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Abbreviations 

ANOVA Analysis of variance 

Ca  Calcium  

Ci/Ca  Intercellular to atmospheric CO2 concentration ratio 

CIMMYT International Maize and Wheat Improvement Center 

CO2  Carbon dioxide 

CTD  Canopy temperature depression (Tair – Tcanopy, in °C) 

CTdiff  Canopy temperature difference (Tcanopy – Tair, in °C) 

DWD  German Weather Service 

∆  Carbon isotope discrimination rate (‰) 

δ  Carbon isotope composition (‰) 

DOY  Day of year 

FAO  Food and Agricultural Organization of the United Nations 

gs  Stomatal conductance (mmol m-2 s-1) 

IPCC  Intergovernmental Panel on Climate Change 

IR  Infrared 

IRMS  Isotope ratio mass spectrometer 

K  Potassium  

LAI  Leaf area index (m2 m-2) 

ma  Mineral concentration (%) 

Mg  Magnesium  

PAR  Photosynthetic active radiation 

PASW  Plant available soil water 

r  correlation coefficient 

Si  Silicon 

Tair  Air temperature (°C) 

Tcanopy  Canopy temperature (°C) 

TKW  Thousand kernel weight (g) 

UAV  Unmanned aerial vehicle 

VPD  Vapor pressure deficit (kPa) 

WSC  Water-soluble carbohydrates 

WUE  Water use efficiency 
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1. Summary 

Winter rye (Secale cereale L.) is predominantly cultivated on light and sandy soils with a low 

water holding capacity and will therefore be especially affected by drought induced yield 

losses in Central and Eastern Europe in the future. Drought adaption through breeding is 

therefore an important task in order to adapt this crop to future climate conditions. In this 

context, the crop physiology methods canopy temperature depression (CTD = Tair - Tcanopy) 

and carbon isotope discrimination (∆) were examined for their suitability as selection criterion 

under drought on a small number of genotypes. Two sets of each 16 genotypes were therefore 

grown under different drought conditions in rain-out shelters and under well-watered 

conditions in the years 2011, 2012, and 2013. The CTD was determined several times during 

the growth period using two infrared (IR) thermometers and an IR camera. ∆-analyses were 

performed on mature flag leaves (∆L) and grains (∆L). Furthermore, ash content in mature flag 

leaves and grains, as well as mineral concentrations in mature flag leaves (Ca, K, Mg, and Si) 

were examined for their use as surrogates for the expensive and time-consuming ∆-analyses. 

In addition to the evaluation of possible selection criterions, the agronomic performance of 

rye in the different drought regimes was assessed: Grain-, straw-, and total aboveground 

biomass yields, the grain yield components spikes m-2, kernels spike-1, and thousand kernel 

weight (TKW), leaf area index (LAI), and phenological characteristics were examined.  

Drought induced grain yield reductions ranged from 14 to 57%, whereas straw yield was 

generally lesser affected. The growth period was shortened by up to 12 days under drought 

conditions compared to optimal water supply. Grain yield was positively associated to straw 

yield, LAI, spikes m-2, and kernels spike-1 under water deficit. High number of grains per area 

land seemed to be especially important for high grain yields under drought. Furthermore, the 

results suggest a strong importance of pre-anthesis reserves for the reallocation of assimilates 

for grain filling under drought in rye.  
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Regarding the suitability of possible selection criterions, CTD was significantly positively 

related to grain yield under drought. Significant correlations between CTD and grain yield 

were, however, only observed when the measurements were carried out on days with optimal 

weather conditions. Optimal conditions turned out to be days with a clear sky, a solar 

irradiation >700 W m-2, an air temperature of at least 20°C, as well as wind speeds <3 m s-1. 

Furthermore, the results showed that also rather inexpensive IR instruments are suitable to 

assess the CTD. Regarding the carbon isotope discrimination, ∆L was significantly positively 

related to grain yield under water deficit, but the correlation was weaker than between CTD 

and grain yield. ∆G was not related to grain yield at all. Ash content and mineral 

concentrations were significantly related to grain yield under drought, but the correlations 

were quite inconsistent between the two experimental years. Because of the weak or missing 

relationship with grain yield, carbon isotope discrimination and its potential surrogates ash 

content and mineral concentration cannot be recommended for their use as selection criterions 

under German climate conditions at present. A general limitation of the preset work was, 

however, the low genetic variability of the genotypes, which may have reduced the 

significance of the results. The results should therefore be validated with a more diverse set of 

genotypes. However, especially the CTD seemed to be a promising selection criterion which 

may help to develop drought tolerant rye genotypes, if this method can be successfully 

integrated into the breeding process. 
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2. Zusammenfassung 

Winterroggen (Secale cereale L.) wird vorwiegend auf leichten und sandigen Böden mit 

niedriger Wasserhaltekapazität angebaut, und wird dadurch besonders von zukünftigen  

trockenstressinduzierten Ertragseinbußen in Mittel- und Osteuropa betroffen sein. Die Zucht 

auf Trockentoleranz ist daher eine wichtige Aufgabe, um Roggen an zukünftige 

Klimabedingungen anzupassen. In diesem Zusammenhang wurden die ertragsphysiologischen 

Methoden „Canopy temperature depression“ (CTD = TLuft – TBestand) und 

Kohlenstoffisotopendiskriminierung (∆) an einer kleinen Anzahl von Genotypen auf ihre 

Eignung als Selektionskriterium unter Trockenstress hin undersucht. 2 x 16 Genotypen 

wurden hierfür unter verschiedenen Trockenstressvarianten in Rain-out Sheltern sowie unter 

optimal bewässerten Bedingungen in den Jahren 2011, 2012 und 2013 angebaut. Die CTD 

wurde im Laufe der Vegetationsperiode mehrmals mithilfe zweier Infrarot (IR) -Thermometer 

und einer Thermokamera gemessen. ∆-Analysen wurden an Fahnenblättern und Körnern 

durchgeführt. Desweiteren wurden der Aschegehalt in Fahnenblättern und Körnern sowie 

Einzelelementkonzentrationen im Fahnenblatt (Ca, K, Mg, Si) auf ihre Eignung als Surrogate 

für die teuren und aufwendigen ∆-Analysen geprüft. Ergänzend wurde die agronomische 

Leistung von Winterroggen unter verschiedenen Trockenstressvarianten untersucht: hierfür 

wurden Korn-, Stroh- und gesamter oberirdischer Biomasseertrag, die Ertragskomponenten 

Ähren m-2, Körner Ähre-1 und Tausendkorngewicht (TKW), der Blattflächenindex (LAI) 

sowie phänologische Charakteristika untersucht.  

Trockenstressinduzierte Kornertragsreduktionen lagen zwischen 14 und 57%, während der 

Strohertrag generell geringer reduziert wurde. Unter Trockenstress wurde die Vollreife im 

Vergleich zu optimal bewässerten Bedingungen um bis zu 12 Tagen früher erreicht. Der 

Kornertrag war unter Trockenstress positive mit Strohertrag, LAI, Ähren m-2 und Körner 

Ähre-1 korreliert. Eine hohe Kornanzahl war besonders wichtig für einen hohen Kornertrag 
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unter Trockenstress. Ferner deuteten die Ergebnisse auf eine besondere Bedeutung vegetativer 

Reservepools als Assimilatquelle für die Kornfüllung hin.  

Die CTD stand unter Trockenstress signifikant mit dem Kornertrag in Beziehung. 

Signifikante Korrelationen zwischen CTD und Kornertrag wurden jedoch ausschließlich an 

Tagen mit optimalen Wetterbedingungen gefunden. Optimale Bedingungen für die Messung 

der CTD fanden sich an Tagen mit einem wolkenlosen Himmel, einer Globalstrahlung 

>700 W m-2, einer Lufttemperatur >20°C sowie einer Windgeschwindigkeit <3 m s-1. Ferner 

zeigten die Ergebnisse, das auch verhältnismäßig günstige IR-Geräte für die CTD-Messungen 

geeignet sind. Bei der Kohlenstoffisotopendiskriminierung war ∆L signifikant positiv mit dem 

Kornertrag korreliert, die Korrelation war jedoch deutlich schwächer als die zwischen CTD 

und Kornertrag. ∆G war nicht mit dem Kornertrag korreliert. Aschegehalten und 

Einzelelementkonzentrationen standen zwar mit dem Kornertrag in Beziehung, die 

Korrelationen schwankten innerhalb der Jahre jedoch stark. Aufgrund der schwachen, 

beziehungsweise fehlenden Korrelationen können die Kohlenstoffisotopendiskriminierung 

sowie deren Surrogate zum jetzigen Zeitpunkt nicht für den Einsatz als Selektionskriterium 

unter den vorliegenden Klimabedingungen empfohlen werden. Eine generelle Einschränkung 

dieser Arbeit war jedoch die geringe genetische Variabilität der untersuchten Genotypen, 

welche die Aussagekraft der Ergebnisse abgeschwächt haben könnte. Aufgrund dessen sollten 

die Ergebnisse mit einem vielfältigeren genetischen Material überprüft werden. Die CTD 

jedoch scheint geeignet zu sein, um als Selektionskriterium verwendet werden zu können. 

Diese Methode könnte die Entwicklung trockentoleranter Roggengenotypen beschleunigen, 

wenn sie erfolgreich in den Züchtungsprozess eingebunden werden kann. 
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3. General introduction 

3.1 Rye 

Rye (Secale cereale L.) is an important cereal crop in Central and Eastern Europe, which is 

almost exclusively cultivated as winter crop. Cultivated rye is an allogamous plant which 

derived from the wild species S. montanum and S. vavilovii. The primary center of origin of 

rye is today’s Turkey, where the first rye cropping took place about 6000 years ago. Today, 

rye is grown on 5.6 million hectares worldwide (Schlegel, 2013). The cold tolerance and 

winter hardiness of rye contribute to its wide distribution in Central and Eastern Europe, 

where rye is cultivated on 4.8 million hectares. The most important countries for rye 

production are the Russian Federation, Poland, Germany, Belarus, and the Ukraine. These 

countries produce more than 75% of the worldwide rye (FAO, 2014). In Germany, rye is 

mainly used for livestock feeding (50%), baking (22.5%), and ethanol production (17.5%). In 

recent years, the use of rye for biogas production (currently 7.5%) is becoming more and 

more important (Roux et al. 2010, Blumtritt 2007). Rye has a higher yield potential than 

wheat on sandy, infertile, and poorly drained soils. It is, however, out-yielded by wheat on 

medium and high fertile soils (Schlegel, 2013). Therefore, rye is primarily cultivated on 

marginal soils with low fertility, on which other cereals can hardly be grown (Miedaner et al. 

2012). Rye is recognized to be the most drought tolerant cereal crop because of its extensive 

and well branched root system, which takes up water very efficiently (Starzycki 1976). The 

root dry weight of rye exceeds that of wheat and triticale (Sheng and Hunt 1991). 

Furthermore, rye uses 20-30% less water per unit of dry matter than wheat (Starzycki, 1976). 

In experiments with the winter cereal crops barley (Hordeum vulgare L.), rye, triticale 

(Triticosecale Wittmack), and wheat (Triticum aestivum L.) Schittenhelm et al. (2014) found 

the lowest grain yield reduction in winter rye when the crops were solely dependent on 

residual winter soil moisture. Winter rye was also found to be only slightly negatively 
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influenced during a severe drought in multi location trials with eight crops in the Czech 

Republic (Hlavinka et al. 2009). However, despite the relative good drought tolerance of rye 

compared to other cereals when grown on the same soil, its cultivation on marginal soils 

makes it especially vulnerable to drought events. For example, the intense drought in the 

spring 2007 reduced the mean grain yield of winter rye in Germany by 16% compared to the 

mean of 2000-2009 (Statistisches Bundesamt 2014, DWD 2008). The grain yields of wheat, 

barley, and triticale were reduced by only 6 to 9% in the same year, most likely due to their 

cultivation on soils with higher fertility. For this reason, the development of drought tolerant 

rye cultivars is of great importance. 

3.2 Drought stress 

There are four main definitions of drought: meteorological, agricultural, hydrological, and 

socio-economic drought (Wilhite and Glantz 1985): Meteorological drought originates from a 

deficiency of precipitation over a certain period of time. Agricultural drought is a 

consequence of the meteorological drought resulting in a soil moisture deficit which leads to 

an insufficient water supply to crops. A hydrological drought is present when water reserves 

in aquifers, lakes, and reservoirs fall below the average. Socio-economic drought is defined as 

the practical consequences of the above-mentioned types of drought, affecting the supply and 

demand of economic goods and services. Hereinafter, drought is always referred to as 

agricultural drought. Drought is a worldwide problem in agriculture and recognized to be the 

most important abiotic stress (Spinoni et al. 2014). The region of Central and Eastern Europe 

is characterized by a humid climate and is not a typical drought region like the Mediterranean 

area, where drought events occur quite regularly (EEA 2009). However, droughts in Europe 

are not restricted to the Mediterranean area and can occur in all regions in any season (Lloyd-

Hughes and Saunders, 2002). There were, for example, already some significant drought 

events during spring and summer in Central and Eastern Europe in the last years - possibly the 
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first signs of the ongoing climate change. The drought and heat wave in 2003, for example, 

significantly reduced the primary productivity in Europe by 30% (Ciais et al. 2005). In 2011, 

rainfall was only 40 – 80 % of the long term mean between January and May, leading to 

strong reductions in cereal grain yields (Statistisches Bundesamt 2014, DWD 2011). Although 

it is unclear whether the total annual precipitation in Central and Eastern Europe is increasing 

or decreasing in the next decades, it is very likely that the precipitation during the main 

growth phase in summer is decreasing. Together with the predicted temperature rise and the 

subsequent increasing evaporative demand, the intensity and frequency of drought events are 

predicted to further increase in this region during the next decades (IPCC, 2014).  

3.3 Effect of drought stress on cereal crops 

The effects of drought on plants range from molecular to morphological levels during all 

phenological stages (Farooq et al. 2009). One of the first reactions of plants to drought is the 

closing of stomata (Condon et al. 1990), which results in reduced photosynthesis rates and 

carbon assimilation (Cornic and Massacci 1996). Stomatal closure decreases the transpiration 

rate, causing an increase in canopy temperature (Jones and Leinonen, 2003) and limited 

uptake of minerals via the transpiration stream (Masle et al. 1992). Furthermore, the lower 

carbon assimilation under drought diminishes cell division and expansion, which leads to 

reduced plant growth (Barnabás et al. 2008). Water deficit consequently causes a reduction in 

aboveground biomass (Estrada-Campuzano et al. 2012) and LAI (Breda 2003), as well as a 

faster leaf senescence (Hafsi et al. 2007). Furthermore, the phenological development is 

accelerated under drought, causing an earlier flowering and a shorter grain filling period 

(Foulkes et al. 2007, Gooding et al. 2003). All mentioned and further drought effects result in 

reduced grain yields in cereal crops in the end because grain yield is the final consequence of 

all previous reactions to water deficit. Reported drought-induced yield reductions of different 

cereals species cover a wide range. For winter rye, reported yield decreases under drought 
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range from 24% (rainfed conditions, Hübner et al. 2013) to 60% (residual soil moisture only, 

Schittenhelm et al. 2013). For winter wheat grown under rainfed conditions and severe 

drought in Serbia, grain yield decreases of 8 and 38% were found by Dodig et al. (2008). For 

winter wheat grown under rainfed conditions in Italy, Guinta et al. (1993) found a decrease of 

25-54% compared to a well-watered control. The grain yield reduction is, however, dependent 

on the timing, intensity, and duration of the water deficit because the different development 

stages show different sensitivities to water deficit (Cattivelli et al. 2008). Grain yield can be 

analyzed in terms of the yield components spikes m-2, kernels spike-1, and thousand kernel 

weight (TKW). Drought during early development stages prior to anthesis affects grain yield 

through reduced spike number and reduced number of kernels per spike, leading to a smaller 

number of kernels per area land (Dolferus et al. 2011). Drought during grain filling, on the 

other hand, will reduce the duration of the grain filling period, leading to a reduced kernel 

weight (Gooding et al. 2003). Grain number is generally considered to be the main 

determinant for changes in grain yield while the grain weight has only a minor influence on 

final grain yield (Slafer et al. 2014, Estrada-Campuzano et al. 2012, Chmielewski and Köhn 

2000).  

3.5 Drought tolerance and drought adaption mechanisms 

Drought tolerance of crop plants must be defined in terms of yield in relation to limited water 

supply (Passioura 1996), such as the ability to grow, flower, and display economic yield under 

suboptimal water supply (Farooq 2009). A crop which produces more yield under suboptimal 

water supply compared to another by means of the different adaption mechanisms can be 

considered to be relatively more drought tolerant. No single mechanism can explain the 

drought tolerance of a crop alone; drought tolerance is always an interaction of different 

adaption mechanisms. The different mechanisms related to drought tolerance are often 

categorized into drought escape, dehydration avoidance, and dehydration tolerance (Blum, 
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2005). Drought escape can be attained by synchronizing the crop cycle with water 

availability. An earlier anthesis was found to increase grain yields in Mediterranean 

environments because of the resulting lower drought stress level and lower temperatures 

during the earlier grain filling period (Loss and Siddique 1994). Dehydration avoidance can 

be achieved by reduced water loss, for example, through stomatal control of transpiration 

and/or a deeper and larger root system, which allows a better access to water. Different root 

traits were, for example, recognized to play a major role in drought adaption of wheat 

(Kirkegaard et al. 2007, Manschadi et al. 2006). Dehydration tolerance is defined as the 

maintenance of physiological functions when the plant is already dehydrated (Blum 2005). An 

example is osmotic adjustment, which is the active accumulation of solutes in response to 

water deficit. This lowers the osmotic potential and attracts water into the cell and maintains 

its turgor (Moinuddin et al. 2005). Osmotic adjustment is an important adaption mechanism 

under water deficit in many crop species (Ludlow and Muchow, 1990). All above mentioned 

and further adaption mechanisms diminish the negative effects of drought stress, but they 

represent a tradeoff between plant survival and yield.  

3.6 Secondary traits for drought tolerance improvement 

Cereal breeding is at present primarily based on direct selection for grain yield (Araus et al. 

2002). This approach is, however, not optimal for the selection of drought tolerant genotypes, 

as grain yield is characterized by a low heritability and a high genotype x environment 

interaction (Jackson et al. 1996). As a promising alternative, the use of secondary traits has 

often been suggested (Balota et al. 2008, Araus et al. 2002, Reynolds et al. 1994). Secondary 

traits, which are defined as plant characteristics beside grain yield, can give further 

information about how yield changes under drought and may, therefore, help to improve 

yields under water limited conditions. According to Monneveux and Ribaut (2006), a 

secondary trait should be genetically associated with grain yield under drought, genetically 
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variable, highly heritable, and easy, inexpensive, and rapid to assess. However, the most 

crucial factor is that the trait must be related to grain yield (Araus et al. 2002). Reynolds et al. 

(2005) suggested four groups of secondary traits which are related to increased productivity 

under drought in wheat: (1) traits related to pre-anthesis growth (e.g. early vigor, stem 

carbohydrate reserves), (2) traits related to access to water (canopy temperature depression, 

carbon isotope discrimination, relative water content, osmotic adjustment), (3) traits related to 

water use efficiency (carbon isotope discrimination, harvest index), and (4) traits related to 

photo-protection (anti-oxidants, leaf anatomy). Many of these suggested secondary traits have 

been examined in recent years, such as stem carbohydrate reserves (Zhang et al. 2013), 

canopy temperature depression (Lopez et al. 2012, Balota et al. 2008), carbon isotope 

discrimination (Monneveux et al. 2005, Araus et al. 2001), relative water content (Larbi and 

Mekliche, 2004), and osmotic adjustment (Moinuddin et al. 2005). 

Canopy temperature depression (CTD = Tair - Tcanopy)1 and carbon isotope discrimination (∆) 

are related to access to water. Both traits are recognized as indicators for plant water status 

and were suggested as selection criteria for cereal grain yield under dry conditions (Reynolds 

et al. 2006, Rebetzke et al. 2002). During photosynthetic gas exchange, C3-plants discriminate 

against the heavier and less abundant 13C isotope in favour of the lighter and more abundant 

12C isotope, which leads to a depletion of 13C in plant matter (Farquhar et al. 1989). Carbon 

isotope discrimination, therefore, provides information about the transpiration efficiency 

during the whole growth period of the sample tissue (Farquhar and Richards, 1984). The CTD 

allows the contact-free and non-destructive detection of changes in plant water status. 

Stomatal closing affects the transpiration rate and reduces transpiration cooling, which 

increases the canopy temperature. The canopy temperature can then be detected with infrared 

                                                 
1The difference between canopy and air temperature can be expressed as canopy temperature depression (CTD = 
Tair – Tcanopy) or canopy temperature difference (CTdiff = Tcanopy – Tair). Both expressions are commonly used in 
literature, and they are only distinguished in the sign of the difference. The CTD is used in this work. 



3. General introduction 

  

 
 16 / 92 

 

thermometry and photometry (Jones and Leinonen, 2003). Genotypes with high CTD (low 

canopy temperature) and/or high ∆ under drought would, therefore, be recognized as 

relatively drought tolerant, because they can maintain a higher plant water status than 

genotypes with low CTD and/or ∆. Both CTD and ∆ have been examined on a wide range of 

plant species and in different regions: The CTD has been used in experiments with wheat 

(Balota et al. 2007, Fischer et al. 1998), maize (Irmak et al. 2000), rice (Takai et al. 2010), 

cotton (Cohen et al. 2005), sorghum (O’Shaugnessy et al. 2012) and peanut (Balota et al. 

2012). Similarly, ∆ has been examined in wheat (Zhu et al. 2008, Monneveux et al. 2004, 

Merah et al. 2001), barley (Chen et al. 2012, Voltas et al. 1998), maize (Caberea-Bosquet et 

al. 2009), sugar beet (Bloch et al. 2006), groundnut (Rajabi et al. 2009), and grassland species 

(Tsialtas et al. 2002). The mentioned studies were predominantly examined under arid and 

semi-arid climate conditions, for example in Mexico (Gutierrez et al. 2010), Texas, USA 

(Balota et al. 2007), Spain (Royo et al. 2002), Southern France (Merah et al. 2001), and South 

Australia (Condon et al. 1990). The CTD was mostly positively related to grain yield under 

drought stress measured under arid and semiarid conditions (Balota et al. 2007, Rashid et al. 

1999). The relationship between ∆ and grain yield, however, was strongly dependent on 

location, crop species, and type and age of the examined plant organ. The correlations ranged 

from positive (Monneveux et al. 2005, Merah et al. 2001) to negative (Condon and Hall 

1997), and some authors could not observe a relationship between ∆ and grain yield (Hafsi et 

al. 2007).  

3.7 Aims / Objectives 

The first part of this thesis (sections 4 and 5) deals with the suitability of CTD and ∆ for the 

selection of drought tolerant winter rye genotypes in Germany. Information is scarce about 

the suitability of both methods in a temperate climate because previous experiments were 

almost exclusively carried out in arid and semiarid regions. Furthermore, neither CTD nor ∆ 
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have so far been examined on rye. Beside their suitability as selection criterion, further 

objectives for the CTD were the evaluation of optimal weather conditions for the 

measurements as well as a comparison of three IR measurement devices. Further objectives 

for ∆ were the evaluation of ash content and single mineral concentrations as possible 

surrogates for the rather expensive and time consuming ∆-analyses. 

The second part of this thesis (section 6) focuses on the effects of different drought events on 

the agronomic performance of winter rye as there is hardly any information available on this 

topic. The effect of timing, intensity, and duration of drought stress on yield, yield 

components, and further morphological characteristics were studied.  
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4. Suitability of canopy temperature depression in a temperature climate with drought-      

    stressed winter rye, determined with three infrared measurement devices. 

 

Kottmann, L., Schittenhelm, S., Wittich, K.P., and Wilde P., 2013. Suitability of canopy 

temperature depression in a temperate climate with drought-stressed winter rye, determined 

with three infrared measurement devices. Journal of Agronomy and Crop Science 199, 385-

394. 
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5.  Suitability of carbon isotope discrimination, ash content and single mineral 

concentration for the selection of drought-tolerant winter rye.  

 

Kottmann, L., Giesemann, A., and Schittenhelm, S. 2014. Suitability of carbon isotope 

discrimination, ash content and single mineral concentration for the selection of drought-

tolerant winter rye. Plant Breeding 133, 579-587. 
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6.  How do timing, duration, and intensity of drought stress affect the agronomic 

performance of winter rye? 

 

Lorenz Kottmann1, Peer Wilde2, and Siegfried Schittenhelm1 

1Julius Kühn-Institute (JKI), Institute for Crop and Soil Science, Bundesallee 50, D-38116 Braunschweig, 

Germany 

2KWS LOCHOW GmbH, Ferdinand-von-Lochow-Str. 5, D-29303 Bergen, Germany. 

 

Abstract 

Winter rye (Secale cereale L.) will be especially affected by drought induced yield losses in 

Central and Eastern Europe in the future, because it is predominantly cultivated on low-fertile 

soils with a poor water-holding capacity. In order to examine the performance of winter rye 

under different drought conditions, field experiments were carried out during the years 2011, 

2012, and 2013 near Braunschweig, Germany. Two sets of genotypes were tested under 

severe, mild, pre-anthesis, and post-anthesis drought stress in rain-out shelters as well as 

under rainfed and well-watered conditions. The grain, straw, and total aboveground biomass 

yields, grain yield components, leaf area index (LAI), and phenological characteristics were 

examined, as well as phenotypic correlations between grain yield and further characteristics. 

Drought induced grain yield reduction ranged from 14 to 57%. The straw yield was lesser 

affected by drought than the grain yield. Under drought conditions, fully ripe was reached up 

to twelve days earlier than under non water-limited conditions. Pre-anthesis drought mainly 

reduced spikes m-2 and kernels spike-1 while drought during grain filling reduced the 1000-

kernel weight (TKW) only. The grain yield was positively associated with straw yield, spikes 

m-2 and kernels spike-1 under water limited conditions while the TWK was only positively 

associated with grain yield under drought during grain filling. Consequently, high pre-anthesis 

biomass as well as high numbers of spikes m-2 and kernels spike-1 are especially important for 
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obtaining high grain yields under water-limited conditions. Focusing on these traits is 

therefore recommendable for developing drought tolerant rye genotypes.  

Keywords: drought stress, winter rye, drought tolerance, grain yield, yield components, 

breeding, leaf area index, phenology 

 

Introduction 

Rye (Secale cereale L.) is an important food, feed, and whole-plant energy crop in Central 

and Eastern Europe. In these regions, rye is primarily cultivated as winter cereal on 4.8 

million hectares (FAO, 2014). Rye has been recognized to be relatively drought tolerant 

compared to other crops (Schittenhelm et al. 2014, Hlavinka et al. 2009). Therefore, it is 

predominantly grown on infertile and sandy soils, which are characterised by a low water 

holding capacity. Although Central and Eastern Europe have a humid climate, climatologists 

predict more future summer drought events even for these regions as well as an overall 

temperature rise (IPCC 2014). Therefore, rye could be especially affected by drought events. 

Drought is the most yield-limiting abiotic stress and affects cereal crops on all levels during 

all phenological stages. The extent of grain yield loss is depending on the intensity and timing 

of water shortage as the different stages of development vary in their sensitivity to drought 

stress (Cattivelli et al. 2008). Grain yield can be dissected into the yield components spikes m-

2, kernels spike-1, and 1000-kernel weight (TKW). These yield components are not equally 

susceptible to water deficits because they are determined at different stages of plant 

development (Slafer and Savin 2004). For example, drought stress during the vegetative phase 

will affect grain yield mainly by reduced crop density and kernel number (Dolferus et al. 

2011) while drought during grain filling results in reduced kernel weight caused by a reduced 

grain filling duration (Gooding et al. 2003). Generally, grain number is considered to be the 
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main determinant for final grain yield whereas grain weight is less important (Slafer et al. 

2014, Chmielewski and Köhn 2000, Dencic et al. 2000, Lopezcastaneda and Richards 1994, 

Giunta et al. 1993).  

As there is hardly any information about the effect of various types of drought on winter rye, 

the main objectives of this study were to (1) identify the effect of timing, duration, and 

intensity of water deficit on phenological, morphological and agronomical characteristics, and 

(2) to examine the relationship between grain yield and other crop characteristics. 

 

Materials and methods 

Field experiments 

The trials were conducted during the 2010/11, 2011/12, and 2012/13 growing seasons on the 

experimental field of the Julius Kühn-Institute near Braunschweig, Germany (52.30 N, 10.44 

E, 80 meters above mean sea level). The soil was characterized as Haplic Luvisol (FAO, 

1997) with an available water capacity of 120 mm (0-90 cm), and a groundwater level 10 m 

below ground. Sowing dates were September 30 in 2010, September 26 to October 5 in 2011, 

and September 26 to 28 in 2012. Seeding density was 230 seeds m-2 and plot sizes ranged 

from 5.6 to 7.2 m². A total of 130 kg nitrogen ha-1 was applied as calcium ammonium nitrate, 

split into 60 kg N ha-1 at the beginning of vegetation, and 70 kg N ha-1 at the beginning of 

stem elongation. Growth regulators were used to avoid lodging. Fungicides and pesticides 

were applied when needed. The trials were divided into two experiments. In Experiment I 

(2011 and 2012), the winter rye was grown under three levels of water supply: severe drought 

stress, mild drought stress (2012 only) and well-watered conditions. In Experiment II (2013), 

four water regimes were practiced: early drought stress with water deficit during the 

vegetative phase (stem elongation to anthesis), late drought stress with water deficit during 
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the generative phase (grain filling to fully ripe), rainfed-, and well-watered conditions. All 

experiments were set up as a 4x4 alpha lattice with two replications. Further details about the 

water regimes are given in Table 1. Severe drought in 2011 and 2012, and early drought in 

2013 were created by growing the winter rye crops under 50 m long, 10 m wide, and 4 m high 

foil tunnels (CASADO, Douville, France). These stationary rain-out shelters were covered by 

a 200 µm polythene foil, which was mounted at the beginning of stem elongation in each 

year. The front and the sides of the foil tunnels were open in order to attain good ventilation. 

Mild (2012) and late drought stress (2013) were attained by means of mobile rain-out shelters 

(Götsch & Fälschle, Alerheim, Germany) which were 24 m long, 12 m wide, and 5 m high. 

The mobile shelters automatically covered the experimental plots during rainfall events. 

Under well-watered conditions and in the stationary rain-out shelter (early drought, irrigation 

during grain filling only), plants were additionally watered by drip irrigation. The plants 

grown in the mobile rain-out shelters were irrigated by a shelter-based overhead sprinkling 

facility.  

Plant material 

In both experiments a different set of each 16 winter rye (Secale cereale L.) genotypes were 

examined. In Experiment I (2011-2012) 15 genotypes were composed of three parental inbred 

lines (Lo115-N, Lo90-N, and Lo117-N) as well as 12 F2:4 lines selected from the two 

biparental F1 populations Lo115-N x Lo90-N and Lo115-N x Lo117-N. These 15 genotypes 

were out-crossed to the same cytoplasmic male sterile tester. In Experiment II (2013), 15 

advanced breeding populations were studied. The hybrid rye cultivar ‘Palazzo’ was used as a 

standard in both experiments. All plant materials were provided by the KWS LOCHOW 

GmbH, Bergen, Germany. 
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Climate conditions 

Air temperature and precipitation were recorded at 2 m height with a iMETOS weather station 

(Pessl Instruments, Weiz, Austria) located on the experimental field. The agrometeorological 

advisory system ‘Agrowetter’ from the German Weather Service (DWD, 2014) was used for 

irrigation scheduling. 

Phenological data 

Plant development was recorded using the BBCH scale for cereals (Hack et al. 1992). The 

beginning of stem elongation (BBCH 30), beginning of anthesis (BBCH 61), and fully ripe 

(BBCH 89) were expressed as day of year (DOY). Additionally the DOY when all leaves 

were senescent recorded was. 

Agronomic data   

Harvest took place at fully ripe (BBCH 89) in each year. Whole plants of the entire plots were 

hand-harvested in 2001. In 2012 and 2013 only the whole plants of a 0.5 m² portion of the 

plots were hand-harvested while the rests of the plots were harvested with a Nursery Master 

plot combine (Wintersteiger, Ried, Austria). The hand-harvested plants were separated into 

ears and straw; the ears were threshed and winnowed and the chaff added to the straw 

fraction. Grain and straw samples were oven-dried to constant weight at 105 °C for 24 h. 

Grain yield, straw yield, and total aboveground biomass yield (hereafter referred to as 

biomass yield) were calculated on the basis of 0% water content in t ha-1. The yield 

components spikes m-2, kernels spike-1, and 1000-kernel weight (TKW) were determined from 

the hand-harvested plant samples.  
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Leaf area index 

Starting at the beginning of stem elongation, the green leaf area index (hereafter referred to as 

LAI) was measured weekly with a SunScan canopy analysis system (Delta-T Devices, 

Cambridge, UK). Eight measurements were taken per plot in 50 cm intervals while 

maintaining a distance of 50 cm to the front and back edges of the plot; the eight values were 

averaged. When senescence started, the SunScan was held over the senescent leaf layer to 

record the photosynthetic active leaves only. The mean of all LAI measurements in one 

season is referred to as LAImean. Additionally, the LAI that intercepts 95% of the incoming 

photosynthetic active radiation (PAR) was calculated according to Brougham (1958).  

Soil water content 

The course of the soil moisture was recorded in 2012 and 2013 using the portable soil 

moisture probe Diviner 2000 (Sentek Technologies, Stepney, Australia). Plastic tubes with a 

diameter of 5 cm were installed to a depth of up to 150 cm in 24 and 32 plots in 2012 and 

2013, respectively. Soil moisture readings at 10 cm intervals from 5 to 125 cm were take 

twice a week from beginning of vegetation to harvest. The soil water content was also 

determined gravimetrically on several occasions, in order to obtain a site-specific calibration 

(R² = 0.64).  

Statistics 

Analyses of variance were carried out with the GLIMMIX procedure of SAS 9.3 (SAS 

Institute, Cary, NC, USA). Experiment I and II as well as individual years were analyzed 

separately because of different water regimes and different genotypes between the years. 

Genotype and water regime were considered as fixed effects; replication as random effect. 

Correlations were calculated with the CORR procedure of SAS. Graphs were created with 

SigmaPlot 12 (Systat Software Inc., Chicago, IL, USA). 
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Results 

Climatic conditions and water supply 

The weather conditions in the three experimental years were quite different (Figure 1). In 

2011, the spring was warm and dry while the summer was mild. Yearly total rainfall 

amounted to 484 mm with an average temperature of 10.6 °C. The year 2012 started with low 

temperatures, followed by a cool spring and high amounts of rainfall especially during the 

summer month. Total rainfall (547 mm) and average air temperature (9.7°C) were lower than 

in 2011. The beginning of 2013 was also accompanied by cold temperatures, causing a late 

start of the vegetation. The May was especially wet with over 200 mm rainfall. The 

subsequent summer, however, was hot and dry. The total rainfall amounted to 684 mm with 

an average air temperature of 9.7 °C. By the use of rain-out shelters and additional irrigation a 

clear differentiation between the water regimes could be achieved with total plant available 

water ranging from 101 to 508 mm between beginning of April and end of June. While the 

soil moisture remained high under well-watered conditions, the soil moisture under severe 

drought steadily decreased from the beginning of stem elongation until harvest (Figure 2). 

The soil moisture under mild drought decreased to a lesser extent than under severe drought. 

In 2013, the soil moisture clearly increased under rainfed, late drought, and well-watered 

conditions in spring. Under early drought, however, the soil moisture decreased at the 

beginning of stem elongation until irrigation started after anthesis. Simultaneously, the soil 

moisture decreased under late drought as the irrigation was terminated at this time.  

Response of phenology to drought 

The plant development was significantly accelerated under drought (Table 2). In Experiment 

I, both severe and mild drought resulted in earlier anthesis, earlier full senescence, and earlier 

fully ripe. The acceleration effects were stronger under severe than mild drought. In 
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Experiment II, the plants under early drought started flowering before the well-watered plants, 

but fully ripe was reached at the same time. The plants exposed to late drought exhibited a 

significantly reduced grain filling period whereas plants under rainfed conditions showed a 

similar phenology as the well-watered plants. 

Responses of agronomic and morphologic characteristics to drought 

Across the three experimental years, a close relationship between the mean grain yield and the 

total plant available water was observed (Figure 3). In Experiment I, the grain yields were 

overall higher in 2012 than in 2011. Severe drought significantly affected grain, straw, and 

biomass yield in both years, but grain yield was more affected than straw and biomass yield 

(Table 3). Furthermore, drought negatively affected all yield components, but mild drought 

was much less detrimental than severe drought. In Experiment II, grain yield was significantly 

reduced in all drought stress regimes with the highest reduction found under early drought. 

Under early drought, straw and biomass yield, spikes m-2, and kernels spike-1 were also 

significantly decreased while the TKW was significantly increased. Late drought did not 

affect spikes m-2 and kernels spike-1, but significantly reduced the TKW. Although the plants 

grown under rainfed conditions showed no significant reduction in any yield component 

compared to the well-watered plants, the grain yield was significantly reduced.  

Responses of leaf area index to drought  

Drought significantly reduced the LAI in varying degrees depending on the intensity of the 

water deficit (Figure 4). The strongest reduction in Experiment I was found under severe 

drought where the maximum LAI amounted to 4.5. The highest value of the LAI under mild 

drought was higher than that of the well-watered plants on the first measurement dates, but 

decreased faster later in the season. In Experiment II, the lowest LAI was found under early 

drought. The 95% PAR interception was reached at LAI = 4.9 in both experiments.  
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Relationship between grain yield and other agronomic and morphologic characteristics 

Under severe drought in Experiment I, grain yield was significantly and positively associated 

with straw yield and all yield components with the strongest correlation found for spikes m-2 

(Table 4). No significant correlations among these characters were observed under mild 

drought. When the plants were well-watered, significant relationships of grain yield with 

straw yield, spikes m-2, and kernels spike-1 occurred in 2011 but not in 2012. In Experiment II, 

grain yields of the plants grown under early drought were positively related to straw yield and 

spikes m-2. Under the influence of drought during grain filling, grain yield correlated 

significantly positive with TKW. The LAImean was related to grain yield under severe drought 

in 2011 and 2012, as well as in all water regimes in 2013.  

Discussion 

The plants in the different water regimes were treated uniformly until the beginning of stem 

elongation. At that time, the differentiation among the water regimes started either by 

withholding rainfall or by providing additional irrigation, which resulted in a wide range of 

water regimes. While the effect of different drought intensities was studied in Experiment I, 

the influence of drought during clearly defined development stages was examined in 

Experiment II.  

Rain-out shelter effects 

The use of rain-out shelters allowed the establishment of clearly defined water regimes. As a 

side effect, the microclimate inside the shelters was somewhat different from the outside 

conditions. This was especially true for the stationary rain-out shelter which permanently 

covered the experimental plots. Under these conditions the photosynthetic active radiation 

was decreased by about 10% while the air temperature was slightly increased. Comparable 

effects were reported by Brisson and Caslas (2005) who used similar rain-out shelters in their 
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experiments. The slightly changed light and temperature conditions also affected crop growth, 

albeit to a much lesser extent than the contrasting levels of water supply provided in the 

different water regimes.  

Changes in phenology under drought stress. 

The shortening of the growth period by up to 12 days under severe drought agrees with 

findings of Brisson and Casals (2005) who reported a 15 day earlier maturity in drought 

stressed spring wheat (Triticum aestivum L.) grown in Southern France. Li et al. (2011) 

reported an up to 14 day earlier maturity in spring wheat when the crops received amounts of 

water comparable to the severe drought in the present study. The degree of phenological 

acceleration was, however, dependent on the intensity of the water deficit. Continuous mild 

drought, for example, resulted in a seven day earlier fully ripe while plants under late drought 

reached fully ripe only four days earlier. The strongest effects on phenology was observed at 

the senescence of the plants with an 18 days earlier fully senescence under severe drought. 

According to Hafsi et al. 2007, the leaf senescence is especially sensitive to water stress. 

Because an accelerated plant development represents a trade-off between plant survival and 

yield, a shorter growth period is linked to grain yield losses (Gooding et al. 2003). Li et al. 

(2011) found a significantly positive relationship between grain yield and days to 

physiological maturity in spring wheat. Grain yield was found to be positively related to late 

flowering dates in winter wheat (Foulkes et al. 2007). Both results indicate that a shorter 

growth period goes along with reduced grain yield. In the present study, an 11 to 13 days 

shorter growth period under severe drought caused grain yield losses of up to 57%. Mild 

drought, which shortened the growth period by seven days, resulted in a grain yield reduction 

of only 14%.  

 



6. Agronomic performance under drought stress 

  
 

49 / 92 

Sensitivity of agronomic and morphologic characteristics to drought stress 

The positive correlation between water regime means for grain yield and total available water 

(Figure 3) illustrates the importance of water availability for plant growth and grain yield. 

Plants respond to drought at molecular, cellular, and physiological levels, for example by 

stomatal closing, reduced photosynthesis rates, limited carbohydrate synthesis and diminished 

cell division and expansion (Barnabas et al. 2008). All these effects result in reduced growth 

rates and grain yield losses while the degree of response is depending on timing, duration, and 

intensity of the water deficit (Araus et al. 2002). The strongest decrease in grain yield of -57% 

under severe drought when the winter rye crop received no water from stem elongation 

onwards is comparable to results by Brisson and Casals (2005), who reported a 57% grain 

yield reduction in spring wheat grown in a rain-out shelter under drought conditions from 

emergence to harvest. Schittenhelm et al. (2014) observed a 60% grain yield decrease in 

winter rye grown on field-stored soil moisture only. In their study as well as in the present 

investigation, drought intensity in the most severe stress treatment increased continuously 

during the growth period. This pattern of drought stress caused a stronger reduction of grain 

than of straw yield, because during the vegetative development phase the plants could still 

benefit from the stored soil moisture originating from winter rainfall.  

When regarding the yield components it could be shown that drought stress during pre-

anthesis development stages seriously affected spikes m-2 and kernels spike-1. Drought stress 

solely during grain filling affected the TKW only. While spikes m-2 and kernels spike-1 are 

already set before anthesis, the TKW is solely determined after anthesis (Slafer and Savin, 

2004). Because crops are especially susceptible to drought during the period from three weeks 

before anthesis to a few days after anthesis (Fischer 1985), a reduced kernel number (through 

spikes m-2 and kernels spike-1) is recognized to be the main determinant for yield reduction 

under drought stress (Slafer et al. 2014, Dolferus et al. 2011) caused by a general decrease in 
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fertility (Giunta et al. 1993). The strong reductions of spikes m-2 and kernels spike-1 under 

drought in the present study together with the subsequent reduction in grain yield confirms the 

strong influence of these yield components on grain yield, which is in line with similar studies 

(Ivanova and Tsenov 2011, Chmielewski and Köhn 2000, Dencic et al. 2000, Giunta et al 

1993). When the rye crops were solely dependent on field-stored soil moisture under 

conditions of severe drought, the TKW was also significantly reduced. However, the TKW 

was reduced to a lesser extent than spikes m-2 and kernels spike-1 although the drought was 

more severe during grain filling than in the period before. This lesser reduction was most 

likely caused by the fact that a smaller number of kernels had to compete for assimilates as 

the kernel weight is negatively related to kernel number (Slafer et al. 2014, Acreche and 

Slafer 2006). Furthermore, the lower reduction in kernel weight might also have resulted from 

the fact that the plants filled their grains to a larger extent from the pre-anthesis reserve pools. 

The contribution of assimilate remobilization from pre-anthesis reserves is especially 

important under drought. When current assimilates are limited, for example, through reduced 

photosynthesis rates under drought, pre-anthesis reserves from stems, leaf sheaths, and leaves 

can account for up to 100% of the assimilates for grain filling (Foulkes et al. 2007, Yang and 

Zhang 2006). Ehdaie et al. (2008) reported an up to 65% contribution of stem reserves to final 

grain weight under drought. Yang et al. (2001) observed that 75 – 92% of 14C-labeled carbon 

stored in the straw of winter wheat was reallocated to grains under drought stress, which 

represented an increase of 50 – 80% compared to well-watered conditions.  

With the comparison of pre- and postanthesis drought it could be observed that drought 

during early development stages resulted in higher grain yield losses than drought later in the 

season: The grain yield reduction was significantly higher under pre-anthesis drought (-34%) 

compared to post-anthesis drought (-20%). This difference occurred despite the fact that both 

water regimes had similar water availability. This compares to results of Estrada-Campuzano 
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et al. (2012), who simulated “monsoonal” (pre-anthesis) and “Mediterranean” (post-anthesis) 

drought stress with wheat and triticale (Triticosecale Wittmack) under rain-out shelters. In 

their study, the grain yield was 33% lower under pre-anthesis than under post-anthesis 

drought. In the present study, pre-anthesis drought significantly reduced spikes m-2 and 

kernels spike-1. The irrigation after anthesis in this treatment resulted in a significantly 

increased TKW which could, however, not fully compensate for grain yield losses by the 

previous reductions of the other two yield components. According to Slafer et al. (2014), 

kernel weight can only function as fine regulation for grain yield. Therefore, only the 

formation of a large kernel number per unit area can lead to high grain yields when water is 

scarce before anthesis. Contrary to the pre-anthesis drought, post-anthesis drought only 

affected TKW through reduced photosynthesis rates during grain filling, accelerated 

senescence, and a shorter grain filling period (Barnabas et al. 2007). The relatively low 

reduction in TKW despite the decrease in current assimilation indicates that the kernels were 

primarily filled through retranslocation processes as described earlier.  

Changes of leaf area index through drought stress 

In all water regimes the highest LAI was found at anthesis when the vegetative growth was 

terminated. The faster LAI decrease under drought stress compared to optimal moisture 

conditions was caused by the drought-induced acceleration of senescence (Hafsi et al. 2007). 

The extent of LAI reduction under water deficit in the present study lies in between values 

indicated in the literature. Brisson and Casals (2005) reported a maximum of LAI = 2 for 

spring wheat under drought, which was a 75% reduction compared to irrigated conditions. 

Schittenhelm et al. (2014) on the other hand, found a significant reduction of the maximum 

LAI for winter rye under severe drought in only one of two experimental years. Because the 

LAI is linked to light interception, photosynthetic capacity, and aboveground biomass (Breda 

2003), a reduced LAI is in turn consequently linked to reduced crop productivity. Brougham 
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(1958) defined a “critical LAI” as the LAI, where plants are able to intercept 95% of the 

incoming radiation. Under severe as well as under early drought the critical LAI could not be 

attained and might thus explain a large part of the grain yield losses observed for these water 

regimes. 

Relationship between grain yield and further agronomic and morphologic characteristics. 

The strong positive correlation between grain and straw yield underlines the importance of 

total aboveground biomass accumulation as a basis of high grain yield under pre-anthesis 

drought (Estrada-Campuzano et al. 2012, Dodig et al. 2008, van Ginkel et al. 1998). The same 

holds true for the positive correlation between grain yield and LAImean under severe drought 

because LAImean is an indicator for aboveground biomass (Breda 2003). Schittenhelm et al. 

(2014) reported a significant relationship between total aboveground biomass and LAImean, 

which was also found in the present study (data not shown).  

The close association of grain yield with spikes m-2 and kernels spike-1 under drought stress 

during vegetative growth in the severe and early drought treatments is in agreement with the 

results of Dencic et al. (2000), Gonzalez et al. (2007), and Dodig et al. (2008). The number of 

spikes m-2 had a stronger effect on grain yield than kernels per spike, which is in line with 

results provided by Slafer et al. (2014). Grain yield and TKW were only positively correlated 

under conditions of drought stress during grain filling in the late drought and rainfed 

treatments. This indicates that genotypes with a high TKW were able to maintain a high grain 

filling rate under water deficit. This might have been facilitated by either high current 

assimilation through high photosynthesis rates or by high retranslocation rates through 

maintaining a longer period of transport and deposition of assimilates during grain filling 

(Voltas et al. 1998).  
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In conclusion it could be shown that variation in grain yield of rye can be better explained by 

changes in grain number per area land than by changes in grain weight. This could also be 

illustrated with the pooled correlations across all water regimes and years when both spikes 

m-2 and kernels spike-1 showed a highly significant correlation with grain yield. The TKW, on 

the other hand, was not associated with grain yield when pooled across all years and water 

regimes. This is in accordance with other studies examining the effect of yield components on 

final grain yield of cereals under a wide range of environmental conditions (Slafer et al. 2014, 

Estrada-Campuzano et al. 2012, Chmielewski and Köhn 2000, Dencic et al. 2000, 

Lopezcastaneda and Richards 1994). Peltonen-Sainio et al. (2007) even reported a stronger 

influence of grain number per area land on final grain yield in winter rye than in winter wheat.  

Conclusion  

Breeding for drought tolerance in winter rye is especially important because rye is mainly 

cultivated on sandy and infertile soils in Central and Eastern Europe and will therefore be 

strongly affected by the changing climate. This study examined the agronomic performance of 

winter rye under a wide range of water regimes for the first time. The results emphasize the 

importance of high numbers of spikes m-2 and kernels spike-1 as basis for high grain yields 

under water limited conditions. Furthermore, a strong importance of pre-anthesis reserves for 

grain filling under drought is suggested. Maybe the reallocation processes explain a large part 

of the fact that rye is recognized to be the most drought tolerant cereal crop. In order to 

evaluate the contribution of pre-anthesis reserves for grain filling under water limited 

conditions for rye in detail, further research on this topic is necessary.  

Acknowledgements 

The support of Sabine Peickert, Martina Schabanoski, Jan-Martin Voigt, Burkhard Schoo, and 

Bernd Kahlstorf for their help with the field experiments is gratefully acknowledged. This 



6. Agronomic performance under drought stress 

  
 

54 / 92 

project was funded by the German Federal Ministry of Food and Agriculture (BMEL) via the 

Agency for Renewable Resources (FNR) under grant number 22013509. 

References 

Acreche, M.M. and Slafer, G.A., 2006. Grain weight response to increases in number of 

grains in wheat in a Mediterranean area. Field Crops Research 98, 52-59. 

Araus, J.L., Slafer, G.A., Reynolds, M.P., and Royo, C., 2002. Plant breeding and drought in 

C-3 cereals: what should we breed for? Annals of Botany 89, 925-940. 

Barnabas, B., Jager, K., and Feher, A., 2008. The effect of drought and heat stress on 

reproductive processes in cereals. Plant Cell and Environment 31, 11-38. 

Breda, N.J.J., 2003. Ground-based measurements of leaf area index: a review of methods, 

instruments and current controversies. Journal of Experimental Botany 54, 2403-2417. 

Brisson, N. and Casals, M.L., 2005. Leaf dynamics and crop water status throughout the 

growing cycle of durum wheat crops grown in two contrasted water budget conditions. 

Agronomy for Sustainable Development 25, 151-158. 

Brougham, R., 1958. Interception of light by the foliage of pure and mixed stands of pasture 

plants. Australian Journal of Agricultural Research 9, 39-52. 

Cattivelli, L., Rizza, F., Badeck, F.W., Mazzucotelli, E., Mastrangelo, A.M., Francia, E., 

Mare, C., Tondelli, A., and Stanca, A.M., 2008. Drought tolerance improvement in crop 

plants: An integrated view from breeding to genomics. Field Crops Research 105, 1-14. 

Chmielewski, F.M. and Köhn, W., 2000. Impact of weather on yield components of winter 

rye over 30 years. Agricultural and Forest Meteorology 102, 253-261. 



6. Agronomic performance under drought stress 

  
 

55 / 92 

Dencic, S., Kastori, R., Kobiljski, B., and Duggan, B., 2000. Evaluation of grain yield and its 

components in wheat cultivars and landraces under near optimal and drought conditions. 

Euphytica 113, 43-52. 

Dodig, D., Zoric, M., Knezevic, D., King, S.R., and Surlan-Momirovic, G., 2008. Genotype x 

environment interaction for wheat yield in different drought stress conditions and agronomic 

traits suitable for selection. Australian Journal of Agricultural Research 59, 5 36-545. 

Dolferus, R., Ji, X.M., and Richards, R.A., 2011. Abiotic stress and control of grain number 

in cereals. Plant Science 181, 331-341. 

DWD, 2014. Agrowetter. Available at: http://www.dwd.de/agrowetter [last accessed August 

27, 2014]. 

Ehdaie, B., Alloush, G.A., and Waines, J.G., 2008. Genotypic variation in linear rate of grain 

growth and contribution of stem reserves to grain yield in wheat. Field Crops Research 106, 

34-43. 

Estrada-Campuzano, G., Slafer, G.A., and Miralles, D.J., 2012. Differences in yield, biomass 

and their components between triticale and wheat grown under contrasting water and nitrogen 

environments. Field Crops Research 128, 167-179. 

FAO, 1997: FAO/UNESCO Soil Map of the World. Revised legend, with corrections and 

updates. World Soil Resources Report 60, FAO, Rome. Reprinted with updates as Technical 

Paper 20, ISRIC, Wageningen, the Netherlands. 

FAO, 2014. FAOSTAT. Available at: http://faostat.fao.org [last accessed 28. August 2014] 

Fischer, R.A., 1985. Number of kernels in wheat crops and the influence of solar-radiation 

and temperature. Journal of Agricultural Science 105, 447-461. 



6. Agronomic performance under drought stress 

  
 

56 / 92 

Foulkes, M.J., Sylvester-Bradley, R., Weightman, R., and Snape, J.W., 2007. Identifying 

physiological traits associated with improved drought resistance in winter wheat. Field Crops 

Research 103, 11-24. 

Giunta, F., Motzo, R., and Deidda, M., 1993. Effect of drought on yield and yield components 

of durum-wheat and triticale in a Mediterranean environment. Field Crops Research 33, 399-

409. 

Gonzalez, A., Martin, I., and Ayerbe, L., 2007. Response of barley genotypes to terminal soil 

moisture stress: phenology, growth, and yield. Australian Journal of Agricultural Research 58, 

29-37. 

Gooding, M.J., Ellis, R.H., Shewry, P.R., and Schofield, J.D., 2003. Effects of restricted water 

availability and increased temperature on the grain filling, drying and quality of winter wheat. 

Journal of Cereal Science 37, 295-309. 

Hack, H., Bleiholder, H., Buhr, L., Meier, U., Schnock-Fricke, U., Weber, E., Witzenberger, 

A., 1992. Einheitliche Codierung der phänologischen Entwicklungsstadien mono- und 

dikotyler Pflanzen–Erweiterte BBCH-Skala Allgemein. Nachrichtenblatt des Deutschen 

Pflanzenschutzdienstes 44, 265–270 (in German). 

Hafsi, M., Akhter, J., and Monneveux, P., 2007. Leaf senescence and carbon isotope 

discrimination in durum wheat (Triticum durum Desf.) under severe drought conditions. 

Cereal Research Communications 35, 71-80. 

Hlavinka, P., Trnka, M., Semeradova, D., Dubrovsky, M., Zalud, Z., and Mozny, M., 2009. 

Effect of drought on yield variability of key crops in Czech Republic. Agricultural and Forest 

Meteorology 149, 431-442. 



6. Agronomic performance under drought stress 

  
 

57 / 92 

IPCC, 2014. Climate Change 2014. Impacts, Adaptation, and Vulnerability. Part B: Regional 

Aspects. Contribution of Working Group II to the Fifth Assessment Report of the 

Intergovernmental Panel on Climate Change [Barros, V.R., C.B. Field, D.J. Dokken, M.D. 

Mastrandrea, K.J. Mach, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. 

Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. 

Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 

Ivanova, A. and Tsenov, N., 2011. Winter wheat productivity under favourable and drought 

environments. I. An overall effect. Bulgarian Journal of Agricultural Science 17, 777-782. 

Li, P., Chen, J.L., and Wu, P.T., 2011. Agronomic characteristics and grain yield of 30 spring 

wheat genotypes under drought stress and nonstress conditions. Agronomy Journal 103, 1619-

1628. 

Lopezcastaneda, C. and Richards, R.A., 1994. Variation in temperate cereals in rain-fed 

environments.1. Grain-yield, biomass and agronomic characteristics. Field Crops Research 

37, 51-62. 

Peltonen-Sainio, P., Kangas, A., Salo, Y., and Jauhiainen, L. 2007. Grain number dominates 

grain weight in temperate cereal yield determination: Evidence based on 30 years of multi-

location trials. Field Crops Research 100, 179-188. 

Schittenhelm, S., Kraft, M., and Wittich, K.P., 2014. Performance of winter cereals grown on 

field-stored soil moisture only. European Journal of Agronomy 52, 247-258. 

Slafer, G.A. and Savin, R., 2004. Physiology of Crop Yield. In: Goodman R. (Ed.), 

Encyclopedia of Plant and Crop Science, Taylor & Francis, New York, NY, USA. 

Slafer, G.A., Savin, R., and Sadras, V.O., 2014. Coarse and fine regulation of wheat yield 

components in response to genotype and environment. Field Crops Research 157, 71-83. 



6. Agronomic performance under drought stress 

  
 

58 / 92 

van Ginkel, M., Calhoun, D.S., Gebeyehu, G., Miranda, A., Tian-you, C., Pargas Lara, R., 

Trethowan, R., Sayre, K., Crossa, J., and Ramalan, A.A., 1998. Plant trials related to yield of 

wheat in early, late, or continuous drought conditions. Euphytica 100, 109-121. 

Voltas, J., Romagosa I., Araus J.L., 1998. Growth and final weight of central and lateral 

barley grains under Mediterranean conditions as influenced by sink strength. Crop Science 38, 

84-89. 

Yang, J.C. and Zhang, J.H., 2006. Grain filling of cereals under soil drying. New Phytologist 

169, 223-236. 

Yang, J.C., Zhang, J.H., Wang, Z.Q., Zhu, Q.S., and Liu, L.J., 2001. Water deficit-induced 

senescence and its relationship to the remobilization of pre-stored carbon in wheat during 

grain filling. Agronomy Journal 93, 196-206. 

 

 

 

 

 

 

 

 

 

 



6. Agronomic performance under drought stress 

  
 

59 / 92 

Table 1. Details about the water regimes.  

Year Water regime Water supply during Total available 
water+ 

(mm) 

Rainfall 

 

   (mm) 

Irrigation 

 

(mm) 
Vegetative    
phase  

Generative 
phase 

2011 Severe drought  None None 131 23 0 
Well-watered    Optimal‡ Optimal 464 158 196 

2012 Severe drought None None 101 18 0 
Mild drought Moderate# Moderate 208 35 85 
Well-watered I Optimal Optimal 508 279 165 
Well-watered II Optimal Optimal 508 279 165 

2013 Early drought None Optimal 241 49 113 
Late drought Optimal None 274 225 55 
Rainfed Rainfed Rainfed 284 274 0 
Well-watered Optimal Optimal 413 274 175 

+ Rainfall + Irrigation + ∆Soil water – Seepage (early April to late June). ∆Soil water ranged from 80 to 115 mm, seepage  
  only occurred in 2013, ranging from 80 to 120 mm.   
‡ Optimal: >60% usable field capacity during the entire growth period.  
# Moderate: 20 to 40% usable field capacity during the entire growth period. 
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Table 2. Water regime means for phenological characteristics. 

Year Water regime Beginning of 

stem elongation 

Beginning of  
anthesis 

All leaves  

senescent 

Fully ripe 

  DOY ∆ (d)+ DOY ∆ (d) DOY ∆ (d) DOY ∆ (d) 

2011 Severe drought 103a 0 137b 5*** 171b 18*** 188b 12*** 
Well-watered 103a  142a  189a  200a  

2012 Severe drought 95b 0 141c 2*** 181c 13*** 201c 11*** 
Well-watered II 95b  143a  194a  212a  
Mild drought 88a 0 141c 1*** 189b 5*** 205b 7*** 
Well-watered I 88a  142b  194a  212a  

2013 Early drought 113a 0 156c 1** 202b 3*** 216a 0 
Late drought 113a 0 157bc 0 198d 7*** 212b 4*** 
Rainfed 113a 0 157ab 0 200c 5*** 216a 0 
Well-watered 113a  157a  205a  216a  

Characteristic means within a year followed by different letters are significantly different at P<0.05. 
+ DOY (well-watered) - DOY (drought stress). 
*P<0.05, **P<0.01, and ***P<0.001. 
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Table 3. Water regime mean values for agronomical and morphological characteristics. 

Year Water regime Grain yield Straw yield Biomass yield  Spikes m-2 Kernels spike -1 TKW 

  (t ha-1)      ∆%+ (t ha-1)     ∆% (t ha-1)      ∆% (#)    ∆% (#)    ∆% (g)    ∆% 

2011 Severe drought 4.2b -56% 5.6b -36% 9.8b -46% 426b -22% 31.8b -29% 31.2b -22% 
Well-watered 9.5a  8.8a  18.3a  545a  45.1a  39.9a  

2012 Severe drought 4.6c -57% 5.8c -36% 10.3c -47% 412c -39% 28.0c -41% 30.9b -4% 
Well-watered II 10.6b  9.1b  19.7b  670b  47.5a  32.3a  
Mild drought 10.2b -14% -‡ - - - 763a -3% 41.3b -11% 31.6ab -3% 
Well-watered I 11.8a  11.1a  22.9a  788a  46.5a  32.6a  

2013 Early drought 8.0d -34% 5.8c -32% 13.8d -33% 569b -27% 38.3b -16% 36.9a +18% 
Late drought 9.8c -20% 9.9a +16% 19.7b -5% 790a +1% 45.1a -1% 27.7c -12% 
Rainfed 10.3b -16% 8.3b -2% 18.6c -10% 772a -1% 44.4a -2% 30.2b -4% 
Well-watered 12.2a  8.5b  20.7a  783a  45.4a  31.3b  

Characteristics in one year followed by different letters are significantly different at P<0.05. 
+Percentage change relative to well-watered in the respective year. In 2012, severe and mild drought was compared with well-
watered II and well-watered I, respectively. 
‡ No data for straw and biomass yield. 
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Table 4. Correlation coefficients for the relationship of grain yield and other agronomical and morphological 
characteristics. 

Year Water regime Straw yield Spikes m-2 Kernels spike-2 TKW LAImean 

2011 
 

Severe drought 0.81*** 0.51** 0.47** 0.43* 0.43* 
Well-watered 0.80*** 0.68*** 0.39* -0.16 -+ 

2012 
 

Severe drought 0.63** 0.66*** 0.39* -0.28 0.40* 
Well-watered II 0.22 0.04 0.22 0.15 0.21 
Mild drought  - 0.24 0.00 0.31 0.35 
Well-watered I 0.28 0.01 0.42 0.07 0.27 

2013 
 

Early drought 0.64** 0.52** 0.23 0.14 0.58** 
Late drought 0.26 0.21 -0.02 0.52** 0.48** 
Rainfed 0.13 0.01 0.18 0.49** 0.53** 
Well-watered 0.07 -0.08 0.09 0.34 0.38* 

Pooled‡ 0.79*** 0.77*** 0.76*** 0.04 0.85*** 

P <0.05, **P <0.01 and ***P <0.001. 
+ no LAImean values available. 
‡ across all years and water regimes.  
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Figure 1. Air temperature and rainfall in the three experimental years. 
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Figure 2. Relative change of soil moisture (%) in 0 – 120 cm soil depth during the 

season for the different water regimes in 2012 (above) and 2013 (below). * Only the 

water regime “well-watered I” is shown because of close similarity with “well-watered 

II”. Arrows indicate some main phenological stages. 
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Figure 3. Relationship between the mean grain yield and the total available water. 

**P<0.01.  
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Figure 4. Water regime means of the leaf area index course in 2012 (top) and 2013 
(bottom). Error bars indicate ±1 standard error (only shown when they exceed the size 
of the symbol). Arrows indicate beginning of anthesis. *The water regimes “Well-
watered I” and “Well-watered II” showed a quite similar curve course for the LAI, 
therefore only “Well-watered I” is shown. The dashed horizontal line indicates 95% 
PAR-Interception. 
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7. General discussion  

While the suitability of canopy temperature depression and carbon isotope discrimination as 

secondary traits for the selection of drought tolerant winter rye was examined in the first part 

of this work (sections 4 and 5), the second part (section 6) deals with the effects of different 

drought events on agronomy, phenology, and morphology of winter rye. The primary findings 

are therefore presented and discussed in the scientific papers. This general discussion now 

aims to draw an overall picture of the results obtained in this study. It deals with a brief 

overview of the impact of different droughts on the measured crop characteristics, as well as a 

comparison between canopy temperature depression and carbon isotope discrimination. The 

genotypes studied in the present work exhibited a quite low genetic variability, especially in 

2011 and 2012. For that reason, genotypes are not discussed individually. 

7.1 Effects of drought stress on measured crop characteristics 

The rye crops were optimally supplied with water under well-watered conditions. Because 

also nutrient supply was optimal, and pests, deceases, weeds, and other stresses were 

effectively controlled, the crops were able to express their full yield potential under well-

watered conditions. By the use of stationary and mobile rain-out shelters, a wide range of 

clearly defined water regimes could be established. The resulting drought stress levels 

affected all measured physiological, phenological, morphological, and agronomical 

characteristics to varying degrees, resulting in mean grain yield reductions from 14 to 57%. 

As a side effect of the rain-out shelters, the microclimate inside the shelters was slightly 

different compared to the outside conditions, especially in the stationary rain-out shelter. 

Here, the photosynthetic active radiation was decreased by about 10% while the air 

temperature was slightly increased. Crop growth was also affected by the slightly changed 
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irradiation and temperature conditions, albeit to a much lesser extent than by the different 

drought stress levels.   

7.1.1 Effects of drought stress on physiological characteristics 

A reduced stomatal conductance (gs) through stomatal closing is one of the first reactions of 

plants to reduced water availability in order to reduce transpiration water loss (Condon et al. 

1990). A strong sensitivity of gs to water deficit could be clearly shown by the strong decrease 

in gs of up to 74% under severe drought. While stomatal regulations provide optimal levels of 

internal CO2 concentration to feed the demand for CO2 fixation under optimal water supply, 

stomatal closing under water deficit prevents excessive water loss in order to maintain a 

functional water status of the plants (Cornic and Massacci, 1996). A reduced gs under drought 

stress was also indicated by means of a lower canopy temperature depression (CTD = Tair - 

Tcanopy) under drought, because the CTD is an indicator of gs (Fischer et al. 1998). CTD and gs 

were significantly positively correlated under drought in the present study (data not shown), 

which compares to the results provided by Balota et al. (2007) and Fischer et al. (1998). 

Under optimal water supply, the CTD mostly had a positive sign in the present study, which 

implies that the canopy was cooler than the ambient air. The lower canopy temperature (= 

higher CTD) under adequate water supply was caused by the energy-demanding water 

evaporation, which reduces the plant surface temperature (Maes and Steppe, 2012). Under 

drought stress conditions, the CTD was 1.9 - 2.7 °C lower than under well-watered conditions 

because evaporation and, consequently, transpiration cooling was reduced. A similar decrease 

in CTD under drought stress was reported for wheat by Balota et al. (2007) and Rashid et al. 

(1999). Variation in gs could also be described by changes in carbon isotope discrimination 

(∆). Both characteristics were significantly related in the present study, which was also 

reported by Fischer et al. (1998). Unlike the CTD, ∆ provides information about the 

transpiration efficiency (and therefore indirectly gs) integrated over the whole growth period 
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of the sampled plant organ (Farquhar and Richards, 1984). Under drought, stomatal closing 

reduces the supply of CO2 for carboxylation, which results in a decrease of the intercellular to 

atmospheric CO2 concentration ratio (Ci/Ca). Because the discrimination rate is directly 

related to the Ci/Ca ratio, ∆ is negatively affected by water deficit (Farquhar et al. 1989). ∆ 

was strongly affected by drought stress, leading to significant decreases: ∆ of flag leaves at 

maturity (∆L) was reduced by 6% under severe drought, whereas ∆ of mature kernels (∆G) was 

reduced by 20% under severe drought. This reduction compares to the results provided 

elsewhere. Monneveux et al. (2005), for example, reported a 15% decrease of ∆G under 

residual soil moisture. ∆ analyzed on flag leaves at anthesis was 8% lower under residual soil 

moisture compared to full irrigation conditions in an experiment by Misra et al (2010). ∆L was 

generally higher than ∆G. This can be explained by the high starch content in grains compared 

to the high lipid content in leaves because the carbon isotope fractionation is lower in starch 

than in lipids (Condon et al. 2006). Beside CTD and ∆, changes in gs also affected ash content 

and mineral concentrations in leaves and grains. The higher the transpiration rate, the higher 

is the amount of minerals passively transported through the xylem via the transpiration stream 

and accumulated in vegetative plant organs (Masle et al. 1992). As a result, drought stress 

reduced the evaporation rate and consequently the passive mineral uptake. The ash content in 

flag leaves at maturity (maL) was therefore significantly reduced under drought, which was 

also observed by Misra et al. (2010) and Araus et al. (2001). The ash content in mature grains 

(maG), on the other hand, increased significantly under water limited conditions. The mineral 

accumulation in grains depends on two main factors: the photosynthetic rate during grain 

filling and the remobilization of minerals from vegetative plant parts such as stems, leaves, 

and leaf sheaths (Wardlaw 1990). The photosynthetic rate is more affected by drought stress 

than by remobilization of minerals. As a result, the retranslocation of minerals from 

vegetative plant parts into the grain is much higher under water limited conditions than under 
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optimal water supply (Loss and Siddique 1994). The concentrations of single minerals 

showed different reactions to water deficit. The silicon concentration in flag leaves (SiL) was 

highest under well-watered conditions and decreased significantly up to 81% under water 

limited conditions. This indicates a mainly passive uptake of silicon via the transpiration 

stream, which is in accordance with Walker and Lance (1991). The potassium concentration 

in flag leaves (KL), on the other hand, was more than doubled under drought compared to 

well-watered conditions. This indicates a highly selective uptake of potassium (Marschner, 

1995). The reason for the higher potassium concentration under water limited conditions is 

most likely the higher demand for potassium under drought, for example for the maintenance 

of photosynthetic CO2 fixation and the protection from oxidative damage (Cakmak, 2005). 

Regarding the concentration of calcium (CaL) and magnesium (MgL) in flag leaves, there was 

no clear trend as for SiL and KL. Both calcium and magnesium are recognized to be important 

for the acclimation to stress (Waraich et al. 2011, Palta 1990). The highest concentrations of 

these minerals were found under mild drought stress while the lowest concentrations were 

found under well-watered condition, which implies a partly active uptake of calcium and 

magnesium (Yang and Jie, 2005, Marschner 1995). However, because calcium and 

magnesium are assumed to be important for the acclimation to stress, the highest 

concentrations of these minerals are expected under severe drought. The observation that the 

CaL and MgL levels already peaked at mild drought stress might be attributable to the fact that 

plants under severe drought stress were no longer able to actively take up calcium and 

magnesium from the soil.  

7.1.2 Effects of drought stress on phenological characteristics 

The shortened phenological development under drought confirms the strong sensitivity of 

phenology to water deficit. Anthesis begun up to 5 days earlier and fully ripe was reached up 

to 12 days earlier under drought compared to well-watered conditions, which is in line with 
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findings by Brisson and Casals (2005) under similar conditions. The duration of the growth 

period was related to the severity of the drought. The lesser the amount of plant available 

water, the shorter was the growth period. Li et al. (2011) found a significant positive 

correlation between grain yield and days to physiological maturity. This indicates that a 

reduced duration of the growth period results in yield reductions, which is in line with the 

results provided in the present study. The 7 and 12 days earlier fully ripe under mild and 

severe drought were, for example, accompanied by grain yield reductions of 14 and 57%, 

respectively. The observed phenological acceleration under drought in the present study 

should, however, not be confused with the drought adaption mechanism escape. Drought 

escape is rather the matching of phenological development with periods of soil moisture 

availability in environments with terminal drought stress, than a phenological acceleration per 

se (Araus et al. 2002).  

7.1.3 Effects of drought stress on morphological and agronomical characteristics 

Water deficit severely affected total aboveground biomass and straw yield, resulting in up to 

47% less aboveground biomass and up to 36% less straw yield. When stomatal closing 

reduces the intake of CO2 into the cells and decreases the photosynthesis rate, carbohydrate 

synthesis is diminished and cell division and expansion are decelerated, which leads to 

reduced plant growth (Barnabas et al. 2008). The green leaf area index (LAI), which is 

directly related to aboveground biomass (Breda 2003), was in a range of 8 under well-watered 

conditions and was more than halved under drought. Because the LAI is linked to light 

interception and photosynthetic capacity, a reduced LAI is consequently linked to reduced 

crop productivity (Breda 2003). Beside the reduction of the maximum LAI value, the LAI 

also decreased significantly earlier under drought compared to well-watered conditions, 

caused by the drought-induced acceleration of senescence (Hafsi et al. 2007).  
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All previous mentioned physiological, phenological, and morphological drought effects 

resulted in significant grain yield losses under drought in the end because grain yield is the 

result of many individual processes reacting to water deficit during crop growth. The 

strongest reduction in grain yield of 57% was observed when the winter rye crops did not 

receive any natural precipitation from stem elongation onwards, and were not irrigated during 

that time. These grain yield reductions are comparable to the results of Schittenhelm et al. 

(2014), who reported a 60% grain yield decrease in winter rye under similar drought 

conditions. Brisson and Casals (2005) found a 57% grain yield reduction in spring wheat 

grown in rain-out shelters with water exclusion from emergence to harvest. As also observed 

by Schittenhelm et al. (2014), grain yield was more affected by water deficit than straw yield 

because the water deficit was induced at the beginning of stem elongation and increased 

steadily with the age of the plants. Plants could therefore still benefit from field stored soil 

moisture during vegetative growth, caused by adequate winter precipitation. When the grain 

yield was further dissected into the grain yield components spikes m-2, kernels spike-1, and 

1000-kernel weight (TKW), the variation in grain yield under drought could be explained by 

changes in its components: Spikes m-2 and kernels spike-1 had a considerably higher influence 

on final grain yield than TKW under water deficit, which was, for example, indicated by the 

significant positive relationship between grain yield and both spikes m-2 and kernels spike-1 

under drought. The TKW, on the other hand, had a lesser effect on final grain yield under 

drought. A high TKW, for example, could not compensate for grain yield losses caused by a 

low kernel number under pre-anthesis drought even when the irrigation was reinstated during 

grain filling. While the number of spikes m-2 and kernels spike-1 is already determined at 

anthesis, the TKW is solely determined after anthesis (Slafer and Savin, 2004). Cereal crops 

are most susceptible to water deficit from 3 weeks before anthesis to a few days after anthesis 

(Fischer 1985). This explains why a reduced number of spikes m-2 and kernels spike-1 are 
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recognized to be the main determinants for yield reductions under water deficit (Chmielewski 

and Köhn 2000, Dencic et al. 2000). The observed low impact of TKW on final grain yield is, 

for example, in accordance with Slafer et al. (2014) who stated that the kernel weight can only 

function as a fine regulation for grain yield, while solely the number of kernels per area land 

can be responsible for large changes in final grain yield. This explains why drought during 

early development stages affected grain yield considerably more than drought solely after 

anthesis. In the present work, grain yields were reduced under pre-anthesis drought by 34% 

while post-anthesis drought reduced the grain yield by only 20%, despite similar amounts of 

plant available water (during the whole growth period). Similar results were obtained, for 

example, by Estrada-Campuzano et al. (2012) with 33% less grain yield under “monsoonal” 

(pre-anthesis) drought compared to “mediterranean” (post-anthesis) drought. 

7.2 Comparative performance of canopy temperature depression and carbon isotope 

discrimination for the selection of drought tolerant winter rye. 

The suitability of CTD and ∆ as secondary traits were examined under German climate 

conditions in Experiment I in 2011 and 2012. Hereinafter, both methods are compared to each 

other with regards to their practicability, costs, phenotypic correlation with grain yield as well 

as their usability in plant breeding.  

7.2.1 Practicability and costs 

Although both CTD and ∆ are indicators of stomatal conductance (Fischer et al. 1998), their 

implementation is completely different. The CTD represents a snapshot of the plant water 

status and transpiration rate, which can be assessed non-destructively with IR thermometry 

and IR photometry. The CTD could, therefore, be performed quickly: the measurement of all 

128 plots in the present study took between 30 and 60 minutes, and the CTD measurements 

could be repeated several times during the vegetation period. ∆ on the contrary represents an 
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integrative measure of the transpiration rate during the whole growth period of the sampled 

plant tissue (Farquhar and Richards 1984). Since ∆ is a destructive measurement, the analyses 

are much more time and labor intensive. The analyses included the collection of leaf and grain 

samples, grounding of the samples and the actual analysis using an elemental analyzer 

coupled to an isotope ratio mass spectrometer (IRMS). Furthermore, the ∆ analyses are also 

quite expensive. Beside the requirement for an elemental analyzer and an IRMS, the material 

for every single measurement sample costs approximately 5€ (Giesemann, personal 

communication 2014). The CTD measurements, on the contrary, can be carried out much 

cheaper. Three different IR instruments were used for the CTD measurements in the present 

work: two IR thermometers and an IR camera with prices ranging from 1.500 to 30.000 €. It 

could be shown that all three instruments were in principal suitable for the CTD 

measurements, despite their greatly different costs. Cossani et al. (2012) even suggested that 

200 $ IR thermometers are well suited for canopy temperature measurements.  

7.2.2 Phenotypic correlation with grain yield 

The most crucial consideration for the usefulness of a secondary trait as selection criterion is 

the correlation with grain yield (Fischer et al. 1998). When regarding the correlations of the 

present study, one limitation must be considered. The genotypes showed a quite low genetic 

variability, which was inter alia caused by the fact that 15 of the 16 genotypes were out-

crossed to the same cytoplasmic male sterile tester. Thus, the genetic variability was already 

halved. As a result, differences among the genotypes were quite small. Genotypic differences 

in CTD, for example, could not be observed on most measurement days. Despite this fact, 

correlations were calculated in order to make the results comparable to related studies. The 

CTD was significantly positively correlated to grain yield under drought. The maximum value 

of the correlation coefficient (rmax) was 0.76 under drought, which compares to the results 

obtained for wheat by Balota et al. (2007) and Rashid et al. (1999). ∆ measured on flag leaves 
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at maturity (∆L) was also significantly positively correlated to grain yield under drought. The 

correlation (rmax= 0.38) was, however, weaker than that of the CTD. When ∆ was analyzed in 

mature grains (∆G), no correlation with grain yield could be found at all. This is in contrast to 

the results of Kumar et al. (2011) and Merah et al. (2002), who reported significant positive 

correlations between ∆G and grain yield.  

The strong correlation between CTD and grain yield implies a good suitability of CTD as 

selection criterion at first sight. However, the CTD was quite sensitive to environmental 

conditions. Significant correlations between grain yield and CTD were almost exclusively 

existent on days with good weather conditions, i.e. high solar irradiation, high air temperature, 

and low wind speed. These suitable weather conditions occurred more frequently in 2011 than 

in 2012. Significant positive correlations between CTD and grain yield existed on 5 out of 6 

measurement dates in 2011 but only on 2 out of 8 dates in 2012, because the year 2011 was 

generally warmer and drier and therefore more suitable for assessing the canopy temperature. 

Optimal conditions for CTD measurements are described in literature as “warm, dry, and clear 

conditions” (Fischer et al. 1998), “cloudless days” (Rashid et al. 1999), “full sunshine” 

(Ayeneh et al. 2002), and “days with mean solar irradiance of >500 W m-2” (Balota et al. 

2007). All of these mentioned studies were however carried out under arid and semiarid 

conditions, and such conditions are quite rare in the temperate climate of Germany. The 

biggest limitation of CTD measurements in a temperate climate is therefore the weather 

condition, which can also change quite fast (Jones 1999). The effect of weather fluctuation on 

canopy temperature was further examined in two one-hour-measurements on days with 

contrasting weather conditions (data not shown). Under the condition of a cloudless sky, the 

solar irradiation was constant and the canopy temperature largely followed the air 

temperature. When the sky was partly clouded, the decrease in solar irradiation caused by a 

cloud passage led to a significant decrease in canopy temperature while the air temperature 
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was hardly affected. This makes it impossible to compare two genotypes, of which one 

genotype is measured during a cloud passage, and the other during clear sky. Jensen et al 

(1990) also reported that the canopy temperature quickly responded to changes in solar 

irradiation and wind speed. They found a 2 °C fluctuation of the canopy temperature during a 

one-hour measurement. However, when the measurements are carried out on days with 

optimal weather conditions, the performance of CTD is satisfying even in a temperate climate. 

Optimal condition for performing CTD measurements turned out to be a cloudless sky, a solar 

radiation >700 W m-2, an air temperature >20°C, and wind speeds <3 m s-1 during the 

measurements.  

The quite weak correlations between grain yield and ∆L under drought stress, as well as the 

missing correlations between grain yield and ∆G suggest a poor suitability of carbon isotope 

discrimination as a selection criterion for rye in a temperate climate. There are some possible 

explanations for this assumption. The environmental conditions might have diminished the 

relationship between ∆ and grain yield probably because of quite low air temperatures and 

high relative humidity during the growing season. Most of the cited studies were carried out 

under arid, semiarid, and Mediterranean climates (Monneveux et al. 2006, Royo et al. 2002, 

Merah 2001), which are characterized by higher temperatures and lower relative humidity. 

Furthermore, the water deficit under severe drought might have been too strong. Hafsi et al. 

(2007) also could not detect any relationship between ∆ and grain yield in wheat grown under 

similar water availability. These authors suggested that the usability of ∆ may be restricted to 

moderate drought conditions. The reason might be a strong contribution of the reallocation of 

pre-anthesis reserves for grain filling under severe drought (Foulkes et al. 2007). Assimilates 

originating from early pre-anthesis growth (when the water supply was still adequate) with 

high carbon isotope discrimination rates, which were reallocated into the grains under severe 

drought during grain filling, might have distorted the final ∆-values. This does, however, not 
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explain why no significant correlations were found under mild drought either. A further 

explanation for the weak or missing relationship between ∆ and grain yield might be the low 

genetic variability of the material used in this study. A more diverse set of genotypes might 

have resulted in stronger correlations. Many of the studies on associations between ∆ and 

grain yield used more diverse sets of genotypes. Monneveux et al. (2005) used 20 wheat 

cultivars of the CIMMYT (International Maize and Wheat Improvement Center), which were 

chosen based on their different grain yield performance. They reported an rmax of 0.89 under 

post-anthesis water stress. Royo et al. (2002) analyzed ∆ of 25 wheat genotypes with different 

origin to represent a wide range of genetic variability. In their study, rmax was 0.53. Whether 

and to what extent these factors (unsuitable weather conditions, too severe drought, limited 

genetic variability) contributed to the poor performance of ∆ could not be fully clarified.  

7.2.3 Can CTD and ∆ be used in plant breeding? 

The CTD seems to be a promising secondary trait for crop improvement even under temperate 

climate conditions. The CTD was strongly related to grain yield and could be assessed 

quickly, cheaply, and non-destructively. The CTD could therefore be used at a large scale, for 

example to screen a breeding nursery with thousands of entries at various stages of crop 

development. The weather conditions must, however, be considered as a limiting factor in 

order to get meaningful results. Therefore, measurements should only be performed on days 

with a cloudless sky, a solar irradiation >700 W m-2, an air temperature of at least 20 °C, and 

wind speeds <3 m s-1. The use of ∆ as selection criterion cannot be recommended, because of 

the weak respectively missing relationship with grain yield. Generally, ∆ would have not been 

suitable to screen large sets of entries because it is an expensive, time consuming, and labor 

intensive method. It could have been used, however, to screen a smaller set of entries more 

detailed. ∆ has, for example, already been successfully integrated in breeding programs for 

improving productivity under water limited conditions (Richards et al. 2010). In conclusion, 
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for a final recommendation of the use of CTD and ∆ as selection criterion, the results should 

be secured with a more diverse set of genotypes. It might then be possible to evaluate whether 

the missing genotypic differences in CTD and the missing relationship between ∆ and grain 

yield were caused by the method itself or by the low genetic variability.  
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8. Conclusion 

In the light of the ongoing climate change, breeding for drought tolerant cultivars is important 

for all crops even in temperate climates in order to adapt them to the expected reduced water 

availability in the near future. The need for drought tolerant cultivars holds especially true for 

winter rye, which is predominantly cultivated on non-optimal sites in Central and Eastern 

Europe. The fact that plant breeding is primarily based on the direct selection for grain yield 

at present, which is quite unfavorable for the selection of drought tolerant genotypes, 

emphasizes the need for further selection criteria. The suitability of canopy temperature 

depression and carbon isotope discrimination was therefore assessed to examine their use as 

selection criterion in rye breeding under temperate climate conditions. Although the results 

were limited to some extent by the low variability of the genetic material and should therefore 

be validated with a more diverse set of genotypes, this thesis demonstrates that the CTD can 

be used as selection criterion in rye breeding also in the temperate climate of Germany. The 

CTD measurements should, however, only be carried out on days with a cloudless sky, high 

air temperatures, and low wind speeds in order to get meaningful results. In addition, the 

comparison of three infrared instruments in greatly different price categories showed that also 

lower priced infrared instruments were suitable to assess the canopy temperature. The carbon 

isotope discrimination, on the other hand, could not be recommended as selection criterion at 

present. However, the poor performance of carbon isotope discrimination might have rather 

been caused by the low genetic variance of the genetic material than by the method itself. A 

further examination with a more diverse set of genotypes would therefore be preferable.  

The additional examination of the agronomic performance of winter rye under drought 

provided insights into the reaction of rye to different timings, durations, and intensities of 

drought. High number of kernels per area land was especially important for high grain yields 

under reduced water availability in rye. Furthermore, the results suggested a major importance 
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of pre-anthesis reserves for grain filling. The reallocation of assimilates for grain filling may 

explain a large part of the relatively good drought tolerance of rye. This assumption would be 

interesting to examine any further.  

For rye breeding, the CTD seemed to be a promising tool. If the CTD can be successfully 

integrated in the rye breeding process, this method will help to accelerate the breeding 

progress in order to keep up with the negative effects of the ongoing climate change. To 

further reduce the effects of fluctuating weather conditions, the measurement of all plots in 

parallel would be preferable. This could be done, for example, by means of unmanned aerial 

vehicles (UAV) as described by Munns et al. (2010) and Berni et al. (2009). Furthermore, the 

suitability of the CTD under German climate conditions may even increase in the future 

because of the predicted increase in air temperature and the expected lesser amounts of 

rainfall during the summer months.  
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