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Preface 

Plasmopara viticola, the downy mildew of grapevine (Vitis vinifera), is a very destructive 

pathogen involved in big losses on viticulture (Gessler et al., 2011). This oomycete is 

able to completely destroy a plantation if no measures are taken to control it. The main 

strategies to restrict this pathogen are forecast systems that can, by means of 

meteorological data, predict the time in which the pathogen may strike. Supported by 

this scheme, wine growers can apply fungicides in a more efficient way. However, still 

high amounts of fungicide have to be applied many times through the season to keep the 

pathogen under control (Gessler et al., 2011). A better understanding of the interaction 

between the plant and the pathogen is needed in order to develop new strategies to 

combat the oomycete.  

The genetic variability of this destructive pathogen has not been sufficiently studied yet 

and no pathotypes or races have been identified like in other important oomycetes 

(Tourvieille De Labrouhe et al., 2000, Lebeda & Petrželová 2004, Petrželová & Lebeda 

2010). A major constraint in this field is the biotrophic nature of the pathogen, which 

can only be cultivated on grapevine leaves. The perennial nature of V. vinifera supposes 

an even higher challenge when compared to annual hosts such as lettuce or sunflower 

which can easily be cultivated throughout the year when plant material is required for 

cultivation or testing. A leaf disc bioassay was established in chapter 1 to study the 

interactions between P. viticola and its host in the laboratory. North American wild 

species and representative V. vinifera cultivars were used to characterize more than 30 

downy mildew isolates or strains. This technique provided a simple methodology to 

evaluate the capacity of specific strains to infect hosts with different levels of resistance 

and to establish a classification system for the pathogen phenotypes based on their 

virulence.  

In order to achieve a more detailed characterization of the strains, a broadening of the 

system was studied in chapter 2. Asiatic and North American wild Vitis species were 

tested for interesting reactions when infected with the pathogen. High phenotypic 

differences were found using this system between the selected strains. As a consequence 

of the diversity in field populations, the application of a single sporing technique to 

obtain genetic homogeneous material for subsequent experiments was unavoidable. 
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This conclusion was also supported by the results obtained in chapter 3 which was 

aimed to compare strains with different virulence at the molecular level. Selected strains 

were characterized using two types of molecular markers (SNPs and SSRs) previously 

published for P. viticola (Gobbin et al., 2003a, Delmotte et al., 2006, 2011, Matasci et al., 

2010, Rouxel et al., 2012). This characterization intended to achieve an unequivocal 

identification of defined genotypes of the pathogen bearing interesting characteristics. A 

high genotypic diversity was confirmed by this means between isolates from different 

fields but even within single sporangium strains from a field isolate. 

In chapter 4, an important method for a better understanding of the infection 

mechanisms was designed, combining hosts which differ in susceptibility, with P. viticola 

strains of different virulence. Fluorescence microscopy enabled us to trace the 

development of the pathogen inside the tissue, even before symptoms became visible on 

the leaves. The growth of a highly virulent strain inside a tolerant host was observed and 

analyzed, in comparison with that of a lowly virulent strain. 

Taking advantage of specific host-pathogen combinations, the expression of putative 

effector genes was studied in this chapter, intending to elucidate the mechanisms behind 

the difference in virulence observed. Special attention was given to oomycetes effectors 

in previous years to reveal how these group of pathogens are able to infect the plant, 

overcoming its immune reaction (Kamoun 2006, Hogenhout et al., 2009, Schornack et 

al., 2009, de Jonge et al., 2011, Bozkurt et al., 2012, Fawke et al., 2015, Oliveira-Garcia & 

Valent 2015). A screening in this chapter of, at the date known effectors of P. viticola, 

revealed at least five effectors with an interesting expression pattern that could be 

associated with the infection development and the reaction of the plant. From the plant 

side an upregulation of a gene from the surveillance system in the tolerant cultivar 

(McHale et al., 2006) shed light on the mechanism behind resistance against the 

pathogen. The ability to answer in a rapid way might play a crucial role for those highly 

virulent strains and its importance is here discussed. The suitability of in vitro 

germinated spores to study the gene expression in a host-free system was also 

investigated and contrasted with previous studies (Riemann et al., 2002). 

Partial aspects of this project were simultaneously investigated in the B.Sc theses of 

Melanie Fröhler, Nele Bendel and Markus Kaiser and in the M.Sc thesis of Sandra Becker, 

for which this work provided the material, methodological and theoretical background. 



 

3 

Some of the results obtained in those projects were fundamental part of this work and 

are indicated on each chapter. 
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Chapter 1 

1 Assessment of phenotypic diversity of Plasmopara viticola on Vitis 

genotypes with different resistance 

The results presented in this chapter were published in: Gómez-Zeledón, Reinhard Zipper and 
Otmar Spring, 2013. Assessment of phenotypic diversity of Plasmopara viticola on Vitis 
genotypes with different resistance. Crop Protection 54:221-228.  

 

1.1 Introduction 

Plasmopara viticola, the causal agent of grapevine downy mildew, has been involved in 

big yield losses since it was first introduced in Europe in the 1870s. It is one of the most 

important pathogens in viticulture, and therefore many studies have been conducted 

aiming on a better understanding of its behavior in the field and an effective disease 

management, as it has been reviewed by Gessler et al., (2011). Cultivated grapevine 

originating from Vitis vinifera is highly susceptible to P. viticola and therefore, for a long 

time, fungicide treatment was the only measure available to control the disease. Several 

fungicide applications are necessary every year and resistance has already been found to 

the most common groups of site specific fungicides currently applied against downy 

mildew, namely phenylamides (Staub & Sozzi, 1981, Bosshard & Schuepp 1983, Leroux 

& Clerjeau 1985) and carboxilic acid amides (CAA) (Gisi et al., 2007, Blum et al., 2010). 

Only in the past few decades, resistance breeding partially replaced the chemical plant 

protection against fungal diseases in grapevine. Particularly in wild Vitis species of North 

America (e.g. V. riparia, V. rupestris) and Asia (e.g. V. amurensis) high tolerance against 

downy mildew was found and used to improve the resistance in commercial grapevine. 

However, still the vast majority of vineyards consist of fully susceptible varieties and 

their replacement with cultivars of higher resistance is time consuming and expensive. A 

major obstacle for this process is the unavailability of fully resistant grapevine 

genotypes and the lack of knowledge on the resistance mechanisms. Several studies 

have tried to identify resistance genes on wild Vitis and close species like Muscadinia 

rotundifolia against the pathogen, but only quantitative trait loci (QTL) have been found. 

The physiological mechanisms responsible for the partial resistance associated with 

these genomic regions remains widely undisclosed (Kortekamp & Zyprian 2003, 

Merdinoglu et al., 2003, Welter et al., 2007, Blasi et al., 2011). Further attempts to 
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unravel such mechanisms will not only depend on genetically well-defined host plants, 

but also need to take into account the genetic background of the pathogen in specific 

compatible or incompatible combinations. 

Molecular studies have shown a high genotypic diversity in European populations of 

P. viticola (Stark-Urnau et al., 2000, Gobbin et al., 2005, 2006, Scherer & Gisi 2006) and 

its relevance for the development of resistance and in the epidemics of this pathogen 

(Rumbou & Gessler 2007). In addition, some recent reports identified the possible 

occurrence of cryptic species in the P. viticola complex of North American accessions of 

the pathogen (Schröder et al., 2011, Rouxel et al., 2013). Nevertheless, there is still little 

information available about the phenotypic diversity of physiological isolates of 

P. viticola causing problems in viticulture. Some authors have tested the virulence of 

strains against Vitis spp. and cultivars and have found important differences, but races 

or pathotypes have not yet been characterized as in other downy mildews such as 

Plasmopara halstedii (Tourvieille De Labrouhe et al., 2000), Pseudoperonospora cubensis 

(Lebeda & Widrlechner 2004) or Bremia lactucae (Lebeda & Petrželová 2004, Petrželová 

& Lebeda 2010). 

In addition, while the previous studies have mostly been based on genetically undefined 

and potentially inhomogeneous P. viticola samples subcultured from field isolates 

(Kiefer et al., 2002, Gindro et al., 2003, Kortekamp et al., 2003, Jürges et al., 2009, Unger 

et al., 2007, Alonso-Villaverde et al., 2011), other reports had found a high genetic 

diversity between such field samples of the pathogen (Kast 2001, Scherer & Gisi 2006). 

Molecular studies have shown that even within single field isolates, different genotypes 

of the pathogen can be present (Stark-Urnau et al., 2000, Gobbin et al., 2003a). Taking 

this into account, assessments of the phenotypic variation for defining pathotypes 

should start from genetically homogeneous strains. Attempts have been made to achieve 

this goal by using single sporangiophores for reinfection (Wong & Wilcox 2000, Wong et 

al., 2001, Gisi et al., 2007), but there is still no certainty that all sporangia in a 

sporangiophore are genetically identical or if they might vary due to an emergence from 

a heterokaryotic mycelium. Alternatively, monosporangia and monozoospore cultures 

have been used and proved to be stable in their sensitivity against a site specific 

fungicide during subculturing (Genet & Jaworska 2013). 
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A further prerequisite for pathotype differentiation should be the selection of 

standardized host genotypes (similar to the sunflower differentials with defined 

resistance genes for downy mildew). Despite studies on the mechanisms of resistance of 

wild Vitis species (Mysore & Ryu 2004) and the identification of different resistance 

reactions at various levels (Denzer et al., 1995a, Díez-Navajas et al., 2008, Jürges et al., 

2009), the definition of suitable host genotypes is still a challenging task. QTLs 

associated with resistance to P. viticola have been reported for some grapevine cultivars 

(Merdinoglu et al., 2003, Fischer et al., 2004, Bellin et al., 2009, Blasi et al., 2011, Moreira 

et al., 2011) used in breeding programs, but not all of them are commonly available and 

many Vitis vinifera genotypes with an interesting observed resistance have not been 

characterized yet. We therefore compromised and decided to select a set of grapevine 

plants representing commercially used cultivars of V. vinifera with suggested resistance 

loci (Rpv) to P. viticola (VIVC 2015) and wild Vitis species which were expected to show 

a broad array of resistance reactions. 

Finally, a suitable infection bioassay with defined resistance reactions was attempted for 

this study. A promising methodology is the leaf disc technique, which has been found 

efficient and practical for the evaluation of virulence and fungicide resistance of 

P. viticola (Denzer et al., 1995b, Wong & Wilcox 2000, Deglène-Benbrahim et al., 2010) 

and other oomycetes such as Plasmopara halstedii (Spring et al., 1997, Rozynek & Spring 

2001, Spring & Zipper 2006), Bremia lactucae (Cohen et al., 2008) or Peronospora 

tabacina (Xie & Kúc 1997). A good correlation was found between this method and field 

studies (Brown et al., 1999), making it suitable for pathogen differentiation. A visual 

scale similar to that of OIV-452 (IPGRI 1997) has already been used to determine the 

degree of resistance of grapevine genotypes against downy mildew in leaf discs 

(Deglène-Benbrahim et al., 2010, Calonnec et al., 2012). However, the OIV scale was 

designed for the evaluation of whole leaves, after a long infection period and a specific 

application technique of the sporangia. For the expected amount of pathogen samples, 

the number of repetitions and the short period of infection in our assays, the proposed 

OIV system was not suitable. We therefore defined a new system to classify the isolates 

of P. viticola according to the intensity of sporulation and observed resistance reaction 

on specific host genotypes. The evaluation was based on five categories ranging from full 

susceptibility with profuse sporulation (type A) to complete resistance with no 

sporulation or necrotic reaction (type E).  
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We report here on the diversity of pathogen phenotypes between single sporangium 

strains of grapevine downy mildew collected from different fields and different host 

cultivars in South Germany and the adjacent region in France. This diversity was as 

assessed in a standardized leaf disc inoculation test with specific host genotypes.  
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1.2 Material and Methods 

1.2.1 Cloning and propagation of the pathogen 

Five field isolates of P. viticola (Berk. & Curt.) Berl. & de Toni collected from infected 

grapevine leaves of different wine growing regions - four in South Germany and one in 

France - were used in this study (Table 1.1). Due to their high susceptibility to the 

pathogen, leaves of Vitis vinifera L. cv. Müller-Thurgau and cv. Bacchus were used to 

propagate the oomycete in the laboratory. In order to assess the diversity within the 

field isolates, single sporangium strains (Table 1.1) were established using a method 

previously designed to achieve P. halstedii single sporangium infections (Spring et al., 

1998). Young leaves (between the fourth and the seventh leaf from the shoot tip) were 

briefly rinsed with distilled water and 1 cm2 leaf discs were cut out using a scalpel or a 

cork borer. Leaf discs were placed top-down in a 25 well plate (25 compartments square 

Petri dish; Sterilin® Ltd., Cambridge, United Kingdom) filled with 800 µL distilled water 

in each compartment. Sporangia were delivered on a Petri dish (60 x 15 mm) containing 

semisolid 1% water-agar medium and collected under an inverted microscope with a 

micromanipulator (Brinkmann Instrumentenbau, Mannheim, Germany) equipped with a 

glass capillary (Eppendorf transfer tips, Eppendorf-Netheler-Hinz GmbH, Hamburg, 

Germany, 80 µm diameter). Sporangia were placed individually on leaf discs with a drop 

of water and kept in a climate chamber at 18°C, the first 24 h in darkness and then under 

a 14 h photoperiod. The sporulation produced on every leaf disc was sub-cultured 

individually by submerging and shaking the disc in distilled water. The sporangia 

suspension was used as inoculum on which small young leaves were floated bottom-

down in darkness at 18°C for 24 h. Subsequently, the water was discarded and the 

leaves were placed top-down on wet filter paper in closed plastic boxes for further 

incubation (18°C, 14 h photoperiod). Sporulation was found after 4-5 days and the 

process was repeated to recover more sporangia. Freshly developed sporangia were 

harvested in dry form by means of a suction device developed in our laboratory. They 

were either used directly for infection experiments or stored at -70 °C for later use.  
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Table 1.1: Field isolates and the single sporangium strains developed from it. 

 

 

1.2.2 Host genotype test 

Cloned cuttings of six grapevine genotypes with different levels of resistance against 

downy mildew were generously provided by Prof. Dr. Hans-Heinz Kassemeyer, Institut 

of Enology and Viticulture in Freiburg (WBI), Prof. Dr. Peter Nick, Karlsruhe Institute of 

Technology and Prof. Dr. Ralf Vögele, Institute of Phytomedicine, University of 

Hohenheim. Original material of these genotypes is located in the collections of the WBI 

Freiburg (FR) or Karlsruhe Institute of Technology (Table 1.2). Plants were raised and 

kept at 25°C in a greenhouse of the Institute of Crop Science, University of Hohenheim 

with the kind assistance of Dr. Nikolaus Merkt. A system was employed using 1 cm2 leaf 

discs in 25 well plates to characterize the virulence of the downy mildew isolates on 

each of the selected host genotypes. Following the same procedure described above, ten 

leaf discs of each genotype were placed top-down in the 25 well plates filled with 800 µl 

of distilled water. Sporangia suspensions were prepared for each P. viticola isolate or 

strain with distilled water. A drop of suspension (10-20 µl) with approximately 10 000 

sporangia (scored in a Fuchs-Rosenthal counting chamber) was applied on the surface of 

each leaf disc. This high concentration of sporangia was chosen because the infectivity of 

sporangia can vary significantly from one experiment to the other. The experience 

showed that inoculations with less than 1000 sporangia delivered inconstant results. A 

drop of the sporangia suspension was placed in water to check the germination rate of 

the isolates after 24 h and thus evaluating the viability of the inoculum. The plates were 

incubated at 18°C, the first 24 h in darkness, and then under a photoperiod of 14 h. The 

inoculation drops were removed from the discs after two days to avoid developing of 

infections by molds or bacteria. After 10 days the infection rate of the strains on each 

host genotype was evaluated using the scale shown in Fig. 1.1. The scale was based on 

Code of field 
isolate 

 Collection 
date 

       Origin 
 

  Host cultivar 
 

        Coding for single  
        sporangium strains  

 1117 
  

7/2011  Colmar / F 
Cabernet 
Sauvignon A7, A17, A21, B6, B7, B12 

 1135 
  

7/2011  Freiburg WBI / D Müller-Thurgau A21, F2, F6, F12, F15, H14 

 1136 
  

7/2010  Pfaffenweiler / D Regent A15, A21, B6, B16 

 1137 
  

7/2010  Pfaffenweiler/ D Gutedel A10, B3, C20, D13, D16, E19 

 1191 
  

8/2011  Lauffen / D Lemberger A5, A7, B6, B8, B9, B11, B12, B18 
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the level of sporulation and the strength of the necrotic reaction present in the leaf discs, 

ranging from a profuse and not clearly restricted sporulation (A), to no reaction at all 

(E). This scale reflected the resistance of the host genotypes against each strain. 

 

Figure 1.1: Host genotype reaction of Vitis in leaf disc inoculations with Plasmopara viticola. The 
categories differentiate between full susceptibility without necrotic reaction and unrestricted 
sporulation (A), moderate sporulation limited to the site of inoculation (B), strong necrotic 
reaction with scattered sporulation (C), light necrotic reaction with rare sporulation (D), and no 
necrotic reaction or sporulation (E). 

In cases where the reaction type between categories was unclear (intermediate reaction 

between the ten discs, e.g. A and B or C and D) or when the infection ratio in the control 

(Müller-Thurgau) was below 80%, complete tests were repeated until the results were 

uniform and the infection on Müller-Thurgau was 100%. We did not observe shifts of 

more than one level within the ten discs of a sample and the categories assigned for 

host-pathogen combinations were stable from test to test (data not shown). 
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Table 1.2: Host genotypes used in the leaf disc bioassay. 

 

1.2.3 Fungicide test 

Two fungicides with different modes of action were used as described by Rozynek and 

Spring (2001) to evaluate the resistance reaction of the strains. The locally systemic 

fungicide dimethomorph (DIM) was tested in concentrations of 0,1 and 1 µg/ml and the 

systemic fungicide metalaxyl-M (MET) was tested in concentrations of 1 µg/ml and 10 

µg/ml. In the same way as in the host genotype test, 800 µl solutions of the respective 

fungicide were placed in every compartment instead of water. The sporangia 

suspensions were prepared in every fungicide solution and adjusted using a Fuchs-

Rosenthal counting chamber. A drop (10-20 µl) containing approximately 10 000 

sporangia was placed on each 1 cm2 leaf disc. Ten discs were used per fungicide 

concentration. Plates were incubated as described before and evaluated after 10 days 

using a scale of three categories: No resistance ; moderate resistance  (0,1 µg/ml 

DIM or 1 µg/ml MET) and high resistance (1 µg/ml DIM or 10 µg/ml MET) . 

According to the experience in our laboratory, sensitive strains were not able to 

sporulate at 0,1 µg/ml dimethomorph and 1 µg/ml metalaxyl-M. Hence moderate 

resistance was recorded when a strain sporulated on 0,1 µg/ml of dimethomorph or 1 

µg/ml of metalaxyl-M and high resistance was assumed when sporulation occurred on 1 

µg/ml of dimethomorph or 10 µg/ml of metalaxyl-M. In general, the tests were repeated 

at least twice, and all tests were repeated when the infection ratio in the control (Müller-

Thurgau) was below 80%. 

 

                    Groups              Host genotypes 

  Müller-Thurgau (MT), ID: FR3 vg 

Group 1: Vitis vinifera cultivars Regent (REG), ID: rpv.3 

  Cabernet Cortis (CAB), ID: FR680 

  Vitis vinifera L. ssp. sylvestris (SYL), WBI 

Group 2: wild Vitis species Vitis rupestris (RUP), Vrup-01, ID: 5888 

  Vitis riparia (RIP), Vrip-01, ID: 6548 
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1.3 Results 

Field isolates of P. viticola collected on different grapevine cultivars (Table 1.1) and from 

3 distant geographical regions in South Germany (South-Baden, North-Württemberg) 

and France (Alsace) were cultivated under laboratory conditions on detached leaves of 

Vitis vinifera L. cv. Müller-Thurgau and Bacchus in order to screen their pathogenic 

phenotype and for the generation of single sporangium strains. Out of approximately 

350 attempts, a total of 30 single sporangium strains could be developed and 

propagated in sufficient amounts for the characterization of pathogenic phenotypes. 

Although the use of frozen sporangia would be more practical, fresh sporangia (those 

collected from the infected leaves for immediate use) showed a much higher 

germination rate and gave more consistent results (data not shown). Freshly harvested 

sporangia were therefore used for the leaf disc assays. 

1.3.1 Host resistance reactions 

The leaf disc bioassays revealed five categories of infection/resistance ranging from full 

susceptibility (type A reaction) to the complete absence of symptoms (type E reaction, 

or so called nonhost resistance) (Fig. 1.1). In some cases, the boundaries between 

categories were fluent (e.g. type A/B or C/D) so that unique definition was difficult. In 

such cases the assignment was made according to the majority of reactions found in the 

ten discs per sample. We did not observe deviations of more than one level (e.g. A and C) 

between discs of one sample and the assigned categories remained stable in repeated 

tests. The intensity of sporulation present in the leaf discs was a good indicator for the 

virulence of the strain. Similarly, the degree of necrosis indicated the incompatibility of 

each host-pathogen combination. 

1.3.2 Phenotypic variability between field isolates 

Important differences were found between field isolates (Fig. 1.2). While all of them 

profusely sporulated on the leaves of the Vitis cultivar Müller-Thurgau (positive 

control), just two (1136 and 1137) produced strong sporulation in the tolerant cultivar 

Regent. These two field isolates were also able to infect the host genotypes in group 2 

with mostly moderate sporulation, but differed in virulence towards V. rupestris (type A 

reaction of 1136) and V. riparia (strong necrotic reaction with 1137). Interestingly, the 

isolate 1135 from the same area in South-Baden showed the weakest virulence of all 
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field isolates and was unable to infect the cultivar Cabernet Cortis. In contrast, this 

cultivar showed higher susceptibility to the isolates 1117 (France) and 1191 (North-

Württemberg), when compared to Regent. Within the wild host genotypes in group 2, 

V. riparia appeared to be the least susceptible. However, none of the tested host 

genotypes was completely resistant to all of the field isolates. 

Group 1: V. vinifera cultivars Group 2: wild Vitis species 
Field 

isolates MT REG CAB SYL RUP RIP 

1117             
1135             
1136             
1137             
1191             

 

Figure 1.2: Genotype reaction test of the five field isolates of P. viticola on the six grapevine 
genotypes: A  Profuse sporulation; B  Moderate sporulation; C  Strong necrotic reaction 
with scattered sporulation; D  Rare sporulation with light necrotic reaction; E  No 
sporulation or necrotic reaction.  

1.3.3 Variability between single sporangium strains 

The single sporangium strains presented very diverse reactions on the genotypes tested, 

not only when compared with strains from different fields, but also amongst sister 

strains from the same field isolate (Fig. 1.3). Only three combinations (1117-A21 and B6; 

1135-F15 and H14; 1137-D13 and D16 and E19) showed identical reactions between 

strains from the same field isolate when the fungicide reaction (see below) was 

considered. Thus we found 25 different phenotypes out of 30 strains tested. Just one 

strain produced a moderate sporulation (1191-B15) on V. riparia, while others achieved 

just scattered or rare sporulation on this host. Only two strains did not infect at all. Vitis 

rupestris showed mostly moderate resistance presenting scattered sporulation together 

with a strong necrotic reaction. However, all four strains of field isolate 1136 gave type 

B reaction on this species (similar to one strain from each of isolates 1135, 1137 and 

1191). Vitis vinifera L ssp. sylvestris also presented a moderate to low resistance, but this 

time more towards the strains of the field isolate 1137 (two of which produced profuse 

sporulation, similar to strain 1191-B9). Similarly, all isolates of 1137 showed a type A 

reaction on Regent, whereas Cabernet Cortis was able to restrict their sporulation 

almost entirely. In some cases, the reaction type of a strain was not found in the 
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respective field isolate and vice versa. This is probably due to the low ratio of this 

genotype in the field population and the random and limited selection of sporangia for 

cloning.  

 

Figure 1.3: Fungicide and genotype reaction test. Metalaxyl (MET); dimethomorph (DIM); V. 

vinifera L. cv. Müller-Thurgau (MT); V. vinifera L. cv. Regent (REG); V. vinifera L. cv. Cabernet 
Cortis (CAB); V. vinifera L. ssp. sylvestris (SYL); Vitis rupestris S. (RUP); Vitis riparia Michx (RIP). 
Fungicide reaction: No resistance ; moderate resistance (0,1 µg/ml DIM or 1 µg/ml MET) ; 
high resistance (1 µg/ml DIM or 10 µg/ml MET)  . Genotype reaction: A  Profuse sporulation; 
B  Moderate sporulation; C  Strong necrotic reaction with scattered sporulation; D  Rare 
sporulation with light necrotic reaction; E  No sporulation or necrotic reaction. 

Fungicide reaction                       Genotype reaction

Group 1 Group 2

Isolates/ Strains MET DIM MT REG CAB SYL RUP RIP

1117

1117-A7
1117-A17
1117-A21
1117-B6
1117-B7

1117-B12

1135

1135-A21
1135-F2
1135-F6

1135-F12
1135-F15
1135-H14

1136

1136-A15
1136-A21
1136-B6

1136-B16

1137

1137-A10
1137-B3

1137-C20
1137-D13
1137-D16
1137-E19

1191

1191-A5
1191-A7
1191-B6
1191-B9

1191-B11
1191-B12
1191-B15
1191-B18
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1.3.4 Fungicide test 

The behavior of the isolates was very diverse in the fungicide test as well (Fig. 1.3). The 

strains of isolate 1135 were very sensitive to both fungicides tested, and just two strains 

exhibited moderate tolerance to dimethomorph (0,1 µg/ml). In contrast, all strains of 

isolate 1191 presented some degree of resistance. Some of them were even able to 

sporulate at 100 µg/ml of metalaxyl-M (toxic to the plant) and 5 µg/ml of dimethomorph 

(data not shown). In the field isolate 1137, all strains showed a moderate resistance 

against dimethomorph (0,1 µg/ml) while just one of them resulted moderate resistant to 

metalaxyl-M (1 µg/ml). It was interesting to find that within the strains of isolates 1117 

and 1136, there were two with a high level of resistance to metalaxyl-M (10 µg/ml) and 

others with no resistance at all, showing that the diversity between sporangia of a field 

isolate was high. 

1.4 Discussion 

1.4.1 Pathogen management and reliability of infection studies 

Resistance breeding and fungicide treatment have been fundamental measures used to 

control downy mildew in grapevine for a long time. However, the high diversity of the 

pathogen observed in virulence tests on Vitis spp. or cultivars (Li et al., 1986, Kast 1996, 

2001, Jürges et al., 2009, Peressotti et al., 2010) and supported by results of molecular 

genetic studies (Gobbin et al., 2005, 2006), accounts for the limited success. 

Nevertheless, there appears no alternative other than the exploration of new sources of 

resistance for the protection of vineyards against P. viticola, even if it may only lead to 

temporary success. A system to differentiate virulent phenotypes in the population of 

the pathogen would be helpful and desirable, but unlike as in case of other economically 

relevant oomycetes (e.g. Plasmopara halstedii, Pseudoperonospora cubensis or Bremia 

lactucae), such a system has not been established yet for P. viticola.  

A specific problem in the case of grapevine and P. viticola is the perennial nature of the 

host plant which makes infection studies under controlled conditions more complicated 

and time consuming than with seedlings of annual crop plants (e.g. P. halstedii / 

sunflower). A bioassay based on leaf discs inoculations could ease these constrains, 

although it is known from sunflower that resistance reactions towards downy mildew 

can be organ specific (Radwan et al., 2005) and experiments with detached leaves may 
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not reflect the infection behavior of whole plants (Spring et al., 1997). However, in Vitis 

the infection of P. viticola usually starts through the stomata of leaves. This makes it very 

likely that in vitro infection experiments are a realistic basis for the situation in nature, 

and this kind of approach has been found more practical than greenhouse or field 

studies (Kast 2001, Deglène-Benbrahim et al., 2010). We therefore aimed to use a 

standardized leaf disc bioassay for the differentiation of P. viticola strains on Vitis 

genotypes with different resistance levels. This technique allowed us to perform a fast 

and practical screening for interesting strains bearing high virulence against resistant 

genotypes or some degree of fungicide resistance. Similar approaches to evaluate host 

responses and fungicide resistance were reported by some authors (Peressotti et al., 

2010, Genet & Jaworska, 2013, Rouxel et al., 2013). In contrast to the leaf disc bioassay 

recently reported by Rouxel et al., (2013), we decided to use a higher inoculum density 

in order to avoid inconsistent infection rates due to variable performance of sporangia 

from one experiment to the next. Moreover, we preferred inoculation on water instead 

of filter paper, because the floating culture provided the most homogeneous contact of 

the plant surface with the medium in which the fungicides were applied. We decided not 

to evaluate the host reaction on counts of the number of sporangia per leaf disc because 

this quantitative approach highly depends on homogeneity of the leaf structure (e.g. size 

of intercostal area, pubescence etc.) which affects the area of inoculation with the 

applied drop. Moreover, measuring the quantity of sporangia does not take into account 

the reaction of the host. 

1.4.2 Host selection and resistance response 

The selection of the host genotypes was guided by the idea of having a generally 

susceptible host like V. vinifera cv. Müller-Thurgau as a control for the efficacy of the 

infection bioassay. On the other hand, we selected two additional commercially available 

grapevine cultivars and three wild Vitis species. The cultivars Regent and Cabernet 

Cortis were known from breeding studies to show moderate to strong resistance against 

downy mildew. The resistance in Regent was attributed to the QTL Rpv3 (VIVC 2015) 

while in Cabernet Cortis the resistance is assumed to be associated with Rpv10, deriving 

from its Asiatic ancestor V. amurensis (Schwander et al., 2012). Of the used wild Vitis 

species, the QTLs Rpv5, 6, 9 and 13 were reported from V. riparia (Marguerit et al., 2009, 

Moreira et al., 2011) while no information was available for V. vinifera ssp. sylvestris and 

V. rupestris. In contrast to previous infection studies with P. viticola on grapevine (e.g. 
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Bellin et al., 2009, Díez-Navajas et al., 2008, Rouxel et al., 2013), we tried to avoid 

inconsistency in the host reaction eventually stemming from genetic heterogeneity of 

the pathogen inoculum. Therefore, we cloned and maintained single sporangium strains 

of each of the field isolates tested. This allowed, for the first time, to assess the 

pathogenic diversity within samples collected from a single plant. 

Genetic homogeneity might be better achieved by using single zoospore strains. 

However, its generation is quite challenging due to the very low success rate (less than 

0,1 %) compared to 8 % with single sporangium inoculations. Furthermore, 

microsatellite analysis of thirteen of our single sporangium isolates did not give hints for 

the presence of mixed genotypes in a sample (see chapter 2). 

In general, the selected host genotypes showed the expected resistance levels. So, the 

cultivars Regent and Cabernet Cortis, both known to be tolerant against downy mildew 

(Welter et al., 2007, Spring 2005), showed moderate to strong resistance reactions. 

Although Regent contains a resistance related loci, as mentioned before, it mostly 

allowed stronger sporulation than Cabernet Cortis. On the other hand, the resistance 

level strongly depended on the pathogen sample assessed. For example, Cabernet Cortis 

was less resistant than Regent to single sporangium strains from isolates 1117 and 1136 

while Regent was fully susceptible to single sporangium strains from isolate 1137 which 

could barely sporulate on Cabernet Cortis. This indicates that resistance in these 

cultivars might be based on different mechanisms.  

In the group of wild Vitis genotypes, the accession of V. vinifera ssp. sylvestris was the 

least resistant followed by V. rupestris and the most resistant was V. riparia. 

Nevertheless, the degree of resistance found in the used accession of 

V. vinifera ssp. sylvestris was higher than expected from field observations in other 

research groups (Töpfer, Zyprian pers.com.). Microsatellite analysis of our plants 

showed some deviations in comparison to accessions of V. vinifera ssp. sylvestris from 

the Rhine valley (data not shown), so that we cannot rule out a possible resistance 

introgression through a hybridization event in the ancestry of our material. Anatomical 

differences in the stomata architecture may explain the lower susceptibility of some wild 

Vitis species (Jürges et al., 2009), while physiological adaptations might lead to an early 

arrest of the infection on the resistant cultivars (Kortekamp & Zyprian 2003, Alonso-

Villaverde et al., 2011, Malacarne et al., 2011). It has been reported that zoospores might 
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fail to track the stomata on V. vinifera ssp. sylvestris leaves, hence having a reduced 

chance for colonization (Jürges et al., 2009). The North American species V. riparia and 

V. rupestris, on the other hand, possess a mechanism to hinder the invasion of P. viticola 

by stopping the development of the pathogen in the substomatal cavity (Unger et al., 

2007, Díez-Navajas et al., 2008). This is usually accompanied by strong necrosis typical 

for the activation of defense reaction after penetration of host cells by the pathogen 

(Díez-Navajas et al., 2008, Polesani et al., 2010, Alonso-Villaverde et al., 2011). 

Nevertheless, we found at least some degree of sporulation on the highly resistant 

genotypes with all five pathogen populations tested. Müller-Thurgau was the only 

genotype showing no hypersensitive reaction against any of the tested strains, thus 

underlining its suitability as a positive control in infection bioassays with P. viticola. 

The identification of specific host-pathogen combinations with clearly distinct resistance 

reactions is a helpful result of this study for future attempts to unravel structural, 

physiological or molecular mechanisms of compatible or incompatible reactions. The 

fact that no host genotype was found fully resistant to all tested strains of P. viticola 

implies that future breeding should aim on the appropriate integration of multiple 

resistance genes in cultivars for increasing the durability of resistance against such a 

variable pathogen (Eibach et al., 2007, Gessler et al., 2011). Strains which expressed high 

virulence in the current study may be used for screening of additional sources of 

resistance in wild species. 

1.4.3 Phenotypic diversity in P. viticola 

On the pathogen side, the study revealed a high pathogenic diversity between accessions 

from different geographical origins (France, South Baden, North Württemberg), but also 

depending on the host cultivar from which the isolate was collected (e.g. isolates 1136 

and 1137 are from the same geographic region, but from different host cultivars). The 

latter shows that host resistance selectively contributes to the formation of P. viticola 

subpopulations differing in pathogenicity. This is in line with findings of Rouxel et al., 

(2013) who reported that pathogen samples collected from the same host genotype in 

different geographic regions where genetically more similar that samples from different 

hosts of the same region. 
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Even more remarkable seems the diversity we found between the single sporangium 

strains of each field isolate. This corroborates the high genotypic diversity found in 

molecular genetic studies of P. viticola (Gobbin et al., 2005, 2006, Chen et al., 2007, 

Rumbou & Gessler 2007, Matasci et al., 2010). The report that even a single lesion could 

be caused by two or more different genotypes (Gobbin et al., 2003a) is supported by the 

identification of mating types which need to share the same intercostal area of the leaf to 

achieve sexual reproduction in a heterothallic oomycete (Wong et al., 2001). 

The results show that pathotypes studies in P. viticola unavoidably rely on cloned 

isolates, even if their generation is still very time consuming and laborious because of 

the low ratio of successful infections with single sporangia. This accounts also for 

phylogenetic studies which still mostly rely on bulk samples (e.g. Rouxel et al., 2013). 

Particularly the fungicide tests revealed that the results obtained with field isolates did 

not mirror the diversity found in the cloned strains (e.g. field isolate 1117 versus strain 

1117-A7 with dimethomorph or field isolate 1137 versus strain 1137-A10 with 

metalaxyl-M). The proportion of resistant sporangia in a field population may be so 

small that infection in the bioassay fails, indicating a false negative result due to the low 

infection pressure exerted by these sporangia. It is noteworthy that all 5 P. viticola field 

isolates harbored pathotypes showing resistance to either metalaxyl-M, dimethomorph 

or both fungicides. The dominance of fungicide resistant strains in 1191 may be 

indicative of a selection in the population due to intensive and multiple applications of 

the same fungicides. A recent study on Peronospora tabacina has shown that changes in 

the chemical control of tobacco blue mold can lead to a genotypic shift in the pathogen 

population within few years (Spring et al., 2013). Currently solutions used by wine 

growers are the combination of fungicides with different modes of action or an alternate 

application, but the selection pressure seems to still be present (Corio-Costet et al., 

2011) what emphasizes the urgent need for breeding new cultivars. 
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2 Chapter 2 

Broadening of the system to characterize Plasmopara viticola strains 

Most of the results presented in this chapter are part of the B.Sc thesis of Markus Kaiser under 
my co-supervision. 

 

2.1 Introduction  

Working with genetic homogeneous material has been many times underestimated in 

oomycetes research. Our system revealed that single sporangium strains from a field 

isolate produce different infection reactions on selected hosts (Gómez-Zeledón et al., 

2013). This underlines the heterogeneous nature of the field isolates and emphasizes the 

importance of strain characterization. The previously established characterization 

system (chapter 1) allowed not only the assessment of the variability in downy mildew 

strains but also gave us information of interesting reactions on specific host-pathogen 

combinations. Using cultivars of the grapevine V. vinifera as well as wild Vitis species 

constituted a very useful system to detect particularities in isolates from different 

regions and collected on different hosts. Our published system has been successfully 

used by other authors to evaluate the virulence of P. viticola strains confirming its 

suitability for characterization (Li et al., 2015). 

The gene reservoir present in the wild species is considered an important source for 

resistance genes for the breeding programs (Gessler et al., 2011). Vitis, a genus with 

more than 60 species, has wild members in regions all around the north hemisphere. 

Numerous species have been identified in North America and Asia, constituting an 

important source for downy mildew resistance. In the search for characteristic infection 

reactions combining hosts with different susceptibility and strains with various levels of 

virulence, North American and Asiatic species were tested. The presence of resistance 

loci in Asiatic species has already been confirmed at least in Vitis amurensis (Schwander 

et al., 2012). Vitis jacquemontii has shown interesting reactions (Jürges et al., 2009) and 

needs to be considered. The North American Vitis species have proven to be important 

for the characterization showing a broad range of resistance to the pathogen (Staudt & 

Kassemeyer 1995). The possibility to improve the capacity to detect finer differences 

between strains by incorporating new host species to the characterization system was 

studied. 
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The capacity to discriminate between strains with different virulence depends not only 

on the host species but also on the evaluation system. After testing new isolates from 

different regions, difficulties were found to distinguish between strains with very similar 

infection reactions (Kaiser 2015). Attempts were made to improve the capacity of 

genotypes discrimination considering the reaction of the plant (necrosis) and the 

reaction of the pathogen (sporulation) using different symbols.  
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2.2 Material and methods 

2.2.1 Asiatic and North American Vitis 

In order to broaden the phenotypic characterization system, Asiatic and North American 

Vitis were selected to test the infection reaction of strains with different virulence. One 

strain from each of the five field isolates was selected based on their characteristic 

reaction on the six previously tested grapevine genotypes. Four Asiatic and four North 

American species were selected (Table 2.1). The reaction on Vitis jacquemontii (Vjaq-01, 

ID: 5883) was studied to test its suitability for the bioassay. Leaves and cuttings were 

kindly provided by Dipl.-Biol. Viktoria Tröster from the Botanical Garden, Karlsruhe 

Institute of Technology (KIT). Mature plants growing outdoors in the botanical garden 

were selected to harvest the leaves for the test. The reaction against the pathogen was 

also tested in leaves from Parthenocissus tricuspidata and P. quinquefolia, two species 

belonging to the Vitaceae family, growing in the botanical garden of the University.  

Table 2.1: Host genotypes used in the new characterization system. 

 

                    Groups              Host genotypes 

  Müller-Thurgau (MT), ID: FR3 vg 

Group 1: Vitis vinifera  Regent (REG), ID: rpv.3 

 Cabernet Cortis (CAB), ID: FR680 

  Vitis vinifera L. ssp. sylvestris (SYL), WBI 

  Vitis rupestris (RUP), Vrup-01, ID: 5888 

Group 2: North Amerian species Vitis riparia (RIP), Vrip-01, ID: 6548 

 Vitis cinerea (CIN), Vcin-01, ID: 6128 

  Vitis aestivalis (AES), Vaes-01, ID: 5911 

  Vitis coignetiae (COI), Vcoi-01, ID: 6542 

Group 1: Asiatic species  Vitis amurensis (AMU), Vamu, ID: 6540 

 Vitis davidii (DAV), Vdav-01, ID: 6544 

  Vitis betulifolia (BET), Vbet-01, ID: 6126 
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Leaf selection was based in the criteria already mentioned (1.2.1) and the bioassay was 

performed as described in 1.2.2 with some adjustments: 2000 sporangia were 

inoculated and five leaf discs of each genotype were used. Experiments were repeated at 

least once. Cuttings of the selected species were planted in pots and kept in the 

greenhouse for further experiments under the already mentioned conditions.  

2.2.2 Improvement of the phenotypic characterization system 

Due to the fact that different host reactions were not possible to be distinguished using 

the established methodology to assess the phenotypic variability of the P. viticola 

strains, additional experiments were carried out (Bachelor thesis, Markus Kaiser). It was 

observed that different reactions were placed in the same category since the protocol 

gave the same weight to sporulation and necrosis. The following attempt separated the 

necrosis from the sporulation using the same code system for describing the level of 

sporulation of selected isolates, but characterizing the necrosis using the following 

symbols: (+++) strong, (++) moderate, (+) weak and ( ) absence of necrosis (Fig. 2.1). 

This methodology was applied to characterize the reaction of five selected strains on the 

V. vinifera cultivars and on the North American and Asiatic Vitis species. Leaf disc assays 

were performed as in section 1.2.2. 

 

Figure 2.1: Diagram showing the already published evaluation system with sporulation and 
necrosis together (Gómez-Zeledón et al., 2013) and the new postulated system considering 
sporulation and necrosis in two separated categories. 
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2.3 Results 

2.3.1 Asiatic and North American Vitis 

Just one out of the four selected Asiatic Vitis genotypes, namely V. davidii, was able to 

completely hinder the sporulation of the five selected strains (Fig. 2.2). In contrast, in 

V. betulifolia, all strains achieved a strong sporulation, similar or even stronger to that 

produced in the susceptible cultivar Müller-Thurgau. In V. coignetiae, the sporulation 

reached category B in all the strains except for 1137-C20, which rarely sporulated in this 

genotype (reaction type D). Contrary to the expectations, the infection in V. amurensis 

was significantly stronger as presumed (category C) characterized by a moderate 

necrotic reaction and with a similar behavior as V. coignetiae, ranking the isolate 1137-

20 as the weakest one (Fig. 2.2). 

Regarding the North American species, V. riparia was confirmed as highly resistant 

followed by V. aestivalis. In both of them the highest infection category achieved was D, 

and almost no sporulation was found in any of the tested strains. On V. cinerea, the five 

strains produced a strong sporulation, similar to that in V. betulifolia, while the 

sporulation on V. rupestris was moderate. 

 

Figure 2.2: Reaction test of the five selected strains. The host genotypes are divided in three 
categories, Vitis vinifera group, North American wild species and Asiatic wild species. Infection 
reaction: A  Profuse sporulation; B  Moderate sporulation; C  Strong necrotic reaction with 
scattered sporulation; D  Rare sporulation with light necrotic reaction; E  No sporulation or 
necrotic reaction. 
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From the tested species, the one with the higher density of trichomes was 

V. jacquemontii. It was observed that the drops of sporangia suspension applied on 

leaves of this species were not able to spread in the surface and most of them remained 

over the trichomes after two days. Subsequent experiments (Bachelor thesis, Markus 

Kaiser) confirmed this observation. The results obtained with V. jacquemontii were very 

inconstant. In all the strains it was observed that in a few discs, in cases where the 

trichomes were not so dense, slight sporulation was present. These results were hard to 

reproduce in subsequent experiments and we decided not to include this species in the 

genotyping system. 

The two species from the genus Parthenocissus suffered, surprisingly, a considerable 

infection when inoculated with the downy mildew strains, allowing the pathogen to 

sporulate. Due to the lack of resistance in these species, and difficulties in their handling, 

no further analyses were performed on them. 

 

2.3.1 Improvement of the phenotype characterization system 

The assessment of sporulation and necrosis together showed to have its limitations. 

After phenotyping many different strains from various field isolates with the published 

system, it was detected that different host reactions were placed in the same category 

leading to a loss of valuable information (Data not shown). This problem was overcome 

by independently evaluating sporulation and necrosis (Tab. 2.2/Fig 2.3). 

This system would allow a better assessment of the small differences between similar 

infection reactions. It would be especially useful in cases where it is important to 

distinguish if an isolate achieved sporulation on a host or just produced a little necrosis 

(Fig. 2.4). It also improves the categorization of reactions where the necrosis is very 

strong but the sporulation is low, which in the published system would be scored with a 

stronger value (Fig. 2.4). 
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Table 2.2: Description of the new proposed system for the phenotypic characterization of 
P. viticola strains according to the infection reaction produced on leaf discs 10 days after 
inoculation. Sporulation is designated using colors/letters and necrosis using the symbol (+). 

 
 
 

 

Figure 2.3: Photographic characterization of the reaction categories according to the 
sporulation (A-E) and the necrosis (+, ++ and +++) of the new proposed system. Pictures were 
taken by Markus Kaiser. 
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Figure 2.4: Comparison of assessment systems in difficult cases. Infected leaf discs 10 days after 
inoculation are compared. Pictures were taken by Markus Kaiser. 

 

The reaction produced by the five strains on the selected host plants of Fig. 2.2 was 

evaluated using the new proposed system. Results are shown in Fig. 2.5. The system 

showed a new perspective, making it clear that if a color is present it implies a certain 

degree of sporulation, while the level of necrosis is easily scored with another symbol. 

The case of V. amurensis is an example of this. While in the published system the strains 

are scored with a reaction type C or D, in the new system all of them are rated as E 

making clear that no sporulation was present on this species and differentiating them 

just in the degree of necrosis. In V. riparia, as well, the new system explained better the 

difference between infection reactions. Similar to V. amurensis, this species did not allow 

any sporulation of the five strains but presented a certain degree of necrosis.  
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Figure 2.5: Reaction test of the five selected strains according to the new proposed system 
considering sporulation and necrosis apart. The host genotypes are divided in three categories, 
cultivars of V. vinifera, North American wild species and Asiatic wild species. Sporulation: A  
Very strong sporulation not limited to the inoculation site; B  Strong sporulation limited to the 
inoculation site; C  Moderate and scattered sporulation; D  Weak sporulation with single 
sporangiophores; E  No sporulation. Necrosis: Strong necrosis (+++); Moderate necrosis (++); 
Weak necrosis (+); No necrosis ( ). 

 

2.4 Discussion 

2.4.1 Asiatic and North American Vitis 

Asiatic Vitis species are known as important sources of resistance against P. viticola 

(Wan et al., 2007, Schwander et al., 2012). Thirty five, from the more than 60 known 

species from the genus Vitis, have their origin in China and many of these wild grapes 

have been used for wine production recently due to their desirable characteristics (Wan 

et al., 2008) which confirms their potential for breeding combined with European 

species. Vitis betulifolia was an interesting case, which, contrary to our assumptions, 

responded against all the tested strains like our susceptible cultivar Müller-Thurgau. In 

some cases, the spread of the infection on the inoculated discs was surprisingly faster 

and stronger than in Müller-Thurgau. Due to its high susceptibility, leaves of this species 

would be suitable to be used as a positive control on the leaf discs experiments or even 

to perform the subculture of the isolates or for cloning. No information was found in the 

literature about the downy mildew resistance of this species. Another Asiatic species 

previously tested, but not included in this study, namely Vitis thunbergii, exhibited a 

strong infection when inoculated with different P. viticola strains, as well. This 

demonstrates that a wide range of degrees of susceptibility against this pathogen can be 

found in the Asiatic species. Vitis coignetiae and V. amurensis showed an intermediate 
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resistance reaction, similar to that of V. riparia and V. vinifera spp. sylvestris. 

Interestingly, no difference was found between the response of these species against the 

five selected strains except of 1137-C20 which was the less virulent. This strain was 

previously known for its strong sporulation in the tolerant cultivar Regent, showing that 

different mechanisms are responsible for the resistance in the Asiatic species. In 

contrast to the reported information available on V. coignetiae (Jürges et al., 2009), the 

five strains tested achieved moderate sporulation on this species, what could be 

attributed to intraspecific differences of susceptibility, a phenomenon that has already 

been observed (Yu et al., 2012). 

The fact that all the strains showed the same reaction might be evidence that these 

European isolates haven’t been in contact with Asiatic Vitis species in their evolutionary 

history, thus preventing them to develop mechanisms to overcome the effect of the 

preexistent resistance of these plants. The lack of difference in the reaction on Asiatic 

species could also indicate that the five isolates have a common European ancestor and 

that the divergence took place not so long time ago.  

Even though the presence of a resistance locus have been reported on V. amurensis, 

(Rpv10) it has been shown that there is a strong variation of downy mildew resistance 

between accessions of this species (Blasi et al., 2011, Yu et al., 2012, Schwander et al., 

2012, Venuti et al., 2013). This underlines the importance of a careful selection of 

accessions of wild species for phenotyping. A strong necrotic reaction with no 

sporulation on V. amurensis implies a high level of resistance of the tested genotype in 

the present study. This Asiatic species has been previously characterized for 

suppressing sporulation while reacting with strong necrosis (Boso & Kassemeyer 2008). 

The only Asiatic species in which none of the selected strains of P. viticola was able to 

produce either sporulation or necrosis was V. davidii. Further experiments using 

fluorescence microscopy showed that hyphal growth took place on the leaves of this 

species even though infection symptoms were absent, demonstrating that zoospores can 

reach the stomata, germinate and grow inside the leaves. Contrary to these results, other 

authors have reported the development of P. viticola infections with sporulation on 

V. davidii (Yu et al., 2014, Liu et al., 2015). Further studies using molecular markers and 

morphology by Dr. Wei (Missouri Botanical Garden, and Flora of China), showed that 

this species originally designated as V. davidii, corresponds to another Asiatic species 

from the same family, namely Ampelopsis japonica, which would explain the 
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discrepancies found. Even though, the results found with this species are of special 

interest, since other closely related species to V. vinifera are potential sources of 

resistance genes against downy mildew (e.g. Muscadinia rotundifolia, Merdinoglu et al., 

2003).  

The North American species are known to present high resistance against P. viticola due 

to their evolutionary history. Nevertheless, just one species namely V. riparia was able to 

completely block the sporulation of the selected strains, contrary to the observations 

made in previous years. Several loci related with resistance have been reported to be 

originated from this species (Marguerit et al., 2009, Moreira et al., 2011). On V. rupestris, 

moderate sporulation and necrosis was observed in all cases tested here. This partial 

resistance might be conferred by an arrest of the pathogen growth on the early stages of 

the infection and anatomical barriers in the stomatal structure (Denzer et al., 1995a, 

Kortekamp & Zyprian 2003, Jürges et al., 2009). Sporulation in V. riparia has already 

been reported by other authors (Díez-Navajas et al., 2008) and in our first experiments, 

but it has also been reported that the reaction to the pathogen in this species might vary 

depending on the accession (Staudt & Kassemeyer 1995). Inoculum concentration, 

sporangia viability and environmental conditions might play an important role between 

no sporulation at all or a slight sporulation on this species. In contrast to the results of 

Unger et al., (2007), sporulation was found in all the tested strains on V. rupestris. On 

V. aestivalis the infection reaction was very similar, but in this case all strains were able 

to weakly sporulate. Both V. cinerea and V. aestivalis had been reported as moderately 

resistant against downy mildew (Staudt & Kassemeyer 1995), nevertheless the fact that 

the five strains moderately sporulate on V. cinerea indicates once again that not all 

accessions of a resistant species show the same response. 

The inability of P. viticola to successfully infect the Asiatic species Vitis jacquemontii is 

attributable to a mechanical barrier imposed by the dense coverage of trichomes found 

in the lower side of the leaves. This barrier avoided the direct contact of the zoospores 

with the stomata. Staudt & Kassemeyer (1995) reported that the hairiness of the leaves 

of some wild Vitis species impeded an infection of downy mildew. The fact that 

sporulation was found in some of the leaf discs suggests that there might not be a strong 

physiological defense in this genotype, and that its resistance is mainly due to this 

mechanical protection. This result contrasts with the findings from Jürges et al., (2009) 

where the formation of long surface mycelia is reported. On such hairy leaves the 
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formation of this kind of mycelium seems not plausible and deserves reinvestigation. In 

microscopy studies we were never able to observe long external mycelia, but just 

germinated spores with normal germ tubes that never got into the stomata due to the 

hairy barrier. 

Even though it is commonly believed that P. viticola is not able to infect species out of 

the genus Vitis, previous observations showed that the pathogen can colonize and 

sporulate on two other Vitaceae species, Parthenocisus tricuspidata and P. quinquifolia. 

In contrast, the findings of Rouxel et al., (2012) suggest that P. viticola strains found in 

resistant cultivars or on different Vitaceae species, due to a strong host specialization, 

would not be able to infect the traditionally susceptible cultivars. In spite of that, our 

strains, whether they were isolated from susceptible or resistant Vitis genotypes, were 

able to infect a wide variety of hosts. 

2.4.2 Improvement of the phenotypic characterization system 

Sporulation and necrosis are essential features for the characterization of an infection 

reaction on a biotrophic pathogen. The level of sporulation achieved by a strain is 

related to its virulence but it is not the only important characteristic. Regular 

phenotyping systems are based on the amount of sporangia, and do not consider the 

necrosis or evaluate it together with the sporulation (Bellin et al., 2009). The presence of 

resistance genes in the host genome and the development of necrosis are related 

(Gindro et al., 2003, Bellin et al., 2009, Blasi et al., 2011). The new proposed system gives 

weight to the necrosis, but also allows the separation of this character from the 

sporulation, facilitating the interpretation of the results. Necrosis formation suggests a 

strong host reaction against the pathogen, but also indicates a certain level of 

susceptibility (Blasi et al., 2011), which is not considered when sporulation is evaluated 

alone. Occurrence of necrosis due to a hypersensitive reaction (HR) suggests the 

recognition of the pathogen and the activation of the plant defense reaction (Gindro et 

al., 2003). Necrosis is recognized as a good indicator of grapevine resistance and has 

been previously considered when evaluating downy mildew resistance, but very roughly 

(Deglène-Benbrahim et al., 2010) and not so detailed as in this study. The absence of 

necrosis implies a compatible reaction in case of sporulation or a nonhost reaction in 

case of the absence of it. The kind of protection to the plant conferred by the nonhost 

resistance is more durable than the one conferred by R genes. Especially type I nonhost 
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resistance (preformed plant defense mechanisms) would be ideal for breeding, because 

it does not involve HR (Mysore & Ryu 2004). 

Small discrepancies between the results of two years in a bioassay are unavoidable. The 

system is affected by many sources of variation like leaf age, physiological development 

of the plant, particular weather conditions, presence of other not detected pathogens, 

and others. An example reported by Steimetz et al., (2012) showed the influence of the 

leaf age on the resistance response against P. viticola, being older leafs more responsive 

and less susceptible than younger leaves to the infection. It has also been reported that 

the seasonal development affects the production of stilbenes during a downy mildew 

infection in grapevine (Gindro et al., 2012). From the side of the pathogen there are as 

well many variation sources like age of sporangia, viability, physiological state, 

nutritional state according to the leaves used for subculture, and others. It makes clear 

that comparison of results from different years should be avoided. However, beside 

small differences, a general trend is easy to recognize and the characterization of the 

strains is possible and it represents, due to the lack of information in this area (Kamoun 

et al., 2015) an important step to improve breeding strategies.  

Microscopy performed by Markus Kaiser for his bachelor thesis showed similar results 

to those reported in the literature (Unger et al., 2007, Jürges et al., 2009), where shortly 

after penetration in the substomatal cavity, resistant hosts are able to arrest the 

pathogen development. Although numerous studies have been conducted on the 

relationship between P. viticola and Vitis species in the last years, still many questions 

remain unanswered. Which plant genes are able to hinder the hyphal growth on the 

resistant species? How do these genes exert their activity? Is it one gene or is it a 

combination of many genes that confers resistance? Which factors enable P. viticola 

strains to overcome the defense reaction? In order to assess these questions, molecular 

and phytopathological studies are needed to unravel the mechanisms behind this 

complex relationship. The idea to use a phenotypic characterization system including 

species from different geographical regions enabled us to screen P. viticola strains in 

terms of their ability to overcome many different defense mechanisms. Having a system 

ranging from fully susceptible to fully resistant species confers the possibility to 

characterize strains with a wide range of pathogenicity. 
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3 Chapter 3 

Molecular characterization of single sporangium isolates 

 

3.1 Introduction  

Populations of P. viticola are characterized by a high genetic variability, which makes its 

control a challenging task (Stark-Urnau et al., 2000, Gessler et al., 2001, Peressotti et al., 

2010). Many molecular markers have been developed in the previous years, aiming for a 

better understanding of the population dynamic of this pathogen. For the study of 

genetic variation in oomycetes, specific markers that are polymorphic at the intra-

specific level are necessary, but their development is often much more laborious than 

the search for markers that are only species specific (Giresse et al., 2010). 

Microsatellites, or simple sequence repeats (SSRs), are abundant sequences with a high 

level of polymorphisms that are dispersed throughout the genomes of most eukaryotes. 

This kind of markers have been widely used for population dynamic studies and DNA 

fingerprinting due to its co-dominant nature, and for being locus specific (Gupta et al., 

1996). SNPs (single nucleotide polymorphism), on the other side, markers are 

characterized by a single base change in a specific DNA region, where usually two 

alternative nucleotides (biallelic) might be present in a certain position (Vignal et al., 

2002). To date, 42 microsatellites (SSRs) and 8 SNPs markers have been described for 

P. viticola (Gobbin et al., 2003a; Matasci et al., 2010; Delmotte et al., 2011; Rouxel et al., 

2012). These molecular tools improve the genotyping efficiency for this important 

pathogen and allow the design of new genetic studies. The usage of single nucleotide 

polymorphisms on oomycete population studies has proven to be effective in P. viticola 

(Delmotte et al., 2011) as well as in Plasmopara halstedii (Giresse et al., 2007, Delmotte 

et al., 2008, Viranyi & Spring 2011). Microsatellites markers (SSRs) have demonstrated 

to be useful tools for genotyping P. viticola isolates using allele patterns (Gobbin et al., 

2003ab, Delmotte et al., 2006, Matasci et al., 2010, Roatti et al., 2013). 

In this study we aimed to achieve a molecular characterization of selected strains of 

P. viticola, which would permit a better handling and understanding of their 

development in population studies. The five selected strains from chapter 2 were 

analyzed at the molecular level in this chapter. Eight strains from the field isolate 1191 
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were examined as well. We focused on the molecular level, looking for a confirmation 

that would explain the high variability observed in chapter 1 and 2 at the phenotypic 

level. After the establishment of a system to characterize strains based on their 

interaction with hosts of different susceptibility, our next step was to characterize those 

outstanding strains at the molecular level for further studies. The quite different 

response observed on sister strains in chapter 1 will be contrasted with new results at 

the molecular level to confirm the assumptions that different genotypes are present in a 

field isolate. Finally, the homogeneity of single sporangium strains assumed by their 

stability through infection tests needed to be confirmed using molecular tools. 
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3.2 Material and methods 

3.2.1 Material selection and DNA extraction 

The field isolate from which the highest number of single sporangium strains was 

obtained in previous experiments was 1191. Eight strains of this field isolate were 

selected to examine the genotypic diversity. The previously selected strains (chapter 2), 

one from each of the other four available field isolates (1117, 1135, 1136 and 1137), 

were incorporated in the molecular analysis performed in this chapter. Sporangia were 

collected and frozen using the vacuum system mentioned in chapter 1. DNA was 

extracted according to a standard protocol from the laboratory (Frey & Spring 2015). 

After measuring the amount of DNA and dilution to a concentration of 30 ng/µl, PCR was 

performed in a pecStar 96 Universal Thermocycler (PeqLab Biotechnology, GmbH, 

Erlangen, Germany) to amplify the desired regions. The quality of the PCR products was 

checked using microchip capillary electrophoresis (MultiNa, Shimadzu, Duisburg, 

Germany). The RedTaq Mastermix was standardly used for PCR amplification (Table 

3.1). 

Table 3.1: Standard PCR amplification reaction used with the RedTaq Mastermix. 

Component Manufacturer Volume 

RedTaq Mastermix 

Specific primer [10µM] 

DEPC-treated H2O 

DNA 

Genaxxon Bioscience, Ulm 

Sigma-Aldrich GmbH, Munich 

Gibco, Paisley UK 

 

6 µl 

each 1 µl 

3 µl 

1 µl 

Total volume  12 µl 

 

3.2.2 Single Nucleotide Polymorphisms (SNPs) 

Eight known species-specific markers obtained from an expressed sequence tag (EST) 

library (Delmotte et al., 2011) were used to study the variability within a field isolate 

and between strains from different field isolates. Isolate 1191 was selected, from which 

8 single sporangium strains were available. The five selected strains used in chapter 2 

were analyzed in the same way for comparison. PCR with primers listed in Table 3.2 was 

conducted using the conditions reported in Table 3.3. When the quality of the PCR 

products was satisfactory, samples were prepared for sequencing. The EZ-Sequencing 
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service from the company Macrogen (Amsterdam, the Netherlands) was chosen for this 

purpose. Each sample was prepared in a 10 µl final volume including 6,5 µl of DEPC 

treated water, 2,5 µl of the desired primer (forward or reverse) and 1 µl of the PCR 

product in a 1,5 ml micro centrifuge tube. Sequences obtained from each isolate were 

aligned using the software BioEdit (V7.0.9, Ibis Biosciences, Carlsbad, USA) to screen the 

specific loci where the SNPs should be present. In cases where the baseline noise in the 

sequencing was very high or the peaks were not clear enough, samples were re-

sequenced or the PCR was repeated to assure reliable results. A total of 34 SNPs loci 

were used to characterize the strains (Table 3.6). Different allele patterns are 

represented with different colors. 

 
Table 3.2: Sequence of the primers used for the SNPs analysis and approximate size of the 
expected PCR product (Delmotte et al., 2011). The synthesis of the primers was performed by 
Sigma-Aldrich GmbH, Munich, Germany. 

 

 

Primer name Sequence  5' → 3' Approximate size (bp) 

Pvi1_F CCGTGACTCCCTTGTATTCC 494 

Pvi1_R AACGAATAGGGTGCGTAGGA 
 

Pvi2_F TAAAGGAGGGCAAGATCAGC 450 

Pvi2_R CGATACCAGCCATACCCAAC 
 

Pvi3_F CTCAGGGCGCAGATCAAT 299 

Pvi3_R CAAATCCGTAGGGTTCATGC 
 

Pvi4_F CTACATCTCGTCCGAGAAAGG 366 

Pvi4_R ATAGGAATGAGCGGCTGGT 
 

Pvi5_F GAGCATTTGCGCGTTGTG 278 

Pvi5_R CGCAGCTCCTTTCCATATTT 
 

Pvi6_F GGAAGTATTGGACGACAAGGTC 200 

Pvi6_R TAATAGGGTGAAGCGGGTTG 
 

Pvi12_F CTGACGGGCAAGACCATTAC 372 

Pvi12_R GAACACACCAGCACCACACT 
 

Pvi13_F CCAAGTCGCAAGCAAGTAAA 638 

Pvi13_R GCGAAAAAGGAAAAATAAGCA 
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Table 3.3: PCR conditions used for the SNPs analysis (Delmotte et al., 2011). 

 
Step Temperature Time 

Initial denaturation 

Denaturation 

Annealing 

Elongation 

Final elongation 

94°C 

94°C 

50°C 

72°C 

72°C 

5 min 

50 sec 

50 sec 

60 sec 

10 min 
 

3.2.3 Short Sequence repeats (SSRs) 

The microsatellite experiments were performed at the Julius-Kühn-Institut, 

Geilweilerhof, in the working group of Prof. Dr. Eva Zyprian and with the collaboration 

of Dipl.-Biol. Jens Dudenhöffer. From the 42 microsatellite markers known to date for 

P. viticola, eight were selected based on a high polymorphism level. Two multiplex 

panels of fluorescent-labeled microsatellite primers were used. Simultaneous PCR 

amplifications were carried out in a final volume of 10 µl containing 10 ng of genomic 

DNA, 0,25 mM of each dNTPs, 2 mM MgCl2, 10 mM dye-labeled forward and an 

unlabeled reverse primer (Table 3.4) and 1,5 U Taq DNA Polymerase (AmpliTaq, Gold™, 

Applied Biosystems, Foster City, CA). A GeneAmp PCR System 9700 was used to perform 

the PCR reactions under the conditions listed in Table 3.5. 

The eight loci were analyzed as follow: PCR products (0,5 µl) generated by two or three 

different fluorescence dye-labeled primers were mixed with 9,3 µl of formamide and 

0,2 μl of GeneScan 600 LIZ Size Standard (Applied Biosystems). The DNA fragments 

were denatured and size fractionated using capillary electrophoresis on an ABI 3100 

Genetic Analyzer (Applied Biosystems, Darmstadt). Subsequently, GeneMapper 4.0 

(Applied Biosystems, Darmstadt) was used to score the allele sizes.  
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Table 3.4: Sequence and fluorescent labels of the primers used for the microsatellite analysis 
and approximate allele size range. The synthesis of the primers was performed by Sigma-Aldrich 
GmbH, Munich, Germany. 

Primer name Sequence  5' → 3' Fluorescent label 
Approx. allele size 

range(bp) 

ISA New_Fa GGCATGGACGTTGACTCA C HEX 118-144 

ISA_Ra GAGAAGTTCCGCCAAGTACA 
  CES_Fa CTTGTCGGTAGGTAAGCGTG 6-FAM 143-186 

CES New_Ra CATCAGAATGTTTGTGTGTG 
  BER NewFa CAAGCAATGCAATGGTCTTC ROX 179-185 

BER New_Ra GGCATCACTCTCTACCTGCTC 
  GOB_Fa CTTGGAAGTTATACCATGCTACC 6-FAM 210-434 

GOB New_Ra ATCGCACAGCTTAATGCATATC 
  Pv91_Fb ACCAGCCTTTGCGAAGATAA ROX 142-146 

Pv91_Rb TGAAAGTTACGTGTCGCACC 
  Pv137_Fb AAGTGGGACACATCAAGCGT TAMRA 243-256 

Pv137_Rb TGGCAATAAGTTTATGCCTCG 
  Pv143_Fb CCTGAATAAAGCAACACGCA FAM 121-135 

Pv143_Rb TTGGCAGCAAATTGTACGAC 
  Pv144_Fb ACCAAGAATCGCACCTAACG TAMRA 161-192 

Pv144_Rb GTCTGCCTGTTTGTCGGTTA 
  

a  Gobbin et al., 2003a & Matasci et al., 2010 
  b  Rouxel et al., 2012     

 

Table 3.5: PCR conditions used for the SSRs analysis. 

Step Temperature Time 

Initial denaturation 

Denaturation 

Annealing 

Elongation 

Final elongation 

96°C 

93°C 

60°C 

72°C 

72°C 

15 min 

30 sec 

90 sec 

60 sec 

30 min 
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3.3 Results 

3.3.1 Single Nucleotide Polymorphisms (SNPs) 

Out of the 34 different SNPs loci analyzed, nine possible combinations were found in the 

13 strains. Within the field isolate 1191, five different genotypes were found among the 

8 tested single sporangium strains, indicating a high genetic variability. Four of the 

markers (Pvi1, Pvi5, Pvi12 and Pvi13) didn’t show differences between the strains of 

isolate 1191, but they showed differences when compared with strains from other field 

isolates (Table 3.6). Two strains from different field isolates (1117-A21 and 1136-A15) 

presented the same allele pattern using the present system. None of the analyzed strains 

showed signs of a mixture of genotypes (e.g. more than two alleles for a specific loci). 

3.3.2 Short sequence repeats (SSRs) 

Microsatellites (short elements of repeated sequence motives scattered over the 

genome) demonstrated to be a very useful tool to study the diversity between genotypes 

of the same species. Due to the high polymorphism showed, a characteristic pattern was 

found for the selected strains (Table 3.7). In the 13 analyzed samples, (one field isolate 

and 8 derived strains plus 4 strains from other fields) the microsatellites presented at 

least two alleles (BER, ISA, PV91 and PV137) and two of these markers where highly 

polymorphic with more than five alleles (GOB and PV144) (Table 3.7). Four different 

genotypes where found when the single sporangium strains from the field isolate 1191 

where compared. None of the strains from different field isolates presented the same 

pattern. In this case, as well as using SNPs, no signs of a genetic inhomogeneity were 

observed when single sporangium strains were analyzed. 

 



 

 

Table 3.6: Identity of single nucleotide polymorphisms (SNPs) localized within eight P. viticola EST-derived markers (Delmotte et al., 2011) in the 
genome of the field isolate 1191 together with its correspondent single sporangium strains (A5, A7, B6, B9, B11, B12, B15 and B18) and four other 
selected strains (1117-A21, 1135-F2, 1136-A15,1137-C20). Different colors indicate a different allele pattern. Letters indicate the specific base present 
at that locus. In case of heterozygosis, both bases are presented.     

Markers Strain/Localiz. 1191 1191-A5 1191-A7 1191-B6 1191-B9 1191-B11 1191-B12 1191-B15 1191-B18 1117-A21 1135-F2 1136-A15 1137-C20 
130 G/A G/A G/A G/A G/A G/A G/A G/A G/A A A A A 
157 C/T C/T C/T C/T C/T C/T C/T C/T C/T C C C C 

Pvi1 193 C/T C/T C/T C/T C/T C/T C/T C/T C/T C C C C 
232 G/A G/A G/A G/A G/A G/A G/A G/A G/A G G G G 
265 C/T C/T C/T C/T C/T C/T C/T C/T C/T C C C C 
271 C/G C/G C/G C/G C/G C/G C/G C/G C/G A A A A 

  292 T/A T/A T/A T/A T/A T/A T/A T/A T/A T T T T 
Pvi2 146 T T T T T C T T T C/T C C/T C 

  33 C/T T C/T C/T C/T C/T C/T C/T T C C C C/T 
132 C/G C/G C/G C/G C/G C/G C/G C/G C/G G C G G/C 

Pvi3 151 G G G G G G G G G G G G G 
174 A/G A/G A/G A/G A/G A/G A/G A/G A/G G A/G G A/G 

  270 A A/G A A/G A/G A/G A A A/G G A/G G A 
  229 C C C C C C/T C C C C C C C/T 

232 C/T C/T C/T C/T C/T T C/T C/T T C/T C/T C/T T 
268 G/C G/C G/C G/C G/C C G/C G/C C G/C G/C G/C C 

Pvi4 313 C C C C C C/T C C C C C C C/T 
314 C C C/T C C C/T C C C C C C C/T 
316 T/C T/C T/C T/C T/C C T/C T/C T/C T/C T/C T/C C 

  334 C/T C/T C/T C/T C/T T C/T C/T T C/T C/T C/T T 
  103 C C C C C C C C C C C C C 

105 G G G G G G G G G G/C G G/C G/C 
Pvi5 156 T/A T T T T T T T T T T T T 

166 T/G T T T T T T T T T T T T 
168 A/T A A A A A A A A A A A A 
249 G G G G G G G G G G/A G G/A G/A 

  252 C C C C C C C C C T/C C T/C T/C 
Pvi6 61 G G G G G G G G/T G G/T T G/T G/T 

  73 G G G G G G G G/A  G G/A  A G/A  G/A  
Pvi12 149 C C C C C C C C C C C C C 

68 A A A A A A A A A A A A A 
Pvi13 196 G G G G G G G G G G G G G 

199 C C C C C C C C C C C C C 
  235 T T T T T T T T T T T T T 
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Table 3.7: Allele size (bp) of the eight SSRs loci (Gobbin et al., 2003a, Delmotte et al., 2006, 
Matasci et al., 2010, Rouxel et al., 2012) from the 13 analyzed samples of P. viticola and total 
number of alleles found. In case of heterozygosis, the size of both alleles is presented. 

 

Strain/Marker BER CES GOB  ISA PV91 PV137 PV143 PV144 

1191 135 149/151 277/379 125/129 145 256 129/137 181/189 

1191-A5 135 149/151 277/379 125/129 145 256 129/137 189/191 

1191-A7 135 151 277/379 125/129 145 256 129/137 189/191 

1191-B6 135 151 277/379 125/129 145 256 129/137 189/191 

1191-B9 135 151 277/379 125/129 145 256 129/137 189/191 

1191-B11 135 153 367/393 125/129 145/148 256/259 129/137 181/189 

1191-B12 135 151 277/383 125/129 145 256 129/137 189/191 

1191-B15 135 151 277/379 125/129 145 256 129/137 189/191 

1191-B18 135 151 277/379 125/129 145 256 129/137 189/191 

1117-A21 135/136 140/153 195/368 125/129 148 256/259 129/132 193/197 

1135-F2 135 153 195/381 129 145 256/259 129/132 187/191 

1136-A15 135/136 140 195/368 125/129 148 256/259 129/132 193/197 

1137-C20 135/136 149 277/373 129 145/148 259 132 185/187 

No. of alleles 2 4 9 2 2 2 3 6 
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3.4 Discussion 

In order to study the genetic and genotypic diversity of plant pathogens, different 

molecular markers have been used by various researchers. AFLPs, ISSRs and RAPDs 

have been often preferred because they permit a fast screening of various loci within a 

genome (Stark-Urnau et al., 2000, Fry 2001). However, these markers might not be the 

most appropriate because they are dominant, and not specific to the target. SNPs on the 

other side are promising markers due to their specificity, their codominant nature and 

their high resolving power (Delmotte et al., 2008). A high polymorphism at the 

intraspecific level is desirable for population studies and is another advantage of the 

SNPs (Giresse et al., 2007), but the low detection efficiency restricts their application as 

molecular markers (Liu et al., 2012). In the present study the application of these 

markers in P. viticola confirmed their suitability for genotyping in grapevine downy 

mildew. The allele patterns allowed the detection of different genotypes within a field 

isolate. However the 34 SNPs loci analyzed were insufficient to differentiate between the 

two strains 1117-A21 and 1136-A15 although they showed a different infection reaction 

on Regent. This shows that SNPs markers are suitable for genotyping, but not predictors 

for pathotypes. The limitation in differentiating between a strain derived from Colmar, 

France (1117-A21) and one from Pfaffenweiler, Germany (1136-A15) could either imply 

that some genotypes are distributed over a large geographic area or it indicates that a 

higher number of markers should be considered to achieve proper separation of 

genotypes. The dependence on sequencing methodologies and the inefficacy of 

accurately allele assignment due to sequence noise still limits the application of this 

technique for the genotyping of large set of strains. 

Microsatellites are other species-specific markers suitable for population studies and 

genotyping on the infraspecific level. This kind of markers represents a very important 

tool in genetic population studies, as well as in epidemics (Gessler et al., 2001, Matasci et 

al., 2010), fungicide resistance (Matasci et al., 2008) and genotyping research (Roatti et 

al., 2013). The limiting issue for the use of SSR markers is the allele size determination, 

due to the small differences in sizes. For this purpose, polyacrylamide gels have been 

preferred considering its lower cost (Gobbin et al., 2001, 2003), however the analysis of 

the generated PCR products is easier and more accurate through capillary sequencing 

(in a Genetic Analyzer) with fluorescent labeled primers (Gobbin et al., 2003 ab, Matasci 
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et al., 2010, Rouxel et al., 2012). This methodology is more complicated and expensive 

requiring special equipment and trained personal but provides a higher resolution 

allowing the analysis of higher sets of data without using toxic substances. Using eight 

microsatellite markers, we were able to differentiate between downy mildew strains 

from different field isolates better than using the SNPs. Within the field isolate 1191 four 

different genotypes were found. When combining the data of SNPs and SSRs it was 

possible to define each of the tested strains by its characteristic and unique pattern. 

The combination of available SNPs and SSRs assures a higher accuracy in genotyping 

and provides a reliable set of markers for population studies as well as for the 

characterization of interesting isolates (Delmotte et al., 2011). In this study it was 

demonstrated that such combination provides a very high resolution at the population 

level, even within strains from a field isolate. This would allow detecting mixed isolates 

or contaminations. In spite of its advantages, these genotyping protocols are still not 

able to provide a quick and easy method to differentiate between strains, and are very 

time and cost intensive.  

The high diversity found within a field isolate is in congruence with previous studies 

(Stark-Urnau et al., 2000, Kast 2001, Gobbin et al., 2001). It has also been demonstrated 

that different genotypes might be present even in a single lesion (oil spot) produced by 

different spores or by heterokaryotic processes in the leaf (Gobbin et al., 2003). In the 

previous chapter it was demonstrated that single sporangium strains from a field isolate 

are phenotypically different in terms of their ability to infect hosts with different 

susceptibility. Even their fungicide resistance was different, suggesting a high genetic 

variability within field isolates. The results in this chapter corroborate that a high 

genetic variability is behind the phenotypic diversity observed before. This additional 

evidence confirms the requirement of single sporangium strains to perform studies in 

such a variable pathogen. If a mixture of genotypes is present in an isolate, the results 

obtained will be very variable and not repeatable. Even recent studies have relied on 

bulked samples (Schwander et al., 2012) and the results appear vulnerable in the 

context of the high population diversity already shown (Scherer & Gisi 2006). Single 

sporangiophore isolates have been alternatively used (Gisi et al., 2007, Yin et al., 2015) 

but the possibility cannot be ruled out that parasexual processes might occur in this 

genus, similar as shown for Plasmopara halstedii in sunflower (Spring et al., 2006). This 
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would speak against the assumption that all sporangia in a sporangiophore possess the 

exact same genetic material. 

The capacity of certain strain to overcome the effect of a specific fungicide or to infect a 

tolerant host might be associated to the presence of a determined allele, (e.g. effector 

genes), absent in other strains. This would provide a very useful tool for an easier 

detection of special characteristics and to follow them in the time. It improves as well 

the ability for early detection of especially dangerous strains in the field and supports 

the breeding programs facilitating the screening for interesting genotypes. The 

application of the here presented markers will be the goal of future studies. 
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Chapter 4 

Expression of putative effector genes at early developmental 

4 stages in P. viticola strains with different virulence  

Some of the experiments of this chapter were performed as part of the bachelor theses of 
Melanie Fröhler, Nele Bendel and Markus Kaiser and the master thesis of Sandra Becker under 
my co-supervision. Results from this chapter were partially presented on International 
Workshops held in Vitoria/Gasteiz, Spain (Gómez-Zeledón et al., 2014) and in Munich, Germany 
(Gómez-Zeledón et al., 2015). 

 

4.1 Introduction 

Biotrophic pathogens establish a very close relationship with their host in their infection 

course. To be able to live in the apoplast and feed on the plant without activating a 

defense reaction, biotrophs have developed a wide arsenal of mechanisms. Plants can 

recognize pathogens based on common substances that reveal the presence of eventual 

threats. This first level of defense is called PTI (PAMP-triggered immunity) and is 

effective against a wide range of pathogens (Jones & Dangl 2006). The PAMPs 

(pathogen-associated molecular patterns) are conserved microbial molecules 

recognized by the plant innate immune system. Examples of these molecules are 

flagellin, from bacterial origin, or chitin present in fungal cell walls. Pathogens which 

overcome this first barrier can successfully infect the plant making use of virulence 

factors or effectors to suppress the PTI. Effectors are secreted molecules, typically 

proteins, which interfere with the host immunity. However, plants have developed a 

second line of defense called effector-triggered immunity (ETI) which directly or 

indirectly recognizes such pathogens by either detecting the presence of effectors or 

their activity in the plant. In such a case, effectors are then called avirulence molecules 

(Avr) because they are recognized by the plants’ R-proteins and used as a switch to 

induce a defense reaction, commonly expressed as a hypersensitive response (Morgan & 

Kamoun 2007). In the course of time, specialized pathogens have developed effectors 

capable to disable host defense reprograming the cells and impeding cell death 

(Panstruga et al., 2003). In this case we talk about effector-triggered susceptibility (ETS) 

since the plant is again defenseless against the pathogen attack (Jones & Dangl 2006, de 

Jonge et al., 2011). This dual function of effectors, either triggering the plant immune 

reaction or increasing the pathogen virulence have made these molecules the target of 
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numerous studies trying to improve the understanding of plant-pathogen interactions 

(Kamoun 2007). 

Effectors are not only present in oomycetes, but also in many other organisms. Even 

though bacterial effectors and their mechanisms have been extensively studied (Hann et 

al., 2010), there are still many open questions about the role and virulence mechanisms 

of oomycete effectors (de Jonge et al., 2011, Bozkurt et al., 2012). Efforts making use of 

bioinformatics tools have enabled the discovery of hundreds of oomycete effectors, but 

just a few of them have been fully characterized (Kamoun 2006, Fawke et al., 2015). 

Effectors might target different compartments in the host cells and based on this could 

be roughly divided in two groups: apoplastic and cytoplasmic effectors (Schornack et al., 

2009). Both kinds of effectors are secreted by means of a specialized infection structure 

called haustorium, which not only allows the pathogen to extract nutrients from host 

cells, but also opens the pathogen a door to manipulate the host and successfully infect it 

(Voegele et al., 2001, Panstruga 2003, Panstruga & Dodds 2009, Tyler 2009). The role of 

effectors is summarized in Fig. 4.1. 

Apoplastic effectors fulfill different tasks, mainly in the first contact of the pathogen with 

the plant. Cell-wall degradation, inactivation of hydrolytic host enzymes and scavenge of 

potential PAMP molecules belong to them (de Jonge et al., 2011). Kamoun in 2006 came 

out with a detailed catalogue of the known oomycetes effectors and grouped them 

according to their localization and their biological activity. Apoplastic effectors play a 

very important role in the establishment of the infection in its first stages, but they 

might also be key molecules for the plant to recognize the pathogen (Fig. 4.1). 

Cytoplasmic effectors are characterized by their translocation into the plant cytoplasm. 

Two families of cytoplasmic effectors have been described for oomycetes, the RXLR and 

the CRN (Crinkler) family. The RXLR effectors have only been reported on individuals 

from the Peronosporales, and seem to be restricted to this group. Effectors from the CRN 

family are in contrast ubiquitous and have been found in all examined oomycetes 

(Bozkurt et al., 2012). The RXLR amino acid motif present in the N-terminal region of 

such proteins is very similar to a signal for host targeting of malaria parasites 

(Plasmodium spp.), which suggests that this sequence might be highly conserved in 

different kind of pathogens (Birch et al., 2006), hence supporting the assumption of its 

essential role on the translocation into the host cytoplasm (Morgan & Kamoun 2007, 

Schornack et al., 2009). Up to now, all characterized avirulent proteins possess this host 
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translocation domain characterized by its RXLR motif (Arg-X-Leu-Arg) which confirms 

its importance in the infection process (Chen et al., 2014). The fact that these effectors 

interact with intracellular host proteins, causing a hypersensitive reaction gave birth to 

the idea that these Avr proteins should be internalized in the plant cell (Morgan & 

Kamoun 2007). Several works confirmed that many RXLR and CRN effectors possess 

nuclear localization signals (NLS) which verifies their role in manipulating gene 

expression to confer the pathogen a higher virulence (Liu & Coaker 2008, Schornack et 

al., 2010, Caillaud et al., 2012, Mafurah et al., 2015). Transient expression studies have 

demonstrated that RXLR effectors can exert their activity in divergent plant species, 

suppressing the immune response, which also confirms that the incorporation of these 

effectors in the cell happens through host mechanisms (Anderson et al., 2012, Yin et al., 

2015). Numerous studies on oomycetes effectors have been conducted, targeting the 

discovery of new pathogenic molecules, its traffic inside host cells and its biochemical 

functions. This has been extensively reviewed (Kamoun 2006, Govers & Bouwmeester 

2008, Hogenhout et al., 2009, Schornack et al., 2009, de Jonge et al., 2011, Bozkurt et al., 

2012, Fawke et al., 2015, Oliveira-Garcia & Valent 2015). 

 

Figure 4.1. Interaction between a biotrophic pathogen and its host. A specialized infection 
structure (haustorium) penetrates the host cell wall and releases effector molecules. Effectors 
might be recognized by the plant activating a defense reaction. 
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Even though progress has been made in the breeding of resistance against downy 

mildew, the responsible mechanisms have not been elucidated. A very broad range of 

reactions were found in chapter 1 and 2 when strains of the pathogen were tested on 

hosts with different resistance levels. The established system allowed the selection of 

five strains characterized by showing different infection reactions. The molecular 

characterization of these strains performed in chapter 3 revealed differences at the 

genetic level. In the present chapter, attempts were made to unravel the reasons for the 

different pathogenicity. The expression of several putative effector genes, believed to 

play a role in the pathogenicity of the oomycete, was studied at different developmental 

stages. 

At the beginning of our research, a very limited number (25) of putative effectors were 

known from P. viticola (Mestre et al., 2012), compared to Phytophthora infestans for 

which 563 genes are predicted to function as effectors (Haas et al., 2009). Our task was 

to confirm the presence of these effectors in the genome the five selected P. viticola 

strains, and compare their expression patterns. This goal was addressed during the 

master thesis of S. Becker (2015). The effectors studied in this chapter were discovered 

studying in vitro germinated zoospores (Mestre et al., 2012) generated by means of an 

already described protocol to induce zoospore encystment (Riemann et al., 2002). Our 

efforts to improve the single sporing technique for P. viticola during the bachelor thesis 

of M. Fröhler (2012) and N. Bendel (2013), gave us new tools to improve the in vitro 

encystment and germination of spores using different salts.  

The grapevine cultivar Regent was selected based on its importance for viticulture and 

its high tolerance against downy mildew. This variety bred in the institute for Grapevine 

Breeding Geilweilerhof and released in 1996 has several North American wild species in 

its background which potentially contributed with resistance genes (Fischer et al., 

2004). As this cultivar is not totally able to avoid being infected by P. viticola, its 

resistance might be classified as a ‘horizontal’ or quantitative resistance and is 

characterized by reduced development and sporulation of the pathogen. This kind of 

resistance, in the long term, is expected to be more durable than qualitative resistances 

which might be overcome by a single mutation (Pariaud et al., 2009). Fluorescence 

microscopy carried out by M. Kaiser (2015) during his bachelor thesis, followed the 

infection process of two strains on this tolerant cultivar. These observations confirmed 

the previously shown difference in virulence of the two strains, and encouraged the 
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study of effector gene expression in this host-pathogen combination. In a time in which 

large sets of oomycetes effectors are being discovered (Derevnina et al., 2015) and more 

P. viticola effectors enter the scene (Li et al., 2015, Yin et al., 2015), the identification of 

those decisive genes for a compatible infection is a key point in the molecular biology of 

plant pathogen interaction. 
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4.2 Material and methods 

4.2.1 Developmental stadia 

To compare the gene expression of the putative effectors in the selected strains, 

different host-independent and -dependent developmental stages of P. viticola were 

selected. The comparison of the five strains was performed using germinated spores 

(early stage) and infected leaf discs 96 hours post inoculation (late stage) (Fig. 4.2). For 

the host-pathogen combination study, infected leaf discs 6, 12, 24 and 96 hours post 

inoculation were studied  

 

Figure 4.2: Plasmopara viticola a=sporangia, b=germinated spores and c=infected leaf disc 96 
hours post inoculation used for the gene expression study of the five strains. 

4.2.2 In vitro encystment and germination of spores 

To be able to study the gene expression in a very early, host independent, but 

physiologically active stadium of the pathogen, it was taken advantage of the ability of 

zoospores to encyst and germinate via germ tube. Although zoospores naturally undergo 

this process just when they are located in a water layer covering the leaf surface, this 

process is individual and not synchronized in the zoospore population. To obtain a 

uniform sample condition, chemical stimuli were tested in vitro to induce encystment 

and germination of spores in a host-free system. 

4.2.2.1 Mannitol and sorbitol 

To determine the effect of the organic substances on the development of zoospores, 

strains 1136-A15 and 1137-C20 were selected. These experiments were conducted in 

the course of the B.Sc thesis of M. Fröhler (2012). Sporangia suspensions were prepared 

following the protocol described in 1.2.2. Square Petri dishes with 25 wells were used 
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and in each well 500 µl of the sporangia solution were dispensed. Concentrations of 10, 

50, 100 and 200 mM mannitol and sorbitol were tested. Five wells were adjusted to each 

of the evaluated conditions and five wells were used as control. After an incubation of 24 

hours in the darkness at 18 °C, the frequency of different stages (empty sporangia/full 

sporangia and encysted spores/destroyed spores was scored by means of an inverted 

microscope.  

4.2.2.2 Sodium chloride and calcium chloride 

Preliminary tests of Fröhler (2012) had shown that the addition of inorganic salts to 

sporangia solutions negatively affected the release of zoospores. Therefore, sporangia 

solutions were prepared as previously described and the salt concentration was 

adjusted after zoospores releasement (1-2 hours). These experiments were conducted 

in the course of the B.Sc thesis of N. Bendel (2013). 

Three P. viticola single sporangium strains from different field isolates (1135-F15, 1137-

C20 and 1191-B11) were selected to test the effect of salts addition after zoospore 

releasement. Strains were subcultured and handled as described in section 1.2.1. 

Multitest-3 wells glass slides (Menzel Glässer, Braunschweig) were used for this 

purpose. Sporangia suspensions (6 x 105 sporangia/ml) were prepared as in section 

1.2.2 and distributed in the multitest slides. After 2,5 hours incubation in darkness at 

18°C in a wet chamber, an abundant releasement of zoospores was achieved and the salt 

concentration was adjusted (50 µl final volume). Sodium chloride and calcium chloride 

were tested in concentrations of 5, 10, 15, 20 and 25 mM. The frequency of different 

stages (zoospores, encysted and germinated spores) in 100 counted spores was scored 

directly on the multitest slide 30 and 60 minutes after the addition of salts using a light 

microscope. This methodology was based on a previously described methodology of 

Riemann et al., (2002) and the experiences personally made during the supervision of 

the B.Sc thesis of Fröhler (2012). Two independent experiments were performed for 

each salt concentration and strain, and three technical replicates were scored in each 

experiment. In case of strong divergence, assays were repeated. Statistical analysis was 

conducted using InfoStat vers. 2013 (InfoStat Group, Argentina). By means of an 

Axioplan microscope (Zeiss, Oberkochen), pictures of the germinated spores were taken 

one hour after the salt addition, stained with Blankophor® (Blankophor GmbH & Co. KG, 

Leverkusen, Germany). The pictures were taken using a digital camera (Canon Power 
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Shot A640). A fluorescence filter (Zeiss, filter II, 02 /G365, excitation: 365 nm) was 

employed under UV light. To examine the effect of the addition of CaCl2 in the following 

stages of the P. viticola infection, a leaf disc test was performed as described in section 

1.2.2. Released zoospores treated with 20 mM calcium chloride were used to inoculate 

five leaf discs in concentrations of 100, 500, 1000, 5000 and 10000 sporangia per leaf 

disc. A water control was performed in parallel. This experiment was performed two 

times independently. 

The reaction to calcium chloride was further investigated in other oomycetes using 

sporangia from Plasmopara halstedii (isolate 1211), Pustula helianthicola (isolate 1236) 

and Pseudoperonospora humuli (field isolate, botanical garden, University of 

Hohenheim). Trials were performed as previously described using concentrations of 10, 

25 and 50 mM. Zoospore development after 30, 60, 90 and 120 min was observed and 

the frequency of each stage was scored. Experiments were performed in triplicate. 

Pictures from the stage of 120 min after the salt addition were taken under a light 

microscope. 

4.2.3 Germinated spores 

The induction of zoospores release was performed in 50 ml Falcon tubes filled with 3 ml 

of distilled water. To gain the sporangia, an infected leaf fully covered with sporangia of 

the selected strain was placed into the tube and strongly shaken. After removal of the 

leaf, the sporangia suspension was kept in darkness at 18°C for two hours. Samples were 

taken every 30 min to check the release of zoospores under the light microscope. When 

a strong release of zoospores was detected, 3 ml of a 100 mM CaCl2 solution was added 

to the tube to give a final concentration of 50 mM. This concentration was chosen based 

on experiences gained in the previous experiments to induce encystment and 

germination of spores. Following this step, the suspension was incubated for another 

two hours under the same conditions and checked regularly under the microscope. 

When the germ tube development of the spores was detected, 2 ml of the suspension 

was added in a 2 ml reaction tube and centrifuged at 4 °C for two minutes at 15000 rpm. 

Afterwards, the supernatant was carefully discarded and the rest of the suspension was 

added to the reaction tube. A second centrifugation was performed. This step was 

repeated a third time until the whole suspension was centrifuged and a concentrated 

pellet of germinated spores was obtained. The tubes were shock-frozen on liquid 
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nitrogen and kept until use at -70°C. These experiments were conducted in the course of 

the M.Sc thesis of S. Becker (2015). 

4.2.4 Putative effectors 

The presence of the 25 known (at the date of the experiments) putative effectors from 

P. viticola (Mestre et al., 2012) was studied in the five selected strains. The nucleotide 

partial sequences of the putative effectors were downloaded from an EST library 

available online in the GenBank®, National Center for Biotechnological Information 

(NCBI). Specific primers were designed to amplify the desired regions using the 

software module Primer Select from Lasergene (V7.0.0, DNASTAR, inc., Madison, USA). 

PCR reactions were performed under the conditions mentioned in Table 4.1. Primers 

and its specific PCR product size are listed in Table 4.2. To corroborate the specificity of 

the designed primers, selected PCR products were sequenced (see section 3.2.2) and 

compared with the known effectors sequences using the Basic Local Alignment Search 

Tool (BLAST). These experiments were conducted in the course of the M.Sc thesis of S. 

Becker (2015). 

Table 4.1: PCR conditions used for the analysis of putative effector genes (Mestre et al., 2012). 

Step Temperature Time 

Initial denaturation 

Denaturation 

Annealing 

Elongation 

Final elongation 

94°C 

94°C 

60°C 

72°C 

72°C 

2 min 

10 sec 

10 sec 

10 sec 

2 min 
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Table 4.2: Primers sequences and approximate size of the amplification products used to detect 
the presence of the putative effector genes in the genome of the P. viticola strains. Primers were 
designed in collaboration with Sandra Becker. 

Primer name Primer sequence 5´→ 3´ Expected fragment length (bp) 

GIucInh_1_F ACTCCCAACACCTCAGACGACA 726 
GIucInh_1_R TTCCGGTCACGAGTCCAATAAG 
GIucInh_2_F TGGGGCTTCGAGGAGTGCTATT 300 
GIucInh_2_R CCGAAGACACGCGTGAGAAAAC 
GIucInh_3_F ATAGCGCTGCCGATCAAGAGTA 378 
GIucInh_3_R CGTCGCAGCAAGGCAAGTTT 
GIucInh_4_F ACGATGGGTGCTTTGCTGTATT 218 
GIucInh_4_R CCATGGGATAGCGACCGAC 
RXLR_1_F CGCACTCAAAAGACAACACAAA 422 
RXLR_1_R GGTTAATAGCCCCGCAGACTT 
RXLR_2_F CGGTGGCAAAGCAAGAGTTAC 671 
RXLR_2_R GCCGAAGACATTGGTGAGC 
ElicLike_1_F GCTCCTCGTCGCATTTACATCT 512 
ElicLike_1_R GTCGAAGGGGTAGTGCTGTTTG 
ElicLike_2_F TGCTGAGGCCACGGGTAT 565 
ElicLike_2_R GCTCGACGCACTGACACTGA 
1,3_Bgluc_1_F GAGTCTCATGCTGCGGGTCAAC 558 
1,3_Bgluc_1_R GTCATGTGCACGAGCGGTAAGA 
1,3_Bgluc_2_F CAAACTTTCCCGGCTCCTCA 616 
1,3_Bgluc_2_R TTCCAACTTTTCCACGCAATAA 
1,3_Bgluc_3_F TTCAAGGCAAAGTCAATAAGTGGA 277 
1,3_Bgluc_3_R TTACTAGAAGACGGGAACAAGATGG 
1,4_Bgluc_1_F CACGCGAAATTGTACTTGGATG 764 
1,4_Bgluc_1_R ACTGGATCGTTGGGGTCACA 
SecOP_1_F CGAGCTCGACACGTTTGACTT 254 
SecOP_1_R GACGCAACAACTCGAAGGAACT 
SecOP_2_F GAGGGTGGAGTAGGCTTCAATACA 306 
SecOP_2_R TGAAGGTTCTCACTCGGATGC 
PecEst_1_F GCCGGTCCCGATTGTGAA 580 
PecEst_1_R GCCACGGCTTGTCCAGATTTT 
PecEst_2_F GAGCAAGTCATCATCCCAAAAGA 680 
PecEst_2_R GTATTTGCACCAGGACCGTTG 
PecEst_3_F CGTGTTGGTGCTGTTTTCATCA 416 
PecEst_3_R ACATTGTCGGTGGAGTCATTTTTG 
TransGlut_1_F CGGGTTTCTTCCACATTGCTAC 732 
TransGlut_1_R CGGCGGCTCGGTATTTTC 
TransGlut_2_F AACCCCTGCATTCTACCATCTT 390 
TransGlut_2_R CTCTCCAGCGTCATTCAACTCC 
AcidChit_F GACAGCCACCAACCATTCAAA 731 
AcidChit_R ACCGCACTCGAGTCCACCAT 
CysProt_1_F GAAACGATGGATGTGCGAACTC 850 
CysProt_1_R GATGCCGAGGTTATTGTGATGC 
CysProt_2_F CAAGGGCAAATGTGGTTCGT 631 
CysProt_2_R GGCCAACCAGCATTCAAGATT 
CystatinLike_1_F TCGACTGGGAGCGTGTTCA 136 
CystatinLike_1_R TTCTCCCACGTCAACTACTCAGG 
CystatinLike_2_F GCTACGCGGCAAGTGACG 222 
CystatinLike_2_R TTCTCCCACGTCAACTACTCAGG 
KazalLike_F GAAGACGCCGAACATCCAGA 330 
KazalLike_R GCGACACGATTACAAGCAAGAA 
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4.2.5 Leaf disc infections 

Grapevine (Vitis vinifera cv. Müller-Thurgau) plants were grown in a greenhouse at 25°C. 

Leaves from the fourth to the seventh position from the apex were detached and rinsed 

with distilled water. Leaves from two plants were used in order to compensate 

individual reactions. Leaf discs of 1 cm diameter were excised using a cork borer. The 

discs were placed abaxial side up on Petri dishes in which the bottom was covered with 

filter paper soaked with distilled water (Fig. 4. 3). Ten leaf discs were prepared for each 

strain and each time point.  

 

Figure 4.3. Leaf discs inoculation system. Droplets of 40 µl inoculum were placed on the abaxial 
leaf surface. 

 
The inoculum was obtained from profusely infected leaves. Leaves were rinsed two days 

before and left in the growing chamber to ensure fresh sporangia production. Falcon 

tubes (50 ml) containing 2 ml of distilled water were used to collect the sporangia from 

the infected leaves by shaking them inside the tube. The suspension of sporangia was 

adjusted to 50 000 sporangia/ml (Fuchs-Rosenthal counting chamber). 

Leaf discs were inoculated with 40 µl of the sporangia suspension (see Fig. 4.3) and kept 

in a climate chamber at 18°C , the first 24 h in darkness and then under a 14 h 

photoperiod. Drops were removed from the surface after 48 hours to avoid secondary 

infections by other microorganisms. After 96 hours, five leaf discs were collected in a 2 

ml reaction tube, shock-frozen with liquid nitrogen and kept at -70°C. Positive controls 

(five inoculated leaf discs) were kept in the growing chamber for six more days to 
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evaluate the infection. Some of these experiments were conducted in the course of the 

M.Sc thesis of S. Becker (2015). 

4.2.6 RNA isolation from sporangia and germinated spores 

RNA was extracted from sporangia and germinated spores using the Aurum TM Total 

RNA Isolation Kit (Bio-Rad Laboratories GmbH, Munich). To the reaction tubes 

containing the frozen material, three stainless steel grinding balls (2,8 mm, Precellys, 

Peqlab, Erlangen) and 500 µl cold lysis solution from the Kit were given. The samples 

were then placed in a mixer mill (MM300, Retsch GmbH, Hann) for 2 min at a frequency 

of 30 Hz. Next steps were performed according to the manufacturer instructions. 

Subsequently, the contamination of the RNA samples with genomic DNA was controlled 

by means of PCR using P. viticola Actin primers (Table 4.3). Samples contaminated with 

genomic DNA were digested using DNAse I (PerfeCTa® DNase I, Quanta Biosciences, 

Gaithersburg, USA) according to the manufacturer’s instructions. Some of these 

experiments were conducted in the course of the M.Sc thesis of S. Becker (2015). 

4.2.7 Total RNA isolation from infected leaf discs 

The RNA extraction of the infected plant material was conducted using the GeneMATRIX 

Universal RNA Purification Kit (Roboklon GmbH, Berlin). Three stainless steel grinding 

balls (2,8 mm, Precellys, Peqlab, Erlangen) were added to the reaction tubes containing 

the frozen material and the samples were grinded three times at 30 Hz for 30 seconds 

using a mixer mill (MM300, Retsch GmbH, Hann). Between each grinding cycle, the 

samples were frozen in liquid nitrogen to keep them cold and avoid RNA degradation. 

Next steps were performed according to the manufacturer instructions. Samples 

contaminated with genomic DNA were handled as in 4.2.6. The RNA concentration in the 

samples was quantified using a NanoVue spectrophotometer (GE Healthcare, Waukesha, 

Wisconsin). Some of these experiments were conducted in the course of the M.Sc thesis 

of S. Becker (2015). 

4.2.8 cDNA synthesis 

Right after the RNA extraction, reverse transcription (RT) of the RNA was performed to 

avoid degradation. From each sample, the same amount of RNA was used to assure 

similar conditions for the RT. The final concentration of the cDNA was 100 ng/µl. The 
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cDNA was synthesized starting from total RNA using the RevertAid First Strand cDNA 

Synthesis Kit (Fermentas, St. Leon-Rot) according the manufacturer’s instructions. The 

primer used for the first strand synthesis was the VNdT18-Oligonucleotide in a final 

concentration of 5 µM. Semi quantitative analysis of gene expression in the five strains 

was performed using capillary electrophoresis. 

The concentration of cDNA in all the samples was adjusted considering the 

concentration of the amplified product in a first PCR experiment using specific primers 

for P. viticola Actin. This concentration is proportional to the peak area registered using 

microchip capillary electrophoresis (MultiNa). According to the peak area 

correspondent to each PCR product, the samples were adjusted to identical 

concentration before the semi quantitative experiments were performed.  

4.2.9 Semi-quantitative analysis of gene expression in the five strains 

For the semi-quantitative and quantitative analysis, short PCR products are preferred 

over larger products because their amplification efficiency is generally higher. For this 

reason, new primers were designed using the same sequences, but flanking regions 

shorter than 300 bp (Table 4.3). Primers were designed following the recommendations 

here listed: the size was kept between 18 and 28 bp. The temperature of melting (Tm) 

was set between 57 and 63 °C. The difference of the Tm of forward and reverse primers 

was not bigger than 1°C. The size of the amplified fragments was between 100-300 bp 

(most around 150 bp). Repeats of more than 3 Cs or Gs were avoided in the sequence. 

Primers ended in a G or a C residue. The GC content was kept between 40-60%. The 

specificity of the primers was checked using BLAST. HPLC purified primers were 

preferred. 

To enable the comparison of the gene expression in the five P. viticola strains, the 

appropriate number of cycles in which the exponential phase of the PCR reaction is 

reached, was required. Reactions with different numbers of cycles (21, 24, 27, 30, 33. 36. 

39) were performed using cDNA from one of the strains for the reference gene and one 

selected effector gene. PCR products were analyzed through microchip capillary 

electrophoresis and the peak area of each of them was assessed. The optimal cycle 

number was used for the further gene expression studies.  
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Table 4.3: Primers sequence used for the gene expression studies and approximate size of the 
expected PCR product. Primers were designed in collaboration with Sandra Becker. 

Primer name  Sequence  5' → 3'  Approximate size (bp) 

Elicitin like_1_RT_F  CGCTCCTCGTCGCATTTACATCTG  125 

Elicitin like_1_RT_R  GCTCACGTTGGTCGCACACTCTTC  

 Elicitin like_2_RT_F  CATGAGCAAGACTGGCAATGAGACTG  163 

Elicitin like_2_RT_R  GACAGTGGAAGTGGAGGGAGACGC   

Gluc Inhib_2_RT_F  GGCAATTTCTCTAAAGAACTGCTGGCTATC  148 

Gluc Inhib_2_RT_R  GTGGACCACCATTATCACCCTCGC   

Gluc Inhib_4_RT_F  CATAGACACGTGCGATTTTGATACTGG  153 

Gluc Inhib_4_RT_R  CATGGGATAGCGACCGACACG   

Kazal like_RT_F  CTTTCTTGCTTGTAATCGTGTCGCTG  147 

Kazal like_RT_R  GTCGCTTTGCTCGCTTCTCCTTAC  

 RXLR_1_RT_F  CTCGGTGAAAAAGTTGTTGCTGGTG  125 

RXLR_1_RT_R  CCGCTCGCGCTGTCTGAATC  

 RXLR_2_RT_F  GGTACCCCCTTCTGCTGTTGTGC  134 

RXLR_2_RT_R  GAATGTTCGCGTAATACCCAATCGTG  

 1,3_ß Gluc_2_RT_F  CGTTGGACATAACACGACATTGCTTC  172 

1,3_ß Gluc_2_RT_R  GTTGCCAAAATCTTCGTACAGTCCACC   

PvNLP1_F  TGATGCTTAAACCCGAACTTCAC  164 

PvNLP1_R  CAAATGGTGCGTGTCGACCGTAAACTG   

P. vit. actin_2_RT_F  CTCACGTACATTGCCTTGGACTTTG  179 

P. vit. actin_2_RT_R  GAATACCTGACGCTTCTTTACCAATGAG   

P.vit. ß tub_1_RT_F CTTCAAGGTTTTCAAATTACGCACTCG  281 

P.vit. ß tub_1_RT_R CCGTACGTGGGAGTGGTGAGTTTC   

P.vit_EF1 α_F GTTGCTTGCCTTTACGCTTGGAG  157 

P.vit_EF1 α _R CGGGATCTTCGCAGGCTTGTAG   

 

A PCR product with a known concentration was used to determine the linear measuring 

range of this methodology. Dilution series, paired with their detected peak area, were 

used to calculate the optimal working range of the MultiNa. Fluctuations between chips 
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were also taken into consideration. A PCR product (RXLR 1) of known concentration was 

analyzed repeated times using different chips in the MultiNa to assure reproducibility. 

Genomic DNA (10 ng) was used for this purpose. Some of these experiments were 

conducted in the course of the M.Sc thesis of S. Becker (2015). 

The PCR protocol used in the gene expression study is described in Table 4.4. For the 

sporangia and infected leaves, 33 cycles were used and for the germinated spores 36 

cycles. The analysis was restricted to three effector genes (Elicitin like 1, Kazal like and 

RXLR 1). Two independent experiments were performed for each stage of development 

and each strain. In each experiment, two technical repetitions were performed. The 

relative expression of the gene was calculated as the peak area of each gene of interest 

divided by the peak area of the reference gene Actin. The obtained value was then 

divided between the relative expression of the same gene in the sporangia (untreated 

sample) to get the relative normalized expression. 

Table 4.4: PCR amplification reaction used for the semiquantitative expression study of the 
putative effectors using RedTaq Mastermix. 

Step Temperature Time 

Initial denaturation 

Denaturation 

Annealing 

Elongation 

Final elongation 

94°C 

94°C 

60°C 

72°C 

72°C 

2 min 

10 sec 

10 sec 

10 sec 

2 min 
 

4.2.10 Quantitative analysis of gene expression in the five strains: real time PCR 

The quantitative RT-PCR was performed with cDNA from the same synthesis reaction 

used in the semi quantitative study to assure comparable results. Two independent 

experiments were performed with three technical repetitions for each strain and stage 

of development. PCR conditions are listed in Table 4.5. The cDNA was amplified in a 

CFX96 TouchTM Real Time Detection System (Bio-Rad Laboratories GmbH, Munich). 

SYBR Green I was used for visualizing the amplification. SensiFastTM SYBR No-ROX Kit 

(Bioline, London, UK). The gene expression analysis was performed using the software 

Bio-Rad CFX Manager 3.1 (Bio-Rad Laboratories GmbH, Munich) for the same genes 

considered in section 4.2.9. The relative normalized expression (2-ΔΔCT) was calculated 

using sporangia cDNA as “untreated sample” and Actin as a reference gene.  
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Table 4.5: PCR amplification reaction used for the quantitative expression study of the putative 
effectors using SYBR Green I. 

Step Temperature Time 

Initial denaturation 

Denaturation 

Annealing 

95°C 

95°C 

60°C 

2 min 

15 sec 

15 sec 

 

4.2.11 Host-pathogen combinations 

4.2.11.1 Selection of isolates and cultivars 

The fact that two P. viticola strains showed different degrees of infection on a tolerant 

V. vinifera cultivar shown in chapter one, motivated the analysis of the expression of 

effector genes on different time points of the infection. The strains 1135-F2 and 1137-

C20 were selected, and a leaf disc test on the cultivars Müller-Thurgau and Regent was 

performed following the same procedure already mentioned. On the susceptible cultivar 

Müller-Thurgau, both strains achieved a profuse sporulation after seven days, while in 

the tolerant cultivar Regent, the strain 1137-C20 (highly virulent) showed an 

appreciably stronger sporulation compared with 1135-F2 (lowly virulent) (Fig. 4.4).  

 

 

Figure 4.4: Leaf disc test on the tolerant V. vinifera cv. Regent, four and seven days after the 
inoculation with 5000 sporangia of the strains 1135-F2 or 1137-C20. Bar: 2 mm. 
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4.2.11.2 Leaf disc infection and microscopy 

The leaf disc test was carried out as described above (4.2.5), but with the following 

modification: sporangia solutions were left for 2 h in darkness at 18°C to release the 

zoospores and the leaf discs were immediately inoculated applying the same conditions. 

For each host-pathogen combination and time point, 20 leaf discs were prepared. Five 

were left until the end of the experiment as a control for successful infection, five were 

fixed in FAA (formalin-acetic acid-alcohol) for microscopy, and ten were shock frozen on 

liquid nitrogen for the gene expression study. Leaf discs were collected after incubation 

periods of 6, 24 and 96 hours post inoculation. Three independent experiments were 

performed.  

For microscopy analysis, leaf discs were clarified by heating them in 5% KOH at 95°C for 

2-3 hours until the tissue was completely transparent. Aniline blue (0,05 %, 0,0067 M, 

K2HPO4, pH 9-9,5) was added to the discs and a short vacuum was applied to assure a 

good staining of the inner tissues. Following a distilled water rinse, leaf discs were 

placed on a glass slide and observed using fluorescence microscopy applying the same 

conditions mentioned in section 4.2.2.2. These analyses were performed by Markus 

Kaiser as part of his B.Sc thesis (2015). 

4.2.11.3 Quantitative analysis of gene expression: real time PCR 

Extraction of total RNA and subsequent cDNA synthesis were performed following the 

protocol already mentioned (4.2.6-4.2.8). PCR conditions listed in Table 4.5 were used to 

amplify the putative effector sequences for each host-pathogen combination and time 

point. The analysis was restricted to three effector genes previously studied with the 

five strain (Elicitin like 1, Kazal like and RXLR 1). Employed primers are listed in Table 

4.3. The gene expression analysis was performed using the same procedures as in 

section 4.2.10. 

Previous results had shown that 6 hpi was an important point in the infection and that at 

this point a very high upregulation of the putative effector genes occurred. Using this 

information, a screening was performed for the rest of known P. viticola effectors using 

the same cDNA. Those effectors which showed an upregulation at this point were 

selected for further experiments (Data not shown).  
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4.2.11.4 Effectors screening in the host-pathogen combination 

Considering previous results, a new experiment was designed to screen for further 

interesting effector genes expressed during the interaction of a virulent strain with a 

tolerant cultivar. In this experiment, the focus was placed on earlier infection points (0, 

6, 12 and 24 hpi). The leaf-disc infection was performed as previously described 

(4.2.11.2) with some modifications: each sample consisted of 10 discs 5 mm in diameter 

and excised from the inoculated discs (a disc from the disc). This was done in order to 

avoid any edge effect in the host reaction due to wounding. The samples were collected 

at each time point on 2 ml reaction tubes and shock-frozen using liquid nitrogen. 

Inoculated leaf-discs were left for five days as a sporulation control in all the host-

pathogen combinations. Incubation was performed under the previously described 

conditions. Experiments were repeated, if the control discs did not sporulate. 

Total RNA was isolated using the Spectrum Plant Total RNA Kit (Sigma-Aldrich) coupled 

with a DNA digestion performed using the RNase-Free DNase Set (Quiagen) according to 

the manufacturer´s instructions. The new RNA isolation kit allowed us to obtain much 

higher concentration of RNA. This was necessary to screen many genes, especially those 

with a lower expression. The quality and concentration of the RNA was controlled using 

a BioPhotometer (Fa. Eppendorf, Hamburg). The cDNA synthesis was carried out as 

previously described (4.2.8). 

Quantitative RT-PCR was performed as described in point 4.2.9 for the six selected genes 

(RXLR 1, NLP 1, Elicitin like 2, Glucanase inhibitor 2, Glucanase inhibitor 4 and 1,3 ß 

Glucanase 2) (see Table 4.3). Primers for NLP 1 were obtained from Dipl.-Biol. Stefan 

Schumacher from the Institute of Enology and Viticulture in Freiburg (WBI) as part of a 

cooperation framework. Three independent biological replicates were performed with 

three technical repetitions each. The gene expression analysis was performed using the 

software Bio-Rad CFX Manager 3.1 (Bio-Rad Laboratories GmbH, Munich). The relative 

normalized expression (2-ΔΔCT) was calculated using the inoculated leaves 0 hpi as 

“untreated sample” and three reference genes (Actin, Tubulin and Elongation factor 1 α) 

were used for normalization.  

Another goal was to get information about the reaction of the plant during the first 

infection stages. Using the same samples, the expression of defense related genes from 
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the plant (Stilbenes synthase, Metacaspase 2 and 5 and NBS-LRR 2) was analyzed by M.Sc. 

Peijie Gong from the Karlsruhe Institute of Technology as part of his doctoral thesis. 

Some of his results were used for discussion.  
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4.3 Results 

4.3.1 In vitro encystment and germination of zoospores 

4.3.1.1 Mannitol and sorbitol 

In all the concentrations tested, sorbitol and mannitol showed a negative impact on the 

zoospore release from the sporangia. Zoospore encystment after 24 hours was lower 

than 5 % using both substances and in both tested strains (for detailed data see B.Sc 

thesis of M. Fröhler, 2012). Therefore, no longer testing was performed using organic 

substances. 

4.3.1.2 Sodium chloride and calcium chloride 

In order to avoid negative effects on the zoospore release due to osmotic stress (Fröhler 

2012, Bendel 2013), the influence of sodium and calcium concentration on zoospores 

were tested only after the release from sporangia had occurred (see 4.2.2.2). Already 

30 min after salt application, numerous encysted spores were found, especially in the 

higher concentrations (15-25 mM). After 60 min, already a high number of germinated 

spores were recorded, much higher than in the first 30 min. Because the biggest 

differences between salts and concentrations were found when germinated spores were 

used as indicator, subsequent statistical and graphical analyses were performed based 

on this value. The behavior of the three strains 1135-F15, 1137-C20 and 1191-B11 

tested in this experiment was appreciably different when considering the salt 

concentration and the time point in which they were evaluated. This indicated a 

genotype depending reaction. 

After one hour, more spores developed a germ tube when CaCl2 was added compared to 

NaCl in the concentrations of 15, 20 and 25 mM. This result was particularly conclusive 

for the isolates 1137-C20 and 1191-B11. Isolate 1135-F15 behaved interestingly 

different, showing a better response to NaCl and achieving much higher frequency of 

germinated spores when this salt was applied (Fig. 4.5). 
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Figure 4.5: Relative frequency of germinated spores of the three P. viticola strains evaluated 60 
minutes after the addition of NaCl and CaCl2 to a final concentration of 5, 10, 15, 20 and 25 mM. 
Different letters indicate significant differences (p<0,05; independently for each isolate and salt). 

 
Calcium chloride in concentrations of 15, 20 and 25 mM promoted a quick development 

of the zoospores, from their motile state, to the encystment and germ tube formation. No 

difference was found in the frequency of germinated spores (Fig. 4.5), or in the 

development of the spores (Fig. 4.6) using these three concentrations. In all cases, a long 

germ tube was produced after 60 minutes, which in some cases presented a branching 

growth.  

 

Figure 4.6: Fluorescence microscopy image 60 minutes after the addition of CaCl2 of germinated 
spores belonging to the strain 1137-C20 stained with Blankophor®. Bar: 10 µm. Pictures were 
taken by Nele Bendel. 

Due to the satisfactory results obtained using CaCl2 for the in vitro encystment and 

germination of the spores, the mean concentration (20 mM) of this salt was selected for 

the subsequent experiments. A leaf disc test, in which a zoospore suspension was 

treated with calcium chloride (20 mM final concentration), was performed on the 

susceptible cultivar Müller-Thurgau. This test showed that the infection strength was 
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higher, compared to the water control in all tested sporangia concentrations (Fig. 4.7). 

This was an indicator that the addition of salt in this concentration positively affected 

the development and infection of P. viticola. Single zoospore infections were attempted 

using germinated and encysted spores without success. 

 

Figure 4.7: Effect of treatment with 20 mM CaCl2 on the P. viticola infection process. Left, 
sporangia solution supplied with CaCl2. Right, sporangia solution in water. Evaluation 10 days 
post inoculation with 10000 sporangia per leaf disc. Bar: 1 mm. Pictures were taken by Nele 
Bendel. 
 

4.3.1.3 Salt effect on encystment and germination of spores on other oomycetes 

In contrast to the water control, 90% of the released P. halstedii zoospores had already 

encysted only 30 min after application of CaCl2 in the three tested concentrations. This 

result differs from that obtained in the other two oomycetes, where a high ratio of 

encysted spores was not found until 90 min after treatment. Nevertheless, 120 min after 

the salt addition, the three studied oomycetes showed more than 40% of germinated 

spores, partially with very long germ tubes (Fig. 4.8). The CaCl2 concentration in which 

the highest number of germinated spores was scored was 25 mM. However, at 50 mM 

the encystment and germination of the spores was faster. 

 

Figure 4.8: Light microscopy of germinated spores from the three studied oomycetes 120 
minutes after the addition of CaCl2. Bar: 10 µM. Pictures were taken by Nele Bendel. 
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4.3.2 Putative effectors 

The presence in the genome of the 25 effector genes (Mestre et al., 2012) was confirmed 

for the five selected P. viticola strains using PCR and agarose gel electrophoresis (data 

not shown). In some cases where no PCR product was detected in any of the strains, the 

design of new primers was necessary. The sequences of the primers listed in Table 4.2 

are those which successfully amplified the desired regions. The predicted size of the PCR 

product given by Mestre et al., 2012 was in some cases slightly different to the obtained 

product size. Nevertheless, BLAST analysis with the reported sequences allowed us to 

confirm that the amplified regions corresponded to the selected effector.  

 

4.3.3 Semi quantitative analysis of gene expression in the five Plasmopara 

viticola strains: capillary electrophoresis. 

The gene expression in all five strains was very similar and all of them showed the same 

reaction pattern (Becker 2015). While Elicitin like 1 and Kazal like were not upregulated, 

RXLR 1 showed a very high level of upregulation (Fig. 4.9). Germinated spores in 

contrast with infected leaves 96 hpi presented a very high content of the RXLR 1 

transcript in the five strains. Due to a high variability and a low number of samples, it 

was not possible to determine if the difference between them was statistically 

significant. Elicitin like 1 and Kazal like were expressed in all analyzed stages, but their 

expression was very constant in relation to Actin and behaved very similar in the 

sporangia, germinated spores and infected leaves. 
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Figure 4.9: Relative normalized expression (semi-quantitative) of three putative effector genes 
in germinated spores of five selected P. viticola strains. The gene expression in sporangia was 
used to normalize the results and Actin as a reference gene. 

 

4.3.4 Quantitative analysis of gene expression in the five strains: real time PCR. 

Quantitative real time PCR experiments showed similar results compared to the 

semiquantitative method. Elicitin like 1 and Kazal like remained unregulated while 

RXLR 1 presented again a high upregulation in the germinated spores. The stadium 96 

hpi showed no upregulation of this gene, either (Fig. 4.10). A high variability was also 

found in the expression of RXLR 1 in germinated spores, showing how sensitive the 

system is. The induction fold of the RXLR 1 was much higher (up to 1700-fold, 1137-

C20) in the quantitative compared to the semi-quantitative method (120-fold), but the 

trend was similar. 
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Figure 4.10: Relative expression of RXLR 1 in germinated spores and leaf discs 96 hpi of five 
selected P. viticola strains. The gene expression in sporangia was used for normalization and 
Actin as a reference gene. 

 

4.3.5 Infection development on different cultivars 

In the first hours of the infection it was possible to observe how the zoospores targeted 

the stomata. After encysting, spores germinated, penetrated the substomatal cavity and 

built a germ tube. Contrary to the expectation, no difference was found between the 

infection process of the two selected strains 1137-C20 and 1135-F2 at 6 and 24 hpi. The 

virulence difference between the strains in previous infection experiments (Fig. 2.2) was 

not evident until 48 hpi, where a more dense coverage of mycelia was appreciable in the 

leaf discs of Regent (tolerant cultivar) infected with 1137-C20 (highly virulent). In the 

susceptible cultivar Müller-Thurgau, no differences in the development of mycelia were 

detected between the two strains along the whole infection process. While strain 1137-

C20 in Regent at 96 hpi covered a broad leaf area, strain 1135-F2 presented much 

narrower leaf colonization. The highly virulent strain achieved sporulation at 72 hpi in 

Regent in contrast with the lowly virulent strain, where only sparse sporulation was 

found after 96 hpi, indicating a slower growth in the tolerant cultivar (Fig. 4.11). 
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Figure 4.11: Infected leaves of a susceptible (Müller-Thurgau) and a tolerant (Regent) 
grapevine cultivar. Strains 1135-F2 (low-virulent) and 1137-C20 (high-virulent) were 
inoculated. Samples were evaluated 6, 24, 48, 72 and 96 hpi using fluorescence microscopy. 
H=haustorium, Hy=hypha. Aniline blue was used for staining. Pictures were taken by Markus 
Kaiser. 



 

 73  

 

4.3.6 Gene expression of selected strains on different cultivars 

The three studied effectors showed very similar results in the host-pathogen 

combination study as in the early experiments. Elicitin like 1 and Kazal like were not 

upregulated in none of the analyzed time points of the infection. Just RXLR 1 experienced 

an upregulation with a peak at 24 hpi in the lowly virulent strain (1135-F2) and at 6 hpi 

in the highly virulent strain (1137-C20). The expression level at 96 hpi was in all the 

cases the lowest found for this effector. In both cases the expression level of RXLR 1 was 

higher when the strains were inoculated on the tolerant cultivar compared with the 

susceptible one (Fig. 4.12). 

 

Figure 4.12: Relative normalized expression of the three putative effector genes (Elicitin like 1, 
Kazal like, and RXLR 1) of the strain 1135-F2 (lowly virulent) and 1137-C20 (highly virulent) 
infecting the susceptible (Müller-Thurgau) and tolerant (Regent) cultivars at 6, 24 and 96 hours 
post inoculation. Presented are means of two independent experiments. Error bars represent 
the SEM. 
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The lowly virulent strain presented the same pattern in both cultivars. At 6 hpi the level 

of expression was already high, but increased at 24 hpi before a decrease at 96 hpi. In 

the tolerant cultivar the level of expression decreased less pronounced than the 

susceptible one at 96 hpi. The highly virulent strain showed a different pattern with the 

highest expression at 6 hpi followed by a decrease in the further time points. 

4.3.7 Effectors screening in the host-pathogen combination Müller-Thurgau and 

Regent with 1137-C20 and 1135-F2 

 
Five out of the twenty eight studied effectors, beside RXLR 1, showed interesting results 

and the complete analysis was performed using those selected genes. RXLR 1 showed 

the highest upregulation of all the tested genes (Fig. 4.13). In the susceptible cultivar the 

highly virulent strain (1137-C20) showed a higher expression level than the lowly 

virulent strain (1135-F2) at 6 hpi, similar to the results from the previous section. At 12 

and 24 hpi, the expression levels strongly decreased, in contrast to the previously 

observed increment in the expression with a peak at 24 hpi. In the tolerant cultivar the 

same expression pattern was found, but in this case the expression was 3-fold higher at 

6 hpi. After 12 and 24 hpi the expression was still high, but considerably lower than at 6 

hpi, contrasting again with the previous results. 

A similar pattern presented NLP 1 where the strain 1137-C20 showed a very high level 

of expression at 6 hpi in the tolerant cultivar (7-fold higher than in the susceptible). In 

the susceptible cultivar the expression in both strains was very low and just slightly 

higher at 6 hpi (Fig. 4.14). RXLR 1 and NLP 1 were the only genes for which the highest 

expression was found in the highly virulent strain infection on the tolerant cultivar. This 

suggests an important role of these genes in the infection process of a tolerant cultivar. 
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Figure 4.13: Relative normalized expression of the putative effector gene RXLR 1 on the lowly 
virulent strain (1135-F2) and the highly virulent strain (1137-C20) infecting a susceptible 
(Müller-Thurgau) and a tolerant (Regent) V. vinifera cultivar at 6, 12 and 24 hours post 
inoculation. Presented are means of three independent experiments. Error bars represent the 
SEM. 

 

 
 

Figure 4.14: Relative normalized expression of the putative effector gene NLP 1 on the lowly 
virulent strain (1135-F2) and the highly virulent strain (1137-C20) infecting a susceptible 
(Müller-Thurgau) and a tolerant (Regent) V. vinifera cultivar at 6, 12 and 24 hours post 
inoculation. Presented are means of two independent experiments. Error bars represent the 
SEM. 
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Elicitin like 2 showed a different picture (Fig. 4.15). In this case, the highest expression 

was found at 6 hpi like in the other effectors. In the other studied time points the 

expression was very low and it experienced no change through the infection process. An 

interesting fact here was that the highest expression was found in the highly virulent 

strain infecting the susceptible cultivar, thus contrasting the results with previous 

effectors. Another issue was that the expression of the lowly virulent strain remained 

almost the same, independently on which cultivar the infection took place. The highly 

virulent strain appeared not to have a host dependent regulation for this gene and it was 

simply highly expressed as in the other strain. 

 

 
 

Figure 4.15: Relative normalized expression of the putative effector gene Elicitin like 2 on the 
lowly virulent strain (1135-F2) and the highly virulent strain (1137-C20) infecting a susceptible 
(Müller-Thurgau) and a tolerant (Regent) V. vinifera cultivar at 6, 12 and 24 hours post 
inoculation. Presented are means of three independent experiments. Error bars represent the 
SEM. 

 
In the case of Glucanase inhibitor 2 the expression remained very low in the three 

studied time points in the susceptible cultivar. Nevertheless, on the tolerant cultivar 

both strains presented a high upregulation of this gene at 6 hpi, with no appreciable 

difference between them. At 12 hpi there was an important decrease on the expression 

level and at 24 hpi there was no more upregulation (Fig. 4.16). 
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Figure 4.16: Relative normalized expression of the putative effector gene Glucanase inhibitor 2 
on the lowly virulent strain (1135-F2) and the highly virulent strain (1137-C20) infecting a 
susceptible (Müller-Thurgau) and a tolerant (Regent) V. vinifera cultivar at 6, 12 and 24 hours 
post inoculation. Presented are means of three independent experiments. Error bars represent 
the SEM. 

 
The other gene of this group, Glucanase inhibitor 4, presented a different expression 

pattern (Fig. 4.17). As well as in the other genes, the expression peak was again found at 

6 hpi and in this case not a big difference was found between all the host-pathogen 

combinations. It seems to be important for the infection process, especially at the 

beginning, but there was no host dependent regulation. The 1,3 ß Glucanase 2 behaved 

differently. The highly virulent strain presented here the highest expression level, in 

particular at 6 hpi. It responded stronger to the tolerant cultivar than to the susceptible 

one, while the lowly virulent strain behaved similar in both cultivars (Fig. 4.18). 

Contrary to the results from the previous section, none of the host-pathogen 

combinations showed a peak at 24 hpi. In all the selected effectors for which an 

upregulation occurred, the peak was found at 6 hpi and strongly decreased at 12 hpi. 
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Figure 4.17: Relative normalized expression of the putative effector gene Glucanase inhibitor 4 
on the lowly virulent strain (1135-F2) and the highly virulent strain (1137-C20) infecting a 
susceptible (Müller-Thurgau) and a tolerant (Regent) V. vinifera cultivar at 6, 12 and 24 hours 
post inoculation. Presented are means of two independent experiments. Error bars represent 
the SEM. 

 
 

 
 
Figure 4.18: Relative normalized expression of the putative effector gene 1,3 ß Glucanase 2 on 
the lowly virulent strain (1135-F2) and the highly virulent strain (1137-C20) infecting a 
susceptible (Müller-Thurgau) and a tolerant (Regent) V. vinifera cultivar at 6, 12 and 24 hours 
post inoculation. Presented are means of three independent experiments. Error bars represent 
the SEM. 
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4.4 Discussion 

4.4.1 A host-free system 

Genetic studies in obligate biotrophic pathogens face many challenges. The dependence 

on a living host for the proliferation and development makes the maintenance and the 

handling of the pathogen a difficult task. To study metabolic characteristics, gene 

regulation, function of peptides and many other topics, a host-free system is desirable. 

Mestre et al., (2012) presented a methodology to study P. viticola gene expression in 

germinated zoospores. To induce the zoospore germination in vitro, NaCl 10 mM was 

applied. Our previous results (Fröhler 2012) suggested a higher effectiveness of CaCl2 to 

achieve zoospore encystment and germination. In the subsequent work of Bendel 

(2013) and in the current study, for at least three different single sporangium strains of 

P. viticola as well as for field isolates of three other oomycetes, it was shown the 

advantage of CaCl2 over NaCl in terms of time and efficiency to induce encystment and 

germination of zoospores. This methodology constitutes a promising tool to study the 

early developmental stages of the pathogen before establishing direct contact with the 

host. An advantage of this system is the ability to study differences between strains in 

the laboratory without depending on living material of the host. This becomes 

particularly important for biotrophic oomycetes limited to perennial hosts which cannot 

be easily cultivated during winter in growing chambers. 

4.4.2 Effectors at the genetic level 

Our efforts to find out differences between the five selected strains of the pathogen 

spurred us to dig deeper into the genetic level. Interestingly, all the 25 effector genes 

screened were present in the genome of the five strains which was against our initial 

assumption. It is known that the pool of effectors of an isolate, including the specific 

alleles, can enable a strain to overcome the resistance of specific cultivars. The latest 

study on the secretome of P. viticola showed that not all studied isolates presented the 

same repertoire of effectors and that different alleles existed between them (Yin et al., 

2015). A high pool of effectors in the genome of an isolate might be responsible for a 

higher fitness. Possessing effectors of functional redundancy may allow a pathogen to 

lose or inactivate an effector in order to avoid detection by host resistance (R) proteins 

without compromising its virulence (Birch et al., 2008, Raffaele & Kamoun 2012). It is 
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also believed, that more competitive P. viticola genotypes are those possessing a more 

complex arsenal of effectors what makes them able to stop the plant defense 

mechanisms (Roatti et al., 2013). Future studies could reveal if differences in the 

sequence of these genes are physiologically important. 

4.4.3 Gene expression in germinated spores and infected leaves 

Since the knowledge of these effectors was limited, and just partial sequences were 

known, functional studies were not possible. The next step in the differentiation of the 

strains was the study of the gene expression. Using the early stadium of the germinated 

spores, it was possible to compare the expression of effector genes between the strains. 

From the three studied effector genes at this point, just RXLR 1 showed a high level of 

expression. Surprisingly, there was again no difference between the five strains. A 

remarkable issue was the extremely high expression of this gene on the germinated 

spores, suggesting an important role of this gene, especially in the early events. The gene 

expression on infected leaves at 96 hpi was much lower than in the germinated spores, 

which made us focus more on the earlier stages. On the susceptible cultivar Müller-

Thurgau, the five strains exhibited the same behavior and the gene expression was 

similar as well. This issue supports the assumption that the expression of effector genes 

might be affected by a host response and that the pathogen can regulate it establishing a 

fine communication system. The analysis of the gene expression on a tolerant strain 

Regent confirmed this idea. 

4.4.4 The host-pathogen combination 

The particular host-pathogen combination found between two strains with different 

virulence (1135-F2 and 1137-C20) and a tolerant host (Regent) enabled us to go further 

in the analysis of effector gene expression. In the way to find a relationship between the 

expression of effector genes and its effect in the virulence of a specific strain, this 

combination was found especially interesting. The first six hours after inoculation 

seemed to be a very critical time lapse, in which a very high gene expression was found. 

Effectors might play a decisive role at the first encounter between host and pathogen to 

enable a compatible infection. Probably, the battle between the plant and the pathogen 

is decided in the first hours of contact, and the later events may just be an answer to 

what occurred earlier. Previous studies of the host response to downy mildew infection 
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are in accordance with this theory. It has been shown that a rapid recognition of the 

pathogen, together with an induction of the plant defense mechanisms in the early 

stages of infection, are key points for resistance (Gindro et al., 2003, Kortekamp & 

Ziprian 2003, Díez-Navajas et al., 2008). Additional evidence of how decisive are the 

early events for the infection was found on a gene expression study in V. riparia where 

the resistance response against P. viticola began within the first 24 hpi (Polesani et al., 

2010). Nevertheless, it has also been found that gene expression shows different 

patterns as they colonize the plant (Schornack et al., 2009) and different effectors are 

upregulated at different points of the colonization process (Yin et al., 2015). 

4.4.5 Tissue colonization and gene expression 

The biggest differences on gene expression between the high and the low-virulent strain 

were found in the tolerant cultivar at 6 hpi; however, microscopy did not show any 

difference until 48 hpi between both strains on Regent. This is a hint that early 

regulation of gene expression might be anatomically reflected many hours later. Other 

authors have also reported that in the early stages of infection, P. viticola develops 

similarly on susceptible and resistant Vitis species (Unger et al., 2007, Díez-Navajas et 

al., 2008, Liu et al., 2015). The observed reduction in hyphal development in Regent (Fig. 

4.11) was reported as a defense mechanism in the resistant cultivar Solaris (Boso & 

Kassemeyer 2008) and in resistant Asiatic Vitis species (Yu et al., 2012). As the 

abundance of hyphae in the mesophyll might be a triggering signal for sporulation 

(Unger et al., 2007), the growth reduction observed in Regent could be an efficient 

mechanism to avoid the infection spread without going through plant cell death.  

4.4.6 Effector gene expression 

Analyzing the gene expression of both strains, an important difference was revealed 

(Fig. 4.12). While the highly virulent strain strongly upregulated RXLR 1 at 6 hpi, the 

same process did not occur in the lowly virulent strain until 24 hpi. Intriguingly, a 

similar expression was not found in the second experiment 24 hpi (using the 0 hpi as an 

‘untreated sample’ for normalization) for any of the studied effectors. It is clear that in 

such a complex pathogen, small differences between experiments might drastically 

affect the results. Therefore, a very standardized protocol is required to assure 
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repeatability, although in a biotrophic system, sources of variation will be always 

present.  

The faster reaction of the highly virulent strain might be the key to a successful 

infection. Results from the plant side correlate with this theory. Polesani et al., (2010) 

reported that V. riparia answered sharper to the infection compared to a susceptible 

cultivar of V. vinifera in terms of upregulation of disease related genes. Studying the 

resistant cultivar Bianca (Rpv3), it was found that early responses of the host were 

critical to stop the invasion, mainly in those cells directly under the stomata, which are 

the first in establishing contact with the pathogen through haustoria (Casagrande et al., 

2011). An early up-regulation of the synthesis of jasmonic acid has also been reported in 

a downy mildew resistant Vitis genotype (Figuereido et al., 2015). To face such an early 

defense response of the plant, successful isolates of P. viticola might be able to respond 

as well in a very rapid way. 

The screening for further virulence-related effectors generated interesting results in our 

second experiment. RXLR 1 remained as an outstanding gene due to the very high 

expression shown, especially 6 hpi in the high-virulent strain when infecting Regent. The 

case of NLP 1 was similar, despite the induction fold was lower. 1,3 ß Glucanase 2 

showed also a similar pattern. The high expression of these effector genes in the virulent 

strain on Regent supports the assumption of their role in the pathogenic process. 

Glucanase inhibitor 2 and 4 showed important up regulations at 6 hpi, especially in 

Regent. Glucanase inhibitors are part of a well-known mechanism used by pathogens to 

defend themselves against pathogenesis-related (PR) proteins from the plants (Kamoun 

2006). A potential contribution in the virulence of this effector under these conditions 

should be further studied. Elicitin like 2 showed a very high upregulation but just on the 

highly virulent strain at 6 hpi. This activity supports the assumptions of the crucial role 

on early events. 

4.4.7 The plant defense reaction 

The expression patterns of the stilbene synthase and metacaspase 2 and 5 analyzed in the 

cooperation framework in the KIT in Karlsruhe did not show any conclusive pattern in 

the early stages analyzed and should be subjected to further analysis. It was detected a 

higher expression of NBS-LRR2 in the tolerant cultivar compared with the susceptible 
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one (personal communication Peijie Gong). A protective activity of proteins from this 

family has been confirmed after downy mildew infection in grapevine (Fan et al., 2015). 

Does the highly virulent strain possess slightly mutated effectors allowing it to infect 

while triggering a lower defense reaction? Are the effectors of the highly virulent strain 

able to modify proteins in a way that they are not detected by the surveillance system of 

the plant, or at least not fast enough? Or does the virulent strain bear other effectors 

able to down-regulate the plant defense? Further studies should address these questions 

to clarify the mechanisms used by P. viticola to successfully infect resistant Vitis hosts.  

4.4.8 Where are we now? 

At the beginning of this work, a very limited number of putative effector genes were 

known, for which just a partial nucleotide sequence had been discovered (Mestre et al., 

2012). Nevertheless, a very recent paper presented a list of 51 RXLR effectors of 

P. viticola including their complete nucleotide sequences (Yin et al., 2015). Comparative 

analysis could reveal if differences in the sequence are related to a higher or lower 

virulence. Higher efforts in the sequencing of strains with different virulence are still 

necessary to achieve these goals. 

The host-free system studied showed to be a useful tool to assess the early and 

susceptible stages of the pathogen life cycle. Advances in the research to identify the 

function of effector genes would enable a screening to find interesting strains which 

upregulate decisive genes. The leaf disc test is another methodology that permits the 

study of gene expression at later time points after the inoculation. Different effector 

genes suffer upregulation at different point of the leaf colonization. It is still necessary to 

study in detail the course of the infection to determine if there are key points where the 

pathogen inactivates the plant defense reaction, or if there is a constant down regulation 

process. 

The advantage of a host-pathogen combination to study gene expression and the 

involvement of effectors on the virulence of strains has been recently proven by other 

authors (Li et al., 2015). This assay contributes to gain knowledge to which extent 

effectors are highly expressed in a compatible infection of a P. viticola strain infecting a 

tolerant grapevine genotype. Screening for new interesting host-pathogen combinations 

is been carried out and future studies would rely on such interactions to search for 
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explanations of compatible and incompatible interactions. How do effectors exert their 

activity in the plant? Which effectors play a decisive role in establishing a compatible 

interaction? How early begins the interaction between plant and pathogen? This and 

many other questions remain unanswered and require future investigation to make 

improvement in the control of this important pathogen. 
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Epilogue  

At the beginning of this work, no suitable test system to classify isolates of P. viticola had 

been reported, although it has been known for a long time that populations with 

different virulence and different tolerance to fungicides exist in the field. Therefore, the 

development of such a methodology to characterize strains of P. viticola according to 

their virulence on standardized host genotypes was a very important contribution. As 

lined out in chapter 1 and published in Gómez-Zeledón et al., (2013), the diversity in 

field populations often requires the selection of single sporangium strains in order to 

assess the full spectrum of pathogen genotypes present in a vineyard. Using a leaf disc 

bioassay was the least laborious and fastest method to classify pathogens by evaluating 

two parameters, sporulation intensity and host necrotic reaction. This methodology 

permitted, as well, a characterization of the fungicide resistance of the studied strains. 

Again it was shown that testing bulk samples may sometimes be misleading. As shown 

in Fig. 1.3, some fungicide resistant genotypes of low representation in a population may 

be overseen when testing bulk samples, whereas selection of genetically homogenous 

strains revealed their presence. This system therefore provides an important tool for 

researchers, breeders and farmers and has already been used by other groups to 

characterize isolates of the pathogen.  

Further work will be necessary in the future to extend this bioassay by broadening the 

range of host genotypes in order to increase the resolution of the pathotype 

classification. As shown in chapter 2, Vitis species from North America as well as from 

Asia provide a rich source for breeders to seek for better resistance against downy 

mildew. Interestingly, not all species tested from North America, which a long-lasting co-

evolutionary history with the pathogen had shown high resistance. On the other hand, 

some Asiatic species which where thought not to have developed resistance to a natural 

North American endemic pathogen, did not allow colonization. It will be an interesting 

task for further research to investigate such incompatible host-pathogen pairs and to 

unravel the mechanisms behind it. 

The high genetic variability reported in chapter 3 was found using molecular markers in 

the tested strains. This confirmed the results from the bioassays, and emphasized, how 

relevant the achievement of homogeneous material through single sporing for this 

pathogen is. Even though for other fungal species the single sporing is a routine 
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procedure, in oomycetes, it is still not commonly practiced due to the difficulties to 

achieve infections from single spores or sporangia. The identification of highly 

susceptible host genotypes such as V. betulifolia in the infection assays will help to 

improve the rate of successful infections with single sporing technique. Many authors 

still rely on single sporangiophores strains, even if it is still not clear if all sporangia have 

the same genetic material. Further studies using molecular markers might help to clarify 

this topic.  

A very interesting approach to study the expression of effector genes in strains with 

different virulence was constituted by the host-pathogen combination. With help of this 

methodology, promising expression patterns were found that might reveal the 

mechanism behind the ability of some strains to overcome the resistance from the plant 

in the future. The possibility to have homogeneous characterized strains, for which the 

reaction produced in different hosts was known, was an important milestone that 

allowed us to carry out this study. To achieve a better understanding of the mechanisms 

responsible for a specific reaction on a Vitis host, cooperation was established with the 

KIT in Karlsruhe, and the reaction of the plant was examined. In concordance with other 

studies, it was possible to identify at least one gene with an interesting expression 

pattern that might be involved in the resistance of the grapevine cultivar Regent. More 

genes from the side of the plant should be the subject of future studies to get a better 

picture of the reaction of the plant against the infection of P. viticola.  

The role of some interesting effectors expressed by the pathogen following a pattern 

should be analyzed in more detail. Especially outstanding was the high expression of a 

gene bearing a RXLR motif in early stages, which might be related with a higher 

virulence in specific strains. Other authors have previously shown interest for this kind 

of studies, finding important results in this field analyzing this group of effectors. 

Approaches to discover new effectors have begun and should continue to gain a more 

complete knowledge of the secretome of the pathogen. The role of specific effectors in 

the plant would be the next step to understand exactly what happens when the 

oomycete infects the plant. Transient expression analyses have made this possible for 

some genes, but still much work needs to be done in this direction. The study of the early 

developmental stages of the pathogen using in vitro germinated spores has proven to be 

an advantageous approach. This work showed that even without contact with the plant, 

strains of the pathogen react differently, what might imply an advantage of 
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overexpressing certain genes at early stages. Future studies need to consider this tool to 

gain more knowledge in the first infection stages of the oomycete. 

Fluorescence microscopy was important to follow the development of the pathogen 

inside the leaf, or even before as the spores begin to encyst and germinate. Many other 

authors have confirmed the importance of this kind of studies to reveal which processes 

are being developed in the plant, and how the pathogen behaves in different conditions 

or in different hosts. 

After answering some of the questions posed at the beginning of this study, many new 

questions arouse, showing how complicated and challenging this pathosystem is. Some 

years after oomycetes were listed as the nightmare for geneticists, this and many other 

studies reflect what other authors have recently expressed: oomycetes constitute a very 

important tool to increase the knowledge on plant-pathogen interactions. 
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Summary 

The downy mildew of grapevine, Plasmopara viticola, is one of the most important 

pathogens in viticulture. Its genetic diversity had been assessed in some previous 

studies using molecular markers, but the diversity of the infection behavior has not yet 

been addressed adequately. Therefore, the development of a fast, reliable and 

uncomplicated assay to screen for pathogen phenotypes on host with different 

resistance levels was a major task of this work. A leaf disc test was proposed, evaluating 

sporulation and necrosis produced by the pathogen on Vitis plants with different 

susceptibility. Using this bioassay, interesting strains were assessed and kept for future 

studies. The urgent need to work with genetic homogeneous inoculum was shown, 

because the assays revealed a high phenotypic diversity in isolates collected from the 

field as a bulk sample. Hence, a cloning technique to obtain single sporangium strains 

was found useful to avoid working with mixed genotypes.  

The leaf disc bioassay also allowed screening for fungicide resistance in P. viticola 

populations. Isolates resistant to dimethomorph and metalaxyl, two important 

fungicides for oomycetes control, were detected. Higher resistance was associated with 

fields were the fungicide application was high as well. Some strains were even resistant 

to doses where the fungicide exhibits phytotoxic activity to grapevine. The approach of 

characterizing P. viticola pathotypes on different host plants of Vitis vinifera cultivars 

and Vitis species from North America and Asia revealed a broad spectrum of fully 

susceptible to completely resistant reactions. This information is of direct practical 

value in future plant breeding programs, but also provides the chance to select specific 

host-pathogen combinations to study the mechanisms of resistance or susceptibility. 

Fluorescence microscopy revealed how the infection progress of highly and lowly 

virulent strains advance in tolerant and susceptible hosts, and which points of the 

infection are interesting for future studies. On the molecular level, effectors were 

investigated to trace their possible involvement in the infection process. It was found 

that RXLR 1, NLP 1, Elicitin like 2, Glucanase inhibitor 2 and 4 , and 1,3-ß Glucanase 2 are 

candidates which are upregulated in the earliest infection stages. Following the here 

established methodology and suggested strategy it should be possible in the future to 

get a better insight in the mechanisms of infection and resistance of grapevine downy 

mildew.   
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Zusammenfassung 

Der Falsche Mehltauerreger von Wein, Plasmopara viticola, ist eines der wichtigsten 

Pathogene im Weinbau. In vorherigen Studien wurde die genetische Diversität diese 

Pathogens mittels molekularer Marker evaluiert, jedoch erfolgten keine 

aussagekräftigen Untersuchungen bezüglich der phänotypischen Diversität. Aus diesem 

Grund war die Entwicklung einer unkomplizierten Methode, verschiedene Genotypen 

des Pathogens durch Biotests zu unterscheiden, eines der Hauptziele dieser Arbeit. 

Hierzu wurde ein Blattscheibentest mit unterschiedlich anfälligen Vitis Kultivaren 

entwickelt. Für die Bewertung der Pathogene wurden Parameter wie die Art der 

verursachten Sporulation sowie Nekrosenbildung ermittelt. Durch Verwendung dieses 

Biotests, konnten interessante Pathogenstämme identifiziert und für zukünftige Studien 

gezielt vermehrt werden. Hierbei zeigte sich die dringende Notwendigkeit, mit einem 

genetisch homogenen Inokulum zu arbeiten, da eine hohe phänotypische Diversität in 

Feld Isolaten experimentell nachgewiesen wurde. Um die Arbeit mit Mischisolaten zu 

vermeiden wurden durch ein Klonierungsverfahren Stämme aus einzelnen Sporangien 

herangezogen. 

Der entwickelte Blattscheibentest ermöglichte auch das Screening auf Fungizid 

Resistenzen in P. viticola Populationen. Resistente Stämme gegen Dimethomorph und 

Metalaxyl, zwei bedeutende Fungizide für die Bekämpfung dieses Oomyceten, wurden 

hierbei nachgewiesen. Dabei wurden hohe Resistenzen mit Feldern, in denen die 

Fungizid Anwendung ebenfalls hoch war, assoziiert. Es wurden sogar einige Stämme 

identifiziert, die gegen sehr hohe Dosen, zum Teil bereits im phytotoxischen Bereich für 

die Weinrebe, Resistenz aufwiesen. Die P. viticola Pathotyp Charakterisierung mit 

verschiedenen Vitis vinifera Kultivaren sowie Vitis Arten aus Nord Amerika und Asien 

zeigte ein breiteres Spektrum von komplett anfälligen bis zu komplett resistenten 

Reaktionen. Diese Information kann in künftigen Züchtungsprogrammen direkt 

angewendet werden. Zusätzlich ermöglicht diese Methode auch die Auswahl 

interessanter Wirt-Pathogen Kombinationen. Diese Kombinationen sollen genutzt 

werden, um die Mechanismen, welche für die Resistenz verantwortlich sind, zu 

untersuchen. Fluoreszenzmikroskopische Untersuchungen zeigten wie sich die 

Infektionsverläufe von hoch und niedrig virulenten Pathogenstämmen in toleranten und 

anfälligen Wirten verbreiten. Hierbei konnten auch die, für weitere Studien 
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interessanten Zeitpunkte der Infektion, ermittelt werden. Einige der, so ermittelten, 

Zeitpunkte, sowie sehr frühe Stadien der Infektion, wurden auf molekularer Ebene 

untersucht. Anschließend wurden verschiedene Effektoren betrachtet um deren 

Beteiligung während des Infektionsprozesses nachzuvollziehen. Es wurde festgestellt, 

dass RXLR 1, NLP 1, Elicitin like 2, Glucanase inhibitor 2 and 4, and 1,3-ß Glucanase 2 

Kandidaten für Gene sind, die in frühen Entwicklungsphasen der Sporen hochreguliert 

werden. Die Benutzung der hier etablierten Methode und vorgeschlagene Strategie solle 

künftig ein besseren Einblick des Infektionsmechanismus und Resistenz gegen Falschen 

Mehltaus ermöglichen. 
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Appendix 

Table A.1: Accession number of the analyzed effectors and reference genes. 

Analized fragment Accession number (NCBI) 

Glucanase inhibitor_1 HE582132 

Glucanase inhibitor_2 HE582107 

Glucanase inhibitor_3 HE582041 

Glucanase inhibitor_4 PVS1008 

RXLR_1 HE582030 

RXLR_2 PVS0817 

Elicitin like_1 HE582038 

Elicitin like_2 HE582165 

Endo-1,3 ß Glucanase_1 HE582100 

Endo-1,3 ß Glucanase_2 HE582125 

Endo-1,3 ß Glucanase_3 PVS0495 

Endo-1,4 ß Glucanase_1 HE582050 

Secretory protein OPEL_1 PVS0463 

Secretory protein OPEL_2 PVS0049 

Pectinesterase_1 HE582127 

Pectinesterase_2 PVS0290 

Pectinesterase_3 PVS0401 

Transglutaminase elicitor_1 HE582159 

Transglutaminase elicitor_2 HE582090 

Acidic chitinases HE582051 

Catepsin-like cystein protease_1 HE582131 

Catepsin-like cystein protease_2 PVS0379 

Cystatin like protease inhibitor_1 PVS0212 

Cystatin like protease inhibitor_2 PVS0283 

Kazal like protease inhibitor HE582205 

Plasmopara viticola Actin HE582092 

Plasmopara viticola Tubulin HE582072 

Plasmopara viticola Elongation Factor 1 α EF426554.1 
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