed the use of UAVs from farmers’ 

perspective but did not from the view of other UAV stakeholders. In addition, there is 

limited data about UAV-based pattern management in China. Expert interviews 

primarily focus on qualitative analysis and do not need too much statistical data and are 

able to provide fresh first-hand information, specialized knowledge, and professional 

opinions from specialists on specific topics (Von Soest, 2023). In order to get a holistic 

view of UAV usage in Chinese agriculture, especially UAV-based pattern management, 

a series of structured in-depth expert interviews were conducted with agricultural UAV 

manufacturers, UAV service providers, agricultural extension staff from government, 

and researchers focusing on UAVs to study the status quo of UAV use, determinants of 

UAV adoption, and development of UAV-based pattern management in China.  

• Lastly, the effects of using UAVs in pesticide application can be estimated by adding 

UAV adoption as a dummy variable into a simple regression model, but this approach 

cannot yield consistent estimates if selection bias exists (Schreinemachers et al., 2016). 

Although the ESR model can solve selection bias, the estimation results may be 
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sensitive to model specification and the validity of instrumental variables (Khonje et al., 

2015). The direct comparison of outcome variables of UAV adopters and non-adopters 

can lead to biased results because confounding factors are not controlled (Gitonga et al., 

2013). Propensity score matching (PSM) is a non-parametric method and does not 

require the assumption of functional forms between UAV adoption and outcome 

variables (El-Shater et al., 2016). PSM addresses the selection bias by matching UAV 

adopters and non-adopters conditioning on the propensity score of a set of observed 

covariates (Khandker et al., 2009). The average treatment effects of UAV adoption are 

the mean difference of outcome variables of matched pairs (Caliendo and Kopeinig, 

2008). Thus, PSM was chosen to estimate the economic effects of adopting UAVs in 

pesticide application.  

1.5 Dissertation structure 

This cumulative doctoral dissertation includes seven chapters and addresses the research 

questions raised previously one by one. 

Chapter 1 is a general introduction of this dissertation, including introduction, problem 

statement, research questions and objectives, methodology, and dissertation structure. 

Chapter 2, entitled “Factors influencing the adoption of agricultural machinery by Chinese 

maize farmers”, uses multivariate probit models to identify the factors that affect Chinese maize 

farmers’ adoption of four machinery technologies as well as the interrelation among these 

adoption decisions. The empirical results indicate that maize sowing area, arable land area, crop 

diversity, family labor, subsidy, technical assistance, and economies of scale have positive 

effects on machinery adoption, while the number of discrete fields on the farm has a negative 

impact. The adoption of these four machinery technologies are interrelated and complementary.  

Chapter 3, entitled “Farm machinery adoption and its impacts on maize yield and labor 

productivity: insights from China”, uses farm household survey data from Chinese maize 

farmers to explore the factors that influence the adoption of farm machinery and to estimate the 

impacts of adoption on maize yield and labor productivity by using the endogenous switching 

regression (ESR) model. In addition, the heterogeneous effects of farm machinery adoption 

were analyzed across farm households. The empirical results show that rented land and 

cooperative membership are main drivers of farm machinery adoption, while land 

fragmentation is a barrier of adoption. Farm machinery use has significantly positive impacts 

on maize yield and labor productivity, but the impacts differ across farm households. 
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Chapter 4, entitled “Unmanned aerial vehicle (UAV) technical applications, standard workflow, 

and future developments in maize production – water stress detection, weed mapping, 

nutritional status monitoring and yield prediction”, is a literature review regarding four major 

applications of UAVs in maize production: (i) water stress detection, (ii) weed mapping, (iii) 

nutrient status monitoring and (iv) yield prediction. This review summarizes UAV data 

management methods, explains how expert systems work in UAV systems, and provides 

standardized workflow data for farmers in maize production. In addition, strengths, weaknesses, 

opportunities, and threats of UAV use in maize production were analyzed. This study points 

out key issues of UAV usage in maize farming and research gaps that need to be filled, along 

with a number of recommendations for the development of UAVs in maize production in the 

future. 

Chapter 5, entitled “The determinants of unmanned aerial vehicle (UAV) adoption and status 

quo of UAV-based pattern management in Chinese agriculture: insights from expert 

interviews”, is a qualitative research which includes a series of structured in-depth expert 

interviews with 18 experts from various backgrounds related to UAVs and agriculture in China 

to study the status quo of UAV use, determinants of UAV adoption, and development of UAV-

based pattern management in China. This research shows that the adoption of UAVs in China 

is influenced by farmers’ production characteristics, farmers’ perceptions about UAVs, and 

social factors. UAV-based pattern management is at the initial stage in China. For the 

widespread implementation of this approach, certain socio-economic and technical 

prerequisites are necessary. 

Chapter 6, entitled “The economic effects of unmanned aerial vehicles in pesticide application: 

evidence from Chinese grain farmers”, uses propensity score matching to evaluate the economic 

effects of UAV adoption on outcome variables including revenue, pesticide costs, time spent 

on pesticide application, and pesticide application frequency based on a dataset covering over 

2,000 grain farmers across 11 provinces of China. The empirical results show that adoption of 

UAV increased revenue by approximately 434-488 USD/ha and reduced the time spent on 

pesticide application in the range of 14.4-15.8 hours per hectare. In addition, generalized 

propensity score matching was performed to estimate the heterogeneous effects of outcome 

variables arising from differing UAV adoption intensities. In terms of marginal revenue and 

marginal time spent on pesticide application, the optimal area with use of UAVs for pesticide 

spraying is estimated to be 20 hectares of arable land. 



10 
 

Chapter 7 gives a general discussion on the key findings of research questions in this 

dissertation and concludes with some recommendations for the promotion of farm machinery 

in maize production and UAVs in precision agriculture in China. 
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Chapter 2 Factors influencing the adoption of agricultural machinery by 

Chinese maize farmers 

Authors: Xiuhao Quan, Reiner Doluschitz 

Journal: Agriculture 

Status: Published on 4.11.2021, Agriculture 2021, 11(11), 1090. 

https://doi.org/10.3390/agriculture11111090 

Abstract: As the major labor force has shifted from rural areas to cities, labor shortages in 

agricultural production have resulted. In the context of technical progress impact, and 

depending on farm resource endowments, farmers will choose effective labor saving technology 

such as machinery to substitute for the missing manual labor. The reasons behind farmers’ 

adoption of machinery technology are worth exploring. Therefore, this study uses 4165 Chinese 

maize farmers as the target group. Multivariate probit models were performed to identify the 

factors that affect maize farmers’ adoption of four machinery technologies as well as the 

interrelation between these adoption decisions. The empirical results indicate that maize sowing 

area, arable land area, crop diversity, family labor, subsidy, technical assistance, and economies 

of scale have positive effects on machinery adoption, while the number of discrete fields in the 

farm has a negative impact. Maize farmers in the Northeast and North have higher machinery 

adoption odds than other regions. The adoption of these four machinery technologies are 

interrelated and complementary. Finally, moderate scale production, crop diversification, 

subsidizing agricultural machinery and its extension education, and land consolidation, are 

given as recommendations for promoting the adoption of agricultural machinery by Chinese 

maize farmers. 

Keywords: agricultural machinery; China; maize production; technology adoption. 

2.1 Introduction 

As agricultural mechanization develops, farm machinery is gradually playing an important role 

in replacing manual labor and draft animals (e.g., horses, oxen, mules) and improving 

agricultural productivity. The economic benefits of machinery use, however, depend highly on 

economies of scale (Duffy, 2009; Li et al., 2018; Wang et al., 2016b). Farmers can use 

agricultural machinery by purchasing, renting, or buying machinery services (Ma et al., 2018). 

China, known as the second largest maize producer in the world (FAO, 2019), has adopted 

https://doi.org/10.3390/agriculture11111090
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agricultural machinery in plowing, seeding, and harvesting for a long time. Figure 2.1 indicates 

the growth trend of mechanization in China’s maize production at the national level. 

Mechanical plowing and mechanical seeding are well developed, while mechanical harvesting 

lags a little behind compared with them. In 2018, the average maize comprehensive 

mechanization rate was 88.31% in all production regions of China (Mechanical Industry Press, 

2018). 

 

Figure 2.1 Mechanization rate of maize production in China, 2001–2018.  

Data source: China Agricultural Machinery Industry Yearbook (Mechanical Industry Press, 2018). Note: 

mechanical plowing rate— areas of mechanical plowing (hm2)/areas that are supposed to be plowed (hm2); 

mechanical seeding rate—areas of mechanical seeding (hm2)/total areas of sowing (hm2); mechanical harvesting 

rate—areas of mechanical harvesting (hm2)/total areas of sowing (hm2); comprehensive mechanization rate—

0.4×mechanical plowing rate + 0.3×mechanical seeding rate + 0.3×mechanical harvesting rate. 

 

Several studies have analyzed the factors influencing the adoption of agricultural machinery by 

Chinese maize farmers (Lai et al., 2015; Ma et al., 2018; Wang et al., 2016a; Yi and Min, 2018; 

Zhang et al., 2019; Zhou et al., 2020) (Table 2.1). These factors mainly include three aspects: 

farmer features (e.g., age, gender, education level, farming experience, off-farm employment, 

etc.), farm characteristics (e.g., farm size, location, soil fertility, etc.), and social facilitating 

conditions (e.g., subsidies, extension services, farmer organizations, etc.). Probit models, 

multivariable probit models, and other econometric models were performed to analyze the 

quantitative relations between these factors and farmers’ adoption decisions.  
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Table 2.1 The research of agricultural technology adoption: a review 

Agricultural technology Country 
Target 

group 

Method of 

analysis 

Factors affect the 

adoption 
References 

Rotary cultivator for 

plowing 
China 

Maize 

farmers 

A control 

function 

approach with an 

instrumental 

variable  

Education (−), 

Household size (−), 

Extension contact (+), 

Transportation 

condition (+), Access 

to credit (+), Irrigation 

(+), Farm size (+), 

Pesticide costs (+), 

Fertilizer costs (+), 

Seed costs (−) 

 Zhou et 

al. (2020) 

Several farm machines 

which can be used in 

maize production and 

postharvest management 

China 
Maize 

farmers 

Bivariate ordered 

probit model and 

endogeneity-

corrected 

ordinary least 

square regression 

model 

Gender (−), Household 

size (−), Farm size (+), 

Soil fertility (+), 

Subsidy (+) 

Ma et al. 

(2018) 

Mechanization services China 
Maize 

farmers 

Multivariable 

probit model 

Number of family 

members, Number of 

parcels, The distance 

to township, Off-farm 

employment (+), Age 

(+) 

Yi and 

Min 

(2018) 

Total machinery 

horsepower used in 

plowing, sowing, and 

harvesting 

China 

Wheat 

farmers and 

maize 

farmers. 

Ordinary least 

squares (OLS) 

with instrumental 

variables (IV) 

Land fragmentation 

(−), Total operating 

area (+), Machinery 

price (−), 

Lai et al. 

(2015) 

Agricultural machines for 

pesticide application 
China 

Maize 

farmers 

Endogenous 

switching 

regression model 

Gender (−), Risk 

preference (−), 

Transportation 

condition (+), Subsidy 

(+), Extension contact 

(+) 

Zhang et 

al. (2019) 

Three soil conservation 

practices 
Spain 

Olive 

farmers 

Multivariate 

probit model 

Olive grove area (+), 

Family labor force (−), 

Belong to an irrigation 

district (+), Farm 

profitability (+) 

Rodríguez

-Entrena 

and 

Arriaza 

(2013) 

Conservation tillage, 

compost, and chemical 

fertilizer 

Ethiopia 

Wheat 

farmers, 

barley 

farmers, 

and teff 

farmers 

Trivariate probit 

model 

Male (+), Age (−), 

Labor (+), Extension 

(+), Farmer 

organizations (+), 

Farm size (+), Plot 

ownership (+), Plot 

slope (−) 

Kassie et 

al. (2009)  

Note: In column 5, the effects of factors are shown in the brackets. “+” means a positive effect 

and “−” means a negative effect. 



14 
 

Specifically, Zhou et al. (2020) estimated the impacts of farm machinery use on maize yields 

by using a control function approach. In the first stage, smartphone use was employed as an 

instrumental variable in the farm machinery adoption equation; in the second stage, the inverse 

mills ratio estimated from the first stage was added to the maize production function as an extra 

regressor to correct the endogeneity issue caused by selection bias in farm machinery adoption. 

The results indicated that farmers’ educational level, household size, extension service, 

transportation convenience of farm, farm size, and production inputs (e.g., pesticides, fertilizers, 

and seeds) are the main factors that affect farmers’ adoption of machinery in maize production. 

Ma et al. (2018) used a bivariate ordered probit model with an instrumental variable (whether 

or not receiving a machinery purchasing subsidy) to estimate farmers’ adoption of farm 

machinery in the first step. In the second step, endogeneity-corrected ordinary least square 

regression models were performed to test the effect of machinery use on maize yields and 

agricultural expenses. The empirical results indicate that off-farm employment, farm size, and 

subsidy had positive impacts on machinery adoption. Yi and Min (2018) estimated 600 maize 

farmers’ adoption of agricultural mechanization services in seven regions of China with a 

multivariable probit model. To overcome the endogeneity of off-farm employment on the 

adoption of agricultural mechanization services, the average wage of off-farm work was used 

as an instrumental variable in the adoption equation. The results showed that both population 

aging and off-farm employment contributed positively to farmers’ adoption of agricultural 

mechanization services. Zhang et al. (2019) used an endogenous switching regression model to 

simultaneously identify the factors influencing the adoption of farm machines in pesticide 

application and the impact of this adoption on pesticide expenditures. The mechanical pesticide 

spraying rate in each village was used as an instrumental variable in the farm machine selection 

equation to overcome the endogeneity of adoption decision caused by observed and unobserved 

factors. This study shows off-farm employment and farm size would positively affect farmers’ 

decision to use farm machines in pesticide application. Similarly, these abovementioned studies 

solved model endogeneity issues by using instrumental variables. However, it is tricky 

sometimes to find appropriate instrumental variables. 

In addition to research on machinery technology adoption among Chinese farmers, there are 

also some papers addressing the adoption of other agricultural technologies such as 

conservation and sustainable agriculture practices around the world (Kassie et al., 2009; 

Rodríguez-Entrena and Arriaza, 2013) (Table 2.1). Rodríguez-Entrena and Arriaza (2013) used 

a trivariate probit model to identify the determinants in the adoption of three soil conservation 
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practices in Spanish olive production. Their results suggest that the farmers’ decision to adopt 

a practice is correlated with other practices and that the adoption of one practice could promote 

the adoption of others. 

A number of papers only study farmers’ adoption of one particular technology or a set of 

technologies and thus have biased results caused by ignoring the interrelation from the adoption 

of different technologies (Lai et al., 2015; Ma et al., 2018; Zhang et al., 2019; Zhou et al., 2020). 

Zhou et al. (2020) only studied the adoption of the rotary cultivator for plowing in maize 

production among 493 farmers in Gansu, Henan, and Shandong provinces. Ma et al. (2018) 

investigated the adoption of machinery in 12 maize production stages among 493 farmers in 

three provinces of China by using a bivariate ordered probit model, but failed to consider the 

potential interrelation from the adoption of different technologies. Moreover, most of the 

existing research on Chinese maize farmers’ machinery adoption is only focused on some 

specific regions with limited samples (Lai et al., 2015; Ma et al., 2018; Yi and Min, 2018; Zhou 

et al., 2020). Nationwide maize farmers’ machinery adoption research is still missing in China. 

The contributions of this paper are threefold: firstly, this is the first research to use nationwide 

data to study Chinese maize farmers’ machinery adoption. The databases include 4165 maize 

farmers across six agroecological maize regions of China: Southwest, Northeast, North, 

Yellow-Huai River Valley, Northwest, and South. These samples are comprehensive and 

sufficient to represent most of the maize farmers in China. And the regional differences in 

machinery adoption were compared in six agroecological maize regions. Secondly, in order to 

obtain a good understanding of maize farmers’ machinery adoption decisions, we investigated 

their adoption of machinery technologies in four key production processes: seeding, plowing, 

harvesting, and pesticide spraying. Thirdly, given the potential interrelation among these 

adoption decisions, multivariate models were performed to study the factors that influence the 

adoption of these machinery technologies. The aims of this paper are: (i) to identify the factors 

that influence the adoption of four machinery technologies by Chinese maize farmers; (ii) to 

explore the correlations among the adoption decisions of these four machinery technologies; 

and (iii) to provide some policy implications based on these conclusions to promote the use of 

agricultural machinery by Chinese maize farmers. 
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2.2 Materials and methods 

2.2.1 Data source 

This study uses data from the 2017 Chinese Family Database (CFD) of Zhejiang University, 

and from the 2017 China Household Finance Survey (CHFS) conducted by the Survey and 

Research Center for China Household Finance at the Southwestern University of Finance and 

Economics (China). These databases contain 5979 households who produced maize as one of 

the main crops on their farm. After data cleaning, 669 outliers were removed if they had have 

zero agricultural output values or where the areas of mechanical operation in their farm were 

larger than the farm size itself. After 1145 observations with missing values were removed, 

only 4165 valid maize farmers across 24 provinces were left. 

2.2.2 Research study design 

The 2017 CFD and 2017 CHFS are national representative surveys conducted in 2016, 

including more than 40,000 households across 29 provinces in the mainland of China. The 

survey adopted stratified three-stage sampling: county level, village level, and household level. 

Samples were selected randomly in each stage.  

The questionnaire includes household demographic characteristics, family assets, agricultural 

production, family incomes and expenditures, etc. Since this study wants to explore the factors 

that influence the adoption of four machinery technologies in maize production, some 

explanatory variables and four dependent variables were selected from the databases (Table 

2.2). 
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Table 2.2 Descriptive statistics of variables 

Variables Definitions Mean Std. Dev. 

Dependent variables    

Mechanical plowing 
1 if the farm used machines for plowing in maize 

production; 0 otherwise 
0.580 0.494 

Mechanical seeding 
1 if the farm used machines for seeding in maize 

production; 0 otherwise 
0.439 0.496 

Mechanical harvesting 
1 if the farm used machines for harvesting in maize 

production; 0 otherwise 
0.467 0.499 

Mechanical spraying 
1 if the farm used machines for pesticide spraying in 

maize production; 0 otherwise 
0.178 0.383 

Explanatory 

variables 
   

Maize sowing area Total areas of maize growing in the farm (mu) 6.487 12.650 

Number of discrete 

fields in the farm 

Number of discrete fields in the farm used for agricultural 

production 
5.754 6.157 

Arable land area Total areas of arable land in the farm (mu) 10.001 19.446 

Crop diversity Number of crops produced on the farm 2.727 1.648 

Family labor 
Number of people participating in agricultural production 

in the family 
1.961 0.822 

Subsidy 
1 if the farm received a subsidy to support agricultural 

production; 0 otherwise 
0.763 0.425 

Technical assistance 
1 if the farm received technical assistance for agricultural 

production; 0 otherwise 
0.100 0.300 

Economies of scale 
Total value of agricultural output by the farm (unit: 1000 

yuan) 
12.907 36.084 

Southwest 
1 if the farm is located in Sichuan, Chongqing, Guizhou, 

or Yunnan; 0 otherwise 
0.248 0.432 

Northeast 
1 if the farm is located in Liaoning, Jilin, or Heilongjiang; 

0 otherwise 
0.181 0.385 

North 
1 if the farm is located in Beijing, Tianjin, Hebei, or Inner 

Mongolia; 0 otherwise 
0.128 0.334 

Yellow-Huai River 

Valley 

1 if the farm is located in Shanxi, Shandong, Henan, 

Shaanxi, Anhui, or Jiangsu; 0 otherwise 
0.299 0.458 

Northwest 1 if the farm is located in Gansu or Ningxia; 0 otherwise 0.055 0.228 

South 
1 if the farm is located in Guangxi, Hainan, Hunan, 

Hubei, or Zhejiang; 0 otherwise 
0.089 0.285 

Number of 

observations 
                                                      4165 

 

To compare regional heterogeneity, farm households were grouped together based on 

agroecological maize regions in China (Meng et al., 2006) (Figure 2.2): 1032 farms (24.78%), 

754 farms (18.10%), 533 farms (12.80%), 1247 farms (29.94%), 229 farms (5.50%), and 370 

farms (8.88%) are located in the Southwest, Northeast, North, Yellow-Huai River Valley, 

Northwest, and South respectively. 
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Figure 2.2 The division of six agroecological maize regions in this study 

2.2.3 Theoretical framework 

Given that the adoption of the four machinery technologies in this study is not mutually 

exclusive, the adoption of one technology could affect the adoption of others. Failure to 

consider the correlation among adoption decisions regarding different technologies will cause 

biased results (Kassie et al., 2009; Rodríguez-Entrena and Arriaza, 2013). Therefore, univariate 

probit or logit models are not sufficient for use in modeling the adoption of several interrelated 

technologies because they estimate the adoption of each technology independently, which 

ignores the correlations among these adoption decisions. The multivariate probit (MVP) model 

could overcome this problem. MVP models not only estimate the influence of a set of 

independent variables on the adoption of each of the different technologies but also account for 

the interdependence among these simultaneous adoption decisions (Kassie et al., 2009; 

Rodríguez-Entrena and Arriaza, 2013). Hence, the MVP model was chosen for this study.  

The MVP model is specified as follows (Greene, 2003): 

                                                𝑌𝑖𝑗
∗  = 

𝑗
𝑋𝑖𝑗 + 𝑖𝑗  ,       (j = 1, 2, 3, 4)                                        (1) 

                                                    𝑌𝑖𝑗 = {
1, 𝑖𝑓 𝑌𝑖𝑗

∗   0  

0, 𝑖𝑓 𝑌𝑖𝑗
∗  ≤  0

                                                            (2)   

where j = 1, 2, 3, 4 denotes mechanical plowing, mechanical seeding, mechanical harvesting, 

and mechanical spraying. 𝑌𝑖𝑗
∗  is a latent variable of the rational 𝑖𝑡ℎ farmer, which captures the 
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unobserved preferences or demand associated with the 𝑗𝑡ℎ choice of machinery technologies. 


𝑗
 is the coefficient to be estimated by a simulated maximum likelihood procedure. 𝑋𝑖𝑗 is the 

vector which represents the factors that affect the adoption of machinery. Given the nature of 

the latent variable, 𝑌𝑖𝑗
∗   is estimated by the observable dichotomous variable 𝑌𝑖𝑗 . 𝑖𝑗  is the 

stochastic error term following a multivariate normal distribution (MVN): 

                          (𝑖1, 𝑖2, 𝑖3, 𝑖4)’～ MVN 

(

 0,

[
 
 
 

1 
12


13 

14


12


13


14

1


23


24


23

1


34


24


34

1 ]
 
 
 

)

                       (3)   

where 
𝑗𝑘

 is the correlation coefficient of 𝑗  and 𝑘 (j ≠ k). This assumption with non-zero off-

diagonal allows the correlation of error terms among these four adoption equations. If 
𝑗𝑘

 > 0, 

the adoptions of these two technologies are complementary; if 
𝑗𝑘

< 0, the adoptions of these 

two technologies are substitutable (Rodríguez-Entrena and Arriaza, 2013). 

2.3 Results and discussion 

2.3.1 Descriptive statistics 

Table 2.2 presents the description of variables used in the empirical analysis. The average maize 

sowing area of each farm is 6.49 mu. On average, each farm has five discrete fields and arable 

land areas of 10 mu. Most of the farmers produce 2 to 3 crops on the farm, while an average of 

only 1 to 2 family members participated in agricultural production. A total of 76.3% of farmers 

had received subsidy from the government to support agricultural production. Only 10% of 

farmers received technical assistance in agricultural production. Economies of scale averaged 

12,907.27 yuan, from a minimum of 60 yuan to a maximum of 1567,400 yuan. 

Table 2.3 shows the adoption rates of four agricultural machinery technologies in six 

agroecological maize regions. The adoption rates are differentiated by technology and region. 

Compared with other regions, the Northeast has the highest average adoption rate while the 

South has the lowest. The overall mechanical plowing adoption rate is 58.01% across six 

regions, while mechanical spraying is only 17.82%. 

 

 



20 
 

Table 2.3 Adoption rates of four agricultural machinery technologies in six agroecological 

maize regions and the overall adoption rates (%) 

 
Adoption Rates of Machinery Technologies in Six 

Agroecological Maize Regions 
Overall 

 Southwest Northeast North 
Yellow-Huai 

River Valley 
Northwest South 

Mechanical plowing 13.74% 22.43% 16.80% 35.10% 6.66% 5.26% 58.01% 

Mechanical seeding 2.13% 25.45% 21.46% 42.42% 7.17% 1.37% 43.87% 

Mechanical harvesting 10.84% 20.85% 18.13% 38.42% 5.75% 6.01% 46.75% 

Mechanical spraying 6.74% 48.92% 13.21% 24.53% 4.45% 2.16% 17.82% 

 

2.3.2 Empirical results 

Table 2.4 shows the correlation coefficients of the machinery technology adoption equations. 

The likelihood ratio (LR) test is significant (χ2 (6) = 1772.26***, H0 is rejected), which suggests 

the joint significance of the error correlations. This supports the idea that using MVP models is 

more efficient than univariate models. All the error correlation coefficients are positive and 

significantly different from zero. This result indicates the interdependence among the adoption 

decisions of different machinery technologies. More specifically, the adoptions of these four 

machinery technologies are complementary. The adoption of one machinery technology could 

promote the adoption of other machinery technologies. 

Table 2.4 Correlation coefficients of machinery technology adoption equations 

   Std. Err. 

Mechanical seeding vs. Mechanical plowing 21 0.621 *** 0.021 

Mechanical harvesting vs. Mechanical plowing 31 0.524 *** 0.022 

Mechanical spraying vs. Mechanical plowing 41 0.483 *** 0.030 

Mechanical harvesting vs. Mechanical seeding 32 0.725 *** 0.017 

Mechanical spraying vs. Mechanical seeding  42 0.448 *** 0.030 

Mechanical spraying vs. Mechanical harvesting  43 0.337 *** 0.030 

Likelihood ratio test 
21 = 31 = 41 = 32 = 42 = 43 = 0 (H0);  

χ2 (6) = 1772.26 *** 

Note: *** indicates significant at the 1% level. 

The coefficients of independent variables in multivariate probit models are presented in Table 

2.5. The Wald test indicates the model is significant (χ2 (52) = 2090.25 ***). This justifies that 

the model fits well. Considering the possibility of multicollinearity, a collinearity diagnostic 

test was performed. The variance inflation factors of all explanatory variables are less than 3.13, 
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suggesting that multicollinearity is not an issue (Curto and Pinto, 2011). Most of the explanatory 

variables we considered in this study show statistical significance and their signs are as 

expected. 

Table 2.5 Results of multivariate probit models of adoption of four machinery technologies 

Variables 
Mechanical Plowing   Mechanical Seeding Mechanical Harvesting Mechanical Spraying 

Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.   Coeff. Std. Err. 

Maize sowing area 0.003 (0.005) 0.019 *** (0.004) 0.021 *** (0.004) 0.025 *** (0.003) 

Number of discrete 

fields in the farm 
−0.003 (0.004) −0.020 *** (0.005) −0.012 *** (0.004) −0.016 *** (0.006) 

Arable land area 0.016 *** (0.004) 0.004 (0.003) 0.002 (0.002) 0.000 (0.002) 

Crop diversity 0.031 ** (0.015) 0.002 (0.018) 0.078 *** (0.015) 0.069 *** (0.020) 

Family labor 0.107*** (0.026) 0.084 *** (0.028) 0.074 *** (0.026) 0.000 (0.031) 

Subsidy 0.478 *** (0.050) 0.397 *** (0.057) 0.546 *** (0.052) 0.119 * (0.066) 

Technical assistance 0.245 *** (0.072) 0.067 (0.076) 0.108 (0.069) 0.193 ** (0.079) 

Economies of scale 0.001 * (0.001) 0.002 *** (0.001) 0.001 ** (0.001) 0.000 (0.001) 

Northeast 0.775 *** (0.080) 1.450 *** (0.096) 0.589 *** (0.081) 1.300 *** (0.102) 

North 1.141 *** (0.081) 2.039 *** (0.097) 1.186 *** (0.081) 0.669 *** (0.104) 

Yellow-Huai River 

Valley 
0.876 *** (0.061) 1.760 *** (0.080) 1.014 *** (0.064) 0.539 *** (0.088) 

Northwest 0.907 *** (0.102) 1.671 *** (0.108) 0.722 *** (0.097) 0.531 *** (0.124) 

South 0.038 (0.080) 0.138 (0.112) 0.325 *** (0.082) −0.073 (0.131) 

Constant −1.215 *** (0.093) −1.983 *** (0.117) −1.614 *** (0.097) −1.940 *** (0.128) 

Wald χ2 (52) 2090.25 *** 

Log pseudo-

likelihood 
−7506.263 

Replications 200 

Number of 

observations 
4165 

Note: * indicates significance at the 10% level; ** indicates significance at the 5% level; *** indicates 
significance at the 1% level. The Southwest is set as the base level in the regressions. 

The maize sowing area has a positive effect on machinery technology adoption except for 

mechanical plowing. This result is consistent with Zhou et al. (2020), Ma et al. (2018), and 

Zhang et al. (2019). A greater maize sowing area promotes the adoption of agricultural 

machinery because machines are even more necessary to substitute for manual labor in this 

case. The number of discrete fields in the farm shows a negative impact on the adoption of 

mechanical seeding, mechanical harvesting, and mechanical spraying, because scattered fields 

increase the difficulty of machinery operation. Lai et al. (2015) and Wang et al. (2020) also 

found that land fragmentation decreases machinery use. The total areas of arable land on the 

farm indicate a positive effect on the adoption of mechanical plowing in maize production. 

Plowing is a labor intensive form of agricultural production. The larger the arable land on the 

farm, the more likely the farmer is to use machines for plowing. 
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Crop diversity exerts a positive impact on machinery technology adoption except for 

mechanical seeding. Higher crop diversity on their farms could motivate farmers to adopt more 

agricultural machinery technologies and use them on different crops to improve machinery use 

efficiency. Similarly, Mishra and Park (2005)  revealed that farm diversification could promote 

the adoption of more internet applications by U.S. farmers. More family labor participating in 

agricultural production increases the likelihood of machinery adoption in plowing, seeding, and 

harvesting. It could be that these farms are specializing in agricultural production. A number of 

machines are used on these farms to increase productivity and profitability. On the contrary, 

Zhang et al. (2019) and Ma et al. (2018) found that larger households would reduce the use of 

agricultural machinery because the farms have a sufficient labor supply. Subsidy increases the 

likelihood of using agricultural machinery. This result is in line with the findings from Ma et 

al. (2018). Government subsidies lower the initial machinery purchase prices indirectly and 

boost agricultural mechanization (Huang et al., 2013). 

Technical assistance contributes positively to the adoption of mechanical plowing and spraying. 

This result is parallel to the study of Carrer et al. (2017) about the adoption of computers in 

citrus farming in Brazil. This is because technical assistance from agricultural professionals 

gives farmers a chance to learn the application of agricultural innovations, somehow promoting 

the adoption of new practices. Economies of scale affect machinery adoption positively. This 

finding is in accordance with the results for the adoption of computers by Brazilian citrus 

farmers (Carrer et al., 2017). Three reasons can explain this phenomenon. Firstly, China’ s 

agriculture sector is predominantly small household farms whose typical size is estimated 

around 7.5 mu (Wu et al., 2018). Small household farms are more willing to manage their 

agricultural activities with household labor and they have less incentive to invest in agricultural 

machinery than large farms. Secondly, due to the scale of production, the economic benefit that 

small household farmers could obtain from using agricultural machinery is less than their larger 

counterparts (Qing et al., 2019). Thirdly, large economies of scale grant farmers the financial 

ability to invest in agricultural machinery. 

Finally, machinery adoption also indicates regional differences in the six maize growing 

regions. Farmers located in the Northeast, North, Yellow-Huai River Valley, and Northwest are 

more likely to be machinery adopters than farmers in the Southwest. Farms in Southwest China 

have the lowest machinery adoption probability because of the hilly or mountainous terrain, 

which constrains large-scale machinery operation. Maize farmers in the Northeast and North 
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may have higher machinery adoption odds than other regions because of the regions’ plain 

topography and relatively large farm size. The regional differences in machinery adoption are 

due to uneven resource endowments such as topography, soil fertility, farm size, labor price, 

and off-farm employment among these regions. 

2.4 Conclusions 

In this study, household-level data on 4165 cases in six agroecological maize regions of China 

were used in multivariate probit models to identify the factors that influence maize farmers’ 

decisions to adopt machinery technologies, with a specific focus on mechanical plowing, 

mechanical seeding, mechanical harvesting, and mechanical spraying. The findings support that 

the adoption of these four machinery technologies is interrelated and complementary. The 

results of multivariate probit models imply that maize sowing area, arable land area, crop 

diversity, family labor, subsidy, technical assistance, and economies of scale have positive 

effects on machinery adoption, while the number of discrete fields in the farm has a negative 

impact. Maize farmers in the Northeast and North have higher machinery adoption odds than 

other regions. 

Based on these empirical results, the following recommendations are given to promote the 

adoption of agricultural machinery by Chinese maize farmers: 

(I) Moderate scale production 

Since maize sowing area, total areas of arable land in the farm, and economies of scale have 

positive effects on machinery adoption, moderately increasing the scale of agricultural 

production is a possible approach to reduce machinery operation costs and to facilitate 

machinery adoption. Especially in large-scale agricultural production, machinery is 

increasingly needed as a substitute for manual labor. We must be aware that scale production 

can increase the total agricultural output, but that the output per unit area is not always increased 

as the scale expands. Therefore, finding the moderate scale of production which facilitates 

machinery adoption and maximizes agricultural productivity is the key. 

(II) Crop diversification 

Crop diversity has a positive effect on machinery adoption. To an extent, an increase in crop 

varieties produced on the farm could promote the adoption of agricultural machinery and 

guarantee an overall income under price volatility in some agricultural products. 
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(III) Subsidizing agricultural machinery and its extension education 

The adoption of machinery is influenced positively by subsidy. Obtaining subsidies from the 

government could boost the adoption of machinery by Chinese maize farmers, but it is only a 

temporary solution, and it also increases government administrative burdens. Farmers’ intrinsic 

motivation is an important factor influencing agricultural machinery adoption. On the one hand, 

government can provide subsidies to support the purchase of agricultural machinery. In 

addition, agricultural machinery extension education is also necessary to make farmers realize 

the importance and benefits of agricultural mechanization. 

(IV) Land consolidation 

The number of discrete fields on the farm has a negative effect on machinery adoption. Land 

fragmentation is a barrier for machinery adoption because it increases the difficulty of 

mechanical operations. Considering the farm size growth, decreasing family labor, and land 

fragmentation in rural China, land consolidation might be an approach to promote machinery 

use. Merging scattered fields through land consolidation not only builds a convenient 

environment for large-scale agricultural mechanization but also improves agricultural 

productivity. However, small farms are more efficient in resource utilization than large farms. 

It is important to consolidate scattered fields into a size appropriate for machinery application 

but also optimal for resource utilization. 

The proposals discussed above are just a general framework to promote the adoption of 

agricultural machinery by maize farmers in China. As indicated by the results in this study, the 

adoption of agricultural machinery shows regional differences. When it comes to a specific 

region, these proposals should be adjusted correspondingly to fit well with regional resource 

endowments. 

There are also some shortcomings of this study. Due to data availability, this research could not 

add some explanatory variables regarding farmers’ sociodemographic characteristics into the 

models. This study only considers whether farmers use machinery technologies or not, but the 

intensity of adoption of machinery technologies is not clear. Future work can focus on the 

intensity of adoption of machinery technologies in maize production. The economic and social 

impacts of using machinery in maize production compared with those who are not using it 

would be an interesting direction in the future as well. 
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Abstract 

Farm machinery plays an important role in Chinese maize farming by replacing manual labor 

and increasing productivity. However, it remains unclear how the impacts of farm machinery 

use differ across farm households. Thus, this study used farm household survey data from 

Chinese maize farmers to identify the factors that influence the adoption of farm machinery and 

to estimate the impacts of adoption on maize yield and labor productivity by using the 

endogenous switching regression (ESR) models. In addition, the heterogeneous effects of farm 

machinery adoption were analyzed across farm households. The empirical results show that 

rented land and cooperative membership are main drivers of farm machinery adoption, while 

land fragmentation is a barrier of adoption. Farm machinery use has significantly positive 

impacts on maize yield and labor productivity, but the impacts differ across farm households. 

Finally, some policy implications were proposed to promote the adoption of farm machinery 

and to optimize its economic effects. 

Keywords: China, farm machinery, adoption, maize yield, labor productivity, endogenous 

switching regression models, heterogeneous impacts, policy implications 

3.1 Introduction 

In modern agriculture, farm machinery is important for farmers to improve efficiency and 

profitability in agricultural production (Benin, 2015). Farm machinery can substitute manual 

labor and draught animals in agricultural production and reduce the need to hire workers and 

increase labor productivity of each worker (Hamilton et al., 2021). With the assistance of farm 

machinery, economies of scale and intensification of production are easier to realize (Benin, 

2015; Ma et al., 2018; Mrema et al., 2008).  

In 2020, maize is the most cultivated cereal crop in China in terms of 42.12% sown area and 

42.26% harvested yield (National Bureau of Statistics of China, 2022). However, China’s 

average maize yield in 2020 was 6.31 tons/ha, which was relatively low compared to the 10.79 
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tons/ha in the United States (FAO, 2019). One of the main reasons is that the USA has higher 

mechanization level in maize production compared to China (Qian et al., 2016). Thus, 

agricultural mechanization is one of the most important approaches to achieve high productivity 

of maize production in China.  

In 2004, the “Law of the People's Republic of China on Promotion of Agricultural 

Mechanization” was launched in China as a policy and financial framework to encourage 

farmers to use agricultural machinery and to promote agricultural mechanization. The 

agricultural machinery purchase subsidies provided by the Chinese government increased from 

70 million yuan in 2004 to 19 billion yuan in 2021 (National Bureau of Statistics of China, 

2022). From 2008 to 2021, the comprehensive mechanization level in China’s maize production 

increased from 51.78% to 90.00%, and maize yield increased from 5.56 tons/ha to 6.29 tons/ha 

(Figure 3.1). In addition to mechanization, other factors such as improved seeds, fertilizers, and 

pesticides also contributed to the increased maize yield in China (Meng et al., 2006).  

 

Figure 3.1 Comprehensive mechanization level in China’s maize production and maize yield.  

Comprehensive mechanization level = mechanical tillage rate*0.4 + mechanical seeding rate*0.3 + mechanical 

harvesting rate*0.3. Data source: National Bureau of Statistics of China (2022). 

Many studies have analyzed the factors that influence the adoption of farm machinery or the 

impacts of farm machinery use on agricultural performance in China’s maize production. Zhou 

et al. (2020) used an unconditional quantile regression model to estimate the heterogeneous 

impacts of farm machinery use across different quantiles of maize yield, while addressing the 

selection bias of farm machinery use by the control function approach. They found that farm 

machinery use has higher positive impacts on low productivity farmers than on high 

productivity farmers. Their results also suggest that education and household size have 
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significant negative effects on farm machinery adoption, while farm size and the expenditures 

of pesticide and fertilizer have significant positive effects on farm machinery adoption. A study 

by Ma et al. (2018) found that farm machinery use has a significantly positive effect on maize 

yield and averaged in a 15% increase in yield. They also found that large farm size and fertile 

soil can boost the adoption of farm machinery, while large household size would discourage 

the adoption of farm machinery by farmers. Wang et al. (2016) reveled that farm machinery 

showed a strong substitution effect to labor in China’s maize production by using provincial 

level panel data from 1984 to 2012. Jetté-Nantel et al. (2020) used production function to 

estimate the impact of farm machinery use on maize yield, and the results imply that the 

efficiency gains from farm machinery use is limited. Zhang et al. (2019) performed the 

endogenous switching regression (ESR) model to examine the factors that influence the 

adoption of farm machinery in pesticide application and the effects of adoption on pesticide 

expenditure among 493 Chinese maize farmers. Their findings suggest that off-farm work and 

farm size have significantly positive impacts on the adoption of farm machinery in pesticide 

application, and the adoption can significantly reduce pesticide expenditure by increasing the 

efficiency of pesticide application. 

However, limited studies have been found to estimate the impacts of farm machinery use on 

labor productivity in Chinese maize production, and most existing articles that estimate the 

effects of farm machinery use on maize yield only showed the average treatment effects of farm 

machinery adoption on maize yield but not the heterogeneous treatment effects of adoption 

across farm households. This article contributes to literature in two ways. Firstly, this paper 

used ESR models to identify the factors that influence the adoption of farm machinery and to 

estimate the impacts of farm machinery adoption on maize yield and labor productivity in 

Chinese maize production. Secondly, majority studies only estimate the homogenous impacts 

of farm machinery adoption on outcome variables (e.g., maize yield and agrochemical 

expenses). Nevertheless, the impacts of farm machinery adoption on outcome variables may 

not be the same for all adopters, and it remains unclear how the impacts differ across farm 

households. This study used the average treatment effects of farm machinery adoption on maize 

yield and labor productivity, generated from the ESR model, as dependent variables in two 

ordinary least squares (OLS) regressions respectively to explore the heterogeneous treatment 

effects of farm machinery adoption across farm and farmer characteristics. 
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3.2 Materials and methods 

3.2.1 Data source  

The data used in this study is based on the “National Scientific Fertilizer Application Research 

Project 2019” headed by the Ministry of Agriculture and Rural Affairs of China. This national 

survey focused mainly on evaluating the farm-level impact of a scientific fertilizer application 

project. The survey was carried out in 2019 by the National Academy of Agriculture Green 

Development, China Agricultural University and was based on face-to-face interviews with 

farmers from 11 of the country’s main grain producing provinces: Heilongjiang, Jilin, Hebei, 

Henan, Shandong, Shaanxi, Gansu, Anhui, Jiangsu, Hunan, and Guangxi. This survey applied 

stratified multi-stage sampling and random sampling. Firstly, within each province, counties 

were classified according to the cultivated area, and 4 counties were randomly selected. 

Secondly, within the selected counties, townships were classified according to per capita 

income, and 3 townships were randomly selected. Thirdly, within the selected townships, 

villages were classified according to per capita income, and 2 villages were randomly selected. 

Finally, within the selected villages, farmers were classified according to their cultivated area 

and were randomly selected. The interview questions covered characteristics of farm 

households, aspects of farm management, agricultural production expenditure and revenues, 

pesticide application, and farmers’ knowledge about fertilizer application, etc. 

This survey was assisted by the local government, and all the farmers selected participated in 

the survey, i.e., 100% response rate. The sample consisted of 1,123 maize farmers. Given the 

research purpose and variables of this study, missing values and invalid observations were 

excluded, leaving a final sample consisting of 824 maize farmers. The sampled provinces in 

this study account for 63% of China’s maize production in 2018 (National Bureau of Statistics 

of China, 2022) (Figure 3.2).  
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Figure 3.2 Maize yield in different provinces of China in 2018 and sample counties in this study.  

Data source: National Bureau of Statistics of China (2022). 

3.2.2 Definitions and descriptive statistics of variables 

Table 3.1 presents the definitions and descriptive statistics of variables in this study. The t-test 

was performed to check the mean differences of variables between farm machinery adopters 

and non-adopters. More than half of maize farmers in this study adopted farm machinery in 

land preparation, fertilizer application, or pesticide application. The outcome variables, maize 

yield and labor productivity, are significantly higher for farm machinery adopters compared to 

non-adopters. Generally speaking, farm machinery adopters are more educated and younger 

than non-adopters. Number of agricultural workers within household for adopters is smaller 

than that of non-adopters. Compared with non-adopters, farm machinery adopters are more 

likely to be a member of agricultural cooperatives and are more likely to rent land from others. 

Averagely, farm size of adopters is 2.05 ha compared to 0.90 ha for non-adopters. Moreover, 

adopters show significant higher fertilizer expenditures compared to non-adopters. Particularly, 

most of the adopters are located in North of China. However, the direct comparisons between 

farm machinery adopters and non-adopters can lead to erroneous conclusions because they only 

base on descriptive statistics without controlling for confounding factors. Hence, this study 

accounts farm machinery adoption decisions together with other confounding factors to explore 

the impacts of farm machinery adoption on maize yield and labor productivity. 
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Table 3.1 Descriptive statistics 

Variables Definitions Non-

adopters 

 (N =341) 

Adopters 

(N =483) 

Mean 

Difference 

Dependent variables     

Machinery adoption 1 if the farm adopted farm machinery 

in any of the production processes: 

land preparation, fertilizer 

application, or pesticide application; 

0 otherwise 

0 1 −1*** 

Maize yield Maize yield per hectare (ton/ha) 6.887 7.154 −0.267* 

Labor productivity (ln) Total value of maize output per 

agricultural worker (yuan/person) in 

natural logarithm 

7.189 7.680 −0.491*** 

Independent variables     

Age Age of household head 58.352 56.791 

 

1.561** 

Gender 1 if the household head is male; 0 

otherwise 

0.921 0.925 

 

−0.005 

Education Education of household head in 

years 

7.968 

 

8.402 

 

−0.434* 

Agricultural workers Number of agricultural workers 

within household 

3.323 

 

3.114 

 

0.209** 

Cooperative 

membership 

1 if the farm is a member of an 

agricultural cooperative; 0 otherwise 

0.100 

 

0.157 

 

−0.058** 

Off-farm employment 1 if the household head has off-farm 

employment; 0 otherwise 

0.188 

 

0.219 

 

−0.032 

Plain 1 if the farm is located in plain 

region; 0 otherwise 

0.897 

 

0.845 

 

0.053** 

Soil fertility 1 if the soil on the farm is fertile; 0 

otherwise 

0.390 

 

0.340 

 

0.050 

Land fragmentation Number of discrete field plots on the 

farm 

3.493 

 

3.540 

 

−0.048 

Rented land  1 if the farm household rented land 

from others; 0 otherwise 

0.323 

 

0.520 

 

−0.197*** 

Farm size Maize grown area on the farm (ha) 0.898 

 

2.050 

 

−1.152*** 

Fertilizer expenditure Total fertilizer expenditure per 

hectare (1000 yuan/ha) 

2.140 

 

2.500 

 

−0.360*** 

Pesticide expenditure Total pesticide expenditure per 

hectare (1000 yuan/ha) 

0.466 

 

0.508 

 

−0.042 

West 1 if the farm is located in Gansu or 

Shaanxi; 0 otherwise 

0.246 

 

0.284 

 

−0.037 

Northeast 1 if the farm is located in Jilin or 

Heilongjiang; 0 otherwise 

0.059 

 

0.174 

 

−0.115*** 

North 1 if the farm is located in Shandong, 

Hebei or Henan; 0 otherwise 

0.563 

 

0.439 

 

0.124*** 

South 1 if the farm is located in Anhui, 

Guangxi, or Hunan; 0 otherwise 

0.132 

 

0.104 

 

0.028 

Instrumental variables      

Private car 1 if the farm household owns a 

private car; 0 otherwise 

0.326 0.398 −0.072** 

Village cadre 1 if the farm household is a village 

cadre; 0 otherwise 

0.182 0.284 −0.102*** 

Note: yuan is the unit of Chinese currency, 1 yuan ≈ $0.15. 
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3.2.3 Empirical model 

3.2.3.1 Impact evaluation and selection bias 

Theoretically, farm machinery adoption decisions and their impacts on maize yield or labor 

productivity can be estimated in two steps. Firstly, assuming that 𝐴1𝑖
∗  is the expected utility of 

farm machinery adoption, and 𝐴0𝑖
∗  is the expected utility of not adopting. 𝑀𝑖

∗ is a latent variable 

which captures the expected utility difference of farm machinery adoption (𝐴1𝑖
∗ ) and non-

adoption (𝐴0𝑖
∗ ). A farmer adopts farm machinery for maize production if and only if the expected 

utility of adoption is higher than non-adoption: 𝑀𝑖
∗  = 𝐴1𝑖

∗ − 𝐴0𝑖
∗ > 0 . Although the latent 

variable 𝑀𝑖
∗ is unobserved, the binary farm machinery adoption decision (𝑀𝑖) is observed: 𝑀𝑖 

= 1 if 𝐴1𝑖
∗ > 𝐴0𝑖

∗  and 𝑀𝑖 = 0 if 𝐴1𝑖
∗ < 𝐴0𝑖

∗ . Thus, farm machinery adoption decision is specified 

as follows: 

𝑀𝑖
∗ = 𝑿𝒊𝜶 + µ𝑖   with 𝑀𝑖 = { 

1  if Mi
* >0 

 0  otherwise,
                                                                                            (1) 

where 𝑿𝒊  represents a vector of explanatory variables that affect farm machinery adoption 

decisions (e.g., age, education, gender, soil fertility, and farm size); α is the parameter to be 

estimated; and µ𝑖 is the error term.  

Secondly, the impact of farm machinery adoption on outcome variables is specified as:  

𝑌𝑖 = 𝒁𝒊𝛃 + 𝑀𝑖  𝛄 + 𝜀𝑖 ,                                                                                                            (2) 

where 𝑌𝑖 is maize yield or labor productivity; 𝒁𝒊 is a vector of explanatory variables that affect 

outcome variables (e.g., farm and farmer characteristics); 𝑀𝑖 is the farm machinery adoption 

denoted before; 𝜀𝑖 is the error term; β and 𝛾 are vectors of parameters to be estimated.   

Normally, equation (2) can be estimated by the ordinary least squares (OLS) if the farm 

machinery adoption (𝑀𝑖) is exogenous. However, farmers may self-select as farm machinery 

adopters or non-adopters based on their farm characteristics and other factors rather than being 

stochastically assigned, and this causes the selection bias. Moreover, some unobservable 

characteristics (e.g., farmers’ motivation, managerial ability, and experience) may also affect 

the adoption decisions and outcome variables at the same time and cause the correlation of error 

terms in the selection equation (1) and the outcome equation (2): ρ = corr (µ, ε) ≠ 0. In these 

cases, the OLS estimates of equation (2) are biased if farm machinery adoption is endogenous. 
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Moreover, OLS fails to consider the possible structural differences between farm machinery 

adopters and non-adopters in the outcome equation. 

3.2.3.2 Endogenous switching regression (ESR) model 

Hence, this study used the ESR model (Maddala, 1983) to address the endogeneity of farm 

machinery adoption and to estimate the determinants and impacts of farm machinery adoption. 

The ESR model consists of two stages. In the first stage, the selection equation (1) was used to 

estimate the factors that affect the adoption of farm machinery. In the second stage, two regimes 

were specified for adopters and non-adopters to estimate the impact of adoption: 

Regime 1: 𝑌1𝑖 = 𝒁𝟏𝒊𝜷𝟏  + 𝜀1𝑖    if 𝑀𝑖 = 1,                                                                           (3) 

Regime 0: 𝑌0𝑖 = 𝒁𝟎𝒊𝜷𝟎  +  𝜀0𝑖    if  𝑀𝑖 = 0,                                                                          (4) 

where 𝑌𝑖 is the outcome variable (maize yield or labor productivity); 𝒁𝒊 is a vector of variables 

(e.g., age, gender, education, labor intensity, fertilizer expenditure, and pesticide expenditure) 

that affect the outcome variables; 𝜀𝑖  is the error term; µ𝑖 , 𝜀1𝑖 , and 𝜀0𝑖  are assumed to have 

trivariate normal distribution with zero means. 

For the identification of ESR model, 𝑿𝒊 in the selection equation (1) must have at least one 

instrumental variable that does not appear in the 𝒁𝒊, and instrumental variables are supposed to 

affect the adoption only but not the outcome variables. Here, private car and village cadre were 

chosen as instrumental variables respectively. Private car and village cadre are expected to 

affect a farm household’s machinery adoption decision but not a farmer’s maize yield or labor 

productivity. Table A1 of the appendix reports the test on the validity of instrumental variables. 

Private car and village cadre both have statistically significant effects on adoption, but not of 

maize yield or labor productivity by the farmers that did not adopt farm machinery. Thus, the 

instrumental variables were valid.  

The ESR model calculated the impacts of farm machinery adoption by constructing conditional 

expectations of outcome variables in respect of actual scenarios and counterfactual scenarios: 

Farm machinery adopters (actual): 

E(𝑌1𝑖| 𝑀𝑖 = 1)  =  𝒁𝟏𝒊𝜷𝟏 + 𝜎1µ𝜆1𝑖 ,                                                                                                   (5) 

Farm machinery non-adopters (actual): 

E(𝑌0𝑖| 𝑀𝑖 = 0)  =  𝒁𝟎𝒊𝜷𝟎 + 𝜎0µ𝜆0𝑖 ,                                                                                                   (6) 

Farm machinery adopters if they had chosen not to adopt (counterfactual): 
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E(𝑌0𝑖| 𝑀𝑖 = 1)  =  𝒁𝟏𝒊𝜷𝟎 + 𝜎0µ𝜆1𝑖 ,                                                                                                   (7) 

Farm machinery non-adopters if they had chosen to adopt (counterfactual): 

E(𝑌1𝑖| 𝑀𝑖 = 0)  =  𝒁𝟎𝒊𝜷𝟏 + 𝜎1µ𝜆0𝑖 ,                                                                                                   (8) 

where 𝜎1µ  and 𝜎0µ  indicate the covariance of µ𝑖  with 𝜀1𝑖  and 𝜀0𝑖  respectively; 𝜆1  and 𝜆0 

represent the inverse Mills ratio derived from the selection equation (1) and are plugged into 

equation (3) and (4) to correct the selection biases. 

Following Heckman et al. (2001), the impact of farm machinery adoption on outcome variables 

(maize yield or labor productivity) was defined in (9), which is also called the average treatment 

effect on the treated (ATT). 

ATT = E(𝑌1𝑖| 𝑀𝑖 = 1) −  E(𝑌0𝑖| 𝑀𝑖 = 1) = 𝒁𝟏𝒊(𝜷𝟏 − 𝜷𝟎) + (𝜎1µ − 𝜎0µ)𝜆1𝑖,                     (9)             

Similarly, the average treatment effect on the untreated (ATU) for farmers that actually did not 

adopt farm machinery is defined as: 

ATU = E(𝑌1𝑖| 𝑀𝑖 = 0) − E(𝑌0𝑖| 𝑀𝑖 = 0) = 𝒁𝟎𝒊(𝜷𝟏 − 𝜷𝟎) + (𝜎1µ − 𝜎0µ)𝜆0𝑖,                    (10)                

Although the ESR model can be estimated by two-stage OLS or maximum likelihood 

estimation, these approaches are not efficient and require complicated calculations to achieve 

consistent standard errors. Thus, full information maximum likelihood (FIML), an efficient 

method, developed by Lokshin and Sajaia (2004) was performed to estimate the selection 

equation and two regime equations simultaneously to yield consistent standard errors.  

3.3 Empirical results and discussion 

3.3.1 Estimation of maize yield function 

Table 3.2 reports the estimates of ESR model for farmers’ adoption of farm machinery and its 

impacts on maize yield. ρ1 is negative and significantly different from zero which suggests the 

presence of selection bias. The likelihood ratio of independence test rejects the null hypothesis 

of farm machinery adoption and maize yield are independent at the 10% significance level. The 

results of selection equation suggest that farm households with more agricultural workers are 

less likely to be farm machinery adopters because they have sufficient labor supply in 

agricultural production, and there is no need to adopt farm machinery to replace manual labor. 

Likewise, Zhou et al. (2020) and Ma et al. (2018) also found that household size has a negative 

effect on farm machinery adoption. Cooperative membership shows a positive effect on farm 

machinery adoption may be because agricultural cooperatives often perform various field 
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operations jointly among cooperative members, and are considered to stimulate the farm 

machinery adoption. This result is in line with Zhang et al. (2020) and Manda et al. (2020) who 

found that the cooperative membership facilitates the adoption of agricultural technology. Land 

fragmentation is found to be an obstacle for farm machinery adoption because it increases the 

difficulty of plot to plot machinery operation. Lai et al. (2015) also support this finding. Farm 

households who rented in land have higher probability to use farm machinery in maize 

production, and this may be because the expansion of farm size needs farm machinery to replace 

manual labor. This result is in line with Zhou et al. (2020) and Ma et al. (2018) who found that 

farm size has a significant positive effect on farm machinery adoption. Fertilizer expenditure is 

significantly positive corelated with farm machinery adoption. This finding is consistent with 

Zhou et al. (2020) who found that maize farmers with higher fertilizer expenditure are more 

likely to adopt farm machinery. Private car has a significantly positive effect on farm machinery 

adoption, and this indicates its validity as an instrumental variable. 

In maize yield equations, most of the coefficients show expected signs. For non-adopters, age, 

soil fertility, farm size, and fertilizer expenditure have positive effects on maize yield. This 

result is consistent with the practical experience. In particular, farm size positively affects maize 

yield of non-adopters but negatively affects maize yield of adopters. This may be because most 

non-adopters have a relatively small farm size, and the increased farm size can boost maize 

output. Compared to non-adopters, farm machinery adopters have a relatively large farm size, 

and the increased farm size may lead to resource misallocation and management inefficiency 

and finally to a declined maize yield (Sheng et al., 2019). However, rented land has a negative 

effect on maize yield for both adopters and non-adopters. Likely, Jacoby et al. (2002) also found 

that insecure land use discourages farmers to invest more on land and decreases the 

productivity. On the other hand, Feng et al. (2010) argue that farmers who rented in land are 

more capable of obtaining high benefits from agricultural activities, and rented land can 

increase production. For adopters, maize yield is positively corelated with gender and soil 

fertility because male farmers are considered to be physically superior to female farmers in 

agricultural production, and fertile soil is beneficial for maize production. Interestingly, maize 

yield of farm households that adopt farm machinery is positively corelated with land 

fragmentation may be because more field plots provide enough space for machinery operation 

that can reduce the damage to maize plants. 
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Table 3.2 Estimates of ESR model for farm machinery adoption and its impacts on maize yield 

  Maize yield  

 Selection Non-adopters Adopters 

Age 0.006 0.034*** 0.004 

 (0.006) (0.013) (0.013) 

Gender −0.174 −0.309 0.697* 

 (0.205) (0.483) (0.409) 

Education 0.012 0.035 0.048 

 (0.016) (0.032) (0.029) 

Number of agricultural 

workers 

−0.079** −0.036 0.010 

 (0.034) (0.068) (0.066) 

Cooperative 

membership 

0.346** −0.210 0.229 

 (0.154) (0.286) (0.282) 

Off-farm employment 0.211 −0.045 −0.276 

 (0.132) (0.295) (0.275) 

Plain −0.210 0.014 0.128 

 (0.155) (0.430) (0.363) 

Soil fertility −0.188* 0.619** 0.575** 

 (0.108) (0.240) (0.224) 

Land fragmentation −0.017** −0.007 0.093*** 

 (0.008) (0.011) (0.027) 

Rented land  0.414*** −1.016*** −0.435* 

 (0.114) (0.272) (0.240) 

Farm size 0.002 0.117*** −0.030* 

 (0.014) (0.035) (0.016) 

Fertilizer expenditure 0.137*** 0.346*** 0.086 

 (0.050) (0.133) (0.120) 

Pesticide expenditure 0.097 0.198 0.566 

 (0.133) (0.326) (0.406) 

West 0.127 1.671*** 1.409*** 

 (0.188) (0.401) (0.510) 

Northeast 0.724*** 2.942*** 2.515*** 

 (0.235) (0.494) (0.541) 

North 0.024 1.670*** 1.267** 

 (0.177) (0.322) (0.507) 

Private car 1.081***   

 (0.101)   

Constant −0.853* 2.571** 3.864*** 

 (0.467) (1.293) (1.055) 

lnσ0  0.628***  

  (0.059)  

ρ0  −0.034  

  (0.241)  

lnσ1   0.788*** 

   (0.056) 

ρ1   −0.231** 

   (0.102) 

Log likelihood −2106.003 

Wald χ2 (16) 122.35*** 

Likelihood ratio of 

independence 

χ2 (2) = 4.77* 

Observations 786 

Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1; south is the reference region; ρ0 is the 

correlation coefficient between 𝜀0𝑖 and µ𝑖; ρ1 is the correlation coefficient between 𝜀1𝑖 and µ𝑖. 



37 
 

3.3.2 Estimation of labor productivity function 

Table 3.3 presents the estimates of ESR model for farmers’ adoption of farm machinery and its 

impacts on labor productivity. ρ1 is negative and significantly different from zero which 

suggests the presence of selection bias. The likelihood ratio of independence test rejects the null 

hypothesis of farm machinery adoption and labor productivity are independent at the 1% 

significance level. Similarly, the results of selection equation suggest that cooperative 

membership, off-farm employment, and rented land have significantly positive effects on farm 

machinery adoption, while land fragmentation has a significantly negative impact on farm 

machinery adoption. Farm household heads with off-farm employment have higher chance to 

adopt farm machinery may be because they need machinery to substitute the lost labor from 

off-farm employment (Su et al., 2016). On the other hand, Ji et al. (2012) reported that off-farm 

employment decreases farmers’ odds of owning farm machinery due to the alternative 

machinery services from market. In particular, the coefficient of fertilizer expenditure is 

significantly positive, indicating that more fertilizer use promotes the adoption of farm 

machinery. Maize farmers from West and Northeast of China have higher probability to be farm 

machinery adopters compared to farmers from South because these regions are mainly plains. 

Private car and village cadre both have significantly positive effects on farm machinery 

adoption, and this suggests that they are valid instrumental variables. 
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Table 3.3 Estimates of ESR model for farm machinery adoption and its impacts on labor 

productivity 

  Labor productivity (ln) 

 Selection  Non-adopters Adopters 

Age 0.005 0.008 −0.005 

 (0.005) (0.006) (0.005) 

Gender −0.193 −0.521** −0.115 

 (0.200) (0.239) (0.189) 

Education 0.006 0.034** 0.004 

 (0.016) (0.016) (0.015) 

Cooperative membership 0.372** 0.074 0.146 

 (0.150) (0.190) (0.146) 

Off-farm employment 0.257** 0.184 −0.202* 

 (0.125) (0.158) (0.120) 

Plain −0.162 0.111 0.202 

 (0.152) (0.192) (0.132) 

Soil fertility −0.104 0.043 0.370*** 

 (0.103) (0.112) (0.103) 

Land fragmentation −0.015* 0.015 0.079*** 

 (0.008) (0.020) (0.015) 

Rented land  0.385*** −0.226 −0.162 

 (0.105) (0.160) (0.116) 

Farm size 0.030 0.207*** 0.131*** 

 (0.026) (0.030) (0.012) 

Fertilizer expenditure 0.160*** −0.018 −0.134*** 

 (0.050) (0.061) (0.044) 

Pesticide expenditure 0.134 0.152 0.422*** 

 (0.123) (0.106) (0.118) 

West 0.305* 0.184 −0.136 

 (0.174) (0.193) (0.181) 

Northeast 0.662*** 1.552*** 0.821*** 

 (0.236) (0.306) (0.212) 

North 0.022 0.500*** 0.027 

 (0.159) (0.182) (0.172) 

Private car  0.184*   

 (0.112)   

Village cadre 0.359***   

 (0.119)   

Constant −0.735* 5.991*** 7.693*** 

 (0.439) (0.536) (0.492) 

lnσ0  −0.118*  

  (0.066)  

ρ0  −0.214  

  (0.379)  

lnσ1   0.052 

   (0.075) 

ρ1   −0.667*** 

   (0.136) 

Log likelihood −1514.658 

Wald χ2 (15) 172.75*** 

Likelihood ratio of independence χ2 (2) = 11.20*** 

Observations 786 

Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1; south is the reference 

region; ρ0 is the correlation coefficient between 𝜀0𝑖  and µ𝑖 ; ρ1 is the correlation coefficient 

between 𝜀1𝑖 and µ𝑖. 
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In labor productivity equations, farm size has a significant positive effect on labor productivity 

of both adopters and non-adopters because increased farm size leads to more total maize output 

and indirectly increases labor productivity of each agricultural worker. Soil fertility and 

pesticide expenditure have positive effects on labor productivity for those who adopted farm 

machinery because good pest and disease control and fertile soil can boost maize productivity. 

However, off-farm employment seems to decrease the labor productivity of adopters. A 

possible explanation is that farmers who have off-farm employment would invest less time and 

less efforts in agricultural production, and this causes the reduction of labor productivity. 

3.3.3 Impacts of farm machinery adoption on maize yield and labor productivity 

The impacts of farm machinery adoption on maize yield and labor productivity are shown in 

Table 3.4. The expected maize yield produced by adopters is 7.159 tons/ha, while these farmers 

would have produced 6.942 tons/ha of maize yield if they did not adopt farm machinery under 

the counterfactual scenario. Hence, the average impact of farm machinery adoption for adopters 

is 0.216 tons/ha. Under the counterfactual scenario, farmers who did not adopt farm machinery 

would increase maize yield by 0.833 tons/ha if they had adopted. These results support that 

farm machinery adoption did benefit farmers through increased maize yield. Similarly, farm 

machinery adoption is also found to increase the labor productivity of maize farmers. The ATT 

of farm machinery adoption on adopters is 0.450, suggesting that adopters would decrease the 

expected labor productivity by 5.86% (The formula is: (7.227−7.677)/7.677*100%) if they did 

not adopt. Likewise, labor productivity of non-adopters would increase by 18.65% (The 

formula is: (8.530−7.189)/7.189*100%) if they had adopted farm machinery.  
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Table 3.4  Impacts of farm machinery adoption on maize yield and labor productivity 

 Decision stage 
Treatment effects 

 To adopt Not to adopt 

Maize yield (ton/ha)    

Adopters 7.159 6.942 ATT=0.216*** 

 (0.041) (0.053) (0.067) 

Non-adopters 7.697 6.864 ATU= 0.833*** 

 (0.051) (0.052) (0.072) 

Labor productivity (ln)(yuan/person)    

Adopters 7.677 7.227 ATT= 0.450*** 

 (0.054) (0.065) (0.085) 

Non-adopters 8.530 7.189 ATU= 1.341*** 

 (0.051) (0.045) (0.068) 

*** p<0.01; standard errors in parentheses using 50 bootstrap replications. 

3.3.4 Heterogeneous impacts of farm machinery adoption on maize yield and labor 

productivity 

The ATTs of maize yield and labor productivity in Table 3.4 only show the average impacts of 

farm machinery adoption on all adopters. However, many studies have shown that the impacts 

of farm machinery use may differ across farm households because of the heterogeneous farm 

characteristics and social-economic conditions (Adekunle et al., 2016; Adu-Baffour et al., 2019; 

Kienzle et al., 2013; Qing et al., 2019; Takeshima et al., 2020; Zhou et al., 2020). The impacts 

of farm machinery adoption on maize yield and labor productivity may not be the same for all 

adopters, and it remains unclear how the ATTs differ across farm households. If farm machinery 

adoption had positive effects exclusively for large farms or high productive farmers, the 

undifferentiated farm machinery extension program which fails to consider the farm-level 

heterogeneity would cause the inequity among farmers. Thus, understanding the heterogeneous 

effects of farm machinery adoption contributes to formulate different sets of extension services 

which fit various types of farm households. 
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Table 3.5 Heterogeneous treatment effects of farm machinery adoption 

Variables Maize yield 

ATT 

Labor productivity (ln) 

ATT 

Age −0.031*** −0.013*** 

 (0.002) (0.001) 

Gender 0.853*** 0.295*** 

 (0.077) (0.050) 

Education 0.017*** 0.022*** 

 (0.006) (0.004) 

Number of agricultural workers 0.018  

 (0.015)  

Cooperative membership 0.645*** 0.296*** 

 (0.092) (0.061) 

Off-farm employment −0.228*** −0.346*** 

 (0.047) (0.032) 

Plain 0.058 0.110*** 

 (0.059) (0.035) 

Rented land  0.836*** 0.278*** 

 (0.060) (0.040) 

Farm size −0.059*** −0.019 

 (0.019) (0.013) 

Farm size square −0.002*** −0.001*** 

 (0.001) (0.000) 

West −0.415*** −0.487*** 

 (0.092) (0.061) 

Northeast −0.661*** −0.840*** 

 (0.098) (0.064) 

North −0.551*** −0.538*** 

 (0.085) (0.056) 

Constant 1.113*** 1.535*** 

 (0.181) (0.122) 

R−squared 0.779 0.675 

Observations 464 464 
Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1; south is the reference region. 

Inspired by Verhofstadt and Maertens (2015), this study uses ATTs of maize yield and labor 

productivity, generated from the ESR model, as dependent variables in two OLS regressions 

respectively to explore the heterogeneous treatment effects of farm machinery adoption across 

farm and farmer characteristics. Table 3.5 shows the heterogeneous treatment effects of farm 

machinery adoption across farm and farmer characteristics. Young, male, and more educated 

farm households gain higher maize yield and labor productivity from farm machinery adoption. 

The results also imply that farm machinery adoption is more productive in increasing maize 

yield and labor productivity among the farms which are located in plain regions with 

cooperative membership and rented land. This can be explained by that plain regions are 

favorable for mechanized operations, and jointly mechanical operations within cooperative 
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members improve the effects of farm machinery use. In particular, the coefficients of farm size 

square terms are significant negative and the axes of symmetry of the quadratic functions are 

on the left side of y-axes. It indicates that the impacts of farm machinery adoption on maize 

yield and labor productivity decrease with farm size slightly. This may be because the 

expansion of farm size leads to resource misallocation and management inefficiency, and 

finally to a decline in the impacts of farm machinery adoption (Sheng et al., 2019). Likewise, 

Huang and Ding (2016) found an inverse relationship between farm size and maize yield in 

China because of distortions in small-scale farming transformation, and policies are needed to 

assist small farms to adapt to large farms by improving resource use efficiency and farming 

productivity. To achieve the best economic effects of adopting farm machinery, an appropriate 

farm size is better than the oversized one in the context of Chinese agriculture.  

3.3.5 Robustness test 

Table 3.6 Propensity score matching: impacts of farm machinery adoption on maize yield and 

labor productivity  

Outcome variables Matching algorithm ATT 

Maize yield (ton/ha) Kernel matching  

(Bandwidth = 0.06) 

0.329* 

(0.171) 

Nearest neighbor matching  

(N=10, with replacement) 

0.304* 

(0.215) 

Radius matching 

(caliper=0.08) 

0.347** 

(0.171) 

Labor productivity (ln) 

(yuan/person) 

Kernel matching  

(Bandwidth = 0.06) 

0.347*** 

(0.086) 

Nearest neighbor matching 

(N=10, with replacement) 

0.343*** 

(0.094) 

Radius matching 

(Caliper=0.08) 

0.367*** 

(0.083) 

*** p<0.01; standard errors in parentheses using 50 bootstrap replications; ATT: average 

treatment effect on the treated. 

Propensity score matching was performed to check the robustness of results from ESR models. 

The results of propensity score matching (Table 3.6) show that the impact of farm machinery 
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adoption on maize yield for adopters is 0.304-0.347 tons/ha, which is close to the result of ESR 

model 0.216 tons/ha. Similarly, the impact of farm machinery adoption on labor productivity 

for adopters is 0.343-0.367, which is also close to the result of ESR model 0.450. Findings from 

propensity score matching suggest the robustness of estimates from ESR models.  

3.4 Conclusions 

This article aims to identify the drivers and barriers of Chinese maize farmers’ farm machinery 

adoption decisions and to estimate the impacts of farm machinery adoption on maize yield and 

labor productivity by using the ESR models. Rented land and cooperative membership are main 

facilitators of farm machinery adoption, while land fragmentation is a barrier for adoption. Farm 

machinery use has shown significantly positive impacts on maize yield and labor productivity, 

but the impacts differ across farm households and slightly decrease with farm size. To achieve 

the best economic performance of adopting farm machinery, Chinese farmers need to find 

appropriate scales in maize production.  

Some policy implications can be drawn from this study. Firstly, promoting moderate scale 

maize production. Moderate scale maize production enlarges the land scale and makes it easier 

to implement large scale mechanization and promotes the adoption of farm machinery. Notably, 

the land size is not the bigger the better. Farmers need to explore an appropriate scale to 

maximize profitability and to avoid resource misallocation and inefficiency of management and 

thus to increase the returns of farm machinery adoption. Secondly, establishing farm machinery 

cooperatives or initiating mechanization services. Joint farm machinery ownership in farm 

machinery cooperatives or mechanization services from the third party would significantly 

reduce the investment and operation expenditure of farm machinery and can boost the adoption 

of farm machinery. Thirdly, facilitating land consolidation and land circulation. Land 

consolidation merges many small and discrete field plots into a relatively large field plot which 

makes machinery operation easier and efficient. Flexible land circulation systems enable 

farmers to expand their land scale through renting in land from free market, and enlarged land 

scale would promote farmers to use farm machinery to substitute manual labor and to facilitate 

mechanization. Finally, formulating customized farm machinery extension services for 

different farm households to promote the adoption of farm machinery and to optimize its 

economic effects. Policy makers should appreciate that farmers who are not cooperative 

members, not renting in land, and having fragmented land parcels face more challenges in farm 

machinery adoption.  
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Table A1 Test on the validity of instrumental variables 

 Probit model Ordinary least squares 

 Machinery adoption Maize yield 

(Non-adopters) 

Labor productivity (ln) 

(Non-adopters) 

Private car 0.228** 0.006 −0.183 

 (0.103) (0.231) (0.118) 

Village cadre 0.270**  0.239 

 (0.123)  (0.138) 

Constant −0.545 2.615** 6.207*** 

 (0.443) (1.256) (0.526) 

Wald test χ2 (18) = 83.83*** F = 6.82*** F = 10.96*** 

R−squared Pseudo R2 = 0.093 R2 = 0.196 R2 = 0.462 

Observations 800 322 322 

Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1. Due to brevity, 

coefficients of all other variables are not reported. 
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Abstract: As a consequence of rapid ongoing technological developments and increasing 

integration into agricultural mechanization and agricultural intelligence, UAVs are gradually 

starting to play an increasingly important role in field crop management and monitoring. This 

review introduces and covers the development in four major applications of UAVs in maize 

production: (i) water stress detection, (ii) weed mapping, (iii) nutrient status monitoring and 

(iv) yield prediction. In addition, this review summarizes UAV data management methods, 

explains how expert systems work in UAV systems, and provides standardized workflow data 

for farmers in maize production. In addition, the strengths, weaknesses, opportunities, and 

threats of UAV use in maize production are analyzed. Based on more than eighty publications 

and our own research, the discussion and conclusions point out key issues in UAV usage in 

maize cropping and research gaps that need to be filled, along with a number of 

recommendations for the development of UAVs in maize production in the future.  

Keywords: Unmanned aerial vehicles (UAVs), maize, field management, data management, 

expert systems. 

Unmanned aerial vehicles (UAVs) can be fitted with specific functional sensors (multispectral, 

hyperspectral, and thermal, etc.) suitable for agricultural purposes to enable image acquisition 

and data collection while flying across crop fields at a low altitude. In addition to remote 

sensing, UAVs can also be used for other agricultural activities such as field surveillance, plant 

counting, weed mapping, yield prediction, irrigation management, plant disease detection, plant 

health monitoring, and crop spraying (Tsouros et al., 2019a). Crop spraying is an important 

application of UAVs.  UAVs equipped with tanks fly to the sites where weeds grow and spray 

variable rates of herbicides based on weed maps instead of uniform blanket application 
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(Castaldi et al., 2017; Yang et al., 2018). However, due to the potential environmental hazards 

of pesticide drift, aerial spraying is forbidden in European countries (Remáč, 2018). It is only 

allowed if there are no viable alternatives but reduced impacts on human and the environment 

as compared with ground-based pesticide application should be proved (Reger et al., 2018). 

Nevertheless, as the progress of technology (e.g. smart drones, high-performance UAVs, and 

longer flight durations, etc.) and changes of legal boundaries, UAV-based crop spraying 

applications will be an important aspect in the future.  

Most studies have shown that low agricultural water use efficiency (Fang et al., 2010), 

excessive nitrogen application (Cui et al., 2008), and pesticide overuse (Brauns et al., 2018) are 

the main problems of maize production all over the world. Given the constraints imposed by 

these problems, more sustainable maize production needs to find innovative ways of solving 

them. Since UAVs have so many benefits in agricultural production, it is natural to use them in 

maize cropping. Moreover, maize has significant size and leaf area make it the most promising 

crop to work with UAV technologies because large size and leaf area are easy for UAVs to 

execute remote sensing and spraying. Some new applications of this system have been used in 

maize cropping, for example, water stress detection (Shi et al., 2019), yield prediction 

(Maresma et al., 2016), weed mapping (Castaldi et al., 2017), and height estimation (Wang et 

al., 2019). Table 4.1 shows the differences between traditional ground level precision maize 

production and UAV-based maize production in field management. Traditional ground level 

precision maize production relies on tractor-mounted sensors, field deployed sensors, or 

portable test devices for field monitoring. However, the movement of tractors on the field could 

cause soil compaction and crop damage. On the contrary, UAV-based maize production uses 

UAVs fitted with sensors to fly across crop fields at a low altitude and this avoids the problems 

in ground level precision maize production. UAVs can cover more areas in a short time and can 

provide more comprehensive field information than ground level precision technologies. 

Furthermore, UAV-based site-specific aerial spraying is more flexible and faster than tractor-

based variable-rate spraying. 
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Table 4.1 Differences between traditional ground level precision maize production and UAV-

based maize production in field management 

 Ground level precision maize 

production 

UAV-based maize production References 

Water stress 

detection 

Tractors, handheld infrared 

thermometer, portable air 

temperature meter 

UAV multispectral sensors Zhang et al. 

(2019) 

Yield prediction Yield monitors and yield maps UAV multispectral sensors Jeffries et al. 

(2020); Vergara-

Díaz et al. (2016)  

Weed mapping Tractors, spectrometers, 

fluorescence sensors 

UAV multispectral sensors Castaldi et al. 

(2017) 

Nutrient status 

monitoring 

Tractors, handheld chlorophyll leaf 

clip sensors 

UAV multispectral and  

hyperspectral sensors 

Gabriel et al. 

(2017)  

Crop spraying Tractor-based variable-rate spraying  UAV-based site-specific 

spraying 

Castaldi et al. 

(2017) 

However, the review of recent UAV technology progress in maize production is very limited. 

Up to now, UAVs do not have a standardized workflow in maize production, and this can cause 

confusion when farmers are trying to use UAV systems because a high level of expertise is 

needed at different field management stages to choose the suitable strategies and to process data 

(Orakwe and Okoye, 2016; Tsouros et al., 2019b; Zhang and Kovacs, 2012). This increases the 

difficulty of UAV use and reduces labor productivity because not all farmers possess this kind 

of professional knowledge. Therefore, a well-structured standardized workflow is urgently 

needed to guide farmers and to improve system efficiency in UAV-based maize production.  

This review compiles the recent UAV studies in maize production in a systematic approach, 

summarizes the data acquisition and processing methods, designs a standard workflow for 

maize production, and offers a clear guide for maize producers. The aims of this paper are (i) 

to review scientific literature about the current use and development of UAV technologies in 

maize production; (ii) to explain how UAV technologies can solve problems in maize 

production; (iii) to design a standard UAV workflow for farmers in maize production; and (iv) 

to provide estimations for the future development of UAVs in maize production. 
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4.1 Uses of UAVs in maize production field management 

Based on sixty-two studies published over the last 10 years on the use of UAVs in maize 

production, UAV research can be classified as the following types (Figure 4.1): water stress 

detection (10%), nutrient status monitoring (18%), weed mapping (19%), yield prediction 

(27%), height estimation (13%), plant distance estimation (3%), maize lodging estimation (3%), 

maize number counting (3%), and others (3%). This review focuses solely on the introduction 

of UAVs in water stress detection, nutrient status monitoring, weed mapping, and yield 

prediction, which are considered to be the dominant factors that impact production costs. 

 

Figure 4.1 Proportions of UAV application types in maize production (Based on 62 studies 

published over the last 10 years). 

4.1.1 Maize water stress detection 

Accurate crop water stress detection is needed in a comprehensive irrigation management to 

achieve maximum water use efficiency and thus reduce costs. In recent years, two methods 

have been predominantly applied to detect water stress in plant: on-site measurement of soil 

water content and plant-based physiological indicators measurement (Ihuoma and 

Madramootoo, 2017). However, these conventional methods are time-consuming, costly, and 

failed to depict the crop water status of the entire field (Zhang et al., 2019a, 2019b). Due to the 

benefits of being easy to operate, flexible, and non-invasive coupled with high-resolution 

images, UAVs have been increasingly used as an alternative production practice in crop water 

stress monitoring (Park et al., 2017; Poblete et al., 2018; Zhang et al., 2019b). Under different 

water availability conditions, crop leaves reflect different light spectrums and show different 

canopy temperatures and UAV sensors are able to differentiate water stress plants from water 

sufficient plants (Sylvester et al., 2018).  

27%

19%

18%

13%

10%

3%
3%3%3%

Yield prediction Weed mapping
Nutrient status monitoring Height estimation
Water stress detection Plant distance estimation
Lodging estimation Number counting
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The research on UAV-based maize water status monitoring is very limited. Zhang et al. (2019b) 

established crop water stress index regression models to map maize water status at the 

reproductive and maturation stages based on nine vegetation indices (e.g. normalized difference 

vegetation index, soil-adjusted vegetation index, etc.) extracted from UAV multispectral 

images. Comparing the maize water stress estimation results derived from regression models 

with ground-based data, the R2 value could reach 0.81. It proves the feasibility of UAV-based 

maize water status monitoring. However, this research does not demonstrate to what extent 

these maize water stress estimation regression models can be used under varying conditions 

(e.g. other maize cultivars, other locations, etc.). Furthermore, most of the UAV-based maize 

water stress detection studies only concentrate on single critical growth stage instead of the 

whole growth period of maize and the prediction models can only be used under certain 

circumstances. 

Based on the literature available so far, a general standardized procedure of UAV-based maize 

water stress detection is summarized as: (i) using UAVs equipped with sensors to collect data 

from maize fields, (ii) measuring field level maize ground-truth data, (iii) modelling and 

calibrating the UAV data with ground level maize truth data, and (iv) generating maize water 

status maps that indicate the exact amount of water which should be site-specifically irrigated 

in different plots or even spots instead of widely applied.  

4.1.2 Maize weed mapping 

Weeds are estimated to cause approximately 30% to 60% of potential yield losses in maize 

production worldwide (Castaldi et al., 2017; Chikoye et al., 2005; Oerke, 2006; Safdar et al., 

2015; Usman et al., 2001). Some farmers carry out uniform blanket herbicide spraying for weed 

control instead of site-specific spraying and this causes the excessive use of synthetic chemical 

herbicides on the fields (Castaldi et al., 2017; Pelosi et al., 2015). Herbicides have significantly 

reduced weed infestation in fields but the excessive use of herbicides has led to environmental 

and ecological problems such as groundwater pollution, soil contamination, and biodiversity 

loss (Castaldi et al., 2017; Pelosi et al., 2015; Peña et al., 2013). Consequently, site-specific and 

efficient weed management is a measure of major importance when it comes to reducing the 

frequency and amount of herbicide usage in maize production (Burgos-Artizzu et al., 2011). 

UAVs equipped with image sensors fly at low altitudes and are capable of distinguishing weed 

patches from crops in a less expensive way (Prince Czarnecki et al., 2017). Next, UAVs 
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equipped with tanks filled with liquid herbicide fly to the field to spray precise amounts of 

herbicide based on observed weed site, weed density, and weed spatial distribution (Pelosi et 

al., 2015; Peña et al., 2013). UAV-based weed mapping and spraying help to reduce the amount 

of herbicides applied to fields and reduce environmental pollution (Castaldi et al., 2017; Pelosi 

et al., 2015). 

The accuracy of UAV maize weed mapping ranges from 61% to 98% in seven studies and the 

accuracy is evaluated by comparing the weeds estimated from UAV images with actual on-

ground weed counting (Table 4.2). Castaldi et al. (2017) observed herbicide savings of between 

14% and 39.2% in UAV-based weed map patch spraying (spraying herbicides only on the site 

where weeds grow) in maize fields compared to conventional blanket application (evenly 

spraying herbicides on the entire field). Due to weed heterogeneity within the field, the saved 

amount of herbicide was different. Compared with uniform blanket application, site-specific 

patch spraying did not identify any significant differences in maize and weed biomass (Castaldi 

et al., 2017; Pelosi et al., 2015). This means that patch spraying does not compromise maize 

yield and has the same weed control effects as blanket application. UAV weed mapping is a 

possible option to support precision herbicide patch spraying in maize fields without any 

economic yield loss. Mink et al. (2018) found that UAV weed mapping reduced herbicide use 

by 90% in post-emergence maize weed treatments. They developed a canopy height model 

combined with vegetation indices and crop geographic coordinates in the field to distinguish 

weeds from maize by their height at maize three leaf stage. It demonstrated 96% accuracy in 

maize weed mapping (Mink et al., 2018). 
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Table 4.2 UAVs used in maize weed mapping 

Sensors Weed mapping methods UAV remote 

indices 

Accuracy References 

Visible light (RGB)1), 

NIR2) 

Support vector machine 

algorithm (SVM) 

NDVI3) 82% Pelosi et al. (2015) 

Visible light (RGB), 

NIR, multispectral  

Support vector machine 

algorithm (SVM) 

NDVI 61% Castaldi et al. (2017) 

Multispectral  Object-based image 

analysis 

NDVI 95% Peña-Barragán and 

Kelly (2012) 

Multispectral  Object-based image 

analysis 

NDVI 86% Peña et al. (2013) 

Visible light (RGB), 

multispectral  

Object-based image 

analysis 

NDVI, ExG4) 98% Peña et al. (2014) 

Visible light (RGB), 

multispectral  

Canopy height model, 

weed height model 

NDVI, ExR5), 

ExG 

96% Mink et al. (2018) 

Hyperspectral Support vector machine 

(SVM), machine learning 

(ML) 

Cnorm6) and 

GRDB7) 

64% Casa et al. (2019) 

1)RGB: red, green and blue; 2) NIR: near infrared; 3) NDVI, normalized difference vegetation index; 4) ExG, excess 

green index; 5) ExR, excess red index; 6) Cnorm, (700 – 515) / (700 + 515); 7) GRBD, band depth 540 – 690. 

However, the main obstacle to UAV weed mapping is finding effective algorithms to identify 

pixels which depict weeds in the digital images and remove unrelated background (Burgos-

Artizzu et al., 2011). Because some weeds are similar in appearance (e.g. shape, color, etc.) to 

crops in the early stages of development, it is difficult to discriminate weeds from crops 

(Burgos-Artizzu et al., 2011; Peña-Barragán et al., 2012). The accuracy of discrimination 

affects the outcomes of weed mapping and site-specific treatment (Hamuda et al., 2016). 

4.1.3 Maize nutritional status monitoring 

At different development stages, maize has varying nutrient demands (Rhezali and Lahlali, 

2017). In order to ensure sufficient nutrient supply, it is crucial to monitor the site-specific 

nutrient needs at different critical stages of maize growth. With the assistance of UAVs, maize 
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real-time nutrient status in each plot can be detected by sensors. Comprehensive nutritional 

status monitoring maps extracted from UAV images could be valuable tools in variable rates of 

fertilizer application.  

Most of the UAV nutrient monitoring studies in maize concentrated on maize nitrogen status 

assessment (Cilia et al., 2014; Corti et al., 2018; Gabriel et al., 2017; Krienke et al., 2017; 

Quemada et al., 2014; Rhezali and Lahlali, 2017) because nitrogen nutrient indices are the best 

indicators to assess maize nutritional status (Gabriel et al., 2017) (Table 4.3). Cilia et al. (2014) 

highlighted the potential of using UAVs to obtain maize nitrogen status maps of the entire field, 

because the estimated nitrogen content derived from UAV images showed good correlation 

with field level maize nitrogen measurements (R2=0.70) (Cilia et al., 2014). Quemada et al. 

(2014) also confirmed the reliability of UAVs in nitrogen status assessment at maize flowering 

stage because the UAV image derived index (TCARI/OSAVI) was negatively correlated with 

maize nitrogen balance index (R=−0.84).  

Table 4.3 UAVs used in maize nitrogen status monitoring 

Sensors UAV remote indices Prediction models Phenology 

stage of maize 

References 

Multispectral BNDVI1), GNDVI2), 

GC3) 

Linear regression, 

least square 

regression 

V6+V9 Corti et al. (2018) 

Hyperspectral MCARI/MTVI24), 

NNI5) 

Ordinary least 

squares regression  

Pre-flowering stem 

elongation 

Cilia et al. (2014) 

Hyperspectral TCARI6)/OSAVI7) Polynomial 

regression 

Flowering  Gabriel et al. 

(2017) 

Hyperspectral, 

thermal 

TCARI/OSAVI Linear regression Flowering Quemada et al. 

(2014) 

1) BNDVI: Blue Normalized Difference Vegetation Index; 2) GNDVI: Green Normalized Difference Vegetation 

Index; 3) GC: Ground Cover; 4) MCARI/MTVI2: Modified Chlorophyll Absorption Ratio Index/Modified 

Triangular Vegetation Index 2; 5) NNI: nitrogen nutrition index; 6) TCARI: Transformed Chlorophyll absorption 

in reflectance index; 7) OSAVI: Optimized soil-adjusted vegetation index. 
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Although these studies showed the feasibility of UAV-based maize nitrogen status monitoring, 

the prediction accuracy can be affected by canopy structure, pigment concentration, leaf water 

content, and other nutrient deficiencies except nitrogen (Gabriel et al., 2017). To minimize the 

impact of these interfering factors, further research should use more UAV remote indices as 

independent variables in maize nitrogen status estimation models. Using more remote indices 

to predict maize nitrogen status has been proved to be more stable and more reliable than using 

single one because a single index is easily affected by the factors mentioned above (Cilia et al., 

2014; Gabriel et al., 2017; Quemada et al., 2014). 

Based on the four references presented in Table 4.3, the basic workflow of UAVs in maize 

nitrogen monitoring is summarized as (i) UAV sensors capture images above maize fields, then 

derive vegetation indices which characterize the nitrogen status of maize; (ii) determine maize 

nitrogen concentration using ground level destructive measurements in some representative 

plots; (iii) by means of a series of regression analyses, selecting the best index or combined 

indices to predict maize nitrogen status which leads to the results that strongly correlate with 

ground level maize nitrogen measurements.  

4.1.4 Maize yield prediction 

Maize yield prediction prior to harvest is very important for farmers to enable them to take 

decisions about the input of water, fertilizers, pesticides, labor, transportation, space for storage 

as well as for predicting market constellation and developing optimal economic strategies 

(Geipel et al., 2014). In most cases, some farmers estimate the yield based on their experience, 

yield maps, or partly field sampling (Ping and Dobermann, 2005). These methods are over-

reliance on experience and the results cannot convey accurate information about fields and 

proved to be labor-intensive and time-consuming (Li et al., 2016; Wahab et al., 2018). 

Compared to these methods, the UAV-based system reduces labor and there by improve 

economic performance (Tsouros et al., 2019a), saves time (Tsouros et al., 2019a), and expands 

the area of field investigation (Barbedo, 2019). The yield is inferred through its correlation with 

UAV data in mathematical modeling, then a maize yield prediction model can be given to 

decision makers (Herrmann and Bdolach, 2019). 
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Table 4.4 UAVs used in maize yield prediction 

Sensors UAV remote 

indices 

Image/ data processing 

software tools 

Prediction 

models 

R2 Phenology 

stages of 

maize 

References 

Multispectral  Wide dynamic 

range vegetation 

index (WDRVI) 

JMP Pro 12 statistical 

package 

Linear and 

quadratic 

regression  

0.92 V12 Maresma et al. 

(2016) 

Visible light 

(RGB)1) 

Excess green 

(ExG) color 

feature 

Curve Fitting Toolbox of 

Matlab 

Linear 

regression 

0.37 R2, R3, 

R6 

Zhang et al. 

(2020) 

Multispectral, 

Hyperspectral  

Structure of 

motion (SfM) 

mean point 

height 

Smart3DCapture software Random 

forest 

regression   

0.78 R3, R4 Li et al. (2016)  

Multispectral  Normalized 

difference 

vegetation index 

(NDVI) 

ENVI software Exponential 

regression 

0.72 R2-R3 Vergara-Díaz 

et al. (2016) 

Multispectral  LiDAR 

point clouds 

Python 2.7, and R × 64 

3.5.3 

Linear 

regression 

0.85 Jointing 

period of 

summer 

maize 

Zhu et al. 

(2019) 

Visible light 

(RGB), 

multispectral, 

hyperspectral  

Vegetation 

indices (VIs) 

Matlab 7.6, PLS-toolbox Partial 

least squares 

regression  

0.73 R2 Herrmann and 

Bdolach 

(2019) 

Multispectral  Blue and near 

infrared 

wavelength 

bands (BNDVI) 

Agisoft PhotoScan 

professional software 

Partial 

least squares 

regression  

0.4-

0.69 

Entire 

growing 

season 

Wu et al. 

(2019) 

Multispectral  BIOVP: 

a volume metric 

used to estimate 

crop biomass 

within a plot 

Pix4D software Random 

forest 

regression   

0.94 V12, VT Han et al. 

(2019) 

1)RGB: red, green and blue; R2 is the coefficient of determination of the maize yield prediction model. 
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Vegetation indices (e.g. WDRVI, BNDVI, NDVI, ExG, etc.) derived from UAV images are 

considered to be effective variables in different forecast models for yield prediction (Table 4.4) 

(Geipel et al., 2014; Herrmann and Bdolach, 2019; Vergara-Díaz et al., 2016; Wu et al., 2019; 

Zhang et al., 2020). During vegetative growth stages, different prediction models were 

developed to predict maize yield, such as linear regressions (Zhang et al., 2020; Zhu et al., 

2019), random forest regressions (Han et al., 2019; Li et al., 2016), partial least squares 

regressions (Herrmann and Bdolach, 2019; Wu et al., 2019), etc. The R2 ranges from 0.37 to 

0.94 because the goodness of fit of the models is affected by many variables (e.g. maize growth 

stages, sensor sensitivity, weather conditions, locations, etc.) (Zhang et al., 2020).  

However, in case of using only UAV derived vegetation indices in maize yield prediction 

models is not sufficient to get convincing results (Geipel et al., 2014). Maize height, canopy 

cover, and other structural information extracted from UAV remote sensing can be considered 

as independent variables in yield prediction models simultaneously with UAV derived 

vegetation indices to improve yield prediction accuracy (Geipel et al., 2014; Han et al., 2019; 

Zhu et al., 2019). Some studies have shown the correlation of maize yield with maize height 

before mid-season stage (Katsvairo et al., 2003; Yin et al., 2011a, 2011b). 

4.2 Standard workflow of UAVs in maize production 

Recently, the most widespread commercial application of UAVs in maize production on the 

market has followed this standard workflow: UAV-based field data collection→Farm 

Management Information Systems → UAV field operation management (DJI, 2020; 

PrecisionHawk, 2020; XAG, 2020). 

4.2.1 UAV-based field data collection 

UAVs fitted with multispectral sensors fly across the entire field at a low altitude to collect 

images and data from crops. The sensors then transmit the collected information to locally 

installed software such as Agisoft PhotoScan and this a common and valid option for most UAV 

users (Kaimaris et al., 2017; Radoglou-Grammatikis et al., 2020). Apart from processing the 

data on local personal computers or workstations, some UAV companies provide cloud services 

which can also assist in data processing (DJI, 2020; PrecisionHawk, 2020; XAG, 2020). UAVs 

could be operated by farmers themselves or farmers could source professional licensed 

operators nearby from an UAV commercial service platform to operate the UAVs for them 

(Zhang et al., 2020).  
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4.2.2 Farm Management Information Systems (FMIS) 

FMIS are databases designed to manage, implement, and record farm operations systematically 

(Burlacu et al., 2014; Pedersen and Lind, 2017; Sørensen et al., 2010; Zhai et al., 2020). In 

UAV-based maize production, FMIS are integrated systems with different functional 

components to assist farmers in real time decision making (DJI, 2020; PrecisionHawk, 2020; 

XAG, 2020): automated data processing, expert systems, user-controlled interfaces, and farm 

recordkeeping systems, etc. (Sørensen et al., 2011, 2010). The inputted farm data in FMIS are 

analyzed automatically by expert systems (Boursianis et al., 2020; Kenneth and Chinecherem, 

2018). Expert systems are powerful tools based on human expert analytical experience, 

agronomic data from previous years, and computer simulated human expert reasoning process, 

etc. to predict crop nutritional status, generate prescription maps, design customized expert 

reports, and give suggestions on fertilization, irrigation, and plant protection, etc. (DJI, 2020; 

Prasad and Babu, 2006; Rani et al., 2011). Other artificial intelligence methods can also involve 

in UAV data processing, such as artificial neural networks for predicting crop nutritional status 

(Jha et al., 2019), random forest for modelling maize above-ground biomass (Han et al., 2019), 

fuzzy logic for forecasting crop water requirements (Talaviya et al., 2020), etc. User-controlled 

interfaces allow farmers to control and to access processing and analysis functions (Murakami 

et al., 2007). All field work executed in a plot is recorded in farm recordkeeping systems (Saiz-

Rubio and Rovira-Más, 2020). The data generated in a current year production cycle in the 

FMIS are used to assess performed field work and will be stored on local personal computers, 

laptops, or cloud-based storage systems as baseline information for next season production 

(XAG, 2020). All storage options are valid; farmers can choose appropriate data storage paths 

depending on their needs (DJI, 2020). 

4.2.3 UAV field operation management 

Farmers can manage and supervise UAVs in the performance of their field tasks through a smart 

remote controller (PrecisionHawk, 2020). Mission planning software designs automated 

missions for UAVs so that they can carry out field tasks automatically without manual operation 

(Srivastava et al., 2020). Farmers send instructions from smart remote controllers to manipulate 

UAVs to execute the requested movements (e.g. take-off, speeding, spraying, and landing, etc.) 

(DJI, 2020). After receiving the radio signals sent from remote controllers, UAVs move 

automatically along designated routes to execute remote sensing or spraying. During the 

mission, UAVs share the real-time location with smart remote controllers (XAG, 2020). If the 
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UAVs were out of the designated tracks, farmers can adjust the flight paths by sending 

instructions from smart remote controllers. 

4.3 Strengths, weaknesses, opportunities, and threats (SWOT) analysis of UAVs in maize 

production 

Based on the literature available so far, a SWOT table can be elaborated, depicting the major 

strengths, weaknesses, opportunities, and threats of UAV use in maize production (Table 4.5). 

Table 4.5 SWOT analysis of UAVs used in maize production 

Strengths  Weaknesses 

• Minimize labor input • Data processing 

• Increase productivity • Data interpretation 

• Reduce resource wastage • Weather reliant 

• Accurate real-time field monitoring • High investments for small-scale farmers 

• Fewer working hours • Special education and training 

Opportunities Threats 

• Yield prediction • UAV crash 

• Nutrient status monitoring • UAV maintenance  

• Irrigation management • Unstable UAV performance 

• Identify weeds and diseases • Short flight time of each mission 

• Generate prescription maps • Unclear data ownership regulations 

The strengths of UAVs in maize production are the reduction of labor input, higher productivity 

and thus higher economic performance, reduced resource wastage, accurate real-time field 

monitoring, and fewer working hours. Complicated data processing and data interpretation are 

the weaknesses that restrict the development of UAVs. A weakness of UAV operation is that it 

is weather dependent. Windy and rainy weather conditions are not ideal for UAVs and flights 

should be suspended under these circumstances (Tsouros et al., 2019a). Depending on platforms 

and sensors, the price of UAVs can be different. In 2018, the average price of a domestic brand 

crop spraying UAV was $14815 in China (Yang et al., 2018). A basic GPS guidance system in 

precision agriculture costs $800 to $1500 in the US in 2017 (Andrews, 2017). The investments 

of UAVs are quite high especially for small size farmers because their production scale is small 
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and the benefit they could get from UAV technologies is limited (Yang et al., 2018). Farmers 

need special education and training, and this is another weakness of UAV adoption in maize 

production because not all farmers are willing to acquire new knowledge (Michels et al., 2020; 

Tamirat et al., 2018). 

The UAV system offers opportunities for maize yield prediction, maize nutrient status 

monitoring, maize irrigation management, identification of maize weeds and diseases, and 

generation of prescription maps. But it also comes with some threats. Farmers need to run the 

risk of their UAV crashing; this happens sometimes (Barbedo, 2019). UAV maintenance is an 

essential expense if an UAV were to be out of action. Unstable UAV performance also bothers 

farmers from time to time. The UAV flight time in each mission ranges from 8 to 60 minutes 

at full load (Candiago et al., 2015; Norasma et al., 2019; Tsouros et al., 2019a). Short flight 

time of each mission is another threat which affects UAV application because farmers need to 

refill application materials or to recharge energy frequently after each flight (Yang et al., 2018). 

This reduces the working efficiency. Longer flight time of each mission could be desirable for 

farmers. Fixed wing UAVs have long flight time, high speeds, high load capacity, stable 

performance and can cover large areas in a single mission, but they need wide space for takeoff 

and landing (Boon et al., 2017). Comparing with fixed wing UAVs, multi-copter UAVs have 

slower speeds, shorter flight time, less payloads, but they are more flexible and more 

manoeuvrable because they can take off and land off vertically in constrained areas  (Tsouros 

et al., 2019a). Therefore, fixed wing UAVs are best for large scale field investigation or 

spraying; instead multi-copter UAVs are good for small areas precise mapping or site-specific 

spraying. Finally, data ownership regulations have to be clarified in standard regulations to 

avoid conflicts of interest.  

4.4 Discussion  

Compared with traditional ground level precision maize production, UAVs offer an innovative 

way in irrigation management, nutrient status monitoring, weed mapping, and yield prediction. 

With the support of UAV precision technologies and FMIS, farmers can improve their work 

efficiency, reduce labor, and lower resource wastage. UAVs provide farmers greater access to 

real-time information on maize fields in a few hours, and carry out comprehensive digital field 

monitoring and intelligent management. Farmers are released from the burden of complex data 

processing and intricate agricultural task planning, and all the agricultural activities are 
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managed, planned, and recorded by the FMIS. This is the most significant merit of UAV-based 

agricultural production systems.  

However, there are some severe limitations when using UAVs in maize production. UAV data 

management and UAV operations are very complicated. Without special training and 

education, farmers will not be able to handle it properly. The high purchase cost restricts UAV 

development in small scale farmers because their production scale is small and the benefit they 

could get from UAV technologies is limited (Yang et al., 2018). Unstable performance bothers 

farmers from time to time when they are using UAVs (Sinha et al., 2016). Furthermore, UAV-

based field management is not a general practice in maize production currently and it is not 

clear if they can replace the traditional ground level precision agriculture technologies in the 

future. Unclear data ownership regulations may cause conflicts of interest between farmers and 

data management platforms (Saiz-Rubio and Rovira-Más, 2020; Wiseman et al., 2019). All of 

these factors added together could increase the difficulty of UAV use in maize production and 

reduce work efficiency.  

4.5 Conclusions and recommendations 

This article contributes to the use, research, and development of UAVs in maize production, 

and leads to better understanding of the role of UAVs in maize production. The application of 

UAV technologies can solve some, but not all, problems in maize production. The advantages 

and potential of UAVs should not be overestimated. Compared to traditional ground level 

precision agriculture technologies, most of the UAV systems are still in the preliminary 

development and experimental stages. Moreover, the conclusions of UAV-based studies are 

only drawn from limited researches on specific field and maize variety conditions. The 

applicability of these conclusions in different circumstances needs to be verified. The large-

scale commercial use of UAVs in maize production still has a long way to go. Up to now, most 

of the studies have focused on the technical level of UAV use, and not on the economic, social, 

ecological aspects or impact of UAVs in maize production systems. Future research is needed 

in these areas: education and training, impact assessment, technology assessment, economic 

evaluation, ecological evaluation, sustainable scheme, proper data ownership regulations, etc. 

Overall, there are some recommendations regarding UAV use in maize production in the future:  

(i) Development of cost-effective UAVs, to make them more commercially acceptable to small-

scale farmers; 
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(ii) Improvement of UAV performance, increases in the working time and load capacity of 

UAVs in a single flight, and reduction of UAV crashes; UAV unsupervised operation also needs 

to be improved because most countries only allow UAVs to be operated under supervision and 

this makes operation costly; 

(iii) Improvement of UAV spraying accuracy and avoid drifting, to promote the adjustment of 

aerial spraying legal regulations; 

(iv) Construction of user-friendly and high efficiency data management platforms to accelerate 

the ability of data transmission, processing, and interpretation; 

(v) Offer of special training and education to farmers who have purchased UAVs, ensuring they 

get sufficient technical guidance and support services; 

(vi) Clearer legal and regulatory frameworks to govern data management, which includes data 

collection, sharing, using, control, and accessibility; 

(vii) Enhancement of network connections between UAV data management platform members 

and promotion of data sharing and benefit sharing among them; 

(viii) Building of UAV system-based field management demonstration sites or farms and 

provision of consultancy and extension services to farmers. 
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Abstract 

In China, unmanned aerial vehicles (UAVs) are increasingly used for broadcast application of 

agricultural inputs such as pesticides, fertilizers, and seeds. In addition, UAVs have the 

potential to be used for site-specific precision agriculture such as field pattern management to 

precisely manage fertilization, plant protection, and irrigation, which could help to reduce 

environmental footprint of farming. There has been research on the use of UAVs in agriculture, 

but less is known about UAV-based precision agriculture, particularly pattern management. To 

close the research gaps, this paper conducted structured in-depth interviews with 18 experts 

from various fields related to UAVs and agriculture in China to study the status quo, drivers, 

and barriers of adopting UAVs in agriculture, focusing on UAV-based precision agriculture, 

especially pattern management. The results show that the adoption of UAVs in China is 

influenced by farmers’ production characteristics, farmers’ perceptions about UAVs, and social 

factors. UAV-based precision agriculture is at the initial stage in China, and the promotion of 

this approach still needs to break technical barriers such as improving the accuracy of crop 

monitoring, developing real-time UAV positioning systems, and enhancing the response time 

of variable-rate spraying systems, as well as socio-economic barriers such as farmers’ limited 

UAV-related knowledge, small farm sizes, and lack of technical assistance. 

Key words: unmanned aerial vehicles, adoption, determinants, pattern management, China, 

precision agriculture 

5.1 Introduction 

UAVs mounted with tanks and sensors can be used in a range of agricultural practices (Michels 

et al., 2021; Rejeb et al., 2022; Tsouros et al., 2019a) such as pesticide spraying (Faiçal et al., 

2014), fertilizer spraying (Abd. Kharim et al., 2019), seeding (Huang et al., 2020), and crop 

monitoring (Maimaitijiang et al., 2020). China has been using UAVs in agriculture since 2010 
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(Zheng et al., 2019). Over a decade of development in China, agricultural UAVs have become 

cheaper, smarter, and better than before (Chung, 2019). UAVs, which can only be used in 

pesticide spraying at the beginning, can now be applied in seeding, fertilizer spraying, and crop 

monitoring, etc. (Sylvester et al., 2018; Zhang and Kovacs, 2012). Up to now, China’s 

agricultural UAV industry has become the first in the world in terms of the number of UAVs, 

flight control technology, and cumulative operating area per year (Ministry of Agriculture and 

Rural Affairs of People’s Republic of China, 2019). In 2020, 70,344 UAVs were being used in 

China for plant protection purposes and they were treating14.48 million hectares of cropland 

(China Agricultural Machinery Industry Association, 2021) (Figure 5.1).  

 

Figure 5.1 Number and operating area of agricultural UAVs in China (2010-2020).  

Data source: China Agricultural Machinery Industry Association (2021). 

Next to supporting research and development, there are different aspects that explain the rise 

of agricultural UAVs in China. In 2017, China launched nationwide agricultural UAV purchase 

subsidies in six provinces to promote the use of UAVs in agricultural production. Agricultural 

cooperatives and plant protection organizations are eligible to apply for these subsidies and can 

be granted a subsidy amounting to up to 30% of the purchase price for UAVs, whereby the 

maximum sum of the subsidy does not exceed 4,370 $ per UAV (Ministry of Agriculture and 

Rural Affairs of People’s Republic of China, 2017). UAV purchase subsidies have had a great 

impact on the use of UAVs, and their numbers have increased significantly since 2017 (Figure 

5.1). The most popular forms of using UAVs among Chinese farmers are either to self-purchase 

UAVs or to hire UAV services (e.g., pesticide spraying, fertilizer spraying, seeding, and crop 

monitoring) from UAV service agricultural cooperatives or private UAV pilots (Chung, 2019). 

Self-purchased UAVs are very common among large-scale corporate farmers, while UAV 
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services are well accepted by small and medium-sized farmers because of the affordable prices  

(Chen et al., 2020; Chung, 2019). 

For the convenience of operation and economic viability, most Chinese farmers adopt UAVs 

for broadcast spraying (e.g., pesticides, fertilizers, and seeds) instead of site-specific precise 

spraying (Chung, 2019; Hu et al., 2022; Lan et al., 2019). In addition to the “traditional” use of 

UAVs in broadcast spraying, UAVs can also be applied in precision agriculture for precise 

spraying, crop monitoring, and field management (Radoglou-Grammatikis et al., 2020; 

Sylvester et al., 2018; Tsouros et al., 2019a). Shifting UAVs from “general use” to “precision 

use” comes with a great potential because precision application rather than broadcasting can 

greatly improve yield and sustainability of farming (Radoglou-Grammatikis et al., 2020; Roma 

et al., 2023). One example is UAV-based pattern management, which is an innovative and 

holistic approach proposed by Spohrer (2019) for sustainable and site-specific precision 

agriculture in respect of fertilization, plant protection, and irrigation. Pattern management 

includes three pillars: structured land management, UAV-based image acquisition, and data 

management (Figure 5.2). Structured land management divides fields into different 

spatiotemporal patterns. UAVs attached with sensors (e.g., infrared and hyperspectral) fly over 

fields to capture images and spatiotemporal data of these patterns. Images and field 

spatiotemporal data are processed by modified algorithms (Zhang and Kovacs, 2012) and stored 

in the database. Fertilizer, pesticide, and water variable-rate prescription maps are derived from 

the processed data to instruct fertilization, plant protection, and irrigation (Tsouros et al., 

2019b). Data management is responsible for data storage, data retrieval, data processing, data 

mapping, and UAV flight control, etc. The processed spatiotemporal data will be shown on 

terminal devices (e.g., tablets, smartphones, and laptops) in a straightforward way, and farmers 

can manage and monitor different patterns on the field through user-friendly interfaces.  
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Figure 5.2 UAV-based Pattern Management. 

Several studies have explored the determinants of adopting UAVs in Chinese agriculture, 

finding that perceived usefulness, perceived ease-of-use, UAV-related knowledge level, farm 

size, agricultural income share, cooperative membership, within-family village leadership, 

credit availability, government subsidies, extension services, and trainings have positive effects 

on UAV adoption  (Chen et al., 2020; Han et al., 2022; Wachenheim et al., 2021; Zheng et al., 

2019). However, these studies only analyzed the determinants of UAV adoption from farmers’ 

perspective but did not explore which other factors are key for the successful and scaling of this 

technology, including factors related to the enabling environment. For this, it would be 

important to interview other stakeholders such as agricultural UAV manufacturers, UAV 

service providers (e.g., UAV service agricultural cooperatives and private UAV pilots), 

agricultural extension staff from government, and researchers focusing on UAVs. Moreover, 

although there has been some research on UAVs in Chinese agriculture, the extent to which 

UAVs are used for precision agriculture (e.g., pattern management) and barriers for adopting 

UAVs for precision agriculture still remain unclear. To close the research gaps, this study 

conducted a series of structured in-depth expert interviews with 18 experts from various fields 

of expertise related to UAVs and agriculture in China to get a holistic view on drivers, barriers, 

and institutions that are needed for UAV adoption, especially in precision farming for field 

pattern management.  
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5.2 Materials and methods  

To better understand the status quo of UAV use, determinants of UAV adoption, and 

development of UAV-based pattern management in China, this qualitative study conducted a 

series of structured in-depth expert interviews with main stakeholders of agricultural UAVs in 

China from various backgrounds. Purposeful sampling (Palinkas et al., 2015) was used to select 

several different types of respondents that are related to agricultural UAVs in China and are 

able to answer research questions with their practical experience. The sample consisted of 18 

experts from China (Table 5.1): university professor (n=1), agricultural UAV manufacturers 

(n=3), farmers using UAVs (n=4), farmers not using UAVs (n=3), professional UAV pilots 

(n=3), agricultural extension staff from government (n=1), and managers of UAV service 

agricultural cooperatives (n=3).  

Table 5.1 Characteristics of 18 agricultural experts 

ID Category Expert information 

1 
University 

professor 

A pioneer of agricultural UAV research in China and more than 15 

years of research experience in agricultural UAVs; 

Expertise: UAVs for pesticide application and precision variable-

rate pesticide spraying technology. 

2-4 

Agricultural 

UAV 

manufacturers 

Agricultural UAV industry leaders in China; 

Expertise: Research and development of agricultural UAVs. 

5-8 
Farmers using 

UAVs 

Farmer (ID 5): male, 35 years old, 5.3 ha land, college degree, and 

2 years of farming experience in rice and black soybean 

production; 

Farmer (ID 6): male, 50 years old, 40 ha land, high school degree, 

and 6 years of farming experience in rice production; 

Farmer (ID 7): male, around 30 years old, 6.7 ha land, college 

degree, and 5 years of farming experience in citrus production; 

Farmer (ID 8): male, 27 years old, 13.3 ha land, college degree, and 

6 years of experience in Areca catechu plantation. 
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9-11 
Farmers not 

using UAVs 

Farmer (ID 9): male, 38 years old, 66.7 ha land, high school 

degree, and 12 years of farming experience in potato production; 

Farmer (ID 10): female, around 60 years old, 0.1 ha land, middle 

school degree, and 40 years of farming experience in maize, 

soybean, and vegetable production; 

Farmer (ID 11): male, 40 years old, 2.7 ha land, master degree, and 

3 years of farming experience in loquat plantation. 

12-

14 

Professional 

UAV pilots 

Pilot (ID 12): Male, around 30 years old, middle school degree, and 

7 years of work experience as an UAV pilot; 

Pilot (ID 13): Male, around 30 years old, college degree, and 2 

years of work experience as an UAV pilot; 

Pilot (ID 14): Male, around 30 years old, middle school degree, and 

6 months of work experience as an UAV pilot; 

Expertise: proficient UAV operation skills and working as an 

individual for farmers in UAV pesticide spraying. 

15 

Agricultural 

extension 

staff from 

government 

12 years of work experience in agricultural extension; 

Expertise: UAV extension services and trainings. 

16-

18 

Managers of 

UAV service 

agricultural 

cooperatives 

Cooperative (ID 16): 5 years of experience in UAV services, 3 

UAVs, and 10 employees; 

Cooperative (ID 17): 6 years of experience in UAV services, 5 

UAVs, and 5 employees; 

Cooperative (ID 18): 3 years of experience in UAV services, 5 

UAVs, and 3 employees; 

Expertise: Teamwork, providing the whole package of UAV 

services to farmers, including pesticide spraying, fertilizer 

spraying, and seeding, etc. 
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The experts were interviewed through phone calls in November and December of 2022. 

Interview questions were sent to them before the interviews. Expert interviews focused on the 

following topics (Table 5.2): Status quo, opportunities and challenges of UAVs more generally, 

and specifically about UAV-based pattern management in Chinese agriculture. During the 

interviews, experts were asked to answer the related questions in each topic (Table 5.2). 

Averagely, each phone call was around 25 to 30 minutes. The contents of expert interviews 

were documented and analyzed by the qualitative content analysis method (Mayring, 2021) to 

extract the main concepts.  

Table 5.2 Interview topics and questions 

Topics Questions 

Topic 1   

Status quo of UAVs in Chinese agriculture UAV: supply, services, operation, work 

efficiency, maintenance, and training 

Topic 2  

Opportunities and challenges of UAVs in 

Chinese agriculture 

Advantages, disadvantages, drivers, and 

barriers of UAV adoption 

Topic 3  

UAV-based precision agriculture and 

pattern management in Chinese agriculture 

Development of UAV-based precision 

agriculture and pattern management 

 

5.3 Results  

5.3.1  “Traditional” or “broadcast” UAVs: status quo, opportunities, and challenges   

5.3.1.1 Forms of UAV supply  

UAVs are typically supplied in the forms of self-purchasing, renting, and UAV services from 

third parties. 7 farmers (ID 5-11) were asked about the forms they like to have UAVs. There 

were four forms for them to choose: self-purchasing, renting, hiring UAV services, and 

establishing an UAV cooperative. 4 UAV adopters (ID 5-8) preferred self-purchasing than other 

forms because they have relatively large farms that need UAVs to replace manual labor, and 

they can use UAVs at any time especially in busy farming seasons. 3 UAV non-adopters (ID 

9-11) preferred to hire UAV services than other forms because they only need UAVs several 

times a year, and they do not want to buy UAVs or to learn how to operate UAVs. The university 

professor (ID1) mentioned: “UAV services and UAV renting are two convenient approaches to 

give farmers access to the latest UAVs at low costs. In addition, the shorter lifespan of an UAV, 
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the bigger benefit farmers can obtain from technical progress by frequent replacement”. Wang 

et al. (2022) also highlighted that UAV services can reduce production costs, increase 

production efficiency, lower the threshold price of using UAVs, and accelerate the adoption of 

UAVs in Chinese agriculture.  

Again, 7 farmers (ID 5-11) were asked about the ways they like to learn UAV technology. 

There were four ways for them to choose: technical manuals or books, online video courses, 

training programs in UAV demonstration sites, and local professional extension staff. Most of 

them preferred to learn UAV technology from local professional extension staff and from 

demonstration sites. They thought it would be easier if local professional extension staff 

illustrate how to use UAVs for them on the fields, or demonstration sites provide some UAV 

practical training courses for them. Similarly, Han et al. (2022) emphasized that extension 

services and promotion programs have positive effects on farmers’ intention to adopt UAVs. 

5.3.1.2 UAV training, operation, maintenance, and work efficiency 

Some important aspects about UAV training, operation, maintenance, and work efficiency were 

summarized by experts (Table 5.3). An agricultural UAV manufacturer mentioned (ID3): “All 

UAV operators have to take training courses which last from 2 to 7 days. The training includes: 

UAV operation and maintenance, preparation of pesticides, UAV mapping, and UAV security 

issues. At the end of the course, operators who pass the test will receive a license”. Three UAV 

pilots (ID12-14) also talked about UAV operation and maintenance. Before UAV flight, 10 to 

30 minutes are needed for preparation work such as field observation, marking obstacles, flight 

planning, and UAV testing. During UAV tasks, one person is responsible for UAV operation, 

and the other person is in charge of battery replacement, pesticide or fertilizer loading, and field 

observation. Pilots need 2 to 5 minutes to refill UAV tanks and to replace new batteries. UAV 

battery capacity affects the time required for charging, and charging habits affect the lifespan 

of batteries. Charging an UAV battery needs 8 to 30 minutes, and the lifespan of a battery is 

about 500 to 1500 cycles. Wings and nozzles are the most easily damaged parts of UAVs 

because wings often hit on obstacles, and nozzles are often clogged by pesticides. UAV work 

efficiency depends on the types of UAVs and field conditions. One UAV pilot said (ID12): 

“Depending on battery capacity, load, and field conditions, a single UAV flight can last from 8 

to 25 minutes and can cover 0.5 to 3.3 ha field crops and 0.1 to 0.4 ha fruit trees. The daily 

flight range of an UAV can reach 10 to 13.3 ha in fields and 3.3 to 6.7 ha in orchards”.  
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Table 5.3 UAV training, operation, maintenance, and work efficiency 

Questions Answers 

UAV training course duration 2-7 days 

UAV training contents UAV operation and maintenance, preparation of 

pesticides, UAV mapping, and UAV security 

issues 

UAV training tuition fees 300-900 $ 

Preparation time before flight 10-30 minutes 

Single flight time 8-25 minutes; depending on battery capacity and 

load 

Single flight range 0.5-3.3 ha for field crops; 0.1-0.4 ha for fruit 

trees; 

depending on battery capacity, load, and field 

conditions, etc. 

Time to refill tanks and to replace new 

batteries 

2-5 minutes  

Daily flight range of an UAV  10-13.3 ha for field crops; 3.3-6.7 ha for fruit 

trees 

Battery charging time 8-30 minutes 

Battery lifespan 500-1500 cycles; depending on battery capacity 

and charging habits 

Which parts of UAVs are easily to 

damage? 

Wings and nozzles 

 

5.3.1.3 The price of UAV services 

A manager from an UAV service agricultural cooperative (ID17) said: “UAV pesticide spraying 

is the most common UAV service for farmers in China. Other UAV services such as seeding, 

fertilizer spraying, and crop monitoring are not widespread, but are gradually increasing”. 

Farmers can hire either UAV pilots or UAV service agricultural cooperatives to spray pesticides 

for them. An UAV pilot (ID14) emphasized that “UAV operation fees depend on the types of 

crops, severity of pests and diseases, topography, and field conditions. In general, UAV 

operation fee is lower for large fields that are easy to fly UAVs and higher for crops with severe 

pests and diseases”. An UAV adopter (ID7) mentioned: “For field crops, UAV operation fees 

range from 22 $ /ha to 56 $ /ha. For fruit trees, UAV operation fees (78 $/ha to 178 $/ha) are 
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more expensive because most orchards are located in hilly regions which makes UAV 

operations difficult, and fruit trees need more pesticides than field crops due to the large 

canopies”. Likewise, Chung (2019) found that UAV operation fees depend on types of crops 

and topographies, and H. Li et al. (2022) reported that, compared to plain regions, UAV 

operation efficiency drops significantly by 30% to 50% in hilly regions.  

5.3.1.4 Advantages, disadvantages, drivers, and barriers of UAV adoption 

Most farmers in this study adopt UAVs for “traditional” broadcast pesticide spraying, while 

other UAV applications such as seeding, fertilizer spraying, and crop monitoring are less 

common but not unimportant. The experts were asked to point out advantages of UAVs in 

agricultural production (Table 5.4). One expert reported (ID1): “Labor-saving and time-saving 

are the most distinctive merits of UAVs. In the context of labor shortages in rural areas, UAVs 

play an important role in replacing manual labor in agricultural production”. This is in line 

with scientific studies. In pesticide application, an UAV can work 4 to 10 hectares in one hour, 

which is equivalent to the workload of 30 to 100 workers using manual spraying (Yang et al., 

2018). The saved labor costs significantly reduce production costs and increase profitability. 

Four UAV adopters (ID5-8) and three professional UAV pilots (ID12-14) addressed that 

compared to the slow speed and huge amount labor input of ground-based pesticide application 

methods, UAVs can conduct timely and effective pest and disease control with considerably 

fewer labor, water, and pesticide. An UAV adopter (ID5) said: “Separating operators from 

pesticides to avoid pesticide poisoning is an advantage of UAVs. In addition, UAVs can be 

applied in plains, mountains, orchards, and other terrains where people cannot reach”.  

The experts were asked to point out disadvantages of UAVs in agricultural production as well 

(Table 5.4). Nearly all experts acknowledged that pesticide drift is the biggest disadvantage of 

UAVs because it can damage the crops nearby and cause environment pollution (Biglia et al., 

2022; Wang et al., 2020). Three UAV non-adopters (ID9-11) and three agricultural UAV 

manufacturers (ID2-4) admitted that high prices and unstable performances discourage farmers 

to use UAVs. An UAV adopter (ID5) said: “Unstable performances such as safety incidents, 

unstable flight control systems, repeated and omitted spraying of pesticides are disadvantages 

of UAVs”. Weather reliant is another drawback of UAVs. An agricultural extension staff from 

government (ID15) addressed: “UAVs cannot work in high temperatures and in windy weather 

because high temperatures could damage batteries, and windy weather exacerbates pesticide 

drift”. However, traditional ground-based pesticide application methods are constrained by 
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these weather conditions as well. Three professional UAV pilots (ID12-14) mentioned that 

UAVs are inefficient in scattered field plots because the difficulty of operation. One UAV pilot 

(ID12) said: “For treating severe pest and disease outbreaks in some specific areas on the field, 

UAVs are less effective than ground-based spraying methods. The concentration of pesticide 

sprayed by UAVs is 5 to 30 times higher than ground-based spraying, but the high 

concentration and low volume pesticides have undesirable treatment effects due to the low 

water content”. Likewise, P. Li et al. (2022) found that UAV spraying is more effective at 

controlling mild and moderate cotton Aphis than the severe one. In contrast, Qin et al. (2016) 

reported that UAV spraying shows better control effects than ground-based stretcher sprayer 

against plant hoppers because the low volume and high concentration pesticides sprayed by 

UAVs can persist to active for many days after application. Thus, more solid experimental 

evidence is still needed to compare the controlling effect of UAV spraying and ground-based 

spraying in pest and disease treatment. 

Table 5.4  Advantages, disadvantages, drivers, and barriers of adopting UAVs 

Advantages Disadvantages Drivers Barriers 

• Saving time 

• Saving labor 

• Saving water  

• Saving pesticides 

• Avoid pesticide 

poisoning 

• Overcoming terrain 

obstacles 

• Effective pest and 

disease control  

 

 

• High prices 

• Pesticide drift 

• Weather reliant 

• Unstable 

performances  

• Inefficient in 

scattered field 

plots  

• Inefficient in 

treating severe 

pests and diseases  

 

• Rural labor shortages 

• Specialized farming 

• Market demand for 

UAV services 

• Expansion of farm 

size 

• UAV purchase 

subsidies  

• After-sales service or 

technical support 

• UAV trainings 

• Farmers’ positive 

perceptions about 

UAVs  

• Knowledge gap 

• Small farm size 

• UAV operation 

skills are 

required 

• Unspecified 

UAV operating 

standards  

• Unfavorable 

field conditions  

• UAV pilot 

shortages 

 

 

Experts pointed out some drivers of UAV adoption in China (Table 5.4). Social factors such as 

labor shortages, UAV purchase subsidies, market demand for UAV services, after-sales service 

or technical support, and UAV trainings are important drivers of UAV adoption. Four farmers 

using UAVs (ID5-8) highlighted that rural labor shortages are the biggest driver of UAV 

adoption because farmers need UAVs to cope with missing workers and rising rural wages. An 

agricultural extension staff from government (ID15) said: “UAV purchase subsidies are 

important drivers of UAV adoption because subsidies lower prices and make UAVs more 
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affordable for the majority”. Likewise, H. Li et al. (2022) also found that UAV purchase 

subsidies can boost UAV adoption, and subsidies based on cumulative areas of UAV operation 

can also promote UAV adoption, especially among small and medium-sized farmers. A farmer 

not using UAVs (ID10) reported: “If we could get UAV technical assistance or after-sales 

service, we might consider to adopt UAVs in our farm”. Han et al. (2022) also emphasized that 

external environment such as UAV technical assistance and after-sales service are the main 

drivers of UAV adoption. A professional UAV pilot (ID12) said: “There is a market demand 

for UAV services. Thus, we adopt UAVs to provide these services to farmers”. Farmers’ 

perceptions about UAVs and production characteristics can also influence UAV adoption. A 

farmer not using UAVs (ID10) mentioned: “I would like to use UAVs only if there are 

convincing benefits of adoption”. This finding is consistent with Han et al. (2022), Skevas and 

Kalaitzandonakes (2020), and Li et al. (2020) who found that perceived usefulness can affect 

farmers’ UAV adoption. The university professor mentioned (ID1): “Specialized farming, 

where 50% or more of its income derives from a single crop, is a driver of UAV adoption. 

Specialized farming makes UAVs work easily and efficiently because most of the crops on the 

farm are the same”. One farmer using UAVs said (ID6): “The expansion of farm size needs 

UAVs to replace manual labor and to improve productivity”. This finding is in line with 

Michels et al. (2020), who expected that UAVs can considerably assist farmers in reducing time 

costs, labor costs, and management complexity as the increasing of farm size.  

Meanwhile, there are several barriers of UAV adoption (Table 5.4). A farmer not using UAVs 

mentioned (ID9): “Small farm size makes UAVs less useful because farmers are able to manage 

all field work by manual labor. Unfavorable filed conditions such as scattered field plots and 

high voltage lines above fields inhibit the adoption of UAVs”. Four farmers using UAVs (ID5-

8) emphasized that UAV operation skills discourage some farmers from using this technology. 

One farmer reported (ID8): “The operation of UAVs needs some basic skills, and farmers have 

to be trained to operate UAVs, but the training discourages some farmers to use UAVs because 

they think it is too difficult to learn UAV technology”. This finding is consistent with Han et al. 

(2022) and Zheng et al. (2019) who reported that perceived ease of use has positive effects on 

UAV adoption. Three UAV pilots (ID12-14) addressed that specified standards for UAV 

operation and pesticide application are very important. One UAV pilot (ID13) said: 

“Unspecified standards for UAV operation and pesticide application is a barrier of UAV 

adoption because incorrect UAV operation and pesticide application can cause undesirable 

results in pest and disease control”. Pilot shortages are obstacles of UAV adoption too. An 
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UAV pilot (ID12) emphasized: “The shortage of UAV pilots can also be a barrier of UAV 

adoption because many farmers do not have UAVs or do not know how to operate UAVs, and 

they need to hire UAV pilots to work for them”. Chung (2019) also mentioned that the low 

supply of agricultural UAV pilots does not match with the fast speed of UAV adoption in China, 

and more UAV training institutes are needed to educate more pilots.  

5.3.2 Development of UAVs in precision farming: the case of pattern management  

UAV-based pattern management is still at the experimental phase, and it will take some time to 

achieve commercial use in precision farming. The university professor (ID1) mentioned: 

“UAV-based pattern management is an innovative approach and has great potential in the 

future, but this concept needs time to elaborate. In China, UAV-based pattern management is 

only partially used in some large-scale farms for specialized farming, where 50% or more of 

its income derives from a single crop”. According to answers from experts in this research, 

there are three main socio-economic prerequisites to apply the UAV-based pattern 

management. Firstly, farmers’ good UAV-related knowledge and the convincing benefits of 

using UAVs. The application of UAV-based pattern management requires good knowledge 

about UAV operations, UAV image processing, and data management, etc. Farmers’ UAV-

related knowledge affects the quality of UAV-based pattern management. The convincing 

benefits of using UAV-based pattern management can promote farmers to use this approach. 

Most farmers do not adopt UAV-based pattern management because of the huge investment 

and unforeseen returns from adoption (Sylvester et al., 2018), and they concern that the 

economic benefits of adoption may not offset the investment. However, up to now, limited 

studies have analyzed the economic returns of using UAVs in precision agriculture (Andújar et 

al., 2019; Späti et al., 2021), and more empirical analysis should be conducted in the future to 

estimate the economic benefits of using UAVs (Kerry and Escolà, 2021). Secondly, a relatively 

large arable land size (≥ 2 ha) and high-value crops producing on the farm. A relatively large 

arable land size makes UAVs more convenient to use, and high-value crops producing on the 

farm make farmers more willing to invest in UAVs to improve profitability. Thirdly, social 

facilitating conditions such as UAV purchase subsidies, after-sales UAV service or support, 

UAV trainings, and relatively mature agricultural UAV markets are also important prerequisites 

to implement UAV-based pattern management. 
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Based on answers from three agricultural UAV manufacturers (ID2-4), there are also three main 

technical prerequisites to apply UAV-based pattern management. Firstly, accurate crop 

monitoring. UAV monitoring systems should be able to accurately monitor pests, diseases, and 

nutrients of crops. Fertilizer and pesticide variable-rate prescription maps are made based on 

the monitoring data, and the accuracy of monitoring can affect the following field operations 

such as spraying and irrigation. Due to the limitations of current technology, UAV-based crop 

monitoring still needs to improve its accuracy in some cases (Maimaitijiang et al., 2020; Xie et 

al., 2021). Secondly, precise real-time UAV positioning systems. When UAVs are flying above 

fields to perform site-specific precise spraying, real-time positioning systems are needed to 

guide UAVs to the right site (Yang et al., 2018). However, it is difficult to make real-time 

positioning systems to work precisely when UAVs are flying. Thirdly, fast response time of 

variable-rate spraying systems. UAVs operate at a high speed and require a quick response time 

of variable-rate spraying systems to match with the speed of UAVs, but it is still difficult to 

achieve this.  

5.4 Discussion and conclusions 

This paper conducted structured in-depth expert interviews with 18 experts in China from 

various field of expertise related to UAVs and agriculture to study the status quo of UAV use, 

determinants of UAV adoption, and development of UAV-based pattern management in China. 

Most Chinese farmers adopt UAVs for pesticide spraying; other UAV applications such as 

seeding, fertilizer spraying, and crop monitoring are not widespread, but are gradually 

increasing. The determinants of UAV adoption come from these major aspects: farmers’ 

production characteristics (e.g., land size and specialized farming), farmers’ perceptions about 

UAVs (e.g., perceived ease of use and perceived usefulness), and social factors (e.g., UAV 

purchase subsidies, trainings, and technical support). In this study, the determinants of UAV 

adoption and their effects on UAV adoption are consistent with Han et al. (2022), H. Li et al. 

(2022), Li et al. (2020), Michels et al. (2020), Skevas and Kalaitzandonakes (2020), 

Wachenheim et al. (2021), Zheng et al. (2019), and Zuo et al. (2021).  

UAV-based pattern management is at the initial stage in China, and the promotion of this 

approach still needs to break technical barriers (e.g., accurate crop monitoring, precise real-time 

UAV positioning systems, and fast response time of variable-rate spraying systems) and socio-

economic barriers (e.g., farmers’ limited UAV-related knowledge, small farm sizes, and lack 

of technical assistance). At this stage, UAV-based pattern management can be promoted first 
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in large-scale farms for specialized farming because of its high expected returns. Given 

economic viability, UAV service agricultural cooperatives can provide UAV-based pattern 

management services for small and medium -sized farms.  

To effectively promote the shifting of UAVs from “general use” to “precision use” in China’s 

agriculture, joint efforts are needed from all stakeholders (Figure 5.3). Government is the head 

of all stakeholders and is expected to formulate laws and regulations to instruct the development 

of agricultural UAV industry in China. For example, investing in UAV research and 

development, formulating standards for UAV operating and pesticide application, providing 

UAV extension programs and UAV related subsidies (e.g., UAV purchase subsidies, subsidies 

based on cumulative areas of UAV operation, and UAV training subsidies), and establishing 

UAV demonstration sites. UAV manufacturers are supposed to develop UAVs with stable and 

good performances but affordable prices. UAVs should have user-friendly interfaces that are 

easy to learn and to operate. UAV trainings and after-sales service or support are also expected 

from UAV manufacturers. Professional UAV pilots should be proficient in standards of UAV 

operating and pesticide application. UAV service agricultural cooperatives are expected to 

provide cheap, efficient, and high-quality UAV services for farmers, including crop spraying 

and crop monitoring, etc. Farmers are encouraged to expand arable land size appropriately, to 

consolidate scattered field plots together, to conduct specialized farming, or to attend UAV 

extension programs.  

 

Figure 5.3 UAV promotion model in China 

However, the results of this article are from interviews with a small group of 18 experts and 

cannot represent all stakeholders of China’s agricultural UAV sector. In addition, this 
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qualitative study is based on answers of experts and is inevitably somewhat subjective. 

Nevertheless, this study sets the foundation for the future research of UAV adoption in Chinese 

agriculture and provides an overview of UAV-based pattern management in China, and it opens 

the flow for further investigation and research fields, e.g., a more comprehensive questionnaire 

based quantitative survey with a large number of participants.  
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Abstract 

Unmanned aerial vehicles (UAVs) are a recent innovation in precision agriculture technology. 

They are being used in a wide range of agricultural practices, whereby pesticide application is 

one of the most common uses of UAVs in China’s agriculture. However, the economic effects 

of UAVs in pesticide application have not been sufficiently investigated. To address the gap, 

this paper used propensity score matching to evaluate the economic effects of UAV adoption 

on outcome variables including revenue, pesticide costs, time spent on pesticide application, 

and pesticide application frequency based on a dataset covering over 2,000 grain farmers across 

11 provinces of China. Furthermore, generalized propensity score matching was used to 

evaluate the heterogeneity of outcome variables arising from differing UAV adoption 

intensities. The empirical results show that adoption of UAV increased revenue by 

approximately 434-488 dollars per hectare and reduced the time spent on pesticide application 

in the range of 14.4-15.8 hours per hectare. Depending on the area with use of UAVs for 

pesticide spraying, UAV adoption has heterogeneous impacts on grain farmers’ revenue and 

the time spent on pesticide application. In terms of marginal revenue and marginal time spent 

on pesticide application, the optimal area with use of UAVs for pesticide spraying is estimated 

to be 20 hectares of arable land. 

Keywords: unmanned aerial vehicles, propensity score matching, precision agriculture, 

adoption, pesticide application, Chinese grain farmers 

6.1 Introduction 

Unmanned aerial vehicles (UAVs) equipped with sensors or tanks can be used in a range of 

agricultural activities such as pesticide application, fertilizer spraying, irrigation, and field 

monitoring (Michels et al., 2021). China has been using UAVs in agriculture since 2010 (Zheng 
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et al., 2019). After 10 years of rapid development, 70,344 UAVs were being used in China for 

plant protection purposes and by 2020 they were treating14.48 million hectares of cropland 

(China Agricultural Machinery Industry Association, 2021). Pesticide application is one of the 

most common uses of UAVs in Chinese agriculture (Yang et al., 2018). UAVs equipped with 

tanks can fly over fields at a low altitude to ensure uniform rate of pesticide application and can 

treat 20-33 hectares per day, which is 30-60 times faster than manual spraying (Zheng et al., 

2019). UAVs’ intelligent spraying system makes pesticide application more accurate and 

reduces pesticide residue (Chen et al., 2020). In addition, UAVs can overcome topography 

barriers and can be used in hilly or mountainous regions.  

Although pesticide application with UAVs has many advantages compared with backpack 

sprayers, such as high efficiency and flexibility, low labor requirements, and reduced pesticide 

exposure, most Chinese farmers still apply pesticides manually using backpack sprayers 

(Wachenheim et al., 2021). Backpack sprayers can be operated in almost any situation with low 

operating costs. However, their inferior efficiency is one of the main sources of pesticide 

overuse, and it is estimated that China’s average pesticide use per hectare is more than three 

times above the world average (Wu et al., 2018). Nevertheless, UAV spraying also has 

disadvantages. For example, spray drift is more severe with UAVs than with aircraft spraying 

or ground based application due to the vortex airflow generated by the UAV rotors (Carvalho 

et al., 2020; Wang et al., 2021). This is one reason why UAV spraying is prohibited in many 

European countries as exposure to this drift is considered to be a hazard both for the 

environment and human health (Remáč, 2018). China’s regulations on UAV spraying are less 

stringent than in Europe and it is permitted as long as the operation is carried out in accordance 

with national operational specifications (The Civil Aviation Administration of China, 2019). 

Specifically, UAV pilots must be trained and licensed, and UAV spraying must adhere to 

national operational specifications and avoid harming people on the ground.  

In 2017, China launched nationwide agricultural purchase subsidies in six provinces to promote 

the use of UAVs in agricultural production. Agricultural cooperatives and plant protection 

organizations are eligible to apply for these subsidies and can be granted a subsidy amounting 

to up to 30% of the purchase price for UAVs, whereby the maximum sum of the subsidy does 

not exceed 4,370 $ per UAV (Ministry of Agriculture and Rural Affairs of People’s Republic 

of China, 2017). The agricultural UAV purchase subsidies have had a great impact on the use 

of UAVs, and their numbers have increased significantly since 2017. Given the small size of 
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farms in China, it is not economically viable for individual farmers to own UAVs. Thus, some 

agricultural UAV companies and plant protection organizations provide on-farm UAV spraying 

services which have become popular leading to a huge market demand (Lan et al., 2019). Prices 

of UAV spraying services (labor and  machinery costs) range from $15 to $30 per hectare 

depending on crop types and topography (Chung, 2019; Wang et al., 2022). In addition to UAV 

purchase subsidies, some provinces also partially subsidize UAV spraying services based on 

the cumulative area of UAV operations. For example, in the Guangdong province subsidies for 

UAV pesticide spraying services range from $32 to $43 per hectare (Li et al., 2022). 

Given the benefits of UAVs, some studies have investigated the adoption of this technology for 

pesticide application. Zheng et al. (2019) used a probit model involving 897 farmers in Jilin 

province of China to estimate the factors influencing the adoption of UAVs for plant protection. 

Their results suggest that perceived usefulness, perceived ease-of-use, UAV-related knowledge 

level, and agricultural income ratio have a positive influence on UAV adoption. Likewise, 

Wachenheim et al. (2021) used a probit model to estimate the effects of social networks, 

resource endowment, and perceptions on Chinese farmers’ intention to adopt UAVs for 

pesticide application. The results indicate that arable land area, agricultural income share, 

within-family village leadership, perceived usefulness, and credit availability have positive 

effects on UAV adoption. Chen et al. (2020) employed logit models to investigate the factors 

that influence Chinese farmers’ willingness to adopt UAVs for pesticide application. The results 

show that arable land area and cooperative membership are positively correlated with farmers’ 

adoption intention, and the land threshold for UAV adoption is estimated to be 2 hectares. Han 

et al. (2022) used a technology acceptance model and found that perceived usefulness, 

perceived ease-of-use, and external environment (e.g., government subsidies, extension 

services, and training) have positive effects on UAV adoption for pesticide application among 

Chinese farmers in Shaanxi province. To sum up, these studies reveal that farmers’ 

characteristics, farm household characteristics, and external environment are the main factors 

influencing UAV adoption.  

The abovementioned studies focus on identifying factors that facilitate or constrain the adoption 

of UAVs for pesticide application. However, the economic effects of adoption still remain 

unclear. To address this research gap, propensity score matching (PSM) based on a dataset of 

over 2,000 Chinese grain farmers was used to identify the factors that influence their adoption 

of UAVs and to analyze the economic effects of adoption on outcome variables, including 
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farmers’ revenue, pesticide costs, time spent on pesticide application, and pesticide application 

frequency. Furthermore, generalized propensity score matching was used to estimate the 

heterogeneity of outcome variables arising from differing UAV adoption intensities. Finally, 

the conclusions present some policy suggestions that are apt to promote the use of UAVs in 

China.  

6.2 Materials and methods 

6.2.1 Data source 

The data used in this study is based on the “National Scientific Fertilizer Application Research 

Project 2019” headed by the Ministry of Agriculture and Rural Affairs of China. This national 

survey focused mainly on evaluating the farm-level impact of a scientific fertilizer application 

project. The survey was carried out in 2019 by the National Academy of Agriculture Green 

Development, China Agricultural University and was based on face-to-face interviews with 

farmers from 11 of the country’s main grain producing provinces: Heilongjiang, Jilin, Hebei, 

Henan, Shandong, Shaanxi, Gansu, Anhui, Jiangsu, Hunan, and Guangxi. This survey applied 

stratified multi-stage sampling and random sampling. Firstly, within each province, counties 

were classified according to the cultivated area, and 4 counties were randomly selected. 

Secondly, within the selected counties, townships were classified according to per capita 

income, and 3 townships were randomly selected. Thirdly, within the selected townships, 

villages were classified according to per capita income, and 2 villages were randomly selected. 

Finally, within the selected villages, farmers were classified according to their cultivated area 

and were randomly selected. The interview questions covered characteristics of farm 

households, aspects of farm management, agricultural production expenditure and revenues, 

pesticide application, and farmers’ knowledge about fertilizer application, etc. 

This survey was assisted by the local government, and all the farmers selected participated in 

the survey, i.e., 100% response rate. The sample consisted of 3,061 farmers: 1,123 maize 

farmers, 817 rice farmers, and 1,121 wheat farmers. Given the research purpose and variables 

of this study, missing values and invalid observations were excluded, leaving a final sample 

consisting of 1,078 maize farmers, 763 rice farmers, and 1,045 wheat farmers. 

6.2.2 Variable definitions and descriptive statistics 

Table 6.1 presents definitions of the variables in this study and their descriptive statistics. The 

descriptive analysis shows significant differences between UAV adopters and non-adopters in 
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many variables. UAV adopters are more likely to be male, young, fulltime farmers, and better 

educated than non-adopters and they also seem to have higher net incomes, bigger farm size, 

and fewer land parcels than non-adopters. Concerning the outcome variables, adopters show 

higher revenues and less time spent on pesticide application than non-adopters.  

Table 6.1 Description of variables 

Variables Definitions Non-adopters  

(n=2777) 

Adopters  

(n=109) 

t-test 

     Mean Std.  

dev. 

Mean Std.  

dev. 

Mean 

difference  

Independent 

variables 

      

Land parcel 1 if the farm has more than 

one land parcel; 0 otherwise 

0.726 0.446 0.642 0.482 0.083* 

Land lease 1 if the farm leases land from 

others; 0 otherwise 

0.193 0.395 0.743 0.439 −0.550*** 

Land expansion 1 if the household head wants 

to expand the farm land area; 

0 otherwise 

0.141 0.348 0.220 0.416 −0.079** 

Soil fertility 1 if the soil on the farm is 

fertile; 0 otherwise 

0.380 0.486 0.624 0.487 −0.244*** 

Net income Family annual net income 

(dollars)  

8185.069 16713.34 34902.62 37772.46 −26717.551

*** 

Farm size Area of farm’s arable land 

(hectares)  

4.493 44.378 28.383 75.722 −23.889*** 

Membership of 

agricultural 

cooperative 

1 if the farm is a member of 

an agricultural cooperative; 0 

otherwise 

0.162 0.368 0.239 0.428 −0.077** 

Plain 1 if the farm is located in 

plain region; 0 otherwise 

0.868 0.338 0.908 0.290 −0.040 

Gender 1 if the household head is 

male; 0 otherwise 

0.924 0.266 0.982 0.135 −0.058** 

Age Age of household head 57.499 10.467 48.927 10.592 8.572*** 

Education level Education of household head 

in years 

8.175 3.342 9.312 2.316 −1.137*** 

Fulltime farmer 1 if agricultural activities are 

the household head’s sole 

main source of income; 0 

otherwise 

0.739 0.439 0.890 0.314 −0.151*** 
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Pest & disease 1 if the crops suffered from 

pests or diseases; 0 otherwise 

0.131 0.337 0.064 0.246 0.066** 

Insurance 1if the farm bought 

agricultural insurance; 0 

otherwise 

0.602 0.489 0.771 0.422 −0.168*** 

Pesticide 

subsidy 

1if the farm received 

subsidies for pesticide use; 0 

otherwise 

0.049 0.216 0.028 0.164 0.021 

Pesticide 

training 

1 if the household head has 

received pesticide application 

training; 0 otherwise 

0.316 0.465 0.248 0.434 0.068 

Outcome 

variables 

      

Revenue Average gross income per 

hectare (dollars / hectare) 

2119.101 1196.897 2615.937 815.737 −496.836*** 

Pesticide costs Total pesticide expenditure 

per hectare (dollars / hectare) 

128.765 129.943 145.016 100.598 −16.251 

Time spent on 

pesticide 

application 

Average time spent on 

pesticide application per 

hectare (hours/ hectare)  

24.761 53.582 4.814 24.773 19.947*** 

Pesticide 

application 

frequency  

The number of times pesticide 

is applied during the growing 

season  

3.896 2.810 4.404 1.479 −0.508* 

Treatment 

variable 

      

UAV adoption 1 if the farm used UAVs for 

pesticide application; 0 

otherwise 

0.000 0.000 1.000 0.000 −1.000*** 

UAV adoption 

intensity 

Area with UAVs used for 

pesticide spraying (hectare) in 

natural logarithm, ln (area 

with UAVs used for pesticide 

spraying) 

0.000 0.000 2.905 1.5117 −2.905*** 

*** p<0.01, ** p<0.05, * p<0.1. 

6.2.3 Empirical model 

In this study, propensity score matching (PSM) was used to estimate the impacts of UAV 

adoption on outcome variables. PSM applied a set of observed covariates to construct a 

counterfactual comparison group to match against the treatment group based on the probability 

of UAV adoption (Khandker et al., 2009). The probability or propensity score, then served as 

the basis for matching UAV adopters with non-adopters using three different matching 

algorithms. The average treatment effects of UAV adoption are the mean difference of outcome 

variables between the treatment group and the comparison group.  
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Assuming farmers are risk neutral and rational, farmer i will only adopt UAVs for pesticide 

spraying if the expected utility of adoption (𝐷1
∗)  is greater than non-adoption (𝐷0

∗): 𝐷𝑖
∗ = 𝐷1

∗ −

 𝐷0
∗ > 0,   where 𝐷𝑖

∗ is the latent variable which captures the utility difference between adoption 

and non-adoption. 𝐷𝑖
∗  is unobserved, but it can be denoted as a function of observed covariates. 

Thus, a latent variable model is given as follows (El-Shater et al., 2016; Zheng et al., 2021): 

𝐷𝑖
∗ =  𝛽𝒛𝒊 + 𝜀𝑖  with Di= { 1  if Di

* >0 

 0  otherwise
                                                                                 (1) 

where Di is a binary variable and equals 1 if farmer i adopts UAVs and 0 otherwise; zi is a vector 

of observed covariates that affect UAV adoption; β is a vector of parameters to be estimated; εi 

is the error term. 

Firstly, a probit model was employed to estimate the probability of farm households adopting 

UAVs for pesticide spraying. Secondly, UAV adopters and non-adopters were matched based 

on the probability or propensity score derived from the probit model. The robustness of the 

results was checked using three different matching algorithms, including kernel matching, 

nearest-neighbor matching, and radius matching to compare UAV adopters with non-adopters 

(Caliendo and Kopeinig, 2008). Finally, the average treatment effects on the treated (ATT) for 

the outcome variables were estimated according to (Khandker et al., 2009):  

ATT =  E (Y (1)  −  Y (0) | 𝐷𝑖 = 1)  =   E (Y (1) | 𝐷𝑖 = 1) −  E (Y (0) | 𝐷𝑖 = 1)              (2) 

where E (Y (1) | 𝐷𝑖 = 1)  is the potential outcome of adopters in the treatment group and 

E (Y (0) | 𝐷𝑖 = 1) is the potential outcome of adopters had they decided not to adopt and 

become part of the counterfactual comparison group.  

It is important to note that the effectiveness of PSM relies on two fundamental assumptions: 

conditional independence and common support (Khonje et al., 2015). Conditional 

independence assumes that, given a set of observable covariates (Xi) which are not affected by 

UAV adoption (Di), outcome variables are independent of the UAV adoption status. If Yi (1) is 

the outcome of UAV adopters and Yi (0) is the outcome of non-adopters, the conditional 

independence can be expressed as: (𝑌𝑖 (1), 𝑌𝑖 (0)) ⊥  𝐷𝑖 | 𝑋𝑖  (Caliendo and Kopeinig, 2008). 

Common support assumes that the number of UAV adopters is approximately equal to the 

number of non-adopters with whom they are matched. PSM attempts to estimate the difference 

between outcome variables of UAV adopters and non-adopters with similar characteristics, but 

bias cannot be avoided if unobservable covariates affect UAV adoption (Khandker et al., 2009). 
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Although the UAV adoption rate is low, at 3.8% of the full sample, PSM can still generate 

unbiased estimates of treatment effects if the appropriate variables are selected into the model 

(Gitonga et al., 2013; Pirracchio et al., 2012). 

6.3 Empirical results and discussion 

6.3.1 Estimates of probit model 

In the first stage of PSM, the probit model was used to analyze the determinants of UAV 

adoption and to calculate the propensity score of adoption for each farmer. The results of the 

probit analysis are reported in Table 6.2. The Wald χ2 test (254.29) indicates the joint 

significance of independent variables (p = 0.000). Farmers who lease land from others, and 

therefore hold a larger area of arable land, are more likely to adopt UAVs than their non-adopter 

counterparts. This finding is in line with Skevas et al. (2021) who pointed out that farmers who 

rent out land to others are less likely to be willing to use UAVs. As expected, family net income 

and farm size are positively correlated with the probability of adoption. Young farmers are more 

likely to adopt UAVs, suggesting that they are more open-minded and skilled with digital 

agricultural technology than older farmers. These results are consistent with Michels et al. 

(2020) who found that farm size has a positive effect and a farmer’s age has a negative effect 

on the UAV adoption process in German agriculture. Similarly, Skevas and Kalaitzandonakes 

(2020) observed that household income has a positive impact on American farmers’ intention 

to adopt UAVs and Skevas and Kalaitzandonakes (2020) and Chen et al. (2020) found that 

cooperative members are more likely to adopt UAVs than non-members. On the other hand, in 

this study, membership in an agricultural cooperative has a negative effect on UAV adoption, 

indicating that most of the UAV adopters did not participate in agricultural cooperatives and 

that agricultural cooperatives did not play a significant role in UAV extension. Soil fertility has 

a positive relationship with UAV adoption, implying that the probability of adoption is higher 

on a farm with fertile soil. Fulltime farmers are also more inclined to adopt UAVs. This could 

be due to the fact that farmers whose main source of income is earned in agriculture are more 

willing to try UAVs to enhance productivity.  
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Table 6.2 Probit regression model for UAV adoption 

 Coefficient Std. Err. z P>|z| 

Land parcel −0.102 0.118 −0.86 0.388 

Land lease 0.383** 0.148 2.58 0.010 

Land expansion 0.019 0.132 0.14 0.887 

Soil fertility 0.279** 0.112 2.49 0.013 

ln (net income) 0.116** 0.051 2.29 0.022 

ln (farm size) 0.239*** 0.050 4.74 0.000 

Membership of agricultural 

cooperative 

−0.327** 0.135 −2.43 0.015 

Plain 0.066 0.164 0.40 0.687 

Gender 0.556 0.347 1.60 0.109 

Age −0.019*** 0.006 −3.16 0.002 

Education level 0.002 0.019 0.08 0.933 

Fulltime farmer 0.507*** 0.155 3.28 0.001 

Pest & disease −0.241 0.193 −1.24 0.214 

Insurance 0.123 0.124 1.00 0.319 

Pesticide subsidy −0.130 0.291 −0.44 0.657 

Pesticide training −0.152 0.123 −1.24 0.217 

Constant −3.337*** 0.702 −4.75 0.000 

Log likelihood  −323.619 

LR χ2(16) 254.29 

Prob > χ2 0.0000 

Pseudo R2 0.282 

Number of observations 2,635 

*** p<0.01, ** p<0.05. 

6.3.2 Balancing tests 

In the second stage of PSM, UAV adopters and non-adopters were matched on the basis of their 

propensity scores. The results of balancing tests before and after matching are shown in Table 

6.3. Regardless of which matching algorithm is used, Pseudo R2, which reveals how well the 

independent variables explain UAV adoption (Caliendo and Kopeinig, 2008), fell from 0.282 
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before matching to a range of 0.019-0.025 after matching. The likelihood ratio test of the joint 

significance of covariates was not rejected before matching but it was rejected after matching. 

The mean standardized bias was below 8% after matching. The total percentage of bias 

reduction ranges from 4.6% to 13.7%. Thus, the PSM has significantly reduced the biases of 

covariates in the treatment group and the control group, suggesting a good matching quality. 

Table 6.3 Balancing tests 

Outcome 

variables 

Matching 

Algorithms 

 

Pseudo R2 LR χ2 p > χ2 Mean standardized 

bias 

Total% 

|bias| 

reduction 
Before 

matching 

After  

matching 

Before 

matching 

After 

 matching 

Before 

matching 

After 

 matching 

Before 

matching 

After  

matching 

Revenue 

(dollars / 

hectare) 

KM 0.282 0.021 254.29 6.16 0.000 0.986 47.3 6.5 6.2 

NNM 0.282 0.019 254.29 5.56 0.000 0.992 47.3 6.5 4.6 

RM 0.282 0.025 254.29 7.24 0.000 0.968 47.3 7.8 13.7 

Pesticide 

costs 

(dollars / 

hectare) 

KM 0.282 0.021 254.29 6.16 0.000 0.986 47.3 6.5 6.2 

NNM 0.282 0.019 254.29 5.56 0.000 0.992 47.3 6.5 4.6 

RM 0.282 0.025 254.29 7.24 0.000 0.968 47.3 7.8 13.7 

Time spent 

on pesticide 

application 

(hours/ 

hectare) 

KM 0.282 0.021 254.29 6.16 0.000 0.986 47.3 6.5 6.2 

NNM 0.282 0.019 254.29 5.56 0.000 0.992 47.3 6.5 4.6 

RM 0.282 0.025 254.29 7.24 0.000 0.968 47.3 7.8 13.7 

Pesticide 

application 

frequency  

KM 0.282 0.021 254.29 6.16 0.000 0.986 47.3 6.5 6.2 

NNM 0.282 0.019 254.29 5.56 0.000 0.992 47.3 6.5 4.6 

RM 0.282 0.025 254.29 7.24 0.000 0.968 47.3 7.8 13.7 

Note: kernel matching (KM), bandwidth = 0.06; nearest neighbor matching (NNM), N=10, with replacement; 

radius matching (RM), caliper=0.08. 

6.3.3 Common support 

Figure 6.1 shows the density distributions of propensity scores for UAV adopters and non-

adopters before and after matching. It reveals substantial overlaps in the density distributions 

of the propensity scores of UAV adopters and non-adopters after matching. Obviously, the 

common support assumption is satisfied after matching. 
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Figure 6.1 Density distributions of propensity scores for UAV adopters and non-adopters before and after matching 

6.3.4 The economic effects of UAVs in pesticide application 

Table 6.4 reports the impacts of UAV adoption on revenue, pesticide costs, time spent on 

pesticide application, and pesticide application frequency. The results derived from kernel 

matching, nearest neighbor matching, and radius matching are very close, suggesting that the 

results are robust. The use of UAVs in pesticide application did have some positive economic 

effects. Firstly, UAV adoption significantly improved grain farmers’ revenue by approximately 

434-488 dollars per hectare, possibly because the grain yield per unit area increased thanks to 

the effective pest and disease control it offers. Subtracting the cost of UAV spraying (labor and 

machinery), the net revenue of UAVs in pesticide application is 404-473 dollars per hectare. 

Secondly, the adoption of UAVs noticeably reduced the time spent on pesticide application in 

the range of 14.4-15.8 hours per hectare, and thus it indirectly reduced labor costs for this task. 

This is mainly due to the fast, accurate, and efficient pesticide spraying performed by UAVs 

compared to traditional approaches. Finally, although UAV adoption reduced the costs and 

application frequency of pesticides, the impacts were not statistically significant. The fact that 

UAV spraying did not noticeably reduce pesticide costs could be due to the fact that a lot of 

Chinese farmers use UAVs for uniform rate pesticide application instead of site-specific 

spraying (Yang et al., 2018). 
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Table 6.4 The impacts of UAV adoption on revenue, pesticide costs, time spent on pesticide 

application, and pesticide application frequency  

Outcome 

variables 

Matching 

algorithm 

Adopters Non-

adopters 

ATT Matched observations 

Adopters Non-

adopters 

Total 

Revenue  

(dollars/hectare) 

KM 2620.789 2186.352 434.436*** 

(105.288) 

106 2,527 2,633 

NNM 2620.789 2133.152 487.637*** 

(129.837) 

106 2,527 2,633 

RM 2620.789 2169.142 451.646*** 

(81.146) 

106 2,527 2,633 

Pesticide costs 

(dollars/hectare) 

KM 145.511 150.088 −4.576 

(15.516) 

106 2,527 2,633 

NNM 145.511 157.108 −11.597 

(17.061) 

106 2,527 2,633 

RM 145.511 148.708 −3.197 

(14.093) 

106 2,527 2,633 

Time spent on 

pesticide 

application  

(hours/ hectare) 

KM 4.808 20.432 −15.623*** 

(4.457) 

106 2,527 2,633 

NNM 4.808 19.257 −14.449*** 

(4.422) 

106 2,527 2,633 

RM 4.808 20.572 −15.764*** 

(3.499) 

106 2,527 2,633 

Pesticide 

application 

frequency  

KM 4.406 4.456 −0.051 

(0.205) 

106 2,527 2,633 

NNM 4.406 4.483 −0.077 

(0.321) 

106 2,527 2,633 

RM 4.406 4.426 −0.021 

(0.245) 

106 2,527 2,633 

*** p<0.01; standard errors in parentheses using 50 bootstrap replications; kernel matching (KM), bandwidth = 

0.06; nearest neighbor matching (NNM), N=10, with replacement; radius matching (RM), caliper=0.08. 

However, it is quite likely that some important causal factors are missing (e.g., management 

ability and entrepreneurial capability) and these factors both boost profits and increase the 

likelihood of adoption. That is, while UAVs may have little to do with increased profits for the 

average farmer, profits and UAV use are nevertheless correlated. Further tests are needed to 
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check if the possible unobserved covariates (e.g., farmer’s ability, risk preferences, and 

motivation) influence UAV adoption and, at the same time, outcome variables. 

6.3.5 Sensitivity analysis  

PSM assumes that UAV adoption and outcome variables are solely affected by the observable 

covariates. However, hidden bias may be a problem if the possible unobserved covariates (e.g., 

farmer’s ability, risk preferences, and motivation) influence UAV adoption and outcome 

variables simultaneously (Chagwiza et al., 2016; Gitonga et al., 2013; Mishra et al., 2016; 

Schreinemachers et al., 2016). Thus, the Rosenbaum bounds test was performed to check the 

robustness of results to hidden bias (Rosenbaum, 2002). The PSM results show that UAV 

adoption only has statistically significant effects on grain farmers’ revenue and the time spent 

on pesticide application. Thus, the Rosenbaum bounds test was performed to assess the 

sensitivity of these two outcome variables to unobserved variables. Since the impact of UAV 

adoption on grain farmers’ revenue is positive, focus should concentrate on the upper bound 

(sig+) in this case (Caliendo and Kopeinig, 2008). Likewise, the lower bound (sig−) should be 

the focus for the time spent on pesticide application. Gamma represents log odds of differential 

assignment arising from unobserved factors (Becker and Caliendo, 2007).  

Table 6.5 Sensitivity analysis of the outcome variables to hidden bias, p-values 

Gamma Revenue Time spent on pesticide application 

 
sig+ sig− sig+ sig− 

1 0.000 0.000 0.000 0.000 

1.1 0.000 0.000 0.000 0.000 

1.2 0.000 0.000 0.000 0.000 

1.3 0.000 0.000 0.000 0.000 

1.4 0.000 0.000 0.000 0.000 

1.5 0.001 0.000 0.000 0.000 

1.6 0.001 0.000 0.000 0.000 

1.7 0.003 0.000 0.000 0.000 

1.8 0.006 0.000 0.000 0.000 

1.9 0.010 0.000 0.000 0.000 

2 0.017 0.000 0.000 0.000 

Gamma, log odds of differential assignment due to unobserved factors; sig+, upper bound significance level; sig−, 

lower bound significance level. 
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When Gamma is up to 2, the sig+ of revenue is still significant at 5% level and the sig− of time 

spent on pesticide application remains significant at 1% level, indicating that grain farmers’ 

revenues and time spent on pesticide application are insensitive to hidden bias (Table 6.5).  

6.3.6 Continuous treatment effects 

PSM uses a binary treatment variable (UAV adoption) in the model and can only estimate the 

average treatment impact of UAV adoption on outcome variables. However, the heterogeneous 

treatment impact of UAV adoption is unclear (Shiferaw et al., 2014). The generalized 

propensity score (GPS) matching (Hirano and Imbens, 2004) serves as an extension to PSM. It 

uses a continuous treatment variable in the model and thus allows the heterogeneous treatment 

impact of UAV adoption on outcome variables to be explored. In this study, a continuous 

treatment variable, UAV adoption intensity (natural logarithm of area using UAVs for pesticide 

spraying) was used in the GPS matching to study the heterogeneous treatment impact of UAV 

adoption. Other covariates were the same as those previously used in the PSM. 

 

Figure 6.2 Dose response (average treatment effects) function and marginal treatment effects function for revenue.  

Standard errors and confidence intervals were estimated by 100 bootstrap replications. Adoption intensity: natural 

logarithm of area with use of UAVs for pesticide spraying.  
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Figure 6.3 Dose response (average treatment effects) function and marginal treatment effects function for time 

spent on pesticide application. Standard errors and confidence intervals were estimated by 100 bootstrap 

replications. Adoption intensity: natural logarithm of area with use of UAVs for pesticide spraying. 

Figure 6.2 shows that revenue and UAV adoption intensity have an inverted U-shaped 

relationship. The revenue increases from 2,500 dollars/hectare at adoption intensity of 1 to 

2,750 dollars/hectare at adoption intensity of 3. After that, revenue drops from 2,750 

dollars/hectare to 1,500 dollars/hectare as the adoption intensity increases. The marginal 

revenue decreases as the adoption intensity increases, declining from 250 dollars/hectare at 

adoption intensity of 2 to −750 dollars/hectare at adoption intensity of 7. Figure 6.3 shows that 

the time spent on pesticide application decreases as the adoption intensity increases. The time 

spent on pesticide application decreases from 38 h/hectare at adoption intensity of 1 to 2 

h/hectare at adoption intensity of 2. Once the adoption intensity of 2 has been reached, the time 

spent on pesticide application does not show any visible fluctuations, remaining at 2 h/hectare. 

The marginal time spent on pesticide application increases gradually and reaches a diminishing 

return at adoption intensity of 3.  

These empirical results reveal that UAV adoption intensity has heterogeneous impacts on grain 

farmers’ revenue and the time spent on pesticide application. This may be due to the fact that 

increased farm size leads to resource misallocation and management inefficiency, and finally 

to a decline in the impacts of UAV adoption (Sheng et al., 2019). Likewise, Abdul Mumin and 

Abdulai (2022), Mohammed and Abdulai (2022), Shahzad and Abdulai (2021), and Wu (2022) 

also reported heterogeneous returns for adoption of agricultural technologies due to differences 

in resource endowments, such as farm size, financial resources, and social networks. The results 

of this study suggest that, in terms of marginal revenue and marginal time spent on pesticide 
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application, the optimal UAV adoption intensity for Chinese grain farmers is estimated to be 3, 

referring to 20 hectares of arable land. 

6.4 Conclusions  

This article uses the PSM method to identify the factors that influence Chinese grain farmers’ 

adoption of UAVs and to analyze the impacts of UAV adoption on farmers’ revenue, pesticide 

costs, time spent on pesticide application, and pesticide application frequency. The UAV 

adoption rate among the grain farmers in this survey was relatively low at only 3.8%. The 

empirical results show that UAV adoption is significantly and positively correlated with arable 

land area, family annual net income, soil fertility, rented land, fulltime farmer status, and young 

farmers. Policy makers aiming to increase UAV adoption should appreciate that older farmers, 

small-scale farmers, part-time farmers, and low-income farmers face more barriers in UAV 

adoption. In the future, more UAV extension services and education programs should target at 

these groups. However, membership in an agricultural cooperative has a significant negative 

impact on UAV adoption, indicating that most of the UAV adopters in this study did not 

participate in agricultural cooperatives. Traditional agricultural cooperatives did not play a 

significant role in UAV extension. Thus, benefit-risk sharing UAV agricultural cooperatives 

should be established to promote UAV adoption. Farmers who are interested in using UAVs 

for pesticide application can set up an agricultural cooperative and buy UAVs together, whereby 

members jointly cover the purchase and maintenance costs and share the use of their UAVs. 

This reduces the cost and risk for each famer and makes UAVs more affordable for the majority.  

The use of UAVs can increase revenue and reduce the time spent on pesticide application, and 

these results are insensitive to hidden bias arising from unobserved variables. On average, the 

adoption of UAVs increases revenue by approximately 434-488 dollars per hectare and reduces 

time spent on pesticide application by about 14.4-15.8 hours per hectare. UAV adoption should 

therefore be encouraged. The GPS matching indicates that UAV adoption has heterogeneous 

effects on revenue and time spent on pesticide application. In terms of marginal revenue and 

marginal time spent on pesticide application, the optimal adoption intensity of UAV in Chinese 

grain farming is estimated to be 20 hectares, suggesting that small and medium-scale farmers 

are the main beneficiaries of UAV adoption. Large farms are advised to improve resource 

allocation and management efficiency to increase the returns of UAV adoption. 
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Chapter 7 General discussion 

This chapter will comprehensively discuss the key findings of each chapter and compare them 

with other relevant studies and consolidate the conclusions of individual chapters. The pros and 

cons of different agricultural machinery and strategies will be discussed. The contributions are 

highlighted, and limitations and future research are also discussed. 

7.1 Discussion of the results 

The research questions of this dissertation will be discussed from a broader perspective in this 

section, following a pros and cons approach. 

• The factors that influence the adoption of farm machinery by Chinese maize farmers 

In Chapter 2, multivariate probit models were performed to identify the factors that affect maize 

farmers’ adoption of four machinery technologies as well as the interrelation between these 

adoption decisions. The empirical results indicate that maize sowing area, arable land area, crop 

diversity, family labor, subsidy, technical assistance, and economies of scale have positive 

effects on machinery adoption, while the number of discrete fields on the farm has a negative 

impact. The adoption of these four machinery technologies are interrelated and complementary. 

Pro and cons of adopting different machinery technologies at the same time can be identified 

as that adopting a machinery technology can facilitate the adoption of other complementary 

machinery technologies, but will inhibit the adoption of other substitutable machinery 

technologies.  

Many studies have similar findings as in Chapter 2. Using household survey data of 493 Chinese 

maize farmers, Ma et al. (2018) found that farm size has a significantly positive impact on farm 

machinery adoption, while household size is negatively correlated with machinery use. Zhang 

et al. (2019) reported that off-farm work, farm size, and extension contact have significantly 

positive effects on farm machine use in maize production, but farmers’ risk preference has a 

negative impact on farm machinery adoption. Wang et al. (2020) showed that land 

fragmentation constrains mechanization and influences the substitution effects of machinery 

for labor in Chinese agriculture.  

In light of diversified agricultural production conditions in China, the factors that influence the 

adoption of farm machinery by Chinese maize farmers may be varied in different contexts. The 

adoption of different machinery technologies might be complementary or substitutable, and 
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extension programs should take advantage of these characteristics to promote the use of 

agricultural machinery. 

• The economic effects of adopting farm machinery on maize yield and labor productivity 

Farm machinery use significantly increased maize yield by 0.216 tons/ha and improved labor 

productivity by 18.65%, but the impacts of machinery use differ across farm households. 

Young, male, and better-educated farm households benefit more from farm machinery 

adoption. These results also imply that farm machinery adoption is more productive in 

increasing maize yield and labor productivity among the farms which are located in plain 

regions with cooperative membership and rented land. In addition, the impacts of farm 

machinery adoption on maize yield and labor productivity slightly decrease with farm size. This 

may be because farm size expansion leads to resource misallocation and management 

inefficiency, finally resulting in a decline in the impacts of farm machinery adoption (Sheng et 

al., 2019). To attain optimal economic returns from adopting farm machinery, an appropriate 

farm size is better than the oversized one in the context of Chinese agriculture.  

Many studies have shown the differing impacts of farm machinery use across farm households 

due to the heterogeneous farm characteristics and socio-economic conditions (Adekunle et al., 

2016; Adu-Baffour et al., 2019; Kienzle et al., 2013; Qing et al., 2019; Takeshima et al., 2020; 

Zhou et al., 2020). Huang and Ding (2016) found an inverse relationship between farm size and 

maize yield in China because of distortions in small-scale farming transformation, and policies 

are needed to assist small farms to adapt to large farms by improving resource use efficiency 

and farming productivity. Zhou et al. (2020) reported that farm machinery use significantly 

increased maize yield, but low productivity farmers gained more yield from farm machinery 

adoption than the high productivity farmers. 

As a conclusion, the pros and cons concerning adoption can be stated as that the adoption of 

agricultural machinery has significantly positive impacts on maize yield and labor productivity, 

but the impacts may not be the same for all adopters. The undifferentiated farm machinery 

extension program which fails to consider the farm-level heterogeneity would cause the 

inequity among farmers. It is necessary to understand the heterogeneous effects of farm 

machinery adoption and to formulate customized extension services tailored to various types of 

farm households.  
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• An overview of UAV applications in maize production 

UAVs have been using in some important aspects of maize production such as water stress 

detection, weed mapping, nutrient status monitoring, and yield prediction. The benefits of 

UAVs in maize production are higher productivity, accurate real-time field monitoring, reduced 

labor use, and fewer working hours, etc. These favorable factors facilitate the use of UAVs. On 

the other hand, disadvantages include complex data processing and interpretation, high prices, 

and unstable performance, etc. These unfavorable factors increase the difficulty of UAV use 

and reduce work efficiency. Unspecified UAV operating standards could lead to inefficiencies. 

For the efficient use of UAVs in maize production, a standard workflow needs to be followed. 

In addition to UAV applications in maize farming specifically, other research also studied the 

applications of UAVs in agriculture generally. Delavarpour et al. (2021) mentioned that UAVs 

can be used as platforms to attach with sensors for field monitoring and to equip with tanks for 

crop spraying. Likewise, UAVs have many merits such as flexible, accurate, and efficient, but 

high financial investment, complexity of UAV technology, and complex data interpretation 

constrain the adoption of UAVs in precision agriculture. In addition, they highlighted that the 

potential benefits of using UAVs and the compatibility of UAV technology with farmers’ 

exiting agricultural technologies can affect the adoption of UAVs. Rejeb et al. (2022) and 

Maddikunta et al. (2021) pointed out that UAV operating regulations and farmers’ acceptance 

and knowledge of UAV technology can influence the use of UAVs in agriculture. To conclude, 

the pros of using UAVs in agriculture are flexible, accurate, and efficient, while the cons are 

high investment, complex data interpretation, and the possible poor compatibility of UAV 

technology with farmers’ exiting agricultural technologies. Future research about the 

applications of UAVs should focus on socio-economic effect evaluation, operating regulations, 

education and training, and technology assessment, etc. 

• Drivers and barriers of UAV adoption in China 

The determinants of UAV adoption derive from three major aspects: farmers’ production 

characteristics, farmers’ perceptions about UAVs, and social factors. Drivers for UAV adoption 

are rural labor shortages, expansion of farm size, specialized farming, UAV purchase subsidies, 

market demand for UAV services, after-sales service or technical support, and UAV trainings. 

Taking into account the observed structural change in Chinese agriculture, especially the 

growing of medium- and large-scale farms (Huang and Ding, 2016; Ji et al., 2016) and 
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agricultural specialization (Liu et al., 2021; Wang et al., 2017), the promotion of UAVs in China 

will have a positive perspective. Barriers for UAV adoption are knowledge gap, small farm 

size, sophisticated UAV operations, unspecified UAV operating standards, unfavorable field 

conditions, and UAV pilot shortages. The determinants of UAV adoption and their effects on 

UAV adoption are consistent with Han et al. (2022), H. Li et al. (2022), Li et al. (2020), Michels 

et al. (2020), Skevas and Kalaitzandonakes (2020), Wachenheim et al. (2021), Zheng et al. 

(2019), and Zuo et al. (2021). In addition to the above determinants, however, Delavarpour et 

al. (2021) and Rejeb et al. (2022) emphasized that compatibility and interoperability of UAV 

technology with farmers’ existing technologies are also determinants of UAV adoption.  

Due to the barriers discussed above, UAVs have not been widely adopted by most Chinese 

farmers. In the future, the establishment of a comprehensive socio-economic institution to 

integrate a range of beneficial factors for UAV adoption is important. Balancing the pros and 

cons, the tackling of priorities would be as follows: to improve farmers’ UAV-related 

knowledge, to enhance user experience of UAVs, to define UAV operation specifications, to 

consolidate scattered field plots, and to educate more UAV pilots.  

• The prerequisites for adopting and implementing UAV-based pattern management in 

China’s agriculture 

18 experts mentioned that there are some socio-economic and technical prerequisites for 

adopting and implementing UAV-based pattern management in Chinese agriculture. Socio-

economic prerequisites include farmers’ good UAV-related capabilities, convincing benefits of 

using UAVs, a relatively large arable land size (≥ 2 ha), and social facilitating conditions such 

as UAV purchase subsidies, after-sales UAV service or support, and UAV trainings. Likewise, 

Han et al. (2022), Skevas and Kalaitzandonakes (2020), and Li et al. (2020) reported that 

perceived usefulness can affect farmers’ UAV adoption. Sylvester et al. (2018) showed that 

most farmers do not adopt UAVs because of the huge investment and unforeseen returns from 

adoption, and they concern that the economic benefits of adoption may not offset the 

investment. H. Li et al. (2022) found that UAV purchase subsidies can boost UAV adoption. 

Han et al. (2022) emphasized that external environment such as UAV technical assistance and 

after-sales service can facilitate UAV adoption. To conclude, educating farmers on UAV-

related capabilities, expanding farm size appropriately, and providing UAV-related social 

facilitating conditions are important for implementing UAV-based pattern management in 

China. In addition, the observed structural change in Chinese agriculture such as the growing 
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of medium- and large-scale farms (Huang and Ding, 2016; Ji et al., 2016) and agricultural 

specialization (Liu et al., 2021; Wang et al., 2017) would be supportive for implementing UAV-

based pattern management.  

On the other hand, three main technical prerequisites are needed for implementing UAV-based 

pattern management, including accurate crop monitoring, precise real-time UAV positioning 

systems, fast response time of variable-rate spraying systems. Due to the limitations of current 

technology, Maimaitijiang et al. (2020) and Xie et al. (2021) addressed that UAV-based crop 

monitoring still needs to improve its accuracy in some cases. Yang et al. (2018) highlighted that 

real-time positioning systems are needed to guide UAVs to the right site when UAVs fly above 

fields to perform site-specific precise spraying. UAVs operate at a high speed and require a 

quick response time of variable-rate spraying systems to match with the speed of UAVs, but it 

is still difficult to achieve this.  

UAV-based pattern management is still at the experimental phase, and it will take some time to 

achieve commercial use in precision farming. At this stage, UAV-based pattern management 

can be promoted first in large-scale farms for specialized farming due to the high expected 

returns and structural change in Chinese agriculture. Given economic viability, UAV service 

agricultural cooperatives can provide UAV-based pattern management services for small and 

medium-sized farms.  

• The economic effects of adopting UAVs in pesticide application in China’s agriculture 

The use of UAVs in pesticide application did have some positive economic effects. The 

empirical results in Chapter 6 show that adoption of UAV increased revenue by approximately 

434-488 USD/ha and reduced the time spent on pesticide application in the range of 14.4-15.8 

hours/ha. This finding is in consistent with Wang et al. (2020) who found that UAV-based 

pesticide application increased the effect of pest and disease control in citrus production by 

20.3% and saved cost by 266 USD/ha. Likewise, Wang et al. (2019) reported that UAV-based 

pesticide application decreased pesticide use by one-third, increased work efficiency by three 

times, and reduced machinery operation cost by 8.70 USD/ha in cotton production. However, 

in Chapter 6 UAV spraying did not noticeably reduce pesticide costs could be due to the fact 

that a lot of Chinese farmers use UAVs for uniform rate pesticide application instead of site-

specific spraying (Yang et al., 2018). One conclusion would be that promoting the use of UAVs 

in precision agriculture has a great potential in China.  
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Another conclusion is that UAV adoption has heterogeneous impacts. Small and medium-scale 

farmers are the main beneficiaries of UAV adoption, and the optimal area with use of UAVs 

for pesticide application is estimated to be 20 hectares. On the other hand, Zheng et al. (2018) 

found that farmers’ UAV adoption intention is positively correlated with farm size, and the land 

threshold for UAV adoption is about 2 hectares in China. Hence, small farms are expected to 

expand farm size appropriately to facilitate UAV adoption, and large farms are advised to 

improve resource allocation and management efficiency to increase the returns of UAV 

adoption. 

7.2 Methodological considerations and contributions  

• Multivariate models were performed to study the factors that influence the adoption of 

machinery in four key production processes (e.g., seeding, plowing, harvesting, and 

pesticide spraying) in China’s maize production and the potential interrelation among these 

adoption decisions. This study analyzed factors that influence the adoption of machinery in 

each production stage and the interrelation among these adoptions, which helps to obtain a 

thoroughly understanding of Chinese maize farmers’ machinery adoption decisions. 

• An endogenous switching regression (ESR) model was used to quantitatively explore the 

economic effects of adopting farm machinery on maize yield and labor productivity. In 

addition, the heterogeneous effects of farm machinery adoption were analyzed across farms 

and farmers’ characteristics. This study contributes to understand the heterogeneous effects 

of farm machinery adoption and to develop customized extension services tailored to 

various types of farm households to prevent the inequity among farmers. 

• The literature review introduces the development of four major UAV applications (e.g., 

water stress detection, weed mapping, nutrient status monitoring, and yield prediction) in 

maize farming, summarizes UAV data management methods, explains how expert systems 

work in UAV systems, and provides standardized workflow data for farmers in maize 

production. In addition, the strengths, weaknesses, opportunities, and threats of UAV use 

in maize production were analyzed. This review paper provides an overview of the latest 

UAV applications in maize production and serves as a general introduction to farmers who 

are interested in using UAVs in maize farming. 

• A series of structured in-depth expert interviews were conducted with 18 experts from 

various backgrounds related to UAVs and agriculture in China. This study included 

different types of UAV stakeholders (e.g., farmers, agricultural UAV manufacturers, UAV 

service providers, agricultural extension staff from government, and researchers focusing 
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on UAVs) into expert interviews and provided a holistic view on determinants and 

institutions that are needed for UAV adoption, especially in precision farming for UAV-

based pattern management.  

• Propensity score matching and generalized propensity score matching were used to 

quantitatively estimate the economic effects of UAV adoption on outcome variables (e.g., 

revenue, pesticide costs, time spent on pesticide application, and pesticide application 

frequency) respectively. Propensity score matching estimated the average effects of UAV 

adoption on outcome variables, while generalized propensity score matching estimated the 

heterogeneous economic effects of outcome variables arising from differing UAV adoption 

intensities. The joint use of these two methods provides a comprehensive evaluation of the 

economic effects of UAV adoption. 

7.3 Conclusions, discussion, and recommendations 

By utilizing farm household data, qualitative methods, and econometric quantitative methods, 

this dissertation explored the factors that influence the adoption of agricultural machinery, 

namely farm machinery in maize production and UAVs in precision agriculture, estimated the 

economic impacts of adoption, provided an overview of UAV applications in maize production, 

and studied the prerequisites for adopting and implementing UAV-based pattern management 

in Chinese agriculture.  

The determinants of farm machinery adoption and UAV adoption can be attributed by three 

major aspects: farmer characteristics (e.g., age, education level, and perceptions about 

agricultural machinery), farm characteristics (e.g., farm size, land fragmentation, and 

cooperative membership), and other external socio-economic factors (e.g., subsidies, technical 

assistance, and labor shortages). A conclusion would be that for the widespread implementation 

of UAV-based pattern management in precision agriculture, certain socio-economic and 

technical prerequisites are necessary. These include farmers possessing adequate UAV-related 

capabilities, relatively large farm sizes, availability of UAV-related subsidies, and superior 

UAV performance.  

Although the adoption of farm machinery and UAVs shows positive impacts on farm 

performance, the impacts differ across farm households due to the heterogeneous farm 

characteristics and socio-economic conditions. Small and medium-scale farmers are the main 

beneficiaries of agricultural machinery adoption, while large-scale farmers are advised to 
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improve resource allocation and management efficiency to increase the returns of agricultural 

machinery adoption. It is necessary to formulate customized extension services tailored to 

various types of farm households to prevent inequity among farmers. Policy makers aiming to 

increase the adoption of farm machinery and UAVs should appreciate that older farmers, small-

scale farmers, part-time farmers, and low-income farmers face more barriers. To conclude, in 

the future, more agricultural machinery extension services and education programs should 

target at these groups. 

Balancing the pros and cons, it can be derived that some strategies provided by public or private 

sectors are in favor of agricultural machinery adoption. These strategies include the 

implementation of land consolidation, the establishment of agricultural machinery cooperatives 

for benefit-risk sharing, the provision of practical training and education on agricultural 

machinery, and subsidies for the purchase of agricultural machinery. Priorities should focus on 

the establishment of a comprehensive socio-economic institution. This institution should 

integrate strategies from both the public and private sectors to leverage their respective 

strengths for the effective promotion of agricultural machinery. The land consolidation 

launched by public sectors creates favorable field conditions for machinery operation and 

facilitates agricultural mechanization. Agricultural machinery cooperatives established by 

private sectors can jointly cover the purchase and maintenance costs and share the use of 

machinery, and this approach reduces the cost and risk for each famer and makes machinery 

more affordable for the majority, especially for expensive precision agriculture facilities. 

Precision agriculture is a knowledge-based technology, and thus practical training and 

education provided by public sectors to farmers are important. Machinery purchase subsidies 

provided by public sectors to farmers lower machinery prices and make it more affordable for 

the majority.  

7.4 Limitations and future research 

• This dissertation only used cross-sectional data to model the adoption of farm machinery 

and UAVs and treated farmers’ adoption as a binary choice. However, the dynamic 

adoption process across years remains unclear. Depending on economic returns and 

other factors, farmers may continue to use or drop the technologies they have adopted 

(Khanal et al., 2019; Munguia et al., 2021). In addition, the factors that influence the 

adoption of agricultural machinery may have changed over time (Walton et al., 2008). 
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Thus, it is meaningful to investigate farmers’ dynamic adoption process across years in 

the future. 

• This dissertation only studied the qualitative relation between farmers’ perceptions 

about UAV technology and their adoption intentions, but the quantitative relation 

between them is vague. In the future, the technology acceptance model (Davis et al., 

1989) can be used as a framework to quantitatively estimate how farmers’ perceptions 

about UAV technology (e.g., perceived usefulness, perceived ease-of-use, and 

perceived benefits) affect their adoption intentions. 

• No work has done to compare farmers’ adoption intentions and actual adoption rates in 

this dissertation. However, farmers’ intended adoption and actual adoption might differ 

(Bagheri and Teymouri, 2022). Understanding the discrepancies between farmers’ 

intended adoption and actual adoption can ensure to formulate effective agricultural 

machinery extension programs (Niles et al., 2016). 

• Due to the low adoption rates of UAVs, it would be interesting to investigate the 

resistance of UAV adoption in the future (Michels et al., 2021).  For example, modeling 

the main reasons for farmers’ non-adoption decisions such as high investment, 

unpredictable benefits, and complex UAV operation. 
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