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1 Summary

1 Summary

Pesticides are widely used for pest control in agriculture. Besides their intended use, their
long-term fate in real systems is not well understood. They may persist in soils, thereby altering
ecosystem functioning and ultimately a ecting human health. Pesticide fate is assessed through
dissipation experiments in the laboratory or the eld. While eld experiments provide a close
representation of real systems, they are often costly and can be in uenced by many unknown
or uncontrollable variables. Laboratory experiments, on the other hand, are cheaper and have
good control over the governing variables, but due to simpli cation, extrapolation of the results

to real systems can be limited. Mechanistic models are a powerful tool to connect lab and
eld data and help us to improve our process understanding. Therefore, | used mechanistic,
process-based models to assess key microbial regulations of pesticide degradation. | tested my
model hypotheses with two pesticide classes: i) chlorophenoxy herbicides (MCPA (2-methyl-4-
chlorophenoxyacetic acid) and 2,4-D (2,4-Dichlorophenoxyacetic acid)), and ii) triazines (atrazine
(AT)), in an ideal scenario, where bacterial degraders and pesticides are co-localized. This thesis
explores some potential controls of pesticide degradation in soils: i) regulated gene expression,
i) mass-transfer process across the bacterial cell membranes, iii) bioenergetic constraints, and
iv) environmental factors (soil temperature and moisture).

The rst part of this thesis describes a set of gene-centric models that explicitly incorporate
gene and enzyme expression. | calibrated and validated the model variants with data from two
batch experiments of 2,4-D and MCPA pesticide degradation. | compared the performance of
the model variants against each other and a standard Monod model. Results highlight that
regulated gene expression controls 2,4-D and MCPA degradation in soils. The novel gene-centric
models predict pesticide mineralization as good as the standard Monod model, but additionally
account for pesticide-triggered gene regulation, allowing us to better capture microbial dynamics
during pesticide mineralization. This way, the gene-centric models could be used to explore the
relationship between transcription of functional genes and process rates, thereby o ering an

advantage over the standard Monod model.
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The second part of this thesis extends and improves existing chemaostat/retentostat models
to evaluate the role of biophysical limitations (mass transfer across the cell membrane) and
bioenergetic growth constraints of pesticide degradation, both hypothesized to be responsible
for pesticide persistence at low concentrations in real systems. The target pesticide was
atrazine, which is highly persistent. Results point out that sorption-limited bioavailability could
explain the long-term fate and persistence of the main degradation metabolite hydroxyatrazine.
However, my model overestimated the long-term biodegradation of atrazine in soils, indicating
that more processes than bioavailability are regulating atrazine degradation.

The third part of this thesis explores the role of environmental factors (soil temperature,
soil moisture, and substrate concentration) for the fate of pesticides. Through a combination
of lab experiments and modeling, MCPA degradation was investigated under di erent soil
temperature (1@ and 20C) and moisture (pF 1.8 and 3.5) regimes, and substrate concentrations
(1 and 20mg kg™). Results show that microbial degrader populations degrade the pesticide
even in colder and drier soils and at low substrate concentrations. By measuring and simulating
a higher carbon use e ciency (CUE), | could con rm that microbial degraders are able to cope
with such limiting conditions by allocating more carbon to their biomass as a result of potential
physiological adaptation. Therefore, extreme environmental conditions do not explain pesticide
persistence in soils.

The models presented in this thesis show that including microbial regulations improves
predictions of pesticide degradation, compared to conventional models based on Monod kinetics.
The gene-centric models achieved a better representation of microbial dynamics and enable us
to explore the relationship between functional genes and process rates, and the models that
used transition state theory to account for bioenergetic constraints improved the description
of degradation at low concentrations. However, the lack of informative data for the validation
of model processes hampered model development. Therefore, in the fourth part of this thesis,
| used atrazine with its rather complex degradation pathway to apply a prospective optimal

design method to nd the optimal experimental designs to enable us identifying the degradation
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pathway present in a given environment. The optimal designs found suggest to prioritize
determining metabolites and biomass of speci ¢ degraders, which are not typically measured in
environmental fate studies. These data will lead to more robust model formulations for risk
assessment and decision-making.

With this thesis, | revealed important regulations of pesticide degradation in soils that help to
improve process understanding and model predictions. | provided simple model formulations,
for example the Hill function for gene expression and transition state theory for bioenergetic
growth constraints, which can easily be integrated into biogeochemical models. My thesis
covers initial but essential steps towards a predictive pesticide degradation model usable for risk
assessment and decision-making. | also discuss implication for further research, in particular
how mechanistic process-based modeling could be combined with new technologies like omics

and machine learning.

2 Zusammenfassung

Pestizide sind weit verbreitet in der landwirtschaftlichen Sch dlingsbek mpfung. Anders als
ihre Wirkungsweise, ist ihr Langzeitverbleib in der Umwelt nicht gut verstanden. Sie gelangen
in den Boden und k nnen sich dort anreichen und die Bodenfunktionen beeintr chtigen und
letzendlich auch die menschliche Gesundheit gef hrden. Die Ausbreitung von Pestiziden wird
anhand von Abbauversuchen in Labor- und Feldexperimenten ermittelt. Feldexperimente bieten
ein relativ genaues Abbild nat rlicher Systeme, sind jedoch meist teuer und k nnen durch
unbekannte oder nicht kontrollierbare Faktoren stark beein usst werden. Laborexperimente
sind in dieser Hinsicht kosteng nstiger und bieten eine gute Kontrolle der einwirkenden
Faktoren. Allerdings lassen sich die Ergebnisse nur begrenzt auf natrliche Systeme
bertragen. Mechanistische Modelle sind ein m chtiges Werkzeug, um Labor- und Felddaten
zusammenzuf hren und helfen uns dabei, die mikrobiellen Regulationsmechanismen des
Pestizidabbaus im Boden besser zu verstehen. Aus diesem Grund habe ich mechanistische,

prozess basierte Modelle eingesetzt. Ich habe meine Modellhypothesen bei zwei Pestizidgruppen
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getestet: i) Chlorphenoxyherbiziden (MCPA (2-Methyl-4-chlorphenoxyessigs ure) und 2,4-D
(2,4-Dichlorphenoxyessigs ure)) und ii) Triazinen (Atrazin (AT)), in einem Idealszenario, wo
bakterielle Abbauer und Pestizid kolokalisiert auftreten. Meine Doktorarbeit konzentriert
sich auf einige der potenziellen Kontrollmechanismen des Pestizidabbaus im Boden: i)
regulierte Genexpression, ii) Massetransferprozesse durch die Zellmembran, iii) bioenergetische
Limitierungen und iv) Umweltfaktoren (Bodentemperatur und Bodenfeuchte).

Der erste Teil dieser Doktorarbeit beschreibt eine Reihe Modelle, die explizit Gen- und
Enzymexpression beinhalten. Kalibriert und validiert habe ich die Modellvarianten mit Daten
aus zwei Batch-Experimenten ber Pestizidabbau von 2,4-D und MCPA. Ich verglich die
Leistungsf higkeit der Modellvarianten gegeneinander und gegen ber einem herk mmlichen
Monod-Modell. Die Ergebnisse zeigen, dass die Genexpression den Abbau von 2,4-D und MCPA
reguliert. Die neuartigen gen-basierten Modelle sagen die Pestizidmineralisierung ebenso gut
voraus wie ein herk mmliches Monod-Modell. Dar ber hinaus sorgt die Ber cksichtigung
einer pestizidabh ngigen Genregulierung dafr, die mikrobielle Dynamik w hrend der
Pestizidmineralisierung besser widerzuspiegeln.

Der zweite Teil dieser Doktorarbeit erweitert und verbessert bestehende Chemostat-
/Retentostat-Modelle, um zu evaluieren, welche Rolle biophysikalische Limitierungen
(Massentransfer durch die Zellmembran) und bioenergetische Wachstumslimitierungen beim
Pestizidabbau spielen, da beide vermutet wird, dass sie f r Pestizidpersistenz verantwortlich
zu sein. Das untersuchte Pestizid war Atrazin, das recht persisten ist. Die Ergebnisse zeigen,
dass die sorptionslimitierte Bioverf gbarkeit das Langzeitverhalten und die Persistenz des
Hauptmetaboliten Hydroxyatrazin erkl ren konnten. Jedoch bersch tzte das Modell den
biologischen Langzeitabbau von Atrazin, was darauf hinweist, dass noch weitere Prozesse den
Atrazinabbau regulieren.

Der dritte Teil dieser Doktorarbeit untersucht die Rolle von Umweltfaktoren
(Bodentemperatur, Bodenfeuchte und Substratkonzentration) auf den Abbau von MCPA bei

verschiedenen Bodentemperatur- (COund 20C) und Bodenfeuchteregimen (pF 1,8 und pF 3,5)
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und Substratkonzentrationen (1 und 20gkg™). In Laborexperimenten und Simulationen
zeigte sich dass Populationen mikrobieller Abbauer auch in k Iteren und trockeneren B den und
unter geringen Substratkonzentrationen MCPA abbauen. Durch die Messung und Simulation
einer h heren Kohlensto nutzungse zienz (CUE, engl.: carbon use e ciency) konnten wir
best tigen, dass mikrobielle Abbauer unter limitierenden Bedingungen auf Stress reagieren,
indem sie mehr Kohlensto in ihre Biomasse verlagern. Aus diesem Grund erkl ren extreme
Umweltfaktoren nicht die Persistenz von Pestiziden im Boden.

Die in dieser Doktorarbeit vorgestellten Modelle zeigen, dass die Ber cksichtigung
mikrobieller Regulationen Vorhersagen des Pestizidabbaus verbessert, gegen ber
herk mmlichen, auf Monod-Kinetik-basierenden Modellen. Die gen-basierten Modelle
erreichten eine bessere Repr sentation der mikrobiellen Dynamik und geben uns die
M glichkeit, den Zusammenhang zwischen funktionellen Genen und Prozessraten herzustellen,
wohingegen Modelle, die die Abbaugeschwindigkeit auf Grundlage der Theorie des
bergangszustandes limitieren, eine genauere Konzentrationen liefern. Der Mangel an
Messdaten zur Validierung behinderte allerdings die Modellentwicklung. Daher benutzte ich ich
im vierten Teil dieser Arbeit, am Beispiel von Atrazin, mit seinem eher komplexen Abbauweg,
eine Methode des prospective optimal design, um das bestm gliche Experimentaldesign
zu nden, mit dem wir den in einer bestimmten Umgebung vorherrschenden Abbauweg
identi zieren k nnen. Die gefundenen optimalen Designs weisen auf die Erfordenis hin, die
Messung von Hauptmetaboliten und Biomasse von spezi schen Abbauern zu priorisieren,
welche in Abbauversuchen typischerweise nicht gemessen werden. Die Informationen aus
diesen Daten werden zu besseren Modellformulierungen f hren, die sich f r Risikoabsch tzung
und Entscheidungs ndung nutzen lassen.

Mit dieser Doktorarbeit konnte ich fr den Pestizidabbau im Boden wichtige
Regulationsmechanismen aufdecken, und so, unser Verst ndnis und Vorhersagen solcher
Prozesse verbessern. Ich stelle einfache Modellformulierungen bereit, beispielsweise die Hill-

Funktion f r Genexpression und eine Implementierung der Theorie des bergangszustands,
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welche sich einfach in biogeochemische Modelle integrieren lassen. Meine Arbeit liefert
grundlegende und entscheidende Schritte zur Entwicklung eines Vorhersagemodells f r den
Pestizidabbau und dessen Einsatz in Risikoabsch tzung und Entscheidungs ndung. Dar ber
hinaus gebe ich einen Ausblick auf weiterf hrende Forschungsans tze, insbesondere wie sich

mechanistische, prozess-basierte Modellans tze mit neuen Technologien wie omics und Machine

Learning verbinden lassen k nnten.
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3 General Introduction

3.1 Pesticides: application and environmental concerns

The increasing pressure for food supply worldwide has led to the intensi cation of agriculture
and the search for ways to increase yields on limited arable land [1]. In this context, pesticides
have become a relevant component of modern agriculture aiming to enhance productivity by
reducing potential plant stressors such as pests, weeds or diseases [2 5]. Besides agriculture,
their use also extends to public health programs as a way to deal with vector-borne diseases [1,
6].

Typically, pesticides can be classi ed according to the target pests (fungicides, bactericides,
herbicides, acaricides), the chemical composition (organochlorines, organophosphates,
carbamates, pyrethroids, etc.), and mode of entry into the target pest (systemic, contact, stomach
poisoning, fumigants, etc.) [7]. Recently, the World Health Organization has recommended [8]
that pesticides be classi ed according to hazard: from unlikely hazard, to present acute hazard,
to extremely hazardous.

Over the last thirty years, pesticide application has increased [9]. Estimations show an annual
use of pesticides of about 2 million tons per year, with projections to surpass 3.5 million tons
in the coming years [10]. Moreover, high-income countries apply more pesticides, and the
predominance of China and the United States as the major pesticide users seems to validate
this statement [11]. However, the increment in application does not necessarily translate to an
increase in productivity [12], as high pesticide applications can negatively impact non-targeted
organisms [13 15], and ecosystems [16].

First signs of pesticide impact on non-target organisms were reported in the Bitdnt
Spring[17] published in 1962, alerting the world about potential e ects of the pesticide DDT
on wildlife, especially birds and bees. Studies have also suggested negative e ects on humans
ranging from endocrine [18, 19] and reproductive e ects [20, 21] to even cancer [22, 23].

Therefore, pesticide use in the EU is increasingly regulated [24], and, in some cases, led to the



3 General Introduction

removal of some pesticides from the market [25]. New movements towards a more holistic and
environmental friendly management, as well as organic farming are arising [26] as a response to
the overuse of pesticides in modern agriculture. This involves biological pest control as well as
the use of alternative natural and biodegradable pesticides [27 29]. Nevertheless, as pesticides

are still used, research focused on the e ects of pesticides continues to be relevant as well.

3.2 Fate of pesticides in the environment

The environmental fate of pesticides is driven by a complex interplay of microbial and
physicochemical processes as well as physicochemical properties of the pesticides in soil and
water, in uenced by environmental conditions [30]. Pesticides undergo di erent degradation
pathways in the environment. During their lifetime, pesticides are subject to transfer/transport
and transformation processes [31].

Transfer/transport processes (Figure 1) control the movement of pesticides through the
three main environmental compartments (air, water, and soils), and how they eventually
end up in living organisms (plants and animals) [31]. Pesticides enter the atmosphere
through volatilization [32], and go back to the surface through dry or wet deposition [33,
34]. From soil and plant surfaces, pesticides can also enter the water systems (rivers, lakes)
via surface runo [35], or get into groundwater through leaching processes [36]. In the
pedosphere, pesticides can be sorbed onto soil particles. Finally, pesticides can enter and
further bioaccumulate in the biosphere through uptake by plant roots [37], or ingestion by

animals [38].



3 General Introduction

Figure 1 Transfer/transport fate of pesticide in the environment. 1: volatilization into the air,
2: Surface and subsurface runo, 3: Leaching into groundwater, 4: plant uptake, 5:
Sorption onto soil particles, 6: wet and dry deposition, 7: biological transformations

Transformation processes (abiotic and biotic) are responsible for the degradation of pesticides
and the formation of intermediate metabolites. Abiotic pesticide transformation includes
photolysis [39], hydrolysis [40], and redox reactions [41]. Biological transformations include
the use of the pesticide as a carbon and/or nitrogen source for growth and maintenance [42 45],
energy source [46, 47], and electron donor for redox reactions [48]. Many bacterial strains have
evolved to degrade pesticides due to long-term exposure to such substances [49]. Cometabolic
degradation [42, 50] that uses pesticide as non-growth or fortuitous substrate [51], as well as
plant-mediated transformations [52 54] have also been observed.

Despite the existence of di erent degradation pathways and the observable biodegradability
of pesticides, some pesticides can remain in soils in signi cant concentrations to a ect human
health and soil biota [55]. According to Silva et al. [55], around 80% of the studied topsoils
across Europe contained pesticide residues and mixtures of them at very low concentrations.
The herbicide atrazine is one particular example of long-term persistence in real systems. This
herbicide can still be found in soils and groundwater even after 30 years of absence of application
due to bans [56, 57]. Many physical and biological processes have been hypothesized to limit

pesticide degradation in soils. Physical processes such as sorption onto soil particles [58], or onto
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humic substances [59] retard degradation. Spatial heterogeneity (of pesticide [60] and degrader
populations [61]) also reduces degradation rates leading to persistence. Biologically mediated
processes including active [35] and passive [62, 63] transport across the cell membrane could
represent the rst step in a predominantly intracellular degradation of pesticide. Additionally,
metabolic demands surpassing the catabolic energy obtained from pesticide degradation might
stop degradation below certain threshold concentrations [64]. However, the unexpected ndings
of pesticide residues in soils demonstrate that our understanding of pesticide degradation in the

environment is still incomplete.

3.3 How to assess pesticide fate in the environment

Degradation experiments are designed to investigate degradation pathways, the formation
of main metabolites, and the half-lifes of pesticides [65]. They are generally performed with
laboratory experiments (controlled conditions) and eld studies (closer to natural conditions).

Laboratory experiments in soil microcosms or chemostat/retentostat reactors, provide a
simpli ed representation of processes in nature, and conclusions from these experiments,
therefore, cannot be simply extrapolated to real systems [66, 67]. One proof is the case of
atrazine, which is readily degradable under controlled conditions but persists in soils and
groundwater [56]. However, due to the simplicity of laboratory systems, speci ¢ processes can
be studied without the interference of uncontrolled factors [68, 69]. Field studies are closer
representations of real systems but are usually linked with high costs and the encounter of
many uncontrolled factors that can a ect the target measurements [70]. Because both methods
have limitations, modeling tools can bridge the gap and connect them to real systems.

Kinetic models, representing biochemical reactions through equations [71] can be used to
describe pesticide degradation in di erent real systems (soil, groundwater, water bodies) for
prediction and for process understanding.

Prediction or risk assessment models for pesticide degradation are simple models generally

varing from rst-order-like models to lag-phase models. The forum for the coordination of

10
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pesticide fate models and their use (FOCUS) [65] compiles di erent kinetic models that are
used for the assessment of new pesticides. FOCUS models evaluate pesticide persistence using
degradation endpoints (standard endpoints evaluated2ifgoand D Tgg, Which refers to the time

that it takes to dissipate 50% to 90% of the pesticide) of the parental compound and metabolites.
Some models additionally describe the in uence of soil heterogeneity in pesticide degradation
(Gustafson and Holden model) and the role of bacterial degraders (Logistic model) [65]. Despite
their e ectiveness, in some cases, endpoints are underestimated, and residual pesticides can
still be found in soils and groundwater [55, 72]. This suggests that key drivers of pesticide
degradation might be misrepresented in such models [73].

A deeper investigation of the mechanisms controlling pesticide degradation can be achieved
with biogeochemical mechanistic modeling [74, 75]. This approach can not only improve our
mechanistic understanding of reactive processes, but also produces benchmark models that can
then be simpli ed to be applicable to large scales. Some examples of mechanistic approaches

with the potential for modeling pesticides in soils are described as follows:

1. Metabolic ux modeling is an approach that uses genome sequences to derive the
potential biogeochemical reactions related to them. It is mainly focused on single
species but can be extended to multiple species assuming a supra-organism [76]. An
example of this approach has been applied to atrazine in contaminated soils coupled with

biostimulation strategies [77].

2. Gene-centric modeling is an approach that uses genetic information on specic
functional groups to make quantitative predictions of genes and mRNA dynamics, and
relating them to substrate dynamics [76]. One example of this approach for pesticide

degradation is the PECCAD model [43, 78].

3. Agent-based modeling is an approach that describes individuals and their interactions
with detailed process descriptions, but it can be complex and di cult to apply [76]. With

pesticides, they have mainly been used for risk assessment [79].

11
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3.4 Model data integration using omics and isotopic data

The lack of data to validate mechanistic models is currently the main limitation in the
applicability of biogeochemical modeling [73, 75]. However, modern techniques in biology
continuously extend data availability and exploit new sources of information that can be useful
for modeling di erent compounds and systems.

New techniques such as omics technologies (i.e., genomics, transcriptomics, proteomics,
metagenomics, metabolomics, etc.) [80] provide promising information to analyze biological
systems to far greater detail [80, 81]. For example, bacterial degraders can be represented
in models by their functional groups or genes [43, 82, 83], transcripts or mRNA [83], and
enzymes [83 85]. The explicit integration of gene abundances into mechanistic models helps
to account for ecological functions of the species that might be misrepresented due to the low
number of cultivatable microorganisms [82]. The explicit integration of enzymatic regulations
is also key to improve predictions of organic matter dynamics [85], and to describe complex
microbial communities [84]. This approach describes the microbial community as a collective
assembly of metabolic capabilities represented by functional enzymes that do not depend
on particular bacterial guilds. Finally, large datasets from metabolomics or transcriptomics
have been used to derive degradation rates [77] and microbiome responses to environmental
perturbations [86] through a combination of biogeochemical models and machine learning
tools.

Experiments, involving stable isotopes (de ned as elements with the same properties but
di erent atomic masses, attributed to di erences in their amount of neutrons) [87], are used
in modeling the fate of compounds in real systems and have the potential to reduce model
uncertainty and equi nality of model parameters [88, 89]. The most commonly used stable
isotopes are nitrogen, carbon, phosphorus [87], and oxygen [90]. For example, isotops of
have been used for carbon turnover models in soils [43, éﬂ]and 180 for soil water ow
models [91], and®N for nitrogen cycle models [92]. Recently, compound-speci ¢ isotope

analysis (CSIA) has been fundamental to determine the degradation pathway of atrazine
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in engineered systems, and thus the rate-limiting step of the degradation of this compound,

especially at low substrate concentrations [62, 63, 93].

3.5 Model uncertainty and sensitivity analysis

Mathematical models and models in general are always simpli ed representations, limited by
our understanding of how complex systems work [94, 95]. Unfortunately, the simpli cation [95]
introduces an error into our model formulations, called structural uncertainty [96]. On top
of that, lab and eld measurements used to calibrate and validate our models usually carry
noise as a product of human error or the inability to control sources of variations that in uence
the processes to be measured [96]. Finally, complex models for pesticide degradation are
typically of the mechanistic type and include many model parameters whose values cannot be
accurately identi ed with the available data (equi nality problem) [73], which is another source
of uncertainty.

Model uncertainty impairs the reliability of model predictions/simulations and might distort
the interpretation of model results. The quanti cation of model uncertainty is therefore
an important step to assess model reliability, especially when policymakers shall use model
predictions to establish management plans for pesticide use [97] or mitigation strategies against
pollution [98]. Various methods of uncertainty quanti cation have been established in di erent
research elds. Often, methods are based on Bayesian theory [99], such as the Bayesian multi-
model ensemble analysis [95]. Frequently, mechanistic models for pesticide degradation are
sloppy [73], meaning that parameters may not be identi able. An identi ability analysis helps
to determine those parameters and thus the processes that cannot be identi ed with the given
data, leading to a further simpli cation of the model formulations [100, 101].

Sensitivity analyses provide the information on how the uncertainty of model inputs (model
parameters) impacts the uncertainty of model outputs [102, 103]. Sensitivity analyses can be
local, providing a limited picture of the parameters that the larger impact on model output [104].

Global sensitivity analysis, on the other hand, evaluates changes within the entire parameter

13
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space, a ected by all parameters at once [105]. Techniques for global sensitivity analyses are

the Morris Method [103, 106, 107] and the variance-based Sobol method [103].

3.6 Model-based optimal design of experiments

In the intent to describe pesticide degradation, many distinct and competing model formulations
have been developed to account for the complexity of pesticide degradation in the environment,
our incomplete understanding of the processes that control degradation, and the lack of su cient
data to validate model assumptions. Finding the best representation of pesticide degradation
is hence a non-trivial and challenging problem, especially if the models are later used for
predictions [108]. Model selection techniques aim to guide this selection process by nding
atrade-o between model complexity and goodness of t against the available data [109]. If
the data used for model selection is insu cient, the original experimental setup can be re ned
through a retrospective optimal design of experiments.

On the other hand, a prospective optimal design of experiments can allow for model selection
prior to the execution of the experiment [110]. Its objective is to nd a single desiyp; from a
collection of design® that maximizes the information gain towards a speci ¢ goal)(111],
which could be model discrimination. Additionally, the prospective method can be targeted to
improve model calibration and reduce uncertainty of predictions.

When working with competing models, it is important to notice that including a completely
inappropriate model can easily skew the results by indicating an easy discrimination of
that model. Therefore, it is essential to carefully select for models with the best possible
representation of the system to work with [112].

There are di erent methods for prospective optimal design that have been proposed in various

elds. Leube et al. [113] introduced the preDIA method (posterior data impact assessor) that
combines Monte Carlo simulations, Bayes’ theorem and Bayesian model averaging to average
the utility of designs over all possible measurements that a given sample can produce [113].

This method was used on steady-state simulations to evaluate the optimal design that could
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predict the long-term reduction of a pollutants’ concentrations in groundwater [113], to evaluate
the location of wells for a better determination of the groundwater divide location [111].

The main drawback of methods like preDIA is the computational e ort to: i) compute the
marginal utility of the designs, and ii) produce non-biased plausible model simulations that
allow us to generalize the optimal design results. To solve the problem of computational e ort,
we can use other metrics to evaluate the bene t of the proposed designs. Because designs can be
interpreted as vectors containing measurements [111], metrics utilizing the Euclidean distance
can be adapted with relatively low computational e ort, for example the concepts of energy
distance [114]l, *distanceandL, *norm[115].

Producing plausible model outputs prior to the experiment, while also expending reasonable
computational e ort can be challenging, especially when the behavior of the model simulations
cannot be constrained by data. A combination of rule-based and Markov chain Monte Carlo
(MCMC) methods can provide a solution. Rules can be derived from expert knowledge of the
system (i.e., half-life of pesticide) and be used to only keep relevant system behaviors [116].
Complementary, MCMC-based methods such as the DREAM algorithm [117], or the constraint-

based search algorithm [118] are valuable to e ciently sample parameters leading to the desired

behavior.
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4 Research questions

Even though we know that bacteria and other soil organisms as well as abiotic processes have the
potential to degrade pesticides, some persist in soils for long periods [55 57]. This shows that
our understanding of the processes controlling pesticide degradation in soils is still incomplete.
Moreover, potential microbial and biophysical limitations and environmental factors such as
soil temperature and soil moisture are not fully considered into current pesticide degradation
models, or their relevance for pesticide persistence has not been fully evaluated.

To improve our process understanding of pesticide fate in soils, | explored three potential
mechanisms controlling pesticide degradation, microbial regulation, biophysical limitations, and
the in uence of environmental factors (temperature and soil moisture), to answer the following

research questions.

(R1): What is the role of regulated gene expression as a microbial control of pesticide
degradation in soils, and what is the bene t of explicitly including this process into

biogeochemical models for process understanding and model predictions?

(R2): Do biophysical limitations (mass transfer across the cell membrane) and bioenergetic

growth constraints control the degradation of pesticides in soil?

(R3): How do di erent soil temperature and soil moisture levels a ect the overall pesticide fate

in soils?

Pesticide degradation in soils can be carried out by di erent bacterial strains and is a ected
by physicochemical processes such as sorption and abiotic degradation. These processes
requiere model formulations that di er in complexity and accuracy of the predictions. To
identify the predominant pathway of pesticide degradation in soils, and to select the most
suitable model among competing models, | investigated which data is needed to distinguish
the competing degradation pathways. To this end, | aimed to answer the following additional

research questions:
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(R4): What type of measurements should be prioritized to distinguish competing degradation

pathways of pesticides in soils?

(R5): What level of complexity is needed to represent pesticide degradation in soils?

| answered these questions with a data-model integration approach using mechanistic, process-
based models. With this thesis, | expect to improve process understanding related to pesticide
degradation in soils. Further, | provide equations/new approaches of how to model limitations

of pesticide degradation that can easily be implemented into biogeochemical models.
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5 Research design

5.1 Model assumptions

With my thesis, | aimed to explore the role of biokinetic processes that might explain pesticide
persistence. | assumed a so-called optimal pesticide degradation scenario (Figure 2), focusing
on microbial regulations to be the main drivers of pesticide degradation. Therefore, | excluded
processes that may retard or even enhance pesticide degradation, such as i) spatial soil
heterogeneity, ii) preferential water transport (advective dispersive transport), iii) competing

carbon sources (I assume pesticides as the sole carbon and energy source).

Figure 2: Optimal pesticide degradation scenario. In this scenario, bacteria and pesticide
co-occur in the same spots, facilitating degradation. Water transport in soil, soil spatial
heterogeneity and additional carbon sources are not included

5.2 Model pesticides

I used two model pesticides from two classes: i) Chlorophenoxy herbicides, represented by
2,4-D and MCPA, and ii) Triazines, represented by atrazine. Based on the characteristics of
these two pesticide classes and their fate in the environment, | evaluated di erent hypotheses
and degradation mechanisms speci ¢ for each pesticide.

2,4-Dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid
(MCPA) are auxin active molecules that disturb tissue growth of higher plants [119, 120], and

which therefore are used as herbicides. 2,4-D and MCPA are highly soluble substances and
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prone to leaching due to their low sorption to soil particles [121]. The complete degradation
pathway of both components has been described in the literature [122 125], as well as the genes
controlling degradation. ThéfdA [126 128], cadAandr/sdpAgenes [129, 130] are identi ed

as the genes responsible for 2,4-D and MCPA degradation, tkith genes being the most
abundant in soils [131]. The well-studied degradation pathway at the molecular level made
these two herbicides suitable model pesticides to explore microbial regulations of pesticide
degradation.

Atrazine herbicide that despite having been banned for over thirty years in the EU, it is
still detected in relevant concentrations in soils and groundwater [56, 57]. Thus, atrazine is
a very good model pesticide to explore pesticide persistence in soils. In the environment,
atrazine undergoes di erent abiotic [132] and biotic [49] degradation pathways. Many
bacterial strains are involved in atrazine degradation, using it either as a carbon source [133],
nitrogen source [134], or as both carbon and nitrogen source [135]. Bacterial strains carrying
the genesatzABG trzN atzBC, or trzN atzC [49, 63, 136] can grow on the side chains
of atrazine and degrade it to cyanuric acid. Strains with the gea¢sDEFare able to
further reduce the intermediate metabolite cyanuric acid@®, under absence of alternative
nitrogen sources [137 139]. The absence atzBor atzCgenes leads to the accumulation of
hydroxyatrazine [140 142], the main metabolite of atrazine by dechlorination. Hydroxyatrazine
is also persistent in real systems [143, 144]. Additionally, cometabolic degradation pathways of
atrazine produce the metabolites deethylatrazine (DEA) and deisopropylatrazine (DIA), which
also persist in soils [145, 146]. This diversity of degradation pathways makes atrazine an

interesting model pesticide for the identi cation of degradation mechanisms.

5.3 Methods for model uncertainty quantification and sensitivity analysis

In this thesis, parameter uncertainty was determined using the DREAM toolbox in Matlab [117].
The Di eRential Evolution Adaptive Metropolis (DREAM) algorithm for model calibration

calculates parameter uncertainty in the form of a posterior parameter distribution based
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on a Bayesian approach (prior knowledge of the model parameters or uninformative prior
distributions and likelihood of the data). Identi ability analysis [100, 101] was performed to
nd parsimonious model formulations. Additionally, | used both local and global sensitivity
approaches. In local sensitivity analysis, | determined the local sensitivity score [147]. In global
sensitivity analysis, | used the Morris method as inexpensive screening of important parameters
in high-dimensional problems [103, 106, 107] and the variance-based Sobol method to quantify
the contribution to the variance of model outputs coming from single parameters and the

interaction of parameters [148].

5.4 Thesis outline

My thesis investigates microbial regulations of pesticide turnover in soil and includes four
sections corresponding to four scienti ¢ papers (sections 6 to 9). A small summary of the main
ndings of each paper and their connections to the research questions of my thesis are presented
in this section:

Paper 1 (section 6)addresses research question R1 and describes a set of gene-centric models
that explicitly incorporate microbial regulation (gene expression). | calibrated and validated
these model variants with published data from two degradation experiments involving two
model pesticides, 2,4-Dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic
acid (MCPA) [128]. | compared the performance of the model variants with each other and
a standard Monod model to determine the role of gene expression in predicting pesticide
degradation in soil and a potential parsimonious model.

Paper 2 (section 7) addresses research question R2. It extends and improves existing
chemostat/retentostat models by including re ned representations of mass-transfer processes
across the cell membrane as well as energetic growth constraints through transition state theory.
The target pesticide was atrazine. After calibrating the model, | used it to produce site-speci c
predictions for soils and compared them to eld observations of residual atrazine concentrations

from two arable topsoils in southern Germany.
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Paper 3 (section 8) addresses research question R3 through a combined lab and modeling
study of MCPA degradation under di erent soil temperature (00and 20C) and soil moisture
regimes (pF = 1.8 and 3.5), involving two substrate concentrations (1 antg2@™). Genes and
transcripts as well as MCPA mineralization and residual concentration in soils were measured
in a microcosm experiment of thirty days. The modeling work was based on gene-centric
approaches and included additional features hypothesized to have a substantial impact under
low substrate concentrations, such as maintenance uxes, production of non-extractable residues
(NER), and a constitutive gene expression.

Paper 4 (section 9) addresses research questions R4 and R5. As model pesticide, |
used atrazine, as it has a rather complex degradation pathway driven by di erent bacterial
guilds, physicochemical and abiotic processes. Di erent degradation pathways of atrazine
were represented by di erent competing models, and, in order to identify the predominant

degradation pathway, | used prospective optimal design.
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6 Gene-centric model approaches for accurate prediction of

pesticide biodegradation in soils (Paper 1)

This chapter includes the following publications:

1. Adapted with permission from Chavez Rodriguez, L., Ingalls, B., Schwarz, E., Streck, T.,
Uksa, M., Pagel, H. (2020). Gene-Centric Model Approaches for Accurate Prediction
of Pesticide Biodegradation in Soils. Environmental Science & Technology, 54(21),
13638 13650. https://doi.org/10.1021/acs.est.0c03315. Copyright 2020 American Chemical
Society.

2. Adapted with permission from Correction to the original Paper as published in
Chavez Rodriguez, L., Ingalls, B., Schwarz, E., Streck, T., Uksa, M., & Pagel, H.
(2021). Correction to Gene-Centric Model Approaches for Accurate Prediction of
Pesticide Biodegradation in Soils. Environmental Science Technology, 55(9), 6524.

https://doi.org/10.1021/acs.est.1c01972. Copyright 2020 American Chemical Society.
with the following modi cations:

1. Correction to the original Paper as published in Chavez Rodriguez, L., Ingalls, B., Schwarz,
E., Streck, T., Uksa, M., & Pagel, H. (2021). Correction to Gene-Centric Model Approaches
for Accurate Prediction of Pesticide Biodegradation in Soils. Environmental Science &

Technology, 55(9), 6524. https://doi.org/10.1021/acs.est.1c01972

2. Numbers of gures, tables, and equations are relative to this thesis and not to the original

publication.
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6.1 Abstract

Pesticides are widely used in agriculture despite their negative impact on ecosystems and human
health. Biogeochemical modeling facilitates the mechanistic understanding of microbial controls
on pesticide turnover in soils. We propose to inform models of coupled microbial dynamics
and pesticide turnover with measurements of the abundance and expression of functional
genes. To assess the advantages of informing models with genetic data, we developed a novel
gene-centric model and compared model variants of di ering structural complexity against a
standard biomass-based model. The models were calibrated and validated using data from two
batch experiments in which the degradation of the pesticides dichlorophenoxyacetic acid (2,4-D)
and 2-methyl-4-chlorophenoxyacetic acid (MCPA) were observed in soil. When calibrating
against data on pesticide mineralization, the gene-centric and biomass-based models performed
equally well. However, accounting for pesticide-triggered gene regulation allows improved
performance in capturing microbial dynamics and in predicting pesticide mineralization. This
novel modeling approach also reveals a hysteretic relationship between pesticide degradation
rates and gene expression, implying that the biodegradation performance in soils cannot be
directly assessed by measuring the expression of functional genes. Our gene-centric model
provides an e ective approach for exploiting molecular biology data to simulate pesticide

degradation in soils.

6.2 Introduction

Pesticides are important agrochemicals used for plant protection and yield optimization [2 5].
Despite their intended bene cial use, many of the applied active components end up in soils,
groundwater or surface water [149 151], where they are potentially harmful for living organisms
and the environment [15, 152]. Soil microorganisms (fungi and bacteria) are known to be the
main drivers of pesticide degradation in soils [43, 149]; they have evolved to use pesticides
as both carbon (C) and energy sources [49]. In this context, the most important microbial

detoxi cation process in soils is the enzyme-catalyzed biotic transformation of pesticides [153].
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To predict the fate of pesticides in the environment, we need to improve our understanding
of the microbial control of pesticide degradation, particularly at low concentrations [154].
Biogeochemical modeling is an established approach for testing our understanding of bioreactive
processes, as well as for quanti ng and predicting the biodegradation of pesticides in soils [74,
155]. Current biogeochemical models incorporate important rate limiting factors such as
microbial dynamics (growth, metabolism, and physiology) as well as sorption-controlled
substrate availability. Recent modeling approaches seek to improve the representation of
microbial pesticide degradation by exploiting experimental assays of marker genes that encode
enzymes that catalyze speci c reactions [156]. Measurements of DNA and transcript abundance
of functional genes facilitate an improved understanding of biochemical processes by providing
a direct link between speci ¢ microorganisms and biochemical functions. This quantitative gene
data should thus facilitate a more robust estimation of biokinetic parameters of biogeochemical
models [75, 82] in comparison with more traditional approaches [73].

Some biogeochemical modeling approaches in marine and groundwater systems incorporate
and simulate either functional genes and transcripts (gene-centric model [82]), or enzyme
concentration and transcripts (cybernetic or enzyme-based approach [84, 157]). Their results
highlight the potential of incorporating molecular data into modeling to improve process
understanding and model predictions [82]. Existing gene-centric models of pesticide turnover
in soil improved the representation of microbial dynamics in soil [43, 158], but misrepresent
important limiting factors of pesticide degradation [73] such as pesticide-dependent gene
expression.

In order to address this problem, we present a novel modeling approach that exploits data
on the abundance and the expression of functional genes involved in pesticide degradation
in soils. We expect that a complete description of transcription of specic genes and
translation of targeted enzymes in our modeling approach will improve the representation of the
controllers of pesticide degradation in soils. We used previously published data from laboratory

experiments [128] to calibrate and validate a suite of model formulations. These experiments
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involved observation of the degradation of the pesticides 2,4-dichlorophenoxyacetic acid (2,4-D)
and 2-methyl-4-chlorophenoxyacetic acid (MCPA). These pesticides have a similar chemical
structure and a simple degradation pathway mediated by the same functional genes, which have
been extensively studied [122 125, 127, 130, 159 162]. Therefore, they provide a straightforward
test case for our novel modeling approach.

We compare the model performance of a collection of gene-based models against a traditional
biomass-based model to test whether our extended modeling approach provides better
predictions. Finally, we used identi ability and uncertainty analysis to compare our gene-
based model variants. We identi ed the model variant that is best supported by the available
data, and that we can recommend as the most parsimonious tool to be used for description and

prediction of this degradation process.

6.3 Theory
6.3.1 Model Structure

The model structure is shown in Figure 3. The processes are assumed to occur in a spatially
homogeneous environment [128]. Pesticide is assumed to equilibrate rapidly between the
sorbed and solution phase concentration. The model accounts for a single microbial population,
which relies on the the pesticide as its sole carbon (C) and energy source. The microbial pool is
partitioned into three subpopulations: active cells, inactive cells (dormant bacteria), and dead
cells (relic cell pool), based on observation of typical bacterial states found in environmental
systems [163 167]. Activation/inactivation is regulated by the pesticide concentration. Active
cells respond to the presence of pesticide by expressing speci ¢ functional genes. We assume
this occurs via upregulation of transcription (formation of messenger RNA (MRNA)). Pesticide
uptake and metabolism are described as a single process, which leads to growth of active cells
and mineralization of pesticide t€0,. Active and inactive cells die at constitutive rates. Finally,
dead cells decay, releasi@;. If not otherwise stated, all concentrations are givermmmol g™t

or mmol cn3 and refer to C in mass of dry soil or in volume of soil solution, respectively.

25



6 Gene-centric modeling approaches

Figure 3:Model schematic. Green boxes: independent state variables calculated directly; orange
boxes: variables related to processes in quasi-steady state; purple box: additional pool
that is modeled indirectly. Solid arrows indicate mass transfer; dashed arrows indicate
regulation.

6.3.2 Process formulations

Sorption

The total concentration of pesticidé:; [mmol cnT3] in soil is partitioned into two pesticide
pools: solution phase concentratioBs [mmol cnt®] and sorbed phase concentratiodS
[mmol g7

o= G+ G5 €y

where: [1] is the water content in soil and [g cm™3] is soil bulk density.
We assume thaCh and CS are related by the Freundlich isother@S = Kep .C5/™
(bioavailability limitation of pesticide degradation). Freundlich sorption enters the model

by the retardation factor [149, 168]:
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e

RF:= ‘fjtq%:h Kep nep .Ch/-me Y 2)

dt

where Kep [mmol® 7P g1 cm?¥7] and nep [1] are the Freundlich coe cient and exponent

respectively.

Bacterial subpopulations

Our model incorporates three bacterial subpopulations: active degrader ba@grienmol g™1],
inactive bacteriaC‘B [mmol g1], and dead bacterié:g [mmol g}]. Inactivation (dormancy) is

used by microbes as a bet-hedging strategy to cope with unfavorable conditions, including
substrate limitation [163]. We included the dead bacteria (relic bacterial population) to
avoid overestimation of active degraders [165 167] when comparing simulation results with
experimental observations. These pools are depicted in Figure 3 as active, inactive and dead

cells. The growth rate [mmolT d™1] of active bacteriafgrowtn) is:
Fgrowth= P Cs (3

where p [d7}] is the speci ¢ growth rate coe cient (Eq. 18).
Activation and inactivation rates [169, 170] depend on the concentration of pesticide through

a thresholding function. The corresponding rates [nmékg™] are de ned as follows:

lactivation = Kr C|I3 (4)

linactivaton = -1* [/ Kqg CS (%)

wherek, [d™}] and kq [d7}] are the coe cients of activation/deactivation for inactive/active

cells, and [1] is a switch function: [169, 170]:

*1
_ Cr* G
%ot ©
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whereCr [mmol cnT?] is a pesticide concentration threshold, amd1] modulates the steepness
of the curve [169, 170].

The rate of decay of all bacterial poolsitmol g™t d™) is described with a rst-order function:

Mecay=CB 8 (7)
wherej could denote active, inactive and dead bacteria, anis the decay rate coe cient of

the corresponding population.

Gene expression

Active bacteria respond to the presence of pesticide by transcribing and translating speci ¢
functional genes for pesticide degradation. In the case of 2,4-D and MCPA, we described
the expression of the functional gert&A, which encodes for an -ketoglutarate-dependent
dioxygenase [128, 171, 172]. This enzyme catalyzes the cleavage of the ether bond between
the phenol ring and the acetic acid side chain of 2,4-D and MCPA [130]. We assumed the rst
degradation step to be the rate determining step despite the fact that more géheBCDEF
are involved in the full degradation of both pesticides. This is a reasonable assumption given
the general understanding of thEdABCDEFRMediated degradation pathway [171, 173]. The
degradation of 2,4-D and MCPA involving a constitutive gene expression at low concentration
followed by a pesticide-dependent gene expression was not included as an alternative microbial
control mechanism, because this process has only been reported for one bacteria strain [126].
Alternative genes (i.ecadA[174] andRdpA SdpA[175]) capable of degrading 2,4-D and MCPA
following the same degradation pathway &&lA gene were not included because of their
comparatively low abundance in soil samples [131, 173, 176].

The rate of transcription of speci ¢ genes is assumed to be pesticide-dependent, described by

a Hill function [177]:
. L/I"IH
: ®)

r iption= T ~Lm
transcription= max K(r;H + .C'F‘,/”H 1
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where max [transcripts geng' d™}] is the rate coe cient of transcription, Kg [mmol cnT] is
the half-maximal triggering concentration, analy [1] is the Hill coe cient.

Translation follows a rst order function based on the concentration of transcripts
[transcripts genél]:

lranslation= KE MRNA 9)

wherekg [mmole transcripts™ d™1] is the rate coe cient of translation of transcripts (MRNA)
into enzymes (E) [mmeglgen€™].

Decay of transcripts (MRNA) and enzymes (E) is assumed to be rst order:

'mRNAdecay = Oc MRNA (10)

lenzymedecay = O E (11)

wheredg [d™}] and dg [d™}] are rst order decay coe cients.

Experimental data on 2,4-D and MCPA degradation [128] have shown that the timescale of
pesticide mineralization and bacteria growth is days, whereas transcription and translation are
processes on the timescale of hours to seconds [178]. Therefore, we assumed quasi-steady-state

(QSS) for gene expression [177]. The QSS formulation for transcripts reads:

dmRNA
“dt = I'transcription” 'mRN A decay= 0 (12)

resulting in the following formulation [transcripts gerié]:

L/n
_  max CP/ H
MRN A= do OKT +.Cyml (13)

We de nedft = g‘ax as the number of transcripts per gene. The paramdiecan take values
G
higher than 1 to express at least one gene or transcript per cell, or lower than 1 to compensate

for extraction bias of MRNA and DNA. The extraction bias was assumed constant for the soil
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used in the experiment.

The QSS formulation for enzymes reads:

dE
dat = I'translation™ Tenzymedecay= 0 (14)

resulting in the following formulation [mmog gené]:

ke fr G
E IT 0K8H+.C#/nH1

E= o

(15)

Pesticide uptake

We treat pesticide uptake and biotic degradation as a single process, with a degradation rate

coe cient ( p [d71]) given by a Michaelis-Menten term:

_ Kvmax CI|5 E

= 16
P Km +CI|5/ f1 ( )

wherekymax [mmol mmoE! d™1] describes the rate of degradation of pesticitg [mmol cnt3]
is the half-maximal pesticide concentration, atidis a conversion factor from gene to C

[mmol gen€™]. We do not consider chemical degradation. Substitutfrom eq. 15 gives:

.C||5/.HH+1/ a
rMOwm 5 L1 S
oo Ko ke fr [OKE ¢ GG )
0 de f1 1 Kwv + C||5 S
r S
p q
: . k ke f . . _
Finally, de ning max = %ICET (the maximum growth rate coe cient ™]), we have a
E T1
concise description of growth rate as:
L/.ny+1/ %
p= CP/ Kwv + C||5 ! (18)

maX O K+ Gy 1
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The uptake rate is dependent only on the bioavailable pesticide (RF from eq. 2) and is scaled by

the parametelYp (uptake e ciency speci ¢ for the degraders and the substrate) as follows:

1
* a .
p Cg 0vel:
luptake = RF (19)

The pesticide is used as both C and energy source. The growth yeldjetermines the relative

proportion of respiration and growth based on the total pesticide uptake [88].

CO, accumulation

The nal product of pesticide degradation i€0;, (in mmol g™ soil) produced by bacterial
respiration:

1*Y,
lrespiration= P Cs OTPP]- (20)

A fraction of the decaying dead cells also contributes to @, pool through the parameter
aco, [1]:

— .d
l'celt decomposition™ fdecay @CO (21)

This ux consists of the carbon released from decaying dead cells that have incorporated the
pesticide into their biomass. Autotrophic and heterotrophic xation of mineraliz€®D, from
2,4-D/IMCPA have been shown to play a minor role [179]. Therefore, we did not explicitly

consider these processes in the model.
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The full model is described by the following ordinary di erential equation (ODE) system:

dd? = TIgrowth™ r;’j‘ecay+ Factivation™ Tdeactivation (22)
ddC:B = TIdeactivation® activation™ rcijecay (23)
dd(:[g = rgecay"' r(iiecay* r((jjecay (24)
ddc;ﬂg = Tuptake (25)
dgitq = rrespiration+ I'cell"decomposition (26)

6.4 Materials and Methods
6.4.1 Model Reduction

Starting out from the full model formulation (V0), we de ne three model variants considering
pesticide-dependent gene expression: V1, V2 and V3, and also one variant considering

unregulated gene expression V4 and a biomass-based model V4':
V1: The inactive bacteria pool is set to zex@L(= 0).

V2: The dead bacteria pool is set to zefcg(: 0). To account for cellular decay, a fraction
of the decaying active and inactive bacteria is set to directly contribute to@@ pool

as follows:

lcelkdecompositior C§ aa+C|i3 g/ aco (27)

V3: The inactive bacteria pool and the dead bacteria pool are set to @r@ (Oand
Cg = 0). The parameteKy, is also set to zeroKy = 0) to neglect pesticide-dependent
growth and keep pesticide-dependent gene expression. The growth rate coe cigiti¢

calculated as follows:

Gl™ (28)

P = max 0 Kg/M + -Clﬁ/nH 1

To account for cellular decay, a fraction of the decaying active cells is set to directly
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contribute to theCQO, pool as follows:
rcell"decomposi'{ion:C"é1 da aco (29)

V4: The inactive bacteria and the dead bacteria are set to Z8§e=(0andC§ = 0). The
parameterKg is also set to zerog = 0) to account for pesticide-dependent growth

kinetics. The growth rate coe cient (p) is calculated as follows:

L

max 0 ml (30)

P =
This model variant considers an unregulated mRNA expression in QSS (eq. 13):

MRNA=f; C8 (31)

V4': Same structure as V4 without unregulated mRNA gene expression. This model
variant is close to the standard Monod-based model that takes gene abundances as a

proxy of bacterial biomass.

For convenience, the full description of each model can be found in Supporting Information.

6.4.2 Model calibration

Description of the experiment

We used published data from a batch degradation experiment in microcosms applying the
14C-labelled 2,4-D and MCPA to a Typic Argiudoll with a pH of 7.2, 19% clay, 18% silt, 62% sand
and 1.2% carbon [128]. The experiment consisted of one application migy™ (8.8mg kg™

soil of 2,4-D, and 10.8g kg™ soil of MCPA; pesticide in C equivalent) of the corresponding
pesticide at day 0, and a second application off@@kg™* when mineralization of the rst

application stopped (at day 24 for 2,4-D and day 33 for MCPA.) The experiments ran until

33



6 Gene-centric modeling approaches

day 34 for 2,4-D and day 67 for MCPA (the sampling protocol can be found in the Supporting
Information Table S1) The dataset consisted of time series with three replicates of pesticide

mineralization (%), abundance A genes and expresseftiA genes in soil.

Model calibration

We calibrated each model variant against the data from the 2,4-D experiment. We started
calibration with a manual exploration of the parameter space within the ranges shown in Table 1

to achieve visually acceptable ts. Nominal parameter ranges were based on literature [158,
165, 180 190]. We extended the ranges of all parameters by four orders of magnitude, which

allowed us to capture su cient parameter variation.

Table 1: Initial parameter ranges for model calibration.

Parameters  De nition Units Minimum  Maximum
fr Number of transcripts per gene [187] transcripts géhe 10% 1¢°
ny Hill coe cient [185] 1 1 10
Ko Half-maximal triggering concentration [188] mmol cth 1010 10
max Maximum growth rate [158, 181] | 104 10
fy Conversion factor (gene to C) [183] mmol géhe 1014 108
K Half-maximal pesticide concentration [184] mmol fn 108 1¢
Cr Pesticide concentration threshold [180, 186] mmoFém 1010 10?2
ay Decay rate coe . for active bacteria [158, 181] “'d 10° 1¢
a Decay rate coe . for inactive bacteria [158, 181] *d 107 10?2
ke Coe cient of activation [170] d? 10° 1¢
Kq Coe cient of deactivation [170] dt 10% 1¢
ay Decay rate coe . for dead bacteria [189] d 10% 1¢
Yp Uptake e ciency [158] 1 0.1 0.9
aco, Fraction of bacteria contributing t€O, 1 0.1 0.9
Kep Freundlich coe cient [158, 182] mmol@ "FR) g1 cmEr 102 1
Nep Freundlich exponent [158, 182] 1 0.8 1
a Initial fraction of dead bacteria [165] 1 0.1 0.9

Using the manually determined preliminary t as the initial parametrization, we calibrated
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each model variant by minimizing the weighted sum of squared errors (SSE) following a hybrid
optimization method [191]. A hybrid method consists of an initial search using the global
optimization algorithmSimulated Annealing , followed by the local optimizatiorimincon

of Matlab. We de ned the SSE as:

%yl /2
ssE=g Yobs' Yainl (32)

i i
whereygbsare the observationsy.;., the corresponding model outputs, anglis the standard
deviation of the corresponding observations. Initial calibration attempts were unsuccessful due
to the wide ranges of variation within replicates, especially for measured expreddéddgenes
in soil. Consequently, we set a minimum threshold of 15% as coe cient of variation for the
replicates (without which the genes and transcripts observations would have had a negligible
contribution to SSE).

The model outputs corresponding to the measured data were calculated from the state

variables as follows:

o B CO, 100
Mineralization[~] = Initial Pesticide Concentration (33)
e Al CE+Cp+CE
Genegcopiesg'] = : (34)
1
a
Transcripts[copies g'] = mRNfiACB (35)
1

We applied a Markov Chain Monte Carlo simulation using the BayedREAM;s, algorithm
within the DREAM Matlab tooxbox [117] to estimate parameter and simulation uncertainty.
Uniform parameter distributions (see Table 1 for ranges) were chosen as at/uninformative
priors for Bayesian inference using MCMC sampling. The starting values of the MCMC chains
were drawn from a multinormal distribution of the parameters in log-space with mean values

equal to the best t from the hybrid method, arbitrary variances of 2.5, and zero covariances.
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The selected variance was set to capture su cient variation of the parameters. Convergence
of chains was assumed forRdiagnostic [192] lower than 1.2 [117]. Minimum and maximum
parameter values were taken from Table 1, and we chose the ofRerectas a boundary
handling method inDREAMzs,. We used a Gaussian likelihood considering heteroscedastic

measurement errors as implementediiREAMzg;:

2

1

En y(l)bs* ylsim
t=

1 0 i

(36)

NI -

n
Lxd/=*1 log.2 /* E Mog. i/'*
2 t=1

where ; are the standard deviations of the observations, ag.* yii, are the residuals.

We ranDREAMgzg;, in parallel, using three Markov chain trajectories with 100,000 and 300,000
simulations per chain, achieving convergence for all models.

The same process was followed for all model versions with the exception of V4’, for which

we only used Pesticide Mineralization (%) afdlA genes for calibration.

6.4.3 Model comparison

We chose the Akaike Information Criterion (AlICc) [101, 193] and the Bayesian Information

Criterion (BIC) for the numerical evaluation of the Bayesian Model Evidence [194, 195]. The

AICc is a measure of the predictive capability of a model, and the BIC indicates the identi ability

of the parameters of a model for the given data [109]. AICc and the BIC were calculated as:
SSE 2 m .m+1/

AlCc=2 m+n InOTl+W (37)

SSE
BIC =n InoTl+m In.n/ (38)

wherem is the number of free parameters (including the initial conditions used as free parameters
for model calibration)n is the number of observations (this evaluation was done on 2,4-D data

with 54 observation points), and SSE is the sum of squared errors previously de ned (eq. 32).
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6.4.4 Model validation

We validated the selected models against the MCPA data. We visually evaluated how well the
models captured the main trends of the measured data: mineralized MCPAf@#%)genes

and transcripts in soils. We compared simulated residual concentrations of 2,4-D and MCPA
(total concentration at the end of the experiment) against reported measurements in short-term

degradation experiments using these pesticides [196 198] as an additional validation procedure.

6.4.5 Local sensitivity analysis

We performed a local sensitivity analysis based on the best t obtained for the models. The
analysis included: local parametric sensitivity coe cient [199, 200], identi ability score [100,

101], percentage error of the estimation [101], and parameter correlation matrix [101] (see
Supporting Information 11.1.3, Methods: Local and Global Sensitivity and uncertainty analysis).

We did not include the initial conditions in our analysis [101].

6.4.6 Global sensitivity analysis Morris method

We performed a global sensitivity analysis using the Morris Method [103, 105 107, 201],
implemented in the SAFE toolbox of Matlab [202] (Supporting Information 11.1.3). We calculated
two sensitivity metrics [201]: the mean of the elementary e ectS)and the standard deviation

of the elementary e ects () at 20,000 points in the parameter space, corresponding to 380,000
model runs.

We ran the sensitivity analysis up to the day 24 to cover the rst pesticide application of
2,4-D. The output variables considered were: maximum pesticide mineralization, maximum
abundance of genes and transcripts, maximum active genes, minimum pesticide in solution,
time of in ection point of mineralization, time to achieve the maximum mineralization rate and
maximum gene expression, and SSE (eq. 32).

Parameters for sensitivity analysis were sampled from a normal distribution with the mean

taken from the best model t on 2,4-D data. The standard deviation was approximated so that
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the resulting normal distribution of each parameter tted into the upper and lower boundaries
previously set in Table 1. As sampling strategy, we used the Latin hypercube sampling with
radial trajectory [73].

Because the Morris method only allows a ranked classi cation of the parameters according to
the values of “and obtained per parameter per output [73, 202], we normalized by dividing
by the maximum <and observed for each parameter. We used the normalizeahd to
calculate thd,*norm (I, = t <2+ 2) of each parameter [73, 105, 107]. The high leverage

parameters [73, 105] are those with & norm higher than 0.5.

6.5 Results and discussion
6.5.1 Calibration, parameterization and model dynamics of full model (VO)

Model Calibration

We were able to visually calibrate the full model variant (VO) with respect to 2,4-D mineralization
over the entire experiment (Figure 4A, black curve) with reasonable uncertainty comparable
to the standard deviation of the data (Figure 4B, black dots with black error bars). The model,
however, failed to reproduce the peaks of gene expression (MRNA), especially after the second
pesticide application (Figure 4C, black curve).

SimulatedtfdA gene abundances matched well with the observed data during the rst
degradation phase (Figure 4E, black curve). However, at the end of the experiment (day
34), a clear decay of genes was shown but not captured by the simulation. In contrast, the
simulatedtfdA gene abundances stabilized, indicating underestimation of bacterial decay. The
uncertainty of the simulations was low compared to the variability of the data (Figure 4F, black
dots with black error bars). The simulated behavior of iti@A gene abundances from Figure
4E (black curve) can be understood in terms of the dynamics of the active, inactive and dead
bacterial pool (Figure 4, inset panel E). We emphasized that active bacteria did decay at the end
of the experiment, but the total DNA pool remained constant because of the slow decay rate

of inactive bacteria, which was the predominant physiological bacterial state at the end of the
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simulation.
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Figure 4:Model calibration on 2,4-D data. Time series of pesticide mineralization (AfdA,
MRNA copies (transcripts) per g of soil (C, DA gene copies per g of saoil (E, F).
Error bars show the standard deviation of the data and of the simulations (based
on MCMC ensembles, see Materials and Methods 6.4.2). The inset in panel E shows
calibrated model simulations afdA DNA, active, inactive and dead bacteria expressed
in mmol g™ (based on 95 % con dence interval of MCMC ensembles, see Materials
and Methods 6.4.2). Bold lines represent the mean value of each bacterial pool.
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Sensitivity analysis for model reduction

Table 2: Uncertainty analysis for the full model variant (VO0) on 2,4-D data.

Parameter BestFit SC IS PE MV SD
max 0.5 554.6 423.9 59.7 0.9 2.0
a 0.7 94.7 10.0 1.51¢ 0.9 0.04
Yp 0.4 58.5 28.9 3186 0.3 0.05
Nep 0.9 55.6 46.8 215 0.9 0.06
f1 8.2101 447 1.3 523.4 g9t 1.2

a 0.1 29.6 4.0 94.1 504 10.8
Kg 7.010% 139 0.0 1.110* 5.0107 2344
fr 0.02 13.0 7.0 96.4 0.01 2.1
Ny 5.6 6.6 0.5 2584 4.7 2.9
Krp 0.1 14 2.80° 53100 0.1 4.2
ac 0.8 0.6 0.1 4556 0.8 0.1
ke 2.2 0.4 1.110% 4.41¢ 05 1.5
Km 2.910° 0.2 2.0104 1.310* 2510 16.9
as 14.7 7.4104 6.710° 1.310" 89.3 17.3
a; 9.310° 2.510% 3,510 7.710 2.410° 259
Cr 1.010° 0.0 0.0 0.0 6.010* 25

kq 0.03 0.0 0.0 0.0 0.3 1.2

SC = Sensitivity coe cient, IS = Identi ability score, PE = Percentage Error, MV and SD = mean and standard

deviation of the estimation fronDREAMzs, (See Materials and Methods 6.4.2). Parameters in yellow were

candidates to be reduced.

Local and global sensitivity analysis showed many parameters to be low-leverage and poorly
identi able, and the percentage errors of the parameter ts were overall high (Table 2 and
Supporting Information, Figure S6). Parameters controlling the dynamics of the inactive and
dead bacteria poolk(, kq, &, a andas) were poorly identi able with low impact (Table 2
highlighted in yellow), suggesting elimination of these parameters and simpli cation of the

model structure. The calibrated values Gf (the pesticide concentration threshold) ranged
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from g L™ to mg ™! (Supporting Information, Figure S8F was found to impact the inactive
bacteria pool at some point of the parameter space (Supporting Information, Figure S6), but no
impact was observed when values are in the order gfiL™! (Table 2). Threshold concentrations
for activation of pesticide degrading bacteria have not yet been reported in the literature, but
estimated threshold concentration values for activationidcherichia co]iL80, 186] are in the
order of g L™, similar to typical residual pesticide concentrations in soils [57, 203]. This suggests
that reasonable values @ may be in the order of g L™, and would thus have minimal impact
on the model outputs (active, inactive and dead bacteria, pesticide concentratiolC@pd
The parameter&y andKg (which characterize the threshold for pesticide-dependent growth
(eq. 16) and pesticide-dependent gene expression (ed. 8), respectively) had minimal impact on
model dynamics (low leverage and low identi ability with a high percentage error). Despite
being relatively low-leverage and low identi able, sorption parameteks:f and ngp) were not
considered for reduction due to the importance of sorption of pesticide in soil [204]. Moreover,
these two parameters could be directly measured through sorption kinetic experiments [205 208]
(not performed in the current work). Additionally, the analysis suggests that paramatey
can be eliminated due to its low impact on model outputs. However, we determined that this
reduction results in overestimation of mineralization from dead bacteria (preliminary analysis;
data not shown). Therefore, these three parameters were not included for model reduction.
Based on these sensitivity results, we select four reduced gene-centric model variants (V1,
V2, V3 and V4) and a biomass-based model variant (V4'). In model variant V1, we eliminated
dormancy by setting the inactive bacteria pool to zero. This reduction appears to contradict
published reports that up to 60 % of bacteria are dormant in low nutrient systems [209]. This
discrepancy could be resolved by further subdividing the active population, allowing for a
'potentially active’ subpopulation [164], although we did not explore this option. In the second
model variant, we removed the dead bacteria pool (relic bacteria) by setting it to zero. Neglecting
relic bacteria in our model formulation could in ate th&dA gene abundance simulated in

soils [165, 166], and therefore, the pesticide degradation capacity of the soil (measured in terms
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of mineralized pesticide). However, this e ect was not observed in our calibration results (Figure
4A, C and E, red line for model variant V3 that exhibits the same features as model V2). In our
initial development of the third model variant V3, we removed the inactive and dead bacteria.
This, however, did not improve the sensitivity analysis results of the remaining parameters, and
the parameter&g and Ky, were still low-leverage and poorly identi able (data not shown). We
chose to set only the parametéy, to zero to keep a gene-centric model formulation. Because
of this, this model variant has gene-expression as the only pesticide-dependent process.

In the two additional model variants (V4 and V4'), we removed inactive and dead bacteria. We
also set the parametd€s to zero and kept the parametéy to consider substrate-limited growth
as the only pesticide-dependent process. Variant V4 describes a non-regulated (constitutive)
gene expression. We developed this variant to address whether this approximation could also be
a valid representation of th&dA transcript dynamics. Variant V4’ has the same model structure
as V4, but without the non-regulated gene expression, keeping only the Monod-kinetics. Further
sensitivity analysis of these two models (Supporting Information, Table S5 and S6), revealed a
low-leverage Monod parametéfy,, suggesting a further reduction to a rst-order-like model
variant. This simple model, however, could not be successfully calibrated with the given data

(not shown). Therefore, further model reduction steps were not considered.

6.5.2 Model comparison

We calibrated all model variants following the same methodology as with the full model with
the exception of V4’ that was calibrated using only pesticide mineralization Hdé gene
abundance. We evaluated the performance of the model variants based on visual ts, SSE (eq. 79)

and the information criteria AlCc (eq. 37) and BIC (eq. 38) (See Materials and Methods 6.4.2).
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Table 3: Model comparison based on the 2,4-D data.
Model FP SSE AlCc BIC

VO 18 1929 1243 140.6
V1 14 1718 101.3 1183
V2 16 189.8 114.6 131.7
V3 11 1896 96.1 111.7

V4 10 2295 103.3 118.0
FP = free parameters, AlCc = corrected Akaike information criterion, and BIC = Bayesian information criterion.

Despite the expected high uncertainty of parameter estimates (see marginal posterior
parameter distributions in Figures S8-S22 in the supplementary material), our predictions
exhibited only moderate uncertainty (error bars in Figure 4B, Figure 4D and Figure 4F). This
feature is typical of sloppy biogeochemical models [73], and in consequence allowed us to
distinguish model performance of the model variants using visual ts, SSE (eq. 79), and the
information criteria AlICc (eq. 37) and BIC (eq. 38) (See Materials and Methods). By visual
inspection ( Figure 4; visual ts for model variants V1 and V2 not shown), as well as SSE and
AlICc (Figure 3), all model variants showed similar performance compared to the full model
variant V0. A reasonable compromise among the three information criteria used (SSE, AIC, BIC)

suggests that model variant V3 is the best model.

6.5.3 Model validation

We validated the models against the MCPA data, using the parameter values calibrated on 2,4-D
(see Materials and Methods 6.4.2). We applied the validation procedure to the full model version
V0, the parsimonious model version V3 and the two biomass-based models V4 and V4'. In
addition, we compared simulated residual concentrations of pesticides in soils with all models

against typical measured values.
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Validation on MCPA data

Figure 5:Model validation on MCPA data. Times series of pesticide mineralization (AtfdA,
MRNA copies (transcripts) per g of soil (C, DA gene copies per g of soil (E, F).
Error bars show the standard deviation of the data and of the simulations (based on
MCMC ensembles, see Materials and Methods 6.4.2).

45



6 Gene-centric modeling approaches

2,4-D and MCPA are chemically very similar with slight di erences in substrate a nities [124,
210]. However, experimental measurements showed faster degradation dynamics of 2,4-D
compared to MCPA [128]. Nevertheless, we expected that the models calibrated against the
2,4-D data could be usefully validated against the MCPA degradation data. As expected, all
model variants predicted faster MCPA mineralization compared to the measurements (Figure
5A). (These time mismatches were not an artifact of the model formulation: an independent
calibration against MCPA data was successful for all measured variants, see Supporting
Information, Figure S1). Visually, the full model variant VO and variant V4’ were the best
performing models regarding mineralization along the whole experiment and closely matched
the data at the end of the rst and second degradation phase (Figure 5A, black and pink line,
respectively). Model variants V3 and V4 failed to predict MCPA mineralization, showing a strong
overestimation of mineralization at the end of the experiment (day 67) (Figure 5A, red and green
line, respectively), despite the success of variant V3 on predicting the rst degradation phase.
Our interpretation is that the overestimation of mineralization is linked to the underestimation

of biomass growth (Figure 5E, red and green line, respectively). This underestimation leads to
an increase of residual MCPA concentration in soil; therefore increasing total mineralization.

The model variants VO and V3 captured the main trend of the expresfsidgenes, including
the high peaks of gene expression of both degradation phases (Figure 5C, black and red line
respectively), with low uncertainty (Figure 5D). Model variant V4 failed in reproducing the
expressed gene data (Figure 5C, green line). This con rms that the expressifuofenes
is pesticide-regulated [78, 128], and that constitutive gene expressidfuafis not a valid
assumption for this process.

On the other hand, model variant VO was the only model able to accurately reproduce data
on tfdA genes (Figure 5E, black line) with low uncertainty of the simulations (Figure 5F). The
fact that VO was able to predidfdA genes in soil can be explained by the dynamics of the
active and inactive bacteria pools, similarly as with 2,4-D (Inset of Figure 4F). Model variants

V3, V4 and V4’ (all of which described a single bacterial subpopulation) predicted a pronounced
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decay of bacteria at the end of the rst phase. This explains these models’ predictions of a slow
bacterial recovery at the beginning of the second degradation phase, which made it impossible

for their outputs to match the data (Supporting Information, Figure S3).

Validation of simulated residual pesticide concentration

Residual pesticide in soil (total concentration at the end of the experiment) was not a measured
variable in the experimental dataset we used [128]. Therefore, we used experimental data from
previous studies to evaluate models’ performance. Short-term experiments showed that both
2,4-D and MCPA are readily degradable compounds which do not persist in soil [196 198].
Some experiments have reported no 2,4-D and MCPA residues or residues below detection limit

after 1 to 5 weeks [124, 211 214].

Table 4:Simulated 2,4-D/MCPA mean residual concentration in soil igc kg™ (total
concentration at the end of the experiment).

Pesticides
Model versions 2,4-D| MCPA
VO 05*2:3 | w002
V1 42*6:0 -
V2 01*14 -
V3 86*9:8 | 1.12*31
V4 30*4:8 | w003
V4 w0:01 w0:03

Short-Term experiments [124, 211, 213, 214] 0:02 * 0:.05
Field studies [212] 001

In comparison to literature values, all gene-centric model variants (VO, V1, V2 and V3),
including biomass-based model variant V4 overestimated the residual pesticide concentration,
especially for 2,4-D (Table 4). The models that include an inactive bacteria pool (VO and
V2) performed better, especially when simulating residual MCPA concentrations in soil. The

average total pesticide dissipation simulated by these models was up to 98%, including both
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pesticide mineralization and pesticide used for biomass formation and for production of non-
extractable residues NER [179, 215, 216] (not explicitly accounted for in our model formulations).
Model variants V1 and V3, which exclude inactive bacteria pool, overestimated residual
pesticide concentrations by more of a hundred times (for both pesticides), resulting in predicted
residual concentration that are even higher than residual concentrations reported for persistent
pesticides [203]. These results suggest that dormancy is an important feature which should be
accounted for.

The simple Monod-kinetics-based model variant V4’ simulated negligible residual
concentrations of both pesticides (Table 4), and thus outperformed the gene-centric model

variants.

6.5.4 Implications for biogeochemical modeling informed by genetic data

Our gene-centric models can be used to explore the relationship between transcription of
functional genes and process rates, o ering an advantage over traditional models. We observed
a non-linear hysteretic relationship between gene transcripts and mineralization rate (Figure 6).
Although certain valid model parametrizations lead to a harrow hysteretic behavior close to a
linear relationship (Figure 6), the non-linear hysteretic behavior in our ndings challenges the
common assumption of a simple linear relationship between functional gene transcripts and
process rates [217 219], which could also be observed in the data (see Figure 6A). In addition to
genetic data, proteomics data could be readily used. Thus, our approach provides a quantitative
framework to couple gene and enzyme dynamics with pesticide dynamics, allowing for an

estimation of reaction rates, which are di cult to measure directly.
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Figure 6:tfdA mRNA vs. rate of mineralization. Panel A shows reconstructed mineralization
rates determined as the rst derivatives of the 3/2-exp and 3/2-lin modelsin B lum
et al. 2008 [128] (with parameters as in Table 1 of that reference), and measured
tfdA mRNA after 2,4-D application. Two arbitrarily selected relationships from the
MCMC ensembles are plotted for full model version V1 (B, C) and parsimonious model
version V3 (D, E), showing hysteresis and linear relationships between these two
variables. Blue lines indicate the rst application of 2,4-D, and the red lines the second
application. Black arrows in panels A and B show the direction of the hysteretic curve.

Gene-centered models thus provide mechanistic insights, despite being more complex than
traditional approaches. This complexity poses challenges for inverse parameter identi cation
from experimental data [73, 220, 221]. Achieving a robust model parametrization is hampered
by the signi cant uncertainty in current measurements of functional genes and transcripts.
We expect that better estimates of biokinetic parameters will be achieved with highly resolved
time-series of genetic data and further advancements of molecular methods. Gene-centric
biogeochemical modeling then provides a promising toolset to improve mechanistic simulations
of biodegradation processes in soils, especially when coupled with reactive transport models in
soil, and used for scenario simulations with other competing carbon sources and cometabolic
pathways. Moreover, our approach can be transferred to other pesticides if degradation pathways

and involved functional genes are known.
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7 Modeling bioavailability limitations of atrazine degradation in

soils (Paper 2)

This chapter includes the following publication:

Luciana Chavez Rodriguez, Brian Paul Ingalls, Jana Meierdierks, Kankana Kundu, Thilo Streck
and Holger Pagel (2021). Modeling bioavailability limitations of atrazine degradation in soils.
Front. Environ. Sci. - Biogeochemical Dynamics.

with the following modi cation:

1. Numbers of gures, tables, and equations are relative to this thesis and not to the original

publication.
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7.1 Abstract

Pesticide persistence in soils is a widespread environmental concern in agro-ecosystems.
One particularly persistent pesticide is atrazine, which continues to be found in soils and
groundwater in the EU despite having been banned since 2004. A range of physical and
biological barriers, such as sorption and mass-transfer into bacterial cells, might limit atrazine
degradation in soils. These e ects have been observed in experiments and models working
with simpli ed systems. We build on that work by developing a biogeochemical model of the
degradation process. We extended existing engineered system models by including re ned
representations of mass-transfer processes across the cell membrane as well as thermodynamic
growth constraints. We estimated model parameters by calibration with data on atrazine
degradation, metabolite (hydroxyatrazine) formation, biomass, and isotope fractionation from

a set of controlled retentostat/chemostat experiments. We then produced site-speci ¢ model
predictions for arable topsoil and compared them with eld observations of residual atrazine
concentrations. We found that the model overestimated long-term atrazine biodegradation in
soils, indicating that this process is likely not limited by bioavailability or energetic constraints

of microbial growth. However, sorption-limited bioavailability could explain the long-term fate
and persistence of the main degradation metabolite hydroxyatrazine. Future studies should
seek alternative controls that drive the observed atrazine persistence in soil. This work helps to
bridge the gap between engineered and real systems, allowing us to use laboratory setups to

gain insight into real environmental systems.

7.2 Introduction

The worldwide intensi cation of agriculture is closely linked to increased use of pesticides [222].
Persistent pesticides are de ned as those that remain in soils in signi cant concentrations until
the next growing season [223]. Field monitoring campaigns have demonstrated the presence
of residual pesticides across Europe [55].

Atrazine (AT) is a herbicide in common use worldwide. AT was banned in Germany in 1991

51



7 Modeling bioavailability limitations in soils

and in the EU in 2004 [25, 224] because of its potential toxic e ects on non-target organisms [13,
14, 16, 225, 226], and on human health [21, 25]. Despite the ban, AT persists in soils and
groundwater [25, 57]: AT and its degradation metabolites (hydroxyatrazine, deethylatrazine,
deisopropylatrazine) are still found in Europe at low concentrations (about 1-gRg™) in

soils [203], and< 0.1 gL™Y) in groundwater [57]). These concentrations might still be relevant

for human and ecosystem health [25, 57, 227]. This persistence is surprising, given that studies
have con rmed (i) the frequent presence of bacterial strains able to completely degrade atrazine
(under controlled conditions) [49, 63, 135, 228]; and (ii) alternative photolytic degradation
of atrazine in soil [132, 229, 230]. The persistence of atrazine and other pesticides in the
environment demands a better understanding of degradation processes to improve long-term
monitoring and pollution mitigation strategies [98].

Pesticide degradation in the environment may be impeded by a range of physical and biological
constraints. For instance, sorption of pesticides onto soil particles limits microbial access to
pesticides, retarding degradation [58, 231, 232]. Moreover, spatial heterogeneity and separation
of microorganisms and pesticides in soil reduces biodegradation rates [233, 234]. Di usion-
limited transport across the cell membrane has been identi ed as a potential limiting step of
pesticide degradation under low concentrations, based on observations made in engineered
(chemostat and retentostat) systems [63, 228, 235 238]. Likewise, under speci ¢ conditions,
the energy produced from catabolism of some pesticides may be insu cient to support cellular
energy needs, leading to pesticide persistence despite microbial accessibility [64]. To date, the
e ect of these barriers has only been explored in the lab under controlled conditions [62, 63, 93,
228] or in simulation studies based on simpli ed systems [232, 238 240].

In this work, we apply biogeochemical modeling to investigate potential factors of long-term
pesticide persistence in soils. We extended existing chemostat/retentostat models [239] by
the (i) introduction of thermodynamic growth constraints [241, 242] (the alternative model
formulation uses a simple Monod kinetics growth [239]), (ii) a re ned formulation of mass-

transfer processes across cell membranes, and (iii) calibration against isotope fractionation
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data. We then extended the model by including equilibrium sorption and leaching in soils, and
ran site-speci c predictions of pesticide degradation in soil over 30 years. We compare our
model predictions with residual atrazine concentration of topsoils at two study sites (arable
soil) in Germany at which no atrazine has been applied for over 30 years. Albeit the long-term
predictions show considerable discrepancies with the eld data, our analysis provides insight

into the relative contributions of model features toward long-term atrazine persistence in soils.

7.3 Material and Methods
7.3.1 Model Description

Our model (Figure 7) describes a single bacterial populat{ty) that uses atrazineAT) as its

sole carbon (C) and energy source. The core model (green background), describes behavior
in engineered systems (chemostat/retentostat); it incorporates intracellular and extracellular
compartments, each of which contain concentrations of both AT and hydroxyatrazié)(
(Hydroxyatrazine is produced by dechlorination of the side chain of AT. This is the rst metabolic
step of AT degradation.) We extended the model to soil (blue background) by incorporating

equilibrium sorption and leaching for each component in the extracellular compartment.
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Figure 7:Model structure for engineered (chemostat/retentostat) systems (green) and extension
for soil (blue). The model explicitly accounts for light and heavy h isotopologues
(*°C3C) of AT due to enzymatic transformation in the intracellulari and
extracellular e compartments, as well as in equilibrium sorption in soi; S

7.3.2 Process Formulations
Atrazine and hydroxyatrazine degradation

The model describes pools of atrazine (ATY[L™] and hydroxyatrazine (HY) [g L] in the
intracellular and extracellular compartment#T;/HY; and AT/H Ye, respectively. To take
advantage of available data on isotope fractionation of AT, we split the AT pools into ligft {
and heavy AT") isotopologueséC 13C) in each compartment.

We modelled degradation of both isotopologues of AT with Michaelis-Menten kinetics,
allowing for competition for binding sites. For the light isotopologue:

rdegradation= KIGT +ATiI +ATih (39)

wherekar [d7}] is the maximum degradation rate of AT andh” [ gL™] is the half-saturation
concentration.

The slightly slower degradation of the heavy isotopologue is captured by scaling the maximal
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degradation rate by / 1as follows:

rdegradation_ KICI\T +ATi| +ATih (40)

We considered two separate formulations of HY degradation. Model variant M employs

standard Monod kinetics:

, Kny HY
variantM: rty oo =0 1 41
degradation KMY"'HYi ( )

where kyy [d71] is the maximum degradation rate anid{!Y [ gL™] is the half-saturation
concentration for HY.

Because metabolism of pesticide at low concentrations might not be energetically favorable
for bacterial growth [64], we considered a second model variant in which degradation of HY is

described by transition state theory [241, 242], using HY as the carbon and energy source.

Y

X

H
M
HY,

-

*

D
o0no

Variant T:  rfbyradation™ KHy (42)

where agairkyy [d™}] is the maximum degradation rate, but no{! Y [ gL™!] is a reference
concentration for growth.

These two variants (Monod (M), Thermodynamic (T)) show similar behaviour at high HY
concentrations (such as in chemostat/retentostat systems), but di er considerably at low HY

concentrations (such as in soil).

Mass-transfer

We account for di usive transport of AT and HY across the cell membrane [62, 239] by writing:

rAT AT * AT/ (43)

masétransfer — le

55



7 Modeling bioavailability limitations in soils

h
ré-la-lsgtransfer: le -ATQ * ATih/ (44)

rm;sgtransferz le 'HYe* HYi/ (45)

wherel indicates the light isotopologue, andthe heavy isotopologue, ang [Ld™ g™ is

the mass-transfer rate coe cient assumed to be the same for both compounds.

Maintenance

We incorporate metabolic maintenance requirements following the Pirt model [239, 243]:

'maintenance= M Y Cg (46)

wherem [d7}] is the maintenance coe cient.

Input and washout of AT, HY, biomass

For engineered systems (chemostat/rententostat), we include a constant input of AT as:

Al =T AT/ (47)
h
Mput = D AT" (48)

whererp [d7Y] is the dilution rate. Additionally, we de ne washout terms for biomass, and AT

and HY:

lcelFwashout= D Cs (49)
AT!
rwaZhout: 'p ATcla (50)
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ATh _
"washout— D AT(? (51)
rx;;hout: o HYe (52)

where []is 1 for a chemostat (from which biomass is washed out) and O for a retentostat
system (where biomass is retained).

The core model is described by the following system of ordinary di erential equations (ODE):

dGs

at = rEeEradation Y * I'maintenancé’ 'celFwashout (53)
AT A feell, ot Tea, AT] dGs (54)

dt — 'mas$transfer Vu degradation Vu CB dt
dATY rAT feen AT foetl , A—Tih 4% (55)

dt — 'masé$transfer Vu degradation Vu CB dt
dATI ATI ATI ATl

dte = input * Ifv\/:,\eshout* Imasgtransfer CB (56)
dATg ATM o AT! ATh

d'[e = rinput * rwashout* Imasgtransfer CB (57)
dHY HY AT! ATh HY feen , HY dG

dt = Tmasstransfer™ rdegradation"' rdegradation* I’degraldatimA vu * Cs W (58)
dHYe HY HYe

dt = *rmasétransfer CB* I'washout (59)

wherefee [ gcelfY] is a conversion factor from cells to carbon, aig [L] is the volume of a
single bacterium, settd 10° [63] (full details in the Supplementary Section 11.2.2). The last
terms in eqgs. 54, 55 and 58 account for changes in inner cell concentrations as the total bacterial

volume changes due to growth and decay.

Extension for soil

As shown in Figure 7, we extend the core model by including equilibrium sorption and transport.

We patrtition the extracellular concentrations of both AT isotopologues, as well as HY, into
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solution phase and sorbed phase concentrations:
c'= ct+ c® (60)

whereCT [ g L™]is the total extracellular concentration (AT and HYG- [ g L™ is the solution
phase concentrationAT,, AT{, HYe), C3[ gkg™] is the sorbed phase concentratioAT}.q
ATQ;S HYe:9, []isthe water content in soils, and [kg L™!] is the soil bulk density.

We relateCt and CS by the Freundlich isotherm:
CS=Kg .CH"; (61)

implemented in the model via the retardation factor:

S

— dC — L;.ne*1/
: + - + . -HF
RF=1 L 1 Ke ng .C+/ (62)

whereKg (Kar andKpy for AT and HY respectively) [g1 ™" kg™ L] is the Freundlich coe cient
andng (nat andngy for AT and HY respectively) [-] is the Freundlich exponent.

Additionally, Arthrobacter auresceri®C1 and other AT degraders utilize other organic
substances as C and energy source. We, therefore, assume that a minimum AT degrader

biomass is maintained in soil [244]):

Mmaintenance= M Y .Cg* M/ (63)

where M [ g L™1] is the minimum bacterial biomass in soil.

Transport is restricted to convective ow:

AT] _ VW
leaching™ =~

AT. (64)
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AT _ Vv h

MNeaching™ — ATg (65)
HY _V

rIeachmg —~ H Ye (66)

wherev, [d7}] is the water ow per soil volume in the plough layer.
We did not include abiotic degradation of AT [132, 229, 230], which has been observed to
have a relatively small contribution compared to biotic degradation [237].

The full model for soil is described by the following system of ODEs

dG HY;
dt = Tdegradation Y * I'maintenance (67)
dAT!  _ ap feenr, AT feen, AT dGs 63
dt = Tmasstransfer Tu rdegradation Tu a dt (68)
dA-I—ih — L ATh feell , At feen , ATih dG 69
dt = Tmasstransfer Tu rdegradation Tu @ dt (69)
| ATI
dATé _ rnﬁ-la-lssuansfer Cg + rIeachmg
dt  ~ RF (70)
ATD AT]
dATeh _ rmassﬁtransfer G+ rIeachlng
dt RF (71)
dHY _ 4y AT ATh feen , HYi an
dt - rmasgtransfer"'rdegradauon rdegradatlon degradatloA * Cs (72)
HYe
dHYe _ rmasgtransfer Cg + I’Ieaching
dt RF (73)

7.3.3 Model calibration

Engineered systems: experimental details

We calibrated two model variants (M: employing Monod-kinetics for HY degradation; T:
employing thermodynamic HY biodegradation constraints) against published data from
chemostat and retentostat experiments (with two replicates per experiment). Atrazine was

provided as the sole C and energy source for the bacterial sthathrobacter auresce€1 [63,

59



7 Modeling bioavailability limitations in soils

228]. Both engineered systems were fed with an AT solutionr®pL™1), with dilution rates,

for the chemostat, of 0.023, 0.032, 0.048, 0.056, @-Ha&td, for the retentostat, of 0.aF2.

For each system at each dilution rate, concentrations of A 7], HY [ gL™], and living
biomass gell 1] were reported at steady-state (details in the Supplementary Section 11.2.3).
Additionally, the isotope fractionation coe cient () was measured at the outlet of the rst

dilution rate of the chemostat (-5.4, only at the lowest dilution rate), and retentostat (-0.4%

Calibration strategy

Our initial intent was to estimate a single set of model parameters for both engineered systems.
This was not possible, however, most likely due to di erences in bacterial physiology [238, 245].
In our next attempt, we introduced a switch function [169, 170], allowing for environmental-
speci ¢ transition between the two conditions (chemostat and retenostat) (Supplementary
Section 11.2.10). This model, despite its high complexity and many degrees of freedom, was
still unable to simulate both engineered systems together (Supplementary Section 11.2.10).
Therefore, we exhaustively investigated (using ts for both systems and sensitivity analysis)
subsets of parameters that could be kept xed at the chemostat t while still capturing bacterial
behaviour in the retentostat in a two-step calibration process, as follows.

STEP 1 - pre-calibration stepWe started by using the ve steady-states (one with each

dilution rate) measured in the chemostat, and the isotope fractionation of the lowest dilution
rate (16 data points). We considered the parameter ranges shown in Table 5. The nominal values

were taken from literature (Table 5). Ranges were selected as to capture parameter variation.
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Table 5: Model Parameters

Param Description Units Nominal Minimum  Maximum
Kar Maximum degradation rate of AT d? 0:10.a/ 1 10% 1 10

KT Half saturation concentration for AT degradation g L™ 237.b/ 110° 1 1¢

Ky Maximum degradation rate of HY d? 0:10.a/ 110° 300

KiY Reference/half-saturation concentration gL? 0:05.c/ 1 10* 1 10

Y Growth yield * 0:04.b/ Qo1 015

m Maintenance coe cient d? 0:10.b/ 1104 1 1¢

feell Conversion factor cell to C gceli® 26 10%8.d/ 4 10° 5 107

le Mass-transfer rate coe cient Ld? g 0:003.b/ 1 10* 1 1¢

Highlighted parameters were estimated for the retentostat system. References: (a) [246], (b) [239], (c) [241], (d) [183].

We used the global optimization algorithm Simulated Annealing [simannealbnd] of MATLAB

to minimize the weighted sum of squared errors (SSE) :

SSE En Yobs" 2}’isim/2 (74)
i=1 i
wherey!, -andyl;, are the mean values per observation type and dilution rate, and the
corresponding model output for thé" data point fromn total data points. ?is the recalculated
standard deviation per observation type and dilution rate (details are given in Supplementary
Section 11.2.3, Table S7).
We then calibrated the retentostat system at the steady-state (4 data points) using Simulated

Annealing again. An acceptable description could be reached by xing four parameters and

allowing the other four to varykar, K1Y, fcen, andre (highlighted yellow in Table 5). Details

are given in the Discussion.
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The model outputs corresponding to the measurements were:

AT Concentration] gL™] = AT.+AT/ (75)
HY Concentration] gL™?] = HYe (76)
BiomasgcellL] = Ce (77)
feen
Isotope fractionation was determined as:
"= inlet™ outlet (78)

where inet is the isotope ratio of the heavy and the light isotopologues of AT at the inlet, given

as-29 [62, 228], andytet Was determined as

CATY g
AT!
outlet = tt?e * 12 1000 (79)
p q

whereRis the referencé3C *?Cisotopoe ratio of Vienna Pee Dee Belemnite [147]. The parameter
(eq. 40) can be directly derived from the enzymatic fractionation coe cient of AT=(-5.4 )

measured for a particular bacterial strain [228, 239]:

"= %1 (80)

STEP 2 - Full calibratiorzor both systems, a full calibration step, including parameter and

output uncertainty were determined with the Markov Chain Monte Carlo (MCMC) algorithm
of the DREAMMATLAB toolbox [117]. We tted the 8 chemostat system parameters and the 4
di ering retentostat system parameters simultaneously (marked in yellow in Table 5) in one
optimization run. We chose a at and uninformative prior distribution for the MCMC. The

starting values of the MCMC chains were drawn from a normal distribution of the parameters

62



7 Modeling bioavailability limitations in soils

in log-space (mean value equal to the best t of the Simulated Annealing (step 1), an arbitrary
variance of 1, and zero covariance between the parameters). Minimum and maximum parameter
values were taken from Table 5, and the option re ect was selected as a method for handling
parameter boundaries. THe-diagnostic [192] lower than 1.2 [117] was used as convergence
diagnostics. We used a Gaussian likelihood considering heteroscedastic measurement errors as

implemented inDREAM

2
1

n n i %yl
L.xé(/z*E log.2 /* E Mog. i/'* OM

(81)

NI

7.3.4 Soil measurements
Soil sampling

Topsoil was sampled from the plough layer (0-8@) of two agricultural elds (Poltringen and

Tail ngen) in the vicinity of T bingen, Germany. The soils were classifed as Vertic Cambisol
on gypsum keuper (Poltringen), and eroded Luvisol (siltic) on loess (Tail ngen). To obtain
representative samples, 20 individual samples were drilled by hand down tor8@epth and
combined in the eld to one composite sample. In the lab, samples were thoroughly mixed
(using a sample-splitter; Retsch GmbH, Germany), freeze-dried, and ground before further

processing (exhaustive extraction and sorption test).

Exhaustive soil extraction

Pesticides (atrazine and hydroxyatrazine) were extracted from soil with an accelerated Solvent
Extractor (ASE 300 Dionex, Thermo Scienti ¢) at 8and 150 bar, using acetone as the main

solvent (parameters in Table 6). To ensure a homogeneous ow through the extraction cells,
soil samples were mixed with 80% (mass) clean quartz sand before extraction. To control for
potential losses of pesticide during the processing (enrichment and clean-up) of the extracts, 10
ng of Isoproturon-D6 were added to each extract. Subsequently, the extracts were reduced with

a rotational evaporator until acetone was evaporated completely. The residual aqueous sample
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was ltered through 0.25 m PTFE syringe lters (Agilent, Waldbronn Germany) and 10% (Vol.)
of MeOH was added before the measurement at the liquid chromatography mass spectrometry
(HPLC-MS/MS). The target compounds were separated with an Agilent 1290 In nity HPLC
(Agilent, Waldbronn, Germany) using a reversed phase column (Agilent Poroshell 12 EC-C18, 2.7
m, 2.1 x 100nm). The quanti cation of the target compounds was done based on an external
calibration using 10 standards with concentrations between 0.02 andglG*. As control for a
potential shift during the measurement, every 15 samples, one external standard was monitored,
with a concentration of 2.5 g L™ (Measurements are shown in Supplementary Section 11.2.4,

Table S7)

Table 6: Details of accelerated solvent extraction method

Parameter Settings
Solvent Acetone:MilliQ(9:1)
Temperature [C] 80
Pressure [psi] 1500
Heat [min] 5
Static time [min] 10
Flush vol. [%)] 70
Purge [s] 100
Static cycles 2

Sorption test

Six initial concentrations of atrazine (0.06, 0.4, 4, 36, 420 and 2960) were prepared from a
stock solution of atrazine in MilliQ water (using a pure, analytical standard from Sigma Aldrich).
The solutions were spiked witiCaCh (0.5g L™1) andNaNs (0.25g L) to provide a stable ionic
strength and minimize bacterial activity. The sorption test was conducted in triplicates in 50
mL glass vials (with te on-lined caps), containing Xpof soil and 30mL of spiking solution.
The vials were kept on a horizontal shaker (150 rpm) for 10 days in the dark and &t 2@

separate soil solids from water, the vials were kept standing for three days until all ne particles
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were settled. A small test with Itering the aqueous phase had con rmed this approach as valid.
Subsequently, the aqueous phase was transferred into clean vials using glass pipettes.

After separating soil solids from water, 2@ of atrazine-D6 was added as an internal standard
to the aqueous phase. Processing of the aqueous samples varied for the di erent concentrations:
Samples with lowest concentrations were enriched via solid phase extraction (Waters OASIS
HLB). Samples with expected concentrations between 0.2 andj18" were Itered through
0.25 m PTFE syringe lters and 2% (Vol.) of acetonitrile was added. For concentrations above
10 gL7, the samples were Itered and then diluted with MilliQ:acetronitrile (98:2) before
LC-MS/MS measurements. As quality control, blanks with ultra-pure water, leaching blanks
with ultrapure-water and soil, and controls with spiking solution without soil were analysed in
triplicates con rming no relevant loss of atrazine or contamination (Supplementary Section
11.2.4, Table S8).

We determined the Freundlich sorption parametekaf andnat) for atrazine at both sites
by regressing the sorbed concentration on the solution concentration (eqg. 61, and 62). We used
the Nonlinear regression function [nlin t] of Matlab (Supplementary Section 11.2.4, Figure S30
and Table S9). The sorption coe cient of hydroxyatrazinkyy) was calculated by dividing the
normalized sorption coe cient of atraziné3; (sorption coe cient Kar divided by the water
solubility of atrazineSar) by the water solubility of hydroxyatrazine}yy) at the power ofnar
(eq. 82) [247, 248]. The sorption exponent for hydroxyatrazine was assumed to be equal to
atrazine because the Freundlich exponent is rather soil- than compound- speci c:
_ Kar

= g (82)

Khy

7.3.5 Soil predictions

We ran simulations in soils using both sets of calibrated parameters (chemostat and retentostat)
for four di erent model con gurations: i) with Monod-kinetics and without leaching (Variant

M-NL), ii) with thermodynamic growth constraint and without leaching (Variant T-NL), iii) with
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Monod-kinetics and leaching (Variant M-L), iv) with thermodynamic growth constraint and
leaching (Variant T-L). We xed the equilibrium sorption parameteis=(andng) to the means

of sorption parameters at the sites Poltringen and Tail ngen (Supplementary Section 11.2.4,
Table S9). We xed the minimum bacterial biomass in ddilaccording to Klier et al. [244]. We
derived the water ow /) from the mean daily water ux of both sites (0.56m o) divided

by the ploughing depth of 30 cm. The values of the soil parameters are shown in Table 7:

Table 7: Soil Parameters

Param Description Units Value
Kar Sorption coe cient for AT glmakglLnar 32

NAT Sorption exponent for AT * 0:85
Khy Sorption coe cient for HY glmkgtL™ 174
NHY Sorption exponent for HY * 0:85

Vy Water ow per soil volume in the plough layer d? 0:00188
M Minimum bacterial biomass per volume of soil solution g L™ 0:03

To compare with the eld monitoring data from the sites Poltringen and Tail ngen, we ran
simulations with all four variants of the soil model, assuming an initial application of 1,000

gkg™ [249, 250] and predicting residual concentrations after 30 years.

7.3.6 Global sensitivity analysis

We determined the Morris and Sobol indices [103, 106, 107, 202] for the two core model variants
(M and T), using the SAFE toolbox of MATLAB [202, 251]. We calculated the mean of the
elementary e ects () and the standard deviation of the elementary e ects) for the Morris
Method, as well as main and total e ects for Sobol indices with a total of 15,000 sample inputs
in both cases.

We sampled parameters from a uniform distribution taken from the posterior distribution of
the tted parameters against the chemostat and retentostat data combined (Table 8 from the

Results section 7.4). We used a latin hypercube sampling strategy [73]. Additionally for the
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Morris Method, we calculated thi norm (1, =t <2+ 2) of each parameter [73, 105, 107] and
considered parameters with-norm higher than 0.5 as high leverage.

We selected the following outputs: steady state biomass, AT, and HY (extracellular and
intracellular), and isotope fractionatioh (eq. 78). We ran the model for 2@o guarantee

steady-state in the simulations.

7.3.7 Local sensitivity analysis

We performed a local parametric sensitivity analysis [199, 200] for the four soil model variants
as described above, based on the best t against the chemostat and retentostat observations.
The target outputs were the residual concentration of AT and HY after 30 years. We addressed

all kinetics (Table 5) and soil parameters (Table 7), as well as the initial AT application.

7.4 Results
7.4.1 Calibration to chemostat and retentostat data

The two core model variants behave equally in engineered environments, and so we present
the results only for Variant T. (Results corresponding to Variant M are presented in the
Supplementary Section 11.2.6, Figures S32 and S33, and Table S10). Following a two-step
approach, we calibrated the 8 chemostat system parameters and the 4 di ering retentostat

system parameters simultaneously.

Concentrations:

Our simulations were in good agreement with observed data for the chemostat (Figure 8 A-C).
After the partial re-calibration, we found acceptable agreement for the retentostat system, but
with a slightly higher model output uncertainty for the biomass (this was not unexpected, given

the relative lack of data for calibration).
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Fractionation:

Simulations showed agreement with the observed isotope fractionation for both systems, with
slightly higher uncertainty for the retenostat (Figure 8D). Isotope fractionation of AT occurs
when enzymatic transformation is the rate-limiting step. In this case, the enzymatic fractionation
coe cient of AT (") lies close to -5.4 (chemostat). At low AT concentrations, the mass transfer
across the cell membrane becomes rate-limiting, and no isotope fractionation is obséreéd (

just -0.45 ; retentostat) [63, 228, 239].

Figure 8:Simulations (boxplots) of model variant T (thermodynamic growth constraints) and
measured data (blank diamonds + estimated standard deviattor§). Steady-state
concentrations for the chemostat ( ve dilution rates: C1-C5: 0.023, 0.032, 0.048,
0.056, 0.06B7L, respectively) and the retentostat (dilution rate: R: 0.02¢). The
middle line in the boxplot is the median of the ensemble outputs from the MCMC
simulation ensemble (see M&M 7.4); boxes represent 25% and 75% percentiles; whiskers
corresponds to +/- 1.5 x IQR (interquartile rang®). Enrichment factors"() were
reported only for the lowest dilution rate of the chemostat (C1) and the retentostat
(R), but simulated for C2-C5.
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Parameter estimates and uncertainty:

Kinetic parameters related to AT and HY degradation (chemostat, K4, kny, KV,
retentostat: kar, K{jY) appear to be well-informed by the data, showing relatively well-
constrained posterior distributions (Figure 9 A, B, C, D, 1, J), low standard deviations (Table
8), and considerable impact on model outputs according to the Sobol analyses (esplegially
andK{}", Supplementary Figure S35). The maintenance paranmeteas interestingly well
constrained by the chemostat data (Figure 9 E, Table 8); the global sensitivity analysis con rmed
this parameter to be low leverage (Supplementary Figure S33 and S34). The mass-transfer rate
parametemre was not well-constrained for the chemostat data (Figure 9 H), but tted relatively
well to the retentostat data (Figure 9 L), especially with the model variant M (Section 11.2.6,
Figures S33). This parameter showed a considerable impact on model outputs (Supplementary
Figure S34 and S35). The yield paramé&temd conversion parametdge were highly uncertain

and not well-constrained for either system, probably due to the high correlation with other
parameters like kinetic parametekat andkyy (Supplementary Tables S11 and S12 for model

variant M).

Figure 9:Posterior distributions for calibrations with chemostat (8 parameters) and retentostat
(4 parameters) data. All parameters are expressed in log scale with the exception of
the growth yield.
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Comparison of parameter estimates between the chemostat and retentostat:

Comparing the mean and MAP calibrated parameter values in Table 8, we see that the per-cell
AT degradation rateKat) is estimated to be higher for cells living in the low nutrient retentostat
system. Conjectured physiological adaptations [238] in the retentostat environment may be
responsible for the di erence in the estimated valuefgf| compared to the chemostat, re ecting
changes in cell volume. However, this estimate is highly uncertain and highly correlated to
other parameters’ values. Physiological adaptations might also be responsible for a reduced
value of parameteK!!Y in the retentostat system, possibly re ecting a change in nutrient
demand. The estimate of was higher in the chemostat than in the retentostat, indicating

a change in membrane properties leading to strong mass transfer limitations across the cell
membrane. The estimates of the parametkxs, KMY andr using model variant M show the
same tendencies, but exhibit stronger changes (increase/decrease) from chemostat to retentostat
(Supplementary Section 11.2.6, Table S10). The main di erence is in parafggtewhich

shows a clear reduction in the retentostat, strongly supporting the ndings of Kundu et al. [238].

7.4.2 Predictions of atrazine and hydroxyatrazine fate in soils and comparison

against field data

We simulated the fate of AT and HY in soil for 30 years, assuming a single initial AT input
of 1,000 gkg™ [249, 250]. For this, we used the full posterior parameter estimates from the
chemostat and retentostat systems for four model variants (Figure 10). All model variants
predicted very low residual AT concentrations, considerably underestimating the observed
concentrations of 0.3 and 0.6) kg™ in the top soil of both eld sites (Poltringen and Tai ingen
respectively) (Figure 10 A, B).

In contrast, predictions of residual HY mainly overestimated the observed HY concentration
at both study sites (around 2g kg™ in both sites) (Figure 10 C, D). Predictions using retentostat
tted parameters in combination with thermodynamically constrained growth and leaching

(Figure 10 D) predicted long term persistence of HY, with mean values aroundy&§™.
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However, model variants with Monod kinetics (M-NL(R) and M-L(R)) performed better and
predicted residual HY concentrations much closer to the measurements (9 angliff*, Figure
10 D).

As expected, simulations of this simple model over 30 years are highly uncertain. Based
on our local sensitivity analysis (Supplementary Section 11.2.9, Table S13 and S14), the
sorption exponent of both chemicals{r andnyy) showed the highest impact on the residual
concentrations of AT and HY after 30 years, revealing a strong dependency on sorption
characteristics of the soils. Surprisingly, the initial application of AT only impacted the residual
concentration of AT in model variants incorporating thermodynamic growth constraints. Water
ow (vy) and minimum bacterial biomas$A) had low impact on the residual concentrations,
despite their role to improve model predictions (our best model predictions include leaching;
recall that parameteM accounts for alternative carbon sources for soil bacterial biomass). As
to be expected, the kinetic parameters, in contrast to the sorption parameters, had a negligible

impact on the target outputs.
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Figure 10Simulated residual concentrations of atrazine AT (A,B) and hydroxyatrazine HY (C,D)
in topsoils (0-30 cm), and observations (grey background) in topsoils of two eld
sites Poltringen (P) and Tai ngen (T) after 30 years. (C) represent simulations using
chemostat tted parameters, and (R) simulations using retentostat tted parameters.
The middle line of boxplots is the median of the ensemble outputs from the MCMC
simulation ensemble (see M&M 7.4); boxes represent 25% and 75% percentiles;
whiskers corresponds to +/- 1.5 x IQR (interquartile range).

7.5 Discussion
7.5.1 Bacterial adaption to low nutrient availability a ects model parameterization

Due to the apparent similarities between the chemostat and retentostat systems, our initial
intent was to achieve a joint t for both systems. In particular, by including a exible formulation

of the mass-transfer rate, as well as a thermodynamically constrained growth rate instead of a
Monod formulation, we aimed to represent systems with or without mass-transfer limitations
across the cell membrane by one model. However, we found that goal unattainable. Recent
publications [238, 245] show evidence of a phenotypic di erentiation of a single population
into separate growing and non-growing (i.e. energy used only for maintenance) bacterial

subpopulations [238]. Thus, we focused on the key parameters that have to be re-calibrated
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between the two systems using two model variants that exhibit equivalent behavior over the
range of inputs in the engineered systems (Table 8).

After tting model parameters to the chemostat data, we systematically tested which
parameters had to be re-calibrated to capture the retentostat behavior. We were guided by
sensitivity analyses, as well as our understanding of the role of the parameters in our model.
We xed the maximum degradation rate of H¥v), the growth yield ), the half-saturation
concentration for AT degradatior({;") and the maintenance parameten) because of their low
impact on model output (Supplementary Information, Figure S33 and S34). Similar sensitivities
were previously reported in the literature [239]. Summing up, the parameters that had to be
re-calibrated to capture the retentostat behavior akar, K,\*A'Y, fcen, andre. We justify the
requirement of these needed adjustments in the following.

The parameter&ar (maximum degradation rate of AT), ar} ¥ (reference/half-saturation
concentration) represent physiological features that can be expected to change under starvation
conditions [238, 252]. Relative to the chemostat conditions, in the low-HY retentostat
environment, we estimate a higher valueslofr and lower values oK{]Y (Table 8), indicating
faster AT transformation to HY, and physiological adaptation of microorganisms to use of
HY, respectively. While the tted value dfat was about twice the value dfyy (maximum
degradation rate coe cient of HY) in the retentostat, both parametekaf{ andky yv) were similar
in the chemostats (Table 8). This di erence in the parameterization of both systems shows that
the physiological adaption of microorganisms to low concentrations a ects the regulation of
the AT degradation reaction network such that HY transformation becomes rate-limiting for
microbial growth.

We found that re-calibration of the parametdge is an e cient way to capture specic
bacterial di erentiation for low nutrient systems [63]. The parametéy is a scaling factor
used to convert cells to C [183] and might suggest morphological changes (shape and volume)
observed inArthrobacter auresceis cope with stressful starvation conditions [136, 252]. Due

to the high uncertainty in parameter estimation, more experiments are needed to identify the
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underlying mechanism.

Changes in the value af, (mass-transfer rate coe cient) between chemostat and retentostat
system could re ect morphological/physiological changes in the cell membrane (Table 8). The
relatively lower value ofr¢ in the retentostat suggests a strong mass-transfer limitation across

the cell membrane in that case.

7.5.2 Pesticide persistence in soll

The main objective of our work was to accurately represent Atrazine (AT) degradation in
soils, and especially to capture the long-term persistence of AT and its main metabolite
Hydroxyatrazine (HY).

Despite the related uncertainty for long-term predictions, persistence of HY even after
30 years was consistently predicted by model variant M-L calibrated with retentostat data
(Figure 10 D). In general, retentostat concentrations are closer to the soil environement, so
that more accurate predictions are to be expected (biomass retention, low nutrient levels).
Additionally, incorporation of leaching gave a better representation of the pesticide losses over
time. Simulation with a simple model incorporating only leaching over the 30 years leads to a
residual concentration of AT of about 23 kg™. This value is close to the measured residual
concentrations indicating that only low AT degradation might have occurred at the eld sites
(Figure 10). Standard Monod model variants predicted HY concentrations after 30 years better
than thermodynamic models. Therefore, energetic constraints of microbial growth likely do not
limit HY degradation in soils. In contrast, all model con gurations predicted a nearly complete
consumption of AT after 30 years, a behavior not observed in eld surveys [25, 57], including
the eld measurements of this study (Figure 10 A).

A range of biological and physical processes in soil have been hypothesized as potential
mechanisms of pesticide persistence in real systems. These include physicochemical control
mechanisms limiting bioavailability, such as chemisorption onto humic substances [59],

physical stabilization in soil microaggregates [253], or the spatial encounter of substrates
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and degraders [60]. Including these additional mechanisms by applying better sorption
and stabilization model formulations [153, 254 258] and spatially resolved modeling
approaches [259 262] might further improve predicting the persistence of AT and other
pesticides in soil. Our study investigated to what extent mass-transfer limitations and
bioenergetic constraints can explain the long-term fate of atrazine and its major metabolite
hydroxyatrazine in soils. We found evidence against the hypothesis that passive di usion across
the cell membrane of bacterial degraders limits atrazine degradation in the long term. Atrazine
is not degraded to HY for the energy gain by microorganisms and our results suggest that
sorption-limited bioavailabilty and not energetic growth constraints control the persistence
of hydroxyatrazine. Hence, standard Monod kinetics for bacterial growth can predict the
long-term fate of organic chemicals if soil microorganisms directly utilize them as an energy
source. Further research should prioritize the analysis of energetic costs of biogeochemical

transformations without a direct microbial energy gain (atrazine dechlorination).
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8 Temperature and soil moisture change microbial allocation of

pesticide-derived carbon (Paper 3)

This chapter includes the following publication submitted as:
Johannes Wirsching, Luciana Chavez Rodriguez, Franziska Ditterich, Holger Pagel, Rushan
He, Christian Zwiener, Marie Uksa, Ellen Kandeler, Christian Poll (2021). Temperature and soil

moisture change microbial allocation of pesticide-derived carbon. Environmental Science &

Technology.

with the following modi cation:

1. Numbers of gures, tables, and equations are relative to this thesis and not to the original

publication.
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8.1 Abstract

The in uence of temperature and soil moisture on the mineralization of pesticides has been
studied extensively, indicating, in most cases, longer half-live tini2$s() in soils with lower
temperature and moisture. However, how the underlying metabolic processes of specic
degrader microorganisms change under altered environmental conditions (temperature and
soil moisture) is yet unknown. This study aimed to link changes in carbon (C) use e ciency
(CUB under optimal (20C, pF 1.8) and limiting conditions (10, pF 3.5) to the activities
(tfdA mRNA) and abundancef@A DNA) of pesticide degraders duringC-labeled 2-methyl-
4-chlorophenoxyacetic acid (MCPA) degradation. We performed a laboratory incubation
experiment at two MCPA concentrations (1 and 8@ kg™) and used a mechanistic gene-
based biodegradation model to support data interpretation. After four weeks, mineralization
reached almost 70% under optimal conditions but less than 25% under limiting conditions.
EstimatedC U Eand measuredfdA genes suggest a metabolism that favors anabolic processes
under limiting conditions and reallocation of MCPA-C from growth to tolerance mechanisms.
Our work suggests that, at low initial concentrations, the derivation@Tsg values should not

be based on mineralization kinetics alone, since they fail to account for the contribution of more

e cient carbon utilization, leading to overestimation of the residence time.

8.2 Introduction

Over 80% of 317 topsoils tested in the European Union contained pesticide residues that,
in some cases, exceeded predicted environmental concentrations [55]. The persistence of
pesticides in soil depends, amongst other processes, on its biodegradation under varying
environmental conditions. Degradation rates are often determined from mineralizatioi@f
labeled pesticides [211, 263 265]. However, the problem with assessing pesticide persistence
based on“C mineralization is that it neglects shifts in microbial C-allocation depending on
temperature and soil water content, which may result in an overestimation of the half-life

(DTs0).
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Carbon use e ciency (CUE) describes microbial C-allocation into eitkD, respiration
or microbial biomass. Generally, CUE increases with declining temperature, indicating an
increase in relative allocation of assimilated C to growth [266]. Given this understanding, and
despite information in the literature that a temperature increase ofd@an accelerate pesticide
mineralization by a factor of almost 2 [211, 267 269], lower temperatures might not always
lead to signi cantly decreased degradation; they may instead indicate a C redistribution within
the microbial cell where les€0; is emitted, as more of it is used to build additional living
biomass [266].

Muskus et al. [270] found that a temperature drop from €0to 10C resulted in less
mineralization of labeled®C'°N-glyphosate, but promoted the formation 6#C non-extractable
residues (NER; proteins + other remaining biomass residues (bioNER) + sorbed and sequestered
starting compounds (xenoNER)). However, if BIONERs are determined at the end of an
experiment, after the death of the microorganisms, information on C uptake dynamics during
pesticide turnover is lost. In such a case, uptake of pesticide-derived C is only considered as
an additional C reservoir and not as a driver of decomposition. The dynamics of CUE, i.e.,
the proportion of the substrate that, over time, immediately goes into the microbial biomass
in relation to the C lost a0, [271], could be an important addition to the conventional
mineralization-based approach and provide a more accurate assessment of pesticide degradation
at di erent temperatures.

Soil moisture content is one of the most important factors regulating biological activities in
soils [264] and serves as a solubilizer for the movement and distribution of pesticides [272].
According to Pinheiro et al. [273], below the centimeter scale, the fate of pesticides in soils
depends on the spatial distribution of pesticide and degrader microorganisms. In unsaturated
soils, where the contact between pesticide and microorganisms is established only by di usion
or mass ow [274] due to the heterogeneous soil matrix [275], molecular di usion represents
the dominant mode of transport at the smallest spatial scale. Furthermore, the di usion of

dissolved substances, e.g., pesticides, is limited by the proportion of water- lled pores [276]
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and tortuosity; determination of water content makes it possible to compare microbial reaction
rates between di usion- and non-di usion-limited systems [264].

Most of the relevant literature reports that increasing water content, within a soil water
potential range of -1.5 to -0.015 MPa [264, 277], intensi es the degradation of pesticides [211,
278]. For example, MCPA persists ten times longer in dry soils than in moist soils [279] due to the
moisture-sensitive exponential growth of microbes [211]. As aridity increases, microorganisms
must invest more energy [280] to overcome the suction holding the water in the soil [281].
As energy requirements in drier soils may therefore increase, it is conceivable that the way
microbes allocate C will have a profound impact on pesticide mineralization rates. This may
mean that, due to physiological trade-o s between C-assimilation and dissimilation under
drought conditions [282]1“CO, mineralization may not be linearly related to total pesticide
turnover [283].

Speci cally, drought-tolerant microbes invest heavily in the formation of extracellular
enzymes to maintain carbon uptake for the synthesis of stress response compounds such
as osmolytes, cryoprotectants, and chaperones [282] to stabilize cell pressure [284]. This would
imply that pesticide mineralization is not synonymous with microbial pesticide degradation since
microbial C utilization plays a decisive role. This mechanism has already been demonstrated
for soil turnover by Zeglin et al. [283], in which soil C sequestration was higher under dry
conditions.

Degradation rate and C allocation are a ected not only by environmental conditions, but also
by initial pesticide concentration [285, 286]. Pesticide degradation at low concentrations usually
follows a rst order kinetics and is often astonishingly fast [287, 288]. In contrast, pesticide
degradation at high concentrations is slower and accompanied by a simultaneous increase in
degradation activity and genetic degradation potential [131]. With respect to C-allocation,
in a previous study we [289] demonstrated that the predominantly catabolic use of MCPA at
concentrationsw 1 mg kg™ shifted towards an gradually increasing anabolic metabolism at

concentrationx 5 mgkg™. If initial pesticide concentration determines C use by microbial
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pesticide degraders, the impacts of temperature and moisture on C allocation may also depend
on pesticide concentration.

The objective of this study was to examine the impact of environmental factors (temperature
and soil moisture) on pesticide degradation and derived carbon use e ciency, and to link them
to the associated abundances and activities of degraders. Speci cally, we were interested in the
deviations in half lifes derived from actual concentration decrease and mineralization kinetics.
To address these questions, we usé@-labeled MCPA, a weakly adsorbed pesticide [290]
that is readily soluble in water [291] and highly biodegradable [292]. An additional advantage
of using MCPA is that the entire degradation pathway and the functional genes involved
have been characterized [128]. We hypothesized that incre&dddat lower temperatures
and soil moisture i) leads to increaséfC content in the microbial biomass, and ii) could
demonstrate a signi cant overestimation of pesticide half-life time when derived only from
14C mineralization curves. We expected iii) that the e ect size will be more pronounced
at higher initial concentration. To address these hypotheses, we determined the temporal
relationship between mineralization{CQ,) and biomass(Cnc) formation in distinct phases,

CUE alteration of MCPA degradation activity (expressed genes), MCPA-degrading genetic
potential (functional genes), and the half-life of MCPA under optimal and limiting environmental
conditions. In addition to the experimentally-bas€lJ E we applied a gene-centric model with

the experimental data and calculated two model-based carbon use e ciencies for interpretation

of pesticide-derived C utilization of the speci ¢ pesticide degraders.
8.3 Materials and Methods

8.3.1 Soil origin and sampling

The study site was in the central region of the Ammer catchment in southwest Germany
(4833'24.664", B2'31.259"). Soil samples were taken in March 2019 from an Ap-horizon (0-5
cm) of a silty Luvisol (World Reference Basis for Soil Resources). According to the farmer’s

records of their cultivation and spraying programs, MCPA was never applied to the agricultural
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eld. The main pesticides applied were chloridazone and metamitron. After sampling, the soll
was sieved (<2 mm), homogenized, and stored at €20-80 C for mRNAsamples) to prevent

further biological reactions. The main characteristics of the soil are shown in Table S15.

8.3.2 Experimental Design

The experimental set-up consisted of two temperatures (10 an@R@wo water treatments (pF

1.8 and 3.5), and three concentrations of rifg-labeled MCPA (0, 1, and 20y kg™ soil). In this
study, we de ned 10C, pF 3.5 and the two lowest MCPA concentrations as limiting conditions,
and 20C, pF 1.8 and the highest MCPA concentrations as optimal conditions. The experimental
set-up consisted of 36 total samples, with three replicates for each treatment. At three time
points (5, 15 and 28 days) representing speci ¢ phases of MCPA mineralization, i.e., initial
lag phase, phase of exponential growth, and nal saturation phase, we sampled independent
sets of microcosms. MCPA solution with'&C activity of 15kBq(99% purity, speci ¢ activity
50-60 mCmmoF?!; BIOTREND Chemikalien GmbH, Germany) was uniformly applied to adjust
gravimetric soil water content to 39.6% (pF 1.8) and 29.1% (pF 3.5). Subsequently, after thoroughly
mixing the soil with the MCPA solution, cylinders (diameter = &, height = 4cm) were

lled with 100 g of soil and compacted to a bulk density of g2n7 (height of the soil core
was 3cm). In addition, there was one set of 36 microcosms that contained unlabeled MCPA
(analytical MCPA purity 99.2%, Sigma-Aldrich, Germany), from which a series of subsamples
(on every second day) fof'C-free RNA/DNA co-extraction and MCPA quanti cation was taken

and stored at -2@ until the analyses.

8.3.3 MCPA analysis in soll

A soil suspension of two g soil mixed with bAL methanol/water (1:1) was homogenized on a
horizontal shaker at 200 remin=! for 10min, then heated in a water bath for 6@in at 50 C.
After shaking again at 200 remin=! for 10min, the mixture was centrifuged at 2500 g for 10

min, and 2mL of the supernatant was removed and Itered (0.48) pore size). The extraction
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recovery of MCPA was >98%. Before the HPLC-MS/MS analysis, the extracts were sonicated and
homogenized for 3nin by vortexing. On a 1260-In nity system from Agilent Technologies, one

L of the sample was injected onto a reversed-phase column (Agilent Poroshell 120 Caén2.1
internal diameter, 10hmlength, 2.7 L particle size) at a temperature of 40. MCPA was eluted
isocratically within 5min using 50% water and acetonitrile (both acidi ed with 0.1% formic
acid) at a ow rate of 0.4nL min~L. After chromatographic separation, MCPA was detected by
tandem mass spectrometry using an Agilent 6490 iFunnel Triple Quadrupole (QqQ) instrument.
The analyte was ionized using negative electrospray ionization (ESI-) by applyingdid=t
sheath gasN,) at 400C, 16L min™! drying gas (,) at 150C, 30 psi nebulizer pressure, ¥
capillary voltage, and 1.RV nozzle voltage. MS/MS experiments were conducted by MRM
(Multi Reaction Monitoring), usind\» as collision gas and collision energy (CE) dependent
mass transitions (MCPA: quanti er 198.9/140.9 at 10 eV, quali er: 198.9/34.9 at 45 eV). The limit

of quanti cation (LOQ) was de ned as 13g kg™ MCPA in soil.

8.3.4 MCPA mineralization .14CO,/

The%CO, evolution from the microcosms was determined via titration (DIN EN 1ISO 16072:2011-
09). First, a 0.BL aliquot was taken from & O, trap containing 2mL 1M NaOHwhich was

set up in the microcosm. The actual respiration measurement was carried out by adding 0.5
mL of 1 M BaC} and two drops of phenolphthalein. In the following titration with 0.1 MCI,

the end point of the neutralization reaction was indicated by a color change to transparency.
To determine the**CO; content, an aliquot of InL was taken from the sam&CO, trap and
mixed with 4 ml scintillation liquid (Rotiszint Eco Plus, Carl Roth GmbH + Co. KG) inmal5
scintillation vial (LDPE). The decay rate in Bequerel (Bq) was measured using a scintillation
counter (Wallac 1411, liquid scintillation counter, USA). To account for interfering substances, a
quenching adjustment witH“C aqueous standards was used to improve the accuracy of the
actual counts per second (cps) for the entire energy band.

The half-lifes DTsowmin) derived from the cumulative mineralization curves were calculated
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from the estimated parameters of the tted eqs.83 and 84 (see also Duo-Sen and Shui-Ming [293]

and Wirsching et al. [289]):

1
= *
C=C o IFfg &ttt (83)
1 1

Where C is the MCPA-derive'CO, (% of MCPA initially applied) is the total mineralizable
MCPA that was not immediately incorporated into the microbial biomass or bound to the soil
organic matter after application (% of MCPA initially applied), (d™) is the rate constant of
MCPA degradation per day, arfd is a dimensionless parameter constrained between 0 and

1 [289].

8.3.5 Microbial biomass ( Cmic)

Microbial biomass was estimated using the chloroform fumigation extraction method (CFE)
developed by Vance et al. [294], adapted by Poll et al. [295] for additif@adietermination.

Prior to extraction, 1@ soil was rst weighed to ensure the release of the microbially bound

C after a 24-hour fumigation with ethanol-free chloroform. After removal of the chloroform,
40mL of 0.5 MK,SQ, solution was added, shaken on a horizontal shaker at 250mav for
30min and centrifuged at 442@ for 30min. The clear supernatant was then passed through

a 20 m lter, diluted 1:4 with deionized water to avoid high salinity during detection, and
measured with a Multi-N/C 2100S TOC-TNb analyzer (AnalytikJena, Jena, Germany). A second
subsample of 1§ soil was not fumigated with chloroform to determine only the amount of
extractable organic carbon. C content of the contro (non-fumigated) samples was subtracted
from the C content of the fumigated samples to determi@gic content. Thekgc factor of

0.45 was used to estimate the extractable portion of microbial biomass C [296]. To obtain the

14C content in Cmic, 1 mL of the CFE supernatant was mixed withrL scintillation liquid
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(Rotiszint Eco Plus, Carl Roth GmbH+Co. KG) inmb scintillation vial (LDPE). Calculation of

the incorporated“C was performed as described for ti@ic content, here using the activity

di erence between the fumigated and non-fumigated samples. For the non-fumigated samples,
the undiluted supernatant was used. Tot4C utilization was estimated by adding th€CO,

mineralization and*“C incorporation on days 5, 15 and 28.

8.3.6 MCPA degrader abundance and activity
DNA/RNA co-extraction

For RNA and DNA extraction, 2 g frozen soil was weighed into 15 mL bead-beating tubes and
extracted using the RNAeasy PowerSoil Total RNA Kit for soil (Qiagen, Germany) and the
RNAeasy PowerSoil DNA Elution Kit (Qiagen, Germany) in a co-extraction method following
the user manual. After extraction, the RNA and DNA samples were aliquoted and stored &t -80
(RNA samples) or at -20 (DNA samples) for further use. The DNA and RNA concentrations
were measured using a uorescent dye and microplate reader (Synergy HTX Multi-Mode
Reader, Bio-Tek Instruments Inc., Germany). For DNA and RNA quanti cation, the Quant-iT
PicoGreen dsDNA Assay Kit and the Quant-iT RNA Assay Kit (Thermo Fisher Scienti c,
Germany), respectively were used following the user manuals. Before using the RNA-samples
for Real-Time quantitative PCR (QPCR), possible remaining DNA in the RNA samples was
digested using the TURBO DNA-freeKit (Invitrogen, Thermo Fisher Scienti ¢, Germany)
following the manufacturers protocol (Table S1). After digestion, RNA samples were divided
in two subsamples of 11L each and labeled as + and - subsamples. For the following revere
transcription, the SuperScript Il Reverse Transcriptase Kit with Random Primers and RNase
(Invitrogen, Thermo Fisher Scienti ¢, Germany), and dNTPs (10mM; Genaxxon, Germany) were
used. The reaction was carried out according to the user manual of SuperSchipReverse
Transcriptase from Invitrogen. Reaction conditions and temperature program are described in
Table S16. The + subsamples served as cDNA, whereas the - subsample served as a negative

control for the remaining DNA after digestion (Table S17).
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Real-Time quantitative PCR (gPCR)

For gene guanti cation (bacterial 16S rRNA and functional genes), gPCR assays were applied
using an ABI Prism 7500 Fast system (Applied Biosystems, Germany) with SYBR Green detection.
The primer and gPCR conditions used are listed in Table S18. Each SYBR Green reaction
contained 7.5 L of Power SYBRR Green PCR master mix (Applied Biosystems, Germany),
0.75.L of each primer (5 M), 0.375 L of T4gp32 (MP Biomedicals, Germany), 3.6R%vater

and 2 L diluted template DNA or cDNA (&g L) for functional genestfdA andcadA). For

16S rRNA, 1L diluted template DNA or cDNA (3ig L™) and 4.625 L of water was used.

For quanti cation, standard plasmid DNA was used with a dilution series fraf¥ to 10

copies L=t according to Ditterich et al. [131¢adAshowed no response to MCPA addition and

was therefore not discussed further in the course of the study.

8.3.7 Gene-centric modeling of MCPA biodegradation

We used a recently developed modeling approach (ref. to Chavez Rodriguez et al. [297]) to
simulate MCPA mineralizationG [mmol g™]), tfdA genes (proxy for active bacterial biomass
Cg [mmol g1]) and transcripts, and CUE. The original modeling approach was extended to

account for constitutive gene expression and to include a temperature response function.

Model description

We assumed gene expression to be in quasi-steady state described by the Hill function, including

constitutive gene expression that is potentially important at low concentrations:

) Ch/m

wherefr represents the number of transcripts per gemg, [-] and Kg [mmol cni®] are the
Hill exponent and constant respectively, is the constitutive gene expression coe cient set to

12 10° transcripts per gene [126], an@s [mmol cni3] is the solution phase concentration of
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MCPA.

Microbial growth is regulated in three ways (Eq. 98) by: i) MCPA-dependédA gene
transcription (MRNA, Eg. 85), ii) MCPA-dependent reaction kinetics (Monod term in Eq. 98),
and iii) aQuo temperature response function (Eg. 87).

i cym L
Fgrowth= max Cg OW"'EJ_ OM]. fr.T/ (86)

where max [d71] is the maximum growth rate coe cient, Kyy [mmol cn] is the Monod
constant, andr.T/ [-] is the temperature response function.

The temperature response functidp. T/ from Sierra et. al. [298] in uences not only microbial
growth, but also the decay rate (Eqg. 88), maintenance rate (exogenous (Eg. 89) and endogenous

(Eq. 90)), and decay rate of non-extractable residues (Eq. 91), and is de ned as:

T*10C
frT/=.Qpg" 10C ! (87)

where Qqo[-] is the temperature function constant, and T is the temperature @

The decay rate is de ned as:

ldeath=Cg aa fr.T/ (88)

wherea, [d71] is the decay rate coe cient.

The total maintenance rate is partitioned into two di erent maintenance uxes: exogenous
and endogenous [299]. The exogenous ux describes the fraction of the total maintenance
demand that can be met with the available MCPA in the system. We modeled this ux using a
simple Michaelis Menten expression [261]:

m Ch s

Kl — fRT/ (89)

I'm*exogenous 0
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wherem [d™1] is the maintenance rate coe cient.
The endogenous maintenance ux describes the fraction of the demand that is met by the
biomass under insu cient MCPA levels in the system [299], and it is modeled by subtracting

the exogenous maintenance ux from the total maintenance demand.

L

7(::5 + Ky 1 fr. T/ (90)

'm*endogenouss Cg M 01*

We introduced a non-extractable residues pool to account for the delayed releaS&of

coming from the decaying biomass:
Flecny=C " aco, frT/ (91)

where: CYER[mmol cn] is the non-extractable residues pool, aagq, [d7}] is the decay rate
coe cient of the CYER

To describe thé“C dynamics, we incorporated #C pool, which accounts for only thé*C
portion of labeled MCPA. Processes described for'tl@pool are: growth, maintenance, and
respiration. Additionally, theCY ERpool traces only the"*C-CERformed. We calculated each
14C ux by multiplying the corresponding total ux by the current mass fraction ¢4) of the
source pool [43]. The 14 was in turn derived from the total activity of“C per g of soil (As =
15kBqper 100g of soils) and the mean speci ¢ activity of MCPA jycpa= 55 mCimmoF?) in
relation to the initial MCPA C{cp applied (either 1 or 20 mg Kg).
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The full ODE equations used are:

dGs
dt = TIgrowth™ 'm*endogenoud I'decay (92)
1
d 4(\'43 — I,14 * r14 * I‘14 (93)
dt — l'growth 'm*endogenous 'decay
ER
dC’B\‘ — I,14 * I.NER (94)
dt decay 'decay
de|5 _ 4 luptaket 'm*exogenous
a (95)
Re
1
d“co, _ (414 (14 (NER (96)
dt ~ Trespiration m*endogenou's" m*exogenoué" decay

R is the retardation factor (ref. to Chavez Rodriguez et al. [297]) introduced to account for

nonlinear equilibrium sorption using the Freundlich isotherm:
RF:=1+ - Kp np .C5/ ™Y (97)

whereKp [mmol™P/g"lcm3™/] andnp [-] are the Freundlich coe cient and exponent xed to
0.09 and 0.8576 (adapted from Gawlik et al. [300[xm? cni™3] is the soil water content, and
[g cm™3] is the soil bulk density.

The uptake rateprake (ref. to Chavez Rodriguez et al. [297]) depends on the bioavailable

fraction of pesticide as follows:

L/n L
-Go/™ S Lo tTl (99)

I'uptake: max CB 0—.C||5/nH+,KG/nH +ﬁ1 07C|ﬁ+KM1 0YT31

Model calibration

We performed a hierarchical model calibration using the parameter ranges from Table S5 and
minimized the sum of squared erro8§ Ewith the optimization algorithm Simulated Annealing

from MATLAB:

n

SSE E 'y;neasured* glisimulate(!2 (99)

i=1 i
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where Ymeasureds the mean value of thé" observation,ysimulatedis the correspondingt”
simulated value, and? is the standard deviation of the corresponding observations.

The hierarchy of parameter groups was formed by assuming: i) di erent bacterial
subpopulations under the two di erent initial concentrations of MCPA applied (C), ii) possible
physiological and morphological bacterial changes under di erent moisture levels (W), not well
captured by literature moisture functions, and iii) biological and physicochemical properties of
soil (S). Thus, parameters for calibration were grouped according to the proposed hierarchy
(Table S19):

Model outputs corresponding to the measured data are:

1 -
Mineralization[~] = M (100)

“Ciicea
Genegcopiesg'] = f% (101)

1
Transcripts[copies g'] rrﬂ!%\]chCB (102)
1
. *1 _ L . L Np

Residual MCPAMgkg*] = G —-+Kp GCg (103)
DTsoresld™] = Timd.Residual MCPA= 05 CcpAl (104)

wheref; [mmol gené’] is the conversion factor cell to carbon. Incorporation Y into the
microbial biomass@mic) as well as CUE were not used for model calibration
8.3.8 Carbon use e iciency (CUE)

We derivedCU Eboth experimentally and model-bas€tU Es:

1. CUBy: experiment-base@U Eused for labeled substances [301].

14Cmic

CUB = 14Cmic+ Reum

(105)
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where: Cpic is the C uptake in microbial biomass, afd,m is the cumulative respiration

rate.

2. CUE: environmental model-base@U Eadapted from Geyer et al., [302].

YCs

CUE T g, wmco,

(106)

3. CUEK: community model-base@ U Eadapted from Geyer et al. [302] and Manzoni et
al. [303].

14 14 14 NER
respiration+ rm*endogenou'sl' rm*exogenoué’ rdecay

14 14 14
rrespiration+ rgrowth + It exogenous

r
CUE=1*

(107)

8.3.9 Statistical analyses

A linear model with mixed e ects as part of the "nime" package using the Ime function [304]
implemented in R version 3.5.2 was applied, specifying concentration, soil moisture content
and interand temperature and their interactions as xed e ects, and microcosms as random
e ects. To investigate the in uences of temperature, soil moisture content and concentration
on the 1%CO, mineralization rate, we compared the attainétCO, level on day 28 among all
treatments. To illustrate the di erences iICUE we compared all treatment levels. To test
the assumption that a temperature reduction to ©0leads to a signi cant increase i'C
uptake, we compared'C uptake at increased and reduced temperatures, at each concentration,
and each soil moisture level. The probability that the measurements for a given experimental
unit would be temporally correlated also had to be considered. In this case, corAR1 (time)
was used to indicate a temporal autocorrelation structure of order one. Since the ANOVA
requires a normal distribution and variance homogeneity within the data, an assumption check
for the mineralization, incorporation an€€CU Ewas run to ensure that the prerequisites for
reliable calculations were met. For speci cation of contrasts between the in uencing factors

relevant for the veri cation of our hypothesis, a post-hoc comparison was conducted using the
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package emmeans [305]. With this package, the estimated marginal means were calculated,
and interaction plots were made by using the emmip function to display the interactions
between the variables soil moisture, temperature, and concentration. The in uences of the
variables were compared pairwise with the Tukey method, and the standard error (SE) and

p-value for each result was simultaneously computed.

8.4 Results and discussion

Pesticide degradation studies often neglect the possibility that the e ciency of microbial C
utilization can shift in response to environmental factors [266, 306]. Our study, therefore,
analyzed microbial utilization of the pesticide MCPA in response to changes in soil moisture
and temperature. In addition to estimating the mineralization'6€-labeled MCPA and the
dynamics of speci ¢ degraders, we calculated &) Eof MCPA turnover to evaluate microbial

C allocation to catabolic and anabolic processes.

8.4.1 Enhanced MCPA mineralization by elevated temperature and moisture

Mineralization of MCPA in soil was quanti ed as that of the accumulat¥i€ O, at the end

of the incubation (Figure 11 A, B, C, D). Under optimal soil conditions@2@F 1.8) and 20

mg kg™, nearly 70% of the initially applie’'C-labeled MCPA was mineralized t6CO,. Under
limiting conditions (10C, pF 3.5) and fng kg™, mineralization was signi cantly reduced and
peaked at only 23%. These results were con rmed by our model simulations, which accurately
depicted the measured mineralization (Figure 11 A, B, C, D).

As a single factor, a temperature increase from 10 ta2@sulted in an increase itCO,
mineralization of 10.5%16 = 73.9, p < 0.01). However, the e ect was signi cantly more
pronounced at high MCPA concentrations (+17.7%) than at low MCPA concentrations (+3.4%,
Fi16 = 35.2, p<0.001; Figure 1 A, B, C, D). Comparable temperature-dependent increases in
mineralization were demonstrated in studies by Nowak et al. [307] and Muskus et al. [269]

for glyphosate, Helweg [263] for mecoprop (MCPP), and Bouseba et al. [265] for 2,4-D. These
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increases in**C mineralization appeared to be independent of the chemical properties and
associated behaviours of those pesticides in soils. In our experiment, an explanation could be
found in the temperature sensitivity of the enzyme-catalyzed reactions of MCPA degradation,
which are associated with inherent kinetic properties (intrinsic temperature sensitivity) and a
concentration-dependent response of mineralization rates to temperature (apparent temperature
sensitivity) [308].
Additionally, we evaluated the e ect of water content as a sole factor, in which a reduction
from pF 1.8 to 3.5 resulted in the strongest decreas¥@0, mineralization (-16.2 %116 =
136, p< 0.01). This e ect was most pronounced at the high MCPA concentraipr € 17.9,
p<0.001), where total mineralization was 21.3% higher at pF 1.8 as compared to pF 3.5 (Figure 11
A,B). At the low MCPA concentrations, this increase was only 11.0% (Figure 11 C, D). Generally,
microbial activity decreases with increasing osmaotic potential, as demonstrated by Sparling
et al. [309]. According to lIstedt et al. [310], the reason why a reduction in water content
also reduces the maximum mineralizaBfC fraction of MCPA is related to the limitation
on substrate di usion due to reduced thickness of the water Im on the soil particles as the
water content declines [311]. Schroll et al. [264] determined an optimal osmotic potential for
aerobically degradable chemicals of -0.015 MPa, which corresponds to a pF value of about 2.2.
Evaluation of MCPA residues (Figure 11 E-H) indicated almost complete degradation,
especially in the Img kg™ treatment at 20C, where MCPA was no longer detectable after
10 to 15 days. Only under the treatment combination ofra@ kg™, 10C and pF 1.8, 10% of
the initial applied MCPA remained in the soil. In the treatment combination pF 3.5 an@ 20
no MCPA could be extracted after 20 days. If the incubation took place & ,1MaCPA was no
longer detectable after 25 days. Similar detection times for MCPA were reported by B lum et

al. [312], Hiller et al. [313], and Peaea et al. [314].
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8.4.2 Invariable microbial dynamics under limiting temperature and moisture

ThetfdA gene abundance responded only to ther@@ kg™ and 20C treatment (Figure 11 1, J).
The abundance dfdA genes reached a maximum 10 days after MCPA application; with higher
copy numbers in soils at pF 3.5 than in soils at pF 1.8 (concentration:day:tenfg:gf= 2.05, p

= 0.048). After the peak, a slow decline followed until day 28, after which the initial level of
10* copies g* was reached again. Similar results were obtained by Vieubl@ Gonod [315] and
Baelum et al. [128], where an initial "lag" period (0 - 8d) with minor mineralization indicated
limited microbial pesticide turnover. In a second phase characterized by a sharp increase
in mineralization (after day eight), Baelum et al. [128] were able to detect a proliferation of
degraders based dfdA copy number ta3:0 1 per gram of soil, resulting in an approximate
sigmoid shape of the mineralization curve after saturation'6€0, release was attained,
consistent with our results. We could associate a maximum increasfsih copy number to

4:3 10 per gram soil with comparable mineralization kinetics. The responstaA transcripts

to temperature mirrored the patterns afdA gene abundance (concentration:day:terfigse
=30.01, p<0.001), but transcripts returned after day 15 to the initial lev&0Obéopies g* dw
(Figure 11 M,N,O,P). Soil moisture did not a ect gene transcription.

The observed patterns ¢fdA gene and transcript dynamics were well captured by simulations
using gene-based mechanistic model. According to G zdellier et al. [316], di erent degrader
subpopulations are adapted to di erent MCPA concentrations. Therefore, we allowed the
parameterd; (conversion factor cell to carbonin (maintenance coe cient), andyp (yield
coe cient) to take dierent values at 1 and 20mgkg™. Calibrated parameters (Table
S20) suggested populations with bigger cells, higher maintenance demands and lower yield
e ciencies at 20mg kg™ than at 1mg kg™, which is in accordance with G zdellier et al. [316].
Additionally, within each concentration level, slightly smaller cells with low maintenance

demands and high yield e ciencies might be expected at pF 3.5.
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Figure 11Measured (dots) and simulated (lines) of cumulatf€ 0O, mineralization at two
MCPA concentrations as a function of temperature and soil moisture over time
(A, B, C, D), Residual MCPA expressednagkg™ over time (E, F, G, HXfdA
genes during the MCPA biodegradation experiment expressedeme copiesY
dry weight (1, J, K, LXtfdA transcripts quantities during MCPA degradation expressed
as transcripts copies@ dry weight (M, N, O, P)tfdA genes and transcripts are
expressed at log-scale. Error bars represent standard errors of the mean values for
soil triplicates (see M&M).

8.4.3 CUE dependency on temperature, moisture, and MCPA concentration

We determinedCU F; based on measuretfC incorporation into microbial biomass [301].
Additionally, and taking advantage of our mechanistic gene-centric model, we derived two

model-based carbon use e cienciesGU E andCU E. While CU g, accounts for pesticide-
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derived C incorporation into the whole microbial community, the two model-based carbon use
e ciencies exclusively consider C utilization by speci ¢ pesticide degradetdJ gy andCU &
measure e ects of pesticide-C stabilization on carbon utilization over a longer period, taking
into account the e ects of biomass turnover, substrate recycling, and potential cross-feeding
[302]. CUE is calculated from simulated process rates and measures the immediate carbon
utilization after MCPA uptake.

The prerequisite folCU B, assessment is quanti cation df'C incorporation into the biomass
(**Ciic). Soil moisture did not a ectCnic (Table S27). In contrast, a temperature reduction
to 10C signi cantly increased™“Cy,c during the rst ve days after MCPA application by 3
percentage points to 10%;(i6 = 4.9, p<0.05), compared to the @Areatment. Microbial uptake
of MCPA can occur very quickly, according to Nowak et al. [179], who found a peak in 2,4-D
derived'3C after only two days. They identi ed bacteria as the main degraders of 2,4-D in the
soil. However, an initial hight*Cpic is followed by14C losses, since th&C is assimilated to
form precursor compounds (PreC) for further biosynthesis or is dissimilated for maintenance
respiration [302].

This short-term metabolic reaction of degraders is representecChyk: (Figure S40). On
averageCU R increased by 0.2 at thg kg™ compared to 20ng kg™. CU R in relation to
the remaining MCPA concentration reached zero anfy kg™ after about 99% of the initially
applied MCPA was degraded in contrast to the @@ kg™ treatment, where this point was
reached earlier (90%). These ndings indicate a more e cient utilization of MCPA-derived C at
low initial concentrations and a longer-lasting gross production. Gross production is de ned as
total pesticide uptake minus pesticide-C that is mineralized and used for further biosynthesis
processes [302]. Therefore, in contradiction to the constant metabolic ux analysis of Geyer et
al. [317], in which no change in the biochemical processes was detected during the incubation of
di erent glucose concentrations, we can con rm a decreasedfl it for MCPA at 20mg kg™.

The lowerCU E under the higher MCPA concentration is most likely explained by the two

di erent tted values of growth yield parameters for each initial MCPA concentration (Table
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S20). This nding supports the inherent model assumption made in accordance with G zdellier
et al. [316] that two subpopulations of pesticide degraders with di erent physiologies trigger
concentration-dependent shifts in pesticide-C metabolism. Metabolic regulations leading to
increased nutrient-mobilizing extracellular enzymes or carbon-wasting respiratory mechanisms
under nutrient limitations could also be responsible for lowetJ iz [318]. However, these
processes can be ruled out because in fertilized soils, nutrient limitations are not expected.

Short term di erences inCU E should a ect the long-term fate of the MCPA-C, as measured
by CUR, andCUE. CUR, was signi cantly higher during the MCPA degradation at 20
mg kg™ compared to Ingkg™ (+ 0.06;F.16 = 5.8, p < 0.05) during the rst 15 days (Figure
12 A, B, C, D)CU Ky can only be statistically evaluated by comparison at each time point.
But, comparingCU By over time is misleading, as di erent states of degradation dynamics are
being compared. To eliminate this deviatio@ U i was considered as a function of the relative
decrease in MCPA concentration (Figure 12 E, F, G, H). The simulateg: is about 0.2 higher
at low concentrations than at high concentrations, indicating greater carbon stabilization at the
ecosystem level at low concentrations. FoU gy, this e ect was only evident at the end of the
incubation CUE=0.21F.16=4.3, p = 0.05).

We observed an increase i@U gy with decreasing temperature (Figure 12 A, B, C, D),
which also has previously been reported [319 321], and is associated with higher growth
e ciencies [320, 322] and lower energy costs to maintain existing biomass [301, 316]. An
additional temperature e ect is that increased microbial activity at @deads to increased MCPA
turnover especially at 2éng kg™, which is in agreement with the Arrhenius equation [323].
The substrate concentration was therefore present longer aCldhd as a result, maintained a
higher CU k, for a longer time (Figure 12 E, F, G, H). The simulated carbon use e ciencies did
not indicate the temperature e ect (Figure 12 E, F, G, H). This is because the model assumptions
for CU EE andCU E assigns the same temperature sensitivity to microbial growth, maintenance
and turnover (see Eq. 98, 88, 89, 90, 91).

In addition to concentration and temperatur€ U Ey was increased by the reduction of soil
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water content (+ 0.155.16= 40.3, p < 0.01), especially at the rsttime point ( fth day). Similarly,
CUE andCU K were 0.25 higher at pF 3.5 (Figure 12). Consistent with this nding, Jones
et al. [324] found an upward trend in microbial CUE under the following levels: hyper-dry >
dry > semi-dry, with the subsequent nding that even under hyper-dry conditions, very low
microbial activity and C turnover occurred with altered C allocation. The reason given was a
reduced catalytic activity related to a decline in motility of organisms and enzymes across a
water Im that loses thickness as drought increases.

Interestingly, increasedCU E with reduced temperature and water content was not
accompanied by any response tbflA transcript and gene copy numbers in our study. This
imbalance may be explained by the fact that microbial use of the substrate is more complex
than simply converting it to biomass [271]. Rather, bacterial degraders synthesize a variety
of products, e.g., to maintain basic functions, such as extracellular enzymes, extracellular
polysaccharides, cell wall polymers, but also stress response compounds, such as osmolytes, to
survive under dry conditions [282]. This formation of stress compounds could explain a slight
increase in carbon use e ciencies during MCPA degradation under drier conditions compared

to the near optimal water content at pF 1.8.
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Figure 12CU Evs. time (d) shown in panels A to D, andU Evs normalized residual MCPA
concentration in soil shown in panels E to KLU B (Eq. 105) is presented as points
andCUE (Eqg. 106) as lines

8.4.4 E ect of temperature and soil moisture on pesticide DTsg

Di erences in MCPA mineralization were also re ected iDTsg-values, describing the time
required to mineralize 50% of the applied MCPA (Table 9). We determined two di erent
DTso-values; i) aDTsomin derived from the mineralization kinetics and typically calculated
in dissipation experiments of pesticides, and iiDd5oresderived from the residual MCPA
concentration. Under limiting conditions, we observed londeTsoresas well asDTsomin
values, with temperature exerting a stronger in uence than soil moisture.

We observed that lowering the temperature to @at 1mg kg™ and pF 3.5 increased the
residence time of MCPA by a factor of 1.9 based on mineralization kinetics (Table 9). In
contrast, theDTsoresvalue di ered only by a factor of 1.4. This may be explained by an altered
temperature-dependent C allocation, namely a disproportionate incread&dmncorporation
at 10C versus an increase in mineralization at 20 Consequently, this resulted in almost equal

MCPA-utilization rates [325]. Itis, therefore, important to consider total MCPA turnover, as
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DTsoregheoretically includes the dynamics 6fC incorporation and mineralization, whereas
DTsomin Captures only the contribution of mineralization. At pF 1.8, bdiiTsg values were
identical (Table 9). However, at pF 1.8 t8&J iz and CU k= was on average 0.2 lower than at
pF 3.5 (Figure 12, Egs. 107 and 106) re ecting a reduced contributiti€ aficorporation to
MCPA-derived C turnover.

Compared to the concentration of thg kg™, the e ect of a temperature reduction at 20
mg kg™ was independent of soil moisture and tHi2Tsg approach, and increased half lifes
by a factor of 2 (Table 9). In this case, degradation is initially limited by the number of
microorganisms, in contrast to degradation atvg kg™, where the degradation potential is
already provided by the autochthonous microbial abundance and rapid rst-order degradation
can be initiated immediately [171, 289]. According to Babey et al. [259], degradation of 2,4-D is
most e cient when the ratio of degraders to instantaneous pesticide concentrations favors of
degraders. This was the case for the treatment at28nd high initial pesticide concentration
after relatively lower mineralization was observed in the rst phase of the experiment (0-5d).

In the absence of growth at 10, as indicated by the lack of increasetidA copy number,
the degradation e ciency was signi cantly reduced, as re ected in the increadedsg values

(Table 9).

Table 9 Half-life DTsgregderived from the residual MCPA concentration in soils aBd somin
derived from mineralization kinetics as a function of soil water content, concentration,
and temperature

DTsores DTsomin
pF 1.8 pF 3.5 pF 1.8 pF 3.5
10C 20C 10C/20C 10C 20C 10C/20C | 10C 20C 10C/20C 10C 20C 10C/20C
20 mgkg!t | 18.9 93 20 15.6 76 21 18.5 9.9 1.9 17.6 88 20
1 mgkg? 9.2 6 1.5 7.5 5.2 1.4 10.3 6.7 1.5 12.2 6.3 1.9

Our results partially refuted previous ndings [265, 326 328], stating that the decrease in
temperature and soil moisture during biodegradation of MCPA is always accompanied by a

signi cant increase in half-life. The extent to which the residence time of MCPA was a ected
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by a change in temperature and soil moisture content depended on initial concentration and
associated degradation dynamics. In the present study, we demonstrated*aicorporation

is not necessarily proportional to mineralization, con rming our hypothesis that under limiting
conditions assimilation can be enhanced to support biosynthesis rates. Dissimilation including
non-growth maintenance activities [302] increased with temperature, as energy costs became
more important to regulate motility or molecular turnover of proteins [329]. As a result, the
MCPA-derived carbon will be used more e ciently by microorganisms at low temperatures
and reduced soil moisture content. Applying this principle to pesticide degradation, estimating
DTsgvalues from cumulative mineralization curves alone could, under certain circumstances,

imply a systematic overestimation of persistence time.
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9 Optimal design of experiments for e ective modeling of

atrazine degradation in soils (Paper 4)

This chapter includes the following paper in preparation for publication as:
Luciana Chavez Rodriguez, Ana Gonzalez-Nicolas, Brian Ingalls, Sinan Xiao, Wolfgang
Nowak, Thilo Streck, Holger Pagel (2021). Optimal design of experiments for e ective modeling

of atrazine degradation in soils.

with the following modi cation:

1. Numbers of gures, tables, and equations are relative to this thesis and not to the original

publication.
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9.1 Abstract

The natural degradation pathways of the herbicide atrazine (AT) are highly complex. These
pathways involve the metabolic activity of several bacterial guilds (that use AT as a source
of carbon, nitrogen, or both) and abiotic degradation mechanisms. The co-occurrence of
multiple degradation pathways, combined with challenges in quantifying bacterial guilds and
relevant intermediate metabolites, could be represented by competing model formulations,
which all might represent valid descriptions of the fate of AT. A proper understanding of the
fate of this complex compound is needed to develop e ective management and mitigation
strategies. Here, we propose a model discrimination process in combination with a prospective
optimal design of experiments. We simulated experimental data using a rst-order model
that re ects a simple reaction chain of complete AT degradation and a set of Monod-based
model variants that consider di erent bacterial guilds. We used a Bayesian statistical analysis
of simulated ensembles to investigate virtual degradation experiments and chemical analysis
strategies, thus obtaining predictions on the utility of experiments to deliver conclusive data
for model and pathway discrimination. We considered a range of experimental protocols
addressing: i) the metabolites or chemicals to measure (AT, metabolitesC&py ii) sampling
frequency (daily, every two days, or every four days), and iii) features typically not measured
(speci ¢ bacterial guilds). As a statistical metric for model discrimination we used the energy
distance. Our results show that simulated AT degradation pathways following rst-order
reaction chains can be clearly distinguished from simulations using Monod-based models.
Within the Monod-based models, we detected two clusters of models that dier in the
number of bacterial guilds involved in AT degradation. Based on our prospective analysis,
experimental designs considering the sink cyanuric acid (CA) provided the most informative
data to discriminate models. As expected, the inclusion of measurements of speci ¢ bacterial
guilds improved model discrimination. Our study highlights that environmental fate studies
should prioritize measuring metabolites to elucidate active AT degradation pathways in

soil and identify robust model formulations supporting risk assessment and mitigation strategies.
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Keywords: atrazine degradation, monod-kinetics, rst-order kinetics, equi nality, model

discrimination, optimal design of experiments, energy distance.

9.2 Introduction

Pesticides are important chemicals used globally in agriculture to manage plant stressors such
as pests, weeds, and diseases [5]. Due to their potential negative e ects on ecosystems [226]
and human health [21], some pesticides have been banned or otherwise restricted. The pesticide
atrazine (AT) was banned in Europe in 2004. However, AT and its metabolites are still found in
soils and groundwater in potentially harmful concentrations [57, 203, 330]. In the environment,
AT undergoes abiotic [132] and biotic [49] degradation. Several bacterial guilds have been
observed to metabolize AT (as carbon source [62, 63], nitrogen source [10] or both [49]), leading
to an accumulation of intermediate metabolites, most commonly: hydroxyatrazine (HY) [141,
142, 330], deisopropylatrazine (DIA), and deethylatrazine (DEA) [331 333]. The co-occurrence
of multiple AT degradation pathways that can lead to the formation of identical metabolites
poses a challenge to determining the fate of AT. This issue confounds our ability to understand
why AT persists in real systems, thus hampering future mitigation strategies [98].
Mathematical modeling approaches are valuable tools for the investigation of complex
degradation pathways such as AT degradation, allowing for combining the current
understanding of AT degradation with mathematical formulations and validating them with
real measurement data such as AT and metabolite concentrations and biomass [334]. In the
particular case of AT degradation, the limitation of which intermediate metabolites and bacterial
guilds involved are measured could lead to distinct mathematical models representing the same
system with equivalent accuracy (equi nality problem) [115]. Distinguishing among these
competing models can help us to determine which AT degradation pathways are active in a
particular environment. When addressing competing models, two cases arise. If all model

formulations predict similar behavior for all system elements (AT degradation, metabolite
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dissipation, and biomass formation), then the simplest (most parsimonious) model formulation
is usually accepted as the best (most valid) representation. Otherwise, it is important to know
what observations might provide the most useful information to distinguish the models: to
facilitatemodel discriminatiofiL 15, 335, 336]. By identifying relative di erences between models,
we can reduce the number of competing models by clustering together those that are most
similar and facilitate model invalidation [115, 336].

Optimal Design (OD) of experiments is a promising tool for addressing the equi nality
problem. OD aims to maximize the bene t obtained from experiments [112]. If it is done prior
to the execution of the experiment, it is called prospective OD [110, 112]. In our case, we use
OD to identify experimental designs that maximize the observed di erence between competing
models of AT degradation [115]. Among multiple metrics used to distinguish models [115, 335,
336], the concept of energy distance (ED) [114] is a computational e cient and robust model-
distance metric. In this context the design that produces data from which one can maximize
total pair-wise (model to model) ED is considered the optimal design for model discrimination.

This work aims to determine the measurements needed to distinguish the active AT
degradation pathway in a particular environment, represented by mathematical models. At the
same time, we aimed to nd the level of model complexity needed to describe AT degradation
in soils through model invalidation. For this purpose, we developed a set of mechanistic Monod-
based models, representing di erent degradation pathways of AT in soils and a rst-order decay
model, typically used to describe degradation at eld scale [337]. Later, we applied a prospective
OD, using ED for model discrimination, to the set of models, and explored the advantages of

including not yet quanti ed pools in model discrimination.
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9.3 Material and Methods
9.3.1 Atrazine degradation models

Conceptual model

We consider a set of hierarchical, nested models for degradation of atrazine (AT) in soils
(Figure 13), including biotic and abiotic degradation, representing common degradation
pathways of AT. These models vary in complexity from a complete Monod-model version
(M1) to a simple rst-order decay model (M6) (which is commonly used to model degradation
at eld scale) [337].

We assume that degradation processes occur in a well-mixed soil environment that contains
a colection of bacterial guilds: labelled A, B, C, and D (see Section Bacterial guids description).
Members of each guild are able to fully or partially metabolize bioavailable AT and its
intermediate metabolites as sole carbon and energy sources [139, 338, 339] ( Figure 13). Nitrogen
use is not considered. The members of each guild are partitioned into two subpools with
di erent physiological states: active and dormant. Activation and deactivation rates are driven
by carbon availability in the system. We explicitly account for a dissolved organic carbon pool
(DOC) that serves as a collector of dead cells. The last metabolite of the AT transformation is
cyanuric acid (CA) [340]. The transformation of CA to carbon dioxi@) is regulated by
nitrogen availaibility. At high nitrogen concentrations, CA transformation is strongly inhibited

by all guilds [137].
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Figure 13Atrazine (AT) degradation in soils: model framework, describing AT, its intermediate
metabolites (in blue), sink pools (in grey), and the bacterial guilds involved in the
degradation process. Arrow colors indicate activity of the bacterial guilds. Black
arrows represent abiotic processes: degradation of AT and nitrogen-dependent
degradation of CA. Dashed line represents the unintended HY leaked out of the
degradation carried out by guild A [62, 63]. Dashed-dot line shows a degradation
step uncoupled from growth (carried out by guild By represented the proportion
of DIA formed during AT degradation carried out by guild D

Bacterial guilds

We de ned the four guilds based on genetic information regarding known AT degraders:

1. Guild A is able to use the side chains of AT as carbon source, degrading it to cyanuric
acid (CA) [137, 139]. Additionally, this guild can use as carbon sources, the metabolites
HY, NE, NI and the products of the dealkylation of AT (DIA and DEA) [146]. Members
of this guild constitutively express a range of gene combinatio$zABC trzN-atzBC
and/ortrzN-atzC[49, 340]. Examples of members of this guild akethrobacter aurescens

TC1[62, 63], andEnsifersp [341].

2. Guild B is able to dechlorinate AT to hydroxyatrazine (HY) without gaining either carbon
or energy through the activity of geneatzA [142] ortrzN [141]. Additionally, they
degrade HY to N-ethylammelide (NE) [141] (via uncharacterize enzymes), or degrade the

metabolite N-isopropylammelide (NI) to CA, via the geazC Example of members this
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guild: Nocardiasp [141].

3. Guild C uses HY and NI as main carbon and energy sources by harboring the géxies
andatzC yielding CA [141, 142]. ThatzC gene also allows for metabolism of NE as

carbon source [342]. Examples members of this guRHizobiumsp [141].

4. Guild D dealkylates AT to the metabolites deethylatrazine (DEA) and deisopropylatrazine
(DIA) in a xed proportion fp [343] (Figure 13). Speci ¢ genes for this pathway have not
been identi ed; it is believed that this degradation is a cometabolic process [152, 344]
mediated by the cytochrome P450 [332]. Examples members of this dgriilddococcus
sp [332].

Process formulations

1. AT and metabolite dynamids): AT and the intermediate metabolites HY, DEA, DIA, NI
and NE (generically referred to by the labil (for nutrient) below, are each represented
by a total concentratioNT [mg cnT?] segregated into a bioavailable pool (concentration

N [mg cnt3]), and a sorbed pool (concentratidds [mg g™]):

NT= N-+ NS (108)

where [cmPcent™®] and [mgcnTd] are the soil water content and bulk density

respectively.

These two pools are related by the Freundlich isotherm with retardation fadi¥)(

RF=1+— KN, nMp .NY/meY (109)

where KN, [mg1™V g™t L™] is the Freundlich coe cient andn®p [-] is the Freundlich

exponent.

Bioavailable carbon sourceblf) are taken up and degraded biotically by active guild
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populationsB?. We account for two possible fates for consumed nutrients (metabolite
formation and bacterial metabolism). A fractidh* fy of the carbon in nutrientN is

converted converted to the downstream metabolite:

) a * _
N kn BR .1 fn/

rmetabolit(i_‘formation = RFE

(110)

where .y is the growth coe cient (eq. 118).

The remaining fractiorfy contributes to biomass accumulation and to respiration, with

yield factorYi.n [-]:

fn
. a —_—

KN _ % o Yien 1 111
Initrienttuse ™ RF ( )

Together, these give an overall uptake rate:

f

| o B gy TN

kN = (112)

ubtake_ RE
Speci ¢ degradation processes that do not involve biomass accumulation and respiration
are described as follows:

abiotic transformation of AT to HY (photodegradation) has been observed [230].

We model this process (black arrow in Figure 13 by rst-order decay):

Ko AT:
AT _ Mo
rabioti(fdegradation_ T (113)

whereK, [d7}] is the constant degradation rate.

It has been observed HY leaks out of members of guild A by passive di usion [62,

63] to the soil system. We modelled this leak ux as a constant fraction of the AT
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that has been uptaken by guild AT:

rA;AT f
AT*HY _ ' metabolitéformation 'H
p =

rl ak RF

(114)

where:fy [-] fraction of the of the uptake AT ux that leaks out.

Guild B dechlorinates AT to HY without gaining carbon or energy [63]. We modelled
this process with Michaelis-Menten kinetics because this step is not coupled to
growth (Dashed-point line in Figure 13):

Karsny AT- B3

Karspy + ATL
I’(li?,echlorinationz AT HQF (115)

wherekat+ny [071] is the dechlorination rate for Guild B, anBat«Hy [Mmg cnTd] is

the half-saturation concentration.

Guild D metabolizes AT to DIA and to DEA simultaneously [332]. A fractignof
the converted AT is in the form of DIA, while the remaining fractiod ¢ fp) is in

the form of DEA (Figure 13).

2. CA degradation CA is the nal metabolite of AT transformation considered in the
model because the further breakdown of CA is typically fast, without accumulation
of intermediate metabolites [340, 345]. The model re ects CA degradation as inhibitory
rst-order decay:

d Y K|n

“HE NOs+Kin
RF

CA-

fcaco = (116)

where thedca-co, [d07Y] is the rate of degradation of CA t€O,, Kin [mg cnil] is the
inhibition factor, andNOs; [mg cnT] is the nitrogen concentration in the system taken

as a model parameter.

3. Bacterial dynamics and physiologife describe two subpopulations of eaklbacterial
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guilds k = A; B; C; D) according to their physiological state: acti& or dormantB{(’
[mgg]. For each guildk, the active population grows at rat%‘rowth [mggtd™]on
multiple carbon sources modelled with a Monod-kinetics allowing for competition for
binding sites [78]:

k;N _ -
9rowth = H E kN fNI
N, Nk

BZ (117)

whereNp = AT, HY, DEA, DIA, NE, NI, Ng = *AT, HY, NI, Nc = "HY, NE, N1, Np =

AAT' and .\ is the growth coe cient de ned as:

k;N NL
KN = Jope—— (118)
max T Ny

where: KN [d71] is the maximum growth rate for the guilk on the available fraction of

the carbon sourc&l‘. Function y, is de ned as:

i
Ne = E NS+ K/ (119)
N=1

wherei is the number of carbon sources that each guildan utilize, andKy.y [mg cni?]

is the half-saturation concentration of each guildon each carbon sourds ‘.

Dormant populations do not grow. Transitions between dormant and active states are

described by a switch-like function proposed by Stolpovsky et al. [169]:
K oation= k k& BY (120)
activation = k Kic By
rcl;eactivationz 1 klc(j &? (121)

wherekg andkd [d™!] are the activation and deactivation coe cients for guild. Function

k is de ned as:
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b ~ | a c
f INK*E N's g
for N=1 S .0
k= fexpr— — st 1g (122)
f r "Ny s g
for s g
d p qg e

where NX [mgcni?] is the threshold concentration for the guilét, andn [] is the

steepness parameter set to 0.1 [170].

Both active and dormant subpopulations are subject to linear decay at rate:

i .
rtjjecay_ gk B{< (123)
wherea [d7}] is the decay rate coe cient for the guild n and indek represents active
or dormant bacterial state.
4. DOC formation and bacterial respiratiafte included two di erent sink pools:

a) Dissolved organic carbon pool (DOC) which collected dead cells from all guilds

(ré”e‘ca)). A fractionfr of the DOC contributes to th€0; pool:
rpocco = fé;lécay fr (124)

b) CO; [mg g™}] accumulates due to bacterial respiration at rate:

1* Yy
rrkespiration: kp BR fn 0 v, 1 (125)

Scenario models

AT is commonly found in soils together with three principal intermediate metabolites HY, DIA,
and DEA [346 348]. Additional intermediate metabolites NE and NI are also part of some
reported degradation pathways [141, 142], but their accumulation has rarely been reported

in soils [49]. Therefore, we set six model scenarios based on the presence or absence of the
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main bacterial guilds involved in AT degradation so that the metabolites HY, DIA, and DEA,
are always present (Figure 13 and Table 10). Additionally, we added a simple rst-order decay
model M6, which only includes the chemical pools AT, HY, DIA, DEA, and CA@RY. Speci c
degradation pathways mediated by fungi [349] were not considered. Full ODE equations for

each scenario model are presented in the Supplementary information, Section 11.4.1.

Table 10: Scenario models of AT degradation in soils

Model variants  Bacterial guilds  Resulting chemical po®9 (

M1 A /B, C,D AT, HY, DIA, DEA, NI, NE
M2 B,C,D AT, HY, DIA, DEA, NI, NE
M3 A, C,D AT, HY, DIA, DEA, NI

M4 A, B,D AT, HY, DIA, DEA, NE
M5 A, D AT, HY, DIA, DEA

M6 - AT, HY, DIA, DEA

9.3.2 Prospective optimal design of experiments (OD)

Model outputs and generation of simulated data

As candidate model outputs, we considered AT and the metabolites HY, DIA, DEA, NI, NE, and
sinks CA, andC(O,, as well as the biomass of the bacterial guild D, (the only guild present in all
Monod-based model variants), and the total biomass (of all guilds present in the given system
formulation).

Our prospective optimal design analysis is based on simulated data. We chose an initial
concentration of AT of 100ng kg™ [350] and an initial total biomass of 0.0@dg kg™ for model
simulations, equally divided among the guilds present in the system formulation. We set all
bacterial guilds to be dormant and all intermediate metabolites to zero at the beginning of the
experiment. To restrict to plausible simulations, we de ned a set of parameter and process

constraints that the model parameters and outputs should satisfy based on expert knowledge

and soil observations, as follows.
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The parameter constraintdX(Q are:

1. For each guild, the maximum growth rate coe cient £S,) must be higher than death

rate coe cient of active bacteria &,:x)

2. The Freundlich sorption coe cient of HY KF5) must be higher than the Freundlich

sorption coe cient of AT, DIA, DEA, CA, NI, and NE [351]

3. The Freundlich sorption coe cient of AT KAL) must be higher than Freundlich sorption

coe cient of AT, DEA, CA, NE [351]
The process constraint®© are:

1. DTsp (time that takes to dissipate 50% of the pesticide [65]) of AT between 5 and 25
days [49, 352]

2. AT concentration must be at lea$6® mgmL™ [57] at the end of the experiment
3. Mineralization of initially added AT between 20-80% at the end of the experiment
4. DTsgof HY, DIA and DEA between 2-30 days.

The high-dimensional parameter space of the scenario models of AT biodegradation (between
20 and 70 parameters depending on the scenario) implies that the behavioral parameter space
satisfying all constraints (viable space [353]) is very small, making simple Monte-Carlo
parameter sampling computationally much too expensive. We adopted a constraint-based search
(CBS) method [118] and modi ed it to randomly select parameter sets from the behavioral
parameter space. The CBS method is based on an iterative algorithm that successively applies
stricter process constraints by increasing the minimum number of process constraints to be
satis ed in each iteration. We replaced the original parameter sampling procedure of Gharari et
al. [118] with a Metropolis-Hastings algorithm, using a Markov Chain Monte Carlo (MCMC)
sampler. As a result, with this new CBS-MCMC method, we achieved reproducible and unbiased

sampling of behavioral parameter sets.

114



9 Optimal design of experiments

The CBS-MCMC method used in our work consists of the following steps:
1. De ne a number of parameter constraint® ¢ (here,Pc=3).

2. De ne the minimum number of process constraint® ¢ for the initial sampling (here,

PC=2).

3. Perform aninitial Latin hypercube sampling to draM random parameter set8{=500,000

in this study) using uniform marginal parameter distributions (see Table 11 for ranges).
4. ldentify the candidate parameter setg] that satisfy all given parameter constraintB §).

5. Run the scenario model with the candidate parameter sgtand evaluate the number of

satis ed process constraint$(C).

6. Accept only the behavioral parameter setg) resulting in model runs wher®C' x PC

and reject all other parameter sets .

7. IncreaseP Cby one, and uséyc randomly chosen parameter sets froxfi as starting

parameter valuesxg) for MCMC sampling.

8. Apply the Metropolis-Hastings algorithm wittMyc parallel Markov chainsiiyc = 40
in this study):

a) Generate new candidate parameter setsising a Gaussian jumping distribution
centered at the parameter valuesxg with the standard deviation determined from
all corresponding parameter values x§. Verify if the parameter constraintsRQ
are satis ed. We designed the algorithm to repeatedly draw individual parameter
sets until all parameter constraints are satis ed. When the generated parameter
values are located outside the de ned lower and upper bounds (Table 11), they are

re ected back into the search space at the respective boundary [117].

b) Run the scenario model witk. and evaluatd? C.
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c) Acceptx; as behavioral iPC' x PC otherwise rejeck. and keepxs. Updatexg

correspondingly.
9. Repeat steps 6 and 7 until all process contraints are sati® €= PC

As long asPC’ x PC the length of individual Markov chainsl{,) in Step 7 is set to 1,000
draws of candidate parameter sets. If less thdfc new candidates were accepted, MCMC
sampling in Step 7 is repeated, keeping the current valu® Gfwhile successively increasing

Ly by 5,000 until at leastyc new candidate parameter sets were accepted. As a pre-step to
the last iteration of the CBS-MCMC metho& C* = PO, repeated MCMC runs were performed

to optimally adapt the jumping rate of the Metropolis-Hastings algorithm (Step 7) to achieve an
acceptance rate of approximately 0.2 to 0.5 for the nal MCMC runs. This way, we generated

30,000 unique model outputac) for further analysis.
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Table 11: Model Parameters for Monod and rst-order kinetic models

Parameter Description Units Parameter Value

Min.  Max.

Monod Parameters

e Maximal speci ¢ growth rate of pesticide degraders [ 0%  1¢
Kn:p Growth substrate a nity coe cient of pesticide degraders [mg cmi®] 0% 10
k3 Coe cient rate of activation [d7] 10° 100
kd Coe cient rate of deactivation [0 10° 100
c¢ Threshold concentration [mg cm®] 0% 1¢
Qain Speci ¢ death rate of active bacteria [d™] 0% 10
Qin Speci ¢ death rate of inactive bacteria [d™] 10% 102
Ya Yield parameter [-] 01 1
Kateny Dechlorination rate [0 104 10
KatsHy Saturation concentration [mg cm®] 10° 10

Sorption Parameters

KEs Freundlich coe cient Mgt/ glem3®d] 05 10

nEp Freundlich exponent [*] 0:6 1

First Order Decay Parameters

Ko Abiotic transformation of Atrazine to HY [ 104 10
K Inhibition factor [mg cm®] 104 1C
NG; Nitrogen concentration [mg cm®] 10° 1C
daeny Decay rate of AT to HY [0 10 10
dat DD Decay rate of AT to DD [0 104 10
dyveca Decay rate of HY to CA [d™] 104 1C
doiarca  Decay rate of DIA to CA [d"] 10¢ 10
doexca Decay rate of DEA to CA [d7] 104 10
deaco, Decay rate of CA taCO, [0 104 10

Constant Rate Parameters

fr Fraction of dead bacteria which goes to DOC [*] 001 1
fu Leak ux constant [*] 001 1
fo Fraction of AT used for DEA formation used by guild D [*] 0:25 Q75

Next, for each simulation, we generated a relative erigg,.t/ to normalize the output
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channels: AT, metabolites (HY, DIA, DEA, NE, NI), and sinks (C®) for all the models at
each timey.t/. For this purpose, we applied a relative error tied to the mean observed at
each time for the whole ensemble of each metabolite and models (30,000 sampled outputs). This

way, observations with larger magnitudes will have larggg,.t/.

nLTlOd 1 Nmc

Ee.t/ =frac — E Y.t/ (126)
Nmod =1 Mmc |4 I
Ynormalizedt/m;1 = Y t/m (127)
' Erel-t/

wherefracis 10%0hmoqis the number of modelsg,og = 6 for analysis including chemicalBynoqg
= 5 for analysis including biomass, amg,oq = 3 for analyses including NI and NE metabolites),

andnp,c is the number of realizations (30,000).

Measuring model separation: Energy distance (ED) for OD

We use energy distanc&eD) as a measure of distance between models; more speci cally,
between normalized model outputgormalizedat/m: (€q. 127). Generically, ED provides a
measure of distance between distributions [114]. For our analysis, we generate distributions
of normalized model outputs based on particular experimental designs. The energy distance
measure accounts for variance by discounting the distance between model outputs by the
within-model variance [114]. Because of the normalization of the model outputs (eq. 127),
the scale of energy distance will result in units of error of standard deviations , making the
distances interpretable.

t
EDX;Y/ = 2 EPX* YA* EPX * X°* EAY * Y (128)

where X andY are output distributions from two model instances, respectively, atfcand

Y® are separate realizations of the models, respectively. The tEi¥h* Yfiis the expected
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Euclidian distance between these distributions, wHiig * X “fland EfY * Y"fiare their expected
within-model variances. Discounting by the within-model ensures that noisy outputs that do
not di er much between models contribute minimally (or even detract from) tB® measure of
model separation.

The goal of our prospective optimal design method was to determine the design that provides

the most informative data for model discrimination [112]:

dopt = argmax.Objective/ (129)
d,D

where D) is the set of candidate designs and the objectives are pairwise energy distances (ED)
between the set of models under consideration (speci ed in the Results section).

To make reliable statements about th#, we chose a subsample size of 10,000 out of the
30,000 simulated data outputs per model variant because this sample size showed &&table
throughout the candidate designs (Figure S58). We normalizedEfbscores by the maximum
ED of the candidate designs and applied a multi-objective Pareto optimization (MATLAB's
prtp function [354]) to determine the non-dominated designs [358}:). These are presented

as spider plots [356] and were produced in Matlab.

9.4 Results and Discussion

9.4.1 Can we distinguish active AT degradation pathways based on

observations of metabolite concentrations?

To determine the active AT pathway in a particular environment, we explored whether the
six proposed models (M1-M6), representing conceptual AT degradation pathways, can be
di erentiated based on the observation of metabolites and CA &1 (sinks) concentrations.
Because AT, the main metabolites (HY, DIA, DEA), and the sink pools (CAGED are
common to all six model variants (see Figure 13), for candidate experimental designs, we

consider measurement of subsets of these, with di erent sampling strategies, giving 63 possible
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combinations of chemical output channels. We do not impose any resource costs for each
measurement channel, and so one might expect that the optimal design is to measure all
candidate channels to maximize the information gathered. However, the energy distance metric
accounts for atrade-o between noise and comparison: the inclusion of noisy, information-poor
channels will result in adropin the energy distance between two models (as demonstrated
below), incorporating these output channels into the design ‘muddies the waters’; that is
the information contained in these measurements makes the model discrimination task more
di cult.

With the 63 possible combinations of chemical output channels, we consider three sampling
frequencies: 1) every day until day 25, 2) every two days until day 50, 3) every three days until
day 100, giving 63 = 189 designs in total. Figure 14 shows pair-wise model energy distance
scores for every candidate design.

Based on a minimum threshold of energy distance of two for model discrimination (horizontal
dashed line in panels A to F in Figure 14), the models fell into three groups: i) M1, M2, M3 and
M4 (henceforthMd-4); ii) M5; and iii) the rst-order decay model M6. We selected a minimum
ED of two because and similarly to standard deviations, a two standard deviation distance would

correspond to being outside of the 95% con dence interval.
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Figure 14Pairwise energy distances (expressed in standard deviation units) over the candidate
designs. A. Model M1 against other models; B. Model M2 against other models;
C. Model M3 against other models; D. Model M4 against other models; E. Model
M5 against other models; F. Model M6 against other models.Vertical lines represent
transition from one sampling frequency/duration to another: left is daily over 25
days; middle is every second day over 50; right is every four days over 100. The
horizontal line represents the selected minimum energy distance threshold for model
discrimination (distance of two standard deviations)

As expected the simplest, rst-order decay model (M6) can be clearly distinguished from the
Monod-based models (M1-M5) with all experimental designs, except when only measuring AT
(rst design in each time-related group) regardless of the sampling frequency.

Likewise, M5 clustered separately. In M5, the complete AT degradation and dealkylation
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of AT is mediated by bacterial guilds A and D. There is no formation of NI and NE because
the microbial guilds B and C are missing. The absence of these two guilds leads to reduced
biodegradation of HY. Additionally, the main source of HY in the soil solution is the leak out of
guild A [62, 63] or abiotically produced HY [230, 357].

Models M1, M3 and M4 clustered within a joint group@.-4). These three models account
for AT dealkylation and dechlorination by guilds A and D, and either guild B or C is present.
Interestingly, M2 clusters within the M1-4 group, too, despite the absence of the full degradation
pathway of AT carried out by guild A. The absence of guild A eliminates any degradation of
the chlorinated AT metabolites DIA, and DEA [152, 358], leading to the accumulation of both
compounds. However, the accumulation of DIA and DEA occurred largely at concentrations
below detection and the overall dynamics of AT and its metabolites was comparable to the
other models within this group. Models within this group are not distinguishable based on
AT, metabolite observations (HY, DIA, and DEA, CA), &d,. Because each model variant
within Md-4 represents a speci ¢ variant of potentially active AT degradation pathways,
additional measurements of microbial biomass might improve model discrimination and thus
allow identi cation of the corresponding active AT degradation pathways, as we discuss below

9.4.3.

9.4.2 Which experimental designs provide the most informative data for model

discrimination?

We analyzed the discrimination of the three identi ed model groups in detail by calculating EDs
between i)Md.-4 and M6, ii) M5, and M6, iiMd.-4 and M5. In this analysis, comparison between
M5 and M6 with groupMd.-4 was done by treating the grou@dd -4 as a single model by adding

up the individualEDs from models M1 to M4 (groupMd-4) to M5 and M6 and normalizing it

by the maximum addedD of the candidate designs. We performed a multi-objective Pareto
analysis (see M&M) to determine the designs that maximize group discrimination, i.e., those

experimental designs which lead to a maximugb of one objective, while simultaneously
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minimizing the ED decrease of the objectives (non-dominated Pareto optimal solutions).

Optimal designs and measured pools:

From the Pareto analysis, six experimental designs out of 189 were identi ed as optimal (Figure
15): (i) measurement of DEA, DIA, and CA with short length, (i) measurement of CA in mid
length, (iii) measurement of DEA, DIA, and CA with mid length, (iv) measurement of CA in
long length, (v) measurement of DIA and CA with long length, and (vi) measurement of DEA,

DIA, and CA with long length.

Figure 150ptimal designs from the Pareto front based only on AT, metabolite (HY, DEA, DIA)
and sinks (CACGO,) measurements (Y = measured, N = not measured). Time colamn
values are: (1) short-term, every day sampling until day 25, (2) middle-term, every
two days sampling until day 50, (3) long-term, every four days sampling until day 100

None of the 6 optimal designs include measurements of AT, HC 6. Thus, these chemical
pools do not provide informative data for model discrimination (related to the similarities of their
simulated time-series for all model versions in Figures S52-S57). Including these measurements
incorporates noise into th&D measure, confounding model discrimination. For example, as
shown in Table 12, addition of the AT output channel increases the noise terms with negligible
increase in the comparison term of the energy distance. We can, therefore, conclude that

to understand the fate of AT in real systems, one should prioritize information about the
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intermediate metabolites (DEA, DIA, CA). Unfortunately, most experiments on AT to date have

mainly measured AT [359, 360].

Table 12: Single elements of the energy distarieB)(between model M1X) and M6 {)
t

Design AT HY DEA DIA CA CO, Time | 2 EX*YA -EX*X° -EW*YH ED.XY/
38 N N Y Y Y N 1 339.1 8.0 171.9 12.6
48 Y N Y Y Y N 1 341.5 19.6 173.1 12.2
131 N N N N Y N 3 198.6 13.8 35.6 12.2
136 Y N N N Y N 3 211.6 38.9 455 11.3

Non-dominated designs (38, 131) and equivalent designs, including AT (48, 136). As expected, by including AT
measurements, the increase in noise outweighs the increase in comparison, so that in total, the v&lDe of

decreases.

CA seems to provide the most informative data among the intermediate metabolites because
it is mainly accumulated in all selected optimal designs (principal end product of AT degradation
in our simulations). This well resembles eld observations, where further degradation of CA to
CO; occurs only under low concentrations of nitrogen (N) in soils [137, 139]. Additionally, DIA
and DEA, products of the dealkylation of AT [146, 344], occur in four of six non-dominated
designs. The power of these two pools to enhance model discrimination is expected due to
the di erent DIA and DEA dynamics simulated by the models. For example, DIA and DEA
are hardly produced (under the detection limit @07 mg cni3) by models in Group M1-4. In
contrast, M6 and M5 simulate detectable DIA and DEA concentrations (Figure S52-S57), leading

to di erences in theED.

Optimal designs and sampling frequencies:

In our proposed designs, we incorporated short-, middle- and long-term experiments with

a total of 25 equally-spaced samples. The non-dominated designs (Figure 15) include short-,
middle- and long-term experiments. The rst-order decay model can better be distinguished
from the other clusters in short-term designs (Design 38 in Figure 15). This could be related to

the tendency of these models to quickly reach steady-state in the simulations. In contrast, the
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Monod-based models are better distinguishable in middle- and long-term experiments, probably
because these clusters produce distinctive endpoints of the metabolites that di er according to

the associated pathway.

9.4.3 Can measuring pools not commonly measured improve model discrimination?

In the analysis in sections 3.1 and 3.2, we considered experimental designs that involve
measurements of AT, the metabolites (HY, DIA, and DEA), and the sink pools CAC&nd
These correspond to measurements that could be collected in lab dissipation experiments [346].
Next, we examine the potential of less typical measurements: biomass and the NI and NE
metabolite pools. We begin by de ning three new sets of candidate designs incorporating along
with the previous set of candidates (Section 9.4.1) i) measurements of total biomass and/or
biomass of guild D (255 possible combinations of chemicals and biomass and three sampling
frequencies giving 765 designs), ii) the metabolite NI (127 possible combinations of chemicals
and three sampling frequencies giving 381 designs), and iii) the metabolite NE (127 possible
combinations of chemicals and three sampling frequencies giving 381 designs). Because M6
and M5 can already be di erentiated based on the chemical measurements, we focused only on

distinguishing models within Group M1-4.

Role of biomass measurements

We observed that by adding the biomass information, the energy distances increased, allowing
model discrimination (Figure 16) of all models within Group M1-4. These results highlight the

importance of biomass measurements to identify the active AT degradation pathway in soil.
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Figure 16Pairwise energy distances (expressed in standard deviation units) over the candidate
designs including biomass measurements. A. Model M1 against other models; B.
Model M3 against other models; C. Model M2 against other models; D. Model
M4 against other models. Vertical lines represent transition from one sampling
frequency/duration to another: left is daily over 25 days; middle is every second
day over 50; right is every four days over 100. The horizontal line represents the
selected minimum energy distance threshold for model discrimination (distance of
two standard deviations)

Next, we applied a Pareto analysis to the 765 biomass-including designs based on the new
goal to maximize the distance between models in Group®-¥l As objectives we chose energy
distance maximization between: i) M4 vs. M1, ii) M4 vs. M2, iii)) M4 vs M3, iv) M3 vs. M1, v) M3 vs.
M2, vi) M2 vs M1. We identi ed 15 out of the 765 designs as optimal [non-dominated] (Figure 17).
The optimal designs showed that measurements of total biomass do not to contribute to model
discrimination. However, not surprisingly, measurement of guild D biomass helps to distinguish
among the Monod models. Unfortunately, distinguishing speci c guilds is challenging. Guild
membership could be estimated from speci ¢ genes responsible for AT degradation, as done
by Pagel et al. [43] for the herbicide MCPA. However, some degraders contain genes from

multiple guilds, leading to an overestimation of the degrader biomass. Therefore, total biomass
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is commonly prioritized over the biomass of speci ¢ degraders. We expect that advances in
molecular biology will provide the tools to make a more accurate quantitative identi cation of

particular degraders, and thus, pathway identi cation possible.

Figure 170Optimal designs including biomass measurements (Biomass of guild D and total
Biomass). Y = measured, N = not measured. Time cohgwalues are: (1) short-
term, every day sampling until day 25, (2) middle-term, every two days sampling
until day 50, (3) long-term, every four days sampling until day 100

9.4.4 Role of NI-NE measurements:

NI and NE metabolites appear only in models M1, M2, M3 and M1, M2 and M4, respectively.
From Figure 18 (A, B, C), it becomes clear that NI measurements can only help to distinguish
model M3 from models M1 and M2, especially in designs that include middle and longer sampling
frequencies. Likewise, including NE measurements can only help to di erentiate M4 from M1

and M2 (Figure 18 D, E, F).
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Figure 18Pairwise energy distances (expressed in standard deviation units) over the candidate
designs including i) NI: A. Model M1 against other models; B. Model M2 against other
models; C. Model M3 against other models; and ii) NE: D. Model M1 against other
models; E. Model M2 against other models; F. M4 against other models. Vertical lines
represent transition from one sampling frequency/duration to another: left is daily
over 25 days; middle is every second day over 50; right is every four days over 100.
The horizontal line represents the selected minimum energy distance threshold for
model discrimination (distance of two standard deviations)

Because adding NI and NE metabolites observations does not contribute to model
discrimination between model M1 and M2, when applying the multi-objective Pareto analysis
to NI- and NE-containing designs, we set objectives to maximize the di erence i) M3 vs. M1,

i) M3 vs. M2, for the designs including NI; and i) M4 vs. M1, ii) M4 vs. M2 for the designs
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including NE (381 in each case). Two designs were determined as the non-dominated designs
for each analysis, and therefore, instead of in spiderplots, the results are presented in Table 13.
These designs include NI and NE observation. These two metabolites are rarely found in
soils [361], probably because of their faster degradation rates mediated by theae@¢342].
Regarding sampling frequencies and duration of experiments, long-term experiments proved

more helpful for model discrimination when including NI and NE measurements.

Table 130Optimal designs after multiobjetive pareto analysis of candidate designs including NI
and NE in addition to AT, metabolites (HY, DIA, DEA) and sinks (CA)

Design AT HY DEA  DIA CA CO, NI Time
310 N N Y Y N N Y 3
349 N N Y Y Y N Y 3

Design AT HY DEA DIA CA CO, NE Time

315 N N N Y Y N Y 3

349 N N Y Y Y N Y 3
Time column s values is: (3) long-term, every four days sampling until day 100

9.4.5 Implications for biogeochemical modeling and data integration

In this work, we applied a prospective optimal design (OD) of experiments to nd experimental
sampling strategies that allow for discrimination among competing atrazine (AT) degradation
models and the corresponding degradation pathways. Our method is reliable (Figure S58),
and it can be performed prior to the execution of the experiment. Applying the Bayesian
constrained-based parameter search algorithm (CBS-MCMC) for e ciently sampling the viable
parameter set dramatically reduced the computational demand. The CBS-MCMC method is
widely applicable to other biogeochemical models and provides a powerful tool to leverage
expert knowledge for constructing robust prior parameter distributions for model sensitivity
analysis or calibration.

In our study, we observed that the ve proposed Monod models could be reduced to two

groups, according to their predominant features. On the other hand, the rst-order decay
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model could only replace complex model formulations when looking at the AT degradation
dynamics. However, considering the intermediate metabolites (DIA and DEA), and especially
the sink pool CA is an integral part of understanding the complete degradation pathway of
AT and of adequate model selection as well. This non-intuitive result is the consequence of
the OD objective, which is, in our case, model discrimination. Furthermore, information on
particular pesticide degraders showed potential to improve model and pathway identi cation.
Thus, experimental measurements of speci ¢ guilds should be prioritized in the future.
For a practical application of our results towards the identi cation of the active AT degradation

pathway in the system, we recommend using the following protocol:

1. include, but not limit to, the optimal design setup in the sampling strategy for the planned
experiment. For better model discrimination, the best design should include measurements

of speci ¢ biomass degraders (examples in Figure 17)

2. carry out model calibration for all available models or model groups against the collected

data and the optimal design data

3. the best model for any particular case should best t the data, and the di erences among

models or model clusters should become more predominant at the OD data points

4. the models or model groups that deviate the most from the data can be rejected (model

invalidation) [336] as they are not valid representations of the system to be studied

The application of prospective OD of experiments requires that models use correct process
descriptions. Therefore, the candidate model formulations must be carefully selected to ensure
that the best possible representation is used [112]. As long as such valid process models are
available - as in this study for atrazine degradation - model-based prospective OD will maximize

the knowledge gain on soil systems from laboratory and eld experiments.
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10 General Discussion

Considering that many biodegradable pesticides can persist in soils [55], the objective of my
thesis is to elucidate some of the key processes that control pesticide degradation, especially at
low concentrations. | analyzed biological processes that can limit degradation, assuming an
ideal scenario in which bacterial degraders and the speci c pesticide are colocalized (Figure 2).

This simpli cation helped me to:

(i) evaluate complex bacterial processes (genetic and biophysical constraints) without
the in uence of soil heterogeneity [362], water transport processes [234] (dispersion,
advection), or competing carbon sources [43, 363], all known to also a ect degradation

rates.
(ii) easily validate model assumptions with data from lab experiments.

| used three pesticides as model pesticides (MCPA/2,4-D and atrazine) belonging to two
pesticide classes (Chlorophenoxy herbicides and triazines, respectively) to explore di erent
degradation mechanisms that could be transferable to other pesticides with similar properties.
In section 5.2, | explained the characteristics of these pesticides and their role in my thesis. In
the following subsections, | will discuss the main outcomes of my thesis and provide some

insights for future directions of research in the eld.

10.1 Improving process understanding and prediction of

pesticide degradation in soils

| used a mechanistic, process-based modeling approach to evaluate pesticide degradation in
soils. Among the di erent processes explored in my thesis, | could derive some mechanisms

that control pesticide degradation and drive pesticide persistence in soils:

1. Regulated gene expression (Research Question R1) In the rst study (Paper 1), and

based on the need to improve the description of bacteria-driven pesticide degradation

131



10 General Discussion

in mechanistic models. [73], | explicitly incorporated regulated gene expression. This
improved the description of the MCPA/2,4-D degradation in soils showing that regulated

gene expression is a control for pesticide degradation.

. Mass-transfer across the membrane (Research Question R2): In the second study
(Paper 2), comparable to Sun et al. [364], | could con rm that mass-transfer limits
degradation in the retentostat system, where low concentrations that lead to starvation
are common [63]. However, by looking at long-term predictions, | found evidence that
mass-transfer is unlikely to control pesticide persistence because the model simulations
including mass-transfer led to complete degradation of atrazine, which is often not
observed in the eld. Contrasting results were found in water systems by Sun et al. [364],
where mass-transfer of 2,6-dichlorobenzamide (BAM) across the cell membrane limits its

degradation below 600g L.

. Bioenergetic constraints (Research Question R2): According to LaRowe & Van
Cappellen [64], the energy produced from catabolism of some pesticides might be
insu cient to satisfy the metabolic needs of degraders. To validate this statement, |
used transition state theory [242, 365] to model bacterial growth based on the use of
pesticides as the sole carbon and energy source. Applying this concept to the degradation
of atrazine, | found evidence that bioenergetic mechanisms are unlikely to control the
persistence of hydroxyatrazine (the rst metabolite of atrazine degradation). Additionally
and, when the pesticide is degraded through mechanisms without energy gain, transition
state theory is not su cient to explain pesticide persistence. Hence, further research
should prioritize energetic demands of biological transformations that do not involve

energy gain, like atrazine degradation to hydroxyatrazine.

. Environmental factors: temperature and soil moisture (Research Question R3)
Pesticide dissipation experiments pointed out that low temperatures in combination with

dry soil conditions, increase pesticide persistence in soils [366 368]. In the third study
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(Paper 3), | assessed these ndings through a mechanistic gene-centric model for MCPA
degradation to evaluate a laboratory experiment. Although temperature, soil moisture,
and pesticide concentration do play a role in the overall fate of the pesticide in soil, | found
evidence that they mainly in uence pesticide-derived carbon allocation. This conclusion
is based on the increased incorporation of pesticide-derived C into the biomass, re ected
by higher carbon use e ciencies under limiting conditions of temperature, soil moisture,
and substrate concentration (X0, pF 3.5 and fing kg™). Interestingly, model simulation
results, as well as the observations, pointed to stress-induced mechanisms to survival.
Under the evaluated limiting conditions, growth is not prioritized, and the higher C
incorporation into the biomass might be related to the formation of substances to cope
with stress [369]. Therefore, | could conclude that environmental factors play a role in
pesticide-derived C allocation but are unlikely to control pesticide persistence. Even
under limiting conditions, degradation of pesticides occurs. To con rm these ndings,

di erent and more persistent pesticides than atrazine should be prioritized in further

studies.

With my models, | was able to identify some key processes relevant for pesticide degradation.
Incorporating them into biogeochemical models improved predictions of pesticide degradation.
The full gene-centric model developed in the rststudy (Paper 1), although performing equally

well as traditional Monod-kinetics models, showed to better represent bacterial dynamics in soil
(gene and transcript data). This way, the gene-centric models allow us to study the relationship
between process rates and functional genes. This relationship is typically assumed to be
linear [128, 219], but my results challenge this assumption by showing a hysteretic relationship
between these two variables. In conclusion, process rates cannot be directly derived from gene
transcripts. Similar results were found by St riko et al. [370] for bacterial denitri cation in water
systems. Additionally, using a gene-centric model capable of describing bacterial dynamics more
accurately allowed me to derive better process descriptions of pesticide degradation, such as

carbon allocation of pesticides in Paper 3. Despite the high model uncertainty, | could verify that
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long-term predictions of hydroxyatrazine degradation after 30 years are better described with
traditional Monod-kinetics in combination with retentostat data and leaching measurements.
It is important to keep in mind that working with complex, mechanistic models poses several
challenges: the limited availability of data to validate model assumptions [75], the task of nding
the most suitable model representation for our problem ( true model ) [109], and of model

equi nality [73]. Section 10.2 will shed light on these challenges and outline possible solutions.

10.2 Challenges in mechanistic model development and how to overcome

them

Essentially, all models are wrong, but some are useful [371]. In my opinion, and based on
my own experiences throughout my Ph.D., this expression is valid for probably all model
applications. By working with mechanistic models, | found two main obstacles to model
development: i) the nature of mechanistic models and ii) the complexity of the systems to model.

This led me to explore the possibilities to overcome such obstacles.

1. Nature of mechanistic models : Marschmann et al. [73] thoroughly discussed the
sloppiness of biogeochemical models, stating that most model parameters cannot be
derived from data , making the models di cult to use for predictions or understanding
systems behavior. Therefore, Marschmann et al. [73] applied a sophisticated data-driven
method to derive less complex formulations (parsimonious model), whose parameters
can nally be inferred from data. As an alternative to Marschmann et al. [73], | used
a data-driven model reduction based on local sensitivity and identi ability scores in
combination with information criterion indices [101] to nd a potential parsimonious
model formulation. Despite the advantages and disadvantages of both methods, they
are suitable to obtain parsimonious model formulations and reveal structural model
weaknesses. Currently, the main drawback is that experimental techniques cannot produce
su cient informative data for comprehensive model reduction procedures, which are

necessary for further model development [75].
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2. Complexity of the systems to model : In addition to the sloppy nature of most
mechanistic models, our inability to comprehend complex systems directly translates to
limitations in model development. This limited knowledge and understanding of all the
processes involved in a particular problem [112], stems from our inability to measure all
elements connected to it [372, 373]. For example, for atrazine degradation, many bacterial
guilds are involved, but only a few have been identi ed. This leads to competing model
formulations, each representing valid degradation pathways, making the selection of the
true model, representing the active degradation pathway, a non-trivial problem [109].
This problem can only be tackled with more and better data; therefore, determining what
quality and quantity of data are needed plays an important role in developing more robust
models. In my thesis, | performed a prospective optimal design of experiments (before
the possible execution of the experiments) to determine the most informative data to
discriminate competing models of atrazine degradation in soil (Paper 4). Assuming that the
true model is in our set of models, optimal design becomes a powerful tool to overcome
equi nality, which arises when there are di erent valid model parametrizations for a
single model or several competing model formulations for a single problem. Additionally,
optimal design can be used to generate informative data to reduce uncertainty in model
predictions [111, 112], and to strengthen model calibration (through better parameter

identi cation).

10.3 Towards a predictive model: applicability and further extensions of the

work

The model formulations presented in this thesis are highly detailed in their formulation and
impractical to be used on large scale [374]. Itis important to consider that one of the aims
of modeling development is to end up with a predictive model, a model with the predictive
capabilities for practical applications, such as environmental fate modeling.

As the name suggests, predictive models are tools used to predict the behavior of chemicals,
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such as pesticides, in all compartments of the environment (soil, water, air, and organisms) [374].
Guided by the principle of parsimony [374], a predictive model should provide a simple but still
accurate description of the studied system, with modest dataset requirements for its functioning
and a low computational e ort to produce the simulations [375]. Such simple predictive models
are then used to estimate the degradation endpoints of parent compounds [65], supporting
environmental risk assessment [375] and decision-making [374, 376]. In the EU, predictive
models are commonly based on rst-order decay, ranging from simple rst-order models to
bi-phasic models (Gustafson and Holden model), that are able to incorporate the e ects of soil
heterogeneity into degradation dynamics.

Based on my work, | brie y recall the structure of my model development, as shown in
Figure 19, including potential steps towards develop a predictive model. | suggest that a
mechanistic process-based model can also provide the basis for developing a predictive model.
The process to reveal the relevant mechanisms for a predictive model includes several, non-
trivial steps and starts with the conceptualization of a theoretical model (Step 1 in Figure 19),
which is formulated from literature and expert knowledge. The individual model assumptions
of the theoretical model need to be validated against experimental data (Step 2 Figure 19), which
requires laboratory data. For further model development (Step 3 Figure 19), Steps 2 and 3 create
a feedback loop of data integration modeling, in which the theoretical model, through optimal
design of experiments, can be used to identify the type of experiments needed to maximize data
gain [112]. With better data, each iteration of calibration, validation, model reduction, and model
selection further re nes the model. After assembling the mechanistic process-based model, an
upscaling process is necessary for the nal development of a predictive model (Figure 19, Step

4),

136



10 General Discussion

Figure 19Modeling microbial regulation of pesticide turnover. Pipeline to develop a predictive
model. Steps included in this thesis are marked with red circles

A good starting point of assembling and upscaling a mechanistic process-based model for
pesticide degradation could be to improve the mechanistic PECCAD [43, 78] model. The
mechanisms identi ed in my thesis to control pesticide degradation, especially under low
concentrations (Section 10.1, Papers 1 to 3), can easily and directly be integrated in the PECCAD
model, complementing its descriptions of pesticide degradation in soils. For example, the
twofold regulation of microbial growth, as described in Papers 1 and 3 by the Hill function (for
regulated gene expression) and Monod kinetics (for the substrate dependency), can be easily
used to describe bacterial growth in the PECCAD model. Depending on the pesticide class,
Monod kinetics could be used to represent substrate dependency of growth because we found
that it can better describe pesticide persistence. Finally, the temperature function used in Paper
3 to account for the e ect of temperature on pesticide degradation can be coupled to all relevant
processes (growth, maintenance, death rates). Thus, the updated PECCAD model would o er
a comprehensive representation of the processes relevant for pesticide degradation in soils,
and at the same time, serve as a benchmark to compare simulations produced by simpli ed
expressions with.

Literature o ers several upscaling methods that could be utilized for pesticide degradation
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models. When upscaling the updated PECCAD model, it should be possible to simulate e ects of
microbial and pesticide heterogeneities, variability of soil properties, and other environmental
conditions on pesticide degradation in soils, all variable in time and space [377],. Chakrawal
et al., [378] distinguished three approaches for the upscaling of decomposition kinetics for
carbon cycling models, all of them applicable to pesticide degradation models: i) numerical
spatial averaging, which divides the domain into grids and solves the mechanistic model for
each grid. It is a computationally expensive method with a high demand of input data [379],
i) the e ective parameter approach, which consists in deriving e ective parameters to link
degradation rates across di erent scales [380], and iii) analytical upscaling, which relies on a
spatial averaging of the kinetic equations of small scales. However, the lack of the so-called
closure term for integration [378] makes the method still dependent on small scales, and
numerical integration similar to numerical spatial averaging is still needed. Out of the three, the
analytical upscaling could have the greatest potential for a successful upscaling of small-scale

pesticide degradation models if the closure integration problem could be solved.

10.4 Research perspectives: Deep neural networks

Machine learning techniques, represented by deep neural networks (DNN), have recently
begun to be explored as an alternative approach to develop predictive models [381] and
have the potential for pesticide degradation modeling. Machine learning can detect statistical
relationships between input and output along multiple spatial and time scales [381]. These
tools are currently used just for predictions, as done by Sigmund et al. [251], who predicted
Freundlich isotherm sorption parameters for carbonaceous substances with a deep neural
network. However, | believe deep neural networks could be combined with mechanistic modeling
approaches [381], for example, to assist in the identi cation of the processes responsible for
pesticide degradation. Also considering the advances in molecular biology, DNNs could be
applied to large omics datasets. A systematic analysis of omics information (metagenomics,

metatranscriptomics, metaproteomics, and metabolomics) could help to elucidate the structure
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and function of microbial communities [382] involved in pesticide degradation in soils. A
rst idea of how this combination could look in a model development process is presented in
Figure 20.

Adapted from Baker et al. [381], a DNN could be used with omics datasets to extract patterns
from omics data that will help us to reduce complexity in the development of a predictive model.
For example, microorganisms that use similar carbon sources or carry out similar degradation
processes in soils could be grouped as a single super bacteria. However, machine learning can
be prone to over tting, which would result in a low predictive capability of the neural network.

To avoid that, the mechanistic model would serve as a surrogate model that could capture
known relationships and provide them to the DNN [383]. In a next step, the DNN could even
be used to extract model parameters [251] or approximate the analytical solution of biokinetic
equations [384]. For that, a training step of the DNN should be performed, combining the
original data with the insights learned from the mechanistic model. After the validation, the
neural network could be used for predictions. With such a modeling approach, the DNN could
potentially bridge the gap between di erent scales, providing us with a promising direction for

future research in the modeling of (microbial) regulation of pesticide turnover in soils.

Figure 20Theoretical pipeline to derive large scale predictions combining machine learning
techniques and mechanistic modeling approaches. Adapted from Baker et al. [381].
Further information on Kbase tools can be found in the Kbase website
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11 Appendices

11.1 Supplementary Information for Chapter 6 (Paper 1)
11.1.1 Model Formulations for reduced Models

The full version of the governing di erential equations for our proposed models are the

following:
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Where the degradation rate coe cientp is:
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11.1.2 Methods: Sampling data points

Table S1: List of sampling points batch degradation experiments

2,4-D MCPA

Days Mineralization tfdA transcripts tfdA genes | Days Mineralization tfdA transcripts tfdA genes
2 X X X 1 X X
6 X 4 X
8 X X X 7 X X X
9 X 11 X
10.6 X 14.4 X
11.8 X 17.4 X X X
12.8 X X X 22 X
14 X 27 X
14.7 X 33 X X X
15.8 X respike
16.6 X 33 X
17.6 X 33 X X X
19.7 X 33.1 X X X
22.7 X 33.4 X X X
24.7 X X X 34 X X X

respike 345 X X X
24.9 X 36 X X X
251 X X X 39 X X X
253 X 43 X X X
25.7 X X X 46 X X X
26.2 X X X 53 X X X
26.7 X X X 67 X
27.1 X X X
27.7 X
28.6 X X X
29.7 X
33.6 X X X

11.1.3 Methods: Local and Global Sensitivity and uncertainty analysis

Local and Global Sensitivity

Sensitivity and uncertainty analysis
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1. Sensitivity coe cient (SC): Local sensitivity analysis evaluates the changes on model
outputs based on small changes on the model parameters, and is calculated as the rst
derivatives of model outputs with respect to model parameters [200]. This focused
analysis leads to a straightforward interpretation of the results [199]. We solved the
sensitivity equations for the state variables and the parameters to obtain exact time-series

of the sensitivity:

i Yip+ pl* Yipl

S:
Pj p

(28)

WhereY; representsth the model output, angy the jth parameter. We calculated a

dimensionless relative sensitivity coe cient[101]:

_Yi.pt p/*Yipll p

3 p Yi.p+ p/

(29)

These values are calculated per time point, so the overall sensitivity measure per parameter

is calculated as follows:

w

§= E S

’ (30)
The distinction between high and low leverage parameters is arbitrary and based on the

obtained coe cients.

2. |denti ability scores (IS): We followed the orthogonalization method from [100] to evaluate
the estimability of our parameters based on the experimental data available [128]. We
rst calculated the sensitivity coe cient matrix Z for each parametgrfor each measured

pointi based on the relative sensitivity coe cient§ [101]:
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r
r
r <2 ;
Z=y S (31)
r
r
r

From this matrix, we selected the parametg@h(column) X; with the highest square
root of sum of squared of the column elements. This parameter is de ned as the most
identi able parameter. To account for the in uences of the additional parameters, [100]
suggested to project each column of Z onto the coluXy) and collect the residual in a

residual matrixReswith the same dimensions as the Z matrix:

RessZ* X, X! Xyt X[z (32)

This process is repeated for the second most identi able parameter based on the second
highest square root of sum of squared of the column elements, and the process continues

until all the parameters have been classi ed.

The distinction between high and low identi ability of parameters is arbitrary and based

on the obtained scores.

. Percentage error of the estimation (PE): We determined the Cramer-Rao inequality
estimator as an alternative con dence interval for our parameters [385]. We calculated a

second Fisher information matrik | M weighted by the covariance matrix:

FIM=S' W S (33)

WhereW is the inverse of the covariance matrix [101]. The 95% con dence interval [385]:

0
Cl=196 FIMYI (34)
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We reported the error per parameter:

Cl 100~

~Error= (35)

Percentage errors higher than 100% represent poorly characterized parameter estimations.

4. Correlation matrix: We calculated the correlation of our parameter using the covariance

matrix cov.JT J/1:

corr; w% (36)
CoV;i COY;

Global sensitivity analysis

Unlike a local sensitivity analysis, which only evaluates the impact of small changes on
model outputs, a global sensitivity analysis evaluates changes within the entire parameter
space [239], varying all the parameters together [105] to have a more robust information of the
importance of the model parameters regarding the model outputs [201]. The Morris method
[106] or elementary e ects method is a partially global and inexpensive method for screening
the important parameters for a high dimensional problem [103, 105]. This method generates
two sensitivity measures: the mean of the elementary e ects drand the standard deviation
of the elementary e ects or [201], calculated by averaging continuous local sensitivities over
the parameter space [103, 107f.describes the overall impact of the individual parameter on
the model output, whereas estimates interactions with other parameters [103]. This method
is not a global sensitivity analysis method, but it is more detailed than just a local sensitivity
analysis. “and are analyzed together de ning parameters with a negligible e ect on the
model outputs (small<and ), parameters with a linear e ect (“higher than ), and non-linear

e ects or parameter interactions (higher than < and both higher values) [73, 103].

147



11 Appendices

11.1.4 Additional Results

Model Calibration on MCPA data

Figure S1Model calibration on MCPA data. Time series of pesticide mineralization (Atfe4,
MRNA copies (transcripts) per g of soil (C, EfJA DNA gene copies per g of soil (E,
F). Error bars show the standard deviation of the data and of the simulations (based
on MCMC ensembles, see Material and Methods 6.4.2)
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tfdA gene dynamics for both pesticides (2,4-D and MCPA)

Figure S2tfdA gene dynamics for VO (A, Al, A2), V1 (B), V2 (C). V1 and V2 only include
dynamics of 2,4-D calibration dataset. Panels showed the mean value of the
corresponding dynamics (bold line) and the 95% con dence interval (based on MCMC
ensembles, see Material and Methods 6.4.2)
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Figure S3tfdA gene dynamics for V3 (D, D1, D2), V4 (E, E1, E2),V4' (F, F1, F2). Panels showed
the mean value of the corresponding dynamics (bold line) and the 95% con dence
interval (based on MCMC ensembles, see Material and Methods 6.4.2).
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11.1.5 Residual pesticide (2,4-D and MCPA) concentration in soil

Figure S4Total residual pesticides in soils for 2,4-D and MCPA for models: VO (A, Al, A2),
V1 (B), V2 (C): Panels showed the mean value of the corresponding dynamics (bold
line) and the 95% con dence interval (based on MCMC ensembles, see Material and
Methods 6.4.2)
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Figure S5Total residual pesticides in soils for 2,4-D and MCPA for models: V3 (D, D1, D2),
V4 (E, E1, E2), V4' (F, F1, F2). Panels showed the mean value of the corresponding
dynamics (bold line) and the 95% con dence interval (based on MCMC ensembles,
see Material and Methods 6.4.2)
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11.1.6 Local Sensitivity Analysis of reduced model variants

Table S2: Uncertainty analysis for V1 for 2,4 D data.

Parameter  Best Fit SC IS PE MV SD
a 0.9 1.1¢ 1.11C 32.6 0.4 0.2
max 0.6 477.0 60.2 65.2 101.9 45.4
Nep 1.0 94.0 14.9 117 0.9 0.1
Yp 0.4 49.8 31.3 321.6 0.1 0.04
fi 7.910% 394 1.4 376.7 3PN 14
Ke 9.310% 32.0 0.02 3.71C¢ 0.05 42.4
8, 0.1 27.6 4.8 54.9 0.3 1.2
Ny 4.8 16.0 0.9 184.1 1.6 0.7
fr 0.02 13.0 6.4 271.3 4.0 511
Kwm 2.310% 7.3 3.910° 4.01¢ 2.810° 28.4
Kep 0.1 2.6 1.010° 2.11¢ 0.1 3.8

acop 0.9 1.5 0.4 367.7 0.5 0.2
as 67.2 5.210° 3.410%® 161 3.110% 7.4

SC = Sensitivity coe cient, IS = Identi ability score, PE = Percentage Error, MV and SD = mean value and standard

deviation of the estimation fronDREAM, 5. Parameters highlighted in yellow are suggested to be reduced.
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Table S3: Uncertainty analysis for V2 for 2,4 D data.

Parameter  Best Fit SC IS PE MV SD
Nep 0.8 1.9 8.61C° 87.2 0.9 0.06
max 0.5 514.6 228.2 35.9 0.5 1.2
K 2.210% 51.1 0.1 6.0 2.1107 159.5
Kep 0.4 48.8 4.60* 6.01C 0.2 4.6
Ye 0.2 44.1 17.5 1P 0.3 0.05
a 0.1 40.4 6.5 51.6 4% 10.9
f1 2.410%1 40.3 0.0 1.3¢ 8.310 13
Ny 5.2 19.5 1.5 192.4 4.7 3
fr 0.02 13.0 7.9 53.9 0.01 1.3

acop 0.6 0.04 5.010° 1.31C 0.5 0.2
Kwm 1.210° 5.510°% 2.710° 1.310" 6.310° 10.2
ki 30.7 2.710°% 1.2104 1.81¢ 0.7 1.3
g 2.810° 1.310'* 2.110%* 8.01¢ 2.110° 24.9
Cr 5.410° 0.0 0.0 0.0 3.810% 2.9
Ky 0.6 0.0 0.0 0.0 0.4 1.3

SC = Sensitivity coe cient, IS = Identi ability score, PE = Percentage Error, MV and SD = mean value and standard

deviation of the estimation fronDREAM, 5. Parameters highlighted in yellow are suggested to be reduced.
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Table S4: Uncertainty analysis for V3 for 2,4 D data.

Parameter

Best Fit SC IS PE MV SD
Nep 0.8 2.a¢ 2.01¢ 104.9 0.9 0.1
max 0.5 5175 231.6 35.8 0.5 11
Kep 0.5 52.9 5.60* 4.61C 0.1 4.0
Ke 1.810% 51.2 0.1 510 4.610* 2.3
Yp 0.2 43.9 17.5 968.8 0.2 0.1
Ay 0.1 40.6 6.5 54.4 0.1 1.2
f1 2.3104 40.4 0.02 11¢ 3.5101 1.6
Ny 53 195 15 139.4 5.7 13
fr 0.02 13.0 7.9 28.3 0.02 1.2
acoy 0.6 0.04 4.710%° 1.21¢ 0.5 0.2

SC = Sensitivity coe cient, IS = Identi ability score, PE = Percentage Error, MV and SD = mean value and standard

deviation of the estimation frorDREAM, 5. Parameters highlighted in yellow are suggested to be reduced.

Table S5: Uncertainty analysis for V4 for 2,4 D data.

Parameter Best Fit

sc IS PE MV SD

Nep 0.8 1200 12100 1131 0.9 0.1

max 5254  1.1C 8.810° 758.4 23.8 64.3

K 0.7 987.2 6.9 118 9.410° 209.4

Kep 0.1 3235 140* 3.61C 0.2 3.6

a, 0.4 179.9 36.9 44.0 0.2 1.8

\ 0.1 42.2 5.6 860.7 0.3 0.2

f1 9.610%*  40.4 0.0 971.2 4.4101 2.9

fr 5.810°  13.0 7.6 35.6 4183 1.2
acop 0.4 0.0 1.110° 1.410 0.5 0.2

SC = Sensitivity coe cient, IS = Identi ability score, PE = Percentage Error, MV and SD = mean value and standard

deviation of the estimation fronDREAMzs,. Parameters highlighted in yellow are suggested to be reduced.
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Table S6: Uncertainty analysis for V4’ for 2,4 D data.

Parameter  Best Fit SC IS PE MV SD
max 0.5 388.8 388.8 2259 0.6 1.1
Yp 0.5 49.1 27.5 116.8 0.5 0.1
Nep 0.9 27.2 0.2 1 0.9 0.1

f1 1.110 251 0.7 2157 1uU0Y® 14

a, 0.1 22.3 8.9 142.4 0.1 1.2
Kwm 1.810* 5.3 1.410* 1.11¢ 9.010° 3.9
Kep 0.1 0.8 1.610% 3.910 0.2 4.0

acop 0.5 0.4 0.0 320.9 0.4 0.2

SC = Sensitivity coe cient, IS = Identi ability score, PE = Percentage Error, MV and SD = mean value and standard

deviation of the estimation fronDREAMzs,. Parameters highlighted in yellow are suggested to be reduced.

11.1.7 Global Sensitivity Analysis Results - Morris Method

Figure S6Morris Method results for VO. X axis shows the model parameters and Y axis shows
the outputs chosen for the Morris analysis
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11.1.8 Prior and posterior distribution of the model parameters on 2,4-D and MCPA

data

Posterior distribution of the parameters of VO for 2,4-D and MCPA data [117]

Figure S7: Prior and posterior distribution of parameters (1-9) for VO with 2,4-D data
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Figure S8: Prior and posterior distribution of parameters (10-17) for VO with 2,4-D data
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Figure S9: Prior and posterior distribution of parameters (1-9) for VO with MCPA data
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Figure S10: Prior and posterior distribution of parameters (10-17) for VO with MCPA data
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Posterior distribution of V3 for 2,4-D and MCPA data

Figure S11: Prior and posterior distribution of parameters (1-6) for V3 with 2,4-D data
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Figure S12: Prior and posterior distribution of parameters (7-10) for V3 with 2,4-D data
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Figure S13: Prior and posterior distribution of parameters (1-6) for V3 with with MCPA data
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Figure S14: Prior and posterior distribution of parameters (7-10) for V3 with with MCPA data
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Posterior distribution of the parameters of V4 for 2,4-D and MCPA data

Figure S15: Prior and posterior distribution of parameters for V4 with 2,4-D data
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Figure S16: Prior and posterior distribution of parameters for V4 with MCPA data
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Posterior distribution of V4’ for 2,4-D and MCPA data

Figure S17: Prior and posterior distribution of parameters for V4’ with 2,4-D data
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Figure S18: Prior and posterior distribution of parameters for V4’ with MCPA data
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Posterior distribution of the parameters of V1 for 2,4-D

Figure S19: Prior and posterior distribution of parameters (1-9) for V1 with 2,4-D data
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Figure S20: Prior and posterior distribution of parameters (10-13) for V1 with 2,4-D data
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Posterior distribution of the parameters of V2 for 2,4-D

Figure S21: Prior and posterior distribution of parameters (1-9) for V2 with 2,4-D data
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Figure S22: Prior and posterior distribution of parameters (10-15) for V2 with 2,4-D data
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11.1.9 Correlation matrix of model variants

Figure S23Correlation matrix for full model VO.

Figure S24Correlation matrix for the model variant V1.
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Figure S25Correlation matrix for the model variant V2.

Figure S26: Correlation matrix for the model variant V3.
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Figure S27Correlation matrix for the model variant V4.

Figure S28: Correlation matrix for the model variant V4.
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11.2 Supplementary Information for Chapter 7 (Paper 2)

11.2.1 lllustration of the degradation rate vs. Substrate concentration for both model

variants M and T:

Figure S29%llustration of the degradation rate vs. Substrate concentration for both model
variants M (1) and T (2) at high concentrations and low concentration (inset), for
kny =71 dtandK{Y =20 gL™

11.2.2 Determination of correction factor:

In this section, we show the determination of the correction factor for the inner pools. For the
atrazine (AT) pool, we started with a mass-based formulation of each pools. We deved
as the total volume of the reactor aris as the total volume of bacteria. Due to the fact that
Vg is negligible compared t&g, we assumed that the total volume equals tie. We referred
the concentration of cell€g to the total volume 0VR, so that the total mass of cell$/g) is

Mg = Cg Vr. Inturn, the concentration of AT inside the cell are referred¥g, so that the mass

of AT (Mjy7) equalsMj; = Ciy  Va. In the same manner, correction factors for the metabolite

hydroxyatrazine and the di erent AT isotopologues can be calculated.

1. First step: Mass-based model formulation of AT:
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Mi
i i ki Mg AT
dMar M Mo Mar 0 Vg
dt e ovR W1l M},

AT
(())))))))))))))))))))))))))))ﬂ)))))))lﬁl)*) IIIIIMOIX

(37)

Imasstransfer «>>>»)>>»»»)ﬂ)»»)»»»»x

rAT
degradation
2. Second step: Deriving concentration formulation for AT:

Mi

. ki M AT

dMAT =re Mg MXT * M,IAT * ' ° _VB
dt e 0Ve VWl M

I AT
(())))))))))))))))))))))))))))ﬂ))))))) 1)'*) IIIMIIX

Imasstransfer «>>>>»»)»>>>>f|>>>>»»>»»>x

rAT .
degradation

d.Chr Vol _ e Cs Ve C%*Ch K Ce VR Chr 38)
dt (O))))))))))))))))))))))))))))ﬂ)))))))))KX}Sk)Q ))))fg))x

r (0))))))))))))))))) IIIIIIIIIIIIMIIIX
masstransfer

rdegradation

Applying the product rule to the left hand side of S2:

dCr | o %—reCBVR o * Ci ki G Vr Cy

C (39)

AT

dt dt (()))))))))))))))))))))))))))))ﬂ)))))))))KX};b)Q )))fB))X
(())))))))))))))))))) IIIIIIIIIIINIIINIIIXK

VB

Imasstransfer
degradation

K Vk C Vi
dOAT=reCBVR CRr * Chr * L RCAT*C dve

A
dt (()))))))))))))))))))))))))))))ﬂ)))))))))KX);';)QAT)))) »X dt
KOIIIOO35333305535 5 PI33333335353335555X

Vs (40)

Imasstransfer
AT
rdegra\dation

Dividing by Vg:
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dGy _Te C8 VR CQr*Cyr , ki G Vr Cir, Cir dWe (41)

V K1+ Ch/ V V| d
«»>>»>>>>»)»%»»»»»»ﬂ»»QMW 5 P>
AT

r

Imasstransfer ré-\-::rgradation correction

VE G Ve Ve _ VB Vr dGe

ReplacingVg = :
epacingve fcell dt fcell dt

dCyr _fe Gs VR Cr*Cir , ki Gs Vr Ciy

- Vg Cs VR

at VI Cs VR (42)

cell cell
(()))))))))))))))))))))))))))))fI))))iO)))))))))))))))))))))))))))))))))))))))))))))))0))))ﬂ))))))))))))))))))))))))))))X
r AT
mas$transfer rdegradation
i u
u
fcell
(()))))))))))))))))))))))))))))))))fI)))))))))))))))))))))))))))))))))(

rAT X
correction

where:fqe is a conversion factor from cells to carbowi, [L] is the volume of a single

bacterium settdl 101° [63].

3. Third step: Final concentration formulation for AT:

deAT _ 0 % (i fcell* I<1 C,iAT fcell
at =re Car* Car VU 7.K1+C}\T/ v (44)

KOII33O33333305553535553 5 35D DEOMMMMMMMMMMMMMMMMMIAREDDD>>>>>>>33333>>XK

Imasstransfer r@ggradation

« Cir 4G

CB }
KOOI I))))))))))(

(AT
correction

11.2.3 Determination of standard deviation of data 2 (eq. 74 of the main text)

Since we only had two replicates (two reactors) for each observation in both systems (chemostat
and retentostat), as described by [63, 238], we rst calculated the mean, standard deviation and

coe cient of variation per observation type and dilution rate, using both replicates at steady
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state. Because for some dilution rates, only one repetition was measured, we determined a mean
coe cient of variation for AT and HY measurements, and one for biomass to recalculate the

standard deviation of each dilution rate and observation type (egs. 36 and 43 in the main paper):

Table S7Recalculated standard deviations for chemostat and retentostat calibration based on

[63, 238]
Original Recalculated
Observation type| Dilution rate Mean Std Cv Std Cv
AT[ gL C1=0023 78 19 002 33 004
C2 =0032 9@ 00 000 39 004
C3 =0048 23% 49 002 97 004
C4 = 0056 299 121 004
C5 = 0068 440 57 001 183 004
HY[ gLl C1=0023 24D 7.07 Q03 99 004
C2 =0032 35D 382 011 144 004
C3 =0048 41%6 247 006 170 004
C4 = 0056 490 201 004
C5 = 0068 710 354 005 293 004
Cells[cell L™} C1=0023 23 100 | 22 1 010| 16 1 004
C2=0032 24 10° | 23 1¢ 010| L7 1¢ 007
C3=0048 26 10° | 71 10 000 | 18 1 007
C4=0048 27 10°° | 85 1¢ 003 | 19 1C¢ 007
C5=0068 21 107 | 85 1¢ 004 | 15 10 007
AT[ gL R1 =002 129 0:6 Q05 05 Q04
HY[ gl R1 =002 125 07 006 05 004
Cells[cell L™ R1 =002 25 10" | 39 10°° 016 | 1.8 10° 007

Std = Standard deviation, C.V = coe cient of variation de ned by the standard deviation divided by the mean. Blank

cells means that one one repetition was taken
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11.2.4 Soil Observations in Poltringen and Tailfingen, Germany

Pesticide Inventory

Table S8: Pesticide Inventory - Atrazine and Hydroxyatrazine in soils

Sample | Atrazine [ gkg™] Atrazine-2-hydroxy [ gkg™]
P0-30a 0.3 2.2
P0O-30b 0.5 1.5
P0-30c 0.2 2.7
Mean 0.3 21
TO0-30a 0.7 1.7
TO-30b 0.6 2.0
TO-30c 0.6 2.1
Mean 0.6 1.9
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Sorption test results

Table S9: Sorption test results

Poltringen Tail ngen
AT conc. [ g/L] | Cw*[ g/L] Cs*[ g/Kg] | Cw*[ g/L] Cs*[ g/Kg]
0.027 0.43 0.033 0.67
0.06 0.026 0.43 0.032 0.67
0.028 0.43 0.030 0.68
0.260 0.66 0.269 0.89
0.4 0.268 0.65 0.258 0.91
0.299 0.58 0.268 0.89
2.344 4.18 3.881 1.34
4.0 2.387 4.06 2.537 4.03
2.452 3.95 2.292 4.52
22.688 27.57 21.109 30.61
36.0 22.686 27.26 22.237 28.27
22.575 27.48 28.575 15.78
246.709 346.73 214.333 407.25
420.0 228.472 379.72 276.396 285.26
370.428 313.689 209.25
2364.020 1225.239 1680.72
2060.0 1631.287 900.84 1445.130 1241.42
1274.485 1590.91| 1353.376 1418.81

* equilibrium concentrations after 13 days. AT = atrazine
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Determination of sorption parameters

Figure S30: Sorption tting for both study sites

11.2.5 Seepage pesticide (atrazine and hydroxyatrazine) concentration results

Concentrations of atrazine and hydroxyatrazine at the two location were on averaga@Lf?

and 10 ng EL, respectively.
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Figure S31Seepage water ux at A. Poltringen and B. Tail ngen at 50cm depth measured at 2019.
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11.2.6 Calibration to chemostat and retentostat data of alternative Monod-Model

Figure S32Simulations (boxplots) using model variant M (including Monod-kinetics) and
measurements (blank diamonds + estimated standard deviatidnlC. Steady-
state concentrations for the chemostat (for ve dilution rates: C1-C5: 0.023, 0.032,
0.048, 0.056, 0.068") and the retentostat (dilution rate: R: 0.0B8"). The middle
line in the boxplot is the median of the ensemble outputs from the MCMC (see
M&M 7.4); boxes represent 25% and 75% percentiles, and whiskers corresponds to
+/- 1.5 X IQR (interquartile rangep. Enrichment factors"(), reported only for the
lowest dilution rate of the chemostat (C1) and retentotstat (R), but simulated for
C2-C5.
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Figure S33Posterior distributions for calibrations with chemostat (8 parameters) and retentostat
(4 parameters) data. All parameters are expressed n log scale with the exception of
the parameter Y.

11.2.7 Correlation tables

Table S11: Parameter correlation for model variant T data using MCMC ensemble
Kar KGT kay  KHEY m Y fen e Kat KEY feen  Te

kar | .00 012 1.00 0.01 0.4z -1.00 -1.00 0.07| 024 0.18 -0.44 0.44
K4T | 012 100 0.07 014 -042 -0.08 -005 00817 052 042 -0.42
key | .00 0.07 1.00 0.09 042 -1.00 -1.00 0.07| 024 0.18 -0.45 045
K#Y | 001 014 0.0¢ 1.00 -0.26 -001 0.00 -0.030.12 0.36 026 -0.26
m 042 -042 043 -02 1.00 -043 -045 00f 047 -0.78 -0.99 1.00
Y -1.00 -0.08 -1.00 -0.01 -0.4¢! 1.00 1.00 -0.07| -0.24 -0.18 0.45 -0.45
feen | -1.00 -0.05 -1.00 0.00 -0.4° 1.00 1.00 -0.07| -0.25 -0.15 0.47 -0.47
re 007 0.03 007 -003 0.7 -0.07 - 1.00| 0.04 -0.03 -0.07 0.07
kar | 024 -017 024 -0.12 047 -024 -0.25 1.00 -0.35 -0.47 0.44
KiY | 018 052 018 036 -0.78 -0.18 -0.15 -04@835 1.00 0.77 -0.77
feen | -0.44 042 -045 0.2 -099 045 047 -0.07-047 0.77 1.00 -1.00
re 0.44 -042 045 -0.2 1.00 -045 -0.47 00f 044 -0.77 -1.00 1.00

Diagonal highlighted in light green; highly correlated parameterg ¢ 0:80) highlighted in light blue.
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Table S12: Parameter correlation for model variant M data using MCMC ensemble

Kar Kt kay  KEY m Y fen  re Kar KEY e Te

Kar 1.00 -009 034 -052 0.5-1.00 -098 0.07f 023 -042 -0.69 0.69
KGT | -0.09 1.00 0.15 033 -065 0.15 024 (0.0D.19 064 0.64 -0.64
kay | 0.34 015 1.00 061 006 -0.35 -0.31 -0/0#.02 050 -0.06 0.06
Ki#Y | -052 033 061 1.00 -0.60 053 056 -0.080.20 0.85 0.59 -0.59
m 0.70 -0.65 0.06 -06 1.00 -0.70 -0.77 0.0f 0.31 -0.83 -0.99 0.99

Y -100 0.15 -035 053 -0 1.00 0.99 -0.06/ -024 042 0.70 -0.70
feen | -0.98 0.24 -031 056 -0 099 1.00 -0.07/ -0.26 0.50 0.77 -0.77
le 0.0 0.01 -004 -009 0.07 -0.06 -C 1.00| 0.03 -0.08 -0.07 0.07
Kar 0.23 -019 0.02 -020 031 -0.24 -0.26 1.00 -0.26 -0.31 0.23
KiY | -042 064 05C 085 -0.83 042 050 -0.08-026 1.00 0.83 -0.83

feen | -0.69 064 -0.06 0.5 -099 070 0.77 -0.07-0.31' 0.83 1.00 -0.98

le 069 -064 0.06 -05 099 -0.70 -0.77 0.0f 0.23 -0.83 -0.98 1.00
Diagonal highlighted in light green; highly correlated parameters ¢ 0:80 highlighted in light blue.

11.2.8 Global sensitivity results

Morris Method

Figure S34l; * norm values from Morris Method [73, 105] for thermodynamic and Monod
Model
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Sobol indices

Figure S35Sobol Indices [202]: 1: Final Biomass, 2 Final AT in the system:, 3 Final AT inside
the cell:, 4: Final HY in the system, 5: Final HY inside the cell, 6. Enrichment Factor
"L
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11.2.9 Local sensitivity analysis
11.2.10 Alternative model structure for engineered systems

Model description

Figure S36Alternative model structure for engineered systems, including a pool of growing
and non-growing bacteria.

Governing equations

1. Growing bacteria@g)

A maintenance . a
))))))))))))))))))))))))))))))))))f[))))))))))))))))))))))))))))))))))

dG £ Ky C|'_| CH S S ASIBLRE R rrsroea®
- Yg * * YQ * * * / k
—— =G ory—~— Y* 1 mY “*rp A* ¢ kas
dt KHY + CH Y H Khy + CH Y I Osfbrsrx p
r«>>>>>>»»»»»)ﬂ))>>>>>>>>>»>>>x fractionfiltered s
p growth q

+ ng C?
(()))))))))) g»»»»»x
activation

(46)
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2. Non-growing bacteriang)

S maintenance . "
>>>>>>>>>>»>>>>>>>>>>>>>>>>>>>>>>f|>»>»»»»)»>>>>>>>>)>>>>_>>>§’>>
r . actlvatfo «
dG, r C y SOOI
9 _ * * ng * * *
dt r H Kuy + CHYng I <0»»fhrrx¢ g COMMMIIMMMIMINNIDININININIININIX
r fractionfiltered s deactivation

(47)

3. Light AT isotopologue inside growing bacteri@,'(Tig)

. degrad ation .
DI »»»»»»»»ﬂ»»»»)>>>»msx%wmf>ei»

3333533535333355355353333535f13355333333553333335553>53>3>"
dc, KaT c f f
ATig _ & ‘ATig cell cell I % Al
dt - K +CI +Ch VU tre Vu CATo CATi
AT T ZAT T MATy B B

ki Chr Cng Chr
1% o kg Chp +19 1 Al 9, AT, dG (48)

«»))))»)))_))»_))))>)fﬂ>))2?9????99?>)>§>§??>3>>»)fI»x»»»C»B»»»»»h»»»o»>»>>>x
deactivation activation correctionfactor

4. Heavy AT isotopologue inside growing bacter'@ﬂeig)

' Jegradation sssfi 53858 $5aSbe"
22333333353353333533333335355 I))>)))))))))))))))))))))))))))))))))))))))f|))))))))))))))))))))))))))))“

Kat CRTig feell

1:cell
Llire Chp *Chr
dt KaT + C/'mg + cRTig Vg 0 i

4

ng Kr CRTing Cng*CRTig dGs

h
*1* g/ Kqg CA-¥IQ+ Cs 0 dtl (49)
€0222232532533> »))28???9?????%?%()»»)fl»« 55555555555555555¢
deactivation activation correctionfactor

5. Light AT isotopologue inside non-growing bacteri@'A(rmg)
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' Jegradation fi SPRSSIIANSS BH
22333333333533333333333353333553 I)))))))>)))))))))>)))))))))))))))))))) )))fl)))))))))))))))))))))))))))))

|
4G =* kAT| i h f%” +re  Chy, * Chr, f%”
dt Kat + Gy, * Caring V3 Y/
A1* 4/ kg Chy. Cs Chr d
p 2T A Bk Gyt S g
(O))))))))))))))))?B))))QND))))Q dt 1

«>>>>>)>>»)>>>>g»>>>>>>>»fI»»»)gEﬁ)éﬁ&R»>>xx»<>>>>>>>>>>>>>>>>>>f|>>»>>>>»>»»»»x
deactivation correctionfactor

6. Heavy AT isotopologue inside non-growing bacter@R{mg)

»>>»>>»»»?)>»»>»»»>>>f|»>»»»)»»mﬁs%tmrssfﬁs)“
33335553333353533335533333555f13333355333335553333555333355>

h
dCRng o Kat CAng feell +re Ch *ch feell
dt - Kar + C| + Ch AVAY ATo ATing AVAY
AT T MATing * “ATing B B
* h h
+ ng Kr Car, Q “dt 1 (52)
g <>>>>>>>>>>»>>»>?B»»Qﬂ >X
«>>>>»>)»>»>>»>>>>»>>>ﬂ>»>>>>§3ﬁ>§ >>>>xx»o>>»>>>>>»>>>>>>f|>>>»>>>»»>>»>>»<
deactivation correctionfactor

7. Light AT isotopologue outside bacteri@XTo)

masgtransfe masgtransf
q C' »)>>>»>>>»)>>>»>>>9»>f|>>>>>5»»»»»)»»»»3%g)>>f|>>»>>>»»»»»»»»)»»
ATo _ | | |
°= p .G *Cy/ *re Cu *Cir, GCg*re Cy *Cup,, GCog (52)
dt «>>>)>>>>>>>>>»>‘f|>>>>»>>»>>>»x

input* output* of*system

8. Heavy AT isotopologue outside bacter@RQo)

masgtransfer 9 masgtransf%g 9
'53333335335333335555353555{15553>5333333339539339393555>5>>5f1>33533333355533333553333555>

dCRTo - h« ~h | * * * h
- rD CI C re CATO CAT, CB re CATO CATing Cng (53)
dt «)))»)))))))))» IOI55555555555552¢
input* output* of*system
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9. HY inside growing bacteriaqwg)

. | A
d q"Yg — Kar CATig feell + KaT CATig feell
a [ h u [ h U
dt  Kar+Cyp +Cir, VB Kar+Cup +Car Vi
COPIIIIIIIIIIIIIIIIIIIIIIIIIINIIIIIIIINIININIIIINIINIIIINNIIDIIII333335555535555553355353555535535>33>53
Input* AT
i
* M feen +re Gy, * C, feell
Khy + C||_| Y vY 0 Yg vy
«)))>)»»))))))g)»»»Fﬁ»»sww»»»»»>> 535555533555553335555333>>55X
Degradation Masg TransfetHY
i
i ng K Giy,y Cng
* * | ng

«)»)))»)))))))))»))ﬁ%)))?6)???%)???&%??)3)»»fl»)»»)»»))>>>>)>>><

deactivation activation

m Cli—wg feen , Cli—wg dCB (54)
HKyy + C'i_w | vg Cg O dt1l
«»»»)»»»)»»g>»»>>>>f|>>>>§9>)>>>>>)>)>)>>>)>>>)>)>)>>>>>)>>ﬂ33 LL0L2002002008

Maintenance CorrectionFactor

*

10. HY inside non-growing bacteriqyng)

i | h
dQYng _ kAT CA—l—ing fcell kAT CATing fcell
- | h u | h u
dt Kar +Carp Gty VB Kar +Cyp +Car o VB

COIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIINNINNININIININNIIMIININIDII33553353353353355355553353335555555
Input* AT
i

. Khy CHYng fcell fcell

i
——— —+re Cyy* ==
KH Y + C||_| Y, \Y u © CH Yng V u
«»»»»)»»»nfi»)»)?b»)@;;mm»»»»»» 1595959553995953995955555539554
Degradation MasgTransfefrHY

+

i
“ng ke Gy,

g (O))))))))))))))))?B)))))))))))))))X
(())))))))))))))))))))))))))fI)))))))36%?\%5{?6??))))))))(

deactivation
i i
m CHYng fceII * CHYng dQ’lg

. — 55
HKiy # Gy | VR Gy 0 dt1 9
«»)»>>>>>>>»»>»»»»»)ﬂ»»ﬁWWl’)’??»»»»»»»X

Maintenance CorrectionFactor

*

11. HY outside bacteri&(y,)
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Fractjorileaving' system ,
d.Cq PI255995597 11995399999
. Yo

— i i
T =*re CHYO*CHYg Cs*re CHYO*CHYng Cng *op Gy,
0>355355355555555553555:5 55 b X0 >53333553355333335335533365555Fb3>53353355355335353535335533>%
Masg TransferHY*g Masg TransferHY*ng

(56)

Combined calibration of retentostat and chemostat results using Simulated annealing

from Matlab

Figure S37: Chemostat and Retentostat t: Atrazine, hydroxyatrazine and biomass

Figure S38Chemostat and Retentostat t: Enrichment factor. Dashed line indicate the
enrichment value for chemostat -5.4and retentostat -0.45
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11.3 Supplementary Information for Chapter 8 (Paper 3)

11.3.1 Main characteristics of the sampled soil

Table S15: Chemical and physical soil properties

Soil Horizon  Depth pH Corg Nitrogen Phosphate Sand Silt Clay

Ap [em] [CaChl [mgg™] [mgg™] [mgg™ [%] [%] [%]
0-5 6.48 18.4 2.1 1.038 226 72.04 238

11.3.2 MCPA degrader abundance and activity

Table S16: Reverse transcription

Reaction Mixture Temperature pro le
reaction 1 11 | DNA digestion sample 5 min at 66
(+ and - sample) 1 random primer >=1minat4
1 IdNTPs
reaction 2 Preparation (+ samples): 5 min at £5
4 | 5x First Strand Bu er 60 min at 5C
1 10.1MDTT (100mM) 15 min at 10
1 IRNase OUT Cool down at@

1 Ireverse transcriptase (200 U/I)
13 Ireaction 1
Preparation (- samples):
4 | 5x First Strand Bu er
1 10.1 M DTT (100mM)
1 IRNase OUT
1 | DEPC water

13 Ireaction 1
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Table S17: Digestion

Procedure

Reaction mixture

Temperature pro le

Incubation

20 L RNA sample

30 min at 3€

2.4 L 10x Turbo DNA bu er

1.6 L Turbo DNase

DNase Inactivation

0.16 Vol Inactivation reagent

5 min at room temperature

11.3.3 Model parameters

Table S19: Model Parameters

Hierarchy Parameters  Units

Description

Range

C
C

fr transcripts geng'

Ny -

Kg mmol cni?
max d

a a

A -

m d

K mmol cnT?

aco d

fa mmol gené!

Qo -

(o] geneg!

Conversion factor transcripts per gene [10° 1F]

Hill exponent

Hill constant

Maximum growth rate coe cient
Decay rate coe cient

Yield coe cient

Maintenance coe cient

Monod constant

Decay rate coe cient of the NER
Conversion factor cell to carbon
Temperature function constant

Initial biomass

[1-10]
[107° 107
[0:1 5]
[10° 01]
[0:1 0:9]
[10° 0:1]
[10° 107
[10° 0:1]
[1072 10°]
[1:1 3]
[10* 107

C = concentration speci ¢; W = water level speci c¢; S = soil/lsample speci c
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Table S20: Calibrated model parameters

1mg 20 mg
Hierarchy Parameters pF=1.8 pF=35 | pF=1.8 pF=35
C.S fr 0.07 Qo7 02 02
C.sS Ny 81 81 76 76
Kg 6:04 107 280 10® | 240 107 1:60 108
C.S max 18 18 0:2 02
WL.S ER 001 0009 001 0009
Ye 07 o87 0:6 a7
m 0:005 0008 003 Q009
Kwm 0:0004 @001 0:0007 @002
WL.S aco, 0:0003 @005 0:0003 @005
f1 50 10" 14 10 | 61 10 56 1071°
Quo 15 14 203 207
S.S Initial 54873 54872 5487 54872
Biomass

C.S = concentration speci c;

WL.S = water level speci c; S.S = soil/sample speci c

Model codes available under: DOI: 10.5281/zenodo.5081655.
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11.3.4 ¥Cincorporation to 14CO; respiration

Figure S39Cumulativel“CO, mineralization of two MCPA concentrations as a function of soil
temperature and soil moisture over time. Mineralization of MCPA is represented
by the percentage of initiat*C-MCPA. Curves were tted to the data points via a
logistic model.

Table S21Contrast of the estimated marginal means of mineralization on day 28 as a function
of temperature (the contrast function setting interaction = "tukey")

temp_treatment_tukey Estimate SE df tratio p.value

1-20C -10.5 1.2 16 -8.7 19 107
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Table S22Interaction contrast of the estimated marginal means of mineralization on day 28 as
a function of temperature and MCPA concentration (the contrast function setting
interaction = "tukey")

temp_treatment_tukey Concentration Estimate SE df tratio p.value

1-20C 1 -3.3 17 16 -19 0.07
1-20C 20 -17.7 1.7 16 -10.317 10%

Table S23Contrast of the estimated marginal means of mineralization on day 28 as a function
of soil moisture (the contrast function setting interaction = "tukey")

water_treatment_tukey Estimate SE df tratio p.value

pF_1.8-pF_3.5 16.2 1.2 16 13.42 107

Table S24Iinteraction contrast of the estimated marginal means of mineralization on day 28 as
a function of soil moisture and MCPA concentration (the contrast function setting
interaction = "tukey")

water_treatment_tukey Concentration Estimate SE df tratio p.value

pF_1.8-pF 3.5 1 111 1.7 16 6.57:8 10°
pF_1.8-pF_ 3.5 20 213 1.7 16 1232 10°
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Table S25Interaction contrast of the estimated marginal meanstfofA copies g* as a function
of temperature, MCPA concentration, time and soil moisture (the contrast function
setting interaction = "tukey")

Temp_tukey MCPA Day pF Estimate SE df tratio p.value
1-20C 0 0 1.8 *1:1 10'? 918 24 *1:1 10%# 1.00
1-20C 1,000 0 1.8 26 10% 91.8 24 29 10%° 1.00
1-20C 20,000 0 1.866 1013 91.8 24 72 10% 1.00
1-20C 0 6 18 -51.7 91.8 24 -0.6 0.58
1-20C 1,000 6 1.8 -180.1 91.8 24 -20 0.06
1-20C 20,000 6 1.8 -85.2 91.8 24 -09 0.36
1-20C 0 10 1.8 -138.2 91.8 24 -15 0.15
1-20C 1,000 10 18 -130.8 91.8 24 -14 0.17
1-20C 20,000 10 1.8*1:2 10° 918 24 -1238 30 10'2
1-20C 0 15 18 277.6 91.8 24 3.0 0.01
1-20C 1,000 15 1.8 98.0 91.8 24 11 0.30
1-20C 20,000 15 1.8 -915.8 91.8 24 -10.0 52 10%°
1-20C 0 26 18 -23 91.8 24 0.0 0.98
1-20C 1,000 26 18 49 91.8 24 0.1 0.96
1-20C 20,000 26 18 -04 91.8 24 0.0 1.00
1-20C 0 0 35 *2:9 10 918 24 *32 10% 1.00
1-20C 1,000 0 3.5 12 1013 91.8 24 13 10%° 1.00
1-20C 20,000 0 3512 1013 91.8 24 13 10% 1.00
1-20C 0 6 35 749 91.8 24 0.8 0.42
1-20C 1,000 6 35 -334 91.8 24 -04 0.72
1-20C 20,000 6 35 554 91.8 24 06 0.55
1-20C 0 10 3.5 -18.7 91.8 24 -0.2 0.84
1-20C 1,000 10 35 -55.6 91.8 24 -0.6 0.55
1-20C 20,000 10 3.5*15 10° 918 24 -16.4 16 101
1-20C 0 15 3.5 440 91.8 24 0.5 0.64
1-20C 1,000 15 3.5 130.0 91.8 24 14 0.17
1-20C 20,000 15 3.5 -580.9 91.8 24 -6.3 15 10
1-20C 0 26 35 -06 91.8 24 0.0 0.99
1-20C 1,000 26 35 45 91.8 24 0.0 0.96
1-20C 20,000 26 35 2&2 91.8 24 0.0 0.98
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Table S26Interaction contrast of the estimated marginal meanstiofA gene transcript as a
function of temperature, MCPA concentration, time and soil moisture (the contrast

function setting interaction = "tukey")

Temp_tukey MCPA Day pF Estimate SE df tratio p.value
1-20C 0 0 1.8 20 10% 10 1¢ 24 20 10% 1.00
1-20C 1,000 0 1.8 95 10" 10 1¢ 24 95 10% 1.00
1-20C 20,000 0 1.8 *1:1 10 10 1¢ 24 *1:1 10%™ 1.00
1-20C 0 6 1.8 -346.1 10 1¢ 24 *35 10° 1.00
1-20C 1,000 6 1.8 *3:1 1¢ 10 10 24 -0.3 0.76
1-20C 20,000 6 1.8*2:0 1¢ 10 10 24 -0.2 0.84
1-20C 0 10 1.8 -70.3 10 166 24 *7:0 10*% 1.00
1-20C 1,000 10 1.8 19 10 1.0 1¢ 24 0.2 0.85
1-20C 20,000 10 1.8*2:0 1¢° 1.0 1¢ 24 -153 6:8 10
1-20C 0 15 1.8 50 1C 10 1¢ 24 0.05 0.96
1-20C 1,000 15 1.8 16 10 10 1¢ 24 0.2 0.87
1-20C 20,000 15 1.8*8:0 1¢ 10 1¢ 24 -0.8 0.44
1-20C 0 26 1.8 -519.9 10 1¢ 24 *5:2 10° 1.00
1-20C 1,000 26 1.8 182 10 16 24 18 10* 1.00
1-20C 20,000 26 1815 1C 10 1 24 15 0.16
1-20C 0 0 3.5 15 10% 10 166 24 15 10%° 1.00
1-20C 1,000 0 3.5 12 10% 10 1¢ 24 12 10% 1.00
1-20C 20,000 0 3.5 39 101 10 1¢ 24 39 10% 1.00
1-20C 0 6 3.5 *2:6 10° 1.0 1¢ 24 *2:6 10 1.00
1-20C 1,000 6 35 71 1C 10 1¢ 24 0.07 0.94
1-20C 20,000 6 3.5 *2:1 1¢ 10 1¢ 24 -0.2 0.84
1-20C 0 10 35 9713 10 16 24 97 10° 0.99
1-20C 1,000 10 3518 1¢ 10 10 24 0.2 0.86
1-20C 20,000 10 3.5*1:4 1¢F 10 16 24 -141 44 1013
1-20C 0 15 35 -257 1.0 16 24 *2:6 10* 1.00
1-20C 1,000 15 3526 1C 1.0 1¢ 24 0.03 0.98
1-20C 20,000 15 3.5*9:4 1C 10 1¢ 24 -0.09 0.93
1-20C 0 26 35 -10.6 10 1¢ 24 *1:1 10* 1.00
1-20C 1,000 26 35 124 10 1¢ 24 12 10% 1.00
1-20C 20,000 26 3547 1C 10 10 24 0.05 0.96
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Table S27Contrast of the estimated marginal means*8€ incorporation as a function of soil
moisture (the contrast function setting interaction ="tukey")

Water_treatment_tukey mcpa Estimate SE df tratio p.value
pF 1.8 -pF 3.5 1 mgky -1.2 15 16 -0.8 0.4
pF 1.8 -pF 3.5 20 mg¥y 2.7 15 16 1.8 0.1

Table S28Contrast of the estimated marginal means ¥t incorporation as a function of
temperature (the contrast function setting interaction ="tukey")

Temp_treatment tukey Day estimate SE df tratio p.value

1-20C 5 29 1.3 16 2.2 0.04
1-20C 15 8.0 1.3 16 6.0 18 10°
1-20C 28 6.5 14 16 4.8 20 10%

Table S29Contrast of the estimated marginal means GfUR, as a function of MCPA
concentration (the contrast function setting interaction = "tukey")

Concentration_tukey day Estimate SE  df tratio p.value

1 - 20 mgkgt 5 005 002 16 -21  0.05
1 - 20 mg kg 15  -0.06 003 16 -24 0.3
1 - 20 mgkgt 28 005 002 16 21 0.05

Table S30Contrast of the estimated marginal means©fJ i, as a function of temperature
(the contrast function setting interaction = "tukey")

temp_treatment_tukey day Estimate SE df tratio p.value
1-20C 5 0.2 0.0239 16 9.6 48 108
1-20C 15 04 0.0252 16 13.923 10%°
1-20C 28 0.1 0.0246 16 5.5 52 10°
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Table S31Contrast of the estimated marginal means©tJ k&, as a function of soil moisture
(the contrast function setting interaction = "tukey")

water_treatment_tukey day Estimate SE df tratio p.value

pF_1.8-pF_3.5 5 015 0024 16 -6.87 10°
pF_1.8-pF_3.5 15  -0.12 0.025 16 -4.82 10%
pF_1.8-pF_3.5 28 006 0025 16 -2.5 0.02

11.35CURK

Figure S40CU K (eq. 107) vs. time (d) showed in panels A to D, &ld & vs normalized
residual MCPA concentration in soils showed in panels E to H
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11.4 Supplementary Information for Chapter 9 (Paper 4)
11.4.1 Model scenario descriptions

Model M1

The di erent bacterial guilds and the corresponding carbon sources are:

Na (Guild A) = AT, HY, NE, NI, DEA, DIA.
Ng (Guild B) = HY, NI.

Nc (Guild C) = HY, NE, NI.

Np (Guild D) = AT.

Biokinetic functions

Growth rate coe cient of Guild A

AAT L
—  max AT
AAT — AAT
max T Na
AHY L
— Mmax HY
AHY — AHY
max T Na
ANE
_ max NE
ANE — ANE
max T Na
A;NI L
— max N I
ANI — ANI
max t Na

A;DEA

— Mmax DEAL

ADEA= —ADEA.
max T Na

ADIA L
— _max DIA
ADIA= TADIA,
max Na
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where:
N = ATE+Ka AT +H YE+Ka v +N B +Kan et N T +Kan +DEA +Ka peat DI AS+Kapia (63)

Growth rate coe cient of Guild B

B:HY HYL
BHY= “BHY (64)

max T N

B;NI N|L
BINI = BN (65)

max T Ng

where:
Ng = HY +Kg:py + NIE +Kgoy (66)
Growth rate coe cient of Guild C

CHY HYL
CHY= “Cry—— (67)

max T Nc

CNE NE
CINE= CNE-— (68)

max T Nc

C;NI NlL
CINI= —ENT (69)

max t Nc

where:
Ne = HY" + Koy + NE + Kene+ NI + Ko (70)
Growth rate coe cient of Guild D

D;AT ATL
DAT = “BAT (71)

max t Np
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where:

Np = ATH + Kpar (72)

Switch function for active/reactivation of Guild A

1
A A % L L L L (73)
Nj* AT-+HY +NE- +NI-+DEA +DIAY
exp, x 1 +1
n Nth
Switch function for active/reactivation of Guild B
1
- 74
® oy B ATEFHYEENIY (74)
Po n NS 1
Switch function for active/reactivation of Guild C
1
= 75
¢ o NG HYLENERANIY (73)
Po n NS 1
Switch function for active/reactivation of Guild D
1
= 76
P o NREATY (76)
pO n Nt'ﬁ 1
Dechlorination AT to HY by Guild B
Kareny AT"
K2 = 77
Governing equations
Active Guild A
daB
—2 =B} . aar farrcat any fuvscat ane fnecat ani fnircat

d d
ADEA foEsxca+ apia foiarca* @aa/*.1* Al ki Bi+ a ki Ba
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Dormant Guild A

a5
SR 10 KB 4 KR BT B aua (79)

Active Guild B
d
d? =B§ - BHY fuysNE+ BNI fNIFCA™ ap*
(80)
1% g/ kI B3+ g k3 BY

Dormant Guild B

d
(E:-l* s ki B3* 5 ki B§*Bg aus (81)
Active Guild C
d% — pa * *
W_BB . cHY fHvsni + cnE fnecat ot Tnrca™ @ad
(82)
A* of k& B2+ ¢ k& Bl
Dormant Guild C
d
o ok B o kBB e )
Active Guild D
@_ a 0 * * 1 % d a a pd 84
ai . pAT fp*aap/*.1* p/ kyp Bg+ p ki Bp (84)
Dormant Guild D
d
% -1 of KB BS* o kB BYES auo )
Atrazine (AT) in Solution
dAT- _ farrca, 14
T: oBg —  AAT 0 Yanr 1 fAT*CAll +KAOT*HY — Bg+ko ATL+
' (86)
fo U
B — DT OYD?AT*.l* folyy 1+~ KAL nAL ATL/ee
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Hydroxyatrazine (HY) in Solution
dHY- _

dt Bz — AAT Axful/ '1*f/-\T*CA/+KXT*HY — Bg+ko AT
f * f *
*BA —  AHY O%\*-l* frvecal g * BE — BHY 0 \H(;HNYE*-l* frvene/y
fy o, U
*B% ~ chy HY*NI & 1 % fuvent/ 1+- KH;( ngg _HYL/.nEg 1
(87)
N-Ethylammelide (NE) in Solution
dNE f
—— = B — BHy 1*fayne/* BR - ANE n R 1% fypcal
f L, U
*BE - cnE Oﬁ*-l* fNE*CAlll 1+- K,’:\'F',E n,’;'pE N E-/FEY
CINE
N-Isopropylammelide (NI) in Solution
dNI- fi
e :OB% - cHy 1*fuvsni/* B - AN 0 \’\;/Ix-rff* 1* fnireal g
fnirca fnirca
*gad _ . * 1% fypmeal, *BE — o * 1% fypecal (89)
Bs BINI Yo NI=caly Be CNI Yo N

1/
NI
1+- KL\'F', nEF', N L/ et

Deethylatrazine (DEA) in Solution

dDEA ;
dt =OBS - par A*f5 1*fp/* By - DEA CA

A;DEA 0 YA;DEA

A fDENCA/ll

*1/
DEAx
1+- KPEA npF” .DEA/MY

(90)

Deisopropylatrazine (DIA) in Solution

dDIA-
ST S — par A*f5 fp*By —  ADIA 0

f ax
$IA CAx 1% fDIA*CA/ll
ADIA (91)

F1/
DIA
1+— KPA nPlA DIAL Y
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Cyanuric Acid (CA) in Solution

dgfl_= BR — aar A*farscal fu+BR —  any 1*fhveca/
+Bf — ane 1*fnpca/ *BR - ani 1% fanirca/
+BA — apea 1*foexca/ +BY — apia [1*fpiaccal
+Bf — BN LI*¥fupca/ +BE - ot J1* fupca/
+B2 —  cne A* fupca* CAS deaco NOI:I+K./1 1+- KSA ngh cayngty
(92)
CO,

dth=CAL deaco — ,\lc)ljl_%“‘Bﬁ aaT fateca 01;:2;”1

+B5 bt 5 ijl +BA  any fHyeca O]ml

+Bf aneE fneca 01:(,:.{2;,’5\“51 +BY  ani fnirca 01:(AYNA;:\”1
+Bf apea foEsca 0]-:(:2;3/?\1 +BA apia foiacca 01:(:2;2IA1 03

+B BN fnirca 01:(;3;’\”1 +BS  BHY THy*NE O:L:(;;(:?YWI

+BE  cnE fneca 01;CY_EEE1 +B2 o farca 01:(CY_E;|NI1

1* Yeuy | ‘

+BE  cHy fHveni 0 Yoy 1 +.B} aa;A+B,‘i ag:a+ B3 aa;B+BS a4:8

+BE aqc+t Bg ag.c+tBd aapt B([j) ag;p/ fr
Dissolved organic carbon(DOC)
dDOC

T B} aaa*+B ag;a*+B3 8a;p*+BY 8u.atBR aa,ctBL ag.c+BR axp+BY agp/ .1*fr/ (94)
Model M2

The di erent bacterial guilds and the corresponding carbon sources are:

Ng (Guild B) = HY, NI.
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Nc (Guild C) = HY, NE, NI.

Np (Guild D) = AT.

Model M3

The di erent bacterial guilds and the corresponding carbon sources are:

Na (Guild A) = AT, HY, NI, DEA, DIA.
Nc (Guild C) = HY, NI.
Np (Guild D) = AT.

Model M4

The di erent bacterial guilds and the corresponding carbon sources are:

Na (Guild A) = AT, HY, NE, DEA, DIA.
Ng (Guild B) = HY.
Np (Guild D) = AT.

Model M5

The di erent bacterial guilds and the corresponding carbon sources are:

Na (Guild A) = AT, HY, DEA, DIA.

Np (Guild D) = AT.

Model M6

First order decay model on AT, main metabolites (AT, HY, DEA, DIA), and sinks GI3®)

Governing equations
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Atrazine (AT) in Solution

dAT Y
at =% ATL .daT*Hy + daT*DD/ 1+- K,@E né[) .ATL/'néI’ v (95)

Hydroxyatrazine (HY) in Solution

dH Y- ST
dt =.ATL dAT*Hy*HYL Ouyscal 1+-— K,':_p( nE'g .HYL/'nEg v (96)

Deethylatrazine (DEA) in Solution

DEA >
d 5 =fo AT" darop* DEA doexcal  1+- KEEA nPEh DEA-/ ™Y
(97)
Deisopropylatrazine (DIA) in Solution
DIA- Y,
d g =1t fof AT" dar+pp* DIAL dpjarcal 1+— KBA nRA DIALEY
(98)
Cyanuric Acid (CA) in Solution
a - HY" duy<ca fuyrca+DEA" dpexca foeaxca+DIA™ dpjaca fpiacca
K caeq, U
* AL ) I _ kCA CA Ly.nEb 1/
CA- dcaco N03+K|/1 1+ Kep ngp .CA-/FP
(99)
COo;
dC K
dtQ:CAL — dexco — m’fHYL — dhysca 1* fhysca/
! (100)
+DEA — dpeaca -1*fpexca/ +DIAS — dpjarca -1* foiasca/
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11.4.2 Moadified constraint-based parameter search algorithm - Sampling results

Sampling histograms

Figure S41Sampled parameters for model scenario M1 after applying the modi ed constraint-
based parameter search algorithm. We showed prior parameter distribution (blue)
and the results of two independent runs of the sampling algorithm (pink and yellow).
Both independent runs show similar sampling results
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Figure S42Sampled parameters (continuation) for model scenario M1 after applying the
modi ed constraint-based parameter search algorithm. We showed prior parameter
distribution (blue) and the results of two independent runs of the sampling algorithm
(pink and yellow). Both independent runs show similar sampling results
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Figure S43Sampled parameters for model scenario M2 after applying the modi ed constraint-
based parameter search algorithm. We showed prior parameter distribution (blue)
and the results of two independent runs of the sampling algorithm (pink and yellow).
Both independent runs show similar sampling results
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Figure S44Sampled parameters (continuation) for model scenario M2 after applying the
modi ed constraint-based parameter search algorithm. We showed prior parameter
distribution (blue) and the results of two independent runs of the sampling algorithm
(pink and yellow). Both independent runs show similar sampling results
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Figure S45Sampled parameters for model scenario M3 after applying the modi ed constraint-
based parameter search algorithm. We showed prior parameter distribution (blue)
and the results of two independent runs of the sampling algorithm (pink and yellow).
Both independent runs show similar sampling results
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Figure S46Sampled parameters (continuation) for model scenario M3 after applying the
modi ed constraint-based parameter search algorithm. We showed prior parameter
distribution (blue) and the results of two independent runs of the sampling algorithm
(pink and yellow). Both independent runs show similar sampling results
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Figure S47Sampled parameters for model scenario M4 after applying the modi ed constraint-
based parameter search algorithm. We showed prior parameter distribution (blue)
and the results of three independent runs of the sampling algorithm (pink, yellow
and purple). Both independent runs show similar sampling results
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Figure S48Sampled parameters (continuation) for model scenario M4 after applying the
modi ed constraint-based parameter search algorithm. We showed prior parameter
distribution (blue) and the results of three independent runs of the sampling
algorithm (pink, yellow and purple). Both independent runs show similar sampling

results
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Figure S49Sampled parameters for model scenario M5 after applying the modi ed constraint-
based parameter search algorithm. We showed prior parameter distribution (blue)
and the results of two independent runs of the sampling algorithm (pink and yellow).
Both independent runs show similar sampling results
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Figure S50Sampled parameters (continuation) for model scenario M5 after applying the
modi ed constraint-based parameter search algorithm. We showed prior parameter
distribution (blue) and the results of two independent runs of the sampling algorithm
(pink and yellow). Both independent runs show similar sampling results

Figure S51Sampled parameters for model scenario M6 after applying the modi ed constraint-
based parameter search algorithm. We showed prior parameter distribution (blue)
and the results of two independent runs of the sampling algorithm (pink and yellow).
Both independent runs show similar sampling results
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Model outputs - Spaghetti plots

Figure S52Model outputs (AT, metabolites (HY, DEA, DIA), and sinks (CA),)) presented as
spaghetti plots for model scenario M1. We showed 100 randomly selected outputs
out of the 30,000 produced from the modi ed constraint-based parameter search
algorithm. Pools of DIA and DEA lie under the detection limit df 107 mg cnt3
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Figure S53Model outputs (AT, metabolites (HY, DEA, DIA), and sinks (CAY)) presented as
spaghetti plots for model scenario M2. We showed 100 randomly selected outputs
out of the 30,000 produced from the modi ed constraint-based parameter search
algorithm. Pools of DIA and DEA lie under the detection limit bf 107 mg cni3
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Figure S54Model outputs (AT, metabolites (HY, DEA, DIA), and sinks (CA))) presented as
spaghetti plots for model scenario M3. We showed 100 randomly selected outputs
out of the 30,000 produced from the modi ed constraint-based parameter search
algorithm. Pools of DIA and DEA lie under the detection limit bf 107 mg cnT
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Figure S55Model outputs (AT, metabolites (HY, DEA, DIA), and sinks (CA,)) presented as
spaghetti plots for model scenario M4. We showed 100 randomly selected outputs
out of the 30,000 produced from the modi ed constraint-based parameter search
algorithm. Pools of DIA and DEA lie under the detection limit bf 107 mg cnT
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Figure S56Model outputs (AT, metabolites (HY, DEA, DIA), and sinks (CAY)) presented as
spaghetti plots for model scenario M5. We showed 100 randomly selected outputs
out of the 30,000 produced from the modi ed constraint-based parameter search
algorithm
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Figure S57Model outputs (AT, metabolites (HY, DEA, DIA), and sinks (CA))) presented as
spaghetti plots for model scenario M6. We showed 100 randomly selected outputs
out of the 30,000 produced from the modi ed constraint-based parameter search
algorithm
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11.4.3 Energy distance (ED) robustness results

Figure S58Robustness test. Energy distance values per design candidates, including AT,
metabolites (HY, DEA, DIA), and sinks (CB(,) for the di erent ensemble sizes.
Ensemble size of 100 di ers from the bigger ensemble sizes, but an ensemble size of
1,000, 5,000, 10,000 seems to produce similar results
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