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Chapter I - INTRODUCTION 

 2 

1. INTRODUCTION 

 

1.1 Developmental phases of digestive tract in ruminants 

The digestive tract of ruminants is underdeveloped at birth and undergoes 

developmental phases during the first few weeks of life. The first phase occurs from 0−3 weeks 

of age and termed as monogastric phase. During this phase, ruminants rely solely on the 

abomasum for the digestion of feed particle as their rumen, reticulum and omasum are 

underdeveloped and non-functional (Longenbach and Heinrichs, 1998; Heinrichs and 

Lesmeister, 2005). The diet of neonatal calves mainly comprises of milk or milk replacer (MR), 

which bypasses the forestomach system and are digested in the hindgut, where microbial 

degradation processes synthesize amino acids, volatile fatty acids (VFAs), and vitamins 

(Guilloteau et al., 2009). The hindgut microbiome is also responsible for the fermentation of 

amino acids, and carbohydrates that results in the synthesis of branched-chain fatty acids, 

essential for neonatal calves’ development and growth (Song et al., 2018). The second phase 

occurs from 3−8 weeks of age and termed as transition phase. During this phase, solid feed 

(starter meal, hay or fresh grass) intake increases and the milk consumption is decreased. The 

addition of solid feed in the diet activates rumen fermentation activity, that changes drastically 

with weaning (complete milk removal) and thus alter the gut microbial composition (Meale et 

al., 2016). 

 

1.2 Pattern of microbial colonization in the digestive tract of ruminants 

Ruminants are mainly dependent on their rumen microbiome for the digestion of feed 

particles and synthesis of metabolic products (Matthews et al., 2019). Although, it is assumed 

that the ruminants are born with a sterile gastrointestinal tract (GIT) and that the gut microbial 

colonization starts directly after birth (Figure 1). Maternal contact, environmental exposure, 

colostrum and feed majorly serve as the initial sources of the gut microbial inoculum during 

the immediate neonatal period (Mayer et al., 2012; Taschuk and Griebel, 2012; Alipour et al., 

2018; Yeoman et al., 2018; Klein-Jöbstl et al., 2019). A vast variety of studies have been 

conducted in the past to explore the pattern of gut microbial colonization and GIT development 

in calves. These studies have highlighted several factors that may influence the initial 

establishment of microbial communities in the neonatal calves GIT including the host genetics 

and sex (Mayer et al., 2012; Klein-Jöbstl et al., 2014; Fan et al., 2020; Fan et al., 2021), age 

(Uyeno et al., 2010; Edrington et al., 2012a; Li et al., 2012; Jami et al., 2013; Oikonomou et 

al., 2013; Klein-Jöbstl et al., 2014; Rey et al., 2014; Guzman et al., 2015; Dill-McFarland et 
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al., 2017; Dias et al., 2018; Song et al., 2018), diet (Castells et al., 2012; Edrington et al., 2012a; 

Malmuthuge et al., 2013; Malmuthuge et al., 2015a; Guzman et al., 2016; Kim et al., 2016; 

Dias et al., 2017; Lin et al., 2018; Dill-McFarland et al., 2019; Maynou et al., 2019; Zhang et 

al., 2019), rearing environment (O'Hara et al., 2020), weaning time and strategy (Meale et al., 

2016; Meale et al., 2017b), usage of antibiotics and feed additives (Langford et al., 2003; 

Edrington et al., 2012b; Foditsch et al., 2015; Yousif et al., 2018; Kido et al., 2019; Cao et al., 

2020; Pereira et al., 2020; Wei et al., 2020). 

 

Figure 1 | Factors influencing gut microbial colonization in neonatal calves. Figure created 

with BioRender.com. 

 

These studies indicated that the gut microbial colonization in neonatal calves follows a 

sequential pattern with facultative anaerobes (Enterococcus, Escherichia coli, Lactobacillus, 

and Streptococcus) as the first colonizers. The strictly anaerobic bacterial community is 

established within a few days after birth and dominated by Bifidobacteria (Fonty et al., 1987; 

Minato et al., 1992; Jami et al., 2013). The contribution of proteolytic bacteria to the anaerobic 

microbial community is only 1−2% until 10-weeks but rises up to 10% after 12-weeks of age 
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(Anderson et al., 1987). Proteobacteria and the fibrolytic bacteria can be detected in the rumen 

of calves as early as 1−2 days after birth. Higher solid feed intake and fiber feeding resulted in 

high dominance of Prevotella (Jami et al., 2013; Rey et al., 2014). Similar to the rumen, the 

faecal microbiome of dairy calves also changes dynamically within the first 12-weeks, where 

the age-dependent decrease in dominance of Bifidobacterium, Streptococcus, and 

Enterobacteriaceae, and an increase in fibrolytic bacterial species (Fibrobacter and 

Ruminococcus flavefaciens) were reported (Uyeno et al., 2010).  

In addition to the age, the diet fed to the calves during the pre-weaning period directly 

impact the gut microbial communities as indicated by the high dominance of commensal gut 

microbes with milk-based diet, while an increased abundance of amylolytic and fibrolytic 

bacteria with solid-feed intake was observed (Dias et al., 2017; Lin et al., 2018; Song et al., 

2018; Dill-McFarland et al., 2019; Zhang et al., 2019; Kumar et al., 2021). Therefore, it can be 

assumed that both age-dependent gut development and diet serves as the key influencing 

factors to the establishment of early life microbial communities in calves. In addition, different 

regions within the GIT differ in their physiology, pH, nutrient profiles and transition rate, the 

population of immune cells as well the host-microbial interactions (Ward, 2008; Abreu, 2010; 

Van den Abbeele et al., 2011; Laarman et al., 2012b). Considerable differences also exist 

between the mucosal epithelium and ingesta (Van den Abbeele et al., 2011). Such differences 

result in site- and region-specific establishment of microbial communities throughout the GIT 

of neonatal calves (Malmuthuge et al., 2014; Mao et al., 2015). It has been observed that once 

the microbial community is established and reached to maturity, the gut microbiome is 

considered stable thereafter, with the exception of dietary modification, changes in health and 

physiology of the host (Russell and Rychlik, 2001; Weimer et al., 2010; Henderson et al., 

2015). 

 

1.3 Weaning transition and rumen development in calves 

Weaning transition is described as the transition period when calves are shifted from 

liquid diet to the solid feed. This period is critical for rumen development due to the direct 

influence of dietary composition on rumen microbiome and microbial metabolic products (Petri 

et al., 2012; Henderson et al., 2015). Feeding calves with starch-based diet during weaning 

transition increases the production of VFAs and lactic acid, which decreases the rumen pH 

(Laarman and Oba, 2011). Such decrease in ruminal pH results in higher translocation of free 

lipopolysaccharides from rumen into the blood that causes immunosuppression and 

inflammation (Gozho et al., 2005). On the contrary, feeding pre-weaned calves with higher 
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amount of milk or MR stimulates organ development and health (Geiger et al., 2016; Schäff et 

al., 2016; Rosenberger et al., 2017), and starter concentrate feeding increases the production of 

butyrate, which is essential for the development of rumen papillae (Cui et al., 2020). However, 

feeding ruminants only with starter concentrate increases the chances of parakeratosis and 

ruminal acidosis, which effects the proper functioning of the GIT, thus influencing animal 

health and development (Liu et al., 2017; Wang et al., 2017). Therefore, calf starter feeding is 

usually recommended along with MR during weaning transition as it improves rumen 

microbial fermentation processes and promotes rumen development, increases the average 

daily gain (ADG) and decreases the mortality rate in post-weaned calves (Drackley, 2008). 

The bovine rumen comprises of diverse commensal microbial communities, dominated 

by bacteria that account for nearly 95% of the total microbiota, protozoa, methanogenic 

archaea, fungi and viruses (Choudhury et al., 2015). The rumen microorganisms act 

interdependently to degrade feed particles and synthesize VFAs, microbial proteins, vitamins 

and minerals (Mackie, 2002). The rumen microbial community changes drastically during 

weaning transition (Figure 2), until a mature microbial community is established (Kim et al., 

2016; Meale et al., 2016; Dill-McFarland et al., 2017; Li et al., 2020). For example, a delay in 

the onset of rumen microbial communities was observed with prolonged milk feeding 

(Lengemann and Allen, 1959), while, an increase in the abundance of rumen carbohydrate-

utilising bacteria such as Megasphaera, Succinivibrio, and Sharpea was observed with the 

addition of starter in the diet of pre-weaned calves (Dias et al., 2017). However, when dietary 

supplementation was alfalfa hay, an increased number of fibrolytic bacteria and methanogens 

was observed within the GIT of calves (Guzman et al., 2016). Solid feed addition also increased 

the abundance of Bacteroidetes, an essential cellulose-degrading bacterium in the rumen (Kim 

et al., 2016). The rumen fibrolytic microbes ferment the solid feed particles and synthesize 

VFAs. The VFAs supply energy to the calves for metabolic processes such as growth, 

immunity and thermoregulation and are also essential for the development of rumen papillae, 

which further facilitates the absorption of VFAs into the blood (Khan et al., 2011; Rey et al., 

2012). Therefore, a higher solid feed intake is necessary for the development of an active rumen 

as it increases the amount of rumen fibrolytic bacteria and production of VFAs. Subsequently, 

the surface area of the rumen is increased by expanding its volume and papillation, which 

contributes to the host’s survival success after weaning (Khan et al., 2016). The weaning-

related dietary changes switches the major site of feed digestion and absorption from hindgut 

to the rumen (Liu et al., 2017; Saro et al., 2018; Yang et al., 2018; Kargar and Kanani, 2019). 
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The buffering ability of rumen and the metabolic processes also increases with the increase in 

roughage intake (Laarman et al., 2012a; Laarman et al., 2012b; Connor et al., 2013). 

 

 

Figure 2 | Influence of weaning-related dietary transitions on rumen development and its 

associated microbiome. Figure created with BioRender.com. 

 

Dairy farming system are facing the problem of high feed costs that account for nearly 

60% of their total production expenses (Ho et al., 2005). Thus, in order to reduce the feed cost, 

producers are using various approaches to enhance the digestive ability and accelerate rumen 

development in calves (Klein et al., 1987; Pazoki et al., 2017). Therefore, the dairy industry 

generally relies on early-weaning concepts by restricting the amount of milk or MR fed to the 

calves, which stimulate the early consumption of concentrate and thus decreases the weaning 

age of calves (Hulbert et al., 2011; Dias et al., 2018). The positive impacts of fibrous feed 

consumption on reticulorumen development, increase in solid feed / concentrate intake and 

improvement in ADG and performance have been previously reported in calves using barley 
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straw, grass silages, orchard grass hay or chopped grass hay (Thomas and Hinks, 1982; Khan 

et al., 2011; Castells et al., 2012). Similar positive impact of alfalfa hay feeding on rumen 

epithelium development in dairy calves were reported (Cui et al., 2020). However, the usage 

of fibrous feed is not recommended during the pre-weaning period of calf life due to their 

limited fibrolytic capacities, as it poses the risk of undigested forage feed accumulation in the 

rumen and reduces the intake of starter concentrate (Drackley, 2008). In addition, the 

fermentation of alfalfa hay by rumen microorganisms does not produce adequate amount of 

VFAs required for optimum development of rumen papillae in dairy calves (Jahani-Moghadam 

et al., 2015; Mirzaei et al., 2015; Hosseini et al., 2016). 

Many studies have focused on the effect of weaning time on ruminant’s health and 

productivity. For example, weaning calves at an early age is beneficial in terms of their 

improved growth, performance and carcass quality (Myers et al., 1999a; Myers et al., 1999b). 

However, a premature weaning may result in underdeveloped rumen due to the lack of time for 

gradual adaptation to solid feed consumption, resulting in increased stress and death rate in 

calves at weaning than late-weaned calves (Khan et al., 2007). On the contrary, too late 

weaning increases the feed costs and has a negative impact on the organ development, thus 

affecting the productive performance of an animal in later stages (Mao et al., 2017). Therefore, 

the weaning age should be carefully considered by ensuring greater GIT maturation at weaning 

to lessen such effects (Eckert et al., 2015). 

 

1.4 Role of microorganisms in neonatal calves’ growth and health 

Calves undergo extreme nutritional stress and metabolic adaptations from birth until 

the end of weaning period. The gut microbial communities play an essential role in the nutrient 

digestion and absorption (Karasov et al., 2011; Morgavi et al., 2015), gut and immune system 

development (Baldwin et al., 2004; Mazmanian et al., 2005; Peterson et al., 2007), maintenance 

of intestinal homeostasis and maturation of immune system (Yu et al., 2012; Sommer and 

Bäckhed, 2013; Guzman et al., 2015; Malmuthuge et al., 2015b; Malmuthuge and Guan, 2016, 

2017), prevention of pathogenic colonization and diseases (Round and Mazmanian, 2009; 

Maslowski and Mackay, 2011; Kamada et al., 2013). Certain gut bacteria also serve their host 

by detoxification of natural feed compounds (Gregg, 1995). In addition, the host-microbe 

interactions are essential for proper functioning of the host. For example, the interaction 

between gut mucosa and beneficial bacterial genera (Bifidobacterium and Lactobacillus) is 

essential for tight junction formation in the calves GIT during the neonatal period. An alteration 

in gut microbial composition may result in higher gut permeability and increased infection rate 
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in neonatal calves (Turner, 2009; Gomez et al., 2019). Changes in the gut microbial community 

compositions also increases the risk of various pathogenic infections in animals (Hopwood and 

Hampson, 2003). For example, increase in Escherichia coli, Salmonella spp., 

Cryptosporidium, bovine viral diarrhoea virus and enterovirus results in neonatal calf diarrhoea 

(Cho et al., 2013), while, higher abundance of Faecalibacterium in the neonatal calf’s gut has 

been linked with lower incidence of diarrhoea (Oikonomou et al., 2013). Similarly, 

Bifidobacterium is part of the healthy gut microbiota and is associated with immunity (Apgar 

et al., 1993; Picard et al., 2005; Uhde et al., 2008). Furthermore, the early life gut microbial 

colonization can have long-lasting effects on animal health and productivity (Thompson et al., 

2008). The structure and composition of the matured rumen microbiota and its associated 

functions are determinants of ruminant’s production phenotypes such as feed efficiency, 

methane and nitrogen emissions and health status of the host (Guan et al., 2008; Kittelmann et 

al., 2014; Shabat et al., 2016; Li and Guan, 2017; Sasson et al., 2017; Paz et al., 2018). Hence, 

a better understanding of early microbial colonization in neonatal calf’s gut and their possible 

sources could support the progressive development of calf raising management systems 

including reduced incidences of illness. 

Several studies have shown the resilient and host-specific nature of rumen microbes in 

adult cows, suggesting that once the rumen microbiome is established and reached maturity, it 

is possibly resistant to long-term perturbations (Jewell et al., 2015; Weimer, 2015; Malmuthuge 

and Guan, 2017; Weimer et al., 2017). Conversely, this is not the case with young ruminants, 

which harbour less resistant and heterogenous rumen microbiota within the first few weeks of 

life as compared to the adult ruminants (Abecia et al., 2014; Yáñez-Ruiz et al., 2015; Abecia 

et al., 2017; Bu et al., 2020). Therefore, the early life of ruminants represents the promising 

period for gut microbial modulation in order to achieve the long-term effects in adult animals 

(Yáñez-Ruiz et al., 2015). Furthermore, with the advance of genetic selection and animal 

breeding approaches, animals with a preferred gut microbial composition can be selected to 

obtain higher feed efficiency and thereby reducing methane emissions (Roehe et al., 2016; 

Zhang et al., 2020). 

 

1.5 Rumen sampling procedures 

The development of rumen and its microbiome has been extensively studied in young 

calves due to its essential role in weaning transitions. Most of the studies used invasive rumen 

sampling procedures such as rumen cannulation, oral intubation / rumen fistulation, or 

rumenocentesis to study the development of the rumen (Beharka et al., 1998; Coverdale et al., 
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2004; Duffield et al., 2004; Lesmeister and Heinrichs, 2004; Khan et al., 2008) and the rumen-

associated microbial communities (Jami et al., 2013; Kim et al., 2016; Meale et al., 2016; Meale 

et al., 2017b; Lin et al., 2018). However, these invasive rumen sampling methods have both 

advantages and disadvantages. Rumen cannulation is the most reliable rumen sampling method 

as it enables more extensive monitoring of rumen parameters as compared to repetitive 

sampling within the same day or using rumen probes. But fitting a rumen cannula requires 

invasive surgical procedures, official permission from the ethical commission and animal 

welfare authorities as well as dedicated animal facilities (Lodge-Ivey et al., 2009; Shen et al., 

2012; Terré et al., 2013). Similarly, the collection of rumen samples using stomach tubing or 

rumen fistula is unpleasant for animals and not preferable when sampling large group of 

animals is a concern (Tapio et al., 2016). In addition, the rumen samples collected by stomach 

tubing are often at high risk of contamination with saliva (Shen et al., 2012; Ramos-Morales et 

al., 2014). Rumenocentesis is another effective rumen sampling method. However, the 

collection of rumen samples using this procedure requires pricking of abdominal wall with a 

needle, enabling collection of limited amounts of sample. This procedure is also undesirable 

for animal health and welfare (Duffield et al., 2004). As discussed previously in other ruminant 

studies that the choice of rumen sampling procedure can directly impact the study outcomes 

(Duffield et al., 2004; Terré et al., 2013).  

The rumen microbiome is non-static and changes quickly with diet, host physiology 

and health (Russell and Rychlik, 2001; Weimer et al., 2010; Henderson et al., 2015). In 

addition, individual animal to animal variations exist under a controlled diet and environmental 

conditions due to the animal history, health, and the post-feeding sample collection time 

(Kittelmann et al., 2015). Therefore, a large sample size is required to obtain sufficient 

statistical power, thus, increasing the demands for non-invasive rumen sampling procedures. 

The presence of regurgitation activity in ruminants enables them to bring the partly digested 

ruminal contents back to the mouth (Meale et al., 2017a), thus, the oral cavity of ruminants can 

serve as a reservoir for some ruminal microbes (Kittelmann et al., 2015; Tapio et al., 2016). If 

so, the oral samples can serve as non-invasive proxies to study the rumen microbiome, avoiding 

the need to sacrifice the animals or invasive surgical procedures for rumen sampling. 

 

1.6 Cultivation vs. DNA-based methods to study gut microbial communities 

Research on ruminants gut microbial communities using culture-based studies was 

limited by the gut microbial complexity, the inability to culture anaerobic bacterial species, 

unambiguous quantification of gut microbes and host-microbial interactions (Ziolecki and 
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Briggs, 1961; Eadie, 1962; Beharka et al., 1998; Rada et al., 2006; Vlková et al., 2006; Collado 

and Sanz, 2007). However, several cultivation-independent studies were done in the past to 

study the dynamics of gut ecosystem and pattern of microbial colonization using denaturing 

gradient gel electrophoresis, sanger sequencing, single strand conformation polymorphism, 

suppressive subtractive hybridization, and restriction fragment length polymorphism (Fonty et 

al., 1991; Skillman et al., 2004; McEwan et al., 2005; Fernando et al., 2010; Chen et al., 2011; 

Michelland et al., 2011; Malmuthuge et al., 2012; Mayer et al., 2012; Malmuthuge et al., 2013). 

Most of these procedures are limited by low resolution power and high labour cost.  

On the contrary, the advance sequencing technologies such as Illumina sequencing and 

Roche/454 amplicon pyrosequencing enables the characterization of ruminant’s gut microbial 

communities by targeting the hypervariable regions of their 16S rRNA gene (Brulc et al., 2009; 

Hess et al., 2011; Kittelmann et al., 2013; McAllister et al., 2015). These high-throughput 

sequencing technologies are widely used nowadays to characterize the abundance and diversity 

of ruminant’s GIT microbial communities and establish the association of gut microbes with 

specific biological functions of the host. These sequencing methods are highly sensitive, less 

time consuming, provide the benefits of extraordinary sampling depth, and enable the detection 

of vast variety of microorganisms without having prior knowledge about their growth 

conditions and identity (Li et al., 2012; Malmuthuge et al., 2012; Jami et al., 2013; Rey et al., 

2014; Kim et al., 2016; Meale et al., 2016; Dias et al., 2017; Dill-McFarland et al., 2017; Meale 

et al., 2017a; Dias et al., 2018; Lin et al., 2018; Yeoman et al., 2018; Dill-McFarland et al., 

2019; Zhang et al., 2019). Additionally, the cost-effectiveness of these sequencing-based 

methods enables their widespread usage in various scientific fields. However, there is still the 

need of using proper controls for such kind of studies, so that the effects of environmental 

contaminants and external sources of microbial DNA such as laboratory reagents and 

equipment can be excluded (Alipour et al., 2018). 

 

1.7 Targeted vs. untargeted metabolomics approaches 

Metabolites are synthesized as an intermediate or by-products of several metabolic 

pathways (Bäßler et al., 2021). The host metabolic profile has significant influence on the host 

development and physiology especially during early life and an alteration in their 

concentrations have been linked with metabolic disorders (Monnerie et al., 2020). Generally, 

the metabolomics studies are accomplished using a variety of analytical platforms such as 

nuclear magnetic resonance (NMR) spectroscopy, gas chromatography-mass spectrometry 

(GC-MS), or liquid chromatography–mass spectrometry (LC-MS) (Goodacre et al., 2004). 
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NMR approach is a powerful method to investigate the metabolic alteration in milk or serum 

samples (Klein et al., 2012; Palma et al., 2016). On contrary to the NMR, LC-MS and GC-MS 

techniques are more specific, highly sensitive and can be used to monitor the alteration in the 

metabolic profiles of blood, milk, and biofluids (Boudonck et al., 2009; Sun et al., 2015). GC-

MS technique is limited to small volatile metabolites (Simón-Manso et al., 2013), whereas, 

LC-MS technique is more commonly used in metabolomic studies to characterize the high 

molecular weight, non-volatile metabolites with high coverage as compared to the other 

methods (Siskos et al., 2017). These analytical methods can be combined with a targeted or un-

targeted metabolomics approach. Un-targeted approaches enable the detection of several 

distinct compounds in a single analysis (Chen et al., 2020). However, the lack of standards in 

such approach increase the probability of false metabolic identifications, which poses 

hinderance in the interlaboratory comparison of un-targeted metabolomics results (Dunn et al., 

2013; Ribbenstedt et al., 2018). 

Contrary to the un-targeted approaches, the targeted approaches use standards and 

promise stability and repeatability due to the correct identification and quantification of 

metabolites (Ribbenstedt et al., 2018). The most commonly used kits for targeted approach are 

commercially available from Biocrates Life Science AG and can quantify from 180 metabolic 

compounds (AbsoluteIDQ® p180 kit) up to 500 compounds (MxP Quant 500 Kit) (Hampel et 

al., 2019; Kuhring et al., 2020). These kits allow identification of metabolites involved in 

various pathways including the metabolism of carbohydrate, amino acid, lipid, and energy, 

oxidation of fatty acids, cell cycle control, insulin resistance, mitochondrial dysfunction, pro-

inflammatory signalling and immune regulation (Hampel et al., 2019; Bäßler et al., 2021), thus 

providing comprehensive assessment of the metabolic impairment mechanisms (Hailemariam 

et al., 2014a; Hailemariam et al., 2014b). The targeted metabolomic approaches have already 

been applied on plasma, and serum samples of human and animal origin for identification of 

affected metabolic pathways in human diabetes, horse insulin dysregulation, and pathobiology 

of retained placenta (Kühn et al., 2016; Lotta et al., 2016; Dervishi et al., 2018; Kenéz et al., 

2018). However, the integration of metabolomics with metagenomics studies can further help 

us to better understand the associations between diet, age or environmental-derived microbial 

imbalances in the gut and the host metabolic disturbances, thus, leading to the identifications 

of predictive disease biomarkers as reported recently (Visconti et al., 2019; Li et al., 2020; 

Agus et al., 2021). 
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1.8 Objectives 

The period from birth to the complete weaning is critical for the development of 

digestive tract, metabolic and immune system in calves. The establishment of robust microbial 

communities and their interactions with the host is essential for gastrointestinal tract 

development, maturation of host gut, immune system, and health. The current information 

about the possible factors that may influence gut microbial colonization in pre- and post-

weaned calves, the potential host–microbe interactions, and the possible mechanisms of gut 

microbial modulations are summarized in the first manuscript with the title “Dynamic 

progression of the calf’s microbiome and its influence on host health” published in 

Computational and Structural Biotechnology Journal in 2021. 

Oral cavity is a complex habitat, that harbours microorganisms with an essential role in 

animal health and initial digestion of feed particles. The information about the oral microbiome 

of ruminants especially young calves is still missing and needed to be explored. Rumen is the 

major compartment of ruminant’s digestive tract, responsible for fermentation of feed stuff and 

nutrients biosynthesis. Among various factors that influence the development of rumen and its 

associated microbiome, age, diet and weaning time are crucial. To date, the rumen microbiome 

studies are limited to the invasive sampling procedures, which are laborious, time-consuming, 

unpreferable for animal health and impractical for studies targeting large number of animals. 

Therefore, the next aim of this work was to establish some non-invasive rumen sampling 

procedure to monitor the age- and weaning-dependent changes in the rumen microbial 

communities of young calves as summarised in the second manuscript “Evolution of rumen 

and oral microbiota in calves is influenced by age and time of weaning” published in 

Animal Microbiome Journal in 2021. 

Neonatal calves solely rely on their hindgut fermentation due to under-developed 

rumen, which synthesize metabolites necessary for neonatal growth and development. The 

hindgut colonization by a stable commensal microbial community is essential to protect calves 

from invasive pathogens. In addition, the weaning-related dietary transitions switches the major 

site of feed digestion and absorption from hindgut to the rumen, resulting in a subsequent 

modification in the hindgut microbiota. Therefore, the third and final aim of this project was to 

explore changes in the structure of hindgut microbial communities of calves due to age and 

time of weaning. Changes in blood metabolic profiles have been associated with metabolic 

disorders in humans and animals. However, the knowledge about the age- and weaning-

dependent changes in the plasma metabolic profiles of young calves are still lacking. In order 

to fill such gap of knowledge the third study was conducted as summarized in the manuscript 
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“Host metabolome and faecal microbiome shows potential interactions impacted by age 

and weaning times in calves” submitted to Animal Microbiome Journal on December 6, 2021. 
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2. DYNAMIC PROGRESSION OF THE CALF’S MICROBIOME 

AND ITS INFLUENCE ON HOST HEALTH 

 

2.1 Abstract 

The first year of a calf’s life is a critical phase as its digestive system and immunity are 

underdeveloped. A high level of stress caused by separation from mothers, transportation, 

antibiotic treatments, dietary shifts, and weaning can have long-lasting health effects, which 

can reduce future production parameters, such as milk yield and reproduction, or even increase 

the mortality of calves. The early succession of microbes throughout the gastrointestinal tract 

of neonatal calves follows a sequential pattern of colonisation and is greatly influenced by their 

physiological state, age, diet, and environmental factors; this leads to the establishment of 

region- and site-specific microbial communities. This review summarises the current 

information on the various potential factors that may affect the early life microbial colonisation 

pattern in the gastrointestinal tract of calves. The possible role of host–microbe interactions in 

the development and maturation of host gut, immune system, and health are described. 

Additionally, the possibility of improving the health of calves through gut microbiome 

modulation and using antimicrobial alternatives is discussed. Finally, the trends, challenges, 

and limitations of the current research are summarised and prospective directions for future 

studies are highlighted.  

© 2021 Amin et al. Published by Elsevier B.V. on behalf of Research Network of 

Computational and Structural Biotechnology. This is an open access article under the CC BY 

license (http://creativecommons. org/licenses/by/4.0/). 

 

2.2 Introduction 

The development of the gastrointestinal tract (GIT) in neonatal humans and animals is 

a highly dynamic process that is influenced by genetic and environmental factors, nutrition, 

and the concomitant development of the intestinal microbial communities. This is also true for 

ruminants, where the first month of life is even more challenging as the rumen is less 

developed. The rumen is the largest forestomach in ruminants and is highly important for the 

conversion of ingested feed particles into metabolites that are absorbed and utilised by the host 
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and the formation of microbial protein sources used by the animals [1]. Young ruminants are 

functionally monogastric at birth with an underdeveloped forestomach system, including the 

rumen, reticulum, and omasum. During these first months of life, the abomasum and intestines 

serve as their major digestion sites [2]. The establishment of a fully mature system requires 

the development of the reticulo-rumen and the associated microbiomes [3]. The microbial 

communities in the rumen follow a sequential pattern of colonisation with bacteria as the first 

colonisers, followed by the methanogenic archaea, anaerobic fungi, and protozoa [4–6]. 

However, studies using molecular-based techniques showed initial rumen colonisation with 

facultative anaerobic bacteria (Enterococcus and Streptococcus) in new-born calves as well as 

archaea within a few hours after birth [7,8]. A recent study by Malmuthuge et al. (2019) 

reported on rumen colonisation in neonatal calves with an active bacterial community at birth. 

The rumen of one-week-old calves were already colonised by active complex-carbohydrate-

fermenting bacterial species even in the absence of solid substrates in the diet [9]. These initial 

gut colonisers utilise the oxygen available in the gut, thus, creating an anaerobic environment 

favourable for the growth of strict anaerobic gut communities, including Bifidobacterium and 

Bacteroides [10,11]. The strict anaerobic bacterial community, including cellulolytic and 

proteolytic bacteria, together with niche specialists, establish and dominate the gut 

microbiome within the first two weeks of life [7,12–14]. 

The establishment of a strict anaerobic bacterial community in the GIT of neonates 

plays an essential role in mucosal immune system development, and is therefore, a critical 

phase for the host [15,16]. After the initial gut colonisation, constant exposure of the host GIT 

to specific microbes is necessary to maintain the host’s energy metabolism, health, and 

mucosal immune system maturation [17,18]. Once the GIT is fully mature and the climax 

microbial community is established, the intestinal microbiome is considered stable thereafter, 

except for changes in the host’s health, physiological state, and diet [19–21]. However, 

considerable differences exist in microbial community profiles in different regions of the GIT 

in ruminants [14]. Similarly, the mucosa-associated microbial communities were found to 

differ from those occupying the lumen [14,22– 25], suggesting a possible role of host–microbe 

interactions in defining such diverse microbial community structures. In this review, the 

development of microbial communities across the GIT of calves under the influence of 

maternal microbiota, age, diet, weaning, and environmental factors (antibiotics and 

pre/probiotics) (Figure 3 and Table 1), and the possible role of host–microbe interactions in 

the development of the host’s gut, immunity, and health is summarised.
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Figure 3 | Factors that influence the initial establishment and development of microbial 

communities throughout the GIT of neonatal calves. Figure created with BioRender.com. 

Table 1 | Overview of major factors that affect the initial colonization of microbial 

communities throughout the GIT of neonatal calves, host gut and immune system development. 

Sample type Calf age at the 

time of 

sampling1 

Diet1,2 Method3 Year Reference 

MATERNAL INFLUENCE 

Faeces 0, 6, 12, 24 and 

48h, 3, 7, 14, 

and 42 days 

N.D. DNA, PCR single 

strand conformation 

polymorphism 

(PCR-SSCP) of V4-

V5 region 

2012 

 

[28] 

4 days–20 days 

Faeces 24h and 7 days Colostrum: 4–6h after 

birth, followed by pooled 

cow milk 

DNA, qPCR, V3-

V4 amplicon 

sequencing 

(Illumina)  

2018 [29] 

Overall GIT 0, 1, 2, 3, 4, 5, 

7, 14, and 21 

days 

Milk replacer (MR) 

throughout the study 

DNA, V3-V4 

amplicon 

sequencing 

(Illumina) 

2018 [25] 

Faeces and 

mouth 

Faeces (0.5, 

6,12, 24, and 

48h); mouth 

(0.5h) 

Colostrum: after 0.5h till 

the end of trial 

DNA, V3, V4, V5 

amplicon 

sequencing 

(Illumina) 

2019 [30] 
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Sample type Calf age at the 

time of 

sampling1 

Diet1,2 Method3 Year Reference 

WEANING 

Rumen and 

faeces 

36 and 54 days Abrupt weaning: MR until 

day 48, reduction to 0 

within 24h; Gradual 

weaning: MR slowly 

reduced from day 36 to 

day 49; all calves had ad 

lib. access to water, starter 

and chopped straw from 

day 7 to day 54 

DNA, V4 amplicon 

sequencing 

(Illumina) 

2016 [79] 

Rumen N.D., after 

weaning 

Fresh milk: day 1 to day 7; 

half fresh milk and half 

MR until day 13; MR and 

dry feed starter till the end 

of trial; starter, grass hay 

and water were available 

ad lib. 

DNA, qPCR 2017 [80] 

Rumen and 

faeces 

5, 7, and 9 

weeks 

Ad libitum access to water, 

starter, chopped straw and 

oat straw from birth till the 

end of trial 

DNA, V4 amplicon 

sequencing 

(Illumina) 

2017 [84] 

ANTIBIOTICS 

Rectal swabs 

and faeces 

Newborn, 1, 2, 

3, 4, 5, 6, 7, 8, 

9, and 10 weeks 

Trial 1: Milk substitute 

without antibiotics or 

antibiotic containing fresh 

milk or fermented milk 

Culture-based 

assays 

1990 [143] 

Trial 2: Standard milk 

substitute, containing 

growth promoter or 

antibiotic containing milk  

Rectal swabs N.D. Colostrum: within 24h 

after birth; ad lib. milk 

with penicillin G and 

water: until day 37 

Culture-based 

assays 

2003 [144] 

Faeces N.D. Bulk milk (BM) and grain 

concentrates with or 

without oxytetracycline: 

12 weeks trial 

Culture-based 

assays and PCR for 

screening of drug 

resistance genes 

2004 [133] 

Rectal faecal 

swabs 

0, 2, 4, and 6 

weeks 

N.D. Culture-based 

assays 

2005 [145] 

Faeces 9 time points 

during first 6 

months 

Pasteurized or non-

pasteurized waste milk 

before weaning 

Culture-based 

assays 

2012 [146] 

Faeces 6, 7, and 12 

weeks 

Colostrum: within 2–6h 

after birth; MR without 

antibiotics or with 

neomycin sulfate and 

oxytetracycline 

hydrochloride antibiotics; 

all calves ad lib. access to 

starter grain from day 1; 

alfalfa hay offered post-

weaning 

DNA, qPCR, 

sequencing of target 

genes 

2012 [150] 

Faeces 2, 14, 28, and 56 

days 

Colostrum: within 2–4h 

after birth; ad lib. hay: 

from day 1; pasteurized or 

non-pasteurized (WM and 

Culture-based 

assays 

2013 [132] 
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Sample type Calf age at the 

time of 

sampling1 

Diet1,2 Method3 Year Reference 

BM): from day 3; pelleted 

calf starter: from day 8 

until day 56  

Faeces 12 days MR: from day 0 with or 

without bacitracin 

methylene disalicylate. all 

calves: ad lib. to 

concentrate from day 3 

until day 56 

DNA, V4-V6 

amplicon 

sequencing (454) 

2013 [137] 

Faeces 3, 5, and 6 

weeks 

Pasteurized hospital milk 

throughout the study. 

Water and calf starter ad 

lib. 

DNA, V1-V2 

amplicon 

sequencing (454) 

2015 [138] 

Faeces Newborn, 1, 2, 

3, 4, 5, and 6 

weeks 

Colostrum: within 4h after 

birth; raw milk without 

antibiotics or with low 

concentrations of 

ampicillin, ceftiofur, 

penicillin, and 

oxytetracycline: from day 

1 till the end of trial; 

pelleted calf starter: 

offered from day 7 until 

day 42 

DNA, V4 amplicon 

sequencing 

(Illumina) 

2016 [139] 

Faecal and 

nasal swabs 

42 days and 1 

year 

Colostrum: after birth; MR 

or WM: for 6–12 weeks 

Culture-based 

assays 

2017 [147] 

Faecal swabs 3, 35, and 56 

days 

Colostrum: within the 24h 

after birth; MR without 

antimicrobials or 

pasteurized WM with β-

lactam residues: until day 

49. all calves ad lib. water 

and textured calf starter: 

from day 1 to day 56 

Culture-based 

assays and PCR of 

antimicrobial 

resistance genes 

2017 [148] 

Faeces 0, 1, 3, and 6 

weeks 

Milk without 

antimicrobials or with low 

concentrations of ceftiofur, 

penicillin, ampicillin and 

oxytetracycline: birth till 6 

weeks of age 

DNA, and whole 

genome sequencing 

(Illumina) 

2018 [151] 

Faeces, ileum, 

colon 

35 days Colostrum: within 1h after 

birth; MR without 

antibiotics or with low 

concentrations of 

antibiotics. all calves ad 

lib. water and starter feed 

from day 4 until end of 

trial 

DNA, V3-V4 

amplicon 

sequencing 

(Illumina) 

2018 [140] 

Faeces N.D. Colostrum: within hours 

after birth; Pasteurized 

non-saleable milk: until 56 

days of age. Ad lib. water  

DNA, whole 

genome sequencing 

(Illumina) 

2019 [141] 

Rumen fluid 

and tissues 

15, 25, and 35 

days 

Colostrum: within 1h after 

birth; MR without 

antibiotics or with low 

concentrations of 

penicillin, streptomycin, 

DNA, V3-V4 

amplicon 

sequencing 

(Illumina) 

2019 [142] 
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Sample type Calf age at the 

time of 

sampling1 

Diet1,2 Method3 Year Reference 

tetracycline and ceftiofur. 

all calves ad lib. starter and 

water from day 2 until end 

of trial 

Faeces N.D. Colostrum: within 1h after 

birth; pasteurized non-

saleable milk until 56 days 

of age. ad lib. water 

Culture-based 

assays and PCR 

2020 [149] 

FEED SUPPLEMENTS 

Probiotics  

Faeces 7–35 days Trial 1: MR without or 

with B. pseudolongum / L. 

acidophilus: from day 7 to 

day 42 d; starter: from day 

14 to day 56. ad lib. water 

and dried grass  

Culture-based 

assays 

1995 [154] 

Trial 2: MR without or 

with B. thermophilum, E. 

faecium and L. 

acidophilus; ad lib. MR 

without antibiotics and 

water  

Rumen 

contents and 

faeces 

31–33 days MR until 6 weeks of age, 

afterwards a mixture of 

alfalfa pellets and sweet 

feed with ad lib. water 

throughout the trial 

Culture-based 

assays and genomic 

DNA fingerprinting  

1998 [157] 

Faeces and 

blood 

1, 3, 5, and 7 

weeks 

Non-pasteurized 

colostrum: after birth; 

acidified non-saleable 

milk: day 1 - day 56. Ad 

lib. water and calf starter 

DNA, V4 amplicon 

sequencing 

(Illumina) 

2015 

 

[155] 

Blood, and 

tissue and 

digesta of 

jejunum, 

ileum and 

colon  

Blood (1 and 

12h, 1–7 days); 

Tissue and 

digesta (1 week) 

Colostrum replacer: first 

12h; MR: from day 1 to 

day 7 with or without 

supplementation of 

Saccharomyces cerevisiae 

boulardii. Ad lib. water.  

Radial 

immunodiffusion 

analysis, ELISA, 

immunohistochemis

try, RNA and DNA, 

RT-qPCR 

2020 [159] 

Prebiotics 

Rumen fluid 

and blood 

N.D. Milk and concentrate feed 

(with or without 

cellooligosaccharides or 

kraft pulp supplements): 

from 4 weeks before 

weaning till 12- or 16-

weeks post-weaning 

DNA, qPCR 2019 [161] 

Rumen fluid 

and blood 

6.5, 7, 7.5, and 8 

months 

Ad lib. starter concentrate, 

chopped oat hay and 

water: for 1 week; oat hay 

and concentrate (3:7) with 

or without astragalus root 

extract: afterwards 

Manual assay for 

serum; DNA, V3-

V4 amplicon 

sequencing 

(Illumina) 

2020 [162] 

Dietary supplements 

Rumen 90 and 160 days  Whole milk: first 30 days; 

MR and starter concentrate 

(with or without calcium 

propionate supplement): 

DNA, V4 (bacteria) 

and V8 (archaea) 

amplicon 

2020 [164] 
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Sample type Calf age at the 

time of 

sampling1 

Diet1,2 Method3 Year Reference 

day 30 to day 90; starter 

feed: day 91 till the end of 

trial; alfalfa hay was only 

provided at day 91.  

sequencing 

(Illumina) 

Faeces and 

blood 

Faeces (1, 3, 7, 

and 14 days); 

Blood (14 days) 

Colostrum: within 1h after 

birth; Raw milk: day 2 to 

day 4; starter concentrate 

(with or without zinc 

supplement): day 4 till the 

end of trial 

ELISA, DNA, V3-

V4 amplicon 

sequencing 

(Illumina) 

2020 [163] 

HOST IMMUNE SYSTEM DEVELOPMENT 

Ileum and 

colon tissues, 

plasma, 

adrenal glands 

Plasma samples 

(72h); other 

(75h) 

 

Colostrum: immediately 

after birth. three groups: a) 

colostrum, b) whole milk, 

c) mixture of 50% 

colostrum and 50% whole 

milk: for 72 h 

RNA, qRT-PCR 

and qPCR  

 

2020 

 

[113] 

Jejunal 

mucosa 

80 days Colostrum: immediately 

after birth; acidified 

transition milk: first 3 

days; MR: day 4 until 8 

weeks of age with linear 

reduced amount during 

week 9 to 10. Ad lib. 

water, hay and concentrate 

from day 10 

RNA, Illumina 

HiSeq sequencing 

2018 [115] 

Blood, 

jejunum 

mucosa 

Blood (1, 2, 7, 

14, 21, 28, 35, 

42, 49, 56, 63, 

70, and 77 days) 

Jejunum (day 

80) 

Colostrum: within 2h after 

birth; acidified transition 

milk until day 3; MR: day 

4 until day 70. Ad lib. 

water, hay and concentrate 

from day 10 

RNA, whole 

transcriptome 

sequencing 

2018 [117] 

Rumen, 

jejunum, 

ileum, cecum, 

and colon 

3 weeks Fresh whole milk and calf 

supplement throughout the 

trial 

DNA, V1-V3 

amplicon 

sequencing (454), 

qPCR  

2014 [14] 

Mucosa of 

rumen, 

jejunum, 

ileum, cecum 

and colon  

3 weeks and 6 

months 

 

Non-pasteurized whole 

milk and calf supplement: 

first 12 weeks; alfalfa hay 

and oats: for the next 4 

months 

DNA, 

fingerprinting, 

clone libraries, 

qPCR 

2012 [119] 

HOST GUT DEVELOPMENT 

Rumen, 

jejunum and 

ileum tissues 

Newborn, 7, 21, 

and 42 days 

Colostrum: after 30 min. 

of birth; whole milk: until 

day 7; ad lib. starter: from 

day 7 until day 42 

DNA and RNA; 

Illumina RNA-

sequencing and 

qRT-PCR 

2014 [122] 

Rumen tissue 

and content 

Newborn, 1, 3, 

and 6 weeks  

Colostrum: within the first 

3 days; whole milk: day 4 

till the end of trial. Ad lib. 

starter from second week 

of life 

DNA, whole 

genome sequencing 

(Illumina), qPCR, 

RNA, transcriptome 

(host) 

2019 [9] 

1N.D. = Not defined. 

2Ad lib. = ad libitum. 

3Hypervariable regions (V1, V2, V3, V4, V5 V6 and V8) of prokaryotic 16S rRNA. 
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2.3 Early succession of microbes throughout the GIT of neonatal calves and 

maternal influence 

Birth exposes neonates to the vaginal, skin, and colostrum microbiome of the mother 

[26,27], which initiates the microbial colonisation of the neonatal GIT. The neonatal 

microbiome must undergo several modifications prior to weaning (6–12 weeks), and it may 

take a year for the establishment of a fully functional and stable GIT microbial community [7]. 

To date, only a few culture-independent studies have examined the effect of maternal sources 

on the early establishment of microbes in neonatal calves’ GIT [25,28–30]. At the genus level, 

the rectal microbiota of the new-born calves was more similar to the dam’s oral microbiota 

(39%) as compared to the microbiota on the dam’s vagina (24%) or faeces (15%), indicating 

an in-utero transfer route for the inoculation of neonatal gut microbiota [29]. However, the 

faecal microbiota during the first 48 h of calf life showed a close resemblance to the dam’s 

vaginal microbiota than other maternal sources (faeces or colostrum), indicating the possible 

transfer of microbes to the neonates via the birth canal [30]. In contrast, Yeoman et al. reported 

high similarity between the dam’s udder skin and calf’s GIT microbiota during the first three 

weeks of life [25]. The inconsistencies among these studies are probably due to differences in 

sampling sites (calf faeces vs. dam’s mouth, vagina, faeces, udder skin, or colostrum), and 

sampling time. In addition to the influence of maternal interaction/microbiome on the early 

succession of microbes throughout the neonatal calves’ GIT, the facility, farm or location 

where the calves are born and raised also reported to have a significant impact on the gut 

microbiota of Holstein dairy cows [31] as well as beef calves [32,33]. Thus, the management 

practices must be carefully considered because of their unidentified role in shaping gut 

microbial community structures besides several other factors including genetics, breed, age, 

diet and study method etc. 

 

2.4 Effect of early feeding regimen and age on the initial establishment and 

development of microbial communities in the GIT of neonatal calves 

Young ruminants are pseudo-monogastric at birth with an underdeveloped reticulo-

rumen, relying solely on a milk-based diet [2]. In pre-weaned calves, most of the liquid feed 

flows straight into the abomasum without entering the rumen; thus, the small and large 

intestines serve as their major digestion sites. The forestomach system in neonatal calves 

changes tremendously during the first year of life, with a shift in the activity of intestinal 

enzymes (lactase and maltase), which facilitates the development of the salivary apparatus, 

other digestive compartments, and rumination behaviour in calves [34–36]. In addition, rumen 
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volume increases, and rumen papillary shape and size proliferate, providing better niche 

environments for the microbial colonisation of the rumen and its subsequent functioning [37]. 

Concomitant with these morphophysiological adaptations, the changes in microbial 

composition of pre-weaned calves’ GIT are driven by the rearing environment, age, and diet 

[17,33,36,38,39]. The diet of pre-weaned calves is changed gradually from milk or milk 

replacer (MR)-based diets to solid feed within the first few weeks of their lives [40]. These 

dietary shifts seem to have prominent effects on the neonatal calf microbiome. Many studies 

have explored the effect of liquid/solid diets, including fresh or heated colostrum [41,42], 

whole milk, waste milk (WM), pasteurised waste milk (pWM) or MR [43–45], starter 

concentrate [23,46,47] and roughage [48–51], on the initial establishment of bacterial 

communities in the GIT of neonatal calves. 

 

2.4.1 Colostrum and other liquid feeds 

New-born calves are immunodeficient and depend solely on colostrum-associated 

immunoglobulins [52]. Feeding high-quality colostrum is highly recommended as it can inhibit 

the growth of pathogens, stimulate the colonisation of the small intestines with beneficial 

microorganisms [41], increase body weight gain, improve the development and function of the 

GIT, reduce the risk of diarrhoea [53] and thereby, decrease the mortality rate in calves [54]. 

However, the lack of proper hygiene practises increases the risk of colostrum contamination 

with microbes [55]; therefore, adequate heating of colostrum is recommended. Feeding heat-

treated colostrum within the first 12 h of life inhibited pathogenic Escherichia coli and Shigella, 

and increased the growth of Bifidobacterium [41,42]. The increase in Bifidobacterium was also 

observed in 51-hour-old dairy calves using a similar treatment [56]. 

After colostrum feeding, the nutrient composition of the subsequent feeding again 

defines the microbiome composition. In general, the rumen bacterial community of one- to 

three-day-old colostrum-fed calves was dominated by Proteobacteria [7,57], but as the calves 

aged and started to consume MR and starter concentrate-based diet, Proteobacteria was slowly 

replaced by Bacteroidetes in the rumen [7,12,57]. Similar to the rumen, Proteobacteria 

dominated the faecal microbiota of 24–48-hour-old calves, showing a depletion and a 

subsequent increase in Firmicutes within the first seven days of a calf’s life without any diet 

change [29,30]. Similarly, Firmicutes was the dominant phylum in the faecal microbiota of 

one- to seven-week-old calves [13]. Yeoman et al. also reported higher abundance of 

Firmicutes in the colon and faeces, while Bacteroidetes was more abundant in the rumen, 

reticulum, omasum, and abomasum within the first three weeks of a calf’s life [25]. 
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Shifting the diet of pre-weaned calves (7–28 days) from colostrum to whole milk 

increased the abundance of typical milk- utilising bacteria (Lactobacillus, Parabacteroides, 

and Bacteroides) in their rumen [47]. Feeding milk to two-week-old calves also increased the 

abundance of Ruminococcus flavefaciens, a fibrolytic bacterium in the rumen [46]. Similarly, 

a recent study by Malmuthuge et al. reported the colonisation of a whole milk-fed one-week-

old calf’s rumen with active R. flavefaciens, whose density increased with increasing age, 

suggesting the possible use of milk as a substrate for R. flavefaciens [9]. Feeding a milk-based 

diet also had prominent effects on the lower gut microbiota of pre-weaned calves as indicated 

by the high levels of the Bacteroides–Prevotella group and Faecalibacterium in the faecal 

samples of MR-fed one-week-old calves [58]. Similar levels were also reported in the colon 

samples of three-week-old whole milk-fed calves [14], indicating that faecal samples represent 

the microbiome of the large intestine in an adequate manner [14]. Similarly, Alipour et al. also 

observed a high dominance of Faecalibacterium and Bacteroides in the faecal samples of 

seven-day-old milk-fed calves [29]. 

The cost benefits of WM over whole milk and MR [59,60] and the increased use of on-

farm pasteurisers have facilitated the use of waste milk in calf feeding programmes. Feeding 

WM modified the rumen bacterial community composition by decreasing Prevotella 7 and 

increasing Butyrivibrio 2, the Rikenellaceae RC9 gut group, and Prevotellaceae UCG-003 in 

two-month-old calves [45]. The opposite was true when WM feeding was prolonged during 

the first six months, and higher abundance of Prevotella 7 and Succinvibrionaceae UCG-001 

and lower abundance of Prevotellaceae UCG-003, Rikenellaceae RC9 gut group, Selenomonas 

1, and others were observed [45]. Pasteurisation inactivates the vegetative bacterial cells, 

reduces the risk of disease transmission and mortality and improves the growth rate of calves 

[61]. A relatively high abundance of Prevotella and low abundance of Streptococcus and 

Histophilus were observed in the nasal microbiota of pWM-fed 42-day-old calves [44]. In 

addition, feeding pWM increased faecal bacterial diversity from two weeks to six months of 

age; a higher prevalence of faecal Bacteroidetes and lower prevalence of Firmicutes, and no 

Salmonella were detected in young pWM-fed calves [43]. An opposite, but non-significant, 

ratio of Firmicutes and Bacteroidetes was also found in pWM-fed calves as compared to that 

in MR-fed calves [44]. The effects of MR-compositions on faecal microbial communities were 

studied recently, and it was found that the faecal microbiota of seven-day-old calves fed with 

MR enriched with conjugated milk oligosaccharides had higher relative abundance of 

Faecalibacterium prausnitzii and Bifidobacterium species than did those consuming MR with 

high free milk oligosaccharides [62]. F. prausnitzii is a beneficial bacterium for neonatal calves 
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due to its positive correlation with body weight gain and reduced diarrhoea [13]. Furthermore, 

Yak calves reared in isolation on a standard MR-, starter concentrate-, and hay-based diet were 

found to have better organ development, growth rate, immune function, and higher abundance 

of non-fibrous carbohydrate-utilising bacterial genera [63] than the maternally nursed and 

grazed calves that had a higher abundance of fibrous carbohydrate-utilising bacterial genera 

[63,64]. Thus, the early feeding regimen shapes the microbiome structure in pre-weaned calves 

by providing different substrates for growth and establishment of various ecological niches. In 

addition, drinking water offered to the calves immediately after birth seems to have a prominent 

impact on gut microbial composition, as indicated by the increased abundances of 

Faecalibacterium and Bacteroides at two weeks and Faecalibacterium and Bifidobacterium in 

the six-week-old calves [65]. In addition, calves consuming drinking water from birth had 

higher body weight, digestibility of fibre, and feed efficiency than the calves that started to 

receive drinking water from 17 days of age [66]. 

 

2.4.2 Consumption of solid feed reshapes the gut microbiota in pre-weaned calves  

The solid feed intake begins around two to three weeks of life, which initiates the 

critical transition process leading to the establishment of a fully functional rumen. It is usually 

characterised by a constant or gradual supply of concentrate and ad-libitum hay in addition to 

milk feeding. Thus, the effects of solid feed intake should be considered as complex responses 

to enhanced starch-rich and moderate fibrous feed ingredients together. Generally, an increased 

abundance of amylolytic and fibrolytic bacteria, such as Succinovibrionaceae, 

Fibrobacteraceae, and Prevotellaceae, in the rumen microbiome has been described in almost 

all studies of this feeding period [7,46,48–50,57,67–70]. Prevotellaceae is the predominant 

family in the rumen fluid and has a broad genetic capacity to use a variety of soluble sugars, 

starch, protein, and peptides [71–73]. The enzymes involved include carbohydrate-degrading 

enzymes (CAZYmes), such as glycoside hydrolases (GH2, GH3, GH42, and GH92), which are 

detectable in pre-ruminant rumen samples [12]. The activity of amylase and xylanase has 

already been shown in two-day-old calves, even in the absence of complex dietary 

carbohydrates [74]. Thus, the presence of glycoside hydrolase activity together with the 

production of short-chain fatty acids (SCFA) reveals that the metabolically active rumen 

microbiome is established soon after birth in neonatal calves, even in the absence of solid feed. 

SCFA are important for rumen tissue metabolism, rumen papillae, and epithelium development 

[9,40] and they are absorbed into the bloodstream through the papillae and provide energy for 

calf metabolism and growth [40]. Depending on the solid feed source, changes in the pH and 
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SCFA amount and composition are observed. Forage feeding improves the ruminal 

environment by increasing rumen liquid pH [40,48], reducing the chances of subacute ruminal 

acidosis, and modifying the structure of the rumen microbiome, leading to the establishment 

of a fully functional rumen during weaning [49,75]. Furthermore, the particle size as well as 

the physical form of diet seems to influence the morphophysiological and microbial 

development of the rumen [76,77]. Feeding a ground diet to calves reduces the growth of their 

rumen papillae, lowers the pH of their rumen liquid, reduces the number of cellulose-degrading 

bacteria, and increases the number of amylose degraders [76]. This finding strongly indicates 

the potential role of effective fibre feeding for the modification of the rumen environment as 

well as the associated microbial community composition. 

The establishment of an archaeal community in the GIT of calf is important for the 

required hydrogen balance during bacterial fermentation. The dietary modifications also 

seemed to have obvious effects, and a higher abundance of Methanosphaera and lower 

abundance of Methanobrevibacter were observed in the rumen of pre-weaned calves fed a milk 

plus starter concentrate-based diet as compared to the milk-fed calves [47]. Starter concentrate 

feeding also increased the dominance of Methanomicrobiales mobile in the abomasum, 

caecum, and faeces and Methanobrevibacter in the caecum and faeces of 20-day-old calves, as 

well as decreasing the abundance of Methanococcales votae [46]. Additionally, a decrease in 

the rumen bacterial diversity, and an increase in the rumen archaeal diversity as well as fungal 

richness were observed with silage supplementation [51]. 

 

2.5 Effect of weaning age and management on microbial colonisation of the GIT in 

calves 

Among the most important factors influencing further animal development in general, 

and the forestomach system in particular, are the date (age) and strategy of weaning. The abrupt 

weaning of calves from a milk-based diet to the consumption of solid feed decreases their solid 

feed intake and average daily gain [40,78]. However, no effect of the weaning strategy (abrupt 

vs. gradual) was observed on the establishment of rumen and faecal microbial community 

composition [79], suggesting that the progressive development of the microbial community 

into a mature state occurs with age [12]. The date of weaning is an important factor in the 

development of the rumen. Weaning calves, at eight weeks of age, increased their average daily 

gain [80], and improved carcass quality, feedlot growth, and performance [81,82]. Rumen 

enzyme activity was also improved [80], probably due to a greater concentrate intake [83], 

indicating that the consumption of solid feed triggers the development of the adult-like rumen 
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bacterial community. However, calves weaned six weeks after birth abruptly shifted the ß-

diversity of their rumen and faecal microbiomes compared to the calves weaned eight weeks 

after birth [84]. This sudden change in the microbial community structure of early weaned 

calves reflects pre-mature rumen development, paralleled by their reduced growth rate [85], 

whereas gradual rumen development, [84] improved feed intake, and growth rates were 

observed when calves were weaned at eight weeks of age [85]. Thus, a balanced weaning 

management and an appropriate weaning age are important to minimise the side effects. 

Rumen fermentation activity begins with the addition of solid feed in the diet and 

concomitantly alters the microbial composition of a calf’s GIT. An increase in the abundance 

of Firmicutes and Proteobacteria and a decrease in the abundance of Bacteroidetes were 

observed in the rumen microbial community from pre- to post-weaned state [79]. Bacteroidetes 

dominated the rumen microbiota of 42-day-old [12] and two-month-old pre-weaned calves [7]. 

A similar weaning-related decrease in the abundance of Bacteroidetes and a subsequent 

increase in Firmicutes were observed, regardless of the calf’s age at weaning [84]. This 

suggests that the rumen of pre-weaned calves contains the same dominant phyla, including 

Bacteroidetes, Firmicutes, and Proteobacteria, as found in the rumen of mature post-weaned 

calves, although the abundance of these phyla varies depending on the developmental stage 

[86]. At the genus level, Prevotella dominated the rumen microbial community of both pre- 

and post-weaned calves and showed no changes in the abundance regardless of weaning age or 

strategy [79,84]. Similarly, high dominance of Prevotella in the mature rumen of two-month- 

to two-year-old cattle has previously been reported [7,12] Nevertheless, the genus level 

composition of MR-fed pre-weaned calves’ rumen showed a higher relative abundance of 

Bacteroides and Succinivibrio than did that of post-weaned calves fed a high-starch diet [79]. 

In contrast to this depletion, the abundance of Sharpea increased by weaning, making it the 

second dominant genus in the rumen of post-weaned calves [79]. The increase in starter and 

forage intake from pre- to post- weaned period [79,87] was positively correlated with the calf’s 

body weight and the abundance of Sharpea [79]. However, the abundances of Shuttleworthia 

and Dialister increased drastically in early weaned calves across weaning, while no differences 

were observed in late-weaned calves before and after weaning [84]. Dialister spp. are capable 

of degrading starch [88], and the increased abundance of Dialister in early weaned calves was 

probably due to increased consumption of starter concentrate across weaning [84]. In addition, 

early weaned calves had higher number of Fibrobacter succinogenes and Ruminococcus albus, 

with a lower number of Butyrivibrio fibrisolvens, than did late-weaned calves [80]. 

Ruminococcus abundance was positively correlated with solid feed intake and body weight 
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gain in calves [79], likely reflecting the cellulolytic capabilities of Ruminococcus species, 

which are found in the mature rumen [7,89]. Therefore, it can be speculated that as soon as the 

calf started to consume the solid feed, the bacterial community resembling the mature rumen 

is established. 

Contrary to the bacterial community of the rumen, the faecal bacterial community of 

pre-weaned calves showed a high dominance of Firmicutes being replaced by Bacteroidetes in 

post-weaned calves [79]. At the genus level, the abundance of faecal Bacteroides decreased 

due to weaning, but it remained the predominant genus in both the pre- and post-weaned state 

[79]. Furthermore, an increase in the abundance of Prevotella was observed due to weaning 

[79]. However, the abundances of the major faecal bacteria remained unaffected by weaning 

[84]. Nevertheless, an increased abundance of Ruminococcus and a decreased abundance of 

Blautia were observed in post-weaned calf faeces [79,84], likely reflecting a shift from 

intestinal to ruminal fermentation in post-weaned calves. 

Rumen carbohydrate metabolism showed an age-dependent increase between 5 and 9 

weeks, regardless of weaning. Conversely, a decline in faecal carbohydrate metabolism was 

observed from the pre- to post-weaned state [84]. Additionally, a decrease in rumen bacterial 

diversity and evenness and an increase in faecal bacterial diversity, richness, and evenness were 

observed in post-weaned calves [79]. This was probably due to the higher solid feed intake in 

the post-weaning period, resulting in a greater amount of substrates reaching the lower intestine 

[79]. Thus, the higher substrate availability and lower pH variability of the hindgut favoured 

higher bacterial diversity in the lower digestive tract of ruminants.  

 

2.6 Distinct bacterial communities are associated with the mucosal epithelium and 

luminal digesta of the GIT of calves  

The bacterial composition in the GIT of animals and humans varies among the gut 

regions, with considerable differences between the microbes associated with the epithelial 

mucosa and those occupying the luminal digesta. This is also true for calves [14,22–25] and 

adult ruminants [90]. The mucosa-associated microbial community in calves is found to have 

higher individual variation, diversity, richness, and a lower microbial load than the microbiota 

in digesta samples [17,22–24,90]. These differences are caused by variations in host 

physiological state and immunity, interactions between the symbiotic bacteria and host 

epithelium, pH, oxygen gradient, nutrient profile, and dietary transition rates [91,92]. Each of 

these factors defines the microbial colonisation potential of each site, thus resulting in site- and 

region-specific microbial community establishment. 
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Digesta-associated gut communities within the first 21 days of a calf’s life, except for 

the colon, showed a high dominance of Firmicutes [14,25], whereas a higher abundance of 

Bacteroidetes was observed in the mucosa-associated communities, except jejunal tissues, 

suggesting that the early life mucosal environment favours the colonisation by Bacteroidetes 

than Firmicutes [14]. Proteobacteria were also more abundant in the mucosa than the digesta 

samples [14,25], suggesting that the mucosa-associated Proteobacteria spp. might play an 

essential role in scavenging blood oxygen and ruminal ammonia oxidation [14]. This would 

promote an anaerobic environment for the colonisation and fermentative activities of rumen 

microorganisms [14]. Such compositional changes in the mucosa or digesta-associated 

communities were more prominent at the genus level, where Bacteroides dominated the 

digesta-associated communities in the reticulum, rumen, omasum, abomasum, caecum, and 

colon [14,25]. In contrast, the mucosa-associated bacterial communities of the rumen, ileum, 

caecum, and colon were dominated by Prevotella [14]. Moreover, the abundance of 

Escherichia exceeded Bacteroides in the mucosal samples of the omasum, abomasum, ileum, 

colon, and faeces [25]. Similar to this study, the hindgut microbiota of one-week-old calves 

showed a high dominance of mucosa-associated Escherichia-Shigella groups, indicating 

greater disease susceptibility in young calves [24]. The digesta-associated community of the 

duodenum was dominated by Lactobacillus, while Pseudomonas dominated in the mucosa 

[25]. Furthermore, the mucosa-associated communities of the jejunum showed high 

abundances of Prevotella, Pseudomonas, Acinetobacter, Rikenellaceae RC9 group, and Delftia 

[25]. The high dominance of aerobic/facultative anaerobic bacteria (Pseudomonas, 

Acinetobacter, Delftia, and Escherichia) in several mucosal samples suggests that these 

bacteria prefer gastrointestinal epithelium for growth due to higher availability of oxygen 

concentration [93]. In contrast, the jejunal digesta-associated communities were dominated by 

Sharpea, Butyrivibrio, Ruminococcus, Lactobacillus [14], Streptococcus, and Escherichia 

[25]. Sharpea spp. are capable of fermenting a vast variety of sugars [94]. Their high 

dominance in jejunal digesta of three-week-old calves is indicative of their important role in 

the fermentation of milk during early calf life [14]. 

The mucosa-associated bacterial community composition was also affected by calves’ 

age and was significantly correlated with SCFA concentrations, indicating that the host 

physiology as well as diet play a role in shaping mucosal microbial communities [24]. The 

abundance of mucosa-associated Escherichia-Shigella was negatively correlated with acetate 

concentration and the inhibition of E. coli growth was observed due to high concentration of 

acetate [95]. SCFA can also influence the turnover of intestinal epithelial cells [96], indicating 
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a possible interaction between mucosa-associated microbial communities and digesta-

associated microbial metabolites [24].  

 

2.7 Influence of host genetics on gut microbial colonisation and systemic immunity in 

neonatal calves 

In recent years, many studies have evaluated the influence of host genetics on gut 

microbiota in cattle [97–101] and the possible association of heritable gut microbes with 

nutrition and gut health in calves [102], methane emissions and feed efficiency in beef and 

dairy cattle [98,101]. Majority of these studies used animals belonging to different populations 

with variable genetic distance, age and diet, thus, masking the real influence of host genetics 

on gut microbiota. However, a recent study by Fan and colleagues reported genetic influences 

on gut microbiota based on 228 calves with linearly varying breed (Angus to Brahman), raised 

under controlled diet and environmental conditions [102]. The three-month-old pre-weaned 

calves with higher Brahman proportion harboured more butyrate-producing and fibre-digesting 

bacteria, carbohydrate metabolism genes, less opportunistic pathogenic bacteria and mucin-

degraders, lower level of primary antibody (plasma IgG1) and less weight gain than higher 

Angus proportion calves that harboured bacterial taxa rapidly involved in amino acids and 

lipids metabolism [102]. This indicates that the host genetics not only shapes the early life gut 

microbiota composition but can also have strong impact on systemic immunity, which is further 

associated with health and growth of an animal. However, the studies addressing the role of 

host genetic influence on neonatal calves’ microbiota are still very scare and needed to be 

explore further. 

 

2.8 Gut microbiota and the host immune system development 

Gut microbial communities are essential for the development of the mucosal epithelium 

and immune system of the host [18]. The mucosal epithelial cells line the upper respiratory 

tract, GIT, and uterus and are the primary responders to the microorganisms [103]. The mucosal 

immune system contains various physical and chemical barriers as well as pattern recognition 

receptors (PRRs), which enable the mucosal epithelium to coexist with its resident symbiotic 

microorganisms and provides protection against invading pathogens [104–106]. Notably, these 

signalling cascades are essential for maintaining the intestinal homoeostasis, integrity, 

antimicrobial peptide expression, and modulation of the mucosal barrier functions and immune 

responses [91,107,108]. The immune response at the mucosal surface is generally initiated by 

mucosa-associated lymphoid tissues (MALTs) [38,103]. In ruminants, the initiation of MALT 
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development occurs in utero when the microbial communities are not yet established [109]. 

These in utero MALTs are capable of initiating specific immune responses through secretory 

IgA production [110]. However, IgA+ and IgG+ cells appear in Peyer’s patches (PPs) only 

after birth due to the absence of in utero infections [109]. The complete development of 

germinal centres of PPs requires exposure to the gut microbiome [18]. In the absence of gut 

microbial exposure, the ileal PPs of new-born lambs showed pre-mature lymphoid follicle 

involution; however, when the gut microbiome was restored at four weeks, the involution was 

reversed [111]. This finding demonstrates that the gut microbiome provides signals for the 

production of a vast variety of pre-immune B cells (Figure 4A). 

 

 

Figure 4 | Mucosa-associated lymphoid tissues (MALTs) dependent activation of immune 

responses in mucosal surface of calves. A) Microfold (M) cell transport microbial antigens 

from the luminal surface to the underlying MALT cells, where they stimulate specific T- and 

B- lymphocytes, resulting in the production of dIgA by B-cells, which are translocated as sIgA 

to the apical epithelial surface. PAMPs can alter the expression of TLRs and activate host 

immunity. B) Upregulation of HTR4 and HTR2B genes expression by mucosa-associated 

bacteria. These gene codes for the serotonin receptors that regulate GLP-2 secretion by 

enteroendocrine L cells via interaction of 5-HT with serotonin receptors. C) Breakdown of tight 

junctions, transport of pathogens and activation of inflammatory responses. Abbreviations: 

PAMPs, pathogen-associated molecular patterns; dIgA, dimeric immunoglobulin A; sIgA, 

secretory immunoglobulin A; pIgR, polymeric Ig receptor; TLRs, toll-like receptors; EC cell, 

enterochromaffin cell; 5-HT, 5-hydroxytryptamine/serotonin; HTR4, 5-hydroxytryptamine 
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receptor 4; HTR2B, 5-hydroxytryptamine receptor 2B; GLP-2, glucagon-like peptide-2. Figure 

created with BioRender.com.  

In addition to the gut microbiome, diet (colostrum, intensive feeding of milk or MR), 

and environment (toxins) were also found to have a strong influence on the mucosal immune 

system development in neonatal calves [112]. Extended colostrum feeding during early life 

resulted in higher abundances of active mucosa-associated Lactobacillus and E. coli and 

upregulated the expressions of serotonin and adrenergic receptors genes in the calf’s intestines 

(Figure 4B) [113]. These receptors are involved in the regulation of glucagon-like peptide-2 

secretion by enteroendocrine L cells, which decreases the apoptosis of epithelial cells, reduces 

the motility and permeability of the gut, and increases mesenteric blood flow, intestinal growth, 

and nutrient absorption [114]. A positive correlation was observed between the abundances of 

Lactobacillus and E. coli and serotonin receptor gene expression in the colon, suggesting that 

the early feeding regimen may affect the host–microbe interactions, and thus play a critical role 

in host immune system development in new-born calves [113]. Likewise, the intensive feeding 

of milk or MR during the pre-weaning period stimulated the expression of long noncoding 

RNAs with a potential role in the synthesis of tight junction proteins in the jejunal mucosa of 

calves [115]. The tight junctions are protective mucosal barriers whose breakdown results in 

leaky gut syndrome (Figure 4C) [103,116]. In addition, it was shown that an ample supply of 

nutrients is essential for maturation of the intestinal immune system [117], suggesting that the 

pre-weaning period is critical for the development and maturation of the mucosal immune 

system in calves [39]. 

The host identifies commensal microorganisms using PRRs such as toll-like receptors 

(TLRs) [107]. Mucosa-attached bacteria can also alter the expression of TLRs [118] and cause 

PRR-dependent activation of the host immunity [14]. In contrast, pathogen-dependent 

activation of TLR signalling generally activates inflammatory responses [107]. Furthermore, 

an age-dependent decrease in mucosal TLR gene expression [119] and an increase in T 

lymphocytes such as CD3+, CD4+, and CD8+ cells in the mucosa of the jejunum and ileum of 

calves were observed [120]. Such changes may cause a decrease in the innate immunity and an 

increase in the adaptive immunity with age. This age-dependent downregulation of the innate 

immunity protects the host from harmful inflammatory responses [121]. It has been suggested 

that TLRs act as a primary mechanism of innate immunity in neonatal calves. They are 

substituted by antimicrobial-peptide-dependent innate immune mechanisms over time and 

protect the animal from unnecessary inflammatory responses [119]. Additionally, a potential 
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link between age-dependent alteration in mucosal immune mechanisms and the gut microbial 

communities was shown by the negative correlation between TLRs (TLR2, TLR6, and TLR9) 

in the mucosa of the rumen, jejunum, and caecum and the mucosa-attached bacterial population 

[119]. Moreover, the host–microbe interactions play a crucial role in the regulation of GIT 

development, as demonstrated by bovine transcriptome analyses [122]. 

A positive correlation was observed between the gene copy numbers of Lactobacillus 

or Bifidobacterium spp. and microRNAs (miRNA) expression levels. These miRNAs act as 

promoters of GIT development and include miR-15/16 (immune cells development), miR-29 

(maturation of dendritic cells), and miR-196 (lymphoid tissue development) [122]. Likewise, 

the microbial-driven transcriptional regulation of developing rumen in calves via miRNAs was 

suggested recently [9]. They identified three miRNA-mRNA pairs involved in the development 

of rumen ‘‘miR-25 and fatty acid-binding protein 7, miR-29a and platelet-derived growth 

factor a polypeptide, and miR-30 and integrin-linked kinase” [9]. 

 

2.9 Role of the microbiota in gut health and treatment strategies 

The previous sections have summarised the current knowledge about the essential co-

evolution of GIT in ruminants and the colonising microbiome. Disturbances result in an 

imbalanced symbiosis, leading to gut microbial dysbiosis which can induce several enteric 

disorders [123]. The pre-weaning period is critical due to the high susceptibility of neonatal 

calves to a vast variety of bacterial and viral infections, which cause diarrhoea (the major cause 

of death in neonatal calves) [124]. A decreased incidence of diarrhoea was correlated with a 

higher abundance of Faecalibacterium in faecal samples of one-week-old calves and in the 

large intestine of three-week-old calves [13,14,58]. F. prausnitzii promotes anti-inflammatory 

responses, maintains intestinal homoeostasis [125] and produces butyrate in the large intestine 

[13]. A high abundance of this species during the pre-weaning period may provide health 

benefits to the neonates by decreasing their susceptibility to enteric infections. More recently, 

the idea of a microbiota transplantation to stabilise the gut microbiome was applied in 

ruminants by transferring the rumen microbiome of adult animals orally to young calves. 

Although the overall microbiome structure was not affected, the incidence of calf diarrhoea 

decreased [126]. 
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2.9.1 Early life antimicrobial treatments and emergence of resistant bacterial strains in 

the calf gut 

The dairy industry relies on the use of antimicrobials to cure various diseases, resulting 

in the production of milk with residual concentrations of antimicrobials [127,128]. In addition 

to the presence of antimicrobial residues in the milk, it may contain a high number of pathogens 

and somatic cells [129]. Thus, the milk from antimicrobial-treated cows is generally used by 

the dairy industry as a feed for dairy calves [59,60]. Antimicrobials are also fed directly to the 

calves as medicated MR to increase their growth rate and prevent diseases [123,130]. 

Nevertheless, this direct or indirect exposure of neonatal calves to antimicrobials modifies their 

intestinal microbial community structure, resulting in the emergence of resistant bacterial 

strains as well as the transfer of resistance genes to other bacteria [131,132]. There is increasing 

evidence of the presence of highly resistant enteric microbes in young animals compared to 

adults [133–135], probably due to high faecal–oral transmissions and higher antimicrobial 

usage in young animals [136]. Several studies have reported the effects of antimicrobial usage 

on the gut microbial composition [137–142], the development of antimicrobial-resistant 

bacterial strains [132,143–149], genes involved in antimicrobial resistance [133,148,150], and 

antimicrobial-dependent changes in the functional profile of gut microbiota [151]. 

Feeding calves with WM containing residual antibiotics (oxytetracycline, ceftiofur, 

ampicillin, and penicillin) resulted in lower abundances of faecal Clostridium and 

Streptococcus in pre-weaned calves [139]. Similarly, when calves were fed with medicated 

MR containing tetracycline, ceftiofur, penicillin, and streptomycin, reduced abundance of E. 

coli in the ileum [140] and Prevotella in the rumen [142] was observed. However, feeding 

calves with MR supplemented with only ceftiofur reduced the abundance of Comamonas in 

the ileum [140]. Decreased abundance of beneficial bacteria (Faecalibacterium, Roseburia, 

Prevotella, and Eubacterium) and increased abundance of pathogenic bacteria (Shigella, 

Escherichia, and Enterococcus) in calf faeces were observed using the antibiotic bacitracin 

methylene disalicylate antibiotics [137]. Enrofloxacin treatment decreased the abundance of 

Bacteroides and increased the abundance of Blautia, Desulfovibrio, and Coprococcus in calf 

faeces [141]. As the concentration of residual antibiotics in the WM increases, a higher number 

of antibiotic-resistant bacterial strains emerge in the gut [144]. A higher prevalence of 

antimicrobial-resistant faecal E. coli phenotypes and the increased detection of ß-lactamase 

resistance genes in these populations was observed in WM-fed calves than in bulk milk or MR-

fed calves [132,147,148]. Feeding drug residues containing milk to the pre-weaned calves also 

resulted in lower abundance of genes involved in regulation and cell signalling, stress response 
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and nitrogen metabolism [151]. In addition, the direct treatment of calves with antibiotics may 

also result in the emergence of antibiotic-resistant bacterial strains [149]. However, other 

studies have reported that the occurrence of multi-drug resistant bacterial strains is not 

dependent on recent antimicrobial usage but rather on other environmental variables, age, and 

diet [145–147]. A decreased prevalence of multi-drug resistant faecal E. coli with increasing 

age of calves indicated that the underdeveloped digestive system of neonatal calves serves as 

an excellent niche for the growth of resistant microbes due to limited competition for resources 

[146]. However, Thames et al. reported an age-dependent increase in tetracycline resistance 

genes in calf faeces [150]. These studies suggest that the direct and indirect exposure of the gut 

of neonatal calves to the antimicrobials modifies the composition and functional profile of the 

microbiome and the development of antibiotic resistance is mainly influenced by host-specific 

factors. 

 

2.9.2 Improvement of calf gut health by feed supplements 

The use of antimicrobials to support calves’ health and to prevent or treat certain 

diseases can be avoided by using direct-fed microbes, prebiotics, and probiotics. This has been 

widely practised in order to improve gut health and productivity of livestock [152,153]. 

Supplementation of new-born calves with Lactobacillus and Bifidobacterium within the first 

seven days of life decreased diarrhoea and increased feed conversion ratio and weight gain 

[154]. Similarly, supplementation with F. prausnitzii in the first week of calf life decreased the 

calf death rate and diarrhoea [155]. Administration of Lactobacillus spp. to young calves also 

increased their serum IgG levels, suggesting a potential role of the host–microbe interactions 

in modulating calf health [156]. Apart from influencing host health, microbial manipulations 

also affect the gut microbial community structure. Feeding pre-weaned calves with probiotic 

strains decreased their intestinal colonisation with pathogenic E. coli [157]. Similarly, a 

decrease in faecal E. coli load was observed using direct-fed microbes [158]. Supplementation 

of the diet of neonatal calves with Saccharomyces cerevisiae boulardii immediately after birth 

increased the abundance of beneficial bacteria (F. prausnitzii and Lactobacillus) in the 

intestinal microbiota, as well as increasing the concentrations of endogenous secretory IgA, 

thus enhancing immunity and intestinal homoeostasis of calf GIT [159]. Feeding heated 

colostrum soon after birth benefited young calves with increased colonisation with 

Bifidobacterium and decreased colonisation with E. coli in the small intestine, suggesting the 

potential role of colostrum as a natural prebiotic associated with reduced risk of diarrhoea 

[41,53]. Prebiotics supplementation immediately after birth was found to have more prominent 
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effects than supplementation at a later stage. Higher abundances of Bifidobacterium and 

Lactobacillus were detected in the colon of two-week-old than in four-week-old calves fed 

with galactooligosaccharides [160]. Supplementation of grazing calf diet with 

cellooligosaccharides decreased the proportions of archaea at weaning and Fibrobacter within 

the first four weeks post-weaning. In contrast, an increase in Fibrobacter was detected using 

kraft pulp as prebiotics at four weeks post-weaning [161]. Addition of astragalus root extract 

in the diet of early weaned calves at a dose of 2% dry matter intake, increased the body weight, 

average daily gain, serum concentrations of interleukin-2 (IL-2), IgG, superoxide dismutase, 

and the abundance of fibrolytic bacteria [162]. Increasing the dose of astragalus root extract to 

5% and 8% dry matter intake fortified these effects [162]. Supplementation of calf diet with 

zinc oxide (104 mg/d) effectively reduced the incidence of diarrhoea from days 1–3, increased 

the abundance of beneficial Faecalibacterium and Lactobacillus within the first seven days of 

life and improved the immunity by increasing the concentrations of serum immunoglobulins 

(IgM and IgG) [163]. However, when zinc methionine (457 mg/d) was supplemented, a 

prolonged reduction in diarrhoea was observed from days 1–14, and increased abundances of 

Faecalibacterium and Collinsella (day 7), and Ruminococcus (2 weeks) were detected [163]. 

These results suggest the essential role of zinc in the treatment of neonatal calf diarrhoea. In 

addition, calcium propionate supplementation increased the body weight and decreased the 

relative abundance of Bacteroidetes in both pre- and post-weaning groups, but increased 

Proteobacteria (Succinivibrionaceae) and Methanobrevibacter only the post-weaning group 

[164]. These studies suggest that microbial manipulations are easier to perform during early 

life, and these effects may persist longer when manipulations are performed in early life of 

animal. 

 

2.10 Summary and outlook 

Understanding the pattern of microbial succession throughout the GIT of pre-weaned 

calves is essential as it influences the development and maturation of the host gut, immune 

system, and health. The microbial colonisation of the GIT of neonatal calves begins during the 

birthing process or even in utero, but the microbial community structure changes rapidly within 

the first few weeks of life and is strongly affected by the genetic background, rearing 

environment, early life antibiotic treatments, age and feeding conditions. The majority of the 

studies reported the early life microbial succession patterns using DNA-based methods without 

any information about the viability, genetic potential (metagenomics), or even gene or protein 

expression (metatranscriptomics and metaproteomics) of the detected microbial communities. 
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Thus, there is still a lot to understand the underlying mechanisms of the possible interactions 

between the gut microbial communities and their mammalian host. In addition, the results 

obtained by various DNA-based studies are limited by different sample types and locations, 

extraction methods, gene regions being sequenced, sequencing methods, sequence depth, and 

the pipeline used for the analysis. In addition to the region-specific establishment of microbial 

communities along the GIT of calves, the microbiota associated with the epithelial mucosa was 

clearly different from those occupying the luminal digesta and had a potential role in host 

immune system development [113]. Thus, to better understand the host– microbe interactions, 

a thorough knowledge of microbial segregation between mucosal epithelium and luminal 

digesta throughout the pre-weaning period is of utmost importance. In the future, genome-wide 

association studies should be conducted to track the possible associations between host single 

nucleotide polymorphisms and the abundances of commensal bacterial taxa. Furthermore, 

more emphasis should be placed on the microbial dysbiosis caused by in-feed antimicrobials 

and the possibility of using the gut microbiome, prebiotics, and probiotics as antimicrobial 

substitutes. In addition to the control of neonatal calf diseases using antimicrobial alternatives, 

one can also predict the onset of diseases based on early life gut microbiota composition, and 

the predictive modelling approach was recently suggested by Ma et al. [165]. The combination 

of collecting big data with machine learning algorithms can support the establishment of 

prediction tools for output targets or disease outbreaks, and helps to design preventive 

treatment strategies (Figure 5). We conclude by mentioning that future studies must focus on 

the ecologic as well as metabolic activity of the detected microbiome based on advanced 

machine learning and prediction modelling approaches. 

 

 

 

Figure 5 | Combination of big data repositories with machine learning algorithms to create 

prediction tools for sustainable animal productions strategies. 
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[30] Klein-Jöbstl D, Quijada NM, Dzieciol M, Feldbacher B, Wagner M, Drillich M, et al. 

Microbiota of newborn calves and their mothers reveals possible transfer routes for 

newborn calves’ gastrointestinal microbiota. PLoS ONE 2019;14:e0220554. 

 

[31] Indugu N, Vecchiarelli B, Baker LD, Ferguson JD, Vanamala JKP, Pitta DW. Comparison 

of rumen bacterial communities in dairy herds of different production. BMC Microbiol 

2017;17:190. 

 

[32] Weese JS, Jelinski M. Assessment of the fecal microbiota in beef calves. J Vet Intern Med 

2017;31:176–85. 

 

[33] O’Hara E, Kenny DA, McGovern E, Byrne CJ, McCabe MS, et al. Investigating temporal 

microbial dynamics in the rumen of beef calves raised on two farms during early life. 

FEMS Microbiol Ecol 2020;96:203. 

 

[34] Baldwin RL, McLeod KR, Klotz JL, Heitmann RN. Rumen development, intestinal 

growth and hepatic metabolism in the pre- and postweaning ruminant. J Dairy Sci 

2004;87:E55–65. 

 

[35] Guilloteau P, Zabielski R, Blum J. Gastrointestinal tract and digestion in the young 

ruminant: ontogenesis, adaptations, consequences and manipulations. J Physiol 

Pharmacol 2009:37–46. 

 

[36] Khan MA, Bach A, Weary DM, von Keyserlingk MAG. Invited review: transitioning from 

milk to solid feed in dairy heifers. J Dairy Sci 2016;99:885–902. 

 

[37] Li RW, Sparks M, Connor EE. Dynamics of the rumen microbiota. In: Li R, editor. 

Metagenomics and its applications in agriculture. New York, NY: Nova Science 

Publishers; 2011. p. 135–64. 
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3. EVOLUTION OF RUMEN AND ORAL MICROBIOTA IN CALVES 

IS INFLUENCED BY AGE AND TIME OF WEANING 

 

3.1 Abstract 

3.1.1 Background 

The rumen bacterial communities are changing dynamically throughout the first year 

of calf’s life including the weaning period as a critical event. Rumen microbiome analysis is 

often limited to invasive rumen sampling procedures but the oral cavity of ruminants is 

expected to harbour rumen microbes due to regurgitation activity. The present study used 

buccal swab samples to define the rumen core microbiome and characterize the shifts in rumen 

and oral microbial communities occurring as result of calf’s age as well as time of weaning. 

 

3.1.2 Results 

Buccal swab samples of 59 calves were collected along the first 140 days of life and 

compared to stomach tubing sample of the rumen at day 140. Animals were randomly divided 

into two weaning groups. Microbiota of saliva and rumen content was analysed by 16S rRNA 

gene amplicon sequencing. Our study showed that most rumen-specific bacterial taxa were 

equally observed in rumen samples as well as in the buccal swabs, though relative abundance 

varied. The occurrence of rumen-specific OTUs in buccal swab samples increased 

approximately 1.7 times from day 70 to day 140, indicating the gradual development of rumen 

as calf aged. The rumen-specific bacterial taxa diversity increased, and inter-animal variations 

decreased with age. Early weaning (7 weeks of age) rapidly increased the rumen microbial 

diversity from pre- to post-weaned state. Rumen microbiota of early-weaned calves seemed to 

have a suppressed growth of starch- and carbohydrate-utilizing bacteria and increased fibre 

degraders. Whereas, in late-weaned calves (17 weeks of age) no impact of dietary 

modifications on rumen microbiota composition was observed after weaning. Oral-specific 

bacterial community composition was significantly affected by calf’s age and time of weaning. 

 

3.1.3 Conclusions 

The present study showed the significant impact of calf’s age and weaning on the 

establishment of rumen- and oral-specific bacterial communities utilizing buccal swab 

samples. The results emphasize the possibility of using buccal swab samples as a replacement 

of complex stomach tube method for large-scale predictive studies on ruminants. For in-depth 
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rumen microbiome studies, the time of sampling should be carefully considered using an active 

phase of regurgitation. 

 

3.2 Background 

Dairy calves have an immature gastrointestinal tract (GIT) at birth, with a non-

functional rumen [1]. The rumen proportions are relatively smaller than in adult cows and lack 

some major functional components (i.e., rumen wall villi), which are essential for nutrient 

absorption [1]. During the first 3 weeks of life, milk is the major component of diet, which is 

directly carried by an oesophageal groove into the abomasum without entering the rumen [1]. 

Therefore, the rumen contribution to nutrient digestion, absorption and generation of energy-

rich substrates are marginal in young calves than in more advanced developmental stages. 

The pre-weaning stage is a crucial period for the development of GIT and immune 

system in calves. The consumption of solid food as “starter feed” begins around second to third 

week of life. The highly palatable starter feed rich in rapidly fermentable carbohydrates triggers 

the growth and establishment of rumen microbiota, especially starch-degrading bacteria. The 

increase in fermentation products and microbial biomass result in structural and physiological 

modifications of rumen characteristics [2, 3], with subsequent establishment of a fully 

functional rumen and adult-like microbiota near weaning [4]. 

Several negative impacts of stressful weaning transition on animal feed intake and 

growth have previously been reported [5]. Weaning calves at 6 weeks of age rapidly shifted 

their rumen and faecal microbiome beta-diversity [6] and reduced their growth rate during 

weaning as compared to the late-weaned calves [7]. On the contrary, weaning calves at 8 weeks 

of age gradually shifted the beta-diversity, indicating a gradual increase in starter concentrate 

consumption and a progressive rumen development as compared to the early-weaned calves 

[6]. The premature weaning can increase the death rate in calves and delayed weaning could 

lead to increase feed cost and growth retardation of animal’s digestive organs, thereby, 

affecting productive performance of animals during maturity [8]. However, these effects can 

be minimized by careful consideration of weaning age of an animal, to ensure better intestinal 

and ruminal maturation before weaning [7]. 

The ruminal microbiome is non-static and changes continuously with diet [9, 10], host 

breed [11], age [12], as well as sampling time and location [13]. Moreover, inter-animal 

variations in rumen microbial community composition on a defined diet could be observed due 

to animal history, body condition and post-feeding sampling time, thereby, a larger sample size 

is needed to obtain ample statistical power. The majority of rumen sampling procedures in 
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practice are invasive procedures such as rumenocentesis [14], oral intubation and rumen 

cannulation [15], which are not only unpleasant for the health and welfare of an animal but are 

also impractical for large scale animal sampling campaigns. Thus, the identification of more 

efficient, non-invasive, extensive rumen sampling procedure is needed for rumen microbiome 

studies. 

Ruminants possess regurgitation activity that enables them to bring ruminal contents 

back to the mouth for chewing partially digested plant material [1]. Therefore, it is highly 

expected to obtain good representation of particle- and liquid-associated microbiota of the 

rumen utilising the buccal swab samples [16]. The concept of buccal fluid sampling as 

replacement of invasive rumen sampling procedures has already been tested in sheep fed on 

four different diet [16], and cows fed on grass silage-based diets with or without lipid 

supplementation [17]. However, for practical implication of the proof of concept, large scale 

non-invasive animal studies are needed. In the present study, buccal swab samples were 

collected using sterile cotton wool swabs at five different time points from 59 female Holstein 

calves weaned at 7 or 17 weeks of age. Bacterial communities of buccal swab samples were 

compared with rumen samples collected by stomach tubing from same animals at the end of 

experiment. The shifts in rumen and oral microbial communities occurring as a result of calf’s 

age as well as the time of weaning were also characterized. 

 

3.3 Results 

3.3.1 Characterization of feed intake pattern in relation to saliva sampling scheme 

The microbial composition of buccal swabs is related to feed intake pattern, such as 

proportions of milk replacer (MR), concentrate feed (C) and roughage intake. The pattern of 

MR and C intake was similar for both weaning groups until day 28 when weaning was initiated 

for early-weaned (earlyC) group and there were no significant differences in intake amounts 

(122–133 g DM/day). While the late-weaned (lateC) group was maintained at a constant MR 

level of approximately 1300 g DM/day and continued to increase C intake until 2 kg was 

reached at day ~ 70, the MR intake of the earlyC group was gradually reduced until day 42. At 

this time, the C intake level of earlyC was similar to the lateC group. From day 42 onward, the 

earlyC group was fed a TMR. However, the intake level could not be recorded due to technical 

reasons. Saliva samples were taken at days 42, 70, 98, 112 and 140. Due to some technical and 

health-related issues, there was no access to all animals of the herd at each time point. In 

addition, some of the calves’ samples had to be removed during bioinformatic analysis due to 

poor sequence quality and low read counts. Thus, the final number of buccal swab (BS) samples 
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used for the data analyses were: 11 (day 42), 26 (day 70), 51 (day 98), 51 (day 112), and 47 

(day 140). Forty-seven samples were available from rumen (R) at day 140. 

 

3.3.2 Comparison of rumen and salivary bacterial communities of different age group 

calves 

Amplicon sequencing of BS and R samples revealed 17,716 ± 1590 mean read counts 

per sample for stomach tubing and 21,014 ± 2014 for BS samples and a total of 4906 unique 

bacterial operational taxonomic units (OTUs) were obtained. Bacterial communities in samples 

collected by stomach tubing clustered separately from those in samples collected via buccal 

swabs (Figure 6a). Analysis of similarity revealed significant differences between sampling 

methods (stomach tubing vs. buccal swabbing; p < 0.001; R = 0.38; ANOSIM) as well as the 

calves age groups (p < 0.001; R = 0.37; ANOSIM). This was due to high relative abundances 

of potential oral bacterial taxa in the BS samples. Exclusion of OTUs related to oral bacteria 

was done by using a previously described mathematical filtering approach [16]. According to 

this approach, all the bacterial genus-level taxa with maximum relative abundance of ≥1% 

(arbitrary cut-off) in BS samples as compared to any sample collected by stomach tubing were 

classified as “true” oral bacteria. This resulted in an oral-specific (OS) dataset of 1190 OTUs 

corresponding to 141 genera as potential oral bacteria. The rumen-specific (RS) dataset 

included 3479 OTUs, where 29 genus-level taxa were grouped as potential rumen bacteria. The 

OS-taxa excluded with the mathematical filtering approach made up 36.0, 66.2, 65.0, 53.2 and 

57.1% of the total bacterial communities of the day 42, 70, 98, 112 and 140 BS samples, 

respectively. In addition, the bacterial taxa with maximum relative abundance of < 1% in all of 

the BS and R samples (237 OTUs corresponding to 104 genus-level taxa) were classified as 

rare taxa (Additional file 2: Table S8.1 and S8.2). The rare taxon accounted for a maximum of 

0.01–0.97% contribution to the total bacterial community across all samples, thus considered 

not important for the study and eliminated from further analysis. 

Following normalization of the 29 potential RS genus-level taxa to account for a total 

of 100% in each sample, analysis of beta-diversity revealed better clustering of samples by 

calves age groups (p < 0.001; R = 0.31; ANOSIM) rather than by the sampling method used (p 

= 0.032; R = 0.07; ANOSIM) (Figure 6b). 
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Figure 6 | Principal coordinates analysis plots depicting the distribution of bacterial 

communities in 233 samples collected via two different sampling methods (buccal swabbing 

(BS) and stomach tubing (R)) from different age group calves, without exclusion (a) or after 

exclusion (b) of potential oral taxa by mathematical filtering approach. Each point represents 

one sample. Different age groups are indicated by different coloured triangles. 

 

3.3.3 Effect of calves age on rumen-specific microbiota 

The effect of calves age on RS microbiota was analysed without taking into 

consideration the time of weaning. There was a significant effect of calves age (p < 0.01) on 

RS bacterial diversity, as indicated by a significant gradual increase in alpha-diversity from 

3.91 (day 42BS) to 4.27, 4.36 and 4.50 at days 98, 112 and 140 BS samples, respectively 

(Additional file 1: Figure S1). In addition, the inter-animal variations decreased with calves 

age as indicated by a lower spread of Bray-Curtis values in older animals (Figure 6b). An 

increased within-group similarity from 9.6% at day 70 to 18.9% at day 140 (Additional file 1: 

Figure S7), as well as higher number of shared RS-OTUs with animal age (Additional file 1: 

Figure S2) were observed. However, exception was observed for day 42 BS samples, which 

showed a higher within group similarity (15.0%) compared to the BS samples of all other time 

points. This was probably due to the low sample number (n = 8) compared to the other time 

points (n = 24–48) as well as the influence of feed intake. At this time point, milk replacer 

(MR) intake in earlyC animals was low, whereas the C intake level of earlyC was similar to 

the lateC group. Thus, the overall feed composition was similar consisting predominantly of 

MR and C. However, at days 70 and 98, the two weaning groups clearly had different dietary 
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conditions. While, at day 112 and 140, both weaning groups started to receive the comparable 

dietary ration, thus, resulting in increased within-group similarity in older animals. 

Calves age significantly modified the RS bacterial community composition as indicated 

by a decrease in relative abundance of phylum Actinobacteria (p < 0.001) and an increase in 

Bacteroidetes (p < 0.001), candidatus Saccharibacteria (p < 0.001), Fibrobacteres (p < 0.019), 

Proteobacteria (p < 0.015), and SR1 (p < 0.001) with age of calves (Additional file 1: Figure 

S3a, Additional file 2: Table S1). At genus-level, a continuous significant decrease in relative 

abundances of genera Olsenella, unclassified Prevotellaceae, unclassified Lachnospiraceae, 

and a subsequent significant increase in unclassified Bacteroidetes, unclassified Bacteroidales, 

unclassified Saccharibacteria genera incertae sedis, Fibrobacter, Ruminobacter, and 

unclassified SR1 genera incertae sedis from days 42–140 was observed (Additional file 1: 

Figure S3b, Additional file 2: Table S1). 

In addition to the calves age, sampling method also significantly affected the RS 

bacterial community composition as indicated by high relative abundances of genera: 

unclassified Saccharibacteria genera incertae sedis, unclassified Clostridiales, unclassified 

Ruminococcaceae, unclassified SR1 genera incertae sedis, and lower relative abundance of 

unclassified Prevotellaceae in rumen samples as compared to the BS (Additional file 1: Figure 

S3b, Additional file 2: Table S1). 

The developing calves’ rumen core microbiome was defined at the described 

circumstances of housing and feeding conditions based on BS samples collected from 70 to 

140-day-old calves (irrespective of weaning time), as the microbiota of 6–12-week-old calves 

resembled more closely to the adult-like microbiota rather than early developmental stages 

[18]. A total of 3425 unique RS-OTUs were defined in this time period showing varying 

numbers at the single time points. The occurrence of RS OTUs in BS samples increased with 

age of calves from 726 OTUs (day 70) to 1243 OTUs (day 140), indicating the gradual 

development of rumen and its microbiome. Out of this, 614 RS-OTUs were defined as “core 

bacterial OTUs” commonly found in day 70BS, day 98BS, day 112BS, day 140BS and day 

140R samples (Additional file 1: Figure S2). These core OTUs were taxonomically associated 

to 8 bacterial phyla and 27 genus-level taxa, with 331 OTUs assigned to Bacteroidetes, 196 

OTUs to Firmicutes, 19 OTUs to Actinobacteria, 14 OTUs to candidatus Saccharibacteria, 10 

OTUs to Proteobacteria, 9 OTUs to Fibrobacteres, 7 OTUs to SR1, 2 OTUs to Tenericutes 

and 26 OTUs were assigned to an unknown bacterial phylum (Additional file 2: Table S2). 

In scatter plots, the relative abundances of 29 RS bacterial genus-level taxa from BS 

samples of five age group calves (days 42, 70, 98, 112 and 140) were compared individually 
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with day 140 rumen samples and the strength of similarity among sample types was assessed 

based on overall Spearman correlation coefficient (Figure 7). BS samples collected from 140-

day-old calves were most similar (R = 0.73), while the ones collected from other age group 

calves were less similar (R = 0.63–0.69) with the rumen bacterial composition. In addition, an 

overall high correspondence was observed between all BS samples regardless of calves age, 

with R-value ranging between 0.68–0.78. The extent to which the BS samples collected at day 

140 reflected the rumen microbial community composition at the same time point was assessed 

using a Mantel test. The BS Bray-Curtis dissimilarity matrix had a significant relationship with 

the rumen Bray-Curtis dissimilarity matrix (Mantel statistic R = 0.28, p < 0.001) meaning that 

samples which became more dissimilar in terms of RS microbial community composition in 

BS samples also became more dissimilar in terms of microbial community composition in R 

(Additional file 2: Table S9). The fitness of the BS-RS approach in reflecting the rumen 

microbiome composition was further elucidated based on Spearman correlation coefficient 

between the OTUs relative abundance along the d140R samples with its abundance over the 

RS portion of the d140BS samples yielding an average R-value of 0.21 (Additional file 1: 

Figure S8). 

 

Figure 7 | Scatter plots for analysis of differences in the relative abundances of each RS 

bacterial taxon, among sample types. The circles (o) are representing RS bacterial taxon in R 
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and BS samples. The same animals were compared among sample types: a total of 36 animals 

(day 140R vs. day 140BS), 36 animals (day 140R vs. day 112BS), 35 animals (day 140R vs. 

day 98BS), 19 animals (day 140R vs. day 70BS) and 6 animals (day 140R vs. day 42BS). 

Spearman correlation coefficients (R-values) are indicated. Correlation in terms of microbial 

taxa abundance between d140R vs. d140BS is illustrated in the upper left corner highlighted 

with a light blue background. Grey dots represent RS samples and blue dots represent BS 

samples. 

 

3.3.4 Effect of weaning time on rumen-specific microbiota in calves 

In addition to the calves age, the RS bacterial communities in BS samples were also 

affected by the time of weaning, as indicated by separate clustering of RS bacterial 

communities of earlyC and lateC groups specifically during days 70 and 98 (Figure 8). Analysis 

of similarity (ANOSIM) revealed significant differences between weaning groups at days 70, 

98 and 112 (Additional file 2: Table S3).  

 

 

 

Figure 8 | Principal coordinates analysis plots depicting RS bacterial communities in BS 

samples of earlyC and lateC groups. Each triangle represents one sample. 
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Significant differences were also observed in bacterial diversity (Shannon index; p 

< 0.001). EarlyC had higher taxa diversity with a rapid increase from pre- to post-weaning 

period compared to the lateC group. However, the lateC group only showed a gradual increase 

in taxa diversity with calves age without any prominent impact of weaning (Figure 9). 

 

 

 

Figure 9 | Shannon index of RS bacterial communities in BS samples of different weaning 

groups of calves. Different weaning periods within each age group are shown by different 

colours. 

 

Comparing the RS bacterial community composition of earlyC group with the same 

day-old lateC group, no significant effects of weaning time were observed at the phylum-level 

(p > 0.05) (Additional file 2: Table S4). Nevertheless, at the genus-level, earlyC group showed 

significant higher relative abundance of genus unclassified Clostridia (p = 0.002) at day 70 as 

compared to the same day-old lateC group. In contrast, lateC group showed a significant higher 

relative abundance of genus Olsenella (p < 0.001) and lower relative abundances of 

unclassified Bacteroidetes and Butyrivibrio at day 98 as compared to the same day-old earlyC 

group. No significant differences were observed between RS bacterial communities of weaning 

groups at days 42, 112 and 140 (Figure 10, Additional file 2: Table S4). 
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Figure 10 | Average relative abundances of RS bacterial genus-level taxa in BS samples of 

different weaning groups of calves. Each bar represents an average value for animals at each 

age group-weaning period combinations: day 42BS (6 & 5 animals), day 70BS (11 & 12 

animals), day 98BS (25 & 21 animals), day 112BS (21 & 23 animals) and day 140BS (24 & 

18 animals) for earlyC and lateC groups respectively. Only taxa that showed significant 

differences (p ≤ 0.05) between the two weaning groups in a given sampling day are indicated. 

 

3.3.5 Effects of calves age and time of weaning on oral-specific microbiota 

The effects of calves age and time of weaning on OS microbiota were analysed 

separately. Following normalization of the 141 potential OS genus-level taxa to account for a 

total of 100% in each sample, analysis of beta-diversity revealed minor age-related clustering 

of the OS bacterial communities of calves (p = 0.001; R = 0.11; ANOSIM) (Additional file 1: 

Figure S4A). At phylum-level, a significant decrease in relative abundance of Fusobacteria (p 

= 0.014) and a subsequent significant increase in Proteobacteria (p = 0.048) with age of calves 

was observed (Additional file 1: Figure S4b, Additional file 2: Table S5). At genus-level, an 

age-dependent decrease in relative abundances of unclassified Flavobacteriaceae, unclassified 

Porphyromonadaceae, Corynebacterium, Acidaminococcus, Roseburia, Anaerostipes, 

Bacteroides, Actinomyces, Selenomonas, Blautia, and Ruminococcus 2 were observed. Some 

of these genera (Bacteroides, Actinomyces, Selenomonas, Blautia, and Ruminococcus 2) were 
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highly abundant at day 42 as compared to the BS samples of other time points and it was 

probably not related to calf’s age or weaning rather an effect of low sample number at this 

specific time point. In addition, few OS genera also showed increased abundances with age 

such as Acinetobacter, Burkholderia, Rhizobium, Arthrobacter, Aerococcus, Variovorax and 

Clavibacter (Additional file 1: Figure S5, Additional file 2: Table S5). 

Weaning affected the OS microbiome mainly at days 70 and 98 of calf’s life, as 

indicated by separate clustering of OS bacterial communities of earlyC and lateC groups during 

respective days (Figure 11, Additional file 2: Table S3). Both calves age and time of weaning 

were found to have no significant impact on OS bacterial diversity (Shannon index; p > 0.05, 

Additional file 1: Figure S6).  

 

 

 

Figure 11 | Principal coordinates analysis plots of OS bacterial communities in BS samples of 

earlyC and lateC groups. Each triangle represents one sample. 

 

Comparing the OS bacterial community composition of the two weaning groups, earlyC 

group showed a significant decrease in relative abundance of phylum Fusobacteria at day 98 

as compared to same day-old lateC group and the relative compositions of other OS-phyla 

remained unaffected by the time of weaning (Additional file 2: Table S6). Nevertheless, 

weaning time clearly influenced the OS bacterial community composition at the genus-level, 
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where the earlyC group had significantly higher abundances of genera Sphingobacterium (days 

42–70), Kurthia (day 70), and lower abundances of genera Dialister (day 42), 

Acidaminococcus (day 70), unclassified Lactobacillales (day 98), unclassified 

Porphyromonadaceae and unclassified Leptotrichiaceae (days 70–98), and unclassified 

Streptococcaceae (days 42–98) as compared to the same day-old lateC group. No significant 

differences were observed between OS bacterial communities of weaning groups at days 112 

and 140 (Figure 12, Additional file 2: Table S6). 

 

 

Figure 12 | Average relative abundances of OS bacterial genus-level taxa in BS samples of 

different weaning groups of calves. Each bar represents an average value for animals at each 

age group-weaning period combinations: day 42BS (4 & 4 animals), day 70BS (11 & 13 

animals), day 98BS (27 & 21 animals), day 112BS (21 & 20 animals) and day 140BS (24 & 

16 animals) for earlyC and lateC groups respectively. Only taxa that showed significant 

differences (p ≤ 0.05) between the two weaning groups in a given sampling day are indicated. 

 

3.4 Discussion 

The progressive development of rumen to mature state occurs with age and the 

transition phase at weaning [6]. The start of solid food intake initiates ruminal fermentation 

processes which greatly modifies the rumen microbial community composition. In the present 

study, we defined the rumen core microbiome using BS samples and then characterized the 
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shifts in rumen and oral microbial communities occurring as result of calf’s age as well as the 

time of weaning. Obtaining rumen samples via stomach tubing is usually a laborious and 

technically challenging procedure [19]. It is a stressful event for the animals and can have 

negative impacts on animal health. Therefore, rumen fluid samples from the young calves (days 

42, 70, 98 and 112) were not collected in our study. On the contrary, collection of BS samples 

from oral cavity of an animal is a less time consuming, non-invasive method and can possibly 

be used as a replacement of complex stomach tube method to study rumen microbiota [16, 17]. 

Many previous studies characterized the rumen microbial communities of pre-ruminant calves 

using sacrificed animals, with the limitation of long-term monitoring of single animal [18, 

20,21,22]. This can be circumvented with the use of BS, as it replaces the need to sacrifice the 

animals and enables the monitoring of animals across their entire life span, without having any 

harmful impact on animal’s health due to repeated non-invasive sampling procedures. In the 

present study, the major RS bacterial taxa observed in the stomach tube samples were also 

detected in the BS samples, though relative abundances varied. Exceptions were 

Anaeroplasma, Fibrobacter, Ruminobacter, unclassified candidatus Saccharibacteria and 

unclassified Elusimicrobiales that were absent in the BS samples of 42-day-old calves, which 

is in agreement with other studies that reported these bacterial taxa to be very low abundant or 

totally absent in the rumen of 2 months old calves [12, 23]. Moreover, the occurrence of RS-

OTUs in BS samples increased approximately 1.7 times from day 70 to day 140 independent 

of the time of weaning, indicating the gradual development of rumen as calf aged. In general, 

the BS samples of 140-day-old calves showed high overall correspondence and similar 

bacterial taxa diversity to the stomach tubing samples collected at the same day. Besides the 

valid representation of rumen microbiota, OS bacterial taxa were also identified. As the time 

passes between the regurgitation activity and sampling, the amount of typical oral bacteria 

increases in the buccal swabs [16]. Therefore, the dataset was filtered to remove these oral 

bacterial taxa using a mathematical filtering approach [16], that resulted in a clear clustering 

of bacterial communities by calf’s age or time of weaning rather than by sampling method 

used. 

In the present study, hay (ad libitum) and concentrate feed (max. 2 kg/day) were 

available for the calves throughout the experimental period [24], thus it could be suggested that 

rumen fermentation processes have already started prior to weaning. Calf’s age affected the 

diversity of RS microbiome as shown by an increase in taxa diversity and a decrease in inter-

animal variation with age. Our results are in agreement with a recent study on age-dependent 
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shifts in gut communities of dairy cows, showing lower beta-diversity and a higher alpha-

diversity with age [18]. 

Weaning also affected the bacterial diversity in the rumen. Early weaning (7 weeks of 

age) rapidly increased the microbial diversity from pre- to post-weaned state (days 42–70) 

proven by a similar diversity in more mature age (days 98–140). Such an abrupt shift in 

microbial diversity of earlyC group reflects the sudden alteration in the source of nutrients for 

calves, paralleled by an overall reduced growth of earlyC compared to the lateC group [24]. A 

Spearman correlation analysis also showed strong positive correlations between bacterial 

alpha-diversity and body length (R = 0.58; p = 0.048) only during day 70 in lateC group 

(Additional file 2: Table S7). Conversely, lateC group (17 weeks of age) showed a gradual 

increase in microbial diversity with age rather than weaning, indicating age-dependent gradual 

increase in intake of concentrate [24], and perhaps progressive development of rumen as 

compared to the earlyC group. Overall, lateC group showed lower microbial diversity than 

earlyC from day 70 to day 112 and this was perhaps due to consumption of high amount of 

concentrate feed (starch) in lateC group prior to weaning. A reduction in rumen bacterial 

diversity was previously observed with dietary starch addition in Holstein cows [25] and was 

suggested to be linked to an improved feed efficiency in dairy cows [26]. 

Changes in diversity were correlated to phylogenetic modifications. The relative 

abundance of phylum Actinobacteria decreased, while Bacteroidetes, candidatus 

Saccharibacteria, Fibrobacteres, Proteobacteria, and SR1 increased with age of calves. 

However, the time of weaning did not modify the rumen bacterial composition at the phylum-

level. The genus-level composition showed that the dominant genera belonging to 

Actinobacteria namely Olsenella was affected by both calves age as well as time of weaning, 

as indicated by a significant decrease in its relative abundance with age and lower relative 

abundance in earlyC group as compared to the lateC group. Actinobacteria were described to 

be dominant in newborn calves exclusively fed with colostrum and showed an age-dependent 

decrease and compositional change in older animals [12]. This verified their role as early 

colonizers of neonate’s gut and their importance for the conversion of milk components. In 

addition, they are related to the consumption of starch to produce lactic acid [27] and Olsenella 

ferments carbohydrates to produce lactic, formic and acetic acid [28]. A decrease in Olsenella 

abundance with dietary forage inclusion was recently reported [29]. Thus, it can be speculated 

that the decrease in Olsenella abundance with age and after day 70 in the earlyC group was 

probably due to weaning related dietary modifications as milk replacer was substituted by a 

total mixed ration (TMR) including 48% grass silage. 
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Bacteroidetes showed an increase in abundance with age and after weaning events in 

the present study. The main reason was the change in diet and the corresponding availability 

of plant polysaccharides which could be used by Prevotella spp. and other members of the 

Bacteroidetes phylum, inventing a huge number of carbohydrate active enzymes [9]. Changes 

within the Firmicutes phylum were especially observed in the increased abundance of 

unclassified Clostridia after weaning (day 70 earlyC). The high abundance of unclassified 

Clostridia in post-weaned microbiota of earlyC group was diet-dependent, as high abundances 

of Clostridia have previously been reported using diets containing forages and mixed forages 

[30]. In addition, an age-dependent increase in the abundance of Fibrobacteres and it 

corresponding Fibrobacter genus was observed. Fibrobacteres are major degraders of 

cellulose in the rumen [31] and their abundance in rumen decreases with increasing dietary 

concentrate proportions [32]. Thus, the increased abundance of Fibrobacteres in the rumen of 

mature calves in our study seemed to be reasonable due to the presence of hay and a total mixed 

ration in their diet. 

The calves age as well as the time of weaning also affected the OS microbiota at both 

phylum- and genus-level. A recent study reported that the oral microbiota of neonatal calves 

matured quickly and contained similar microbial composition to the adult cow oral microbiota 

by four-weeks of age [33]. In the present study, the oral samples were collected at seven-weeks 

of age, thus, it is presumable that the oral microbiota was matured and the major changes 

observed in OS microbiota composition were mainly caused by weaning related dietary shifts. 

Weaning influenced the OS microbiota mainly at days 70 and 98 of the calf’s life, where the 

earlyC group showed significant higher abundances of genera Kurthia and Sphingobacterium, 

and lower abundances of Dialister, Acidaminococcus, and unclassified Lactobacillales as 

compared to the same day-old lateC group. Kurthia occupied the normal intestinal microbiota 

of high-roughage fed cattle [34]. Dialister was frequently isolated from the oral cavity, with 

some species as causative agents of periodontitis [35]. This genus was positively correlated 

with starch degradation [36] and the decreased abundance of this genus in earlyC group after 

weaning was due to weaning related dietary shifts. Lactobacilli are common members in GIT 

of human and animals, in mouth and female genital tract and exert certain beneficial effect on 

host health such as reduced diarrhoea and increased weight gain in neonatal calves, provide 

protection against pathogenic bacteria, promote gut health and reduce gastrointestinal 

inflammatory responses [37]. Lactobacilli concentration was high in milk consuming calves 

[2] and negatively affected by weaning [38]. The higher abundance of Lactobacilli observed 

in 98-day-old lateC group in our study was probably due to higher availability of rapidly 
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fermentable substrates (e.g., starch and lactose) in their diet compared to the earlyC group, 

receiving a total mixed ration. 

The present data showed an age-dependent decrease in potential pathogenic bacteria 

such as Corynebacterium, unclassified Flavobacteriaceae, and unclassified 

Porphyromonadaceae. Corynebacterium colonizing the skin and membranes in animal and 

humans [39], including several disease-causing species such as C. bovis, a causative agent of 

bovine mastitis [40]. Flavobacteriaceae family members were found in human oral cavity, dog 

mouth and other habitats [41, 42]. Certain Flavobacteriaceae genera (Flavobacterium and 

Bergeyella) can cause dental caries [43]. Similarly, the weaning related dietary shifts also 

benefited the post-weaned microbiota of earlyC group in terms of decreased abundances of 

potential pathogenic bacteria such as Porphyromonadaceae and Leptotrichiaceae. Species 

belonging to Porphyromonadaceae are ubiquitously present in oral cavities and GIT of animals 

and humans with some causing infections [44]. Genera belonging to Leptotrichiaceae such as 

Leptotrichia are commonly found in human oral cavity and are causative agents of dental 

plague [45]. In addition, no significant differences were observed between RS as well as OS 

bacterial communities of weaning groups at days 112 and 140, indicating greater ruminal 

maturation and enhanced feed adaptability of calves’ microbiota at 17 weeks as compared to 

7 weeks of age. 

 

3.5 Conclusion 

Our study showed the significant impact of calves age and time of weaning on the 

establishment of RS and OS bacterial communities using BS samples. This sampling strategy 

eliminated the need of animal slaughtering or invasive rumen sampling and enabled sample 

collection from a large number of animals over a longer time span. The results of our study are 

emphasizing the possibility of using BS samples in large-scale predictive studies on ruminants, 

where direct access to the ruminal contents is not an option. However, the BS dataset should 

be carefully evaluated, when analysing the abundances of RS microbiome. The oral health of 

an animal and the gap between the regurgitation activity and sampling can increase the amount 

of typical oral or pathogenic bacteria in the buccal swabs decreasing the predictive power of 

buccal swabbing procedure. In addition, sampling via buccal swabs might serve as a potential 

tool for the establishment of a fast-screening methodology to monitor the weaning status of 

calves. Prospective lab-on-chip techniques using probes specific for OS and RS taxa could be 

developed to provide an easy-to-use diagnostic tool for the farmers and to avoid illegal calf 

trading. This study identified 614 “core RS bacterial OTUs” corresponding to 27 genus-level 
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taxa that were ubiquitously observed in BS samples of 70–140-day-old calves. The obtained 

dataset might serve as starting point to define potential biomarker OTUs in future predictive 

studies on ruminants. In addition, our study exposed the beneficial effects of late weaning in 

terms of relatively stable rumen and oral microbial community composition, quick adaptability 

of microbiota to dietary changes and better growth performance in lateC group. 

 

3.6 Methods 

3.6.1 Animals management and diets 

The experimental design was previously described by Schwarzkopf et al. [24]. Briefly, 

59 female German Holstein calves born to an established herd in a seasonal calving period 

(October to December) were monitored from birth until 149 ± 2 days of life. Calves were fed 

initially after birth with 3 L of colostrum using nipple bucket. Within 2–3 h after birth, calves 

were shifted into straw-bedded single hutches and were fed twice a day with 2 L of pooled herd 

milk. During the pre-experimental period (starting from 3 days of age), pooled herd milk was 

mixed with milk replacer (MR; NOLAC GmbH, Zeven, Germany). The milk replacer was first 

dissolved in temperature-adjusted water and then mixed with pooled herd milk. The amount of 

MR was increased gradually from 0.3 kg/d (day 3) to 0.9 kg/d (day 5), with a maximum amount 

of liquid feed available at a concentration of 150 g/L MR. The experimental period started by 

shifting calves at an average age (8 ± 1.9 days) and live weight (44.5 ± 5.2 kg) into two 

separate, straw-bedded free barns within one housing facility and animals were kept 

randomized in the groups until weaning. Both compartments of the barn were under the same 

climatic conditions and equipped with MR and concentrate self-feeding stations (Förster-

Technik GmbH, Engen, Germany). Each calf was equipped with an ear transponder for 

automatic recording of the daily individual intake of MR and concentrate. During the first 5 

days of experimental period, both groups received 0.9 kg MR powder/d. MR amount was 

gradually increased from 0.9 kg/d (day 6) to 1.35 kg/d (day 10) and remained at constant level 

until start of weaning. Over the entire experimental period, the maximum amount of liquid feed 

was available at a concentration of 150 g/L MR, water was fed ad libitum and a maximum 

amount of 2 kg concentrate feed/d was available until weaning. At the time of weaning, calves 

were moved to another straw-bedded barn in groups of different sizes. EarlyC group was 

weaned at 7 weeks of age (days 28–42) and lateC group at 17 weeks of age (days 98–112). 

During weaning, the amount of milk replacer was reduced in a 14 days step-down approach 

from 1.35 kg/d to 0.3 kg/d. Concentrate amount was reduced from 2 kg/d to 1 kg/d during 

weaning at day 98 for lateC animals. Reducing the concentrate in lateC group was intended to 
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reduce the risk of acidification of the rumen during weaning and to stimulate roughage intake 

and consequently rumen development at the same time. After weaning all calves were housed 

irrespective of their weaning group affiliation together into two compartments within one 

straw-bedded barn under same housing conditions and were fed ad libitum with hay and a total 

mixed ration comprising of grass silage (48%), maize silage (32%) and concentrate feed (20%). 

The individual concentrate intake until weaning was previously published by Schwarzkopf et 

al. [24]. 

 

3.6.2 Sampling procedures 

3.6.2.1 Buccal swabbing using sterile cotton wool swabs 

On experimental days, buccal swabs were taken in the morning between 8.00 and 

11.00 am. Since the calves had no fixed feeding times, sampling was independent of the feeding 

time. Two sterile cotton wool swabs were placed on a clamp in the mouth of each calve for at 

least 30 s, at day 42, 70, 98, 112, and 140 of the experimental periods. Cotton wool swabs were 

immediately inserted into salivette (Sarstedt, Nümbrecht, Germany) and cooled on ice. The 

salivettes were centrifuged at 2000 g for 3 min and the swabs were frozen individually in plastic 

bags at − 80 °C. The bacterial cells were eluted from the BS samples by mixing them with 4 mL 

PBS buffer, incubated in fridge for 1 h, followed by 30 s sonication using ultrasonication bath. 

The liquid was squeezed from the swabs with sterile forceps. The extracted sample was 

centrifuged at 2500 g for 10 min, supernatant was transferred into clean tubes and centrifuged 

again at 19,000 g for 10 min. Half of the supernatant was discarded, and pellet was resuspended 

in the remaining supernatant. After 15 s sonication step, the liquid was directly added into 

Lysing Matrix E tubes for DNA extraction. 

 

3.6.2.2 Stomach tubing 

Rumen samples were collected from each calve in the morning between 8:00 and 

10:00 am. at the end of the experimental trial on day 140 using an oral stomach tube modified 

according to Geishauser (1993) [46]. The instrument consisted of an oro-ruminal probe, a 

flexible tube and a manual suction pump. The probe was inserted orally into the ventral sac of 

the rumen and approximately 100 ml ruminal fluid sample was collected, while 200 ml of the 

fluid obtained at the beginning of sampling was discarded to avoid salvia contaminations. 

Rumen fluid samples were immediately frozen at − 80 °C until further analysis. 
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3.6.3 DNA extraction 

DNA from the rumen fluid and BS cell suspension was extracted using FastDNA™ 

SPIN Kit for Soil (MP Biomedical, Solon, OH, USA) with slight modifications in the 

manufacturer protocol as described previously [47]. The DNA extraction method included a 

bead-beating procedure to ensure effective cell lysis as proposed by [19]. The concentration 

and quality of DNA extracts was checked with NanoDrop 2000 spectrophotometer (Thermo 

Fisher Scientific, Waltham, MA, USA). 

 

3.6.4 PCR amplification and Illumina amplicon sequencing 

The V1-V2 region of bacterial 16S rRNA gene was amplified with PCR and Illumina 

library was prepared as described previously [48]. A barcode (6-nt) and a linker (2-nt) sequence 

was added in the forward primer. Both primers were additionally linked to the overhang adapter 

sequences to make amplicons compatible with the Illumina MiSeq sequencing. The PCR 

mixture was the same as described by [9]. Thermocycling conditions for PCR involved a 3 min 

initial denaturation step at 95 °C, followed by 20 cycles including 10 s of denaturation at 98 °C, 

10 s of annealing at 59 °C, 45 s of extension at 72 °C and 2 min final extension step at 72 °C. 

PCR product (1 μl) was used in second PCR (15 cycles) step under same thermocycling 

conditions with reverse primer that contained additional sequence with integration of Illumina 

index primers and Illumina multiplexing sequence [48]. Amplicons were quality controlled by 

gel electrophoresis, purified and normalized with SequalPrep Normalization Kit (Invitrogen 

Inc., Carlsbad, CA, USA) and sequenced utilizing paired-end (2 × 250 bp) sequencing 

chemistry on an Illumina MiSeq platform. Sequences were submitted to European Nucleotide 

Archive under the accession number PRJEB41435. 

 

3.6.5 Bioinformatic analysis 

The bioinformatic analysis of Illumina amplicon sequencing datasets covering V1-V2 

region of 16S rRNA gene was done using QIIME 2 (2019.10) [49]. The paired-end (PE) 

Illumina raw sequences (2 × 250 bp) were imported in QIIME 2 using 

MultiplexedPairedEndBarcodeInSequence semantic type. The PE sequences were 

demultiplexed using cutadapt (v2.6) within QIIME 2 with q2-cutadapt plugin and demux-

paired command, increasing the default error tolerance to 0.2. The residual artificial sequences 

such as barcodes, forward primer (22 bp) and reverse primer (19 bp) were trimmed by 

implementing cutadapt (v2.6) in QIIME 2 with q2-cutadapt plugin and trim-paired command 

[50]. The quality filtration step and joining of PE reads was done by implementing DADA2 
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pipeline in QIIME 2 with q2-dada2 plugin and denoise-paired command [51]. The trimmed PE 

sequences were quality filtered by retaining high quality bases (average quality score above 

30) and PE reads were joined at a mean length of 313 ± 6 bp, chimeric sequences, non-

overlapping regions and singletons were discarded and FeatureTable [Frequency] and 

FeatureData [Sequence] QIIME 2 artifacts were generated. The PE sequences from each 

sequencing run were processed separately throughout the analysis resulting in FeatureTable 

[Frequency] and FeatureData [Sequence] QIIME 2 artifacts per sequencing run after DADA2 

step. The filtered FeatureTable [Frequency] artifacts were merged with qiime feature-table 

merge command and FeatureData [Sequence] artifacts with qiime feature-table merge-seqs 

command resulting in a total of 6,141,120 reads, with 23,262 ± 1758 reads (mean ± SEM) per 

sample. Taxonomic classification was performed with q2-feature-classifier plugin and classify-

sklearn method using sklearn-based taxonomy classifier (pre-trained on SILVA reference 

database for 16S rRNA (release_132), under a default confidence of 0.7 [52, 53]. Sequences 

assigned to cyanobacteria and chloroplast as well as non-bacterial and unassigned sequences 

from FeatureData [Sequence] and FeatureTable [Frequency] artifacts were removed using q2-

taxa plugin in QIIME 2 and a taxonomy-based filtering step using qiime taxa filter-seqs and 

qiime taxa filter-table commands. All low reads samples (< 5000 reads) were removed from 

FeatureTable [Frequency] and FeatureData [Sequence] artifacts with qiime feature-table filter-

samples and qiime feature-table filter-seqs commands. A biom feature table (FeatureTable 

[Frequency]-with-taxonomy annotations) was produced with biom add-metadata command in 

QIIME 2 that was later converted into txt format with biom convert command. The feature 

table was filtered again by following strict criteria to remove the low abundance OTUs (≤ 0.2% 

of total reads per sample), thus, resulting in a total of 4,741,355 reads, with mean read counts 

for stomach tubing samples 17,716 ± 1590 and for buccal swab samples 21,014 ± 2014 

(mean ± SEM) per sample and a total of 4906 unique bacterial OTUs. All unique bacterial 

OTUs were taxonomically reassigned using RDP database [54] and naïve Bayesian RDP 

classifier [55]. The output taxonomy table was filtered according to [56] with a defined 

confidence threshold cut-off value for each taxonomic level such as: genus (94.5%), family 

(86.5%), order (82.0%), class (78.5%) and phylum (75.0%) and the taxonomic assignments 

were omitted if they fall below the following sequence identity thresholds. 

 

3.6.6 Statistical analysis 

Prior to any statistical analysis, the OTU count data was standardized with total sum 

normalization (TSS) method by dividing the OTU read counts by total reads in each sample. 
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For alpha-diversity analysis, samples were rarefied to the lowest read counts in the dataset (a 

read depth of 1008; RS-dataset) and (a read depth of 1157; OS-dataset). Principal coordinates 

analysis (PCO/PCoA) was performed on standardized OTU abundance data, using Bray-Curtis 

dissimilarity matrix in Primer-e (PRIMER 6.1.16 and PERMANOVA+ 1.0.6 [57]; to visualize 

the samples clustering within specific group and between groups (sampling method, calf age 

and weaning). Bray-Curtis dissimilarity is a coefficient with value bound between 0 and 1, 

where 0 represents high similarity between two samples (share all species, with same 

abundance) and 1 represents no similarity between the two samples (share no species) [58]. 

Analysis of similarities (ANOSIM) test was performed in Calypso v8.84 [59] to confirm 

statistically significant differences between groups. ANOSIM statistic R corresponds to the 

mean rank differences between and within groups, with value between − 1 and + 1, where 0 

represents complete random grouping [60]. To access how well the RS microbiota in BS 

samples represented that in rumen, scatter plots were generated using “pairs” function in R 

v4.0.3 [61]. A linear regression line to the scatter plots was added using R “abline” function. 

Pairwise taxonomy comparisons among sample types (rumen vs. buccal swabbing) were 

performed by calculating Spearman correlation coefficients using rcorr() function from 

“Hmisc” package in R. In order to further elucidate the extent to which the rumen composition 

similarities between the animals’ rumen samples in day 140 were reflected by their oral 

microbiome, a Bray-Curtis dissimilarity matrix was calculated for day 140 rumen samples and 

another Bray-Curtis dissimilarity matrix for day 140 RS portion of the BS samples and the two 

dissimilarity matrices were examined for correlation using Mantel test in R. The same animals 

were selected for both matrices (36 animals for day 140R and the same 36 animals for day 

140BS) and both OTU abundance datasets were normalized separately to account for a total of 

100% relative abundance in each sample before calculation of Bray-Curtis dissimilarity 

matrices. For OS-dataset, the standardized relative abundance table of bacterial genus-level 

taxa was scaled by row to generate heat maps using “gplots” package in R based on Spearman 

correlation and hierarchal average linkage clustering method. The microbial composition at 

phylum- and genus-level as well as alpha-diversity index was compared between groups using 

Kruskal–Wallis test and Dunn’s post hoc test in R. For Dunn’s statistical test, Benjamini–

Hochberg algorithm [62] was used for p-value adjustment into false discovery rate (FDR). The 

FDR-adjusted p-values were considered significant at a probability of p < 0.05. The correlation 

matrix between bacterial alpha-diversity indices of earlyC and lateC groups and their body 

growth parameters (hip height, withers height, back length, body length, heart girth and live 

weight gain) was built based on the Spearman correlation coefficients. 
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3.7 Supplementary Information 

The online version contains supplementary material available at https://doi. 

org/10.1186/s42523-021-00095-3 

 

Additional file 1:  

Figure S1 | Shannon index of RS bacterial communities in R and BS samples of different age 

group calves. 

Figure S2 | Overlap of RS-OTUs covering V1-V2 region of bacterial 16S rRNA. 

Figure S3 | Average relative abundances of RS bacterial phylum- and genus-level taxa in 

rumen and buccal swab samples of different age group calves. 

Figure S4 | Principal coordinates analysis plot of bacterial communities in 186 BS samples of 

different age group calves, after exclusion of potential RS taxa by mathematical filtering 

approach. 

Figure S5 | Average relative abundances of OS bacterial genus-level taxa in BS samples of 

different age group calves. 

Figure S6 | Shannon index of OS bacterial communities in BS samples of different weaning 

groups of calves. 

Figure S7 | Bar-plot depicting within group similarity (mean and standard deviations) along 

the time. 

Figure S8 | The Spearman correlation coefficients (R-values) between OTU’s relative 

abundance along the d140R samples with its abundance over the RS portion of the d140BS 

samples. 

 

Additional file 2: 

Table S1 | Average relative abundance of RS bacterial taxa in samples of different age group 

calves. 

Table S2 | Core RS bacterial OTUs in R and BS samples of different age group calves.  

Table S3 | ANOSIM analysis between weaning groups. 

Table S4 | Average relative abundances of RS bacterial taxa in BS samples of different 

weaning groups. 

Table S5 | Average relative abundance of OS bacterial taxa in BS samples of different age 

group calves. 
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Table S6 | Average relative abundances of OS bacterial taxa in BS samples of different 

weaning groups. 

Table S7 | Correlation matrix between bacterial alpha-diversity indices of earlyC and lateC 

groups and their body growth parameters. 

Table S8.1 | Rare taxa OTUs in BS and R samples. 

Table S8.2 | Mean, median and standard deviations of rare genus-level taxa in BS and R 

samples. 

Table S9 | Mantel test statistics showing correlation between Bray-Curtis dissimilarity 

matrices of d140R samples and day 140 RS portion of the BS samples. 
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4. HOST METABOLOME AND FAECAL MICROBIOME SHOWS 

POTENTIAL INTERACTIONS IMPACTED BY AGE AND 

WEANING TIMES IN CALVES 

4.1 Abstract 

4.1.1 Background 

Calves undergo nutritional, metabolic, and behavioural changes from birth to the entire 

weaning period. An appropriate selection of weaning age is essential to reduce the negative 

effects caused by weaning-related dietary transitions. This study monitored the faecal 

microbiome and plasma metabolome of 59 female Holstein calves during different 

developmental stages and weaning times (early vs. late) and identified the potential associations 

of the measured parameters over an experimental period of 140 days. 

 

4.1.2 Results 

A progressive development of the microbiome and metabolome was observed with 

significant differences according to the weaning groups (weaned at 7 or 17 weeks of age). 

Faecal samples of young calves were dominated by bifidobacterial and lactobacilli species, 

while their respective plasma samples showed high concentrations of amino acids (AAs) and 

biogenic amines (BAs). However, as the calves matured, the abundances of potential fiber-

degrading bacteria and the plasma concentrations of sphingomyelins (SMs), few BAs and 

acylcarnitines (ACs) were increased. Early-weaning at seven weeks significantly restructured 

the microbiome towards potential fiber-degrading bacteria and decreased plasma 

concentrations of most of the AAs and SMs, few BAs and ACs compared to the late-weaning 

event. Strong associations between faecal microbes, plasma metabolites and calf growth 

parameters were observed during days 42–98, where the abundances of Bacteroides, 

Parabacteroides, and Blautia were positively correlated with the plasma concentrations of 

AAs, BAs and SMs as well as the live weight gain or average daily gain in calves. 

 

4.1.3 Conclusions 

The present study reported that weaning at 17 weeks of age was beneficial due to higher 

growth rate of late-weaned calves during days 42–98 and a quick adaptability of microbiota to 

weaning-related dietary changes during day 112, suggesting an age-dependent maturation of 

the gastrointestinal tract. However, the respective plasma samples of late-weaned calves 



 Chapter IV – 3rd MANUSCRIPT  

 86 

contained several metabolites with differential concentrations to the early-weaned group, 

suggesting a less abrupt but more-persistent effect of dietary changes on host metabolome 

compared to the microbiome. 

 

4.2 Background 

The commercial calf rearing facilities are continuously challenged by cost reduction 

without affecting animal health and performance. Even a slight reduction in the weaning age 

can significantly reduce the feed cost. However, weaning age should be carefully considered 

as calves undergo extreme nutritional, metabolic, and behavioural changes from birth to the 

entire weaning period [1]. Feeding minimal plane of nutrition before weaning could result in 

long-term detrimental effects on calf’s growth and metabolic health [2]. The composition of 

the gut microbiome is unstable during the first three months of a calf’s life due to the change 

in physiological state, age, diet, weaning, and other environmental factors [3]. Besides other 

factors, pre-weaning calf diet contributes most strongly to the establishment of gut microbial 

communities and mucosal immune system [4]. The activity of gut microbes in turn benefit the 

host through digestion of complex dietary substrates, maturation of host immune system, 

intestinal epithelium development, maintenance of gut integrity and protection against 

pathogens [5-8]. The gut microorganisms produce a wide variety of metabolites either through 

direct fermentation of dietary substrates or through utilization of endogenous compounds 

produced by other gut microbes and the host [9]. These microbial metabolites are absorbed by 

the intestinal epithelium, enter the bloodstream to provide energy and nutrition to the host, 

regulate target organs and thus, alter the host’s metabolic state [10]. 

Most recent studies have highlighted the importance of integrating data from the 

microbiome and metabolome instead of solely microbial taxonomic profiling to better 

understand the host–microbe’s metabolic interactions and possible identifications of predictive 

biomarkers for diseases [11, 12]. With the advanced metabolomic analysis tools, it is now 

possible to detect several classes of metabolites such as amino acids (AAs), biogenic amines 

(BAs), acylcarnitines (ACs), and sphingomyelins (SMs) in a broad spectrum of matrixes such 

as blood or digestive material. These metabolites can provide a broader image of metabolic 

shifts and enable us to understand the underlying mechanisms caused by gut microbial 

dysbiosis [13]. Given the role of AAs in protein synthesis, energy generation and metabolic 

pathways regulation [14], plasma AAs quantification can provide an insight into the nutritional 

status, health and disease pathogenesis [15]. Similarly, high levels of BAs during rumen 

acidosis are regarded as a biomarker for bacterial dysbiosis [16], due to their important role in 
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immunological, muscular, cardiovascular and neurological functions, as well as anti-

inflammatory and anti-oxidative reactions [17]. Acylcarnitines were suggested as lipid 

mobilization biomarkers [18] and their high concentrations in plasma have been linked with 

both the healthy and diseased status of the host [19]. Sphingolipids are bioactive molecules, 

involved in several cellular and pathological processes including proliferation, cell division 

and differentiation, cell death, and pro-inflammatory responses [20]. Thus, it can be speculated 

that stress-related gut microbial dysbiosis can strongly impact the levels of metabolites [12]. 

To our knowledge, the association of gut microbiota with the plasma concentrations of AAs, 

BAs, ACs and SMs in pre- and post-weaned calves has not been examined so far. Although 

this evaluation should be done with care as a strong influence of host genetics on serum 

metabolites was described before [21], a more recent study found that 47% of the microbe-

associated blood metabolites to be nonheritable [11]. This suggests the important role of gut 

microorganisms on the systemic metabolism, which is independent of the host’s genome. Here, 

we explored the changes in the calf’s faecal microbiome and plasma metabolome due to the 

developmental stage and the early and late-weaning event, inherently associated with 

qualitative and quantitative aspects of nutrient intake pattern. 

 

4.3 Results 

4.3.1 Age-dependent changes in the compositional profile of calves’ faecal microbiome 

The differences between the faecal bacterial community structure associated with age, 

weaning and parity of the mother were identified using Permutational Analysis of Variance 

(PERMANOVA) that showed a significant impact of age (p < 0.001), weaning time (p < 0.001), 

parity (p = 0.007) and the interaction between age and weaning time (p < 0.001) but parity was 

non-significant within the respective age and weaning groups. A clustering of bacterial 

communities based on amplicon sequence variants (ASVs) was observed by calves age in both 

weaning groups (Figure 13A, B), which was further confirmed with the analysis of similarity 

test (ANOSIM) that showed significant differences between age groups (ANOSIM; p < 0.001; 

R = 0.65 and 0.75; earlyC and lateC, respectively). Both weaning groups showed a significant 

increase in faecal bacterial alpha-diversity with age (p < 0.001) as indicated by the lowest 

Shannon index values of 2.68 and 2.98 (d1) to the highest values of 4.94 and 4.95 (d140) in 

earlyC and lateC groups, respectively (Additional file 1: Figure S9A). However, no significant 

impact of weaning time on diversity index was observed. With respect to the faecal bacterial 

taxonomic composition, a significant age-dependent decrease in the relative abundances of 
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Firmicutes and Actinobacteria, while an increase in Bacteroidetes, Spirochaetes and 

Elusimicrobia was observed (Additional file 1: Figure S9B, Additional file 2: Table S10).  

 

 

Figure 13 | Age-dependent changes in the faecal bacterial communities of earlyC and lateC 

calves. (a, b) Bacterial compositional profiles of different age group earlyC (n = 176) and lateC 

(n = 154) faecal samples based on ASVs visualized using principal-coordinate analysis plots. 

Each triangle indicates one sample. (c) Significantly different bacterial species (p < 0.05; 

Kruskal-Wallis test). Each day represents an average value for animals: d1 (20 & 22), d28 (24 

& 21), d42 (25 & 23), d70 (26 & 21), d98 (27 & 22), d112 (27 & 23), and d140 (27 & 22) 

animals for earlyC and lateC groups, respectively. 

 

At species-level, the earliest time point (d1) had significantly higher abundances of 

Bifidobacterium longum, Gallibacterium anatis, Lactobacillus amylovorus, Lactobacillus 

ingluviei, Ligilactobacillus salivarius, Streptococcus gallolyticus, unclassified (uncl.) 

Butyricicoccus, uncl. Lactobacillaceae, and uncl. Mediterraneibacter, showing significant 

decrease in abundance with age (d1−d140) in both weaning groups. In addition, Bacteroides 

uniformis, Barnesiella intestinihominis, Blautia wexlerae, Faecalibacterium prausnitzii, 
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Phocaeicola vulgatus, Prevotella copri, uncl. Faecalicatena, and uncl. Prevotella were 

significantly more abundant during days 28−42 and less abundant during later time points. On 

the contrary, Bifidobacterium pseudolongum, uncl. Bacteroidia, uncl. Bacteroidales, uncl. 

Bacteroidaceae, uncl. Clostridia, uncl. Clostridiales, uncl. Eubacteriaceae, uncl. 

Muribaculaceae, uncl. Oscillospiraceae, uncl. Prevotellaceae, uncl. Ruminococcaceae, uncl. 

Rikenellaceae, uncl. Sphingobacteriales, and uncl. Tannerellaceae were less abundant during 

early time points and showed a significant increase with age (Figure 13C, Additional file 2: 

Table S10).  

 

4.3.2 Weaning-dependent modifications in the faecal bacterial composition and their 

predicted function in calves 

In addition to the age-related maturation, the time point of weaning also significantly 

influenced the faecal bacterial compositional profiles as indicated by the separate clustering of 

weaning groups during days 42−112. In contrast, no significant difference was detected before 

or after this period (Figure 14). 

Both weaning groups had distinct bacterial taxonomic compositions during days 42−98 

(Figure 15, Additional file 2: Table S10). Early-weaning at seven weeks triggered an increase 

in the relative abundance of Bacteroidetes and a decrease of Firmicutes (Additional file 1: 

Figure S9B) during days 42−98 (p < 0.05). At genus-level, earlyC calves had significantly 

higher abundances of Butyricimonas and certain unclassified members of Bacteroidetes, 

Firmicutes, as well as Spirochaetes (Figure 15, Additional file 2: Table S10).  

Early-weaning also significantly decreased the abundances of potential lactose- and 

starch-degraders as well as potential butyrate-producing bacteria including Faecalibacterium, 

Blautia, Prevotella, Bacteroides, Parabacteroides, Butyricimonas, Olsenella, Anaerostipes, 

Streptococcus, Frisingicoccus, Phocaeicola, Mediterraneibacter, uncl. Atopobiaceae, uncl. 

Bacteroidales incertae sedis, and uncl. Lachnospiraceae. In addition, the abundance of 

potential pathogenic bacteria, such as Collinsella, was reduced due to the weaning event in the 

earlyC group (Figure 15, Additional file 2: Table S10). 

 

 

 

 

 

 



 Chapter IV – 3rd MANUSCRIPT  

 90 

 

 

 

 

Figure 14 | Principal-coordinate analysis plots showing changes in bacterial compositional 

profiles of faecal samples due to weaning event. Each triangle indicates one sample. The 

significant differences between same-age-old weaning groups, separated based on PCO 

analysis, were confirmed using analysis of similarities test (ANOSIM), with R- and p-values 

indicated. 
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Figure 15 | Changes in faecal bacterial communities of calves due to weaning event. 

Significantly different bacterial genera with relative abundance (≥ 1%) and p ≤ 0.05 (Kruskal-

Wallis test) among same-age old weaning groups are shown. Each bar represents an average 

value for animals: d42 (25 & 23), d70 (26 & 21), d98 (27 & 22) animals for earlyC and lateC 

groups, respectively. 

 

CowPI-based predictive analysis showed a significant enrichment of function with 

particular involvement in the metabolism of amino acid, carbohydrate, energy and nucleotide, 

and glycan biosynthesis in the earlyC group (days 42–98) (Additional file 1: Figure S10). In 

contrast, a significant reduction in some of the general metabolic functions with essential role 
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in microbial survival such as protein kinases, ABC transporters, two-component system, 

transcription factors, and other ion-coupled transporters were also predicted in the earlyC group 

corresponding to the weaning event. 

 

4.3.3 Plasma metabolome and the impact of calves’ age 

The differences between the plasma metabolic profiles of calves from different age 

groups were shown by a supervised partial least square discriminant analysis (PLS-DA), that 

resulted in clear age-dependent clustering for both weaning groups (Figure 16A, B). 

Metabolites showing significant difference due to the age of the calves were selected based on 

the variable importance in the projection (VIP) threshold > 1 and a false discovery rate (FDR) 

< 0.001 (ANOVA) (Figure 16C, Additional file 2: Table S11). The plasma concentrations of 

most of the metabolites including AAs, BAs, ACs, and SMs were affected by both calves age 

and the time of weaning (Figure 16C).  

 

 

 

Figure 16 | Age-dependent changes in plasma metabolites concentrations of earlyC and lateC 

calves. (a, b) Metabolic profiles of different age group earlyC (n = 174) and lateC (n = 153) 
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plasma samples visualized using PLS-DA score plots. Each shape indicates one sample 

coloured according to the age group with ellipse indicating the 95% confidence region. (c) 

Heatmap of the significantly altered metabolites due to calves age (VIP > 1, FDR < 0.001, 

ANOVA). Each day represents an average concentration of metabolites for animals: d1 (20 & 

22), d28 (24 & 21), d42 (24 & 23), d70 (25 & 21), d98 (27 & 21), d112 (27 & 23), and d140 

(27 & 22) animals for earlyC and lateC groups, respectively. 

 

In both weaning groups, a significant age-dependent decrease in the concentrations of 

AAs (arginine, lysine, methionine, phenylalanine, threonine, proline, serine, tyrosine, 

glutamate, glycine, and histidine), BAs (taurine, trans-4-hydroxyproline, creatinine, sarcosine, 

asymmetric dimethylarginine, and symmetric dimethylarginine), AC (carnitine) and SM (SM 

C24:1) was observed. However, as the calves aged and became more mature (days 70−140), 

the plasma concentrations of BAs (carnosine, acetylornithine, dopamine, spermine, histamine, 

and dihydroxyphenylalanine), ACs (hydroxyhexadecadienylcarnitine, and valerylcarnitine), 

and most of the sphingomyelins (SM (OH) C14:1, SM (OH) C16:1, SM (OH) C22:1, SM (OH) 

C22:2, SM (OH) C24:1, SM C18:1, SM C26:0) were increased (Figure 16C). 

 

4.3.4 Weaning-dependent modifications in the plasma metabolome of calves 

Similar to the weaning-related shifts in the faecal microbial profiles, the supervised 

PLS-DA showed clear separation among metabolic profiles of earlyC and lateC calves during 

days 42−112 (Figure 17). The identification of metabolites altered due to the weaning event 

within each age group was based on a VIP > 1, FDR < 0.05 (t-test) and log2 FC > 0.1 or < -

0.1. Mother’s parity showed no significant influence on DMs within each weaning group 

(earlyC PC vs. earlyC MC and lateC PC vs. lateC MC). A total of 10, 32, 32, and 18 

significantly differential metabolites (DMs) were identified between earlyC and lateC groups 

at days 42, 70, 98, and 112, respectively. During days 42–112, the relative concentrations of 2, 

5, 8 and 3 metabolites were significantly higher in the plasma of earlyC calves, and the relative 

concentrations of 8, 27, 24, and 15 metabolites were significantly higher in the plasma of lateC 

calves (Figure 18).  
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Figure 17 | Partial least squares-discriminate analysis for identification of metabolic 

differences among weaning groups. Each circle indicates one sample and ellipse indicating the 

95% confidence region. The quality of the models was assessed using Q2 as performance 

measure and tenfold cross-validation method. The Q2 values for the first 5 components are 

shown. 

 



 Chapter IV – 3rd MANUSCRIPT  

 95 

 

 

Figure 18 | Volcano plots of the weaning-dependent changes in the plasma metabolic profiles 

of weaning groups. The identification of significantly altered metabolites due to weaning event 

within each age group was based on a VIP > 1, FDR < 0.05 (t-test) and log2 FC > 0.1 or < -

0.1. Each circle indicates one metabolite. 

 

In general, earlyC calves had significantly lower concentrations of most of the essential 

amino acids (EAAs; arginine, histidine, leucine, lysine, methionine, phenylalanine, valine, 

threonine, tryptophan), and non-essential amino acids (NEAAs; aspartate, glutamine, proline, 

serine, tyrosine, citrulline, and ornithine), BAs (taurine, trans-4-hydroxyproline alpha-

aminoadipic acid, carnosine, and methionine sulfoxide), ACs (carnitine, acetylcarnitine, and 

propionylcarnitine), and SMs (SM (OH) C22:1, SM (OH) C22:2, SM C16:0, SM C16:1, SM 

C18:0, SM C18:1, SM C22:3, SM C24:0, SM C24:1) as compared to the same-day-old lateC 

group (days 42–112; Figure 18). The ratio between kynurenine/tryptophan was lower at day 70 
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and 98 (Additional file 1: Figure S11) in the lateC group. Similar to the microbiome dataset, 

no significant differences between metabolic profiles of weaning groups were observed during 

days 1–28, but the plasma samples of 112 days old earlyC and lateC calves showed a large 

number of DMs. A metabolic pathway analysis (MetPA) was done using DMs identified 

between the weaning groups. The enrichment of 5 (d42), 12 (d70), 13 (d98), and 9 (d112) 

pathways mainly related to AAs metabolism was shown to be significantly different between 

the weaning groups (Additional file 1: Figure S12, pathway impact ≥ 0.1, FDR < 0.01). 

 

4.3.5 Associations between differential faecal microbial genera and plasma metabolites 

of weaning groups 

To identify the weaning-dependent shifts in the potential host-microbe metabolic 

interactions, Spearman’s rank correlations were calculated between the differentially abundant 

faecal microbial genera and plasma metabolites of weaning groups, separately for each time 

point (Figure 19). The potential lactose- and starch-degrading bacterial genera that were 

reduced by the early-weaning events during days 42–98 were strongly positively correlated (R 

> 0.50, p < 0.05) with the plasma concentrations of AAs, BAs and SMs. Aspartate was 

positively correlated with Butyricimonas, histidine with Frisingicoccus, Blautia, Bacteroides, 

Prevotella, Mediterraneibacter, Anaerostipes, Parabacteroides, Butyricimonas and Olsenella, 

methionine and proline with Blautia, Mediterraneibacter and Parabacteroides, leucine and 

ornithine with Parabacteroides and Butyricimonas, threonine, tryptophan and tyrosine with 

Bacteroides and Parabacteroides, leucine with Olsenella, and threonine with 

Mediterraneibacter. Similar positive correlations were observed between the plasma 

concentrations of BAs such as alpha-aminoadipic acid with Frisingicoccus, taurine with 

Bacteroides, Butyricimonas and Olsenella, trans-4-hydroxyproline with Frisingicoccus, 

Blautia, Mediterraneibacter and Anaerostipes. The plasma SMs concentrations were positively 

correlated with bacterial abundances; SM (OH) C22:1 with Blautia, Mediterraneibacter and 

Butyricimonas, SM (OH) C22:2 with Butyricimonas, SM C24:1 with Mediterraneibacter, 

Parabacteroides, Blautia and Butyricimonas, SM C16:0 with Blautia, Prevotella, 

Mediterraneibacter, Anaerostipes, Parabacteroides, Bacteroides and Butyricimonas, and SM 

C16:1 with Blautia, Mediterraneibacter, Bacteroides and Butyricimonas (Figure 19). 
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Figure 19 | Heatmaps showing the Spearman’s rank correlations between differentially 

abundant faecal microbial genera and plasma metabolites of weaning groups. Colours indicates 

the correlation between microbiome and metabolome (blue: significant positive, red: 

significant negative, and white: non-significant). Only Spearman correlation coefficients with 

p < 0.05 are shown. Abbreviations (ACs, AAs, BAs and SMs) indicates following metabolites 

classes: acylcarnitines, amino acids, biogenic amines, and sphingomyelins respectively. 

 

In addition, the genera that were significantly higher in abundance in the earlyC group 

during days 42–98 were also strongly positively correlated to the following plasma metabolites: 

uncl. Rikenellaceae with alanine, uncl. Clostridiales with propionylcarnitine, uncl. 

Bacteroidales, Bacteroidaceae, Rikenellaceae and Eubacteriaceae with acetylornithine, and 
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uncl. Bacteroidales with SM (OH) C16:1 (R > 0.50, p < 0.05). Furthermore, few strong 

negative correlations also existed between uncl. Bacteroidales with histidine, leucine, taurine, 

SM C16:0, and SM C16:1, uncl. Bacteroidaceae with SMs (SM (OH) C22:1, SM (OH) C22:2, 

SM C16:0, SM C16:1, and SM C24:1) as well as with AA (histidine), uncl. Muribaculaceae 

with alpha-aminoadipic acid, uncl. Rikenellaceae with carnitine, AAs (histidine, leucine, 

ornithine, threonine, tryptophan, tyrosine), taurine, and SMs (SM C16:0, SM C16:1, and SM 

C24:1), uncl. Ruminococcaceae and Butyricimonas with acetylcarnitine, uncl. Spirochaetaceae 

with SM C24:1 (R < -0.50, p < 0.05). 

 

4.3.6 Associations between morphometric variables of calves, differential faecal 

microbial genera and plasma metabolites of weaning groups 

Live weight (LW), live weight gain (LWG) or average daily gain (ADG), and 

morphometric variables such as withers height, hip height, back length, heart girth and body 

length increased with age (p < 0.001) and were higher in the lateC group [22]. The data were 

checked for strong positive (R > 0.50) or strong negative correlations (R < -0.50; p < 0.05, 

Additional file 2: Table S12) with microbiome and metabolome data. LWG or ADG was 

significantly higher for lateC group from days 42–98, showing strong positive correlations with 

the abundances of Mediterraneibacter, Parabacteroides, Prevotella, Blautia, uncl. 

Bacteroidales incertae sedis, uncl. Lachnospiraceae (d70), and Olsenella (d98), as well as the 

plasma concentrations of threonine, tryptophan, tyrosine, histidine, methionine, proline, 

carnitine, hexoses, SM C16:0, and SM C16:1 (d70), while strong negative correlation with 

uncl. Rikenellaceae abundance and acetylornithine concentration (d70) were observed. LateC 

group had significantly higher LW from days 70–140, which was strongly positively correlated 

with uncl. Bacteroidales incertae sedis (d70 and d98), uncl. Atopobiaceae (d98), and plasma 

concentrations of methionine, serine, trans-4-hydroxyproline, and carnitine (d70), tryptophan, 

tyrosine, valine, leucine, ornithine, taurine, hexoses, SM C24:1, SM C16:0, SM C16:1 (d98), 

and threonine (d70 and d98), and negatively correlated with uncl. Rikenellaceae (d98), 

spermidine (d70) and acetylornithine (d98). Hip height was significantly different between the 

weaning groups only during days 70 and 140, and positively correlated with the abundances of 

Blautia, Mediterraneibacter, Prevotella and uncl. Bacteroidales incertae sedis, and plasma 

concentrations of lysine, threonine, histidine, methionine, serine and carnitine, while 

negatively correlated with spermidine and SM (OH) C16:1 (d70). Heart girth was greater for 

lateC group from days 98 onwards and had a strong positive association with the abundance of 

unclassified Bacteroidales incertae sedis, plasma concentration of tryptophan, valine, leucine, 
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ornithine, SM C24:1, SM C16:0 and SM C16:1, and strong negative association with uncl. 

Rikenellaceae abundance and acetylornithine (d98). 

 

4.4 Discussion 

This study examined the age- and weaning-dependent changes in the calves’ faecal 

microbiome, plasma metabolome and explained the potential host-microbe associations. We 

showed an age-dependent increase in the faecal bacterial alpha-diversity as reported in other 

studies [23, 24], which might have assisted GIT development and liquid to solid diet transition 

post-weaning [25]. At species-level, the faecal bacterial community of young calves was 

dominated by potential lactose- and starch-degrading bacteria, which was replaced by potential 

fiber-degrading bacteria with age. A similar age-related decrease in the abundances of 

Bifidobacterium, Lactobacillus, and Faecalibacterium [25, 26], and an increase in fiber-

degrading Ruminococcus was recently reported [25]. Bifidobacteria can utilize carbohydrates 

freely available in the pre-weaned calf GIT [27] and are usually isolated from faecal samples 

of new born calves, and young ruminants [27-29]. Similarly, F. prausnitzii was found in faecal 

samples of 3–4-week-old calves, showing an age-dependent decrease in abundance as observed 

in our study [30]. The high abundance of F. prausnitzii has also been linked with increased 

weight gain and lower incidence of diarrhoea in dairy heifers and Holstein calves during the 

pre-weaning period [23, 31]. We also reported an age-dependent decrease in certain potential 

pathogenic bacteria such as Streptococcus gallolyticus, found in newborn calves with purulent 

lesions and meningitis [32], and Gallibacterium anatis, isolated from cattle with respiratory 

diseases [33], indicating an age-dependent maturation of the immune system in calves. 

In addition to the age, the time at which animals were weaned (7 or 17 weeks of age) 

had an important role in shaping their gut microbial communities. The major differences 

between the bacterial compositions of weaning groups were observed during days 42–98. The 

earlyC group was characterized by a significantly higher abundance of phylum Bacteroidetes 

and potential fiber-degrading bacteria. In contrast, the lateC group was dominated by 

Firmicutes and potential lactose- and starch-degraders. The differential bacterial composition 

of weaning groups during days 42–98 was due to their different feed intake pattern as described 

previously [22]. During day 42, lateC group had higher milk replacer (MR) intake, while earlyC 

had higher roughage and concentrate (C) intake. However, during days 70–98, earlyC group 

was characterized by a total mixed ration (TMR) feeding pattern, while, the lateC group still 

consumed substantial amounts of MR and C. Castro and colleagues suggested that the increase 

in MR intake may result in higher lactose flux in the hindgut, serving as a prebiotic and a 
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growth substrate for certain beneficial microorganisms [34]. In accordance with this study, the 

faecal microbiota of lateC calves (days 42–98) had high dominance of Bacteroides, Prevotella, 

Faecalibacterium, Butyricimonas, Blautia, and Olsenella. Few other studies have reported an 

increased dominance of Bacteroides, Prevotella, Faecalibacterium and Blautia in MR-fed pre-

weaned calves’ faeces [35]. Likewise, a positive association between MR intake and faecal 

Blautia abundance in pre-weaned calves [36] and a negative association between dietary forage 

inclusion and faecal Bacteroides, Olsenella abundances have been reported [37, 38]. The high 

abundance of Bacteroides, Faecalibacterium, and Butyricimonas has also been linked with 

lower disease susceptibility in calves [39, 40]. Thus, it can be speculated that the decrease in 

the abundances of major lactic-acid producing bacteria with age and after day 42 in the earlyC 

group was due to their increased fiber ingestion and the decreased milk consumption, resulting 

in limited nutrient availability for the growth of potential lactose- and starch-degrading 

microorganisms. In addition to the beneficial microorganism, we also observed a significantly 

higher abundance of pathogenic bacterial genus Collinsella in 42-day-old lateC calves’ faeces. 

This bacterial genus reduces the expression of tight junctions and increases intestinal 

permeability, resulting in gut leakage and pro-inflammatory dysbiosis [41, 42]. Their 

abundance was linked with host dietary intake, such as higher abundance in MR-fed calves’ 

faeces [43] and lower abundance with fiber-rich diet [44]. Thus, the low abundance of 

Collinsella in 42-day-old earlyC group in our study was probably due to the introduction of 

roughages in their post-weaning diet. Moreover, no significant differences in the bacterial 

composition of the weaning groups were observed during later time points (days 112−140) 

indicating a rapid adaptation of the lateC microbiome to the weaning-related dietary changes 

without causing dysbiosis. 

Besides the differences described above, the plasma metabolic profiles of calves also 

showed age- and weaning-dependent modifications. The plasma samples of young calves (days 

1–28) had high concentrations of most of the AAs, but their concentrations declined with age 

and after weaning event in the earlyC group. The plasma AAs concentrations are dependent on 

many factors such as synthesis and breakdown of proteins, and it is known that highly 

digestible milk protein levels lead to an improved AAs absorption which results in higher blood 

levels [45]. A high plasma concentration of EAAs and NEAAs was observed after MR-feeding 

in Holstein bull calves [46]. Similarly, feeding a high amount of milk during the pre-weaning 

period increased the levels of plasma arginine and lysine in Holstein heifer calves [47], 

suggesting that the liquid diet could provide specific metabolites that can be transported into 

the bloodstream through GIT [48]. In ruminants, depending on the stage of development, 
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digestion and fermentation takes place in different sections of the GIT. Neonatal ruminants 

mainly rely on their hindgut for digestion of feed and metabolites synthesis [49], this restricts 

the absorption of certain metabolites as the absorption capacity in the colon is limited. With 

the development of the rumen, the major microbial activity is located in the forestomach and 

the microbial metabolites are absorbed through the epithelium of the rumen or the lower GIT 

and supply energy to the host [50, 51]. Therefore, a lower level of plasma metabolites at the 

early life of a ruminant is true to the fact of the limited absorption capacities in the hindgut and 

have to be considered for the interpretation. 

Not only the plasma AAs concentrations were affected, but we also observed distinct 

profiles of BAs at different developmental stages. The early-weaning event lowered the 

concentrations of certain BAs (taurine, trans-4-hydroxyproline, alpha-aminoadipic acid, 

carnosine, and methionine sulfoxide) as well as plasma ACs (carnitine, acetylcarnitine, and 

propionylcarnitine) compared to the late-weaning event. The difference in plasma BAs and 

ACs concentrations of weaning groups was probably due to their different dietary composition 

as the carbohydrates rich diet may result in higher levels of BAs [52]. A high concentration of 

serum taurine was observed in high-grain fed dairy cows [53]. A decreased level of plasma 

acylcarnitines was observed after feeding calves with a limited amount of MR in another study 

[2]. Similar to the AAs, BAs and ACs, the plasma concentrations of most of the SMs were also 

lower in the earlyC compared to the lateC group. The functional aspects of the changed 

sphingomyelin profile in calves are still unclear, however, lower concentrations of blood SMs 

(SM OH C14:1 and SM OH C16:1) were linked with metabolic stress in periparturient cows 

[54]. It may be assumed that the lower level of plasma SMs in earlyC calves was probably due 

to the stressful weaning event as the animals were not fully matured and sudden dietary changes 

might have resulted in quick transitioning from a non-ruminant to a pre-ruminant. Contrary to 

the microbiome dataset that had no significant differences between samples of 112-day-old 

early- and late-weaned calves, the plasma revealed several metabolites with differential 

concentrations, suggesting that the weaning related-dietary changes had less abrupt but more-

persistent impact on host metabolism compared to the microbiome. 

The associations between the faecal microbial genera, plasma metabolites and calf 

growth parameters were assessed during the weaning event to track the weaning-dependent 

modifications in the potential host-microbe metabolic interactions. LWG or ADG was higher 

in the lateC group during days 42–98 and correlated with the faecal abundances of 

Parabacteroides, Blautia, Mediterraneibacter, Olsenella, Prevotella, and the plasma 

concentrations of histidine, threonine, tryptophan, tyrosine, methionine, proline, carnitine, 
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hexoses, SM C16:0, and SM C16:1. High abundances of Blautia and P. copri were observed 

in steers with high ADG [55] and a positive correlation between Blautia, Prevotella 

abundances and ADG was recently reported [36, 56], indicating the importance of these 

bacterial group for ruminants. The early-weaning event not only decreased the LWG or ADG, 

but the plasma concentrations of most of the AAs, BAs and SMs as well as the abundances of 

several potential lactose- and starch-degrading bacteria were reduced. Plasma AAs are essential 

for health and an alteration in their concentrations may result in immune responses and 

inflammation. Proline possesses antioxidant properties and protects against reactive oxygen 

species [57]. Leucine involvement in tissues and cells protein synthesis was previously reported 

in pigs and mice [58, 59]. Tryptophan and its degradation product kynurenine are used as 

indicators for low-grade chronic inflammation in humans [60]. Here, lateC animals had lower 

ratio at d70 and d98, which is indicates a possible increased inflammatory status of the earlyC 

animals during this time period and matches to previous findings reporting a lower 

kynurenine/tryptophan in healthy dairy cows [19]. The lower plasma levels of arginine, 

glutamine, methionine, histidine have been linked with the increased incidence of diarrhoea in 

calves [61]. Our study reported that the weaning event affected the predicted AAs metabolic 

pathways, specifically during days 42–98. At the same time, higher plasma concentrations of 

histidine, threonine, tryptophan, and tyrosine were measured in the lateC group. These AAs 

were positively correlated with the abundances of Bacteroides and Parabacteroides. Similar 

trends were observed with methionine, proline, and histidine concentrations that were 

positively correlated with Blautia abundance, while the concentrations of leucine, ornithine, 

methionine, and proline, were positively associated with the Parabacteroides. Bacteroides 

members are essential for AAs metabolism in the large intestine [62]. Similarly, 

Parabacteroides, which was assigned to the Bacteroides genus prior to reclassification in 2006 

[63], also produces a wide range of AAs such as alanine, glutamate, histidine, isoleucine, 

lysine, methionine, phenylalanine, proline, and valine [64]. A recent study also reported the 

significant correlation of Bacteroides and Blautia abundances with the faecal metabolites 

involved in AAs metabolism (proline, and leucine) [65]. Butyricimonas abundance was 

relatively higher in the lateC group at day 98 and it was positively correlated with plasma 

aspartate concentration. Similar positive association between Butyricimonas and N-

acetylaspartate was reported in young pigs [66]. The lower plasma AA levels and their 

associations with diet-related diminished abundance of AAs producing bacteria in the earlyC 

group is understandable. However, the identification of the causal relationships of the observed 



 Chapter IV – 3rd MANUSCRIPT  

 103 

correlations are challenging as the plasma AA concentrations are not only determined by diet 

but also strongly by liver and muscle metabolisms which are yet to be explored. 

In addition to the AAs, the plasma concentration of taurine and faecal Bacteroides 

abundance was significantly higher in the lateC group during day 98 and were positively 

correlated with each other. Similar to our study, a high dominance of Bacteroides in MR-fed 

pre-weaned calves’ faeces [35] and its negative association with dietary forage inclusion have 

previously been reported [38]. Taurine can be derived directly from the diet, absorbed through 

the epithelial cells and transported to the blood [17]. A significant increase in serum taurine 

concentration was reported with high-grain feeding in dairy cows [53]. However, endogenous 

synthesis of taurine from methionine and cysteine majorly takes place in liver and tissues [67]. 

Taurine is released into the gut as conjugated bile salts [68], where it is deconjugated by 

bacterial bile salt hydrolases (BSH) [69], expressed by several member of Bacteroides (B. 

vulgatus and B. uniformis) [70]. This process increases the concentrations of bile salts and 

taurine in the lower digestive tract [71], which can further be absorbed from the distal ileum 

and transported to the blood as reported in recent human study [17]. Taurine plays an essential 

role in regulation of gut micro-ecology through inhibition of potential pathogenic bacteria, 

reduction of lipopolysaccharides concentrations and acceleration of SCFA synthesis [72]. The 

association of plasma taurine concentration with liver functionality has previously been 

reported in cows [73]. This confirms our previous findings reporting lower liver cholesterol 

production to compensate weaning-related dietary lack in earlyC group as compared to the 

lateC group [22]. Thus, it can be speculated that the weaning-dependent addition of dietary 

roughages might have resulted in lower availability of dietary taurine, reduced abundances of 

bile salt hydrolysing bacterial genera and the resultant lower absorption of taurine from the gut 

due to insufficient BSH activity in the 98-day-old earlyC group. 

In addition, the plasma concentrations of several SMs (SM (OH) C22:1, SM (OH) 

C22:2, SM C24:1, SM C16:0, SM C16:1) were significantly higher in the lateC group and 

positively associated with the abundances of Bacteroides, Parabacteroides, Prevotella, 

Anaerostipes, Blautia, Butyricimonas, and Mediterraneibacter during days 70–98. 

Bacteroides, Parabacteroides, and Prevotella are sphingolipids (SLs)-producing bacterial 

genera [74]. Bacteroides are among the few bacteria that can synthesize SLs and utilize them 

to survive in the stressful intestinal environment [75]. The Bacteroides members produce SLs-

rich outer membrane vesicles (OMVs) [76], which are described to penetrate the intestinal 

mucosa and exert immune-related effects on the host [77]. Some recent studies reported the 

possible processing of Bacteroides-SLs via mammalian SL pathways [78] and the utilization 
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of bacteria-derived SLs during food deprivation periods [74]. Thus, the higher abundance of 

SLs-producing bacteria in the lateC group might be one of the contributing factors towards 

their higher plasma SMs concentrations. Hence, a change in the composition of faecal 

microbiome and plasma metabolic profiles over the course of development, the higher 

abundances of several beneficial bacterial genera in lateC group and their positive association 

with AAs, BAs and SMs concentrations suggesting that the gut microbial colonization might 

play a certain role in this phenomenon. 

 

4.5 Conclusion 

Our study showed that the progressive development of faecal microbiome and plasma 

metabolome in calves depends on their developmental stage and the time of weaning. A high 

dominance of potential lactose- and starch-degrading bacteria and a high concentration of the 

plasma AAs and BAs were observed in young calves, but as the calves aged, the abundances 

of unclassified members of potential fiber-degrading bacteria and the plasma concentrations of 

SMs and few BAs and ACs were increased. Higher consumption of roughages at day 42 in the 

earlyC group declines the abundances of potential lactose- and starch-degraders, and the 

plasma concentrations of most of the AAs and SMs, few BAs and ACs. This weaning-

dependent modification in the microbiome composition and plasma metabolic profiles of 

calves were significantly correlated. On the contrary, the faecal microbial communities of lateC 

group showed quick adaptability to the weaning-dependent dietary changes, indicating an 

established microbial consortium compared to the earlyC group. Nevertheless, the plasma 

samples of lateC group at day 112 showed several metabolites with differential concentrations 

to the earlyC group, suggesting that the weaning-dependent dietary changes had a less abrupt 

but more-persistent impact on host metabolome compared to the microbiome. Altogether, the 

integration of faecal microbiome and plasma metabolome provided us initial insight into the 

host–microbe’s interactions in calves during weaning. However, the plasma metabolic profiles 

are not only dependent on diet and microbiome, but are also linked to liver and muscle 

metabolism, as well as the host genetics. Therefore, further studies are needed, where the 

associations between gut microbiome, gut metabolome, blood metabolome, liver and muscle 

metabolism must be explored to better understand the role of the microbiome in host 

metabolism and possible identifications of predictive biomarkers for diseases. 

 

4.6 Methods 

4.6.1 Animals and experimental procedures 
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The experiment was performed using 59 female German Holstein calves, raised under 

controlled environmental conditions from birth until 149 ± 2 days of life. The experimental 

design was the same as described previously [22]. Briefly, the experimental period started when 

calves were 8 ± 1.9 days old. Calves were randomly allocated into two weaning groups, weaned 

at 7 weeks (experimental days 28–42, earlyC) and 17 weeks of age (experimental days 98–112, 

lateC). Both weaning groups comprised of equal number of calves born from primiparous cows 

(PC) and multiparous cows (MC), with similar pattern of MR and C intake until day 28 of the 

trial. A step-down weaning approach was followed by gradually reducing MR amount (1.35 

kg/d–0.3 kg/d) over a period of 14 days. In the earlyC group, MR amount was reduced from 

day 28 until day 42. However, the lateC group consumed a constant level of MR (~ 1300 g 

DM/d) until day 98 followed by a gradual reduction in MR amount until day 112. All calves 

received a maximum of 2 kg/day concentrate feed (C) and ad libitum hay over the entire 

experimental period.  The consumption of C started in both weaning groups at around day 21 

of the trial. Intake of C increased in earlyC during their weaning period (days 28–42). However, 

lateC group continued to increase their C intake until day 63 and then consumed a constant 

level of C (1500–1700 g DM/d) until weaning. When weaning started for lateC group at day 

98, C amount was reduced to 1 kg/d to lower the risk of rumen acidification and increase 

roughage intake. EarlyC group started to consume roughage from day 42, however, the lateC 

group increased their roughage intake when the MR supply was reduced at day 98. The post-

weaning calves’ diet was comprised of hay and a total mixed ration (TMR) containing grass 

(48%), maize silage (32%), and C (20%). Ingredients and chemical composition of the diets 

were shown in a companion paper [22].  

 

4.6.2 Sample collection and preparation 

On experimental days 1, 28, 42, 70, 98, 112 and 140 blood and faecal samples were 

taken from each calf. Blood samples were obtained from Vena jugularis externa by needle 

puncture and collected into tubes (10 ml tubes, Sarstedt, Nürnbrecht, Germany) containing 

ethylenediaminetetraacetic acid (EDTA). After centrifugation (15 min, 3000 x g, Varifuge 3.0, 

Heraeus, Hanau, Germany), aliquots of plasma samples were stored at -80°C until analysis. 

Faecal samples were taken directly from the calves’ rectum and collected in sample pans. 

Homogeneous samples were then transferred in sample cups and stored at -80°C until the 

microbiome was analysed. Some of the calves’ samples were discarded due to technical issues 

as well as during bioinformatic and statistical analysis, thus, resulting in a total of 330 samples 

over 7 timepoints. 
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4.6.3 Faecal bacterial community profiling  

The genomic DNA was isolated from the faecal samples (250 mg) using the 

FastDNATM SPIN Kit for Soil (MP Biomedical, Solon, OH, USA) according to the 

manufacturer’s protocol with minor modifications. For an effective lysis of cells, a bead-

beating procedure was performed for 40 sec at a speed of 6 m/sec using FastPrep®-24 

instrument (MP Biomedical), followed by centrifugation at 14,000 × g for 15 min. The DNA 

concentration and quality were accessed using NanoDrop 2000 spectrophotometer (Thermo 

Fisher Scientific, Waltham, MA, USA). 

 

4.6.4 Illumina amplicon sequencing and bioinformatic analysis 

PCR amplification of the faecal DNA extracts targeting V1-V2 region of bacterial 16S 

rRNA gene, and Illumina amplicon sequencing was done as described previously by [79]. 

Briefly, 20 μl PCR mixture was prepared by adding primers (0.2 μM), dNTP mixture (2.5 mM), 

PrimeSTAR HS DNA polymerase (2.5 U) and 1 μl DNA template. Forward primers comprised 

of a linker (2-nt) and a barcode (6-nt) sequence. Additionally, an overhang adapter sequences 

compatible to the Illumina platform were added to both primers. The PCR conditions 

comprised of an initial denaturation step for 3 min at 95°C, followed by 20 cycles involving 

denaturation for 10 s at 98°C, annealing for 10 s at 59°C, extension for 45 s at 72°C and 72°C 

final extension step for 2 min. The resultant PCR product (1 μl) was used in the second PCR 

step that was performed under similar conditions and comprised of 15 cycles with reverse 

primer containing additional sequence for integration of Illumina multiplexing sequence and 

index primers. The PCR products were quality controlled, purified, normalized and sequenced 

using paired-end (250 bp) Illumina MiSeq sequencing platform. 

Bioinformatic analysis of sequencing dataset was performed using QIIME 2 (2019.10) 

workflow [80]. Briefly, cutadapt (v2.6) was employed within the QIIME 2 for demultiplexing 

of paired-end (PE) reads according to the barcode sequence of each sample, followed by the 

trimming of barcodes and primers. The demultiplexed sequences were then quality filtered to 

remove bases with quality score less than 30, followed by joining of PE reads (mean length 

315 ± 14 bp) and removal of non-overlapping regions, chimeras and singletons, thus, resulted 

in amplicon sequence variant (ASVs) table after DADA2 step. Fourteen faecal samples with < 

5,000 reads were discarded from the feature table, resulting in a total of 10,221,260 reads for 

339 faecal samples with 30,151 ± 1,183 reads (mean ± SEM) per sample. The negative control 

samples had an average of 125 reads per sample and therefore were not included in further 
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analysis. For taxonomic assignments to ASVs, three different reference databases for 16S 

rRNA gene were employed i.e., the initial classification was performed using pre-trained naïve 

Bayesian classifier trained on SILVA 132 clustered at 99% similarity. After initial taxonomic 

classification, an additional filtration step was employed where the unassigned ASVs and those 

assigned to chloroplast, cyanobacteria, and non-bacterial taxon were removed, the least 

abundant features (ASV) with ≤ 0.2% contribution to the total reads per sample were discarded 

and again the low reads samples (< 5,000 reads) were removed, thus, resulting in a total of 

8,083,449 reads for 330 faecal samples with 24,495 ± 777 reads (mean ± SEM) per sample and 

a total of 4,229 unique bacterial ASVs. For taxonomic reassignments of the unique bacterial 

ASVs, RDP database [81] was used as a reference with naïve Bayesian RDP classifier [82]. 

The RDP-based taxonomic assignments were then compared with NCBI non-redundant 

nucleotide database using BLAST [83]. The BLAST results table was filtered with a defined 

sequence identity threshold for each taxonomic level [84], resulting in removal of taxonomic 

assignments that fall below the defined threshold; 97.0% (species), 94.5% (genus), 86.5% 

(family), 82.0% (order), 78.5% (class) and 75.0% (phylum). 

For prediction of microbial functional profiles, CowPI was used [85], which is an 

improved version of PICRUSt, with 16S rDNA inference for rumen [86]. The functional 

prediction was based on the16S rRNA gene sequence reads of the differential microbial genera 

due to the weaning event. Only those level-3 KEGG pathways were used for the downstream 

analysis that had relative abundance > 1% in at least 50% of the animals within each age group. 

 

4.6.5 Plasma metabolome analysis 

The targeted metabolomic measurements in plasma samples were performed using 

AbsoluteIDQ p180 kit (Biocrates Life Science AG, Austria) according to the manufacturer’s 

standard protocol to identify 188 metabolites belonging to 5 compound classes: acylcarnitine, 

proteinogenic and modified amino acids, glycerophospho- and sphingolipids and hexose. All 

metabolites were evaluated in absolute concentrations (µmol/l). The assay based on 

phenylisothiocyanate derivatization in the presence of internal standards followed by FIA-

MS/MS (acylcarnitine, hexose, glycerophospho- and sphingolipids) and LC-MS/MS (amino 

acids, biogenic amines). The experimental measurement technique is described in detail by 

patent US 8,265,877 B2 [87]. 

 

4.6.6 Statistical analysis 

4.6.6.1 Microbiome data 
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The microbiome dataset standardization was performed with the total sum 

normalization method, where ASVs read counts were divided by the total number of read in a 

sample. Alpha-diversity analysis was performed in Calypso v8.84 [88] by rarefying samples to 

a read depth of 4,702 (lowest read counts). Permutational Analysis of Variance 

(PERMANOVA) at feature level (ASV) was used to identify the differences between the faecal 

bacterial community structure between groups. The clustering of samples within/between 

groups (age, weaning time) was visualized using principal-coordinates analysis (PCO) plots in 

Primer-e (PRIMER 6.1.16 and PERMANOVA+ 1.0.6 [89], that was based on standardized 

ASV count data and Bray-Curtis as dissimilarity matrix. The significant differences between 

groups, separated based on PCO analysis, were confirmed using analysis of similarities 

(ANOSIM) test. Age and weaning-dependent changes in the bacterial diversity and taxonomic 

composition were tested for statistical significance based on Kruskal–Wallis test in R 

(https://www.r-project.org; [90]). For multiple comparisons, Dunn’s post-hoc test was used 

with Benjamini–Hochberg algorithm as p-value adjustment method and the FDR adjusted p < 

0.05 was considered significant [91]. The bacterial species-level taxa that were significantly 

affected by calves age were visualized using heatmap. Heatmap was generated based on 

hierarchal clustering method using R “gplots” package. The relative abundance table was 

scaled by row and pairwise distances between species were calculated based on Spearman 

correlation. These distances were then used to create a dendrogram using average linkage 

method. Weaning-dependent changes in the predicted metabolic pathways were tested for 

statistical significance based on Kruskal–Wallis test in R. 

 

4.6.6.2 Metabolome data 

Based on targeted metabolomics, a total of 180 metabolic compounds were identified 

in the plasma samples of calves including free carnitine (1), acylcarnitines (39), amino acids 

(21), biogenic amines (21), sphingolipids (15), sum of hexoses (1), phosphatidylcholines (76) 

and lysophosphatidylcholines (14). The latter two metabolite groups were removed from the 

subsequent analysis as functional aspects of them in calves’ gut are not yet understood. The 

multivariate and statistical analysis of plasma metabolome data was performed in 

MetaboAnalyst 5.0 [92]. The data containing the absolute concentrations of 98 compounds was 

normalized before analysis through log-transformation, mean centering and unit variance 

scaling method. The maximum separation between groups (age, weaning time, parity of the 

mother) was explained based on supervised partial least squares-discriminant analysis (PLS-

DA). The quality of the PLS-DA models was assessed using Q2 as performance measure and 

https://www.r-project.org/
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tenfold cross-validation method. Q2 indicates the predictive ability of the model, with high Q2 

means good prediction and negative Q2 means overfitting of the model [93]. The dataset 

containing normalized concentrations of 98 identified metabolic compounds was analysed by 

one-way ANOVA for age effect and Tukey’s HSD test as post-hoc analysis method. P-values 

were adjusted using false discovery rate (FDR) correction and FDR-adjusted p < 0.05 was 

considered statistically significant. To demonstrate the metabolites that were significantly 

affected by age in calves (VIP > 1, FDR-adjusted p < 0.05, ANOVA), a heatmap was generated. 

For heatmap, the normalized concentration table was scaled by row, pairwise distances 

between metabolic compounds were calculated based on Euclidean distance measure and ward 

clustering algorithm. The differential metabolites (DMs) due to the weaning event at each 

timepoint were selected based on the variable importance in the projection (VIP > 1.0, FDR-

adjusted p < 0.05 (t-test) and earlyC/lateC fold change (FC) > 1.0). The volcano plots with 

DMs at each timepoint were generated using “ggplot2” package in R. Metabolic pathway 

analysis (MetPA) was performed based on DMs using Bos taurus library as reference [94]. The 

significantly altered pathways due to the weaning event were selected based on the pathway 

impact value > 0.1 and FDR-adjusted p < 0.01, obtained from pathway enrichment analysis. 

The associations between bacterial genera, plasma metabolites and morphometric variables of 

calves were calculated based on Spearman’s rank correlation using cor() function in R and the 

correlation matrix  was visualized using corrplot() function. The correlations with p < 0.05 

were considered significant. 

 

4.7 Supplementary information 

Additional file 1: 
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Figure S9 | Age- and weaning-dependent changes in the faecal bacterial compositional profiles 

of calves. (a) Changes among alpha-diversity index. abcde Groups that share superscript letters 

are not significantly different (p > 0.05; Dunn’s post-hoc test). Standard deviations are 

indicated by error bars. (b) Significantly different bacterial phyla. ***Phyla with p < 0.001 

(age x weaning effect; Kruskal-Wallis test) are shown. 
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Figure S10 | Microbial functional predictions using KEGG pathways and the CowPI database. 

EarlyC/lateC log2(FC) shows differences in level-3 KEGG microbial pathways between d42, 

d70 and d98 earlyC (blue) and lateC (red) calves. Only metabolic pathways with relative 

abundance (> 1%) in at least 50% of the animals and FDR adjusted p < 0.05 (Kruskal-Wallis 

test) are shown. 
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Figure S11 | Calculation of kynurenine/tryptophan ration at d70 and d98 for early weaned 

calves (E) and late weaned calves (L). 

 

 

 

 

Figure S12 | Metabolic pathway analysis based on significantly different plasma metabolites 

of weaning groups. Circle size indicates pathway impact and colours (yellow to red) show 

different levels of significance. 

 

Additional file 2: 

Table S10 | Average relative abundances of faecal bacterial communities in early- and late-

weaned calves. 

 

1Taxon 

2earlyC 3lateC 

Experimental day 

1E 28E 42E 70E 98E 112E 140E 1L 28L 42L 70L 98L 112L 140L 4p-value 

Phyla 
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1Taxon 

2earlyC 3lateC 

Experimental day 

1E 28E 42E 70E 98E 112E 140E 1L 28L 42L 70L 98L 112L 140L 4p-value 

Firmicutes 50.1 54.5 43.1 42.0 33.9 35.3 36.0 53.7 60.8 54.0 53.6 46.4 37.8 33.2 < 0.001 

Bacteroidetes 6.0 33.3 46.9 48.8 55.1 53.8 54.3 8.0 28.6 34.9 36.9 41.6 51.1 55.9 < 0.001 

Actinobacteria 36.8 10.6 6.9 7.0 7.4 6.9 4.6 28.6 8.7 9.7 7.8 10.1 6.6 6.8 < 0.001 
Proteobacteria 7.1 1.3 1.9 1.5 1.6 1.3 1.5 8.0 1.9 1.3 0.7 1.7 2.9 1.6 0.194 

Spirochaetes 0.0 0.0 0.4 0.3 1.3 1.8 2.7 1.3 0.0 0.0 0.0 0.1 1.2 2.1 < 0.001 

Genera 

o_Bacteroidales 0.1 4.3 7.6 15.8 11.7 14.4 14.2 0.1 1.8 6.8 6.1 5.7 12.7 15.6 < 0.001 
o_Bacteroidales 

incertae sedis 
0.0 0.2 0.8 0.1 0.1 0.1 0.3 0.0 0.0 3.1 4.8 3.0 0.1 0.3 < 0.001 

g_Blautia 0.2 6.4 1.1 0.1 0.3 0.2 0.3 2.4 8.0 6.5 3.7 2.7 0.3 0.2 < 0.001 
g_Prevotella 0.7 4.7 2.3 0.2 0.1 0.1 0.1 0.2 4.9 3.8 2.1 1.0 0.1 0.0 < 0.001 

g_Mediterraneibacter 4.3 2.1 0.1 0.0 0.0 0.1 0.0 5.2 4.1 1.8 1.8 0.7 0.0 0.0 < 0.001 

g_Anaerostipes 0.6 3.8 0.1 0.0 0.1 0.1 0.1 0.8 3.9 4.5 1.4 0.4 0.0 0.0 < 0.001 
g_Parabacteroides 0.2 2.6 3.6 0.1 0.0 0.1 0.3 0.3 2.2 1.8 1.3 0.8 0.2 0.0 < 0.001 

g_Faecalicatena 0.2 2.1 0.8 0.0 0.0 0.1 0.1 0.3 1.5 1.5 0.7 0.2 0.0 0.1 < 0.001 

g_Streptococcus 2.3 0.6 0.0 0.0 0.1 0.0 0.0 5.9 1.7 2.2 0.6 0.1 0.0 0.0 < 0.001 
g_Frisingicoccus 0.0 2.3 0.2 0.2 0.1 0.1 0.1 0.0 1.3 1.2 0.6 0.4 0.2 0.1 < 0.001 

g_Collinsella 0.0 2.9 0.2 0.0 0.0 0.0 0.0 0.8 2.1 1.3 0.5 0.4 0.0 0.0 < 0.001 

o_Sphingobacteriales 0.0 0.1 0.1 0.7 0.8 0.8 0.6 0.0 0.0 0.0 0.0 0.4 1.3 1.6 < 0.001 

f_Lachnospiraceae 1.8 11.2 10.5 7.4 6.9 7.6 8.0 1.8 12.9 12.5 16.0 15.2 7.7 7.1 < 0.001 

g_Bacteroides 2.8 8.8 7.3 0.4 0.1 0.2 0.7 3.6 8.9 6.1 3.6 2.5 0.3 0.0 < 0.001 

f_Bacteroidaceae 0.1 0.2 2.1 9.7 9.7 9.4 9.6 0.0 0.1 0.5 2.4 5.1 9.7 11.9 < 0.001 
f_Rikenellaceae 0.0 0.0 0.3 5.0 12.2 12.3 11.5 0.0 0.0 0.1 0.8 1.9 7.1 11.5 < 0.001 

g_Faecalibacterium 1.3 3.8 0.6 0.0 0.0 0.0 0.0 0.3 2.4 2.5 1.0 0.1 0.0 0.0 < 0.001 
f_Eubacteriaceae 0.0 1.6 1.3 1.2 1.3 0.9 1.1 0.0 0.5 0.6 0.5 0.6 1.6 1.1 < 0.001 

c_Cytophagia 0.0 0.0 0.7 0.7 1.1 0.7 0.1 0.1 0.0 0.0 0.1 0.8 1.6 0.2 < 0.001 

c_Bacteroidia 0.0 0.5 2.6 7.1 7.6 7.1 8.2 0.0 0.3 0.9 1.4 4.1 7.6 8.8 < 0.001 
g_Phocaeicola 1.9 5.8 4.7 0.5 0.1 0.1 0.3 3.6 7.7 7.3 7.2 5.2 0.5 0.1 < 0.001 

f_Atopobiaceae 0.7 0.8 1.8 0.9 0.4 0.3 0.4 0.0 0.9 1.5 2.8 2.3 0.9 1.0 < 0.001 

f_Muribaculaceae 0.0 0.2 2.3 3.2 3.2 2.8 2.9 0.0 0.0 0.5 1.6 2.1 2.8 2.3 < 0.001 
g_Alistipes 0.0 1.2 1.1 0.3 0.1 0.1 0.1 0.1 0.4 0.9 0.5 0.3 0.2 0.0 < 0.001 

o_Clostridiales 0.2 4.5 13.7 15.7 13.4 13.7 12.8 0.5 4.7 6.2 12.2 10.8 14.2 11.6 < 0.001 

f_Spirochaetaceae 0.0 0.0 0.2 0.2 1.2 1.4 2.5 1.1 0.0 0.0 0.0 0.0 1.1 2.1 < 0.001 
g_Barnesiella 0.0 1.2 2.1 0.0 0.0 0.0 0.4 0.0 0.9 0.9 0.1 0.5 0.0 0.0 < 0.001 

g_Gemmiger 0.1 2.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.4 0.0 0.1 0.0 0.0 < 0.001 

g_Butyricicoccus 2.8 0.5 0.0 0.0 0.0 0.0 0.0 3.2 1.4 0.5 0.0 0.1 0.0 0.0 < 0.001 
g_Butyricimonas 0.0 2.0 2.9 0.5 0.1 0.1 0.1 0.1 0.4 0.8 1.5 1.1 0.3 0.0 < 0.001 

f_Marinilabiliaceae 0.0 0.2 4.0 1.7 2.0 1.0 0.9 0.0 0.0 0.2 1.3 2.9 2.1 0.9 < 0.001 

f_Ruminococcaceae 0.6 2.2 5.6 5.8 3.6 3.5 3.4 0.5 1.8 1.8 5.4 4.1 4.6 3.4 < 0.001 

g_Olsenella 0.1 1.6 1.7 3.3 0.2 0.5 0.3 0.0 2.1 2.2 2.6 2.7 0.3 0.2 < 0.001 

f_Prevotellaceae 0.1 0.4 1.5 1.0 1.6 1.3 1.9 0.0 0.4 0.7 1.3 0.9 0.8 1.0 < 0.001 

g_Clostridium 1.9 0.5 0.1 0.8 0.3 0.2 0.6 1.8 1.3 0.2 0.4 0.2 0.3 0.2 < 0.001 
c_Clostridia 0.0 0.9 0.9 2.2 1.4 2.1 1.3 0.0 0.7 0.8 1.2 1.7 1.6 2.2 < 0.001 

o_Erysipelotrichales 0.0 0.5 0.3 0.1 0.1 0.2 0.2 0.0 0.6 2.1 0.4 0.2 0.2 0.2 < 0.001 

f_Lactobacillaceae 6.4 0.1 0.0 0.1 0.0 0.0 0.0 8.1 0.1 0.0 0.0 0.1 0.0 0.0 < 0.001 
f_Oscillospiraceae 0.0 1.4 1.8 3.5 2.1 1.8 2.2 0.0 1.1 1.9 2.2 2.1 2.6 1.8 < 0.001 

f_Tannerellaceae 0.0 0.1 0.2 1.2 3.8 2.9 1.1 0.0 0.0 0.1 0.5 3.0 3.3 1.4 < 0.001 

f_Erysipelotrichaceae 0.0 0.8 0.7 0.7 0.2 0.3 0.3 0.0 1.3 1.4 1.2 1.2 0.5 0.7 < 0.001 
g_Ligilactobacillus 7.8 1.5 0.0 0.0 0.0 0.1 0.0 4.2 1.2 0.1 0.0 0.1 0.0 0.0 < 0.001 

g_Bifidobacterium 34.6 4.5 3.1 2.5 6.5 5.6 3.7 27.0 3.0 4.1 1.7 4.7 5.2 5.2 < 0.001 

g_Gallibacterium 4.6 0.0 0.0 0.0 0.0 0.1 0.0 2.3 0.2 0.0 0.0 0.1 0.0 0.0 < 0.001 
g_Enterococcus 2.2 0.1 0.0 0.0 0.0 0.0 0.0 1.2 0.1 0.0 0.0 0.0 0.0 0.0 < 0.001 

g_Lactobacillus 8.2 0.6 0.1 0.0 0.0 0.1 0.0 4.9 0.2 0.0 0.0 0.1 0.0 0.0 < 0.001 

g_Citrobacter 1.0 0.2 0.0 0.0 0.1 0.1 0.0 1.3 0.3 0.0 0.0 0.0 0.0 0.0 < 0.001 
g_Limosilactobacillus 5.3 0.7 0.0 0.0 0.0 0.0 0.0 8.7 0.2 0.0 0.0 0.0 0.0 0.0 < 0.001 

g_Schaalia 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 < 0.001 

g_Turicibacter 0.0 0.0 0.0 0.1 0.2 0.3 0.6 0.0 0.0 0.0 1.0 0.9 0.6 0.4 < 0.001 

Species 

s_Prevotella copri 0.1 1.3 0.7 0.0 0.0 0.1 0.0 0.1 1.9 1.1 0.8 0.3 0.0 0.0 < 0.001 

g_Prevotella 0.5 3.4 1.5 0.1 0.0 0.1 0.1 0.1 3.0 2.6 1.3 0.7 0.1 0.0 < 0.001 

s_Barnesiella 
intestinihominis 

0.0 1.2 2.0 0.0 0.0 0.0 0.4 0.0 0.9 0.9 0.1 0.5 0.0 0.0 < 0.001 

f_Prevotellaceae 0.1 0.4 1.5 1.0 1.6 1.3 1.9 0.0 0.4 0.7 1.3 0.9 0.8 1.0 < 0.001 

s_Faecalibacterium 
prausnitzii 

1.2 3.5 0.5 0.0 0.0 0.0 0.0 0.2 2.1 2.1 0.9 0.1 0.0 0.0 < 0.001 

g_Faecalicatena 0.2 2.1 0.8 0.0 0.0 0.1 0.1 0.3 1.5 1.5 0.7 0.2 0.0 0.1 < 0.001 

c_Clostridia 0.0 0.9 0.9 2.2 1.4 2.1 1.3 0.0 0.7 0.8 1.2 1.7 1.6 2.2 < 0.001 
s_Bacteroides 

uniformis 
0.0 1.0 0.9 0.3 0.0 0.0 0.1 0.2 1.4 1.2 0.4 0.4 0.0 0.0 < 0.001 

s_Blautia wexlerae 0.0 3.4 0.1 0.0 0.0 0.0 0.0 1.6 4.0 1.3 0.1 0.1 0.0 0.0 < 0.001 
f_Lactobacillaceae 6.4 0.1 0.0 0.1 0.0 0.0 0.0 8.1 0.1 0.0 0.0 0.1 0.0 0.0 < 0.001 
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1Taxon 

2earlyC 3lateC 

Experimental day 

1E 28E 42E 70E 98E 112E 140E 1L 28L 42L 70L 98L 112L 140L 4p-value 

s_Phocaeicola 

vulgatus 
1.9 4.5 4.0 0.1 0.1 0.1 0.3 3.6 6.3 5.0 0.8 0.6 0.0 0.0 < 0.001 

s_Gallibacterium 

anatis 
4.5 0.0 0.0 0.0 0.0 0.1 0.0 2.3 0.2 0.0 0.0 0.1 0.0 0.0 < 0.001 

f_Oscillospiraceae 0.0 1.4 1.8 3.5 2.1 1.8 2.2 0.0 1.1 1.9 2.2 2.1 2.6 1.8 < 0.001 
f_Tannerellaceae 0.0 0.1 0.2 1.2 3.8 2.9 1.1 0.0 0.0 0.1 0.5 3.0 3.3 1.4 < 0.001 

s_Ligilactobacillus 

salivarius 
7.8 1.5 0.0 0.0 0.0 0.1 0.0 4.2 1.2 0.1 0.0 0.1 0.0 0.0 < 0.001 

s_Bifidobacterium 

pseudolongum 
1.3 1.6 2.9 2.0 5.5 4.7 2.9 0.5 0.9 3.3 1.1 3.8 5.0 4.4 < 0.001 

g_Butyricicoccus 2.8 0.5 0.0 0.0 0.0 0.0 0.0 3.1 1.3 0.5 0.0 0.1 0.0 0.0 < 0.001 
s_Bifidobacterium 

longum 
28.9 2.7 0.1 0.1 0.3 0.2 0.0 20.9 1.8 0.5 0.2 0.3 0.0 0.0 < 0.001 

s_Lactobacillus 
amylovorus 

6.6 0.1 0.1 0.0 0.0 0.1 0.0 4.3 0.1 0.0 0.0 0.1 0.0 0.0 < 0.001 

s_Lactobacillus 

ingluviei 
3.6 0.0 0.0 0.0 0.0 0.0 0.0 5.5 0.0 0.0 0.0 0.0 0.0 0.0 < 0.001 

g_Mediterraneibacter 2.4 0.3 0.0 0.0 0.0 0.0 0.0 2.2 1.0 0.6 0.7 0.2 0.0 0.0 < 0.001 

s_Streptococcus 

gallolyticus 
1.6 0.2 0.0 0.0 0.0 0.0 0.0 4.7 0.3 0.1 0.0 0.0 0.0 0.0 < 0.001 

f_Rikenellaceae 0.0 0.0 0.3 5.0 12.2 12.3 11.5 0.0 0.0 0.1 0.8 1.9 7.0 11.5 < 0.001 

f_Eubacteriaceae 0.0 1.6 1.3 1.2 1.2 0.9 1.1 0.0 0.5 0.6 0.5 0.6 1.6 1.1 < 0.001 

f_Ruminococcaceae 0.6 2.2 5.6 5.8 3.6 3.5 3.4 0.5 1.8 1.8 5.4 4.1 4.6 3.4 < 0.001 
o_Bacteroidales 0.1 4.3 7.5 15.7 11.7 14.4 14.2 0.1 1.8 6.8 6.1 5.7 12.7 15.6 < 0.001 

f_Bacteroidaceae 0.1 0.2 2.1 9.7 9.7 9.4 9.6 0.0 0.0 0.5 2.4 5.1 9.7 11.9 < 0.001 

o_Clostridiales 0.2 4.5 13.7 15.7 13.4 13.7 12.8 0.5 4.7 6.2 12.2 10.7 14.2 11.6 < 0.001 
c_Bacteroidia 0.0 0.5 2.6 7.1 7.6 7.0 8.2 0.0 0.3 0.9 1.4 4.1 7.6 8.8 < 0.001 

o_Sphingobacteriales 0.0 0.1 0.1 0.6 0.8 0.8 0.6 0.0 0.0 0.0 0.0 0.4 1.3 1.6 < 0.001 

f_Muribaculaceae 0.0 0.2 2.3 3.2 3.2 2.8 2.9 0.0 0.0 0.5 1.6 2.1 2.8 2.2 < 0.001 
s_Olsenella 

umbonata 
0.0 0.7 0.9 1.8 0.2 0.3 0.2 0.0 1.2 1.1 1.3 1.5 0.2 0.1 < 0.001 

o_Bacteroidales 
incertae sedis 

0.0 0.2 0.8 0.1 0.1 0.1 0.3 0.0 0.0 3.0 4.8 3.0 0.1 0.3 < 0.001 

f_Lachnospiraceae 1.8 11.1 10.5 7.4 6.9 7.6 8.0 1.8 12.9 12.5 16.0 15.2 7.7 7.1 < 0.001 

f_Erysipelotrichaceae 0.0 0.8 0.7 0.7 0.2 0.3 0.3 0.0 1.3 1.4 1.2 1.2 0.5 0.7 < 0.001 
g_Blautia 0.1 2.1 1.0 0.1 0.2 0.2 0.2 0.5 3.1 4.4 3.3 2.3 0.3 0.2 < 0.001 

f_Atopobiaceae 0.7 0.8 1.8 0.9 0.4 0.3 0.4 0.0 0.9 1.5 2.8 2.3 0.9 1.0 < 0.001 

f_Spirochaetaceae 0.0 0.0 0.2 0.2 1.2 1.4 2.5 1.1 0.0 0.0 0.0 0.0 1.1 2.1 < 0.001 
f_Marinilabiliaceae 0.0 0.2 4.0 1.7 2.0 0.9 0.8 0.0 0.0 0.2 1.3 2.9 2.1 0.9 < 0.001 

g_Frisingicoccus 0.0 2.3 0.2 0.1 0.1 0.1 0.1 0.0 1.3 1.2 0.6 0.4 0.2 0.1 < 0.001 

c_Cytophagia 0.0 0.0 0.7 0.7 1.1 0.7 0.1 0.1 0.0 0.0 0.1 0.8 1.6 0.2 < 0.001 
s_Butyricimonas 

virosa 
0.0 1.6 2.2 0.3 0.1 0.1 0.1 0.0 0.3 0.7 1.1 0.9 0.2 0.0 < 0.001 

s_Phocaeicola 
coprocola 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 3.0 2.5 0.3 0.0 < 0.001 

 

1Taxon 5Dunn’s test 

Phyla 

Firmicutes 42E-42L; 70E-70L; 98E-98L; 1E-98E; 1E-112E; 1E-140E; 28E-42E; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 

42E-98E; 42E-112E; 70E-98E; 1L-112L; 1L-140L; 28L-98L; 28L-112L; 28L-140L; 42L-112L; 42L-140L; 70L-

112L; 70L-140L; 98L-140L 
Bacteroidetes 42E-42L; 70E-70L; 98E-98L; 1E-28E; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-42E; 28E-70E; 28E-

98E; 28E-112E; 28E-140E; 1L-28L; 1L-42L; 1L-70L; 1L-98L; 1L-112L; 1L-140L; 28L-112L; 28L-140L; 42L-

112L; 42L-140L; 70L-112L; 70L-140L; 98L-140L 
Actinobacteria 1E-28E; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-140E; 1L-28L; 1L-42L; 1L-70L; 1L-98L; 1L-112L; 

1L-140L 

Spirochaetes 98E-98L; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-98E; 28E-112E; 28E-140E; 1L-112L; 1L-140L; 28L-
140L; 42L-140L; 70L-112L; 70L-140L; 98L-140L 

Genera 

o_Bacteroidales 70E-70L; 98E-98L; 1E-28E; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-70E; 28E-98E; 28E-112E; 28E-

140E; 42E-70E; 42E-98E; 42E-112E; 42E-140E; 1L-42L; 1L-70L; 1L-98L; 1L-112L; 1L-140L; 28L-42L; 28L-
112L; 28L-140L; 42L-112L; 42L-140L; 70L-112L; 70L-140L; 112L-98L; 98L-140L 

o_Bacteroidales incertae 

sedis 

70E-70L; 98E-98L; 1E-140E; 1L-70L; 1L-98L; 1L-140L; 28L-42L; 28L-70L; 28L-98L; 28L-140L; 42L-70L; 42L-

98L; 70L-112L; 70L-140L; 112L-98L; 98L-140L 
g_Blautia 42E-42L; 70E-70L; 98E-98L; 1E-28E; 1E-42E; 1E-98E; 28E-42E; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 42E-

70E; ; ; ; 1L-28L; 1L-42L; 1L-70L; 1L-98L; 28L-112L; 28L-140L; 42L-112L; 42L-140L; 70L-112L; 70L-140L; 

112L-98L; 98L-140L 
g_Prevotella 70E-70L; 98E-98L; 1E-28E; 1E-42E; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 42E-70E; 42E-98E; 42E-112E; 

42E-140E; 1L-28L; 1L-42L; 1L-70L; 1L-98L; 28L-98L; 28L-112L; 28L-140L; 42L-112L; 42L-140L; 70L-112L; 

70L-140L; 112L-98L; 98L-140L 
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1Taxon 5Dunn’s test 

g_Mediterraneibacter 42E-42L; 70E-70L; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-42E; 28E-70E; 28E-98E; 28E-112E; 28E-

140E; 1L-28L; 1L-112L; 1L-140L; 28L-98L; 28L-112L; 28L-140L; 42L-98L; 42L-112L; 42L-140L; 70L-98L; 

70L-112L; 70L-140L; 112L-98L; 98L-140L  
g_Anaerostipes 42E-42L; 70E-70L; 1E-28E; 28E-42E; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 1L-28L; 1L-42L; 28L-98L; 28L-

112L; 28L-140L; 42L-98L; 42L-112L; 42L-140L; 70L-112L; 70L-140L 

g_Parabacteroides 70E-70L; 98E-98L; 112E-112L; 1E-28E; 1E-42E; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 42E-70E; 42E-98E; 
42E-112E; 42E-140E; 1L-28L; 1L-42L; 1L-70L; 1L-98L; 1L-140L; 28L-112L; 28L-140L; 42L-112L; 42L-140L; 

70L-112L; 70L-140L; 112L-98L; 98L-140L; 112L-140L 

g_Faecalicatena 70E-70L; 98E-98L; 1E-28E; 1E-42E; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 42E-70E; 42E-98E; 42E-112E; 
42E-140E; 1L-28L; 1L-42L; 1L-70L; 1L-112L; 28L-98L; 28L-112L; 28L-140L; 42L-98L; 42L-112L; 42L-140L; 

70L-98L; 70L-112L; 70L-140L; 112L-98L; 98L-140L 

g_Streptococcus 42E-42L; 70E-70L; 98E-98L; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-42E; 28E-70E; 28E-98E; 28E-
112E; 28E-140E; 1L-98L; 1L-112L; 1L-140L; 28L-70L; 28L-98L; 28L-112L; 28L-140L; 42L-70L; 42L-98L; 42L-

112L; 42L-140L; 70L-112L; 70L-140L; 112L-98L; 98L-140L 

g_Frisingicoccus 42E-42L; 70E-70L; 98E-98L; 1E-28E; 1E-42E; 28E-42E; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 42E-140E; 
1L-28L; 1L-42L; 1L-70L; 1L-98L; 1L-112L; 28L-98L; 28L-112L; 28L-140L; 42L-98L; 42L-112L; 42L-140L; 

70L-112L; 70L-140L; 98L-140L 

g_Collinsella 42E-42L; 70E-70L; 1E-28E; 28E-42E; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 42E-70E; 42E-112E; 42E-140E; 
1L-28L; 1L-42L; 1L-112L; 1L-140L; 28L-98L; 28L-112L; 28L-140L; 42L-98L; 42L-112L; 42L-140L; 70L-112L; 

70L-140L; 112L-98L; 98L-140L 

o_Sphingobacteriales 70E-70L; 98E-98L; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 42E-70E; 

42E-98E; 42E-112E; 42E-140E; 1L-112L; 1L-140L; 28L-112L; 28L-140L; 42L-112L; 42L-140L; 70L-112L; 70L-

140L; 112L-98L; 98L-140L 

f_Lachnospiraceae 70E-70L; 98E-98L; 1E-28E; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-70E; 28E-98E; 28E-112E; 1L-
28L; 1L-42L; 1L-70L; 1L-98L; 1L-112L; 1L-140L; 28L-112L; 28L-140L; 42L-112L; 42L-140L; 70L-112L; 70L-

140L; 112L-98L; 98L-140L 

g_Bacteroides 70E-70L; 98E-98L; 1E-28E; 1E-42E; 1E-98E; 1E-112E; 1E-140E; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 42E-
70E; 42E-98E; 42E-112E; 42E-140E; 1L-28L; 1L-42L; 1L-140L; 28L-98L; 28L-112L; 28L-140L; 42L-112L; 42L-

140L; 70L-112L; 70L-140L; 112L-98L; 98L-140L 

f_Bacteroidaceae 70E-70L; 98E-98L; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-42E; 28E-70E; 28E-98E; 28E-112E; 28E-
140E; 42E-70E; 42E-98E; 42E-112E; 42E-140E; 1L-70L; 1L-98L; 1L-112L; 1L-140L; 28L-70L; 28L-98L; 28L-

112L; 28L-140L; 42L-70L; 42L-98L; 42L-112L; 42L-140L; 70L-112L; 70L-140L; 112L-98L; 98L-140L 

f_Rikenellaceae 70E-70L; 98E-98L; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 42E-70E; 
42E-98E; 42E-112E; 42E-140E; 70E-98E; 70E-112E; 1L-98L; 1L-112L; 1L-140L; 28L-98L; 28L-112L; 28L-

140L; 42L-98L; 42L-112L; 42L-140L; 70L-112L; 70L-140L; 112L-98L; 98L-140L 

g_Faecalibacterium 70E-70L; 1E-28E; 1E-70E; 1E-112E; ; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 42E-70E; 42E-98E; 42E-112E; 
42E-140E; 1L-112L; 1L-140L; 28L-98L; 28L-112L; 28L-140L; 42L-98L; 42L-112L; 42L-140L; 70L-112L; 70L-

140L 

f_Eubacteriaceae 70E-70L; 98E-98L; 1E-28E; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 1L-28L; 1L-42L; 1L-70L; 1L-98L; 1L-
112L; 1L-140L; 28L-112L; 28L-140L; 42L-112L; 70L-112L; 70L-140L; 112L-98L; 98L-140L 

c_Cytophagia 42E-42L; 70E-70L; 112E-112L; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 28E-42E; 28E-70E; 28E-98E; 28E-112E; 

42E-140E; 70E-140E; 112E-98E; 98E-140E; 112E-140E; 1L-70L; 1L-98L; 1L-112L; 1L-140L; 28L-70L; 28L-
98L; 28L-112L; 28L-140L; 42L-98L; 42L-112L; 42L-140L; 70L-98L; 70L-112L; 98L-140L; 112L-140L 

c_Bacteroidia 70E-70L; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 42E-112E; 

42E-140E; 1L-42L; 1L-70L; 1L-98L; 1L-112L; 1L-140L; ; 28L-98L; 28L-112L; 28L-140L; 42L-112L; 42L-140L; 
70L-112L; 70L-140L; 98L-140L 

g_Phocaeicola 70E-70L; 98E-98L; 112E-112L; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 42E-70E; 42E-98E; 42E-112E; 42E-

140E; 28L-140L; 42L-140L; 70L-140L 
f_Atopobiaceae 98E-98L; 1E-28E; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 1L-28L; 1L-42L; 1L-70L; 1L-98L; 1L-112L; 1L-

140L; 28L-42L; 28L-70L; 28L-98L; 70L-112L; 70L-140L; 112L-98L; 98L-140L 
f_Muribaculaceae 42E-42L; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-42E; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 42E-

98E; 42E-112E; 1L-70L; 1L-98L; 1L-112L; 1L-140L; 28L-70L; 28L-98L; 28L-112L; 28L-140L; 42L-70L; 42L-

98L; 42L-112L; 42L-140L 
g_Alistipes 98E-98L; 112E-112L; 1E-28E; 1E-42E; 1E-70E; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 42E-70E; 42E-98E; 

42E-112E; 42E-140E; 70E-98E; 70E-112E; 70E-140E; 1L-28L; 1L-42L; 1L-70L; 1L-98L; 1L-112L; 28L-140L; 

42L-112L; 42L-140L; 70L-112L; 70L-140L; 98L-140L; 112L-140L 
o_Clostridiales 42E-42L; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-42E; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 1L-

28L; 1L-42L; 1L-70L; 1L-98L; 1L-112L; 1L-140L; 28L-70L; 28L-98L; 28L-112L; 28L-140L; 42L-70L; 42L-98L; 

42L-112L; 42L-140L 
f_Spirochaetaceae 98E-98L; 1E-98E; 1E-112E; 1E-140E; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 42E-112E; 42E-140E; 1L-140L; 

28L-140L; 42L-140L; 70L-112L; 70L-140L; 112L-98L; 98L-140L 

g_Barnesiella 98E-98L; 1E-42E; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 42E-70E; 42E-98E; 42E-112E; 42E-140E; 1L-42L; 

1L-98L; 42L-140L; 98L-140L 

g_Gemmiger 42E-42L; 1E-28E; 28E-42E; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 1L-28L; 1L-42L; 28L-70L; 28L-98L; 28L-

112L; 28L-140L; 42L-70L; 42L-98L; 42L-112L; 42L-140L 
g_Butyricicoccus 42E-42L; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-42E; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 1L-

70L; 1L-98L; 1L-112L; 1L-140L; 28L-70L; 28L-98L; 28L-112L; 28L-140L; 42L-70L; 42L-98L; 42L-112L; 42L-

140L 
g_Butyricimonas 28E-28L; 42E-42L; 98E-98L; 112E-112L; 1E-28E; 1E-42E; 1E-70E; 28E-42E; 28E-98E; 28E-112E; 28E-140E; 

42E-70E; 42E-98E; 42E-112E; 42E-140E; 70E-98E; 70E-112E; 70E-140E; 1L-42L; 1L-70L; 1L-98L; 1L-112L; 

28L-42L; 28L-70L; 28L-98L; 42L-140L; 70L-140L; 112L-98L; 98L-140L; 112L-140L 
f_Marinilabiliaceae 42E-42L; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-42E; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 1L-

98L; 1L-112L; 1L-140L; 28L-98L; 28L-112L; 28L-140L; 42L-112L 
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f_Ruminococcaceae 42E-42L; 1E-28E; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-42E; 28E-70E; 28E-98E; ; 70E-140E; 1L-

28L; 1L-42L; 1L-70L; 1L-98L; 1L-112L; 1L-140L; 28L-70L; 28L-98L; 28L-112L; 28L-140L; 42L-70L; 42L-98L; 

42L-112L; 42L-140L 
g_Olsenella 98E-98L; 1E-28E; 1E-42E; 1E-70E; 1E-98E; 1E-112E; ; 28E-42E; 28E-140E; 42E-98E; 42E-112E; 42E-140E; 

70E-98E; 70E-112E; 70E-140E; 1L-28L; 1L-42L; 1L-70L; 1L-98L; 1L-112L; 28L-112L; 28L-140L; 42L-112L; 

42L-140L; 70L-112L; 70L-140L; 112L-98L; 98L-140L 
f_Prevotellaceae 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-42E; 1L-112L; 1L-140L 

g_Clostridium 1E-42E; 28E-140E; 42E-140E; 70E-140E; 98E-140E; 1L-42L 

c_Clostridia 1E-28E; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-70E; 28E-112E; 42E-70E; 42E-112E; 1L-28L; 1L-
42L; 1L-70L; 1L-98L; 1L-112L; 1L-140L; 28L-98L; 28L-112L; 28L-140L; 42L-98L; 42L-140L 

o_Erysipelotrichales 1E-28E; 1E-42E; 1E-98E; 1E-112E; 1E-140E; 1L-28L; 1L-42L; 1L-70L; 1L-98L; 1L-112L; 1L-140L; 28L-42L; 

42L-98L; 42L-112L; 42L-140L 
f_Lactobacillaceae 1E-28E; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-42E; 28E-70E; 28E-112E; 28E-140E; 1L-28L; 1L-

42L; 1L-70L; 1L-98L; 1L-112L; 1L-140L; 28L-70L; 28L-112L; 28L-140L 

f_Oscillospiraceae 1E-28E; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-70E; 28E-98E; ; 28E-140E; 1L-28L; 1L-42L; 1L-70L; 
1L-98L; 1L-112L; 1L-140L; 28L-112L  

f_Tannerellaceae 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 42E-70E; 42E-98E; 42E-112E; 

42E-140E; 70E-98E; 70E-112E; 70E-140E; 1L-98L; 1L-112L; 1L-140L; 28L-98L; 28L-112L; 28L-140L; 42L-
98L; 42L-112L; 42L-140L; 70L-98L; 70L-112L; 70L-140L 

f_Erysipelotrichaceae 1E-28E; 1E-42E; 1E-70E; 1E-112E; 1L-28L; 1L-42L; 1L-70L; 1L-98L 

g_Ligilactobacillus 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-42E; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 1L-42L; 1L-

70L; 1L-98L; 1L-112L; 1L-140L; 28L-42L; 28L-70L; 28L-98L; 28L-112L; 28L-140L 

g_Bifidobacterium 1E-28E; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 1L-28L; 1L-42L; 1L-70L; 1L-98L; 1L-112L; 1L-140L;  

g_Gallibacterium 1E-28E; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-42E; 28E-70E; 1L-42L; 1L-70L; 1L-98L; 1L-112L; 
1L-140L; 28L-42L; 28L-70L; 28L-98L; 28L-112L; 28L-140L 

g_Enterococcus 1E-28E; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-42E; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 1L-

28L; 1L-42L; 1L-70L; 1L-98L; 1L-112L; 1L-140L; 28L-42L; 28L-70L; 28L-98L; 28L-112L; 28L-140L 
g_Lactobacillus 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-42E; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 1L-42L; 1L-

70L; 1L-98L; 1L-112L; 1L-140L; 28L-42L; 28L-70L; 28L-98L; 28L-112L; 28L-140L 

g_Citrobacter 1E-70E; 1E-98E; 1E-112E; 1E-140E; 1L-42L; 1L-70L; 1L-98L; 1L-112L; 1L-140L; 28L-70L; 28L-98L; 28L-
112L; 28L-140L 

g_Limosilactobacillus 1E-28E; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-42E; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 1L-

42L; 1L-70L; 1L-98L; 1L-112L; 1L-140L; 28L-42L; 28L-70L; 28L-98L; 28L-112L; 28L-140L 
g_Schaalia 1E-28E; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; ; 1L-28L; 1L-42L; 1L-70L; 1L-98L; 1L-112L; 1L-140L;  

g_Turicibacter 1E-112E; 1E-140E; 28E-112E; 28E-140E; 42E-140E; 1L-98L; 28L-98L  

Species 

s_Prevotella copri 70E-70L; 98E-98L; 1E-28E; 1E-42E; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 42E-70E; 42E-98E; 42E-112E; 
42E-140E; 1L-28L; 1L-42L; 1L-70L; 1L-98L; 28L-98L; 28L-112L; 28L-140L; 42L-98L; 42L-112L; 42L-140L; 

70L-112L; 70L-140L; 112L-98L; 98L-140L 

g_Prevotella 98E-98L; 1E-28E; 1E-42E; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 42E-70E; 42E-98E; 42E-112E; 42E-140E; 
1L-28L; 1L-42L; 28L-112L; 28L-140L; 42L-112L; 42L-140L; 70L-140L; 98L-140L  

s_Barnesiella 

intestinihominis 

98E-98L; 1E-42E; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 42E-70E; 42E-98E; 42E-112E; 42E-140E; 1L-42L; 

1L-98L; 42L-140L; 98L-140L 
f_Prevotellaceae 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-42E; 1L-112L; 1L-140L 

s_Faecalibacterium 

prausnitzii 

70E-70L; 1E-28E; 1E-112E; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 42E-70E; 42E-98E; 42E-112E; 42E-140E; 

1L-112L; 1L-140L; 28L-98L; 28L-112L; 28L-140L; 42L-98L; 42L-112L; 42L-140L; 70L-112L; 70L-140L 
g_Faecalicatena 70E-70L; 98E-98L; 1E-28E; 1E-42E; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 42E-70E; 42E-98E; 42E-112E; 

42E-140E; 1L-28L; 1L-42L; 1L-70L; 1L-112L; 28L-98L; 28L-112L; 28L-140L; 42L-98L; 42L-112L; 42L-140L; 

70L-98L; 70L-112L; 70L-140L; 112L-98L; 98L-140L 
c_Clostridia 1E-28E; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-70E; 28E-112E; 42E-70E; ; 42E-112E; ; 1L-28L; 1L-

42L; 1L-70L; 1L-98L; 1L-112L; 1L-140L; 28L-98L; 28L-112L; 28L-140L; 42L-98L; 42L-140L 
s_Bacteroides uniformis 98E-98L; 1E-28E; 1E-42E; 28E-98E; 28E-112E; 28E-140E; 42E-98E; 42E-112E; 42E-140E; 70E-98E; 70E-112E; 

70E-140E; 28L-112L; 28L-140L; 42L-112L; 42L-140L; 70L-140L; 98L-140L 

s_Blautia wexlerae 42E-42L; 1E-28E; 28E-42E; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 1L-28L; 1L-42L; 1L-112L; 28L-70L; 28L-
98L; 28L-112L; 28L-140L; 42L-70L; 42L-98L; 42L-112L; 42L-140L; 112L-98L 

f_Lactobacillaceae 1E-28E; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-42E; 28E-70E; 28E-112E; 28E-140E; 1L-28L; 1L-

42L; 1L-70L; 1L-98L; 1L-112L; 1L-140L; 28L-70L; 28L-112L; 28L-140L 
s_Phocaeicola vulgatus 28E-70E; 28E-98E; 28E-112E; 28E-140E; 42E-70E; 42E-98E; 42E-112E; 42E-140E; 1L-140L; 28L-112L; 28L-

140L; 42L-112L; 42L-140L 

s_Gallibacterium anatis 1E-28E; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-42E; 28E-70E; 1L-42L; 1L-70L; 1L-98L; 1L-112L; 
1L-140L; 28L-42L; 28L-70L; 28L-112L; 28L-140L 

f_Oscillospiraceae 1E-28E; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-70E; 28E-98E; 28E-140E; ; ; ; 1L-28L; 1L-42L; 1L-

70L; 1L-98L; 1L-112L; 1L-140L; 28L-112L 
f_Tannerellaceae 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 42E-70E; 42E-98E; 42E-112E; 

42E-140E; 70E-98E; 70E-112E; 70E-140E; 1L-98L; 1L-112L; 1L-140L; 28L-98L; 28L-112L; 28L-140L; 42L-

98L; 42L-112L; 42L-140L; 70L-98L; 70L-112L; 70L-140L 
s_Ligilactobacillus 

salivarius 

1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-42E; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 1L-42L; 1L-

70L; 1L-98L; 1L-112L; 1L-140L; 28L-42L; 28L-70L; 28L-98L; 28L-112L; 28L-140L 

s_Bifidobacterium 
pseudolongum 

1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-98E; 28E-112E; 1L-42L; 1L-98L; 1L-112L; 1L-140L; 28L-
112L; 70L-112L 

g_Butyricicoccus 42E-42L; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-42E; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 1L-

70L; 1L-98L; 1L-112L; 1L-140L; 28L-70L; 28L-98L; 28L-112L; 28L-140L; 42L-70L; 42L-98L; 42L-112L; 42L-
140L 
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s_Bifidobacterium longum 1E-28E; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-42E; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 1L-

42L; 1L-70L; 1L-98L; 1L-112L; 1L-140L; 28L-42L; 28L-70L; 28L-98L; 28L-112L; 28L-140L; 112L-98L 

s_Lactobacillus amylovorus 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-42E; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 1L-28L; 1L-
42L; 1L-70L; 1L-98L; 1L-112L; 1L-140L; 28L-42L; 28L-70L; 28L-112L; 28L-140L 

s_Lactobacillus ingluviei 1E-28E; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 1L-28L; 1L-42L; 1L-70L; 1L-98L; 1L-112L; 1L-140L; 

28L-42L; 28L-70L; 28L-98L; 28L-112L; 28L-140L 
g_Mediterraneibacter 42E-42L; 70E-70L; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-42E; 28E-70E; 28E-98E; 28E-112E; 28E-

140E; 1L-28L; 1L-112L; 1L-140L; 28L-98L; 28L-112L; 28L-140L; 42L-98L; 42L-112L; 42L-140L; 70L-98L; 

70L-112L; 70L-140L 
s_Streptococcus gallolyticus 1E-112E; 28E-112E; ; 1L-70L; 1L-98L; 1L-112L; 1L-140L; 28L-70L; 28L-98L; 28L-112L; 28L-140L; 42L-70L; 

42L-98L; 42L-112L; 42L-140L 

f_Rikenellaceae 70E-70L; 98E-98L; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 42E-70E; 
42E-98E; 42E-112E; 42E-140E; 70E-98E; 70E-112E; 1L-98L; 1L-112L; 1L-140L; 28L-98L; 28L-112L; 28L-

140L; 42L-98L; 42L-112L; 42L-140L; 70L-112L; 70L-140L; 112L-98L; 98L-140L 

f_Eubacteriaceae 70E-70L; 98E-98L; 1E-28E; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 1L-28L; 1L-42L; 1L-70L; 1L-98L; 1L-
112L; 1L-140L; 28L-112L; 28L-140L; 42L-112L; 70L-112L; 70L-140L; 112L-98L; 98L-140L 

f_Ruminococcaceae 42E-42L; 1E-28E; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-42E; 28E-70E; 28E-98E; 70E-140E; 1L-

28L; 1L-42L; 1L-70L; 1L-98L; 1L-112L; 1L-140L; 28L-70L; 28L-98L; 28L-112L; 28L-140L; 42L-70L; 42L-98L; 
42L-112L; 42L-140L 

o_Bacteroidales 70E-70L; 98E-98L; 1E-28E; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-70E; 28E-98E; 28E-112E; 28E-

140E; 42E-70E; 42E-98E; 42E-112E; 42E-140E; 1L-42L; 1L-70L; 1L-98L; 1L-112L; 1L-140L; 28L-42L; 28L-

112L; 28L-140L; 42L-112L; 42L-140L; 70L-112L; 70L-140L; 112L-98L; 98L-140L 

f_Bacteroidaceae 70E-70L; 98E-98L; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-42E; 28E-70E; 28E-98E; 28E-112E; 28E-

140E; 42E-70E; 42E-98E; 42E-112E; 42E-140E; 1L-70L; 1L-98L; 1L-112L; 1L-140L; 28L-70L; 28L-98L; 28L-
112L; 28L-140L; 42L-70L; 42L-98L; 42L-112L; 42L-140L; 70L-112L; 70L-140L; 112L-98L; 98L-140L 

o_Clostridiales 42E-42L; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-42E; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 1L-

28L; 1L-42L; 1L-70L; 1L-98L; 1L-112L; 1L-140L; 28L-70L; 28L-98L; 28L-112L; 28L-140L; 42L-70L; 42L-98L; 
42L-112L; 42L-140L 

c_Bacteroidia 70E-70L; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 42E-112E; 

42E-140E; 1L-42L; 1L-70L; 1L-98L; 1L-112L; 1L-140L; 28L-98L; 28L-112L; 28L-140L; 42L-112L; 42L-140L; 
70L-112L; 70L-140L; 98L-140L 

o_Sphingobacteriales 70E-70L; 98E-98L; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 42E-70E; 

42E-98E; 42E-112E; 42E-140E; 1L-112L; 1L-140L; 28L-112L; 28L-140L; 42L-112L; 42L-140L; 70L-112L; 70L-
140L; 112L-98L; 98L-140L 

f_Muribaculaceae 42E-42L; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-42E; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 42E-

98E; 42E-112E; 1L-70L; 1L-98L; 1L-112L; 1L-140L; 28L-70L; 28L-98L; 28L-112L; 28L-140L; 42L-70L; 42L-
98L; 42L-112L; 42L-140L 

s_Olsenella umbonata 98E-98L; 1E-28E; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 28E-42E; 28E-70E; 28E-140E; 42E-98E; 42E-112E; 42E-

140E; 70E-98E; 70E-112E; 70E-140E; 1L-28L; 1L-42L; 1L-70L; 1L-98L; 1L-112L; 28L-112L; 28L-140L; 42L-
112L; 42L-140L; 70L-112L; 70L-140L; 112L-98L; 98L-140L 

o_Bacteroidales incertae 

sedis 

70E-70L; 98E-98L; 1E-140E; 1L-70L; 1L-98L; 1L-140L; 28L-42L; 28L-70L; 28L-98L; 28L-140L; 42L-70L; 42L-

98L; 70L-112L; 70L-140L; 112L-98L; 98L-140L 
f_Lachnospiraceae 70E-70L; 98E-98L; 1E-28E; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-70E; 28E-98E; 28E-112E; 1L-

28L; 1L-42L; 1L-70L; 1L-98L; 1L-112L; 1L-140L; 28L-112L; 28L-140L; 42L-112L; 42L-140L; 70L-112L; 70L-

140L; 112L-98L; 98L-140L 
f_Erysipelotrichaceae 1E-28E; 1E-42E; 1E-70E; 1E-112E; 1L-28L; 1L-42L; 1L-70L; 1L-98L 

g_Blautia 42E-42L; 70E-70L; 98E-98L; 1E-28E; 1E-42E; 1E-98E; 1E-112E; 28E-42E; 28E-70E; 28E-98E; 28E-112E; 28E-

140E; 42E-70E; 1L-28L; 1L-42L; 1L-70L; 1L-98L; 28L-112L; 28L-140L; 42L-112L; 42L-140L; 70L-112L; 70L-
140L; 112L-98L; 98L-140L 

f_Atopobiaceae 98E-98L; 1E-28E; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 1L-28L; 1L-42L; 1L-70L; 1L-98L; 1L-112L; 1L-
140L; 28L-42L; 28L-70L; 28L-98L; 70L-112L; 70L-140L; 112L-98L; 98L-140L 

f_Spirochaetaceae 98E-98L; 1E-98E; 1E-112E; 1E-140E; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 42E-112E; 42E-140E; 1L-140L; 

28L-140L; 42L-140L; 70L-112L; 70L-140L; 112L-98L; 98L-140L 
f_Marinilabiliaceae 42E-42L; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 1E-140E; 28E-42E; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 1L-

98L; 1L-112L; 1L-140L; 28L-98L; 28L-112L; 28L-140L; 42L-112L 

g_Frisingicoccus 42E-42L; 70E-70L; 98E-98L; 1E-28E; 1E-42E; 28E-42E; 28E-70E; 28E-98E; 28E-112E; 28E-140E; 42E-140E; 
1L-28L; 1L-42L; 1L-70L; 1L-98L; 1L-112L; 28L-98L; 28L-112L; 28L-140L; 42L-98L; 42L-112L; 42L-140L; 

70L-112L; 70L-140L; 98L-140L 

c_Cytophagia 42E-42L; 70E-70L; 112E-112L; 1E-42E; 1E-70E; 1E-98E; 1E-112E; 28E-42E; 28E-70E; 28E-98E; 28E-112E; 
42E-140E; 70E-140E; 112E-98E; 98E-140E; 112E-140E; 1L-70L; 1L-98L; 1L-112L; 1L-140L; 28L-70L; 28L-

98L; 28L-112L; 28L-140L; 42L-98L; 42L-112L; 42L-140L; 70L-98L; 70L-112L; 98L-140L; 112L-140L 

s_Butyricimonas virosa 28E-28L; 42E-42L; 98E-98L; 112E-112L; 1E-28E; 1E-42E; 1E-70E; 28E-42E; 28E-98E; 28E-112E; 28E-140E; 

42E-70E; 42E-98E; 42E-112E; 42E-140E; 70E-98E; 70E-112E; 70E-140E; 1L-42L; 1L-70L; 1L-98L; 1L-112L; 

28L-42L; 28L-70L; 28L-98L; 42L-140L; 70L-140L; 112L-98L; 98L-140L; 112L-140L 

s_Phocaeicola coprocola 70E-70L; 98E-98L; 112E-112L; 1L-70L; 1L-98L; 1L-112L; 28L-70L; 28L-98L; 28L-112L; 42L-98L; 42L-112L; 
98L-140L; 112L-140L 

 

1Phyla and their corresponding genera and species are indicated and only those taxa with 

maximum relative abundance > 1% in at least 1 group are shown 

2earlyC group weaned at 7 weeks of age (experimental days 28–42) 
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3lateC group weaned at 17 weeks of age (experimental days 98–112) 

4P-values were obtained using Kruskal-Wallis test and p ≤ 0.05 indicates bacterial taxa that 

were significantly different between the samples due to age x weaning effect 

5Pairwise comparisons were done using Dunn’s test and p ≤ 0.05 was considered significant.  

 

Table S11 | Average relative concentrations (µmol/L) of plasma metabolites in early- and late-

weaned calves. 

 
 

2earlyC 3lateC  

 Experimental day   

1Metabolites list 1E 28E 42E 70E 98E 112E 140E 1L 28L 42L 70L 98L 112L 140L 
4p-

value  

Carnitine 10.2 14.8 10.8 8.4 8.8 8.8 8.4 9.5 15.9 14.8 12.6 11.9 9.8 10.4 < 0.001 
Propionylcarnitine 0.2 0.2 0.6 0.8 0.5 0.4 0.3 0.2 0.3 0.4 0.6 0.7 0.6 0.4 < 0.001 

Propenoylcarnitine 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 < 0.001 

Valerylcarnitine 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.2 0.1 0.2 0.2 < 0.001 
Nonaylcarnitine 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 < 0.001 

Hexadecanoyl 
carnitine 

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 < 0.001 

Hydroxyhexadeca 

dienylcarnitine 
0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 < 0.001 

Octadecenoyl 

carnitine 
0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.0 < 0.001 

Arginine 203 238 192 144 151 151 145 223 238 216 182 166 153 142 < 0.001 
Glutamate 154 104 92.3 98.7 108.1 97.1 89.8 157 89.1 85.2 90.9 101 104.1 91.3 < 0.001 

Glycine 627 441 424 422 448 445 438 612 413 442 408 377 344 386 < 0.001 

Histidine 101 117 91.4 66.5 66.8 72.9 78.5 98.5 124 122 98.6 95.5 84.5 77.5 < 0.001 
Lysine 283 267 185 151 156 159 168 261 276 229 200 183 184 188 < 0.001 

Methionine 50.1 48.6 29.2 24.4 30.6 31.2 33.8 44.1 46.5 41.0 35.8 33.2 31.7 33.1 < 0.001 

Ornithine 98.1 93.2 135 72.2 74.7 78.6 78.8 92.5 90.5 102 96.5 107 85.1 78.4 < 0.001 
Phenylalanine 106 93.8 89.2 71.5 72.8 68.9 68.6 104 94.7 84.1 77.6 79.3 80.8 75.0 < 0.001 

Proline 200 152 91.1 73.1 78.7 81.0 83.9 194 149 120 94.0 87.0 86.4 76.6 < 0.001 

Serine 202 143 108 81.4 85.7 87.5 90.8 196 143 116 100 98.4 79.2 88.3 < 0.001 
Threonine 156 125 90.9 71.3 93.3 95.1 99.8 164 119 110 108 112 98.5 90.0 < 0.001 

Tyrosine 86.9 93.4 77.6 56.5 63.6 62.7 67.4 89.2 94.0 82.0 75.9 77.0 73.1 61.6 < 0.001 

Valine 276 248 333 278 286 286 282 271 256 284 321 342 323 314 < 0.001 
Acetylornithine 1.1 0.6 1.5 4.7 6.6 6.8 7.2 1.4 0.6 1.0 1.8 1.7 4.6 7.0 < 0.001 

Asymmetric 

dimethylarginine 
2.1 1.6 1.5 1.5 1.5 1.5 1.5 2.0 1.6 1.5 1.5 1.3 1.4 1.5 < 0.001 

Carnosine 9.8 10.0 11.6 10.8 12.5 13.9 15.0 10.1 10.0 11.1 13.4 14.6 15.2 14.7 < 0.001 

Creatinine 81.7 67.3 65.9 63.7 55.8 57.9 62.2 78.0 66.7 60.6 57.6 54.4 65.0 64.6 < 0.001 

Dihydroxyphenyl-
alanine 

0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 < 0.001 

Dopamine 0.0 2.0 2.4 2.7 2.8 2.9 2.5 0.0 2.3 2.1 3.0 2.5 3.1 2.8 < 0.001 

Histamine 0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.0 0.3 0.3 0.3 0.3 0.3 0.3 < 0.001 
Sarcosine 7.6 6.5 2.6 7.5 6.8 3.9 1.1 8.1 7.6 5.4 3.3 2.3 1.9 1.3 < 0.001 

Symmetric 

dimethylarginine 
1.1 0.7 0.6 0.6 0.6 0.6 0.6 1.0 0.7 0.6 0.7 0.6 0.6 0.6 < 0.001 

Spermine 0.0 0.8 1.6 1.1 1.5 1.8 0.9 0.0 1.5 1.1 0.9 1.1 1.4 1.3 < 0.001 

trans-4-

hydroxyproline 
88.7 73.1 47.5 38.4 46.3 49.4 51.2 91.8 65.4 60.7 53.0 44.9 45.3 42.0 < 0.001 

Taurine 116 50.9 51.6 37.6 26.7 30.8 34.6 84.5 50.3 57.4 45.7 48.2 43.0 38.0 < 0.001 

SM (OH) C14:1 2.9 3.6 3.9 5.1 6.6 6.7 7.7 3.4 3.6 4.1 5.4 6.2 6.7 6.8 < 0.001 

SM (OH) C16:1 1.1 1.3 2.3 4.6 5.8 5.8 6.5 1.3 1.4 1.9 3.4 4.5 5.5 5.8 < 0.001 
SM (OH) C22:1 4.6 9.8 10.8 6.9 7.8 7.7 8.2 5.2 8.9 10.0 10.0 10.4 10.4 8.6 < 0.001 

SM (OH) C22:2 2.4 3.3 3.7 3.0 3.5 3.9 4.4 2.8 3.0 3.4 3.8 4.5 4.9 4.2 < 0.001 

SM (OH) C24:1 0.5 0.6 0.8 0.8 0.9 0.9 0.9 0.5 0.6 0.7 0.8 1.0 1.1 0.9 < 0.001 
SM C18:1 2.8 4.0 4.1 3.3 4.1 4.3 4.8 3.3 3.6 3.8 4.2 5.0 5.1 4.2 < 0.001 

SM C22:3 0.1 0.2 0.2 0.0 0.1 0.1 0.0 0.0 0.3 0.2 0.1 0.1 0.1 0.0 < 0.001 

SM C24:1 12.8 14.2 13.4 6.2 5.9 6.4 6.7 14.3 13.5 12.3 9.8 9.7 9.5 7.0 < 0.001 
SM C26:0 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.2 0.2 0.2 0.2 < 0.001 
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1Metabolites list 5Tukey's HSD 

Carnitine 28E-112E; 28L-112E; 42E-112E; 42L-112E; 70L-112E; 98L-112E; 28E-112L; 28L-112L; 42L-112L; 70L-
112L; 140L-140E; 28E-140E; 28L-140E; 42E-140E; 42L-140E; 70L-140E; 98L-140E; 28E-140L; 28L-

140L; 42L-140L; 70E-140L; 70L-140L; 28E-1E; 28L-1E; 42L-1E; 70E-1E; 70L-1E; 28E-1L; 28L-1L; 42L-

1L; 70L-1L; 98L-1L; 42E-28E; 70E-28E; 98E-28E; 98L-28E; 42E-28L; 70E-28L; 70L-28L; 98E-28L; 98L-
28L; 42L-42E; 70E-42E; 98E-42E; 70E-42L; 98E-42L; 98L-42L; 70L-70E; 98L-70E; 98E-70L; 98L-98E 

Propionylcarnitine 1E-112E; 1L-112E; 28E-112E; 42E-112E; 70E-112E; 98L-112E; 140E-112L; 140L-112L; 1E-112L; 1L-

112L; 28E-112L; 28L-112L; 42L-112L; 70E-112L; 1E-140E; 1L-140E; 42E-140E; 70E-140E; 70L-140E; 
98E-140E; 98L-140E; 1E-140L; 1L-140L; 28E-140L; 42E-140L; 70E-140L; 98L-140L; 28E-1E; 28L-1E; 

42E-1E; 42L-1E; 70E-1E; 70L-1E; 98E-1E; 98L-1E; 28E-1L; 28L-1L; 42E-1L; 42L-1L; 70E-1L; 70L-1L; 

98E-1L; 98L-1L; 42E-28E; 42L-28E; 70E-28E; 70L-28E; 98E-28E; 98L-28E; 42E-28L; 70E-28L; 70L-
28L; 98E-28L; 98L-28L; 42L-42E; 70E-42L; 70L-42L; 98L-42L; 70L-70E; 98E-70E 

Propenoylcarnitine 1E-112E; 1L-112E; 1E-112L; 1L-112L; 1E-140E; 1L-140E; 1E-140L; 1L-140L; 28E-1E; 28L-1E; 42E-1E; 

42L-1E; 70E-1E; 70L-1E; 98E-1E; 98L-1E; 28E-1L; 28L-1L; 42E-1L; 42L-1L; 70E-1L; 70L-1L; 98E-1L; 
98L-1L 

Valerylcarnitine 1E-112E; 1L-112E; 28E-112E; 28L-112E; 1E-112L; 1L-112L; 28E-112L; 28L-112L; 42E-112L; 1E-140E; 

1L-140E; 1E-140L; 1L-140L; 28E-140L; 28L-1E; 42E-1E; 42L-1E; 70E-1E; 70L-1E; 98E-1E; 98L-1E; 
28L-1L; 42E-1L; 42L-1L; 70E-1L; 70L-1L; 98E-1L; 98L-1L; 70E-28E; 70L-28E; 98E-28E; 70E-28L; 98E-

28L; 70E-42E; 98E-42E; 98E-42L 

Nonaylcarnitine 
1E-112E; 1L-112E; 1E-140E; 1L-140E; 70E-1E; 98E-1E; 98E-1L 

Hexadecanoylcarnitine 1E-112E; 1L-112E; 28E-112E; 28L-112E; 42L-112E; 1E-112L; 1L-112L; 28E-112L; 28L-112L; 42L-

112L; 1E-140E; 1L-140E; 28E-140E; 28L-140E; 42L-140E; 1E-140L; 28E-140L; 28L-140L; 42L-140L; 
70E-1E; 98E-1E; 98L-1E; 70E-1L; 98E-1L; 98L-1L; 42E-28E; 70E-28E; 98E-28E; 98L-28E; 70E-28L; 

98E-28L; 98L-28L; 70E-42L; 98E-42L; 98L-42L 

Hydroxyhexadecadienylcarnitine 1E-112E; 1L-112E; 1E-112L; 1L-112L; 1E-140E; 1L-140E; 1E-140L; 1L-140L; 28E-1E; 28L-1E; 42E-1E; 
42L-1E; 70E-1E; 70L-1E; 98E-1E; 98L-1E; 28E-1L; 28L-1L; 42E-1L; 42L-1L; 70E-1L; 70L-1L; 98E-1L; 

98L-1L 
Octadecenoylcarnitine 1L-112E; 1E-112L; 1L-112L; 42E-112L; 42L-112L; 1E-140E; 1L-140E; 42E-140E; 42L-140E; 70L-140E; 

1L-140L; 98E-1E; 98E-1L; 98E-42E; 98E-42L 

Arginine 1E-112E; 1L-112E; 28E-112E; 28L-112E; 42E-112E; 42L-112E; 1E-112L; 1L-112L; 28E-112L; 28L-
112L; 42E-112L; 42L-112L; 1E-140E; 1L-140E; 28E-140E; 28L-140E; 42E-140E; 42L-140E; 1E-140L; 

1L-140L; 28E-140L; 28L-140L; 42E-140L; 42L-140L; 70L-140L; 70E-1E; 98E-1E; 70E-1L; 98E-1L; 98L-

1L; 70E-28E; 70L-28E; 98E-28E; 98L-28E; 70E-28L; 70L-28L; 98E-28L; 98L-28L; 70E-42E; 98E-42E; 
70E-42L; 98E-42L; 98L-42L; 70L-70E 

Glutamate 1E-112E; 1L-112E; 1E-112L; 1L-112L; 1E-140E; 1L-140E; 1E-140L; 1L-140L; 28E-1E; 28L-1E; 42E-1E; 

42L-1E; 70E-1E; 70L-1E; 98E-1E; 98L-1E; 28E-1L; 28L-1L; 42E-1L; 42L-1L; 70E-1L; 70L-1L; 98E-1L; 
98L-1L; 98E-42L 

Glycine 112L-112E; 1E-112E; 1L-112E; 140E-112L; 1E-112L; 1L-112L; 28E-112L; 42E-112L; 42L-112L; 70E-

112L; 98E-112L; 1E-140E; 1L-140E; 1E-140L; 1L-140L; 28E-1E; 28L-1E; 42E-1E; 42L-1E; 70E-1E; 70L-
1E; 98E-1E; 98L-1E; 28E-1L; 28L-1L; 42E-1L; 42L-1L; 70E-1L; 70L-1L; 98E-1L; 98L-1L; 98L-98E 

Histidine 1E-112E; 1L-112E; 28E-112E; 28L-112E; 42L-112E; 70L-112E; 98L-112E; 28E-112L; 28L-112L; 42L-

112L; 70E-112L; 98E-112L; 28E-140E; 28L-140E; 42L-140E; 28E-140L; 28L-140L; 42L-140L; 70E-1E; 

98E-1E; 28L-1L; 42L-1L; 70E-1L; 98E-1L; 70E-28E; 98E-28E; 42E-28L; 70E-28L; 98E-28L; 98L-28L; 

42L-42E; 70E-42E; 98E-42E; 70E-42L; 98E-42L; 70L-70E; 98L-70E; 98E-70L; 98L-98E 

Lysine 1E-112E; 1L-112E; 28E-112E; 28L-112E; 42L-112E; 1E-112L; 1L-112L; 28E-112L; 28L-112L; 1E-140E; 
1L-140E; 28E-140E; 28L-140E; 42L-140E; 1E-140L; 1L-140L; 28E-140L; 28L-140L; 42E-1E; 70E-1E; 

70L-1E; 98E-1E; 98L-1E; 42E-1L; 70E-1L; 70L-1L; 98E-1L; 98L-1L; 42E-28E; 70E-28E; 70L-28E; 98E-

28E; 98L-28E; 42E-28L; 70E-28L; 70L-28L; 98E-28L; 98L-28L; 70E-42L; 98E-42L; 70L-70E 
Methionine 1E-112E; 1L-112E; 28E-112E; 28L-112E; 42L-112E; 70E-112E; 1E-112L; 1L-112L; 28E-112L; 28L-

112L; 70E-112L; 1E-140E; 1L-140E; 28E-140E; 28L-140E; 70E-140E; 1E-140L; 1L-140L; 28E-140L; 

28L-140L; 70E-140L; 42E-1E; 70E-1E; 70L-1E; 98E-1E; 98L-1E; 42E-1L; 70E-1L; 98E-1L; 98L-1L; 42E-
28E; 70E-28E; 70L-28E; 98E-28E; 98L-28E; 42E-28L; 70E-28L; 98E-28L; 98L-28L; 42L-42E; 70E-42L; 

98E-42L; 70L-70E; 98E-70E; 98L-70E 

Ornithine 42E-112E; 98L-112E; 42E-112L; 42E-140E; 42L-140E; 98L-140E; 42E-140L; 98L-140L; 42E-1E; 70E-
1E; 42E-1L; 42E-28E; 70E-28E; 42E-28L; 42L-42E; 70E-42E; 70L-42E; 98E-42E; 70E-42L; 98E-42L; 

70L-70E; 98L-70E; 98L-98E 

Phenylalanine 1E-112E; 1L-112E; 28E-112E; 28L-112E; 42E-112E; 42L-112E; 1E-112L; 1L-112L; 1E-140E; 1L-140E; 
28E-140E; 28L-140E; 42E-140E; 42L-140E; 1E-140L; 1L-140L; 28E-140L; 28L-140L; 42L-1E; 70E-1E; 

70L-1E; 98E-1E; 98L-1E; 42L-1L; 70E-1L; 70L-1L; 98E-1L; 98L-1L; 70E-28E; 70L-28E; 98E-28E; 70E-

28L; 70L-28L; 98E-28L; 70E-42E; 98E-42E 
Proline 1E-112E; 1L-112E; 28E-112E; 28L-112E; 42L-112E; 1E-112L; 1L-112L; 28E-112L; 28L-112L; 42L-

112L; 1E-140E; 1L-140E; 28E-140E; 28L-140E; 42L-140E; 1E-140L; 1L-140L; 28E-140L; 28L-140L; 

42L-140L; 70L-140L; 28E-1E; 28L-1E; 42E-1E; 42L-1E; 70E-1E; 70L-1E; 98E-1E; 98L-1E; 28E-1L; 28L-
1L; 42E-1L; 42L-1L; 70E-1L; 70L-1L; 98E-1L; 98L-1L; 42E-28E; 42L-28E; 70E-28E; 70L-28E; 98E-28E; 

98L-28E; 42E-28L; 42L-28L; 70E-28L; 70L-28L; 98E-28L; 98L-28L; 42L-42E; 70E-42E; 70E-42L; 70L-

42L; 98E-42L; 98L-42L; 70L-70E 
Serine 1E-112E; 1L-112E; 28E-112E; 28L-112E; 42E-112E; 42L-112E; 1E-112L; 1L-112L; 28E-112L; 28L-

112L; 42E-112L; 42L-112L; 70L-112L; 98L-112L; 1E-140E; 1L-140E; 28E-140E; 28L-140E; 42L-140E; 

1E-140L; 1L-140L; 28E-140L; 28L-140L; 42E-140L; 42L-140L; 28E-1E; 28L-1E; 42E-1E; 42L-1E; 70E-
1E; 70L-1E; 98E-1E; 98L-1E; 28E-1L; 28L-1L; 42E-1L; 42L-1L; 70E-1L; 70L-1L; 98E-1L; 98L-1L; 42E-

28E; 42L-28E; 70E-28E; 70L-28E; 98E-28E; 98L-28E; 42E-28L; 42L-28L; 70E-28L; 70L-28L; 98E-28L; 

98L-28L; 70E-42E; 98E-42E; 70E-42L; 98E-42L; 70L-70E; 98L-70E 
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1Metabolites list 5Tukey's HSD 

Threonine 1E-112E; 1L-112E; 70E-112E; 1E-112L; 1L-112L; 70E-112L; 1E-140E; 1L-140E; 70E-140E; 1E-140L; 

1L-140L; 42E-1E; 42L-1E; 70E-1E; 70L-1E; 98E-1E; 98L-1E; 28E-1L; 28L-1L; 42E-1L; 42L-1L; 70E-

1L; 70L-1L; 98E-1L; 98L-1L; 70E-28E; 70E-28L; 70E-42L; 70L-70E; 98E-70E; 98L-70E 
Tyrosine 1E-112E; 1L-112E; 28E-112E; 28L-112E; 42L-112E; 70E-112L; 1L-140E; 28E-140E; 28L-140E; 1E-

140L; 1L-140L; 28E-140L; 28L-140L; 42L-140L; 70E-1E; 98E-1E; 70E-1L; 98E-1L; 70E-28E; 98E-28E; 

70E-28L; 98E-28L; 70E-42E; 70E-42L; 70L-70E; 98L-70E 
Valine 1L-112L; 28E-112L; 28L-112L; 98L-140E; 28E-140L; 28L-140L; 42E-1E; 98L-1E; 42E-1L; 98L-1L; 42E-

28E; 70L-28E; 98L-28E; 42E-28L; 70L-28L; 98L-28L; 98L-42L; 98L-70E 

Acetylornithine 1E-112E; 1L-112E; 28E-112E; 28L-112E; 42E-112E; 42L-112E; 70L-112E; 98L-112E; 1E-112L; 1L-
112L; 28E-112L; 28L-112L; 42E-112L; 42L-112L; 70L-112L; 98L-112L; 1E-140E; 1L-140E; 28E-140E; 

28L-140E; 42E-140E; 42L-140E; 70L-140E; 98L-140E; 1E-140L; 1L-140L; 28E-140L; 28L-140L; 42E-

140L; 42L-140L; 70L-140L; 98L-140L; 70E-1E; 98E-1E; 70E-1L; 98E-1L; 70E-28E; 70L-28E; 98E-28E; 
98L-28E; 70E-28L; 98E-28L; 70E-42E; 98E-42E; 70E-42L; 98E-42L; 70L-70E; 98L-70E; 98E-70L; 98L-

98E 

Asymmetric dimethylarginine 1E-112E; 1L-112E; 1E-112L; 1L-112L; 1E-140E; 1L-140E; 1E-140L; 1L-140L; 28E-1E; 28L-1E; 42E-1E; 
42L-1E; 70E-1E; 70L-1E; 98E-1E; 98L-1E; 28E-1L; 28L-1L; 42E-1L; 42L-1L; 70E-1L; 70L-1L; 98E-1L; 

98L-1L; 98L-28E; 98L-28L 

Carnosine 1E-112E; 1L-112E; 28E-112E; 28L-112E; 70E-112E; 1E-112L; 1L-112L; 28E-112L; 28L-112L; 42E-
112L; 42L-112L; 70E-112L; 1E-140E; 1L-140E; 28E-140E; 28L-140E; 42E-140E; 42L-140E; 70E-140E; 

1E-140L; 1L-140L; 28E-140L; 28L-140L; 42L-140L; 70E-140L; 70L-1E; 98E-1E; 98L-1E; 70L-1L; 98L-

1L; 70L-28E; 98L-28E; 70L-28L; 98L-28L; 98L-42L; 98L-70E 

Creatinine 1E-112E; 1L-112E; 1E-112L; 1L-112L; 1E-140E; 1L-140E; 1E-140L; 1L-140L; 28E-1E; 28L-1E; 42E-1E; 

42L-1E; 70E-1E; 70L-1E; 98E-1E; 98L-1E; 42E-1L; 42L-1L; 70E-1L; 70L-1L; 98E-1L; 98L-1L; 98E-28E; 

98L-28E; 98E-28L; 98L-28L 
Dihydroxyphenylalanine 1E-112E; 1L-112E; 1E-112L; 1L-112L; 1E-140E; 1L-140E; 1E-140L; 1L-140L; 28E-1E; 28L-1E; 42E-1E; 

42L-1E; 70E-1E; 70L-1E; 98E-1E; 98L-1E; 28E-1L; 28L-1L; 42E-1L; 42L-1L; 70E-1L; 70L-1L; 98E-1L; 

98L-1L 
Dopamine 1E-112E; 1L-112E; 1E-112L; 1L-112L; 1E-140E; 1L-140E; 1E-140L; 1L-140L; 28E-1E; 28L-1E; 42E-1E; 

42L-1E; 70E-1E; 70L-1E; 98E-1E; 98L-1E; 28E-1L; 28L-1L; 42E-1L; 42L-1L; 70E-1L; 70L-1L; 98E-1L; 

98L-1L 
Histamine 1E-112E; 1L-112E; 1E-112L; 1L-112L; 1E-140E; 1L-140E; 1E-140L; 1L-140L; 28E-1E; 28L-1E; 42E-1E; 

42L-1E; 70E-1E; 70L-1E; 98E-1E; 98L-1E; 28E-1L; 28L-1L; 42E-1L; 42L-1L; 70E-1L; 70L-1L; 98E-1L; 

98L-1L 
Sarcosine 1E-112E; 1L-112E; 28E-112E; 28L-112E; 42L-112E; 1E-112L; 1L-112L; 28E-112L; 28L-112L; 1E-140E; 

1L-140E; 28E-140E; 28L-140E; 42E-140E; 42L-140E; 1E-140L; 1L-140L; 28E-140L; 28L-140L; 42E-1E; 

70E-1E; 70L-1E; 98E-1E; 98L-1E; 42E-1L; 70E-1L; 70L-1L; 98E-1L; 98L-1L; 70E-28E; 98E-28E; 98L-
28E; 42E-28L; 70E-28L; 70L-28L; 98E-28L; 98L-28L 

Symmetric dimethylarginine 1E-112E; 1L-112E; 1E-112L; 1L-112L; 1E-140E; 1L-140E; 1E-140L; 1L-140L; 28E-1E; 28L-1E; 42E-1E; 

42L-1E; 70E-1E; 70L-1E; 98E-1E; 98L-1E; 28E-1L; 28L-1L; 42E-1L; 42L-1L; 70E-1L; 70L-1L; 98E-1L; 
98L-1L 

Spermine 1E-112E; 1L-112E; 1E-112L; 1L-112L; 1E-140E; 1L-140E; 1E-140L; 1L-140L; 28E-1E; 28L-1E; 42E-1E; 

42L-1E; 70E-1E; 70L-1E; 98E-1E; 98L-1E; 28E-1L; 28L-1L; 42E-1L; 42L-1L; 70E-1L; 70L-1L; 98E-1L; 
98L-1L 

trans-4-hydroxyproline 1E-112E; 1L-112E; 28E-112E; 28L-112E; 42L-112E; 70E-112E; 1E-112L; 1L-112L; 28E-112L; 28L-

112L; 42L-112L; 1E-140E; 1L-140E; 28E-140E; 28L-140E; 70E-140E; 1E-140L; 1L-140L; 28E-140L; 
28L-140L; 42L-140L; 70L-140L; 28E-1E; 28L-1E; 42E-1E; 42L-1E; 70E-1E; 70L-1E; 98E-1E; 98L-1E; 

28E-1L; 28L-1L; 42E-1L; 42L-1L; 70E-1L; 70L-1L; 98E-1L; 98L-1L; 42E-28E; 70E-28E; 70L-28E; 98E-

28E; 98L-28E; 42E-28L; 70E-28L; 70L-28L; 98E-28L; 98L-28L; 42L-42E; 70E-42E; 70E-42L; 98E-42L; 
98L-42L; 70L-70E 

Taurine 112L-112E; 1E-112E; 1L-112E; 28E-112E; 28L-112E; 42E-112E; 42L-112E; 70L-112E; 98L-112E; 1E-
112L; 1L-112L; 98E-112L; 1E-140E; 1L-140E; 28E-140E; 28L-140E; 42E-140E; 42L-140E; 98L-140E; 

1E-140L; 1L-140L; 42L-140L; 28E-1E; 28L-1E; 42E-1E; 42L-1E; 70E-1E; 70L-1E; 98E-1E; 98L-1E; 28E-

1L; 28L-1L; 42E-1L; 42L-1L; 70E-1L; 70L-1L; 98E-1L; 98L-1L; 98E-28E; 98E-28L; 98E-42E; 70E-42L; 
98E-42L; 98E-70L; 98L-98E 

SM (OH) C14:1 1E-112E; 1L-112E; 28E-112E; 28L-112E; 42E-112E; 42L-112E; 70E-112E; 70L-112E; 1E-112L; 1L-

112L; 28E-112L; 28L-112L; 42E-112L; 42L-112L; 70E-112L; 1E-140E; 1L-140E; 28E-140E; 28L-140E; 
42E-140E; 42L-140E; 70E-140E; 70L-140E; 98L-140E; 1E-140L; 1L-140L; 28E-140L; 28L-140L; 42E-

140L; 42L-140L; 70E-140L; 70L-140L; 28E-1E; 28L-1E; 42E-1E; 42L-1E; 70E-1E; 70L-1E; 98E-1E; 98L-

1E; 70E-1L; 70L-1L; 98E-1L; 98L-1L; 70E-28E; 70L-28E; 98E-28E; 98L-28E; 70E-28L; 70L-28L; 98E-
28L; 98L-28L; 70E-42E; 70L-42E; 98E-42E; 98L-42E; 70E-42L; 70L-42L; 98E-42L; 98L-42L; 98E-70E 

SM (OH) C16:1 1E-112E; 1L-112E; 28E-112E; 28L-112E; 42E-112E; 42L-112E; 70E-112E; 70L-112E; 98L-112E; 1E-

112L; 1L-112L; 28E-112L; 28L-112L; 42E-112L; 42L-112L; 70L-112L; 1E-140E; 1L-140E; 28E-140E; 

28L-140E; 42E-140E; 42L-140E; 70E-140E; 70L-140E; 98L-140E; 1E-140L; 1L-140L; 28E-140L; 28L-

140L; 42E-140L; 42L-140L; 70L-140L; 98L-140L; 42E-1E; 42L-1E; 70E-1E; 70L-1E; 98E-1E; 98L-1E; 

42E-1L; 42L-1L; 70E-1L; 70L-1L; 98E-1L; 98L-1L; 42E-28E; 42L-28E; 70E-28E; 70L-28E; 98E-28E; 
98L-28E; 42E-28L; 42L-28L; 70E-28L; 70L-28L; 98E-28L; 98L-28L; 70E-42E; 70L-42E; 98E-42E; 98L-

42E; 70E-42L; 70L-42L; 98E-42L; 98L-42L; 70L-70E; 98E-70E; 98E-70L; 98L-70L; 98L-98E 

SM (OH) C22:1 112L-112E; 1E-112E; 1L-112E; 28E-112E; 42E-112E; 42L-112E; 70L-112E; 98L-112E; 140E-112L; 1E-
112L; 1L-112L; 70E-112L; 98E-112L; 1E-140E; 1L-140E; 42E-140E; 98L-140E; 1E-140L; 1L-140L; 28E-

1E; 28L-1E; 42E-1E; 42L-1E; 70E-1E; 70L-1E; 98E-1E; 98L-1E; 28E-1L; 28L-1L; 42E-1L; 42L-1L; 70E-

1L; 70L-1L; 98E-1L; 98L-1L; 70E-28E; 98E-28E; 70E-28L; 70E-42E; 98E-42E; 70E-42L; 98E-42L; 70L-
70E; 98L-70E; 98E-70L; 98L-98E 

SM (OH) C22:2 1E-112E; 1L-112E; 28L-112E; 70E-112E; 1E-112L; 1L-112L; 28E-112L; 28L-112L; 42E-112L; 42L-

112L; 70E-112L; 98E-112L; 1E-140E; 1L-140E; 28E-140E; 28L-140E; 42L-140E; 70E-140E; 98E-140E; 
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1Metabolites list 5Tukey's HSD 

1E-140L; 1L-140L; 28L-140L; 70E-140L; 28E-1E; 42E-1E; 42L-1E; 70L-1E; 98E-1E; 98L-1E; 42E-1L; 
70L-1L; 98L-1L; 98L-28E; 98L-28L; 98L-42L; 98L-70E; 98L-98E 

SM (OH) C24:1 1E-112E; 1L-112E; 28E-112E; 28L-112E; 42L-112E; 1E-112L; 1L-112L; 28E-112L; 28L-112L; 42E-

112L; 42L-112L; 70E-112L; 1E-140E; 1L-140E; 28E-140E; 28L-140E; 42L-140E; 1E-140L; 1L-140L; 
28E-140L; 28L-140L; 42L-140L; 42E-1E; 42L-1E; 70E-1E; 70L-1E; 98E-1E; 98L-1E; 42E-1L; 70E-1L; 

70L-1L; 98E-1L; 98L-1L; 70L-28E; 98E-28E; 98L-28E; 70L-28L; 98E-28L; 98L-28L; 98E-42L; 98L-42L 

SM C18:1 1E-112E; 1L-112E; 70E-112E; 1E-112L; 1L-112L; 28E-112L; 28L-112L; 42E-112L; 42L-112L; 70E-
112L; 98E-112L; 1E-140E; 1L-140E; 28L-140E; 42L-140E; 70E-140E; 1E-140L; 1L-140L; 70E-140L; 

28E-1E; 28L-1E; 42E-1E; 42L-1E; 70L-1E; 98E-1E; 98L-1E; 70L-1L; 98E-1L; 98L-1L; 98L-28E; 98L-

28L; 98L-42L; 70L-70E; 98L-70E 
SM C22:3 28E-112E; 28L-112E; 42E-112E; 42L-112E; 28E-112L; 28L-112L; 42E-112L; 42L-112L; 1E-140E; 1L-

140E; 28E-140E; 28L-140E; 42E-140E; 42L-140E; 70L-140E; 98L-140E; 28E-140L; 28L-140L; 42E-

140L; 42L-140L; 70E-1E; 70E-1L; 70E-28E; 98E-28E; 70E-28L; 98E-28L; 70E-42E; 98E-42E; 70E-42L; 
98E-42L; 98L-70E 

SM C24:1 112L-112E; 1E-112E; 1L-112E; 28E-112E; 28L-112E; 42E-112E; 42L-112E; 70L-112E; 98L-112E; 140E-

112L; 140L-112L; 1E-112L; 1L-112L; 28E-112L; 28L-112L; 42E-112L; 42L-112L; 70E-112L; 98E-112L; 
1E-140E; 1L-140E; 28E-140E; 28L-140E; 42E-140E; 42L-140E; 70L-140E; 98L-140E; 1E-140L; 1L-

140L; 28E-140L; 28L-140L; 42E-140L; 42L-140L; 70L-140L; 98L-140L; 70E-1E; 98E-1E; 70E-1L; 70L-

1L; 98E-1L; 98L-1L; 70E-28E; 70L-28E; 98E-28E; 98L-28E; 70E-28L; 70L-28L; 98E-28L; 98L-28L; 70E-
42E; 70L-42E; 98E-42E; 98L-42E; 70E-42L; 98E-42L; 70L-70E; 98L-70E; 98E-70L; 98L-98E 

SM C26:0 1E-112E; 1L-112E; 28E-112E; 28L-112E; 42E-112E; 42L-112E; 70E-112E; 70L-112E; 1E-112L; 1L-

112L; 28E-112L; 28L-112L; 42E-112L; 42L-112L; 70E-112L; 70L-112L; 1E-140E; 1L-140E; 28E-140E; 
28L-140E; 42E-140E; 42L-140E; 1E-140L; 1L-140L; 28E-140L; 28L-140L; 42E-140L; 42L-140L; 70E-

140L; 70L-140L; 70E-1E; 70L-1E; 98E-1E; 98L-1E; 70E-1L; 70L-1L; 98E-1L; 98L-1L; 42E-28E; 70E-
28E; 70L-28E; 98E-28E; 98L-28E; 70E-28L; 70L-28L; 98E-28L; 98L-28L; 98E-42E; 70E-42L; 70L-42L; 

98E-42L; 98L-42L; 98E-70E; 98E-70L 

 

1Metabolites with VIP > 1, FDR < 0.001, ANOVA are shown 

2earlyC group weaned at 7 weeks of age (experimental days 28–42) 

3lateC group weaned at 17 weeks of age (experimental days 98–112) 

4P-values were obtained using one-way Analysis of Variance (ANOVA) and FDR-adjusted p 

≤ 0.05 indicates plasma metabolites that were significantly different between the samples due 

to the age effect 

5Pairwise comparisons were done using Tukey's HSD test 

 

Table S12 | Spearman’s rank correlations between morphometric variables of calves, 

differential faecal microbial genera and plasma metabolites of weaning groups. 

 
  

d70 
 

  
LWG or ADG LW  

(kg) 

Wither height 

(cm) 

Hip height 

(cm) 

 

F
a

ec
a
l 

b
a

c
te

r
ia

l 

g
e
n

er
a
 

f_Rikenellaceae -0.52 --- --- --- 
 

g_Parabacteroides 0.68 --- --- --- 
 

g_Mediterraneibacter 0.59 --- 0.55 0.63 
 

g_Prevotella 0.54 --- --- 0.51 
 

g_Blautia 0.60 --- 0.50 0.51 
 

o_Bacteroidales incertae sedis 0.60 0.55 0.61 0.68 
 

f_Lachnospiraceae 0.53 --- --- ---  

 

p
la

sm
a
 m

e
ta

b
o
li

te
s 

Histidine 0.59 --- --- 0.53 
 

Lysine --- --- 0.53 0.52 
 

Methionine 0.61 0.58 0.54 0.56 
 

Proline 0.53 --- --- --- 
 

Serine --- 0.59 0.54 0.61 
 

Threonine 0.55 0.50 --- 0.54 
 

Tryptophan 0.56 --- --- --- 
 

Tyrosine 0.53 --- --- --- 
 

Acetylornithine -0.52 --- --- --- 
 

trans-4-hydroxyproline --- 0.51 --- --- 
 



 Chapter IV – 3rd MANUSCRIPT  

 122 

Spermidine --- -0.61 -0.54 -0.57 
 

Carnitine 0.54 0.51 0.54 0.58 
 

SM C16:0 0.57 --- --- --- 
 

SM C16:1 0.60 --- --- --- 
 

SM (OH) C16:1 --- --- -0.51 -0.55 
 

Hexoses 0.58 --- --- --- 
 

  

d98   
LWG or ADG LW  

(kg) 

Heart girth 

(cm) 

Hip height 

(cm) 

Body length 

(cm) 

F
a

ec
a
l 

b
a

c
te

r
ia

l 

g
e
n

er
a
 f_Rikenellaceae --- -0.59 -0.54 --- --- 

f_Atopobiaceae --- 0.53 --- --- --- 

g_Olsenella 0.55 --- --- --- --- 
o_Bacteroidales incertae sedis --- 0.59 0.51 --- --- 

 

      

p
la

sm
a
 m

e
ta

b
o
li

te
s 

Leucine --- 0.64 0.61 --- 0.55 

Lysine --- --- --- --- 0.53 

Ornithine --- 0.59 0.61 --- 0.53 

Threonine --- 0.51 --- --- 0.51 
Tryptophan --- 0.58 0.52 --- --- 

Tyrosine --- 0.56 --- --- 0.50 

Valine --- 0.54 0.51 --- --- 
Taurine --- 0.64 --- --- --- 

Acetylornithine --- -0.53 -0.51 --- --- 

Asymmetric dimethylarginine --- --- --- -0.53 --- 
SM C16:0 --- 0.57 0.50 --- --- 

SM C16:1 --- 0.56 0.52 --- --- 

SM C24:1 --- 0.57 0.57 --- 0.51 
Hexoses --- 0.54 --- --- --- 

 

Live weight gain (LWG), average daily gain (ADG), live weight (LW) 

blue to red colour scale - strong positive to strong negative correlations 

Spearman’s rank correlations with R > 0.50 or < -0.50 and p < 0.05 are shown 
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5. DISCUSSION 

 

5.1 Buccal swabbing (BS) technique as an alternative for invasive rumen sampling 

procedures 

Rumen is the largest compartment of ruminant’s forestomach system, responsible for 

major feed digestion and metabolites synthesis through the activity of diverse microbial 

communities (Mackie, 2002). The establishment of a fully-functional rumen and its associated 

forage- and concentrate-degrading microorganisms is essential for smooth weaning transitions. 

The present animal experiment monitored the dynamic progression of oral, rumen and faecal 

bacterial communities of 59 female Holstein calves with repeated and long-term sampling 

(over 140 days). All the rumen sampling procedures are highly invasive and are not preferable 

when frequent and prolonged monitoring of single animals are required, thus, highlighting the 

need of some non-invasive rumen sampling procedures. Based on the regurgitation activity of 

ruminant, which enables them to bring the partially digested rumen contents back to the mouth 

and the results of some previous studies (Kittelmann et al., 2015; Tapio et al., 2016), it was 

hypothesized that the oral samples might serve as non-invasive alternative to predict rumen 

microbiota (Chapter 3). The proof of concept was done by comparing the rumen bacterial 

communities of 140-day-old calves with the bacterial communities of their buccal swabs 

collected at days 42, 70, 98, 112 and 140 of the experimental trial. A large number of 

operational taxonomic units (OTUs) were shared between the two sampling methods used 

(Figure 20).  

 

Figure 20 | Overlap of OTUs covering V1-V2 region of bacterial 16S rRNA. A total of 4906 



 Chapter V – DISCUSSION 

 134 

OTUs identified in the rumen fluid (R) and buccal swab (BS) samples collected from 42, 70, 

98, 112 and 140-day-old calves were included in the Venn diagram. 

 

These shared OTUs were taxonomically assigned to various genus-level taxa, 

commonly found in the rumen and buccal swabs, though relative abundance varied (Table 2). 

Table 2 | Average relative abundances of bacterial taxa shared between R and BS samples of 

different age groups of calves. Taxonomic designations were based on RDP database. 

  
Average relative abundance (%) 

  
d42BS d70BS d98BS d112BS d140BS d140R 

Taxa OTUs (n = 11) (n = 26) (n = 51) (n = 51) (n = 47) (n = 47) 

o_Clostridiales 523 4.4 2.4 2.8 4.2 4.3 13.4 

f_Lachnospiraceae 456 9.2 4.1 3.3 5.1 2.7 8.6 

o_Bacteroidales 439 5.8 4.1 4.6 7.1 5.0 6.2 

p_Bacteroidetes 372 5.5 3.9 4.7 8.2 9.3 23.6 

k_Bacteria 307 1.8 1.6 1.4 1.2 1.3 5.7 

f_Ruminococcaceae 297 0.7 0.9 1.0 1.1 1.0 6.5 

f_Prevotellaceae 295 20.1 6.1 5.6 7.5 6.6 8.0 

p_Firmicutes 214 2.2 0.9 0.7 1.0 0.6 2.2 

g_Prevotella 125 5.5 2.6 4.4 4.1 4.0 6.7 

p_Proteobacteria 65 0.0 0.2 0.3 0.7 0.4 3.2 

c_Clostridia 63 0.1 0.1 0.2 0.1 0.1 0.6 

c_Bacteroidia 56 0.1 0.2 0.2 0.4 0.3 0.7 

c_Gammaproteobacteria 50 0.3 0.6 0.5 0.4 0.3 0.2 

c_Saccharibacteria genera 

incertae sedis 
33 0.0 0.3 0.2 0.2 0.4 1.9 

g_Olsenella 25 4.4 1.1 0.9 0.3 0.3 0.6 

f_Erysipelotrichaceae 24 0.6 0.5 0.4 0.1 0.1 0.5 

g_Bifidobacterium 23 1.0 1.3 1.3 1.0 0.7 2.8 

g_Fibrobacter 20 0.0 0.1 0.3 0.4 0.8 0.7 

c_SR1 genera incertae sedis 19 0.0 0.4 0.3 0.7 0.7 2.8 

g_Butyrivibrio 18 0.2 0.4 0.3 0.5 0.6 1.3 

g_Ruminococcus 14 0.0 0.0 0.0 0.0 0.1 0.3 

c_Alphaproteobacteria 14 0.0 0.0 0.1 0.1 0.1 0.3 

g_Succiniclasticum 12 0.9 0.6 0.4 1.1 1.0 1.4 

g_Pseudobutyrivibrio 4 0.0 0.1 0.1 0.2 0.1 0.5 

g_Ruminobacter 2 0.0 0.1 0.1 0.0 1.2 0.3 
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In conclusion of the study conducted in chapter 3, it has been confirmed that the BS 

technique has a potential to be used as a proxy for predicting rumen microbial communities of 

large animal cohorts over a longer time span without the need of stomach tubing or 

slaughtering. In contrast to the present evaluation, the work by Kittelmann and colleagues was 

based on samples collected from 24 sheep and only a single collection time (Kittelmann et al., 

2015). Similarly, the study of Tapio and colleagues, was also limited by the number of animals 

being used (5 cows) and the sampling time (Tapio et al., 2016). The rumen microbiome is 

unstable and is affected by the host breed, age, diet, as well as sampling location, post-feeding 

sampling time, and other environmental factors (Li et al., 2009; Petri et al., 2012; Jami et al., 

2013; Paz et al., 2016; Deusch et al., 2017). In addition to these factors, animal-to-animal 

variations in microbial communities exists naturally even under controlled diet and 

environmental conditions probably due to their body conditions, health status, and animal 

history, thus limiting the statistical power of a study, especially when minor differences 

between treated groups are expected. Therefore, large number of samples are needed in animal 

studies. In accordance, this study collected BS samples from 59 female Holstein calves at 5 

different timepoints over a period of 140 days, thus, enabling us to monitor the initial 

establishment of oral and rumen microbial communities from 42 days of calf’s life until the 

end of weaning period. 

 

5.2 A core rumen microbiota of developing calves based on BS samples 

Besides the establishment of BS technique as a proxy for predicting rumen microbial 

communities (chapter 3), this study also defined for the first time the rumen core microbiome 

of developing calves based on BS samples (Amin et al., 2021). By a highly strict definition, 

only those OTUs that were ubiquitously observed during each timepoint (days 70, 98, 112 and 

140) were counted to a core rumen microbiome, resulting in a total of 614 core bacterial OTUs 

that were taxonomically assigned to 8 phyla and 27 genera, including Prevotella (57 OTUs), 

Butyrivibrio (11 OTUs), Bifidobacterium (8 OTUs), Succiniclasticum (7 OTUs), and 

unclassified members of Bacteroidetes (96 OTUs), Prevotellaceae (91 OTUs), Bacteroidales 

(78 OTUs), Clostridiales (68 OTUs), Lachnospiraceae (64 OTUs), Ruminococcaceae (19 

OTUs), Saccharibacteria genera incertae sedis (14 OTUs), Firmicutes (13 OTUs), and SR1 

genera incertae sedis (7 OTUs) were the “dominant” rumen bacteria among all samples (Amin 

et al., 2021). These rumen-specific (RS) taxa have also been reported in other calves-based 

studies (Li et al., 2012; Jami et al., 2013; Rey et al., 2014; Kim et al., 2016; Meale et al., 2016; 

Dias et al., 2017; Dill-McFarland et al., 2017; Meale et al., 2017a; Dias et al., 2018; Lin et al., 
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2018; Zhang et al., 2019). Based on the results of rumen core microbiome study by Henderson 

and colleagues using 32 species of ruminant from 35 countries, Prevotella, Butyrivibrio, 

unclassified members of Bacteroidales, Lachnospiraceae, and Ruminococcaceae were 

reported to be the “dominant” core bacteria in the rumen. Similarly, in a recent study to access 

the stability of rumen microbial communities in single lactation dairy cows revealed 176 

bacterial OTUs to be stable in bovine rumen. These stable bacterial OTUs were taxonomically 

associated to Prevotella (36 OTUs), unclassified members of Prevotellaceae (27 OTUs), 

Bacteroidales (25 OTUs), and Lachnospiraceae (15 OTUs) (Zhu et al., 2021). 

Taking a closer look at the predominant core Prevotella genus in the present study and 

its association with core and stable rumen microbiome in other studies (Henderson et al., 2015; 

Zhu et al., 2021), the importance of these bacteria in the rumen of developing calves can be 

emphasized. Therefore, the 57 OTUs that were previously assigned to the Prevotella genus 

based on RDP database (Cole et al., 2014) were compared with NCBI non-redundant 

nucleotide database using BLAST (Bazinet et al., 2018), and the resulting BLAST table was 

filtered at a sequence identity threshold of 97.0% for species-level identifications. A total of 14 

OTUs were classified as Prevotella ruminicola, 2 OTUs as Prevotella bryantii B14, 1 OTU as 

Prevotella albensis, and 1 OTU as Prevotella brevis (Table 3). 

 

Table 3| Average relative abundances of core Prevotella species in R and BS samples of 

different age groups of calves. 

 

  
Average Relative Abundance (%) 

Identified taxa OTUs d70BS d98BS d112BS d140BS d140R 

g_Prevotella 39 3.33 5.51 4.28 4.06 3.88 

s_Prevotella ruminicola 14 1.19 2.10 2.05 2.88 1.58 

s_Prevotella bryantii B14  2 0.12 0.19 0.14 0.34 0.33 

s_Prevotella albensis 1 0.01 0.05 0.07 0.02 0.12 

s_Prevotella brevis 1 0.01 0.03 0.01 0.01 0.00 

 

Similar to the present study, Malmuthuge and colleagues also observed an increase in 

the active P. ruminicola density with the age of calves (Malmuthuge et al., 2019).  Prevotella 

members are the most common rumen microbes (Stevenson and Weimer, 2007; Henderson et 

al., 2015), showing a vast variety of functions from fibrolytic, cellulolytic, and amylolytic 

activities to ruminal protein and peptide degradation (Avgustin et al., 1994; Avgustin et al., 

1997; Bekele et al., 2010). Prevotella ruminicola and Prevotella bryantii play an essential role 
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in volatile fatty acids biosynthesis (Osborne and Dehority, 1989; Chiquette et al., 2008) and an 

increase in the concentration of milk fat (Chiquette et al., 2008). In addition to the degradation 

of ingested feed particles, the positive associations of Prevotella with average daily gains in 

calves (Lourenco et al., 2019), and ruminal microbial metabolites involved in carbohydrate and 

amino acid metabolism have recently been reported (Xue et al., 2020). This functional 

flexibility of Prevotella demands further investigation to understand the multi-faceted role of 

this genus members in the developing rumen of young calves, especially during weaning 

transitions. 

Additionally, the high contribution of unclassified members of Prevotellaceae, 

Lachnospiraceae, and Bacteroidales towards the core rumen microbiome in the present study 

and other studies (Henderson et al., 2015; Zhu et al., 2021), and their associations with the 

dairy cows gross feed efficiency (Jewell et al., 2015), suggesting their essential and conserved 

functionality to their ruminant host. 

 

5.3 Implication of BS technique for long-term monitoring of animal rumen 

microbiome 

In order to access whether the BS approach mentioned in chapter 3 can be used to 

predict the rumen microbial communities of older animals. The bacterial communities of 5-

month-old BS samples were compared with the bacterial communities of the rumen samples 

collected by stomach tubing from the same animals at 5, 7, 10, and 18 months of age (Figure 

21).  

 

 

Figure 21 | Overlap of ASVs covering V1-V2 region of bacterial 16S rRNA. A total of 5908  
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ASVs identified in the BS and R samples collected from 5, 7, 10 and 18-month-old calves were 

included in the Venn diagram. 

 

The 5-month-old calves BS samples shared large number of amplicon sequence variants 

(ASVs) with the rumen (R) samples of 5–18-month-old calves. These shared ASVs were 

taxonomically assigned to various genus-level taxa commonly found in BS and all R samples 

(5–18-months), though relative abundance varied (Table 4). 

 

Table 4 | Average relative abundances of bacterial taxa shared between BS and R samples of 

5–18-month-old calves. Taxonomic designations were based on SILVA database (release 

138.1). The genus-level taxa with average relative abundance of > 1% in at least 1 age group 

are shown. 

 
 

 Average relative abundance (%) 
 

 BS5m R5m R7m R10m R18m 

Taxa ASVs (n = 59) (n = 51) (n = 54) (n = 51) (n = 56) 

g_Prevotella 650 10.0 14.8 12.8 17.8 23.4 

g_Rikenellaceae RC9 gut group 307 3.3 7.6 8.8 10.1 9.9 

g_Christensenellaceae R-7 group 300 1.2 7.1 6.6 9.0 3.4 

f_F082 239 2.5 9.7 8.2 2.9 5.9 

o_Clostridia UCG-014 205 0.5 4.4 1.9 2.7 1.7 

g_Treponema 165 0.3 1.4 3.3 0.5 1.7 

g_Ruminococcus 160 0.4 3.8 5.5 4.4 1.0 

g_Prevotellaceae UCG-003 112 0.6 0.7 1.3 1.3 1.6 

g_Candidatus Saccharimonas 110 0.3 2.2 1.2 2.2 1.1 

o_RF39 109 0.1 1.6 0.5 0.3 0.5 

g_NK4A214 group 107 0.4 2.4 2.5 5.0 1.3 

g_Prevotellaceae UCG-001 93 0.5 1.5 2.3 0.8 2.6 

f_Muribaculaceae 93 1.0 1.6 1.2 0.6 0.6 

f_Lachnospiraceae 91 0.5 2.9 0.7 0.7 0.9 

g_Lachnospiraceae NK3A20 group 60 0.6 1.5 2.3 3.6 1.0 

g_Acetitomaculum 58 0.1 0.8 1.0 0.8 0.4 

g_Lachnospiraceae AC2044 group 57 0.3 0.6 0.5 0.7 1.1 

g_Butyrivibrio 55 0.3 1.5 0.4 1.2 1.2 

g_Saccharofermentans 53 0.3 1.1 0.6 1.1 1.3 

c_Clostridia 48 0.2 1.0 1.6 2.2 1.8 

g_Fibrobacter 46 0.7 0.6 0.8 1.4 2.5 
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 Average relative abundance (%) 

 
 BS5m R5m R7m R10m R18m 

Taxa ASVs (n = 59) (n = 51) (n = 54) (n = 51) (n = 56) 

f_[Eubacterium] coprostanoligenes 

group 
41 0.1 0.4 0.8 1.8 2.3 

f_UCG-011 38 0.1 0.9 0.9 1.4 1.9 

g_UCG-004 38 0.1 0.5 0.3 0.2 1.0 

g_Anaeroplasma 36 0.0 0.4 0.1 0.1 1.0 

g_Acinetobacter 34 2.4 0.0 0.0 0.1 0.0 

g_Corynebacterium 27 4.0 0.0 0.1 0.0 0.0 

g_Sphingobacterium 25 1.1 0.1 0.0 0.0 0.0 

o_Absconditabacteriales (SR1) 24 0.3 2.3 2.1 1.8 1.9 

g_Pseudobutyrivibrio 22 0.1 0.7 0.6 1.3 1.3 

g_Staphylococcus 20 1.7 0.2 0.0 0.0 0.3 

f_Bacteroidales BS11 gut group 20 0.1 1.4 0.5 1.3 1.6 

g_Succiniclasticum 13 0.6 1.1 1.4 2.5 2.3 

g_Bifidobacterium 13 0.7 2.4 1.1 0.5 0.0 

g_Succinivibrionaceae UCG-002 13 0.1 0.3 0.9 1.4 1.7 

g_Porphyromonas 11 1.1 0.0 0.0 0.0 0.0 

g_Burkholderia-Caballeronia-

Paraburkholderia 
8 0.4 0.0 2.5 0.0 0.0 

g_Succinivibrionaceae UCG-001 5 0.1 1.3 0.6 0.0 0.0 

g_Ralstonia 3 5.5 0.0 0.3 0.0 0.0 

g_Cutibacterium 2 0.0 0.0 1.0 1.0 0.1 

 

Prevotella was the most dominant genus (650 ASVs) in both sampling methods (BS vs. 

R) as well as during each developmental stage. Since, Prevotella members occupies a large 

portion of the bovine rumen total bacterial populations (60%) (Stevenson and Weimer, 2007) 

and are the most common rumen microbes irrespective of the diet (Henderson et al., 2015). 

Therefore, this age-dependent increase in the abundance of Prevotella in the present study is 

understandable. 

 

5.4 Potential drawbacks of BS technique 

Although, the BS samples used in the present study shared large number of ASVs / 

OTUs with the R samples, though relative abundances of taxa assigned to these ASVs / OTUs 

varied between the sampling methods. Therefore, the suitability of BS technique as a substitute 

for invasive rumen sampling procedures must be carefully evaluated. As discussed in chapter 

3, the oral hygiene of each individual animal as well as the post-feeding sampling time is 
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important to increase the predictive power of the BS procedure. That means that larger the gap 

between regurgitation activity and buccal swabbing, the higher the chances of obtaining oral 

bacteria in the BS approach (Amin et al., 2021). In conclusion, the study conducted in chapter 

3 added significant information to the previous observations (Kittelmann et al., 2015; Tapio et 

al., 2016) and broadened the concept of applying the BS approach on a large number of animals 

and various sampling time points. However, there is still the need of establishing reference 

database of ruminants-associated oral bacteria, as the mathematical approach used in the 

present study and by Kittelmann and colleagues (Kittelmann et al., 2015) requires rumen 

samples as a reference for bioinformatic filtration of potential rumen bacteria from the BS 

datasets, thus, defeating the purpose of BS approach. Such reference database is not available 

at this stage, therefore, BS approach may be powerful tool for large-scale predictive ruminant 

studies, where direct ruminal access is not possible. 

 

5.5 Development of stable microbial communities with age 

The neonatal calves’ gastrointestinal tract (GIT) relies on hindgut for digestion due to 

poorly-developed forestomach system (Davis and Drackley, 1998). The development and 

maturation of the reticulo-rumen and the associated microorganisms is influenced by several 

factors as discussed in chapter 2, including the maternal influence, host genetics, age, diet, 

physiological state, weaning, usage of antibiotics and feed supplements as well as other 

environmental factors, thus, leading to region- and site-specific establishment of 

microorganisms (Amin and Seifert, 2021). The GIT microbial communities in turn interacts 

with their host and are involved in host mucosal epithelium development and immune system 

maturation (Sommer and Bäckhed, 2013). 

Up-to-date, many studies explored the age-dependent development of the GIT 

communities in calves (Uyeno et al., 2010; Edrington et al., 2012b; Li et al., 2012; Malmuthuge 

et al., 2012; Mayer et al., 2012; Jami et al., 2013; Oikonomou et al., 2013; Klein-Jöbstl et al., 

2014; Rey et al., 2014; Dill-McFarland et al., 2017; Dias et al., 2018; Koringa et al., 2019; 

Hang et al., 2020; Kim et al., 2021), however, most of these studies were limited by the number 

of animals being sampled and the sampling procedures used i.e., need of animal slaughtering 

or invasive sampling procedures. In contrast, the current studies (chapter 3 and 4) monitored 

the age-dependent progression of the oral, rumen and faecal bacterial communities of 59 female 

Holstein calves using non-invasive sampling procedures (Figure 22). 
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Figure 22 | Summary of the age-dependent decrease (red) or increase (black) in the abundances 

of gut bacterial communities of the female German Holstein calves from 8-days to 5-month of 

age. Figure created with BioRender.com. 

 

5.5.1 Colonization of microbes in the buccal cavity of calves 

Mouth is a complex habitat, harbouring microorganisms on the soft mucosal tissues and 

hard teeth surfaces. Oral microbiome not only plays an essential role in initiation of digestion 

but are also important for maintenance of oral and systemic health of the host (Deo and 

Deshmukh, 2019). However, there is still lack of knowledge about the ruminants-associated 

oral bacteria especially in young calves. Besides an age-dependent increase in the abundance 
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of Burkholderia, previously associated with the oral cavity of healthy cattle (Borsanelli et al., 

2018), the present data reported a continuous age-dependent decrease in the abundances of 

certain pathogens including Actinomyces, Corynebacterium, unclassified members of 

Flavobacteriaceae and Porphyromonadaceae. Actinomyces species are widely distributed 

from oral cavity to the intestine. The changes in Actinomyces composition and its interaction 

with other microbial species can cause numerous diseases of alimentary tract i.e., periodontal 

disease (Li et al., 2018). Corynebacterium are colonizer of membranes and skin in both humans 

and animals (Tsuzukibashi et al., 2015), with several infectious species including 

Corynebacterium bovis, responsible for bovine mastitis (Gonçalves et al., 2016). The bacteria 

belonging to Flavobacteriaceae have previously been isolated from the oral cavity of humans 

and animals (Brenner et al., 1989; Vandamme et al., 1996) and genera such as Flavobacterium 

and Bergeyella are causative agents of dental caries (Jiang et al., 2013). Similarly, species 

belonging to Porphyromonadaceae can be ubiquitously found in the oral cavities and intestinal 

tract of humans and animals, with some species causing infections (Sakamoto, 2014). Thus, 

the decrease in the abundance of certain pathogenic oral bacterial genera with age might 

indicate the age-dependent maturation of the host immune system. 

 

5.5.2 Establishment of rumen bacterial communities in calves 

Rumen is the largest compartment of ruminant’s forestomach system, which is mainly 

responsible for the digestion of feed particles.  The GIT in new born calves has smaller 

proportions of rumen than in adult cattle, and lack rumen wall villi, responsible for nutrient 

absorption (Meale et al., 2017a). The first year of calf’s life is critical for the development and 

maturation of their forestomach system and immunity. The microbial colonization of neonatal 

calves GIT begins right after birth with the concentration of microbes in rumen fluid as 10
9 

cells/ml, and the strict anaerobic bacteria becoming dominant a day after birth (Fonty et al., 

1989). Not only the rumen microbial communities change with the age of calves, an increase 

in rumen volume, papillae size and shape are observed, which provides better environment for 

rumen microbial colonisation and functioning (Li et al., 2011). Thus, the development of rumen 

in neonatal calves is linked to age and diet of the host, the rumen microbial community 

establishment and synthesis of the microbial metabolic products. The results of the present 

study in chapter 3 showed that the ruminal bacterial communities of 7-weeks to 5-month-old 

calves (experimental days 42–140) were dominated by phylum Bacteroidetes (54.77%), 

Firmicutes (28.82%), Actinobacteria (8.71%) and Proteobacteria (4.71%), with median 
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relative abundance value shown in brackets. As discussed in chapter 3, the relative abundance 

of phylum Actinobacteria and its dominant genus Olsenella decreased with age. Actinobacteria 

are generally associated with newborn calf’s rumen (Jami et al., 2013; Rey et al., 2014), 

showing a decrease in abundance and compositional changes with age of animal (Jami et al., 

2013), suggesting their essential role in digestion of milk component of neonate’s gut. 

In contrast to the phylum Actinobacteria, the present study also reported an increase in 

the abundances of phylum Bacteroidetes, Fibrobacteres, and Proteobacteria and the 

corresponding genera unclassified Bacteroidales, Fibrobacter, and Ruminobacter from 7 

weeks to 5-months of age. Similarly, few other studies have also reported a high dominance of 

phylum Bacteroidetes in the rumen of 3-day-old (Rey et al., 2014), 42-day-old (Li et al., 2012) 

and two-month-old pre-weaned calves (Jami et al., 2013). This confirms that the phylum-level 

composition of pre-weaned calf’s rumen is the same as the rumen of post-weaned calves, 

though the abundances of dominant phyla varies based on their developmental stage (Jami and 

Mizrahi, 2012). Phylum Fibrobacteres comprises of major cellulose-degrading bacteria in the 

rumen (Ransom-Jones et al., 2012). These fiber-utilizing bacteria are reported to be low 

abundant in the rumen of milk-replacer fed pre-weaned calves (Li et al., 2012), but as the 

proportions of concentrate feed decreases in the diet their abundance increases (Lourenco et 

al., 2020). Thus, the age-dependent increase in the abundance of rumen Fibrobacteres and 

other fiber-utilizing bacteria were in accordance with the dietary addition of hay and a total 

mixed ration with age. 

 

5.5.3 Progression of calves’ faecal bacterial communities from 1 week to 5 months of 

age 

Neonatal calves are considered functionally as non-ruminants (Baldwin et al., 2004), 

fed with a milk-based diet, which is mainly digested in their hindgut (Guilloteau et al., 2009). 

The bacterial colonization of calves GIT begins right after birth or even during the birthing 

process. Bacteria can be found in neonatal calves’ faeces as soon as after 12 hours of birth 

(Klein-Jöbstl et al., 2014), but the microbial composition is dynamically changing during the 

pre-weaning period (Uyeno et al., 2010; Edrington et al., 2012a; Oikonomou et al., 2013), until 

the establishment of a complex and dense microbial ecosystem with age (Uyeno et al., 2010). 

The GIT microbial communities are essential for digestion of feed particles, absorption of 

nutrients, GIT development and protection against pathogens that causes diarrhoea and other 

infectious diseases in calves (O'Hara and Shanahan, 2006; Morgavi et al., 2015). Therefore, it 

is essential to understand the development of healthy intestinal microbiota during the pre-
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weaning period to reduce the mortality rate of calves caused by diarrhoea and other infectious 

intestinal diseases. 

The results of the study in chapter 4 showed the establishment of dense microbial 

communities in the faeces of 8-day-old (experimental day 1) pooled herd milk and milk 

replacer fed Holstein calves, dominated by phyla Firmicutes and Actinobacteria and lactose- 

and starch-degrading bacterial species including Bifidobacterium longum, Lactobacillus 

amylovorus, Lactobacillus ingluviei, Ligilactobacillus salivarius, unclassified members of 

Butyricicoccus, Lactobacillaceae, and Mediterraneibacter. Bifidobacteria and Lactobacilli are 

carbohydrate-utilizing bacteria commonly observed in the GIT of pre-weaned calves (Kelly et 

al., 2016). A high abundance of Lactobacillus was reported in calves’ faeces within the first 

three weeks of life (Klein-Jöbstl et al., 2014), showing a decrease in prevalence with age 

(Oikonomou et al., 2013; Klein-Jöbstl et al., 2014; Dill-McFarland et al., 2017; Virgínio Júnior 

and Bittar, 2021) as well as with the reduction of milk feeding, and weaning event (Vlková et 

al., 2006; Uyeno et al., 2010; Oikonomou et al., 2013). There is an increasing evidence about 

the health benefits of Bifidobacteria and Lactobacilli species such as Lactobacillus ingluviei, 

previously related with weight gain (Uyeno et al., 2010; Million et al., 2012). These bacterial 

genera when used as probiotics supplement can protect host GIT against infectious diseases 

including diarrhoea (Servin, 2004; Timmerman et al., 2005). Thus, it can be suggested that the 

high prevalence of these carbohydrate-utilizing bacteria in the young calves’ faeces was due to 

milk feeding as the addition of hay and TMR resulted in a decreased abundance over time as 

suggested by (Vlková et al., 2008). The present study also reported a high abundance of certain 

opportunistic pathogenic bacteria in the faeces of 8-day-old calves such as Streptococcus 

gallolyticus, associated with meningitis and purulent lesions in neonatal calves (Aydın et al., 

2019) and Gallibacterium anatis, involved in cattle respiratory diseases (Van Driessche et al., 

2020). However, the abundances of these pathogenic bacteria decreased as the calves aged. 

Thus, it can be assumed that the colonization of neonatal gut with beneficial bacterial genera 

and the decreased abundances of pathogenic bacteria in the gut of older calves indicates a 

balanced health status of the intestine. 

Similar to the microbial communities of other GIT compartments, the faecal bacterial 

composition of dairy calves also undergoes dynamic changes during the first 5 months of life 

(Amin et al., under review in Animal Microbiome Journal). These changes include the 

appearance of new species such as Bacteroides uniformis, Barnesiella intestinihominis, Blautia 

wexlerae, Faecalibacterium prausnitzii, Phocaeicola vulgatus, Prevotella copri, and 

unclassified Faecalicatena during 5–7-weeks of age (experimental days 28–42), and 
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unclassified members of fiber-degrading bacteria such as Bacteroidia, Bacteroidales, 

Bacteroidaceae, Clostridia, Clostridiales, Eubacteriaceae, Muribaculaceae, Oscillospiraceae, 

Prevotellaceae, Ruminococcaceae, Rikenellaceae, Sphingobacteriales, and Tannerellaceae at 

5-months of age, suggesting that both diet and the age-dependent gut development may drive 

changes in the bacterial community composition during early life. High abundances of F. 

prausnitzii were reported in calves’ faeces within the first 4 weeks of life with a decrease over 

time (Klein-Jöbstl et al., 2014; Kim et al., 2021). The increase in intensity of Bacteroides spp. 

were observed after 7-days of life (Mayer et al., 2012), showing highest prevalence within the 

first 3-weeks (Klein-Jöbstl et al., 2014) and even after the fourth week of calf life (Oikonomou 

et al., 2013). Similar high dominance of Faecalibacterium, Bacteroides, Blautia, and 

Prevotella in the faeces of milk replacer-fed pre-weaned calves (Uyeno et al., 2010) and the 

positive associations of faecal F. prausnitzii and Bacteroides abundances with lower incidence 

of diarrhoea and weight gain in pre-weaned calves have been reported (Oikonomou et al., 2013; 

Foditsch et al., 2015; Hennessy et al., 2021). In addition, B. uniformis, B. wexlerae, P. copri 

and Barnesiella are essential for host gut functionality and health due to their role in 

maintenance of host intestinal immune homeostasis (Brooke et al., 2019; Benítez-Páez et al., 

2020) and protection against GIT inflammatory diseases (Mazmanian et al., 2005; Weiss et al., 

2014). Thus, it is possible to assume that the age-dependent decrease in major lactic-acid 

producing bacteria in the present study was due to the decreased milk consumption and 

increased fiber ingestion, that resulted in lower availability of nutrients for the lactose- and 

starch-degrading bacterial species with age of calves. 

 

5.6 Impact of early vs. late weaning on the development of microbiome and 

metabolome in calves 

The ruminant’s forestomach system becomes functional within the first few months of 

life through processes initiated by intake of solid-feed and activity of rumen microorganisms 

(Warner et al., 1956). In order to meet the demand of milk and meat consumption and reduce 

the early-life feed costs, dairy calves raised in commercial farms are usually fed with restricted 

amounts of liquid diet (milk, or milk replacer) in order to stimulate the intake of starter 

concentrate and thus, accelerating rumen development (Dias et al., 2018). However, the 

transition from liquid-diet to solid-feed is critical for GIT development and its associated 

microorganisms, thus, affecting the growth and production performances of calves during the 

post-weaning stage (Dias et al., 2018). As discussed in chapter 2 (Amin and Seifert, 2021), the 

age of animal during weaning clearly influences the development of their forestomach system. 
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Weaning calves at an early age (6 weeks) may result in pre-mature development of rumen and 

reduced growth rate and feed intake as compared to the late-weaning at 8 weeks of age (Eckert 

et al., 2015; Meale et al., 2017b). Thus, the selection of an appropriate weaning age is essential 

to minimise the side effects. The present study also monitored the impact of early- vs. late-

weaning (earlyC vs. lateC; 7 vs. 17 weeks of age) on the oral, rumen and faecal microbial 

communities by sampling calves at 7 different time points over a period of 140 days (Chapter 

3 and 4) (Figure 23).  

 

 

Figure 23 | Summary of the feeding regimen during the experimental trial and weaning-

dependent modification in the gut bacterial communities and plasma metabolites of the earlyC 

and lateC calves during experimental days 42−98. Figure created with BioRender.com. 
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Calves were gradually weaned in a 14-days stepdown approach during experimental 

days 28−42 for earlyC and days 98−112 for lateC group, followed by the ad libitum addition 

of hay and total mixed ration comprising of grass silage (48%), maize silage (32%), and 

concentrate feed (20%) (Amin et al., 2021). A clear impact of weaning time on the oral and 

faecal microbiome was observed during experimental days 42−98 (7−15 weeks of age), and 

the rumen microbiome during days 70−98 (11−15 weeks of age) (Figure 23). As discussed in 

chapter 3 and 4, the early introduction of roughages in the diet of pre-weaned calves at 7 weeks 

of age resulted in higher abundances of bacterial genera such as Kurthia, which was reported 

in the intestine of high-roughage-fed cattle (Maki and Picard, 1965), and Butyrivibrio, which 

belongs to the class Clostridia, involved in fiber- and protein-degradation and butyrate 

production in the rumen (Krause et al., 2003; John Wallace et al., 2006). An increase in the 

abundance of Butyrivibrio with higher fiber intake (Mrázek et al., 2006; Chuang et al., 2020) 

and their positive association with papillae length in the rumen have also been reported (Yang 

et al., 2018). The current study also reported an increase in the abundances of several 

unclassified members of phylum Bacteroidetes (class Bacteroidia), Firmicutes (class 

Clostridia, Sphingobacteria), and Spirochaetes (class Spirochaetia) in the post-weaned rumen 

and faecal microbiota of earlyC group and it was probably diet-dependent, as high dominance 

of rumen Bacteroidia and Clostridia was observed in Moxotó goat that were grazing on plant 

fibers (Cunha et al., 2011). Similarly, Petri and colleagues also reported high abundance of 

Clostridia using forages- and mixed forages-based diets (Petri et al., 2013), thus, suggesting 

the essential role of these bacteria in the degradation of plant fibers (Cunha et al., 2011). In 

addition to plant fiber degradation, the positive association of faecal Clostridia abundance with 

butyrate production have also been recently reported (Guo et al., 2020), which is the primary 

source of energy for the neonatal gut epithelial cells (Pryde et al., 2002). Thus, the observed 

high abundances of fiber-degrading bacteria in the post-weaned microbiota of earlyC group in 

current study was due to the addition of roughages in their diet post-weaning. 

In addition to the increase in fiber-degrading bacteria, early weaning of calves at 7 

weeks of age also negatively impacted the abundances of potential lactose- and starch-

degrading bacteria including Dialister, a frequent oral isolate (Ghayoumi et al., 2002), 

positively associated with starch digestion (Wang et al., 2016), unclassified Lactobacillales, 

that showed high concentration in milk consuming calves (Alipour et al., 2018) and negatively 

impacted by weaning (Salvetti and O'Toole, 2017). Similar to the oral microbes, rumen and 

faecal microbiome of earlyC group also showed similar trends, with decreased abundances of 

Olsenella, a carbohydrate fermenting bacterial genera (Kraatz et al., 2011), whose abundance 
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is negatively impacted by dietary forage inclusion (Kim et al., 2016). In addition, earlyC calves 

in this study also showed lower abundances of several faecal bacterial genera with 

carbohydrate-utilizing abilities such as Blautia, Butyricimonas, Streptococcus and 

Mediterraneibacter (Li et al., 2015; Lau et al., 2018; Togo et al., 2018; Adeyemi et al., 2020), 

lactate-utilizing Anaerostipes genus (Duncan et al., 2004) as well as Bacteroides, Prevotella, 

and Faecalibacterium genera that were reported to be abundant in the faeces of MR-fed calves 

(Uyeno et al., 2010; Castro et al., 2016; Meale et al., 2016; Meale et al., 2017b; Maynou et al., 

2019; Kumar et al., 2021), and their abundances are negatively impacted by weaning i.e., a 

high fiber / forage diet resulted in lower abundances of faecal Bacteroides, Blautia, and 

Faecalibacterium (Kim et al., 2014; Meale et al., 2016). Thus, it can be assumed that the 

weaning-dependent reduction in major lactic-acid producing bacteria of the earlyC group was 

linked to their reduced milk consumption and higher fiber digestion post-weaning. 

As discussed in chapter 4, weaning time not only impacted the GIT microbiome but 

also the plasma metabolic profiles of calves mainly involved in amino acid (AAs) metabolism 

during days 42–112, where the low plasma concentrations of majority of the essential EAAs 

(methionine, arginine, valine, leucine, histidine, phenylalanine, threonine, lysine, tryptophan), 

and non-essential NEAAs (glutamine, serine, citrulline, aspartate, tyrosine, proline, and 

ornithine) were reported in the earlyC as compared to the lateC group. The concentration of 

AAs in plasma is net result of several factors such as the breakdown and synthesis of protein, 

absorption of AAs from GIT, as well as protein obtained from the diet (milk proteins) (Maeda 

et al., 2012). Diet serves as the major influencing factor on the plasma AAs concentrations in 

calves than in mature cows (Ghaffari et al., 2017) as indicated by a stable AAs concentration 

in the plasma of dairy cows throughout the day (Halfpenny et al., 1969) and a high plasma 

concentration of EAAs in calves after milk feeding (Blum and Hammon, 1999). Similar 

increase in the concentration of both essential and non-essential AAs in the plasma of MR-fed 

Holstein bull calves (Ghaffari et al., 2017) and a high plasma level of lysine and arginine in 

milk-fed Holstein heifer calves were reported (Leal et al., 2021). Thus, a significant decrease 

in the concentrations of most of the AAs in the plasma samples of earlyC group in the present 

study was probably connected with the stressful weaning related dietary transition, confirming 

that the pre-weaning liquid diet can serve as a source of various metabolites to their host that 

are transported through GIT into their bloodstream (Qi et al., 2018). The plasma EAAs are 

critical for protein synthesis, higher concentrations resulted in higher protein synthesis (Bohé 

et al., 2003) and an alteration in their concentration have also been associated with disruption 

of metabolic processes, inflammation and immune responses i.e., lower plasma concentration 
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of valine, leucine, and isoleucine resulted in reduction of liver metabolic processes and lower 

methionine concentrations was associated with reduced development of enterocytes in weaned 

piglets (Dobrowolski and S´liwa, 2008). Similarly, lower concentration of plasma methionine, 

arginine, glutamine, and histidine resulted in higher occurrence of diarrhoea in calves (Tsukano 

and Suzuki, 2019). Thus, the weaning-dependent alteration in the quantity of dietary protein, 

and nutrients in the present study might have resulted in considerable changes in the AAs 

metabolism of the earlyC group. In addition to the AAs, the concentrations of several other 

plasma metabolites such as biogenic amines, acylcarnitines and sphingomyelins were also 

negatively impacted by the early-weaning event. This weaning-dependent modification in the 

plasma metabolic profiles and the exact functionality of these metabolites in young calves are 

yet to be explored in future. 

 

5.7 Conclusions and Perspective 

The present study summarised previously published data on calves’ microbiome to date 

and highlighted several intrinsic and extrinsic factors that act synergistically resulting in the 

establishment of site- and region-specific gut microbial communities. The potential role of 

microbes in the gut development, health and productive performance of the host and the 

possibility of gut microbial modulations though dietary interventions are discussed. 

Ruminants are mainly dependent on their rumen microbiome for feed digestion, nutrient 

synthesis and absorption. The non-static nature of rumen microbiome demands repetitive and 

frequent sampling from large animal cohorts, which is restricted by invasive sampling 

protocols. The current study showed the successful implication of buccal swabbing technique 

as an alternative to the invasive stomach tubing method for predicting the rumen microbial 

communities in young calves. However, the lack of ruminants-specific microbial reference 

databases (especially oral-specific microbiome) currently poses major hinderance on the 

applicability of BS approach, which must be explored in future studies. 

This study monitored large number of animals over a period of 140 days and with 

frequent sampling confirmed that both age and weaning time has significant influence on the 

establishment of oral, rumen, faecal bacterial communities and plasma metabolic profile in 

young calves. The benefits of late-weaning in terms of better growth performance, stable gut 

microbiota with quick feed adaptability than early-weaning event is discussed. However, 

besides age, diet and weaning, there are several other factors that can influence the gut 

microbial composition of calves, such as host genetics and sex (Fan et al., 2020; Fan et al., 

2021), as well as other environmental factors such as antibiotics and pre- or probiotics (Amin 
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and Seifert, 2021). Host genetics seems to play an important role not only in shaping gut 

microbiota but also the development of systemic immunity in pre-weaned calves, which is 

further related to the growth and health of an animal (Fan et al., 2020). A more recent study by 

Fan and colleagues, showed that the breed composition can have strong influence on gut 

microbial communities throughout life (Fan et al., 2021). Similar to the gut microbiome, a 

strong effect of host genetics on blood metabolites have also been reported (Long et al., 2017). 

However, the studies addressing the role of host genetic on neonatal calves’ microbiota during 

the challenging life events such as weaning and exposure to pathogens are still very scare and 

are limited by the difficulty of controlling genetic distance, population variation, diet, age, and 

environmental conditions. Therefore, further studies are needed in future, to explore the 

integrated role of host genetics in shaping gut microbial communities and metabolic profiles 

of calves during the stressful weaning event for better understanding the host-microbe 

metabolic interactions and possible identifications of prognostic biomarkers for neonatal 

diseases. 
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7. SUMMARY 

 

The period from birth until the end of weaning is critical for calves as they undergo 

extreme stress caused by maternal separation, transportation, and weaning related dietary 

shifts, that can cause long-lasting effects on animal behaviour, health as well as future 

production parameters. Monitoring the development of microbial ecosystem throughout the 

gastrointestinal tract of calves and host-microbe interactions during the challenging life periods 

such as perinatal and weaning is essential for sustainable ruminant production. The present 

thesis provided new insight on the suitability of buccal swabs as an alternative to complex 

stomach tubing method for predictive analysis of rumen microbial communities. The changes 

in oral, rumen and faecal microbial community structure of female German Holstein calves 

from 8-days to 5-months of age as well as during early- and late-weaning event were identified. 

The oral microbiota plays a crucial role in animal health. A high dominance of oral pathogens 

was observed during the first 11-weeks of calves’ life. Similar to the oral microbiota, faeces of 

8-day-old calves also showed high abundances of certain opportunistic pathogenic bacteria. 

Both oral and faecal pathogens showed a decrease in abundance with age and after weaning 

event in the earlyC group, indicating the age and weaning-dependent maturation of the host 

immune system. The establishment of dense microbial communities in the faeces of 8-day-old 

(experimental day 1) pooled herd milk and milk replacer fed Holstein calves was shown and it 

was dominated by phyla Firmicutes and Actinobacteria and potential lactose- and starch-

degrading bacterial species, but as the calves aged and became more mature (5-months of age), 

their rumen and faecal bacterial communities were dominated by potential fibre-utilizing 

bacterial genera. The weaning related dietary transitions are critical for calves as their 

gastrointestinal tract undergoes several modifications, enabling them to digest plant-based diet 

during the postweaning period. Thus, it was proposed that the age at which animals should be 

weaned must be carefully considered as it clearly impacted the gastrointestinal tract microbial 

communities and plasma metabolic profiles of calves in the present study. Early introduction 

of roughages in the diet of 7-week-old calves increased the abundances of plant fiber degrading 

bacteria and decreased the abundances of potential lactose- and starch-degrading bacteria in 

the buccal cavity, rumen and faeces, indicating the weaning-related increase in fiber ingestion 

and the decrease in milk consumption of the early-weaned group. However, when roughages 

were introduced in the diet of late-weaned calves at 17-weeks of age, no significant 
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modifications in the structure of gastrointestinal tract microbial communities were observed. 

Similar to the microbiome, plasma metabolic profiles of early-weaned calves during days 42–

112, showed lower concentrations of most of the amino acids, few biogenic amines, and 

sphingomyelins as compared to the late-weaned calves, suggesting that the liquid diet could 

provide certain metabolites that can be transported into the bloodstream through 

gastrointestinal tract. Similarly, the weaning-dependent changes in the quantity of dietary 

protein, fat and carbohydrates resulted in substantial changes in amino acid metabolism of the 

early-weaned group. The early-weaning event not only impacted the host microbiome and 

metabolome but also the host-microbe metabolic interactions as the abundances of potential 

lactose- and starch degrading bacteria and plasma concentrations of amino acid, biogenic 

amines and sphingomyelins were strongly positively correlated, both were negatively impacted 

by the early-weaning event. Thus, it can be concluded that late-weaning was beneficial as it 

allowed better adaptability of microbes to weaning-related dietary shifts, perhaps due to the 

greater maturation of their gastrointestinal tract with age as compared to the early-weaning 

group. 
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8. ZUSAMMENFASSUNG 

 

Der Zeitraum von der Geburt bis zum Ende des Absetzens ist für Kälber von 

entscheidender Bedeutung, da sie durch die Trennung von der Mutter, den Transport und die 

mit der Entwöhnung verbundene Umstellung der Ernährung extremem Stress ausgesetzt sind, 

der langfristige Auswirkungen auf das Verhalten und die Gesundheit der Tiere sowie auf 

künftige Produktionsparameter haben kann. Die Überwachung der Entwicklung des 

mikrobiellen Ökosystems im gesamten Gastrointestinaltrakt von Kälbern und der Interaktionen 

zwischen Wirt und Mikroben während der schwierigen Lebensphasen wie der Perinatalperiode 

und dem Absetzen ist für eine nachhaltige Wiederkäuerproduktion unerlässlich. Die 

vorliegende Arbeit lieferte neue Erkenntnisse über die Eignung von Wangenabstrichen als 

Alternative zur komplexen Pansenfistelmethode für die prädiktive Analyse der mikrobiellen 

Pansengemeinschaften. Es wurden die Veränderungen in der Zusammensetzung der 

mikrobiellen Gemeinschaften im Maul, im Pansen und im Kot von weiblichen deutschen 

Holstein-Kälbern im Alter von 8 Tagen bis 5 Monaten sowie während des frühen und späten 

Absetzens ermittelt. Die orale Mikrobiota spielt eine entscheidende Rolle für die 

Tiergesundheit. Eine hohe Dominanz oraler Pathogene wurde in den ersten 11 Lebenswochen 

der Kälber beobachtet. Ähnlich wie die orale Mikrobiota wies auch der Kot von 8 Tage alten 

Kälbern hohe Abundanzen bestimmter opportunistisch-pathogener Bakterien auf. Sowohl die 

oralen als auch die fäkalen Pathogene nahmen mit dem Alter und nach dem Absetzen in der 

earlyC-Gruppe ab, was auf die alters- und absetzungsabhängige Entwicklung des 

Wirtsimmunsystems hinweist. Es wurde gezeigt, dass sich im Kot von 8 Tage alten 

(Versuchstag 1) mit gepoolter Herdenmilch und Milchaustauschern gefütterten Holstein-

Kälbern dichte mikrobielle Gemeinschaften bildeten, die von den Phyla Firmicutes und 

Actinobacteria sowie potenziell laktose- und stärkeabbauenden Bakterienarten dominiert 

wurden. Die mit dem Absetzen verbundenen Ernährungsumstellungen sind für Kälber von 

entscheidender Bedeutung, da ihr Magen-Darm-Trakt mehreren Veränderungen unterliegt, die 

es ihnen ermöglichen, pflanzliche Nahrung in der Zeit nach dem Absetzen zu verdauen. Daher 

wurde vorgeschlagen, dass das Alter, in dem die Tiere entwöhnt werden sollten, sorgfältig 

überlegt werden muss, da es sich in der vorliegenden Studie eindeutig auf die mikrobiellen 

Gemeinschaften des Magen-Darm-Trakts und die Stoffwechselprofile des Plasmas von 

Kälbern auswirkte. Die frühe Einführung von Raufutter in das Futter von 7 Wochen alten 

Kälbern erhöhte die Häufigkeit von Pflanzenfasern abbauenden Bakterien und verringerte die 
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Häufigkeit von potenziell laktose-und stärkeabbauenden Bakterien in der Maulhöhle, im 

Pansen und in den Fäkalien, was auf die absetzungsbedingte Zunahme der Faseraufnahme und 

den Rückgang des Milchkonsums der früh abgesetzten Gruppe hinweist. Als im Alter von 17 

Wochen Raufutter in die Ernährung der spät abgesetzten Kälber eingeführt wurde, wurden 

keine signifikanten Veränderungen in der Struktur der mikrobiellen Gemeinschaften des 

Magen-Darm-Trakts beobachtet. Ähnlich wie das Mikrobiom wiesen auch die 

Stoffwechselprofile des Plasmas von früh abgesetzten Kälbern in den Tagen 42-112 niedrigere 

Konzentrationen der meisten Aminosäuren, weniger biogener Amine und Sphingomyeline auf 

als bei den spät abgesetzten Kälbern, was darauf hindeutet, dass die Flüssignahrung bestimmte 

Stoffwechselprodukte liefern könnte, die über den Magen-Darm-Trakt in den Blutkreislauf 

gelangen können. In ähnlicher Weise führten die vom Absetzen abhängigen Veränderungen in 

der Menge des Nahrungsproteins, des Fetts und der Kohlenhydrate zu erheblichen 

Veränderungen im Aminosäurestoffwechsel der früh abgesetzten Gruppe. Das frühe Absetzen 

wirkte sich nicht nur auf das Mikrobiom und das Metabolom des Wirts aus, sondern auch auf 

die metabolischen Interaktionen zwischen Wirt und Mikroben, da die Häufigkeit potenzieller 

laktose- und stärkeabbauender Bakterien und die Plasmakonzentrationen von Aminosäuren, 

biogenen Aminen und Sphingomyelinen stark positiv korreliert waren wobei beide durch das 

frühe Absetzen negativ beeinflusst waren. Daraus lässt sich schließen, dass die späte 

Entwöhnung vorteilhaft war, da sie eine bessere Anpassungsfähigkeit der Mikroben an 

entwöhnungsbedingte Ernährungsumstellungen ermöglichte, möglicherweise aufgrund der 

umfangreicheren Reifung des Magen-Darm-Trakts mit zunehmendem Alter im Vergleich zur 

früh entwöhnten Gruppe. 
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