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 Introduction 

Few decades ago, fibroblast growth factor 23 (FGF23) and αklotho knockout mice revealed a shared role 

in the metabolism of inorganic phosphate1. FGF23 or αklotho deficiency results in hyperphosphatemia with 

massive ectopic calcification2,3. These deposits cause a syndrome resembling human aging2. Thus, αklotho 

was named after the Greek goddess who spun the thread of life2. Beside its major role in tumor-induced 

osteomalacia (TIO)4 or autosomal dominant hypophosphatemic rickets (ADHR)5, aberrant regulation of 

FGF23 has been associated with various diseases without a clear relation to phosphate or bone metabolism6-8 

and also αklotho is involved in various disorders9–11. Cellular stress or subsequent senescence is a frequent 

event in severe tissue injury and diseases12. The aim of the present thesis was the elucidation of a regulatory 

mechanism of cellular stress on FGF23 and αklotho.  

1.1 Features of FGF23 

Fibroblast growth factors are a family of versatile signaling proteins with a broad spectrum of functions. 

Based on structural and evolutionary data, FGFs are divided into several subfamilies comprising 22 proteins 

in humans13. FGF23 is assigned to endocrine FGF family including FGF19/FGF15, FGF21, and FGF23, 

termed hormone-like FGFs14. Their mutual structure and the absence of a C-terminal heparin-binding 

domain found in paracrine FGFs enables secretion, circulation, and signal transduction of endocrine FGFs 

to distant target organs15.  

Produced primarily by osteoblasts and osteocytes in bone16,17, FGF23 is an approximately 30 kDa 

glycoprotein with 251 amino acids (aa) and the gene sequence is located on human chromosome 12p13 

comprising 3 exons18,19. Secreted FGF23 contains 227 aa, lacking a 24 aa hydrophobic signal peptide18. The 

N-terminal receptor binding site with a β-trefoil structure comprises 154 aa sharing homologies with other 

FGFs20, whereas the 72 aa C-terminal sequence of FGF23 enables interaction with co-receptor αklotho21.  

In human blood, circulating FGF23 can be detected in two major forms: intact full-length FGF23 (aa 25-

251) and a C-terminal fragment resulting from proteolytic cleavage (aa 180-251)4,22. Half-life of human 

intact FGF23 is approximately one hour23. Proteolytic cleavage is catalyzed by subtilisin-like pro-protein 

convertase furin between arginine179 and phosphorylated serine180 at consensus sequence R176XXR179
24,25. 

This produces N- and C-terminal fragments, separating FGFR and klotho binding domains26. The exact role 

of these fragments is currently unclear but C-terminal fragments are suggested to antagonize FGF23 binding 

to FGFR1, thereby inhibiting its function on phosphate homeostasis21. Complex regulation of FGF23 

cleavage points to a specified role of the fragments rather than inactive degradation products. Thus, cleavage 

of FGF23 may serve as a regulator of FGF23 signal transduction21. 
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Posttranslational modification of FGF23 includes glycosylation and phosphorylation25. O-glycosylation at 

Thr178 by polypeptide N-acetylgalactosaminyltransferase 3 (GALNT3) prevents furin-mediated cleavage at 

R176XXR179 site, protecting FGF23 from proteolysis27. The family with sequence similarity 20, member C 

(FAM20C) is a protein kinase that phosphorylates Ser180 of the FGF23 sequence, thereby preventing 

GALNT3-mediated O-glycosylation and driving proteolysis25. Consequently, loss-of-function mutation in 

GALNT3 decreases intact FGF23 levels promoting hyperphosphatemia28, whereas loss-of-function mutation 

in FAM20C is accompanied by excess levels of intact FGF23 and hypophosphatemia25.  

FGF receptors (FGFR) are a family of receptor tyrosine kinases that contain an extracellular ligand-binding 

domain composed of three immunoglobulin-like loops, a single transmembrane domain, and the 

intracellular tyrosine kinase domain29. Endocrine FGFs require the co-receptors αklotho and βklotho for 

receptor binding and signaling30–32. FGF23 uses co-factor αklotho to form FGF23-FGFR-αklotho receptor 

complexes26. FGF23 shows the highest binding affinity for FGFR1 subtype c (FGFR1c), which appears to 

be the major physiologically relevant receptor in the kidney32,33. Upon FGF23-binding, FGFR-αklotho-

FGF23 complex activates intracellular kinase activity, activating various signaling pathways e.g. mitogen-

activated protein kinase (MAPK) extracellular signal-regulated kinases 1/2 (ERK1/2) signaling34. 

1.2 αKlotho 

αKlotho was originally discovered as an anti-aging factor because mice with a mutation in the αklotho (KL) 

gene show typical aging-related disorders including organ atrophy, tissue and vascular calcifications, 

arteriosclerosis, infertility, hyperphosphatemia, osteoporosis, and a short lifespan2. The αklotho gene and 

protein are highly homologous (>80 %) in mice, rat and human35. αKlotho is a single transmembrane protein 

predominantly expressed within the kidney2, the parathyroid glands36, and the brain37. It consists of one 

short intracellular, a transmembrane and two repeated extracellular sequences termed KL1 and KL2 

domains38. Cleavage of the extracellular domain by α-secretases A desintegrin and metalloproteinase 

(ADAM)-10 and ADAM-17 releases soluble klotho (sklotho) into the circulation39. Soluble αklotho can be 

detected in serum, cerebrospinal fluid, and urine9,40. sKlotho levels decrease with increasing age41,42 and low 

αklotho levels or decreased production are associated with severe diseases like CKD43–45, cancer46,47, or 

cardiovascular disorders10,48.  

The phenotype of homozygous αklotho knockout mice strongly resembles that of FGF23-deficient mice, 

suggesting a shared role in phosphate metabolism1,2,49,50. As mentioned above, αklotho functions as a co-

factor for FGFR1 in renal tubule cells mediating stable interaction between FGF23 and FGFR1c32. Beside 

its action as a co-receptor of FGF23, αklotho has many beneficial effects e.g. anti-inflammatory51,52, 

antioxidant53, or anti-apoptotic functions54. Furthermore, high αklotho levels correlate with the relief of 

symptoms of numerous diseases including acute kidney injury (AKI)55, chronic kidney disease (CKD)56,57, 
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cardiovascular disease (CVD)48,58, Alzheimer’s disease59, or sepsis60. The inhibition of wnt/β-catenin as well 

as insulin-like growth factor (IGF-1) signaling pathway strongly participates in the health-promoting effects 

of αklotho61,62. Activation of wnt signaling results in the accumulation of β-catenin, followed by its 

translocation into the nucleus where it activates target genes including cyclin D1 and myc-c, promoting cell 

proliferation63. IGF-1 is involved in postnatal growth and stimulates anabolic processes via IGF-1R64, 

including cell proliferation and differentiation65, and inhibits apoptosis by activating the 

phosphatidylinositol-3-phosphate (PI3K)/Akt and MAPK ERK1/2 pathways66. Up-regulation of the wnt/β-

catenin or the insulin/IGF-1 pathway play important roles in malignancy67,68 and their suppression is 

associated with anti-carcinogenic effects of αklotho62,69,70.  

1.3 Physiological effects of FGF23 and αklotho 

Phosphate (Pi) is one of the most abundant minerals in the human body and more than 80 % is stored in the 

form of hydroxyapatite in bones or teeth71. In addition, phosphate is a component of nucleic acids and 

biological membranes, contributes to energy supply and storage in the form of adenosine triphosphate 

(ATP), or intracellular signaling by phosphorylation via kinase71,72. For most of these functions, constant 

intra- and extracellular phosphate concentrations are necessary71. Serum phosphate levels are regulated 

mainly by three specific hormones: parathyroid hormone (PTH), 1,25(OH)2D3, and FGF2373. Intestinal 

absorption within the small intestine74, renal excretion75, and release from bone76 are the most important 

regulatory mechanisms of serum phosphate concentration73. In the intestine, most phosphate is absorbed by 

sodium-dependent transporters of IIb type (NaPiIIb)77. About eighty percent of the filtered phosphate is 

reabsorbed from the urine in the proximal and marginally in the distal tubule via sodium-dependent 

transporters NaPiIIa, NaPiIIc, and phosphate transporter PiT276,78–80.  

FGF23 exerts its phosphaturic actions predominantly in renal proximal tubules, supported by FGFR and 

αklotho32,81. As shown in figure 1, ligand binding activates FGFR and induces phosphorylation of ERK1/2, 

and SGK132,81. Downstream phosphorylation of sodium-hydrogen exchange regulatory factor 1 (NHERF1), 

which anchors NaPiIIa in the tubular brush border membrane, leads to internalization and degradation of 

the phosphate transporter molecules81–83. The phosphorylation of NHERF1 and subsequent downregulation 

of NaPiIIa was originally reported as an effect of PTH, pointing to a similar and possibly synergistic role of 

PTH and FGF23 in phosphate regulation82,83. Simultaneously, FGF23 down-regulates the production of 

NaPiIIa and NaPiIIc thereby decreasing renal phosphate reabsorption and reducing serum phosphate 

levels33,81.  
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Figure 1: Effect of FGF23 on phosphate reabsorption in renal tubule cells81–83 

Further details are provided in the text. FGF23 fibroblast growth factor 23; FGFR1 fibroblast growth factor 

receptor 1; ERK extracellular signal-related kinase; SGK serum/glucocorticoid regulated kinase; NHERF 

sodium-hydrogen exchanger regulatory factor; NaPiIIa sodium-phosphate co-transporter 2a.  

Conversely, high dietary phosphate intake stimulates FGF23 production22,84. Beside its effect on phosphate 

reabsorption, FGF23 decreases renal 1,25(OH)2D3 production, thereby diminishing intestinal phosphate 

absorption49,85,86. The consequences, especially of chronic hyperphosphatemia are deranged bone growth, 

vascular as well as soft tissue calcification e.g. in heart and kidney, organ atrophy and an early death3,49. 

Chronic hypophosphatemia leads to rickets or osteomalacia, respectively87. 

In addition to phosphate, FGF23 regulates calcium reabsorption within the distal tubule in a αklotho-

dependent way88. By activating ERK1/2 and SGK1, the abundance of TRPV5 (transient receptor potential 

cation channel subfamily V) calcium channels is increased, resulting in decreased urinary calcium 

excretion88,89. In line with this, FGF23/αklotho signaling increases expression of sodium-chloride co-

transporter (NCC) and renal sodium reabsorption with subsequent plasma expansion, enhanced blood 

pressure, and cardiac hypertrophy90. This indicates a regulatory effect of FGF23 and αklotho not only on 

phosphate but also on calcium and sodium.  

Vitamin D, a precursor of the steroid hormone 1,25(OH)2D3 (calcitriol), is primarily synthesized in humans 

by UVB radiation-mediated conversion of 7-dehydrocholesterol in the skin91,92. Bound to circulating 

vitamin D binding protein (DBP)93 vitamin D is transported to the liver and converted to 

25-hydroxyvitamin D3 (calcidiol) by the 25-hydroxylase CYP2R194. 25(OH)D3 is then hydroxylated to 
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active 1,25(OH)2D3 (calcitriol) by 1α-hydroxylase (CYP27B1) in renal tubule95,96. The major target of 

hormonally active 1,25(OH)2D3 is the gastrointestinal tract, where it stimulates calcium and phosphate 

absorption86,97. 1,25(OH)2D3 is inactivated by 24-hydroxylase (CYP24A1)98. 24-hydroxylase is stimulated99 

and 1α-hydroxylase is inhibited by 1,25(OH)2D3 in a negative feedback loop100 to prevent vitamin D toxicity 

associated with life-threatening hyperphosphatemia and hypercalcemia101,102.  

FGF23 decreases 1,25(OH)2D3 on one hand by upregulating catabolic 24-hydroxylase and on the other hand 

by reducing 1α-hydroxylase85. The underlying intracellular signaling pathway is not completely known but 

is suggested to be mediated through FGFR3 and FGFR4 via ERK1/2 pathway103,104. Reduction of 

1,25(OH)2D3 consequently lowers intestinal phosphate absorption via NaPiIIb86, and intestinal absorption 

as well as renal reabsorption of calcium97,105. 1,25(OH)2D3 stimulates FGF23 production to prevent 

hyperphosphatemia106,107. 

PTH maintains serum calcium and phosphate by osteoclast-mediated release from bone and similar to 

FGF23, by decreasing renal phosphate reabsorption108,109. PTH stimulates bone resorption by binding to 

PTH receptor on osteoblasts and osteocytes up-regulating the expression of receptor activator of nuclear 

factor κB ligand (RANKL)110. RANKL interacts with RANK receptor on osteoclast surface, triggering 

osteoclastogenesis and the release of bone resorption111. Additionally, PTH stimulates 1,25(OH)2D3 

synthesis112, thereby increasing intestinal calcium and phosphate absorption74. PTH stimulates FGF23 

production in osteoblasts preventing calcium and phosphate excess113. In turn, FGF23 inhibits PTH secretion 

in interaction with αklotho, which is also expressed and secreted in the parathyroid glands114. Similar to 

FGF23, PTH reduces the abundance of NaPiIIa and NaPiIIc in renal brush border membrane thereby 

reducing serum phosphate levels82,108.  
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In summary, FGF23 is part of a feedback loop between bone and kidney including 1,25(OH)2D3 and PTH 

for balancing phosphate levels (see Figure 2)115: 1,25(OH)2D3 and PTH increase serum phosphate levels and 

stimulate FGF23 production in bone107 whereas FGF23 suppresses 1,25(OH)2D3 and PTH reducing 

phosphate levels85,114, and 1,25(OH)2D3 decreases PTH expression116.  

 

Figure 2: Phosphate regulation by FGF23, 1,25(OH)2D3, and PTH115.  

Further information is provided in the text. 1,25(OH)2D3 calcitriol or active vitamin D3; FGF23 fibroblast 

growth factor 23; Pi phosphate; PTH parathyroid hormone.  

 

In other organs, FGF23 acts predominantly independently of αklotho and partially on a pathophysiologic 

basis. For instance, FGF23 induces left ventricular hypertrophy via FGFR4117 and is associated with atrophy 

in the skeleton muscle118. Furthermore, FGF23 suppresses neutrophil activation and recruitment thereby 

impairing immune defense in CKD119 and on the other hand, it stimulates the secretion of pro-inflammatory 

cytokine IL-6 in inflammatory airway diseases120. Additionally, there is a certain association of FGF23 and 

cancer121. FGF23 overexpression by tumor cells is reported from TIO4 or oncogenic hypophosphatemic 

osteomalacia122 but has also been observed in other malignancies including lung123, breast124, and colon 

cancer125. 
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1.4 Regulation of FGF23 and αklotho 

FGF23 synthesis in osteoblasts and osteocytes is transcriptionally and post-transcriptionally regulated by 

many different factors. 1,25(OH)2D3 and PTH have already been described as regulators of FGF23 

synthesis107,126. Beside these, also dietary calcium and phosphate intake increase FGF23 levels22,84 possibly 

due to Galnt3 up-regulation, preventing proteolytic cleavage of intact FGF23127. Furthermore, FGF23 

production is stimulated by store-operated calcium ion entry (SOCE) into the cell via the calcium selective 

ion channel ORAI1 in the plasma membrane128. ORAI1 is activated during calcium deficiency in the 

endoplasmic reticulum (ER)129. Furthermore, FGF23 is negatively regulated by energy restriction via 

activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway130, whereas 

increased glucose or caloric intake stimulates FGF23 via mammalian target of rapamycin (mTOR)131. 

AMPK is a cytosolic protein, protecting cells from energy deficiency by inhibiting anabolic functions and 

mTOR132,133. In this process, AMP, a degradation product of ATP, functions as an energy sensor133. AMPK 

has been shown to suppress FGF23 production by decreasing the abundance of ORAI1 in the cell membrane 

and causes inhibition of SOCE130. On the other side, mTOR is a protein kinase involved in the PI3K pathway 

signaling serving as a biomarker for energy availability promoting anabolic processes134. FGF23 is 

positively regulated by a high glucose intake whereas the simultaneous inhibition of mTOR decreases 

FGF23131.  

Compared to FGF23, fewer regulating factors are known for αklotho. In general, αklotho expression and 

soluble klotho levels decrease under disease conditions including systemic inflammation52, renal9,45, and 

cardiovascular diseases48,135. Excess phosphate and wnt/β-catenin signaling are suggested to play a key role 

in disease-associated decline of αklotho136. For example, angiotensin II, a regulator of blood pressure via 

wnt/β-catenin signaling, is associated with cardiomyopathy137 and suppresses renal αklotho synthesis138. 

Furthermore, αklotho is decreased by transforming growth factor β1 (TGF-β1), an inducer of renal 

fibrosis57,139.  
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1.5 Current knowledge of the regulation of FGF23 and αklotho by cellular stress 

There are numerous external stimuli like infections, toxins, extreme environmental conditions, or 

mechanical damage, as well as internal factors like inflammation or oxidative stress that challenge 

intracellular stress balance (see figure 3)140,141. The form, severity, and exposition time of stress stimuli, as 

well as the cell’s adaptive capacity determines cell survival or death142. Subsequently, the mechanism of 

cell death e.g. apoptosis or necrosis, which is not always distinguishable, may influence the environment of 

the moribund cell143–145. 

 

Figure 3: Internal and external inducers of cellular stress140,141. 

Further information is provided in the text.  

Apoptosis degrades damaged or unwanted cells146. The so-called “programmed cell death”, is a highly 

regulated process induced by oxidative stress147, cytotoxic compounds148, or radiation149, and strongly 

depends on caspases mediating subsequent degradation of cellular components150. Apoptosis is 

characterized by the absence of inflammation151 and the activity of caspase proteins150. Caspase-3 inactivates 

transcriptional activity of nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB)152, which 

is strongly involved in the regulation of cytokine production153. Additionally, recruited phagocytic cells 

suppress the secretion of inflammatory cytokines154.  

One important factor of apoptosis induction is tumor suppressor protein p53, which occurs at low levels in 

the cytosol and is rapidly degraded by the proteasome under unstimulated conditions155,156. In response to 

stress stimuli, p53 is strongly increased and phosphorylated157 and regulates the transcription of various 

genes e.g. of pro-apoptotic protein B cell lymphoma 2 (BCL2)-associated X (BAX)158. The induction of 

apoptosis strongly depends on the interaction of BCL-2 protein family members, including pro-apoptotic 
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proteins BCL2-associated death promoter (BAD), BCL2 homologous antagonist/killer (BAK), and BAX, 

and anti-apoptotic BCL-2 and B cell lymphoma-extra large (BCL-XL) proteins159,160. Thereby, the ratio of 

pro- to anti-apoptotic proteins determines the outcome of an apoptotic stimulus161. Upon activation, BAK 

and BAX form homo-oligomers accumulating in outer mitochondrial membrane to form pores162,163. This 

results in a loss of mitochondrial membrane potential and cytochrome c release162,164,165. Cytochrome c binds 

apoptotic protease-activating factor 1 (APAF-1) and caspase-9 subsequently activating caspase-3166. The 

activation of caspases triggers typical signs of apoptosis such as DNA fragmentation167, cell shrinkage168, 

and the formation of membrane vesicles169. Pro-apoptotic proteins BAX and BAK are inhibited when 

complexed with anti-apoptotic proteins BCL-2 or BCL-XL170. Phosphorylation of BCL-2 prevents binding 

of BAX and triggers apoptosis171. BAD dimerizes with anti-apoptotic proteins BCL-XL or BCL-2, thereby 

preventing BAX inhibition and promoting apoptosis170,172. The apoptotic pathway includes but is not limited 

to the pro- and anti-apoptotic proteins described here and depicted in figure 4.  

 

Figure 4: Components of apoptotic pathway following cellular stress162–166,170–172. 

Further details are described in the text. APAF-1 apoptotic protease-activating factor 1; BAD BCL2-

associated death promoter; BAX BCL2-associated X; BCL-2 B cell lymphoma; P phosphorylation. 

In contrast to apoptosis, necrotic cell death is associated with an inflammatory stress response173. Formally, 

necrosis is defined as a form of cell death with no signs of apoptosis or autophagy174, proceeding 
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independently of caspases144. Morphologically, necrosis is characterized by a swelling of the cell175 and 

membrane permeabilization followed by the bursting of the plasma membrane176. Major inducers of necrotic 

cell death are ROS177, TNFα178, or mechanical damage179. A special form of necrosis is necroptosis, referred 

to as programmed necrosis180. Like apoptosis, this is a highly regulated cell death mechanism associated 

with inflammatory processes180. The activation of caspases requires ATP whereas ATP-depleted cells 

undergo necrosis166,181. Thus, progressing cell damage results in necrotic cell death182. As one particular 

stimulus can induce both apoptosis or necrosis in the same cell but under different conditions, the 

differentiation between various forms of cell death is very challenging182,183.  

Inflammation is characterized by the recruitment of immune cells to the injured tissue and the release of 

large amounts of pro-inflammatory cytokines, e.g. tumor necrosis factor α (TNFα), interleukin 6 (IL-6), or 

IL-8 from immune and inflamed cells184–186. Many inflammatory cytokines are transcriptionally regulated 

by transcription factor NFκB187,188 contributing to the regulation of inflammation and immunity in virtually 

all cell types189. Inflammation affects mineral and bone metabolism and especially chronic inflammation 

results in bone resorption and osteoporosis190–192. Acute inflammation, initiated by bacterial infection or 

cytokine stimulation strongly induces C-terminal but not intact FGF23 production via NFκB193. This may 

be due to increased hypoxia inducible factor 1α (HIF1α) expression in acute inflammation194,195 which 

increases furin production196 reinforcing FGF23 cleavage25. Furthermore, acute inflammation promotes iron 

deficiency and hypoxic conditions, which are both reported to increase FGF23 levels, in case of hypoxia via 

HIF1α195. In chronic inflammation, both intact and C-terminal FGF23 levels are increased195 decreasing 

bone density192. In addition to inflammatory cytokines, NFκB also stimulates FGF23 secretion by up-

regulating Orai1 and SOCE128,197. NFκB is activated by stress stimuli via p38 MAPK198,199, and cytokines 

including TGF-β200, TNFα201, or IL-1β202 and have been shown to positively regulate p38, which stimulates 

FGF23 production in bone cells203.  

Renal diseases such as AKI and CKD are strongly linked to inflammation induced e.g. by nephrotoxic drugs 

or cellular injury, and patients show excess FGF23 levels187,204,205. Progression of renal injury results in 

chronic inflammation, fibrosis, and goes along with a loss of renal function206,207. AKI and CKD are 

associated with a decrease in αklotho production44,208, which contributes to an unfavorable outcome209,210. 

αKlotho is decreased by inflammatory cytokines e.g. TNFα211 and its serum concentration is low in patients 

suffering from inflammatory diseases such as chronic obstructive pulmonary disease212 or CVD213 and may 

serve as a biomarker for systemic inflammation214. 

Cellular stress is often promoted by reactive oxygen species (ROS), generating oxidative stress215. ROS, 

O2
•-, HO•, and H2O2, are generated by the reduction of oxygen in the organism215. A tight balance between 

ROS formation and antioxidant scavenger molecules such as glutathione and vitamin C, or antioxidant 

enzymes determines the oxidative stress response216. Oxidative stress stimulates FGF23 synthesis by 
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activating MAPK ERK1/2 and NFκB signaling217. Comparable to inflammation, αklotho decreases under 

the influence of oxidative stress218. 

 Objective of the present work 

Cellular stress in the form of inflammation, oxidative stress and eventually apoptosis or necrosis play 

important roles in various diseases, e.g. in inflammatory bowel disease, diabetes, or Alzheimer’s disease219–

221, or as a consequence of cancer therapy222,223. FGF23 and αklotho levels have been reported to determine 

the outcome of severe diseases224-226. Thus, it is of particular significance to investigate the correlation 

between FGF23, αklotho, and severe disorders and elucidate the therapeutic or diagnostic relevance of 

FGF23/αklotho signaling. 

To investigate the regulation of FGF23 and αklotho by cellular stress, we chose different stress stimuli and 

compound classes that exert different cytotoxic mechanisms. Cisplatin is a cytotoxic drug used to treat many 

solid tumors e.g. in reproductive organs, breast, lung, and esophagus227–229. Its full spectrum of action has 

not been resolved yet, but it is known that cisplatin forms DNA inter- and intrastrand crosslinks as well as 

DNA-protein adducts230,231. By contrast, doxorubicin is an anthracycline drug used in a wide range of solid 

and hematological cancer types with antineoplastic actions and especially cardiotoxic side effects232,233. It 

intercalates into genomic and mitochondrial DNA, thereby disturbing topoisomerase II-mediated DNA-

processing resulting in double-strand breaks and apoptosis233–235. Paclitaxel is a natural compound occurring 

in the bark of yew trees236 and is used for the treatment of several malignancies including breast237, 

ovarian238, or lung cancer239. Paclitaxel affects the dissociation of microtubules during mitosis, resulting in 

mitotic arrest of cancer cells240,241. Furthermore, we applied direct apoptotic inducers procaspase-activating 

compound 1 (PAC-1) and serum starvation to investigate the effect on FGF23 or αklotho. PAC-1 is a 

caspase-3 activator that complexes zinc ions inhibiting the enzymatic activity of procaspase-3 and active 

caspase-3, to induce apoptosis242. As procaspase-3 is up-regulated in many types of cancer243–246, PAC-1 

alone or in combination with chemotherapeutic drugs is a promising approach to induce apoptosis in cancer 

cells247–249. Serum starvation is known to induce apoptosis in a wide range of cells probably by the 

withdrawal of growth factors250–253.  

In paper 1, we determined the transcriptional regulation of FGF23 in UMR106 osteoblast-like osteosarcoma 

cells after 24- and 48-h-incubation with cisplatin, doxorubicin, PAC-1, or serum-depleted media. 

Simultaneously, we measured the impact of the aforementioned stress stimuli on cell number and viability. 

To investigate whether inflammatory stress is induced by chemotherapeutic agents, we assessed the 

expression level of IL6 and its contribution to the regulation of FGF23 by using IL-6 signaling inhibitor 

SC144. As explained in chapter 1.5, cellular stress and inflammation are frequently associated with the 
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activation of NFκB, a known regulator of FGF23. Thus, we determined if NFκB is activated by cellular 

stress and whether it is involved in the regulation of FGF23 by using NFκB inhibitors wogonin and 

withaferin A. In conclusion, this paper investigated the regulation of FGF23 by cellular stress and the 

involvement of inflammatory signaling. 

In paper 2, we assessed the transcriptional regulation of αklotho after incubation of canine distal tubular cell 

line MDCK and rat proximal tubular cell line NRK-52E with cisplatin, paclitaxel, doxorubicin, PAC-1, or 

serum deprivation. In parallel, we assessed cell number and viability, as well as the induction of apoptosis 

or necrosis using a combined apoptosis/necrosis assay. Apoptosis was additionally assayed by investigating 

transcriptional regulation of apoptotic proteins BAD, BAX, and BCL-2. With regard to the intracellular 

signaling involved in αklotho regulation, we considered peroxisome proliferator γ (PPARγ), a known 

regulator of αklotho, to be involved in the αklotho regulation in MDCK cells. Furthermore, FGFR1 mRNA 

and protein levels were investigated to see whether αklotho regulation is accompanied by FGFR1 

stimulation. For the ELISA detection of αklotho protein we used human proximal tubular cell line HK-2. 

At last, we compared αklotho levels in human serum of cancer patients before and after chemotherapy 

administration. In conclusion, paper 2 assessed the influence of cellular stress on renal αklotho expression 

particularly with regard to apoptosis. 

In summary, the aims of the present thesis are (i) elucidating a regulatory mechanism of cellular stress on 

FGF23 or αklotho, (ii) investigating, whether FGF23 or αklotho are influenced by certain forms of cellular 

stress or by particular signaling components of the cellular stress response, and (iii) investigating the 

regulation of FGF23 and αklotho as a consequence of a certain cell death mechanisms. 
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3.1 Paper 1: Up-Regulation of Fibroblast Growth Factor 23 Gene Expression in UMR106 

Osteoblast-like Cells with Reduced Viability  

Published December 2021 in Cells, MDPI (Basel, Switzerland)254 
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3.2 Paper 2: Impact of cytotoxic agents or apoptosis stimulants on αklotho in MDCK, NRK-52E 

and HK2 kidney cells  

Published in July 2022 in Aging (Albany, NY, USA)255 
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 Discussion  

Chemotherapy is the most common method to treat malignant cancer diseases256. To compare the action of 

different cytostatic substances on FGF23/αklotho signaling, we selected three different classes of 

compounds: DNA-intercalating platinum derivative cisplatin, doxorubicin, an inhibitor of topoisomerase II, 

and paclitaxel as an inducer of cell cycle arrest230,233,240. The common mode of action of these cytostatic 

drugs is the induction of apoptosis in cancer cells235,240,257. To investigate the direct impact of apoptosis on 

FGF23 or αklotho, we additionally selected caspase 3-activator PAC-1249 and removed serum from the cell 

culture media for a defined period of time to induce apoptosis251. In paper 1, we investigated the influence 

on FGF23 expression in UMR106 osteoblast-like cells whereas Paper 2 describes the regulation of αklotho 

by the aforementioned apoptotic stimulators. The experimental design and results are reported within the 

papers.  

4.1 Paper 1: Cytostatic drugs and apoptosis inducers as regulators of FGF23  

In paper 1, we first investigated the transcriptional regulation of FGF23 following incubation with cisplatin, 

doxorubicin, PAC-1, and serum depletion in UMR106 osteoblast-like osteosarcoma cell line, which is well 

established for studying FGF23203,258,259. Cisplatin induced a dose-dependent up-regulation of FGF23 

mRNA within 24 and 48 h. Simultaneously, cell proliferation and viability decreased. Similarly, 

doxorubicin increased FGF23 gene expression in a dose-dependent manner, while cell number and viability 

significantly decreased after 24 h. After 48 h, all cells were dead which was probably due to the strong 

cytotoxic effect of doxorubicin as confirmed by others260,261. The induction of apoptosis confirmed by 

diminished cell viability of osteosarcoma cell lines has already been reported as a frequent effect of cisplatin 

and doxorubicin262–265. Specifically, cisplatin has been reported to initiate apoptosis through ERK1/2 

activation, followed by half-life extension and phosphorylation of p53266–268. Doxorubicin has similarly been 

reported to activate ERK1/2 signaling261. FGF23 is a target gene of ERK1/2 signaling258, which might 

explain, at least in part, its up-regulation by cisplatin and doxorubicin. Conversely, FGF23/αklotho signaling 

activates PI3K and SGK1 signaling, stimulating cell proliferation and preventing cell apoptosis81,269,270. In 

mice suffering from AKI, FGF23 ameliorates renal function and prevented cell senescence in an αklotho-

independent manner271. Thus, the up-regulation of FGF23 may be a measure to protect cells from apoptosis. 

Next, we used apoptotic compound PAC-1 to mimic direct apoptosis induction and study the consequence 

on FGF23 expression. In summary, PAC-1 stimulated FGF23 gene expression by simultaneously 

decreasing number and viability of UMR106 cells after 24 h. FGF23 up-regulation could not be observed 

after 48 h, but viability further declined. Reduced viability caused by PAC-1 treatment has been observed 

in other, predominantly cancer cell lines272, with caspase-3-dependent apoptosis being the predominant form 

of cell death242,249. Peterson et al. reported, that PAC-1 activates caspase-3 within less than one hour242, and 
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the finding that PAC-1 did not affect FGF23 expression after 48 h implies that FGF23 is up-regulated during 

initial apoptosis but not in late-phase apoptosis or secondary necrosis. Likewise, serum reduction (1 % FBS) 

and complete withdrawal markedly increased FGF23 mRNA and protein levels after 24 h while reducing 

cell viability and proliferation. After 48 h, cell viability and proliferation were strongly diminished. 1 % 

FBS still increased FGF23 expression, whereas complete withdrawal had no effect. This might again be 

explained by FGF23 up-regulation in initial but not in end-stage apoptosis, as serum depletion causes 

caspase-3 activation after 4-8 h250. Furthermore, increasing concentrations or incubation times of a stress 

stimulus accelerate the transition from apoptotic to necrotic cell death182. Thus, 1 % FBS may not yet lead 

to necrotic cell death after 48 h. The experiments with reduced FBS or under serum-free conditions were 

carried out in the presence of 10 nM 1,25(OH)2D3 in the respective culture media to stimulate FGF23 

expression and secretion107,273, otherwise FGF23 protein concentration is not detectable in ELISA. However, 

1,25(OH)2D3 does not prevent apoptosis induction by serum depletion in UMR106 cells274. Domazetovic et 

al. confirmed our assumption, that 24 h serum starvation induces apoptosis in bone cells through the 

activation of caspase-3275. The stimulation of FGF23 expression upon serum starvation has also been 

observed by others, partially mediated via MAPK c-Jun N-terminal kinase (JNK) and ERK1/2 signaling, as 

well as NFκB217. Some tumor cells develop chemotherapy and stress resistance upon serum 

deprivation276-278. In line with this, increased FGF23 and FGFR1 amounts are associated with cancer 

progression and therapy resistance279–281, leading to the assumption, that the FGF23 up-regulation in 

UMR106 cells protects cells from cellular stress by cytostatic drugs or growth factor withdrawal. 

Increased FGF23 synthesis under inflammatory conditions such as CKD119, pediatric inflammatory bowel 

disease192, or systemic inflammation195 is a frequent observation. IL-6 plays an important role in acute 

inflammation by recruiting and stimulating lymphocytes282. Consequently, we investigated IL6 mRNA 

levels following cisplatin and doxorubicin treatment in UMR106 cells. Following a 24 h-incubation, IL6 

gene expression significantly increased and co-treatment of cisplatin with IL-6 signaling inhibitor SC144 

attenuated the cisplatin-induced stimulation of FGF23. This indicates the presence of inflammatory 

processes in cisplatin and doxorubicin-induced cell death. The induction of IL-6 synthesis by cisplatin or 

doxorubicin has already been observed in other studies261,283,284 and refers to necrotic cell death173. This may 

be due to secondary necrosis, which is a common issue in cell culture where phagocytic cells are absent173,285, 

or necroptosis, referred to as programmed necrosis which has recently been observed as a consequence of 

cisplatin and doxorubicin treatment286,287. Pro-inflammatory cytokine IL6 has been reported to stimulate 

FGF23 in UMR106 cells and in vivo288. In conclusion, the up-regulation of FGF23 after cisplatin or 

doxorubicin incubation is partially dependent on IL-6 signaling underlining the presence of necrotic cell 

death.  
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By targeting mitochondria, cisplatin has been reported to impair glycolysis resulting in intracellular ATP 

restriction289,290. Apoptosis is an ATP-dependent mode of cell death whereas necrosis occurs at low 

intracellular ATP content181. Consequently, intracellular ATP content correlates directly with the rate of 

apoptosis and inversely with necrosis181,182 and this may explain the presence of necrotic cell death upon 

cisplatin incubation. Since doxorubicin has been observed to activate AMPK, a sensor of energy shortage 

and increased intracellular AMP levels133,291, it may similarly induce necrotic senescence through ATP 

restriction181.  

As both, IL6 and FGF23 are target genes of NFκB128,292, we investigated whether cisplatin and doxorubicin 

stimulate FGF23 mRNA via NFκB. As shown in paper 1, cisplatin and doxorubicin incubation increased 

mRNA levels of NFκB subunit RELA and NFκB phosphorylation in UMR106 cells. NFκB inhibitors 

wogonin293 and withaferin A294 markedly reduced cisplatin-mediated FGF23 induction. Although apoptotic 

cell death is usually not associated with NFκB activity and inflammation151,152,173, cisplatin and doxorubicin 

have already been reported to activate NFκB in malignant and normal cells295–298. This further underlines 

the influence of inflammation on the increase in FGF23 expression. In UMR106 cells, NFκB stimulates 

FGF23 synthesis128,197. Additionally, excess NFκB activity is involved in AKI and CKD299,300 which are 

both characterized by excess FGF23 levels225,301. Furthermore, due to its nephrotoxic impact, therapeutic 

cisplatin administration causes AKI302. This shows a clear association between NFκB activity, renal 

diseases, and enhanced FGF23 expression. In conclusion of our experiments, cisplatin and doxorubicin 

increase FGF23, at least in part, via NFκB.  

Other inflammatory cytokines which are involved in cisplatin or doxorubicin-induced inflammation include 

TNFα, IL-1β, or TGF-β184,303–307. Consequently, inflammatory cytokine production may be induced in 

UMR106 cells exposed to cisplatin or doxorubicin as described in paper 1. All of these cytokines have been 

reported to increase FGF23 production308–310 and thus, might participate in the up-regulation of FGF23 in 

our experiments. Cisplatin or doxorubicin-mediated TGF-β signaling is involved in the activation of p53 

and apoptosis263,311. TGF-β stimulates FGF23 secretion in osteoblast-like cells via SOCE308. TGF-β is 

strongly involved in renal fibrosis312,313 and FGF23 excess has equally been linked to the development of 

fibrosis314,315. 

Another target gene of NFκB, TNFα, is an important pro-inflammatory cytokine secreted by activated 

macrophages199,316 and normal tissue cells under inflammatory conditions317,318. The cytotoxic effects of 

cisplatin and doxorubicin have been reported to partially depend on TNFα184,261,305. In line with NFκB and 

IL-6, TNFα increases FGF23 production309 and is strongly involved in AKI319 and CKD320, which are both 

characterized by excess FGF23 levels225,321. In conclusion, FGF23 might be generally increased via 

inflammatory cytokines following chemotherapeutic drug administration. However, this does not explain 
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its up-regulation by PAC-1 and serum depletion. Thus, additional mechanisms must be involved in cellular 

stress response.  

Apoptosis is frequently associated with oxidative stress322. Cisplatin not only causes nuclear DNA damage, 

but also accumulates in mitochondria inducing the generation of ROS290,323, even in osteosarcoma cells324. 

The binding of ROS scavenger glutathione (GSH) protects cells from cisplatin-induced cytotoxicity325. 

Thus, oxidative stress is probably induced in UMR106 cells treated with cisplatin, and this may account for 

the up-regulation of FGF23 mRNA. This may be supported by the inhibitory effect of wogonin on cisplatin-

induced stimulation of FGF23, as wogonin also inhibits nuclear factor erythroid 2-related factor 2 (NRF2), 

a regulator of antioxidant proteins293,326. The cytotoxic effect of doxorubicin similarly depends on the 

stimulation of oxidative stress in cancer and healthy cardiac and kidney cells235,327,328. PAC-1-induced 

apoptosis correlates with an increase in mitochondrial oxidative stress in cancer cells329,330. Furthermore, 

ROS production can be stimulated via inflammatory signaling, e.g. by TNFα331 or TGF-β332. Domazetovic 

et al. conducted experiments similar to those described in paper 1 but linked the up-regulation of FGF23 by 

serum depletion to the influence of oxidative stress217. Likewise, excessive phosphate concentration in 

UMR106 culture media has been reported to stimulate FGF23 expression by increasing intracellular amount 

of ROS258. Therefore, generation of ROS might be responsible for the increase in FGF23 by all cytotoxic 

stimuli. In turn, FGF23 increases NRF2 in osteoblasts in a αklotho-independent way, thereby stimulating 

the production of antioxidant scavengers or enzymes and reducing oxidative stress333. In conclusion, the up-

regulation of FGF23 as a consequence of oxidative stress may promote cell protection by increasing 

antioxidant proteins. 

Inflammation and oxidative stress are frequently associated with HIF1α stabilization334. This transcription 

factor usually responds to hypoxic conditions to regulate target genes involved in angiogenesis335, 

erythropoiesis336 as well as tissue regeneration after injury337,338, cellular stress resistance and survival339,340. 

HIF1α stabilization is a frequent event following cisplatin or doxorubicin administration and correlates with 

chemotherapy resistance339,341. Beside the activation of caspase-3, stabilization and accumulation of active 

HIF1α is an observed effect of PAC-1 in cancer cells342. In line with this, also serum deprivation has been 

shown to induce HIF1α production in cancer cells promoting resistance against starvation stress343. 

Wogonin, used against NFκB activation in UMR106 cells, has additionally been reported to down-regulate 

HIF1α344. This implies, that HIF1α may be stabilized in UMR106 cells exposed to cytotoxic stimuli used in 

paper 1. Subsequently, HIF1α is a strong activator of FGF23 production and co-overexpressed in tumors 

resected from TIO patients345. HIF1α protects cells from oxidative stress and apoptosis334,346 possibly via 

up-regulation of FGF23 promoting cell survival333. Thus, all cytotoxic treatments may regulate FGF23 via 

HIF1α to increase cell resistance. Interestingly, FGF23-cleaving protease furin is up-regulated under 

hypoxic conditions via HIF1α activity196 suggesting that only C-terminal FGF23 increases after HIF1α 
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stabilization25. In line with this, osteocytes exposed to pro-inflammatory cytokines TNFα, TNF-like weak 

inducer of apoptosis (TWEAK), IL-1β, or bacterial lipopolysaccharides produce excess amounts of C-

terminal, but not intact FGF23193. Acute renal inflammation in mice is associated with decreased serum iron 

as well as greatly increased C-terminal but weakly increased intact FGF23 production195. In this context, C-

terminal FGF23 has been reported to alleviate iron shortage and acute inflammation347 and inhibit FGF23-

FGFR1 receptor interaction to block phosphaturic actions of FGF2321. This may be supported by the 

observation, that phosphate levels are increased in AKI and correlate with increased C-terminal FGF23 and 

mortality hazard225,348. These reports indicate an important bidirectional influence of FGF23 in acute 

inflammation, independent of its phosphate-regulating function.  

In acute bone injury, TNFα activates p38 MAPK and NFκB in bone cells199 which subsequently stimulates 

FGF23 synthesis201,203. Excessive FGF23 levels are associated with suppressed osteoblast differentiation 

and bone synthesis349. Especially chronic inflammation goes along with bone loss191,350. Cisplatin has been 

reported to inhibit bone formation351 and also doxorubicin inhibits osteoblasts while promoting 

osteoclastogenesis352 causing bone loss in mice353. In line with this, serum deprivation stimulates 

osteoclastogenesis resulting in increased bone resorption, an effect which is reinforced by FGF23 

excess217,354,355. Thus, the observed up-regulation of FGF23 by cisplatin or doxorubicin treatment possibly 

explains, at least in part, bone loss during chemotherapy353,356,357. In summary, cellular stress through 

cytotoxic substances or apoptosis induction stimulates inflammation, oxidative stress, and HIF1α 

stabilization, and all these stress responses may increase FGF23 to promote cell protection.  
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4.2 Paper 2: Chemotherapeutic drugs and apoptosis stimulants regulate αklotho 

Beside their cytostatic effects on cancer cells, chemotherapeutic drugs often exert organotoxic, and 

especially nephrotoxic properties which is one of the main factors responsible for dose limitations233,358,359. 

The first step in renal toxicity is the absorption and accumulation of cytotoxic compounds in tubular 

epithelial cells via different transport mechanisms360. Cisplatin is predominantly excreted in the urine361, 

entering the renal tubular epithelium basolateral via organic transporter 2 (OCT2)362, copper 

transporter 1(CTR1)363, or organic anion transporters OAT1 and OAT3364. Doxorubicin is absorbed by renal 

tubular cells via organic anion transporter polypeptide 1 (OATP1)365. In the cellular uptake of paclitaxel 

OAT2366 and OATP1367,368 are involved. Nephrotoxicity is characterized by tubular inflammation, necrosis, 

and apoptosis, accompanied by declined glomerular filtration resulting in the accumulation of waste 

products e.g. urea and creatinine and the loss of electrolytes222,369. The impairment of kidney cells may 

subsequently affect αklotho, which is predominantly produced in proximal and distal tubule cells370. Thus, 

paper 2 investigates the regulatory impact of cytotoxic and apoptotic compounds on αklotho in three 

different renal cell lines. 

In the first set of experiments, αklotho regulation was investigated in canine distal tubule cell line MDCK 

and rat proximal tubule cell line NRK-52E following a 24 h-incubation with cisplatin, paclitaxel, 

doxorubicin, PAC-1, or under serum depletion. Both cell lines are well established for in vitro studies 

concerning αklotho208,371–373. Cisplatin up-regulated αklotho transcripts in MDCK and NRK-52E cells. In 

both cell lines, cisplatin decreased the cell number, whereas cell viability was only attenuated in NRK-52E 

cells. A combined apoptosis and necrosis assay revealed that cisplatin predominantly induced apoptosis, 

which was confirmed by up-regulation of pro-apoptotic BAD, BAX, and BAX/BCL-2 ratio. In line with this, 

also paclitaxel up-regulated αklotho gene expression in MDCK and NRK-52E cells, simultaneously 

diminishing cell viability and proliferation. In contrast to cisplatin, paclitaxel induced apoptosis and to a 

lesser extent, necrosis in both cell lines, simultaneously increasing expression of pro-apoptotic BAX gene. 

As a third cytotoxic drug, anthracycline doxorubicin up-regulated αklotho mRNA in MDCK and NRK-52E 

cells while reducing cell viability and proliferation to varying degrees. In MDCK cell line, the dominating 

mode of cell death after doxorubicin application was apoptosis, however in NRK-52E cells, necrosis 

occurred too. Doxorubicin markedly increased BAD, BAX, and BAX/BCL-2 ratio, indicating apoptosis 

induction374. Beside their action on cancer cells257,375,376, cisplatin, paclitaxel, and doxorubicin induce 

apoptosis and decrease cell proliferation and viability in different non-tumorigenic cells261,359,377. The 

induction of apoptotic cell death is frequently confirmed by detecting the up-regulation of pro-apoptotic 

BAD or BAX as well as down-regulation of anti-apoptotic BCL-2375,378,379.  

Caspase-3 activator PAC-1 up-regulated αklotho mRNA levels while decreasing cell proliferation and 

viability in MDCK and NRK-52E cells. In MDCK cells, the mode of cell death was predominantly 



52 

 

apoptosis, while in NRK-52E cells also necrosis was detectable. Along with αklotho, PAC-1 increased BAX 

and BAX/BCL-2 ratio in MDCK cells, confirming apoptotic cell death378. PAC-1 directly activates 

caspase-3242 which is associated with decreased cell viability due to apoptotic cell death249,272. The presence 

of necrotic cell death implies secondary necrosis due to the lack of phagocytic cells in the cell culture285. 

Although BAX activation precedes and triggers caspase-3 activation in apoptosis380, we observed that 

PAC-1 increased BAX and BAX/BCL-2 mRNA in our experiments. This might be due to a PAC-1-mediated, 

caspase-3-independent activation of p53, BAK, and BAX observed by others, which has not been 

completely elucidated yet329,381. In summary, cisplatin, paclitaxel, doxorubicin, and PAC-1 may all induce 

apoptosis via p53, which is a regulator of BAX and BCL-2 genes158. Serum depletion increased gene 

expression of αklotho along with apoptotic cell death in MDCK cells. Cell viability and proliferation 

markedly decreased after 24 h. The induction of apoptosis in different cells exposed to serum depletion has 

also been reported by other researchers250,275 confirming our results. In NRK-52E cells, the rise in αklotho 

expression after serum depletion was not significantly changed, although cell proliferation and viability 

decreased due to exclusively apoptotic cell death. The reason may be a slower intracellular drug 

accumulation caused by a slower metabolism of NRK-52E compared to MDCK cells. This is confirmed by 

the approximate doubling times of 45 h in NRK-52E382 and 18 h in MDCK cells383. Thus, NRK-52E cells 

possibly need longer starvation periods to up-regulate αklotho. Apoptotic proteins of the BCL-2 family are 

partially regulated on the basis of transcription but in case of BAD and BCL-2 also through 

phosphorylation158,384,385. As we did not observe transcriptional regulation of BAX, BAD, or BCL-2 after 

serum deprivation, apoptosis may be induced via phosphorylation of BCL-2 protein, but this remains to be 

determined. 

Cisplatin, paclitaxel, doxorubicin, PAC-1, or serum deprivation all reduced cell proliferation and viability 

and induced apoptosis in MDCK and NRK-52E cells. Due to its nephrotoxic properties, cisplatin has already 

been linked to AKI187,222,386. Doxorubicin has equally been reported to induce AKI by increasing wnt 

signaling, and increasing TGF-β as well as angiotensin II abundance in kidney cells387. In case of paclitaxel, 

nephrotoxic effects have been reported359 but little is known about the molecular mechanisms. Renal tubular 

cell apoptosis is a characteristic feature in AKI388. Consequently, it is suggested, that cisplatin, paclitaxel, 

and doxorubicin but also PAC-1 and serum deprivation induced AKI-like conditions in MDCK and NRK-

52E cells. Furthermore, AKI is tightly associated with inflammatory processes389. In line with this, cisplatin, 

paclitaxel, or doxorubicin stimulate the secretion of pro-inflammatory cytokines e.g. TNFα, IL-6, or 

IL-1β261,305,390. As mentioned before, this may be due to necroptotic cell death286,287,391. Cytokines including 

interferon γ, TNFα, or TWEAK have been reported to down-regulate αklotho211,392. In line with this, low 

αklotho levels have been observed in inflammatory disorders like AKI393, CVD213, systemic 
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inflammation394, and colitis392. Therefore, the up-regulation of αklotho in MDCK and NRK-52E cells 

exposed to cytotoxic noxae is in contrast to many other investigations.  

However, increased αklotho production has also been described in a mouse auditory cell line exposed to 

cisplatin395. Ototoxicity is a common side effect of cisplatin396,397. The authors suggested a protective role 

of the αklotho up-regulation and underlined its significance as a biomarker predicting cellular injury395. 

Likewise, skeletal muscle injury strongly increased the amount of αklotho in tissue and serum of young 

mice (4-6 months)398. Simultaneously, αklotho levels of old mice (22-24 months) remained unchanged after 

injury398. This indicates an age-dependent effect of αklotho regulation but although αklotho declines with 

progressing age, differential regulation has barely been adressed41. Furthermore, one group reported higher 

αklotho levels in individuals who had already suffered from a myocardial infarction compared to individuals 

without former infarction history399. This may point to an important role of αklotho as a biomarker of 

myocardial damage but also to its therapeutic effect, since αklotho shows cardioprotective effects58,400,401. 

All these reports have in common, that αklotho is up-regulated following local injury probably as a novel 

aspect to protect or restore normal cell function. The fact that αklotho is almost undetectable in normal 

muscle cells but strongly enhanced upon injury398, supports the thesis that it has no regular function in most 

healthy tissues but participates in pathophysiology.  

Beneficial effects of αklotho have not only been observed in the heart but also in AKI387 as well as fibrosis, 

where it inhibits TGF-β signaling by blocking TGF-β receptor and thereby ameliorates renal function402. 

αKlotho suppresses TNFα-mediated activation of renal NFκB and subsequent production of pro-

inflammatory cytokines51. Consequently, up-regulation of αklotho expression may serve to protect the cells 

from injury progression and to restore physiological function. 

Transcription factor PPARγ regulates insulin sensitivity403 and adipogenesis404 and is a positive regulator of 

αklotho371. Thus, we investigated whether cytotoxic compounds affect PPARγ expression in MDCK and 

NRK-52E cells. And in fact, PPARγ mRNA was stimulated upon cisplatin, paclitaxel, or PAC-1 treatment 

in both cell lines, whereas doxorubicin stimulated PPARγ only in MDCK and serum depletion increased 

PPARγ expression only in NRK-52E cells. SR202, a selective PPARγ antagonist, reduced cisplatin-

mediated αklotho stimulation in MDCK cells indicating that αklotho up-regulation by cisplatin is partially 

due to PPARγ stimulation. Cisplatin, paclitaxel, or serum deprivation treatment has already been reported 

to up-regulate PPARγ expression405. PPARγ signaling is transduced via PPAR-responsive element within 

the αklotho gene371. In contrast to our results, doxorubicin has been reported to decrease PPARγ in 

adipocytes406, which may indicate a differential regulation of PPARγ in different tissues. This could also be 

the reason for differential PPARγ regulation in MDCK and NRK-52 E cells exposed to doxorubicin or 

serum depletion: MDCK originates from the distal tubule407 whereas NRK-52E cells are isolated from the 

proximal tubule382. PPARγ activation promotes insulin sensitivity403 whereas αklotho suppresses 
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insulin/IGF-1 signaling promoting insulin resistance of adipocytes408. This may indicate a highly regulated 

feedback mechanism in glucose metabolism, which needs to be further investigated.  

Due to the fact, that αklotho serves as a co-receptor of FGFR132, we further investigated whether up-

regulation of αklotho is associated with an increase in FGFR1 expression. As depicted in Paper 2, cisplatin, 

doxorubicin, PAC-1, or serum depletion significantly increased FGFR1 mRNA in MDCK cells. The same 

applied for FGFR1 protein in cell lysates after cisplatin-incubation. The overexpression of FGFR1 in several 

tumor cells correlates with resistance to chemotherapy281,409,410. Thus, FGFR1 up-regulation in MDCK cells 

may indicate resistance against cytotoxic treatments. Furthermore, we observed detectable levels of FGF23 

mRNA in MDCK cells after cisplatin treatment whereas FGF23 was undetectable in vehicle treated cells. 

Amplification of FGF/FGFR signaling stimulates PI3K/Akt pathway and subsequently promotes cell 

proliferation and suppresses apoptosis411,412. In line with this, FGF23/αklotho signaling prevents 

1,25(OH)2D3-mediated apoptosis in the kidney via PI3K/Akt pathway269. Thus, simultaneous up-regulation 

of αklotho and FGF23 in MDCK cells presumably protects the cell against cytotoxicity. 

In order to assess αklotho protein levels, we used human proximal tubular cell line HK-2, which is another 

well-established model for investigating αklotho413,414. In contrast to MDCK and NRK-52E cells, αklotho 

mRNA and soluble klotho protein in the cell culture supernatant decreased after 24 h-incubation with 

cisplatin and doxorubicin. Paclitaxel-treatment only diminished mRNA, but not protein levels. PAC-1 did 

not affect αklotho expression and protein secretion in HK-2 cells, whereas serum depletion significantly 

decreased αklotho mRNA and protein amount. Similar to MDCK and NRK-52E cells, cisplatin has been 

reported to induce apoptosis in HK-2 cells, confirmed by caspase and p53 activation, and BAX and BAD up-

regulation415. Likewise, doxorubicin induces apoptosis in HK-2 cells via p53 activation261. It is therefore 

likely to assume that apoptotic cell death was induced in HK-2 cells. 

To evaluate the differential regulation of αklotho in MDCK, NRK-52E, and HK-2 cells, it is necessary to 

consider the different characteristics of these cells concerning immortalization, species, and sensitivity. 

Immortalization of HK-2 cells has been achieved by transfection with human papillomavirus 16 (HPV16) 

E6/E7 genes which were discovered to immortalize epithelial cells without significantly changing their 

phenotype or specific cell functions416,417. E6 gene product binds p53 and promote its proteasomal 

degradation, resulting in unlimited cell proliferation418. In contrast to this, MDCK and NRK-52E are 

spontaneously immortalized382,407,419. Garcia-Perez et al. observed higher sensitivity of HK-2 cells against 

oxidative stress compared to LLC-PK1 cells, which is a spontaneously immortalized porcine kidney cell 

line420,421. Specifically, ROS production in HK-2 cells far exceeded ROS levels in LLC-PK1 cells while 

antioxidant glutathione levels in HK-2 cells were depleted and antioxidant enzymes were up-regulated after 

ochratoxin A-treatment, which is a strong indication for oxidative stress421. Ochratoxin A is a mycotoxin 

with nephrotoxic properties that induces apoptosis in kidney cells422,423. Another study observed decreased 
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sensitivity of immortalized renal cell lines including NRK-52E compared to primary kidney cells exposed 

to ochratoxin A424. In a direct comparison of HK-2 with renal cancer cell lines, cisplatin induced apoptosis 

in HK-2 cells to a larger extent than in renal cancer cells425, hinting at increased resistance of cancer cell 

lines to cisplatin. However, since immortalized cell lines share aspects of normal and cancer cells426, 

particularly with regard to initiation and execution of apoptosis, results cannot always be transferred to 

native cells. In conclusion, these reports hint at increased sensitivity of HK-2 cells against nephrotoxicity 

compared to MDCK and NRK-52E cells. Therefore, HK-2 cells presumably better reflect the conditions in 

an organism. However, cell culture is only a model and does not completely reflect the physiology within 

the kidney of a living organism427.  

Furthermore, the species of origin of the cells e.g. rat, dog, and human might differ with regard to drug 

intake and efflux transporters as well as susceptibility, influencing the execution and outcome of apoptotic 

signals. For instance, HK-2 cells do not express transporters involved in drug intake including OCT2, OAT1, 

OAT2, OAT3 but express OATP and CTR1 transporter428,429, NRK-52E express at least OCT2 and 

CTR1427,429, whereas for MDCK cells, no data could be found. In mice, an age-dependent regulation of 

αklotho during muscle injury has been reported398. Likewise, Handl et al. observed passage-dependent 

susceptibility of HK-2 cells towards cisplatin430. Furthermore, also the sex of the donor organism might 

impact αklotho regulation, although αklotho levels in primates and mice showed contradictory sex-

dependent correlation431,432. HK-2 cells are derived from a male subject433, MDCK cells originate from a 

female dog407 whereas the sex of the NRK-52E donor animal is not known382. Therefore, female organisms 

may tend to a positive regulation of αklotho whereas males rather down-regulate αklotho. This hints to an 

association between αklotho and sex hormones in vivo. And in fact, female αklotho knockout mice have 

significantly decreased estrogen levels and hyperphosphatemia, whereas estradiol supplementation 

decreased renal abundance of NaPiIIa and NaPiIIc as well as serum phosphate434. Furthermore, estradiol 

reduced oxidative stress induced by αklotho deficiency434. In a cell culture, estrogen is supplemented via 

serum component435. However, estrogen does not completely explain the regulation of αklotho as it is 

equally affected in serum free culture media.  

In our experiments, αklotho mRNA and protein levels did not change upon PAC-1 treatment. Procaspase-3 

is frequently up-regulated in cancer cells244,246 but might be at normal level in HK-2 cells and therefore, 

caspase-3 activation and apoptosis induction occurred only to a small degree. Likewise, PAC-1-induced 

apoptosis has been reported to be much stronger in cancer, than in normal blood cells436. This implies, that 

αklotho is only regulated by apoptosis induction and PAC-1 induces apoptosis in HK-2 cells only to a minor 

degree. In conclusion, the αklotho up-regulation in MDCK and NRK-52E cells might provide cellular stress 

protection to restore normal function in cancer-like cells. In turn, since renal αklotho levels are decreased 
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by cisplatin or doxorubicin in vivo, this is suggested as the physiologic response of renal tubular cells to 

cytotoxic noxae211,437. However, this topic requires further intensive investigation. 

To additionally assess the impact of cytotoxic drugs on soluble klotho levels in the human organism, we 

examined αklotho serum concentration of patients receiving chemotherapy 24 h before and after drug 

administration. We observed no significant change in αklotho concentration before and after drug 

administration. This might be due to heterogeneous drug combinations, varying treatment cycles, and 

heterogeneous patient and cancer characteristics influencing systemic αklotho amounts. Three independent 

studies observed that mice or rats injected with a single dose of cisplatin or doxorubicin had significantly 

decreased αklotho expression and lower protein abundance compared to controls211,437,438. αKlotho 

overexpression during cisplatin-based chemotherapy reduces cisplatin uptake via OCT2 resulting in lower 

caspase-3 activation and smaller BAX/BCL-2 ratio, indicating reduced apoptosis438. Likewise, αklotho gene 

transfer has been confirmed as a promising tool to improve renal function in AKI in mice439. Consequently, 

the impact of chemotherapy on αklotho needs to be further investigated, as a decrease in αklotho may affect 

cancer progression outcome and mortality224,440. 

αKlotho exerts numerous protective and anti-apoptotic functions on non-cancerous cells54,441–443. However, 

in cancer cells it suppresses excessive proliferation and promotes apoptosis224,444–446. Growth factor signaling 

is frequently overexpressed in cancer e.g. IGF-1 or FGFR/FGF68,412,447 induce ERK1/2 phosphorylation and 

subsequent PI3K/Akt activation411,448,449. Active Akt phosphorylates BAD, thereby preventing it to bind to 

BCL-XL and this consistently suppresses apoptosis450. Additionally, IGF-1 up-regulates anti-apoptotic 

BCL-2451 and BCL-XL452. αKlotho suppresses IGF-1 signaling in cancer cells62,70,449, thereby promoting 

apoptosis444. Overexpression of wnt/β-catenin pathway is another mechanism of cancer cells to promote 

excessive cell proliferation67,446. By suppressing wnt/β-catenin signaling, αklotho inhibits tumor growth and 

promotes apoptosis e.g. in liver cancer69,453. Thus, another important mechanism of cancer cells to prevent 

cell death is the downregulation of αklotho synthesis11,453,454. In summary, the overexpression of growth 

factor signaling, down-regulation of αklotho, or loss of function of pro-apoptotic factors such as p53 

strongly promotes chemotherapeutic drug resistance11,409,455. On the other hand, αklotho supplementation or 

overexpression has been shown to sensitize cancer cells to chemotherapy by overcoming drug 

resistance456,457.  

Resistance to cisplatin, paclitaxel, or doxorubicin has also been linked to HIF1α activation in cancer 

cells339,344,458,459. αKlotho overexpression has been reported to decrease HIF1α levels in colon cancer which 

is associated with a decrease in cisplatin-resistance11,460. In vitro, Cisplatin461, paclitaxel462,463, 

doxorubicin339, PAC-1342, and serum deprivation343 have been reported to activate HIF1α signaling. In 

general, HIF1α stabilization plays an important role in the adaptation of cells to stress to prevent further 

damage464. Cisplatin-induced AKI decreases renal vascular perfusion and renal blood pressure causing 
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hypoxia and HIF1α activation465,466. Likewise, with progression of doxorubicin-induced kidney injury in 

mice the abundance of HIF1α increases467. AKI and CKD are associated with reduced αklotho levels44,208 

and therefore αklotho may correlate negatively with HIF1α stabilization, as has been observed in colorectal 

cancer460. Hypoxia has been shown to down-regulate αklotho expression via HIF1α signaling in retinal 

cells468 but did not change αklotho production in the kidney469. HIF1α may contribute to the decrease in 

αklotho synthesis observed in HK-2 cells. During hypoxia, this may be a measure to increase cell 

proliferation by decreasing αklotho-mediated suppression of wnt/β-catenin or IGFR signaling449,453. In 

conclusion, αklotho may be of therapeutic value to overcome HIF1α-mediated chemotherapy resistance339 

and in the treatment of chemotherapy-induced AKI470.  

Cytotoxic properties of cisplatin, paclitaxel, or doxorubicin on cancer cells are frequently linked to oxidative 

stress147,235,323. However, excessive ROS production has also been observed in kidney tissue exposed to 

chemotherapeutic drugs303,328,376,471,472. Likewise, serum deprivation increases ROS and reduces GSH 

production in HK-2 cells322. PAC-1 has been shown to induce the production of ROS in cancer cell lines329 

but its effect in normal cells is not clear. αklotho production is negatively affected by hydrogen peroxide or 

inducers of ROS in vitro and in vivo218,473. In turn, αklotho suppresses ROS formation53 and stimulates 

production of radical scavenger GSH and antioxidant enzymes via NRF2 and forkhead-box-protein O3 

(FOXO3)474,475. In conclusion, oxidative stress may be another reason for the decrease in αklotho in HK-2 

cells. Conversely, in MDCK and NRK cells αklotho up-regulation might be a protective mechanism to 

diminish oxidative stress and promote cell survival.  

Oxidative stress476,477, Hypoxia476, and starvation stress478 activate intracellular energy sensor AMPK. By 

targeting mitochondria, cisplatin impairs glycolysis resulting in intracellular ATP restriction289,290. High 

levels of ATP degradation-product AMP are responsible for the activation of energy sensor AMPK133. Like 

cisplatin, doxorubicin and serum depletion have been reported to activate AMPK in different non-

tumorigenic cells291,478–480. In lung cells, AMPK has been shown to reduce inflammation and positively 

regulate αklotho481 and in neuronal cells, αklotho increases due to energy restriction482,483. In line with this, 

αklotho deficiency is associated with AMPK downregulation in smooth muscle cells484. This indicates that 

AMPK activation via oxidative stress or HIF1α may positively regulate αklotho production. Additionally, 

PPARγ is a positive regulator of AMPK as well as αklotho371,485 and we confirmed PPARγ signaling to be 

partially responsible for the increase in αklotho in MDCK cells.  

The AMPK increase in renal tubular cells exposed to cisplatin correlates with down-regulation of 

mTOR486,487. Comparably, doxorubicin inhibits mTOR signaling in cardiomyocytes and ventricular 

tissue488. As mTOR is a negative regulator of αklotho489, chemotherapy-induced mTOR inhibition might 

up-regulate αklotho in MDCK and NRK-52E cells. However, there are also reports of decreased AMPK 

activity after cisplatin treatment e.g. in HK-2 cells490 or mice491. By reviewing the influence of doxorubicin 
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on AMPK, Timm et al. noted a similar discrepancy between several studies492. This may be due to a hypoxia-

induced, AMP-independent activation of AMPK as observed by others476. In the reported mechanism, 

hypoxia-induced ROS formation and subsequent SOCE results in an AMPK activation476. As mentioned 

before, the intracellular ATP content correlates directly with the number of apoptotic cells in a culture182. 

The ATP content decreases with increasing concentration or incubation time of a cytotoxic substance and 

subsequently, apoptotic cell death changes into necrotic cell death182. Therefore, cytotoxic stimuli possibly 

knockdown AMPK early or at low concentrations of cytotoxic stimuli and activate AMPK with increasing 

concentration and incubation time. This subsequently affects αklotho in a negative way during the apoptotic 

phase of cellular injury and stimulates αklotho at the necrotic phase. Transferred to the cell culture model 

used in paper 2, HK-2 cells were in the apoptotic phase whereas NRK-52E and MDCK are already in the 

necrotic phase of cell death. This may be supported by the mean doubling times of the cell lines: MDCK 

18 h383, NRK-52E 45 h382 and HK-2 about 54 h430 with metabolic rates of MDCK > NRK-52E > HK-2. 

However, the negative regulation of αklotho by inflammatory cytokines211 or during inflammatory 

disorders52,212 partially contradicts this assumption. In summary, this points to a very sensitive role of energy 

metabolism on the induction of apoptotic or necrotic cell death and subsequently on the regulation of 

αklotho.  

 Conclusion 

The initial aims of the present thesis were (i) the elucidation of a regulatory mechanism of cellular stress on 

FGF23 or αklotho, (ii) whether FGF23 or αklotho are influenced by certain forms of cellular stress or by 

particular signaling components of the cellular stress response, and (iii) if FGF23 and αklotho regulation 

may also be a consequence of apoptotic or necrotic senescence. 

The present work was the first to investigate a direct regulation of FGF23 and αklotho by chemotherapeutic 

drugs or apoptosis induction in vitro which probably involves cellular stress mechanisms. There are several 

forms of cellular stress upon treatment with cisplatin, doxorubicin, paclitaxel, PAC-1, or serum depletion 

reported in the literature. Especially inflammatory, injury, oxidative, hypoxic, and starvation stress have 

been extensively discussed. Since the different conditions are closely interrelated, it is difficult to evaluate 

the impact of only one stress response on FGF23 or αklotho. On the one hand, UMR106 osteoblast-like 

cells exposed to cytotoxic stimuli reacted with an up-regulation of FGF23, which is usually associated with 

cancer progression279 and cell protection269. In renal cells, stress stimulants cisplatin, paclitaxel, doxorubicin, 

PAC-1, or serum depletion increased αklotho expression in MDCK and NRK-52E cells whereas αklotho 

expression decreased in HK-2 cells exposed to chemotherapeutics or serum depletion. The cause for the 

differential regulation in these cell lines can only be discussed. It is possible that excessive αklotho 
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production plays a protective role e.g. anti-apoptotic439 or anti-inflammatory493. However, the αklotho 

decrease in HK-2 cells confirms many other observations, in which αklotho was reduced under conditions 

of injury393, disease9,48 or cellular stress218,394. The different forms of cellular stress may induce various 

signaling pathways associated with increased stress resistance, e.g. HIF1α334, TGF-β341, or AMPK494, but 

also FGF23 and αklotho exert protective functions269,333,438. Especially the chemotherapeutic drugs cisplatin, 

paclitaxel, and doxorubicin induce inflammatory stress related to necrotic cell death153,173,359,495. All stimuli 

used drive oxidative stress147,235,471 and HIF1α signaling461,463,467, which are known positive regulators of 

FGF23258,345 and may thus account for the FGF23 stimulation. However, oxidative stress is reported to 

decrease αklotho218 whereas αklotho reduces ROS and increases the antioxidant state474,475. αKlotho 

up-regulation might thus be a mechanism to protect the cell from inflammation493, hypoxia469, and ROS474. 

Conversely, down-regulation is frequently reported under disease conditions213 and might prevent 

hypophosphatemia496 or promote cell proliferation497. All stress stimulants used in this study are able to 

induce apoptotic cell death235,240,253,257,272, but necrosis or necroptosis cannot be excluded, especially by 

chemotherapeutic drugs286,287. Due to the activation of a variety of different signaling pathways following 

cisplatin and doxorubicin incubation, it is difficult to conclude that FGF23 is up-regulated solely by one 

factor but rather by the combination of pro-inflammatory cytokine induction, oxidative stress, and HIF1α 

activation. On the one hand, the up-regulation of FGF23 protects the cell itself333, but in the bone 

environment FGF23 inhibits bone formation and promotes bone resorption349. Increased systemic FGF23 

levels result in decreased renal phosphate reabsorption33, decreased 1,25(OH)2D3 production with decreased 

intestinal phosphate absorption and overall in hypophosphatemia and the risk of osteomalacia or 

osteoporosis85,86,355. The simultaneous kidney injury, caused by chemotherapy or adjuvant apoptosis 

inducers may further derange mineral homeostasis356. However, αklotho up-regulation promotes cell 

resistance and restores function of damaged renal tissue393. αKlotho attenuates many functions associated 

with excessive FGF23 production such as AKI55, fibrosis402, and CVD400 and the overall morbidity and 

mortality risk declines with higher αklotho levels226,440. Conversely, decreased αklotho production attenuates 

renal function and aggravates disease outcome209,224. 

Taken together, the negative effects of excess FGF23 production upon cellular stress may be compensated 

by increased αklotho synthesis. However, excess FGF23 and αklotho may cause hypophosphatemia with 

the risk of bone loss498. Thus, down-regulation of αklotho may also be plausible to prevent phosphaturia. In 

conclusion, the interaction of FGF23 and αklotho under stress conditions need to be further investigated. 

The present thesis provided insight in a very sensitive context between chemotherapy-based cellular stress 

and the regulation of phosphate metabolism. However, beneficial effects of FGF23 and αklotho may exceed 

their significance in phosphate metabolism. The studies indicated a diagnostic potential to measure FGF23 
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during chemotherapy with regard to secondary bone loss. Furthermore, αklotho supplementation may be a 

promising approach to attenuate nephrotoxicity and sensitize cancer cells to cytostatic drugs. 

 Outlook 

In future research, the discussed intracellular mechanisms need to be addressed with regard to FGF23 and 

αklotho regulation by cellular stress. In detail, inflammatory cytokines, oxidative stress, HIF1α, or AMPK 

and their impact on phosphate levels need to be enlightened. The association between FGF23 or αklotho 

and inflammation has been extensively investigated but whether FGF23 actively drives inflammation or the 

role of decreased αklotho during inflammation is still unclear and requires clarification. In this context, the 

time course of apoptotic and necrotic cell death should be carefully studied with regard to NFκB, AMPK, 

PPARγ, or HIF1α, as well as furin regulation. Furthermore, research is necessary to thoroughly investigate 

the differential regulation of αklotho in MDCK, NRK-52E, and HK-2 cells with regard to concentration and 

incubation times of cytotoxic substances. At last, diagnostic significance of FGF23 as well as therapeutic 

value of αklotho supplementation are promising fields of research. 
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 Summary  

Cellular stress is defined as the impairment of regular cell function by internal or external stimuli including 

critical temperatures, energy deficiency, infections, mechanic injury, or chemical noxae. The present thesis 

aims to investigate the influence of cellular stress on the expression of FGF23 and αklotho. FGF23 is 

predominantly produced in bone and regulates the phosphate excretion in the kidney. Thereby, αklotho 

functions as a co-receptor for FGF23. By binding to the FGF receptor-αklotho complex, FGF23 reduces the 

reabsorption of phosphate from the tubular lumen by decreasing the abundance of sodium-phosphate co-

transporters. Furthermore, FGF23 decreases the synthesis of 1,25(OH)2D3, active vitamin D, and increases 

its degradation. 1,25(OH)2D3 is a regulator of intestinal phosphate absorption and therefore, FGF23 

additionally reduces dietary phosphate uptake. Chronically elevated FGF23 is associated with numerous 

disorders such as kidney disease or CVD. Beside its function as a co-receptor of FGFR, αklotho has many 

beneficial FGF23-independent functions. It has originally been identified as an anti-aging hormone, as a 

loss-of-function mutation in the αklotho gene causes numerous aging-like symptoms such as vascular and 

tissue calcification, osteoporosis, sterility, and an early death. The present papers investigated the influence 

of cytostatic drugs cisplatin, paclitaxel, and doxorubicin as well as apoptosis inducers PAC-1 and serum 

depletion on the regulation of FGF23 and αklotho. In UMR106 rat osteoblast-like osteosarcoma cells, a 24 

or 48 h-treatment with cisplatin, doxorubicin, PAC-1, or serum reduction and depletion significantly up-

regulated Fgf23 expression. Under serum depletion, also FGF23 protein secretion was increased. In addition 

to FGF23, cisplatin and doxorubicin also increased gene expression of pro-inflammatory cytokine Il6 

hinting at the presence of necrotic cell death. By inhibiting Il-6 membrane receptor gp130 it has been shown, 

that FGF23 stimulation partially depended on IL-6 signaling. The stimulation of FGF23 by inflammatory 

mediators including IL-6, TNFα, TGF-β, or IL-1β has already been reported by others. Furthermore, 

inflammatory diseases such as rheumatoid arthritis, CKD, or inflammatory bowel disease are associated 

with excess FGF23 serum concentrations. In this regard, we investigated gene expression and activation of 

the transcription factor NFκB, which regulates numerous inflammatory functions. Cisplatin and doxorubicin 

increased the expression of NFκB subunit Rela and cisplatin also stimulated the phosphorylation of NFκB. 

Independently, NFκB inhibitors wogonin and withaferin A attenuated cisplatin-mediated stimulation of 

FGF23 indicating, that FGF23 excess was in part promoted by NFκB signaling. These investigations 

confirmed a strong impact of cisplatin or doxorubicin-induced inflammation on FGF23 synthesis, whereas 

PAC-1 and serum depletion have reported to directly induce apoptosis, which is commonly not associated 

with inflammation. Known factors, induced by all cytotoxic substances used here, are the formation of ROS 

and activation of HIF1α. Both are positive regulators of FGF23, leading to the conclusion, that cellular stress 

might regulate FGF23 via HIF1α or oxidative stress. FGF23 excess results in increased bone resorption and 

suppressed bone formation. Likewise, also chemotherapeutic drugs and serum deficiency reduce bone 
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density. Therefore, the stimulation of FGF23 may cause or further stimulate bone resorption. In paper 2, the 

influence of the cytostatic drugs cisplatin, paclitaxel, and doxorubicin as well as apoptosis inductors PAC-1 

or serum depletion on αklotho expression in renal MDCK, NRK-52E, and HK-2 cells has been investigated. 

In fact, all cytotoxic compounds stimulated gene expression of αklotho while decreasing cell proliferation 

and viability. By using a combined apoptosis and necrosis assay, we confirmed the induction of apoptosis 

but also necrosis to a variable extent. Additionally, the transcriptional regulation of apoptotic proteins of the 

BCL-2 family was assessed and confirmed apoptosis stimulation. Transcription factor PPARγ is a known 

positive regulator of αklotho. In MDCK cells, we detected a significant influence of cisplatin-mediated 

stimulation of PPARγ mRNA on the αklotho increase. Furthermore, cisplatin, doxorubicin, PAC-1, and 

serum deprivation also up-regulated FGFR production in MDCK cells. In cancer cells, overexpression of 

FGFR is associated with enhanced resistance against chemotherapeutic drugs. Consequently, αklotho and 

FGFR1 stimulation may be a protective mechanism to prevent hyperphosphatemia during diseases. 

However, human HK-2 cells treated with cisplatin, paclitaxel, doxorubicin, or serum depletion significantly 

down-regulated αklotho expression and protein secretion. PAC-1 did not change the expression or 

production of αklotho in HK-2 cells, which might be explained by the minor effect of PAC-1 on non-

carcinogenic cells lacking an overexpression of procaspase-3. The differential regulation of αklotho in 

MDCK and NRK-52E versus HK-2 cells by cytotoxic stress might have numerous causes. For instance, 

there is evidence of an increased sensitivity of HK-2 cells to stress stimuli but a better comparability to the 

animal model. However, immortalized cell lines can not completely reflect the conditions of native tissue 

especially with regard to cell death. Furthermore, the species, sex or age of the donor organism as well as 

passage number of the cells and drug transporter expression might impact αklotho regulation. Additionally, 

the mode of cell death determined by intracellular ATP homeostasis and its regulation of AMPK might play 

an important role in αklotho regulation. However, all these theories need to be further addressed. In 

summary, inflammation, ROS formation, or the activation of HIF1α are all reported to correlate in a negative 

manner with αklotho production or serum levels. αklotho down-regulation may be a tool to increase cell 

proliferation or prevent hypophosphatemia. In contrast, AMPK activation by intracellular ATP restriction 

may positively regulate αklotho to promote cell protection and avoid hyperphosphatemia.  
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 Zusammenfassung 

Zellulärer Stress ist definiert als eine Beeinflussung der regulären Zellfunktion durch innere oder äußere 

Einflüsse wie kritische Temperaturen, Energiedefizite, Infektionen, mechanische Verletzungen oder 

chemische Noxen. Die vorliegende Arbeit dient dem Ziel, den Einfluss von zellulärem Stress auf die 

Expression von FGF23 und αKlotho zu untersuchen. FGF23 ist ein vorwiegend im Knochen produziertes 

Hormon, dass in der Niere die Phosphatausscheidung reguliert. Durch Bindung an den Komplex aus FGF 

Rezeptor und Ko-Rezeptor αKlotho wird die Rückresorption von Phosphat aus dem Tubuluslumen 

reduziert. Außerdem senkt FGF23 die Produktion von 1,25(OH)2D3, dem aktiven Vitamin D, und erhöht 

gleichzeitig dessen Abbau. 1,25(OH)2D3 reguliert im Dünndarm die Resorption von Phosphat. Durch die 

Wirkung von FGF23 wird also zusätzlich weniger Phosphat aus der Nahrung aufgenommen. Chronisch 

erhöhte FGF23-Serumkonzentrationen sind mit Erkrankungen wie renalen oder kardiovaskulären 

Erkrankungen assoziiert. αKlotho hat neben der Funktion als Ko-Rezeptor für FGF23 noch weitere, FGF23-

unabhängige Wirkungen. Es wurde ursprünglich als anti-Alterungshormon entdeckt, da eine loss-of-

function Mutation im αKlotho-Gen zahlreiche altersassoziierte Probleme wie massive 

Kalziumablagerungen in Geweben und Blutgefäßen, Osteoporose, Sterilität und eine frühe Sterblichkeit 

hervorruft. Im Rahmen der beiden Veröffentlichungen wurde untersucht, inwiefern die Zytostatika 

Cisplatin, Doxorubicin und Paclitaxel, sowie die Apoptoseinduktion durch PAC-1 oder Serumentzug die 

Regulation von FGF23 und αKlotho beeinflussen. In UMR106, einer osteoblastenähnlichen Osteosarkom-

Zelllinie wurde durch eine 24- oder teilweise 48-stündige Behandlung mit Cisplatin, Doxorubicin, PAC-1 

und durch Serumreduktion oder –Entzug die FGF23-Expression signifikant stimuliert. Gleichzeitig sanken 

die Viabilität und Proliferation der Zellen. Mittels Serumentzug konnte zusätzlich die Erhöhung der FGF23-

Proteinkonzentration im Überstand gezeigt werden. Parallel zu FGF23 wurde die Expression des pro-

inflammatorischen Zytokins IL6 durch Cisplatin und Doxorubicin erhöht und die Hemmung des IL-6 

Membranrezeptors gp130 zeigte, dass die Stimulation von FGF23 zumindest zu einem Teil durch IL-6 

vermittelt wurde. Andere Arbeitsgruppen konnten bereits vorher zeigen, dass IL-6 und andere pro-

inflammatorische Zytokine und Entzündungsmediatoren wie TNFα, TGF-β oder IL-1β die Genexpression 

und Synthese von FGF23 stimulieren. Außerdem werden entzündliche Erkrankungen wie rheumatoide 

Arthritis, CKD oder chronisch-entzündliche Darmerkrankungen mit erhöhten FGF23 

Serumkonzentrationen assoziiert. In diesem Zusammenhang wurde zusätzlich die Expression und 

Aktivierung des Transkriptionsfaktors NFκB untersucht, der zahlreiche Entzündungsfaktoren reguliert. 

Cisplatin und Doxorubicin steigerten die Genexpression der NFκB Untereinheit Rela und Cisplatin wurde 

erhöhte zusätzlich die Phosphorylierung von NFκB in UMR106 Zellen. Die NFκB-Inhibitoren Wogonin 

und Witheraferin A konnten separat voneinander die Stimulation von FGF23 durch Cisplatin unterbinden, 

was zeigte, dass die FGF23-Stimulation teilweise auf einer Aktivierung von NFκB beruhte. Die Versuche 
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zeigten einen starken Einfluss von Entzündungsprozessen auf die FGF23-Stimulation durch Cisplatin und 

Doxorubicin. PAC-1 und Serumentzug induzieren direkt eine Apoptose, die üblicherweise nicht mit 

Entzündungsprozessen einhergeht. Mögliche Faktoren, die im Zuge der Apoptose durch alle verwendeten 

Substanzen beeinflusst werden, sind die Bildung von ROS und die Aktivierung von HIF1α. Beides sind 

bekannte Regulatoren von FGF23. Insofern könnten apoptotische Zellen über HIF1α oder oxidativen Stress 

die Bildung von FGF23 anregen. Als Konsequenz der FGF23-Steigerung wird die Knochenbildung 

unterdrückt und vermehrt Knochenmasse abgebaut. Dementsprechend sind auch Chemotherapeutika und 

Serumentzug Faktoren, die für eine Reduktion der Knochenmasse bekannt sind. Wie in Veröffentlichung 1 

gezeigt, könnte dies durch die Stimulation von FGF23 mitverursacht oder verstärkt werden. In der zweiten 

Veröffentlichung wurde der Einfluss der Chemotherapeutika Cisplatin, Paclitaxel und Doxorubicin sowie 

der Apoptoseinduktoren PAC-1 und Serumentzug auf αKlotho in renalen MDCK, NRK-52E und HK-2 

Zellen untersucht. In MDCK- und NRK-Zellen stimulierten alle zytotoxischen Substanzen die 

Genexpression von αKlotho und beeinträchtigten gleichzeitig die Zellproliferation und –viabilität. Mittels 

kombiniertem Apoptose-Nekrose-Test wurde die Induktion von Apoptose aber teilweise auch Nekrose 

nachgewiesen. Zusätzlich bestätigte die transkriptionelle Stimulation von apoptotischen Proteinen der 

BCL-2 Familie die Induktion der Apoptose. Ein bekannter Positivregulator von αKlotho ist der 

Transkriptionsfaktor PPARγ. Diesem konnte in MDCK-Zellen ein signifikanter Einfluss auf die 

Genexpression von αKlotho durch Cisplatin nachgewiesen werden. Parallel zu αKlotho wurde auch die 

Produktion von FGFR1 durch Cisplatin, Doxorubicin, PAC-1 und Serumentzug in MDCK-Zellen 

stimuliert. Die Hochregulierung von FGFR1 ist in Krebszellen mit einer verstärkten Resistenz gegenüber 

Chemotherapeutika assoziiert und deutet folglich auf einen protektiven Mechanismus hin. In menschlichen 

HK-2 Zellen wurde die Genexpression und Proteinsekretion von αKlotho durch die Behandlung mit 

Cisplatin, Paclitaxel, Doxorubicin und Serumenzug überraschenderweise verringert. PAC-1 zeigte keinen 

Effekt auf die HK-2-Zellen, was vermutlich durch eine geringe Wirkung von PAC-1 auf nicht-kanzerogene 

Zellen durch die fehlende Überregulation von Procaspase-3 herrührt. Die unterschiedliche Regulation von 

αKlotho in MDCK-, NRK- und HK-2-Zellen durch zytotoxischen Stress kann zahlreiche Ursachen haben. 

Zum Einen gibt es Hinweise auf eine erhöhte Sensibilität der HK-2-Zellen und eine bessere Vergleichbarkeit 

zum Tiermodell. Allerdings können immortalisierte Zellen die Bedingungen in nativen Geweben nur 

teilweise reflektieren, besonders in Hinblick auf den Zelltod. Desweiteren kann auch die Spezies, das 

Geschlecht oder Alter des Spenderorganismus, beziehungsweise die Anzahl der Passagen der Zellkultur 

eine Rolle bei der Expression der Medikamententransporter spielen und somit Einfluss auf αKlotho nehmen. 

Außerdem könnte die Form des Zelltods, die durch den ATP-Haushalt der Zelle und die Regulation von 

AMPK bestimmt wird, αKlotho beeinflussen. Entzündung, die Bildung von ROS sowie die Aktivierung von 

HIF1α korrelieren alle in negativer Weise mit der renalen αKlotho Produktion bzw. Serumkonzentrationen. 

Die Herunterregulierung von αKlotho könnte zur Förderung der Zellproliferation beitragen oder eine 
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Hypophosphatämie verhindern. Eine Hochregulierung von αKlotho könnte dem Schutz der Zellfunktion 

bzw. der Vermeidung einer Hyperphosphatämie dienen.  
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