
Faculty of Agricultural Sciences 

Institute of Plant Production and Agroecology in the Tropics and Subtropics 

University of Hohenheim 

Prof. Dr. Georg Cadisch 

 

 

Development of coupled mid-infrared spectroscopic and thermal analytical 

approaches for the characterization and modeling of soil organic matter 

dynamics of arable soils 

Dissertation 

Submitted in fulfilment of the requirement for the degree 

“Doktor der Agrarwissenschaften” 

(Dr.sc.agr./Ph.D. in Agricultural Sciences) 

 

to the 

Faculty of Agricultural Sciences 

 

Presented by 

Michael Scott Demyan 

Stuttgart, Germany 

2013 

 

 



 

 

 

This thesis was accepted as a doctoral dissertation in fulfilment of the requirements for the 

degree “Doktor der Agrarwissenschaften” (PhD in Agricultural Sciences) by the faculty of 

Agricultural Sciences at the University of Hohenheim, Stuttgart, Germany on October 21
st
, 

2013. 

Date of oral examination: December 10
th

, 2013 

Examination Committee 

Supervisor and reviewer  Prof. Dr. Georg Cadisch 

Co-supervisor and reviewer  Prof. Dr. Torsten Müller 

Additional examiner   Prof. Dr. Thilo Streck 

Faculty representative  Prof. Dr. Jens Wünsche 

 

 

 

 

 



Acknowledgements 

In the process of this dissertation work, one encounters problems and difficulties galore, but 

this is softened by the fact that you also meet many wonderful people along the way that ease 

and enrich the whole experience. First I would like to thank Prof. Dr. Christian Siewert, 

whom introduced me to this PhD opportunity. I would like to thank Dr. Gerd Dercon whom 

was involved in the initial project development and has been a good friend and colleague 

since. Dr. Juan G. Cobo receives a big thanks, for he introduced me to the world of mid-

infrared spectroscopy and was always the go-to guy for any questions and also a source of 

spirited discussion on any topic. Dr. Frank Rasche, my day to day supervisor, was very 

helpful when I was first settling in to Stuttgart and his critical reviews of my papers were 

always much needed. A big thank you goes to Prof. Dr. Georg Cadisch, whom gave me the 

opportunity to undertake this PhD, always pushed me to look at new things, and his unending 

enthusiasm made the PhD journey a much more meaningful experience. I would also like to 

thank Prof. Dr. Torsten Müller whom was very supportive during the work and always had an 

open door. Dr. Elke Schulz is also recognized for being a very friendly and helpful 

collaborator in Halle for our work. Also I would like to thank my third supervisor, Prof. Dr. 

Thilo Streck, whom I got to know through courses and work during the PAK and FOR 

project meetings. 

As scientific work is a collaborative effort and not all the people involved have been 

recognized as either a co-author of a paper or otherwise, I would like to recognize some of 

them now. A big thanks goes to all the people that helped in the field with sometimes very 

long and arduous work, especially Markus Stetter, Asim Mahmood, and Mohammad Salman. 

Your help was much appreciated! Recognition goes out to Marianne Schütt, whose MSc. 

work formed the basis for much follow-on research and whose insightful questioning 

approach to research was appreciated.  

Appreciation is extended to the German Science Foundation (DFG) which funded the 

projects “Structure and Functions of Agricultural Landscapes under Global Climate Chage-

Processes and Projections on a Regional Scale” (PAK 346) and “Agricultural Landscapes 

under Global Climate Change-Processes and Feedbacks on a Regional Scale (FOR 1695), 

which allowed me to undertake this PhD.  

I would also like to thank my colleagues at the university whom provided all different kinds 

of support, both direct and indirect, Dr. Carsten Marohn, Stefan Becker, Dr. Wanwisa 



Pansak, Betha Lusiana, Dr. Juan Carlos Laso Bayas, Hanne Slaets, Dr. Petra Schmitter, 

Kefyla Sahle, German Calberto, Dr. Anna Tredyte, Dr. Thomas Hilger, Reza 

Mirzaeitalarposhti, Dr. Natalya Smirnova, Melvin Lippe, Dr. Marc Breulmann, Lutz 

Göhring, Khalid Hussain, Judith Zimmermann, Lena Rathjen,  Dr. Joachim Ingwersen, Dr. 

Petra Högy, Irene Chukwumah, Heidi Zimmermann, Mr. Bucher, Mr. Bremer, Mrs. 

Ruckwied, Mrs Haake, Dr. Erick Towett, Dr. Dalia Mubarak, Christian Brandt, and Dr. 

Caterina Giacometti. 

Lastly I would like to thank my family and especially my parents, who have been very 

supportive even though they never much liked the fact that their son was far away. Finally, I 

thank Anna, my wife, who always kept me grounded and my life much more balanced and 

reminded me that there is life outside of the PhD world.  

 

 

 



iii 

Table of Contents 

Acknowledgements ..................................................................................................................... i 

Table of Contents ..................................................................................................................... iii 

Abbreviations ........................................................................................................................... vii 

1 Introduction ............................................................................................................................. 1 

1.1 Background ...................................................................................................................... 2 

1.1.1 The importance of soil organic matter (SOM) .......................................................... 2 

1.1.2 Stabilization mechanisms in SOM ............................................................................ 3 

1.1.3 SOM dynamics-SOM pools ...................................................................................... 4 

1.1.4 SOM characterization methods ................................................................................. 8 

1.1.5 SOM models/modeling approaches ......................................................................... 13 

1.2 Objectives/hypotheses .................................................................................................... 19 

1.3 Study outline .................................................................................................................. 19 

2 Use of specific peaks obtained by diffuse reflectance Fourier transform mid-infrared       

spectroscopy to study the composition of organic matter in a Haplic Chernozem .......... 33 

2.1 Summary ........................................................................................................................ 34 

2.2 Introduction .................................................................................................................... 34 

2.3 Materials and methods ................................................................................................... 37 

2.3.1 Soil organic matter fractionations ........................................................................... 38 

2.3.2 DRIFTS analysis ..................................................................................................... 39 

2.3.3 Statistical analyses ................................................................................................... 43 

2.4 Results ............................................................................................................................ 43 

2.4.1 Characteristics of soil organic matter ...................................................................... 43 

2.4.2 DRIFTS analysis of bulk soil .................................................................................. 45 

2.4.3 Spectra of size and density fractions ....................................................................... 48 

2.4.4 Bulk soil peak area correlations with SOM fractions .............................................. 50 



iv   

2.5 Discussion ...................................................................................................................... 51 

2.5.1 Comparing DRIFTS of bulk soil with size and density fraction characteristics to 

derive information on SOM composition and quality ............................................... 51 

2.5.2 Confirming quality findings with DRIFTS analysis of SOM fractions .................. 53 

2.5.3 SOM dynamics in the Static Fertilization experiment as demonstrated by bulk soil 

DRIFTS ..................................................................................................................... 54 

2.6 Conclusions .................................................................................................................... 55 

3 Combining a coupled FTIR-EGA system and in situ DRIFTS for studying soil organic       

matter in arable soils ......................................................................................................... 61 

3.1 Abstract .......................................................................................................................... 62 

3.2 Introduction .................................................................................................................... 63 

3.3  Materials and methods .................................................................................................. 66 

3.3.1 Organic compounds for experimental testing .......................................................... 66 

3.3.2  Soils ........................................................................................................................ 66 

3.3.3 Fractionation ............................................................................................................ 67 

3.3.4  Incubation experiment ............................................................................................ 68 

3.3.5  FTIR-EGA method ................................................................................................. 69 

3.3.6 Deriving FTIR-EGA thermal characteristics........................................................... 72 

3.3.7. In situT DRIFTS method ......................................................................................... 73 

3.3.8 Data combination of FTIR-EGA and in situT DRIFTS for curve fitting ................. 74 

3.4   Results .......................................................................................................................... 75 

3.4.1  Soil characteristics .................................................................................................. 75 

3.4.2  FTIR-EGA derived properties of organic substances ............................................ 76 

3.5  Discussion ..................................................................................................................... 89 

3.5.1 Thermal stability of organic matter of soils and fractions ....................................... 89 

3.5.2 Allocation of thermally evolved carbon .................................................................. 91 

3.5.3 Specific considerations using FTIR-EGA thermal approaches ............................... 93 

3.6 Conclusion ...................................................................................................................... 94 



v 

4 Implications of spectroscopic and thermo-spectroscopic approaches for pool 

parameterization of a SOM model .................................................................................. 101 

4.1 Abstract ........................................................................................................................ 102 

4.2 Introduction .................................................................................................................. 103 

4.3 Materials and methods ................................................................................................. 106 

4.3.1 Site characteristics ................................................................................................. 106 

4.3.2 Soil sampling ......................................................................................................... 106 

4.3.3 Soil physical and chemical parameters .................................................................. 108 

4.3.4 Physical/chemical SOM fractionation ................................................................... 108 

4.3.5 MIRS-DRIFTS method ......................................................................................... 108 

4.3.6 FTIR-EGA and in situT DRIFTS methods ............................................................ 109 

4.3.7 Fresh soil analysis.................................................................................................. 110 

4.3.8 Soil surface CO2 fluxes ......................................................................................... 110 

4.3.9 Plant phenology and crop management ................................................................. 111 

4.3.10 Abiotic variables .................................................................................................. 111 

4.4 Model conditions .......................................................................................................... 112 

4.4.1 Model structure ...................................................................................................... 112 

4.4.2 Modeling................................................................................................................ 113 

4.4.2.1 Iterative calibration of the crop growth model ................................................... 113 

4.4.2.2 Crop module validation ...................................................................................... 117 

4.4.2.3 SOM pool size parameterization ........................................................................ 117 

4.4.2.4 Short-term model performance ........................................................................... 119 

4.4.2.5 Medium-term simulations .................................................................................. 121 

4.5 Results .......................................................................................................................... 121 

4.5.1 Site CO2 flux characteristics .................................................................................. 121 

4.5.2 SOM pool parameterization by different methods ................................................ 124 

4.5.3 SOM dynamics of short-term simulation .............................................................. 127 



vi   

4.5.4 SOM dynamics of long-term simulation ............................................................... 127 

4.6 Discussion .................................................................................................................... 131 

4.6.1 Different measured fractions as model pool inputs ............................................... 131 

4.6.2 Importance of pool parameterization to simulate short-term soil C dynamics ..... 132 

4.6.3 Medium-term implications .................................................................................... 134 

4.6.4 Better matching model pools with measured pools ............................................... 136 

4.7 Conclusions .................................................................................................................. 136 

5 General Discussion ............................................................................................................. 145 

5.1 Molecular characterization of bulk SOM and distribution within SOM fractions ....... 145 

5.2 Thermal stability and SOM quality .............................................................................. 146 

5.3 Linkage of measureable fractions to model pools ........................................................ 148 

5.4 Future work .................................................................................................................. 149 

6  Summary ............................................................................................................................ 155 

7 Zusammenfassung............................................................................................................... 158 

Appendix 1: Sources for CENTURY Soil organic matter modelling pool size literature search

 ........................................................................................................................................ 161 

Appendix 2: Supplementary information for chapter 3. ........................................................ 168 

Appendix 3: Supplementary information for chapter 4 ......................................................... 171 

8 Curriculum vitae ................................................................................................................. 174 

 

 

 

 

 



vii 

Abbreviations 

DRIFT-MIRS:  diffuse reflectance Fourier transform mid-infrared spectroscopy 
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1 Introduction 

 

During the past 15 years or so, many researchers have focused on soil organic matter (SOM) 

not only due to its importance in agricultural ecosystems and nutrient cycling for crop 

production, but also due to the implications of SOM changes and feedbacks to the global 

carbon cycle. With this intense focus on better understanding of SOM, many advances have 

been made both in the methodological approach of studying soil organic matter and also in 

incorporating these measurements into modeling (Yadav and Malanson, 2007). Many of 

these advances have built on the previous early work done by some of the early soil scientists 

which recognized quite early on the complex nature of soil organic matter and its importance 

to the productivity of soils and long-term resilience (Schreiner and Shorey, 1911; Page, 1922; 

Sprengel, 1826).  

This study sets forth to examine both changes in SOM composition under differing long term 

agricultural managements and also within season dynamics utilizing new methods of diffuse 

reflectance Fourier transform mid-infrared spectroscopy (DRIFT-MIRS), Fourier transform 

infrared evolved gas analysis (FTIR-EGA), in situ thermal DRIFTS (in situT DRIFTS) in 

combination with physical, size and chemical fractionation in order to provide linkages to 

modeling of soil organic matter and soil organic matter dynamics. 

In this dissertation an introduction and short review of the importance of SOM, SOM 

stabilization mechanisms, SOM pool dynamics, characterization methods, and modeling 

approaches is given (chapter 1). Next, the development of a specific mid-infrared peak 

method (DRIFT-MIRS) for studying SOM as applied in a Chernozem soil from the long-term 

Static Fertilization Experiment, Bad Lauchstädt, Germany will be explored (chapter 2). 

Further, the development of additional mid-infrared methods of Fourier transform infrared 

coupled evolved gas analysis system (FTIR-EGA) and in situ thermal DRIFTS (in situT 

DRIFTS) to study SOM again of the Bad Lauchstädt site and also soils from the Kraichgau 

and Swabian Alb areas of southwest Germany is elucidated (chapter 3). These three 

approaches (DRIFT-MIRS, in situT DRIFTS and FTIR-EGA) are then used in addition to 

classical size/density fractionation in an application for use as SOM pool parameterizations in 

a modeling exercise in the LUCIA-Century SOM model (chapter 4). Finally, this work ends 



2 Ch 1 Introduction    

with an overall discussion of the findings in relation to current research and further research 

needs. 

1.1 Background 

1.1.1 The importance of soil organic matter (SOM)  

Soil organic matter is derived from plant above ground and below ground residues, exudates, 

and microbial products. It is in various forms which will be relatively unstable or mobile in 

the soil system, lost from the system via leaching, erosion, or respiration. Losses from the 

local scale via leaching and erosion then can variously be decomposed within an aquatic 

system, or transported to a deep marine environment where it can be covered by more 

sediment and be “lost” to the global turnover cycle (Hedges et al., 1997). The major fluxes, 

though, concerning the global terrestrial carbon cycle are connected with inputs to the soil via 

litter fall and roots which are then the partially mineralized and remaining compounds 

stabilized via various mechanisms. The stocks of C contained in soil are estimated at 1500 to 

2000 Pg in the top one meter depth and 2300 Pg to a depth of three meters (Jobbágy and 

Jackson, 2000). This amount is more than both terrestrial vegetation (550 ± 100 Pg) and also 

the atmosphere (800 Pg) contents of C (Houghton, 2007). Due to uncertainties, it is unclear at 

a global level the influence of changing climatic conditions on C cycling and also an accurate 

accounting of the amount and composition of C below 1 meter is lacking (Jobbágy and 

Jackson, 2000). The uptake or sink effect of land on the global C cycle has a high year to year 

variability due to errors in measurement, as it is calculated via several methods (Le Quéré et 

al., 2009). Thus land use changes or the rate at which C cycles in terrestrial systems may 

greatly influence the atmospheric and other stocks. Natural terrestrial systems are said to be 

at equilibrium or steady state with regard to their C balances, although in some instances this 

has shown not to be the case (Wardle et al., 2003). Even in “undisturbed” ecosystems there is 

variability or uncertainty from year to year whether the ecosystem is a net flux or sink of C as 

has been shown in the Amazon basin (Saleska et al., 2003) and also globally with estimates 

from -0.8 to 2.2 Pg yr
-1 

(Houghton, 2007). Additional global anthropogenic influences, such 

as atmospheric deposition of nitrogen, have the possibility to affect ecosystem functions 

(Boring et al., 1988) including C cycling.  

Soil organic matter and soil productivity and quality are intimately linked. Sufficient SOM 

levels are essential for a healthy soil micro biome and likewise for efficient nutrient cycling. 



3 

Physically the soil is also improved by the added potential of aggregation and physical 

strength which increases aeration, water infiltration and retention, and decreases erosion. 

While a decrease in SOM likewise will reverse any of these benefits and could lead to a 

feedback for further soil degradation.   

1.1.2 Stabilization mechanisms in SOM  

Stabilization of SOM can be defined as the resistance of SOM from being lost via respiration, 

erosion, or leaching (Sollins et al., 1996). Stabilization mechanisms have been divided into 

three broad categories: a.) inherent chemical structure resistance against degradation, b.) 

spatial inaccessibility, and c.) interactions with surfaces and metal ions such as clay surfaces 

and oxides (Sollins et al., 1996; von Lützow et al., 2006; Six et al., 2002).  

Firstly the chemical structure of compounds can lead to short-term to medium stability 

through complexity of substrate and can be divided into primary recalcitrance (structure of 

plant litter, rhizo-deposition, and organic fertilizers) and secondary recalcitrance (microbial 

and faunal products, extracellular, and charcoal formation) (von Lützow et al., 2006).  Simple 

sugars and carbohydrates are quickly utilized by microorganisms, while aliphatics and finally 

lignin polymers are more resistant. Highly aromatic components (either biologically 

synthesized or through fire synthesis) generally have the highest stability due to the double C 

bonding and highly condensed structure. The polyphenol content of different plant residues 

has been found important in intermediate turnover of plant residues (Vityakon et al., 2000) 

and some have suggested that polyphenols inhibit microbial activity (Mandal et al., 2008). 

Alternatively it has been found that peat bog systems, structural polysaccharides are 

relatively resistant to decomposition in Sphagnum moss ecosystems (Hájek et al., 2011). 

Additionally lignin, another aromatic group containing chemical class, can be readily broken 

down by white rot fungus (Saiz-Jimenez and de Leeuw, 1984) and has be found to have a 

rapidly decomposable portion and a more stable portion in residues (Thevenot et al., 2010). 

An issue with following decomposition and breakdown of plant residues in soils is the issue 

with modifications made by microbial community which may only slightly modify the 

compound, but which changes its stability or nature dramatically. Most extraction methods 

are still crude forms, and are difficult to use for soils as any one compound class in soil may 

be a very small amount. It has been shown though that generally chemical recalcitrance in 

and of itself does not lead to long term stabilization of organic matter in the soil, with most of 

biogenic origin having a turnover time of <50 years (Marschner et al., 2008).  
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Secondly spatial inaccessibility is related to where the OM is located in relation to microbial 

communities, water, and oxygen. The spatial location can be related to horizon or depth from 

the surface with surface horizons receiving fresh inputs of OM and incorporation through 

plowing or bioturbation, while deeper horizons are more influenced by root inputs and 

dissolved OM from the surface horizons and their flow along macropores or preferential flow 

pathways (von Lützow et al., 2006). On the microscale, aggregation plays an important role 

in stabilization. Macroaggregates (>250 µm) are generally held together through fresh plant 

residues and roots, but are generally transitory and probably only provide stabilization for 

around a year. They are also sensitive to management and it has been postulated that tillage 

interrupts the formation of additional microaggregates through destruction of 

macroaggregates thereby short-circuiting the pathway of stable microaggregate formation 

(Six et al., 2000). Further the OM from the disrupted macroaggregates then either has the 

possibility to form organic-mineral complexes with available mineral surfaces or is available 

for utilization by microorganisms (Grandy and Neff, 2008). With decreasing aggregate size, 

stability generally increases and also the proportion of primary plant residues decrease, while 

microbial products increase (Grandy and Neff, 2008). An additional quality related to 

accessibility is hydrophobicity, which restricts the movement of water into a OM 

macromolecule, thus reducing the activity of microorganisms (von Lützow et al., 2006). 

The third stabilization mechanism is related to the interactions with mineral surfaces. These 

interactions include Van der Wahl’s forces, polyvalent cation bridges, ligand exchange, and 

hydrogen bonding among others (von Lützow et al., 2006). These tight interactions seem to 

protect SOM for longer time periods. Evidence for these interactions have been shown by the 

relationship between increasing C contents in < 20µm fraction and the weight of the < 20µm 

fraction (Hassink, 1997) and by increasing OC in the mineral fraction with increasing 

concentration of dithionite-citrate-bicarbonate extractable iron (Kögel-Knabner et al., 2008) 

1.1.3 SOM dynamics-SOM pools 

Dynamics of SOM vary at different temporal scales and these various temporal scales also 

relate to different theoretical SOM pools. Pools will be defined as a stock of SOM which is 

grouped either by its relative ease of decomposition or likewise its relative stabilization 

against decomposition or resistance to loss from the system. This will be followed by a 

discussion of environmental effects of soil organic matter dynamics. 
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The short-term turnover, as a working definition, would be changes within days to a growing 

season, up to a maximum of 1-2 years. These changes mostly involve easily decomposed 

compounds, but would also include compounds which will be incorporated into microbial 

bodies, and a portion of which will be respired as CO2, but also another portion which will 

stay in the system as secondary metabolites which will generally increase in stability. As 

already mentioned previously, increases in respiration can be seen in the time frame of hours 

after the addition of glucose (Anderson and Domsch, 1978), after re-wetting dried soil, and 

after thawing of frozen soil. Root exudates can be rapidly utilized by microbes as has been 

shown by laboratory incubations with over 50% of applied root exudates being decomposed 

within 3 days at 20°C (Hütsch et al., 2002). While root exudates themselves are highly labile, 

inputs from root residues showed slower turnover during six months as also compared to 

shoot residues (Puget and Drinkwater, 2001). In temperate climates decomposition reaches a 

maximum in the early to mid growing season when temperatures and moisture are at near 

optimum levels, residues from the previous growing season are available, and new plant 

growth is adding root exudates to the soil. It has been shown on a global level atmospheric 

CO2 concentrations increasing to a maximum during late spring or early summer depending 

on latitude and decreasing to a minimum at the end of the growing season showing a net 

uptake of C from the atmosphere at the height of the growing season and a release from the 

land surface during the winter and spring (D'Arrigo et al., 1987). In tropical climates, the 

growing season will correspond to a rainy season, while the rest of the season will have lower 

turnover due to lower moisture availability. Medium range turnover can be thought of in the 

time frame of decades and is more influenced by management or land use. It has been found 

that during a twenty year chronosequence after disturbance by fire, the first years after the 

SOM dynamics were driven mainly by the chemistry of the charcoal, but after 4 years mainly 

by fresh litter input (Alexis et al., 2012). Long term dynamics can be related more to climatic 

changes which have influenced not only temperature or precipitation but also vegetation type. 

Although, it is usually assumed that changes in management of a soil will result in an initial 

drastic change and reach equilibrium after several decades, it has been seen that even after 

100 years or more of conversion of arable land to grassland, SOM is still increasing (Franko 

et al., 1997). 

Generally microbial respiration will increase with increasing temperature, most likely up to 

some physiological limit where again activity will decline. Freezing greatly limits microbial 

activity, although microbial activity has been recorded down to -20°C in permafrost (Rivkina 
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et al., 2000). In temperate soils 24 to 30°C has been found as an optimum for C 

mineralization with a decrease thereafter (Bárcenas-Moreno et al., 2009;  Wilhelmi and 

Rothe, 1990). An additional event especially in temperature and cold climates are freeze/thaw 

cycles that have been shown to result in an increase of organic substrates available for 

decomposition either through death of microorganisms or the physical changes in soil 

structure (Herrmann and Witter, 2002). The general assumption is that microbial activity 

doubles with every 10°C increase in temperature giving a Q10 value of 2, although general 

differences have been found depending on biome (Chen and Tian, 2005). The composition or 

quality of SOM may also have an influence on the temperature sensitivity of the bulk soil as 

some studies have shown older organic matter to be more sensitive to increases in 

temperature (Vanhala et al., 2007; Xu et al., 2012), less sensitive (Liski et al., 1999), but also 

no difference compared to younger C (Fang et al., 2005).  

Moisture has been recognized for a relatively long time as an important factor influencing 

SOM dynamics (Birch, 1959). For microbial processes moisture impacts on physical, 

physiological, and biochemical processes and microbial processes are usually assumed to 

have a minimum at low and high matric potentials and a maximum somewhere in between 

(Moyano et al., 2013). Important moisture dynamics related to SOM dynamics are water 

holding capacity of the soil, wetting and drying events and duration of wetting and drying 

cycles. As with temperature, moisture may become the limiting factor for microbial turnover, 

when reaching dryness, there is no water left for diffusion of enzymes. It also seems that soil 

type or texture has an influence on the impact of moisture on C mineralization as sandy soils 

will have a lower proportion of micropores available for water films compared to clay soils 

(Jin et al., 2013). At the opposite extreme of the volumetric water content, in saturated 

conditions, aerobic respiration rapidly ceases and is taken over by anaerobic respiration 

which is much less efficient in decomposition. In these cases organic matter can increase due 

to suppressed decomposition. The cycles of wetting and drying have also been shown to have 

a pronounced effect on C mineralization and are important in C dynamics in semi-arid and 

arid environments (Borken and Matzner, 2009). Microbial community composition has been 

shown to change during the transition from pre-monsoon to post-monsoon periods (Cregger 

et al., 2012). 

Soil texture and structure have several effects on SOM turnover. As already mentioned in the 

stabilization mechanisms section, fine texture soils provide a larger surface area, greater 

aggregation potential, and larger sorption capacity to protect organic matter from 
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decomposition. Specific clay minerals such as allophane and ferrihydrite, both with 

amorphous structures and high surface areas are especially good in reducing SOM turnover 

and provide resistance to land use change influences losses of SOM (Parfitt et al., 1997). A 

relationship between increasing clay content and decreased C turnover was seen in several 

studies (Van Veen et al., 1985; Ladd et al., 1985). Even though this relationship has generally 

been accepted it has been difficult to prove sometimes (Oades, 1988). It has been shown in 

short-term (7 days) that heavy textured soils provide a habitat for bacteria which makes it 

more difficult for protozoa predation, although the mineralization rates at the end of the 

experiment were similar lower clay content soils (Rutherford and Juma, 1992). Related to soil 

structure, well structured soils improve water movement and aeration which on the one hand 

will increase decomposition of non-protected SOM, but on the other hand will protect SOM 

inside of aggregates. Additionally improved soil structure can also effect above ground 

productivity which can lead to increased C inputs to the soil (Hamza and Anderson, 2003). 

A factor that is less addressed in SOM cycling is the extent of the control of pH. Called the 

master variable in soil systems, pH and soil acidity are variable within natural systems 

depending on parent material, with acid parent materials such as in highly weathered oxic 

soils have been formed through millions of years of leaching of basic cations, leaving behind 

a high content of aluminum and iron oxides.  There are instances of relatively recently 

formed soils, certain basalts and shales that have a naturally low pH value due to enrichment 

of alumina or iron containing minerals which upon weathering oxidize and form sulfuric acid. 

In human impacted systems, acid rain (Markewitz et al., 1998), long term fertilizer 

application (Barak et al., 1997), liming (Tang et al., 2003), and mining (Johnson and 

Skousen, 1995) can have short and long term effects on pH and soil acidity. While it has been 

shown in short-term experiments (100 day laboratory incubation) that microbial biomass and 

respiration increase due to increase of pH due to lime application (Curtin et al., 1998), the 

long-term effects have not been directly studied.  It is hypothesized that a similar effect 

would be seen as from fertilizer application, increasing crop yields and increasing residue 

inputs to soil will result in increasing SOM (Haynes and Naidu, 1998). It has been found that 

generally at lower pH there is a greater occlusion of OM with mineral surfaces (Mayer and 

Xing, 2001) 

Organic matter inputs are a driving force for SOM dynamics and are especially important in 

agroecosystems. This includes types of crops grown, cover crops, amount of residue returned 

to the field and also burning or not burning residues. The amount and nature of organic 
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matter inputs to the soil will affect SOM cycling. In the short term time, the C/N ratio will 

affect decomposition and N immobilization. Additionally the molecular composition of the 

litter (i.e. sugars, cellulose, and lignins) will affect the decomposition of litter (Wickings et 

al., 2012). Additionally the pH of the residues on the medium term could lead to decreases in 

soil pH which has been shown under Eucalyptus (Farley et al., 2009). Root residues are 

generally more enriched in recalcitrant compounds and generally are more preserved in the 

long term compared to above ground residues (Kätterer et al., 2011). In arable systems the 

amount of residue is very important to maintaining soil fertility and SOM levels. Whether the 

above biomass is removed for biofuel or forage usage, part returned, or the residue burned, 

will dramatically affect the annual C cycle of the system. In addition to the roots, it is usually 

required to return at least a portion of the above ground residues to the soil. 

In agricultural systems soil tillage both the number of times, depth, and mixing of surface 

residues will influence the SOM turnover. Generally lower intensity tillage results in the 

build up and lower degradation of newly incorporated residues (Murage et al., 2007), while 

higher intensity tillage results in considerable mixing of the upper horizon of soil disrupting 

more of the macroaggregates leading to increased decomposition of SOM (Six et al., 2000).  

In addition to the mixing effect, the placement of residue has an important role at least in 

short-term SOM turnover, as was shown in a litter placement study which found only 30% of 

remaining residue after 14 months after incorporation in the soil, but 43 and 69% in litter 

bags and 
14

C recovered straw, respectively surface applied after tillage (Holland and 

Coleman, 1987). Since the soil is mixed to a lower degree in conservation tillage, this also 

results in stratification in SOM very near the surface as compared to a more even distribution 

compared to conventional tillage (Dick et al., 1998).  

 

1.1.4 SOM characterization methods  

In studies of SOM, depending on the goal of the research, many methods have been used in 

order to characterize and study the composition and dynamics from a molecular scale to 

global. While measuring total soil carbon or total organic carbon gives an idea of the size of 

the total soil characterization of SOM which then may give more information on a functional 

property (e.g. respiration, nutrient availability) show influences of management, or other 

changes. The methods can be variable and depend on the soil type or the objective of the 

study.  
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Chemical 

Chemical characterization is related to the total amount (C or IC), certain amount of organic 

compounds (cellulose, lignin, polyphenols). Additionally important elements such as oxide 

content (Al-, Fe-, Mn-) and the crystallinity of these oxides by the dithionite-bicarbonate 

extraction is used to study the importance of different binding mechanisms (Kaiser and 

Guggenberger, 2003). Specific surface area as measured by a multiple step 

absorption/desorption of N2, has been utilized to study the microporosity and absorption of 

OM on mineral surfaces (Kaiser and Guggenberger, 2003).  Additionally chemical oxidation 

has been used to separate an older SOM from younger, easily oxidizable SOM. Some 

oxidants are H2O2, Na2S2O8, NaOCl and NaOCl with HF and HCl.  In a review of the 

methods by (Helfrich et al., 2007), H2O2, Na2S2O8 were generally found to isolate the oldest 

SOM based on 
14

C dating. 

 

Physical 

Size or density separation of SOM is related to the hypothesis that SOM can be stabilized or 

intricately associated with the mineral fraction of the soil to different degrees depending on 

either the particle size or density. Size separation is usually based on the standard sand (2000-

0.63 µm), silt (0.63 to 0.2 µm), and clay (<0.2 µm) separations (von Lützow et al., 2007) 

used for texture analysis. With decreasing particle size, there is an increasing surface area, 

thus more stabilizing effect for SOM. Density separation is also based on the same principle 

in that a heavy liquid is used to separate the soil into different densities (von Lützow et al., 

2007). This in effect separates the particles into different mineralogies, as different minerals 

have different densities, with Fe- and Al- oxides having some of the highest densities of soil 

minerals (Rühlmann et al., 2006). The size and density approaches are often combined such 

that the sand or sand and silt portion are separated from the clay and then a density separation 

is done (Zimmermann et al., 2007a). These methods involve numerous steps which are 

time consuming and also can be prone to loss of SOM, which then factors into the 

distribution among the fractions.  

 

Spectroscopic 

Over the past two decades, with the development of more accurate, less expensive detectors, 

vibrational infrared spectroscopy (visible (VIRS), near infrared (NIRS) and mid infrared 
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(MIRS)) has expanded in the area of soil sciences. Vibrational Spectroscopy relies on the fact 

that compounds absorb or reflect differing amounts of energy at various wavelengths 

depending on their bond structure, configuration, and strength. In the field of soil science, 

some of the early applications were studying humic substances (Schnitzer and Hoffman, 

1965), layer silicates (Farmer and Russell, 1964), lignin from different sources (Farmer and 

Morrison, 1964). These were investigations mainly into identifying which molecular 

vibrations could be found in certain substances, differences between the same substance from 

different locations or sources (Farmer and Morrison, 1964) or of assigning peaks to certain 

vibration groups related to the structure of the substance in the case of layer silicates (Farmer 

and Russell, 1964). MIRS has been used to identify litter types and decompositional status 

(Tatzber et al., 2011). It has also been used to study intact soil aggregate surface and the 

distribution of OM within preferential flow paths (Leue et al., 2010). A study by Reeves III et 

al. (2006) showed the application of MIRS and near infrared (NIRS) for the prediction of 

SOM fractions using partial least squares (PLS). Attempts have been made to make global or 

generic predictions for various soil properties include TOC but with less success then more 

site or region specific models (Terhoeven-Urselmans et al., 2010). Several drawbacks of 

these spectroscopic methods are that vibrational frequencies are generic, in that a certain 

vibrational group may be associated with multiple compounds and vibrational frequencies of 

different compounds can be overlapping (i.e. the C-O vibration of alcoholics and Si-O 

vibrations of minerals in the mid-infrared range). This is a reason that multivariate statistical 

procedures have become so popular for use in soil applications (Chen et al., 2002; Rossel et 

al., 2008) (i.e. which have very heterogeneous samples compared to chemical samples). 

Multivariate procedures such as partial least squared regression (PLSR) do not make any 

assumptions of the underlying molecular associations of the spectral intensities, but rather 

relate the measured spectra to the analyte concentration of interest (e.g. TOC) via a few 

principal components extracted from the spectra. If such constructed prediction models are 

accurate enough then they can be used to predict unknown samples, but if unknown samples 

are outside of the calibration range or are of another soil type, the prediction may not be 

successful. While it can be shown via correlation which spectral regions are more related or 

add more information to a certain principal component in PLSR (McCarty et al., 2002), the 

underlying molecular connection may not be clear. 

Additional applications of spectroscopy include in situ DRIFTS (Toops et al., 2005) and 

evolved gas analysis (FTIR-EGA). These use the sample principals of regular solid powder 
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MIRS and apply them to a sample while heating (in situ DRIFTS) or to the gas of the soil 

sample while heating (FTIR-EGA). Both methods have been used for individually for 

different substances (i.e. coal (Murakami et al., 1997), clay minerals (Frost and Vassallo, 

1996) they have not been used together so far for investigating SOM.    

 

Thermal 

Tradition thermal analyses have been used to study both SOM and properties related to SOM 

(such as clay type and clay content). Thermal gravimetric analysis (TGA) has been used to 

measure total organic and inorganic carbon in soils (Siewert, 2004). Additional methods such 

as differential scanning calorimetry (DSC) and differential thermal analysis have also used to 

characterize SOM and SOM fractions (Lopez-Capel et al., 2005). The methods are relatively 

rapid and do not require expensive columns, but do have the drawback that weight losses due 

to interlayer water and energy changes due to changes in the mineral structure also occur in 

the same temperature range of SOM degradation (Gaál et al., 1994). 

 

Nuclear magnetic resonance 

Nuclear magnetic resonance (NMR) applies a magnetic field to the sample and depending on 

what element is being studied (usually
 1

H and 
13

C for SOM) provides a semi-quantitative 

assessment of the molecular groups in the SOM. The method has been used extensively to 

study bulk soils, fractions, differences between horizons, and also residues. A drawback of 

this method is usually in the solid-state there is strong influence from paramagnetic 

compounds which requires a destruction of the mineral phase through hydrofluoric acid (HF) 

dissolution (Randall et al., 1997) which may alter the nature of some component of SOM. If 

the HF dissolution is needed, then a large sample (100’s of grams) may be needed to gain 

enough extracted humic acid for the analysis as the yield of humic acids especially for arable 

soils can be low.  

 

Biological utilization 

Soil incubations under controlled conditions have been used extensively to calculate Q10 

values for temperature sensitivity (Hamdi et al., 2013) and to calculate labile and slow pools 

of SOM. Incubations often rely on sieved, homogenized samples which necessarily destroy 

the natural soil structure. Additionally many different incubation temperatures, durations, and 
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water contents have been used, making comparisons between experiments sometimes 

difficult. The utility of this method, though, is the better standard conditions to investigate the 

response of soil respiration to certain variables (e.g. moisture, temperature, substrate 

addition) as compared to the field. Measuring carbon gas fluxes (CO2 and CH4) from the soil 

is important to understanding short-term SOM dynamics. Gas fluxes vary greatly spatially 

and also with depth. Traditionally chamber methods with soda lime (Franzluebbers et al., 

1995) were employed to measure the CO2 flux over a certain period of time. Newer methods 

included infrared gas analyzers (both portable (Jensen et al., 1996) and automated (King and 

Harrison, 2002)), gradient flux method (Liang et al., 2004), eddy covariance stations 

(Janssens et al., 2001), and tunable diode laser absorption spectrophotometer (TDLAS) 

(Wingate et al., 2010) which enables measurements of isotopic ratios (
13

C/
12

C). Additionally 

gas samples can be taken from chambers and measured in the laboratory via gas 

chromatograph. Portable analyzers are able to take an instantaneous measurement within a 

few minutes, although chamber size my lead to high variation. For laboratory measurements 

devices which use infrared detectors (Heinemeyer et al., 1989) or conductometers (Palmborg 

and Nordgren, 1993)) can be used for continuous, automated measurements to measure soil 

respiration under controlled conditions. 

 

 

Isotopic 

With the advent of more accurate and less expensive mass spectrometry methods 
13

C and 
14

C 

methods have begun to be used in soil science to calculate a turnover or age of different 

fractions of SOM. The natural abundance method of 
13

C uses the natural variations in 
13

C/
12

C 

ratios in mainly C3 and C4 plants to calculate the percentage of recent residues in the whole 

soil, amount in different fractions, and also the remaining amount of previous vegetation in 

the soil (Millard et al., 2010). This method, though, requires a C3 to C4 or vice a versa 

change in vegetation to have taken place and assumes that there is no discrimination in the 

decomposition process between C3 and C4 plant inputs. In 
14

C measurements the radioactive 

isotope of 
14

C is used to measure or date the age of SOM (Garnett et al., 2011). Labeling can 

also be done with pulse of 
14

C or 
13

C enriched air and then measured in the soil, roots, shoots, 

soil CO2 flux and microbial biomass. 
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1.1.5 SOM models/modeling approaches 

Soil organic matter modeling has been utilized for understanding the complex mechanisms 

and interactions of SOM already mentioned for exploratory and predictive purposes on many 

different scales (Van Keulen, 2001). Models range in complexity from single pool models to 

more complex models with multiple pools and many rate modifiers (e.g. temperature, 

moisture, clay content). A model can refer to a simple decay equation which follows the 

decomposition of a type of residue or litter at a constant rate (Jenny et al., 1949), multi pool 

models which have different pool turnover rates (Hansen et al., 1991; Jenny et al., 1949; 

Parton et al., 1987), or as a SOM sub-model imbedded in a larger model which includes other 

factors including hydrology, nitrogen uptake and plant growth (Hansen et al., 1991). 

Additionally the SOM model can be included in landscape spatially explicit models with 

erosion dynamics such as the Land Use Change Impact Assessment model (LUCIA) (Marohn 

et al., 2012) or global scale models coupled to general circulation models for studying climate 

forcings and feedbacks to the atmosphere from the land surface (Ostle et al., 2009).  

 

One of the early attempts at OM decomposition modeling came from Jenny et al. (1949) with 

a single first order decomposition equation elaborated by Olson (1963):  

Ct = Co e
-k*t

    Eq 1        

   

where Ct is carbon (litter) at time t, C0 is carbon at time zero, and k is the turnover or 

decomposition rate.  This equation assumes a constant decay rate for the litter input. As it has 

been found during incubation studies a general shape of rapid decrease of CO2 evolution then 

reaching a more stable slowly decline period (Collins et al., 2000), a two pool model has 

often been utilized (Rovira and Rovira, 2010): 

Ct = Ca e
-k_a*t

 + Cs e
-k_s*t

   Eq 2 

where Ct   is carbon (litter) at time t, Ca is carbon allocated to an active or labile pool, and k_a 

is the decay constant of the active pool while Cs and k_s are the size and turnover rate of the 

slow pool. This equation assumes that there is an easily decomposed fraction of OM which 

turns over rapidly (weeks to few years), while there is a more resistant portion which decays 

more slowly (decades). For litter decomposition dynamics, the one or two pools have been 

utilized extensively, while for soils these approaches and additionally a three pool model 
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have been used (Paustian et al., 1992). The passive pool has an even slower turnover time 

(400 to 2000 years) compared to the active and slow pools (Paustian et al., 1992). 

Additionally an approach of having an “inert” pool has been used (i.e. Roth-C) a portion of 

the SOM is isolated from the turnover cycle and is biologically inert (Coleman and 

Jenkinson, 1995; Falloon et al., 1998). Another way to think of the inert pool is a resistant or 

refractory SOM (RSOM) pool which is uncoupled from the other OM pools (Falloon and 

Smith, 2000). Alternatives to the many multi-pool models are the approaches of having a 

single pool but having a dynamic turnover rate which varies according to time (Rovira and 

Rovira, 2010; Ågren and Bosatta, 1996) or by a quality factor (Ågren and Bosatta, 1996). 

This approach is attractive as it dispenses with the problem of SOM allocation among the 

pools.  

Different mechanisms (i.e. stabilization and microbial utilization) or controls (i.e. moisture, 

temperature, management) are dealt with either explicitly or implicitly in SOM models. How 

these factors are dealt with or implemented in a model is important for the user as this may 

affect the behavior of the model. 

 

Substrate use efficiency 

Substrate use efficiency is the portioning of C between growth and respiration and has been 

measured by various methods and therefore implemented into models in various forms 

(Manzoni et al., 2012). In most models microbial control on decomposition is indirectly 

modeled via changes in turnover rates via temperature, moisture, and tillage operators. The 

utilization is a set value, that is a certain percentage of C going from one pool to another via 

microbial utilization with the rest respired, as in the case of Century (Paustian et al., 1992). 

One of the early attempts modeling the direct control of microbial metabolism in 

decomposition was (Parnas, 1975). Daisy has allocated two different pools for soil microbial 

biomass (Hansen et al., 1991) while Century has a litter microbial biomass and soil microbial 

biomass (active pool) (Paustian et al., 1992). Another theoretical approach has been that there 

are two pools for the microbial biomass variously related to the rapid and slow growing or 

autochthonous and zymogenous (Stenström et al., 1998). In the approach of (Moorhead and 

Sinsabaugh, 2006), the microbial community is divided into three “guilds” related to the 

decomposition capacity of each groups; opportunists which rapidly colonize readily available 

litter, decomposers whom degrade cellulose and lignocelluloses, and finally miners whom 

utilize humified OM. The incorporation of such pools adds complexity to models, but may be 
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a needed addition for the understanding of the response of ecosystems to change (McGuire 

and Treseder, 2010). 

Physical protection 

Physical protection, which has been mentioned previously as an important mechanism in 

SOM stabilization, is usually dealt with via clay or silt plus clay content in SOM models 

(Krull et al., 2003). In two similar compartmental SOM models, Century and Roth-C, the 

effect of silt and clay contents on SOM levels is positively concave for Century, while 

negatively convex for Roth-C illustrating the same general trend but slightly different 

relationships (Paustian et al., 1997). 

 

Dynamic controls on decomposition 

Dynamic abiotic controls such as temperature, moisture, and tillage are usually dealt with as a 

modification of the k turnover rate, where the k rate is the turnover under optimal conditions, 

while the rate will be reduced when the conditions are different from optimum. In Century for 

example the temperature and moisture functions are equal across all pools. Additionally, 

intensity of tillage has been implemented as usually a continuum from no disturbance (no-till 

or low intensity land use) to high amount of disturbance (conventional plowing) in which all 

litter moves directly into soil pools or is respired in the case of Century (Paustian et al., 

1992). A rate modifying effect for the CN-SIM model that seemed to take into account other 

influences of tillage (e.g. bulk density, porosity) was used by (Chatskikh et al., 2009). 

Conventional tillage was taken as a value of 1 while no-till was 0.48. 

 

Pool initialization or parameterization 

Initialization of pool sizes within compartmental models has been done via several 

approaches which can be divided up into four general methods; using a default setting from a 

long-term experiment, iteratively adjusting the pool sizes to fit the measured data of an 

experiment, a long-term equilibrium run, or measureable fractions used for pool initialization. 

Initialization of soil organic matter pool sizes depends again on the goals of the research and 

also the model type. Models which have a single pool will require the input of the TOC 

content of the soil and little else. More complex models require individual pool sizes and 

turnover rates (discussed above). Equilibrium can be assumed for a model start, so that the 

current pool distribution will be accurate or a pre-model simulation of the previous land use 
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can be done (Bruun and Jensen, 2002). This can also be done in a two step process, running 

the model for a very long time period (5000 years) for initializing the recalcitrant or passive 

pool and 100 years for the slow pool (Álvaro-Fuentes et al., 2012). In the presence of a 

change from C3 to C4 vegetation (or vice versa) one can estimate the proportion of new OM 

relative to old (Bernoux et al., 1998). Long term incubation (800 days) has been coupled with 

acid-hydrolysis to yield both rate constants and also pool sizes for the Century model (Paul et 

al., 2006).  The incubation method (800 days) was used to determine the turnover rates for 

the active and slow pools and the size of the active pool, while acid hydrolysis was used to 

determine the size of the passive pool and by difference the slow pool (Collins et al., 2000). 

For the MiCNiT model the pools consist of soil microbial biomass and its activity as 

measured by substrate induced respiration, dissolved OC, and TOC which are all easily 

measured (Blagodatsky et al., 2011). Even in the case of using measureable fractions there 

still may be the need for iterative fitting of initial pool sizes from fractions as it may be 

difficult to transfer a measured fraction directly to a pool (Zimmermann et al., 2007b). The 

inert pool in Roth-C has been parameterized via radiocarbon 
14

C measurements and if these 

are not available a transfer function has been developed based on TOC (Falloon et al., 1998). 

A review by (Falloon and Smith, 2000) showed a variety of methods, usually dealing with 

some type of acid hydrolysis or fractionation and acid hydrolysis to isolate a recalcitrant pool 

of SOM. Additionally sodium hypochlorite has also been used as an agent for recalcitrant 

pool measurements (Zimmermann et al., 2007b). 

As a general observation in three compartment models, the slow pool is relatively poorly 

defined and as mentioned previously may be calculated as the difference between the active 

pool as measured by microbial biomass and the recalcitrant C. Due to the turnover time of a 

slow pool of decades, this can greatly influence even short-term modeling exercises. This 

leads to the importance of developing better methods for either pool parameterization, model 

pools, or both.  

From a literature search using the search engine SCOPUS for the key words 

(http://www.scopus.com/home.url) “CENTURY”, “soil organic matter”, and “model.” Papers 

were then used for the literature review if the CENTURY SOM model was used, SOM pool 

sizes and soil/site parameters were specified (clay content, mean annual precipitation (MAP), 

mean annual air temperature (MAT), model pool sizes either in percent or weight basis), and 

how SOC was allocated among the pools (mostly via a long-term equilibrium run). This 

resulted in 14 papers of 53 sites or soils (see Appendix 1 for specific sources). These sites 
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were from a large range of environments and soil types with clay contents from 2 to 63%, 

sand contents 10 to 94%, MAP 214 to 2648 mm, and MAT from -6.3 to 28.8°C. This shows 

the applicability of the CENTURY model but also shows the large range in pool size 

distribution especially between the slow and passive pools. There were no statistically 

significant trends between pool size and single abiotic variables (Figure 1). There were wide 

ranges in pool sizes. For example the slow pool ranged from 8 to 65% at around 20% clay 

content. Likewise around the same clay content, the passive pool ranged from 35 to 95%. The 

wide range of the pool allocations gives the indication that especially these slow and passive 

pools are generally not well defined.  
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Figure 1. Review of Century slow and passive pools in relation to abiotic factors as taken 

 from literature (see Appendix 1). MAT mean annual temperature, MAP, mean annual  

precipitation. 
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1.2 Objectives/hypotheses 

The general objectives of this study were i.) to characterize SOM via vibrational spectroscopy 

linking specific organic functional groups to different stabilities of SOM as influenced by 

long-term fertilizer managements, ii.) investigate the utility of using a linked FTIR-EGA and 

in situ thermal DRIFTS system for additional characterization of SOM and iii.) apply these 

methods as a comparison to traditional methods (i.e. long-term equilibrium simulation, SOM 

size/density fractionation) of parameterizing SOM models for measuring short-term 

dynamics at the sites Kraichgau and Swabian Alb in SW Germany. 

In order to advance our understanding of SOM composition and dynamics, it was determined 

that a multi-dimension approach was needed to address this issue. It was hypothesized that 

the relative composition or proportions of different organic functional groups (e.g. aliphatic, 

aromatic) as measured by mid-infrared spectroscopy would be affected as a result of long-

term management and also absence of fresh organic inputs. Additional thermal stability as 

measured by FTIR-EGA of SOM and fractions would be related to its inherent stability and 

that different qualities of SOM would be evolved at different temperatures during heating. 

Finally, that these measures of different qualities of SOM would be able to be used as direct 

model inputs for SOM modeling. 

 

1.3 Study outline 

To explore the possibility of different mid-infrared active functional groups to reflect SOM 

quality changes, soil samples were taken from the Static Fertilization Experiment, Bad 

Lauchstädt (Figures 1 and 2) from years 1956, 1979, 1992, 2004, and 2008 and treatments of 

farmyard manure, NPK mineral fertilizer, combination of both, and control. DRIFTS 

measurements were taken of both the bulk soil and also soil organic matter fractions 

separated by size-density.  This long-term experiment and also a short term experiment 

established in 2009 in the Kraichgau and Swabian Alb regions of south-west Germany 

(Figures 3 and 4) were used as examples to study the thermal stability of soils and how this 

relates to the inherent stability of SOM. In the Kraichgau and Swabian Alb sites bare fallow 

plots were established in order to follow the decomposition of soil organic matter without any 
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additional inputs and to gain SOM of different qualities. In parallel a long-term (490 days at 

20°C) incubation was undertaken in order to study the decomposition under constant 

conditions. Lastly the experimental spectroscopic methods established were used in a 

modeling exercise using Century SOM model as implemented in LUCIA, land use change 

assessment tool.  

 

 

Figure 2. Map of Germany with the Federal State of Saxony-Anhalt in black. 
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Figure 3. Elevation map of the Federal State of Saxony-Anhalt with the location of the Bad

 Lauchstädt Experiment site (●). 

 

 

Figure 4. Map of Germany with the Federal State of Baden-Württemberg in black. 
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Figure 5. Elevation map of the Federal State of Baden-Württemberg with the locations of the

 study fields in the Kraichgau and Swabian Alb agro-ecological regions. 
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2.1 Summary 

This study assessed specific peaks obtained by diffuse reflectance Fourier transform mid-

infrared spectroscopy (DRIFTS) for characterizing soil organic matter (SOM) composition of 

a Haplic Chernozem. Soils were collected from the Static Fertilization Experiment, Bad 

Lauchstädt, Germany, in five years from the farmyard manure (FYM), mineral fertilizer 

(NPK), combination (FYM+NPK), and no fertilizer (Control) treatments. Soils were 

extracted with hot water (HWE), and fractionated by size and density. Bulk soil and fractions 

were analyzed by DRIFTS. Peak areas at 2930, 1620, 1530, and 1159 cm
-1

 were selected as a 

range of organic functional groups (with limited mineral interference), integrated with a local 

baseline (corrected peak area) and each was divided by the summed area of the four peaks 

(relative peak area). Positive correlations between carbon (C) in fractions representing labile 

OM (<1.8 g cm
-3

, 1.8-2.0 g cm
-3

, CHWE) and the corrected peak area at 2930 cm
-1

 (3010 to 

2800 cm
-1

) in the bulk soil indicated that this aliphatic peak corresponded to the more labile C 

compounds. Negative correlations between the same fractions and the corrected area of the 

predominantly aromatic peak at 1620 cm
-1

 (1660 to 1580 cm
-1

) in the bulk soil suggested a 

relationship with more stable SOM compounds. All relative peaks areas were significantly 

affected by fertilizer treatment, with an increasing relative peak area at 2930 cm
-1

 in FYM 

compared with non-FYM. The ratio of the peaks at 1620 and 2930 cm
-1

 was positively 

correlated to the ratio of stable C (sum of C in >1.8 g cm
-3

 and clay fractions) to labile C (C 

content of <1.8 g cm
-3

 fraction) and thus taken as an indicator of SOM stability. The DRIFTS 

peak area method reflected changes in SOM quality and composition under long-term 

management as measured by size and density fractionation, indicating heterogeneous 

chemical composition of the latter. Further, the DRIFTS analysis of undiluted soil samples 

can be used to assess SOM composition in small sample sets if specular reflection and 

mineral interferences are considered. 

 

2.2 Introduction 

Soil organic matter (SOM) is not only an important indicator of soil quality, but is also a 

large component of the global carbon (C) budget. It has been suggested that alternative 

agricultural management, such as enhanced residue incorporation and organic amendments 

such as farm yard manure to soils increases soil fertility and C sequestration (Smith et al., 

2000). While the effects of agricultural management on bulk SOM have been documented 
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(Paul et al., 2003), less is known about associated alterations of SOM composition and its 

stabilization in soil (Capriel, 1997). 

The knowledge gap can be partly ascribed to the inherent complexity of SOM and its 

stabilization processes, leading to difficulties in examining changes in the composition of 

SOM (von Lützow et al., 2006). Conventionally, SOM fractionation has been applied to 

study changes in SOM composition and to isolate components of similar chemical/physical 

composition or turnover rates (von Lützow et al., 2007). Fractionations based on density 

and/or size separation techniques (Christensen, 2001) can be used to measure the quantity of 

SOM in fractions of differing quality to discriminate between labile and more stabilized C 

pools that are relevant to soil functions. The C content in hot-water extractions (CHWE) has 

been correlated with microbial biomass C and described as a labile pool and a sensitive 

indicator of SOM quality (Sparling et al., 1998; Hoffmann et al., 2006). In contrast, longer 

turnover times have been assigned to clay-sized (Christensen, 2001) and heavy density 

fractions (>2 g cm
-3

) (von Lützow et al., 2007), which comprise more stabilized and 

protected SOM. Size and density fractionation, however, is time consuming, and influenced 

by the method of separation. 

Diffuse reflectance Fourier transform mid-infrared spectroscopy (DRIFTS) is the diffuse 

reflectance of bending and stretching vibrations of different functional groups in the mid-

infrared range from 4000 to 400 cm
-1

. Organic and inorganic functional groups are 

characterized by vibrations at different wave-numbers and are visible as peaks on the mid-

infrared spectrum. It has been suggested that identification of specific mid-infrared peaks, 

which correspond to vibrations of certain functional groups of organic compounds, may be 

suited to study SOM composition and dynamics. For example, Gerzabek et al. (2006) found 

that relative peak heights at 2920, 1630 and 1450 cm
-1

 of bulk soil and silt-sized fractions 

were correlated with the respective organic C contents of a Eutric Cambisol. Further, alkyl C 

in bulk soils and clay-sized fractions measured by 
13

C nuclear magnetic resonance (NMR) 

could be clearly related to the integrated peak area of the C-H bending vibration between 

3010–2800 cm
-1 

(Leifeld, 2006). A variety of methods for mid-infrared peak analyses have 

been used to investigate short and long-term changes in organic matter quality. Grube et al. 

(2006) used band intensity ratios 1034:1384, 1384:2925 and 2925:1034 cm
-1

 to follow 

organic matter changes in composts over the short-term (40 days). Spaccini et al. (2001) 

integrated the area between 3000–2800 cm
-1

 to investigate the decomposition of maize straw 

in a soil incubation experiment during one year. In another approach, a relative peak area 
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(area of individual peak divided by the sum of area of all investigated peaks) has been used to 

study longer-term changes in humic acids from soils under bare fallow over 36 years (Tatzber 

et al., 2009), and also in bulk soils from a 140-year proglacial chronosequence (Egli et al., 

2010) which reflected changes in organic matter quality as measured by independent 

methods. Grube et al. (2006) and Tatzber et al. (2009) both used Fourier transform infrared 

(FT-IR) transmission measurements rather than the DRIFTS method, which is said to be the 

more rapid alternative to transmission spectroscopy (Nguyen et al., 1991). Comparing single 

mid-infrared peaks with different SOM fractions using DRIFTS should provide further 

insights as to which peaks and integration method can be used as potential SOM quality or 

composition indicators under long-term agricultural management at a given site. Egli et al. 

(2010) used a DRIFTS relative peak area method to investigate SOM in young glacial 

moraine soils, but did not consider the influence of different soil minerals which may 

interfere with the ‘visibility’ of organic spectra. The large variability in mineralogy of 

different soils and the resulting potential overlap of the inorganic and organic vibrations of 

functional groups in the mid-infrared region suggests that the choice of individual peak 

selection to study changes in SOM composition may vary among soils. This effect makes 

comparisons between different soil classes or even within soil depths difficult but favours its 

use within experimental sites with uniform soil mineralogy. 

Although OM in different size and/or density fractions has been successfully predicted using 

DRIFTS multivariate prediction models (Janik et al., 2007; Zimmermann et al., 2007), such 

models usually require a large number of samples (for calibration/validation) and are not well 

suited for less than 50 samples as often encountered when studying single experiments. 

Furthermore, a quantitative relationship between individual mid-infrared peaks and the 

composition of SOM as related to different fractions or qualities of SOM is not well-

established and tested for undiluted bulk soils because most studies have used a dilution with 

KBr.  

In this study, it was hypothesized that DRIFTS measurements of undiluted bulk soil can yield 

information on the quality and stability of SOM comparable with results of the size and 

density fractionation approach suitable for studying SOM composition and dynamics in 

agriculturally managed soils. Applying DRIFTS to SOM fractions directly might also 

corroborate their implied SOM composition and give insight into the variability in peak 

patterns. The objectives were (i) to identify specific DRIFTS peaks and corresponding peak 

integration method minimizing mineral interference,  representing organic compounds of 
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varying C bond strengths which reflect different long-term fertilizer management effects in 

soil, (ii) to relate these peaks or their ratio to size and density fractions, which have different 

implied qualities/stabilities and (iii) and to apply this approach to verify changing SOM 

qualities under long-term agricultural management in the Static Fertilization Experiment at 

Bad Lauchstädt, Germany. 

  

2.3 Materials and methods 

Study area and experimental description 

Soil samples were collected from the Static Fertilization Experiment at Bad Lauchstädt in 

Central Germany (Saxony-Anhalt) which was initiated in 1902 to study the effect of different 

fertilizer treatments on crop yields. Recently this experiment has also been used to study 

changes in SOM quality under different fertilizer treatments (Blair et al., 2006; Leifeld et al., 

2006). The site is characterized by a continental climate with average annual precipitation of 

484 mm and mean annual temperature of 8.8°C. Soils were formed from loess and classified 

as Haplic Chernozems (IUSS Working Group WRB, 2007). The investigated top-soil had an 

average of 2% organic C, 0.15% nitrogen (N), and 21% clay and 68% silt. The crop rotation 

of the long-term experiment was sugar beet, spring barley, potatoes, and winter wheat. 

Additional information about the field experiment and layout is given in Körschens et al. 

(1994). 

The following four treatments were selected for the present study in individual treatment 

plots of 30 tons ha
-1

 farmyard manure every second year (FYM), yearly mineral fertilizer 

(NPK), 30 tons ha
-1

 farmyard manure every second year and NPK fertilizer (FYM+NPK) and 

control without fertilizer inputs (Control). Mineral fertilizer inputs (N was applied as calcium 

ammonium nitrate, phosphate (P) as triple superphosphate, and potassium (K) as potassium 

sulfate/magnesium sulfate monohydrate) averaged over a four-year rotation period were 103, 

6, and 25 kg ha
-1

 N, P and K, respectively, in the FYM+NPK treatment, and 123, 30 and 30 

kg ha
-1

 N, P, and K were applied in the NPK treatment. As archive samples were not 

available from every year and every treatment, samples from the years 1956, 1979, 1992, 

2004, and 2008 were used for our study. Soil samples were taken after summer/autumn 

harvest, but before autumn ploughing and always following the winter wheat crop, except for 

1979, when the crop was potatoes. In each treatment, 25 soil cores were taken with an auger 

(1-cm diameter and 20-cm length) and mixed to form a composite sample. Soil samples were 
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air-dried and passed through a 2-mm sieve with visible plant residues removed before 

analysis. The soil sampling protocol was the same in each sampling year. 

 

2.3.1 Soil organic matter fractionations 

Hot-water extraction (HWE) was performed according to Schulz & Körschens (1998). 

Briefly, 20 g <2 mm soil (n = 3) were boiled under reflux for one hour with distilled water 

(1:5, w:v). After rapidly cooling to room temperature, the mixture was centrifuged for ten 

minutes at 440 g and the supernatant filtered through a 0.45 µm membrane filter (Minisart 

RC 25 syringe membrane filters, Sartorius, Göttingen, Germany). The humification index 

(HIX), defined as the absorbances between 435 to 480 nm divided by 300 to 345 nm 

(Zsolnay et al., 1999), was determined on  diluted subsamples of the HWE using 

fluorescence spectroscopy. Dilutions of the HWEs were made to avoid inner filter or 

concentration effects. Size and density fractionations of selected samples from 1956, 1992 

and 2004 were done according to Schulz (2004) modified from Shaymukhametov et al. 

(1984). The samples from these years were selected in order to gain insight in the dynamics 

of SOM fractions. First, plant residues from 20 g <2 mm air-dried soil samples (n = 2) were 

removed by flotation with deionized water. A 1:3 (w:v) soil-to-water suspension was then 

sonified (30.2 J s
-1

) 15 times each for one minute followed by centrifugation at 110 g for 

three minutes. The supernatant containing the clay fraction was again centrifuged 440 g for 

ten minutes to separate a <1 μm clay fraction from a 1-2 μm fraction. Following clay 

separation, the remaining SOM fractions were isolated by heavy liquid density separation. 

Bromoform (96% stabilized with 1-3% ethanol) solutions of different densities were used to 

separate fractions of <1.8, 1.8-2.0 and >2.0 g cm
-3

. The fractions were washed three times 

with ethanol (96%) to completely remove bromoform and dried at 40°C in a water bath to 

evaporate remaining ethanol. 

Bulk soil and obtained fractions were analysed for total C (TC) by dry combustion according 

to DIN ISO 13878 (1998) with a Vario-EL III elemental analyser (Elementar-Hanau, 

Germany). Hydrochloric acid addition to bulk soil indicated that no carbonates were present 

in the samples; therefore TC was taken as total organic carbon (TOC) for the bulk soil and 

fractions. Hot water extracts were analysed for TOC (CHWE) with a Multi N/C analyser 

(Analytik Jena, Germany). The reproducibility of C measurements was ± 0.4 %. 
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2.3.2 DRIFTS analysis 

Samples of bulk soils and fractions for DRIFTS analyses were ball milled and dried overnight 

at 32º C before analysis. Mid-infrared spectra were recorded on a Tensor-27 (Bruker Optik 

GmbH, Ettlingen, Germany) Fourier transform spectrometer using a potassium bromide 

(KBr) beam splitter and a liquid nitrogen cooled mid-band mercury-cadmium-telluride 

detector. The spectrometer was mounted with a Praying Mantis diffuse reflectance chamber 

(Harrick Scientific Products, New York, USA) which was purged with dry air from a 

compressor (Jun-Air International, Nørresundby, Denmark) with a flow rate of 200 l hour
-1

. 

The spectra were recorded in the mid-infrared range (4000 to 400 cm
-1

) by combining 16 

individual scans at a resolution of 4 cm
-1

. The acquisition mode was double forward-

backwards and the Blackman-Harris-3 apodization function was used. The spectra were 

recorded in absorbance units (A.U.) or -log(reflectance
-1

). To gain knowledge on the 

reproducibility of the DRIFTS measurements, three sub-samples of each bulk soil sample 

were individually ball milled and each sub-sample was then scanned three times (16 co-added 

scans), giving a total of nine spectra per sample, which were later averaged. For each 

repetitive scan, the sample was returned to the sample container, mixed and then transferred 

to the measuring cup. 

Spectral pre-processing included atmospheric correction for carbon dioxide (CO2) and water, 

baseline correction and vector normalization in order to compensate for slight variations in 

air humidity, temperature and CO2 concentration at the time of measurement. Peak area 

integration on the corrected spectra was performed using the spectral processing software 

OPUS version 6.5 (Bruker Optik GmbH). Results from the three separately processed sub-

samples of each unique sample showed a relative standard deviation of less than 5% of the 

investigated peaks. For band interpretation, it must be considered that functional groups of 

both mineral and organic substances may have vibration frequencies in some of the same or 

overlapping wave-numbers. The two sharp peaks at 3695 and 3622 cm
-1 

were of O-H 

stretching of clay minerals (Nguyen et al., 1991) and the double peak centred at 2930 cm
-1

 of 

the C-H vibrations (Stevenson, 1982) which was superimposed on the broad O-H peak 

centred at 3400 cm
-1

 (Stevenson, 1982). Peaks at 1980 cm
-1

 and 1870 cm
-1

 were Si-O 

vibrations of quartz minerals (Nguyen et al., 1991). The peak at 1792 cm
-1

 was also due to Si-

O vibrations of quartz minerals (Nguyen et al., 1991), but also stretching vibrations of 

carbonyl groups in alkyl and alkyl-aryl polyester bonds (Spaccini and Piccolo, 2007). The 

peak at 1620 cm
-1

 was assigned to predominately aromatic C=C stretching and/or asymmetric 
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–COO
-
 stretching (Baes and Bloom, 1989) but possibly also C=O vibrations (Stevenson, 

1982). Aromatic C=C stretching vibrations (Baes and Bloom, 1989) were assigned to the 

1525 cm
-1

 peak, while the peak at 1390 cm
-1

 was of OH deformation and C-O stretching 

(Stevenson, 1982). The peak at 1159 cm
-1

 was assigned to C-O bonds of both poly-alcoholic 

and ether functional groups (Spaccini and Piccolo, 2007), the 997 cm
-1

 peak to S=O, P-O-

alkyl, or =C-O-C vibrations, and Si-O vibrations (Senesi et al., 2003) and the 975 cm
-1

 peak 

to aromatic CH out of plane bending (Baes and Bloom, 1989) and alumino-silicate lattice 

vibrations. The remaining peaks at 915 cm
-1

, 810 cm
-1

, 690 cm
-1

, and 670 cm
-1

 were peaks 

from clay and quartz minerals (Nguyen et al., 1991). For peak area investigations, wave-

numbers of functional groups associated with non-organic compounds such as silicates and 

alumino-iron oxides were avoided. These criteria removed the peaks <1000 cm
-1 

and the 

peaks at 1980, 1870, 1792 and 1390 cm
-1

. The four remaining peaks (2930, 1620, 1530, 1159 

cm
-1

) were used for further investigation and were assigned to different organic functional 

groups and their potential stabilities based on current literature (Table 1). In our study 

different stabilities of functional groups of SOM, as represented by the identified DRIFTS 

peaks, were proposed on the basis of  the energy state or strength of the chemical bonds of 

the functional groups such as  aliphatic C-H being  less stable than aromatic C=C bonds. At 

identified local peaks, upper and lower boundaries were established (see Figure 1a and Table 

1); a local baseline was drawn between the boundaries, and an integration performed to 

calculate the corrected peak area. The corrected area from each peak was then divided by the 

sum of the area of the four peaks and multiplied by 100 to give the relative peak area. 

Relative peak areas were used to assess how the peak areas changed relative to each other as 

suggested by Niemeyer et al. (1992). Ratios of relative peak areas representing organic 

functional groups of different hypothesized stabilities (the ratio of the relative DRIFTS peaks 

at 1620 and 2930 cm
-1

: 1620:2930) were also related to the distribution of C among the 

fractions (that is the ratio of the sum of C contained in clay and >1.8 g cm
-3

 fractions divided 

by the amount of C in <1.8 g cm
-3

 fraction). The ratio of aromatic to aliphatic compounds has 

been used previously to study the decomposition of composts (with ratios of 1655 to 2930 

cm
-1

) (Inbar et al., 1989) and organic surface horizons (ratios of 1630 to 2920 cm
-1 

(Haberhauer et al., 1998) with FT-IR transmission spectroscopy. Additionally, the ratio of 

band A (defined as peak intensity between 3020-2800 cm
-1

) to band B (defined as the peak 

intensity between 1740-1710 and 1640 to 1620 cm
-1

) has been used successfully to predict 

the wettability or hydrophobicity of soils (Ellerbrock et al., 2005). In the bulk soils used in 
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the current study, a distinct peak was not visible in the 1740–1710 cm
-1

 range, so only the 

peak at 1620 cm
-1

 was used for the relative peak area method and was assigned to aromatic 

C=C vibrations, as the ratio of aromatic to aliphatic peak areas changes with the relative 

degree of decomposition or humification of OM.  

 

Table 1: Investigated DRIFTS peak areas and organic functional group assignments.  

Probable organic carbon functional group assignments were based on literature 

and hypothesized stabilities related to the bond strengths (i.e. C-H less stable 

compared to C=C) at the specific wavenumbers. 

 

Peak Name 
Integration Limits 

[cm
-1

] 
Probable Organic Carbon Assignment 

Hypothesized 

Stability 

2930 3010-2800 Aliphatic C-H stretching
a
 Labile 

1620 1660-1580 Aromatic C=C and/or –COO
-
 stretching

a
 Intermediate 

1530 1546-1520 Aromatic C=C stretching
a
 Intermediate 

1159 1170-1148 C-O bonds of poly-alcoholic and ether groups
b
 unknown 

 

a - Baes and Bloom, 1989, b - Senesi et al., 2003. 
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Figure 1 a) Baseline corrected DRIFTS spectra of undiluted (neat) bulk soil, <1.8 g cm
-3

,

 1.8-2.0 g cm
-3

, >2.0 g cm
-3

, <1 µm and 1-2 µm fractions from the Static Fertilization

 Experiment, Bad Lauchstädt, Germany. The indicated regions were assigned to the

 following molecular vibrations for peak area integration 1-2930 cm
-1

 (C-H), 2-1620

 cm
-1

 (C=C and –COO-), 3-1530 cm
-1

 (C=C), and 4-1159 cm
-1

 (C-O) (see also Table

 1), b) Depiction of the peak area integration performed with local baseline to gain the

 corrected peak area which was then used for calculating the relative peak areas. 

 

It has been noted in other studies that soil samples must be diluted in order to reduce non-

diffuse or Fresnel reflection and to avoid infrared peaks from appearing to be negative peaks 

as opposed to positive peaks also called band inversion (Bishop et al., 1996). Band inversion 

can happen when there is a strongly absorbing compound in the sample. We performed tests 
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with two samples using 1:3 and 1:100 dilutions with KBr which showed no evidence of band 

inversion, even in the <1600 cm
-1

 region, where this usually occurs. There was, however, a 

disappearance of some peaks with a 1:100 dilution, indicating a loss of information with 

dilution (data not shown). Thus, with our soil samples, undiluted samples resulted in better 

scans for peak area integration because more sample was scanned leading to less 

heterogeneity than if mixed with a diluting agent as also noted by Reeves (2003). 

 

2.3.3 Statistical analyses 

Since there were no field replicates of the treatments, sample years were grouped for 

statistical testing of the fertilizer management effect. Statistical analyses were performed with 

SAS version 8.0 (SAS Institute Inc., Cary, NC, USA). Analysis of variance with Tukey-

Kramer post-hoc testing was used to determine significant differences (P <0.05) between 

fertilizer treatments. Spearman rank correlations were used to examine correlations between 

the corrected peak areas and SOM fractions. Linear regressions were performed using Sigma 

Plot version 10.0 (Systat Software Inc., Chicago, IL, USA) on relative peak areas by year to 

study long-term SOM dynamics from 1956 to 2008. In the absence of field replicates for the 

sampled treatments and in view of their similar long-term trends, FYM+NPK and FYM 

(FYM treatments) were grouped together, while NPK and Control (non-FYM treatments) 

were grouped for linear regressions in order to follow the effect of farmyard manure 

application on DRIFTS peaks with time. 

 

2.4 Results 

2.4.1 Characteristics of soil organic matter 

Average contents of TOC in the soils of the FYM+NPK and FYM treatments were 

significantly larger than in the Control (P < 0.05) (Table 2). Hot-water extractable carbon 

(CHWE) contents were the largest in the soils of the FYM+NPK treatment, whereas CHWE was 

nearly 50% smaller in the Control (P < 0.05). Although TOC was not significantly different 

between FYM and NPK treatments, CHWE was 27% greater in the FYM treatment (P >0.05). 

The humification index (HIX) of CHWE was not significantly affected by treatment (P >0.05), 

but was greatest in the Control. Carbon content of the <1.8 g cm
-3

 and 1.8-2.0 g cm
-3

 fractions 

was significantly larger in the FYM+NPK treatment compared with the Control (P <0.05). 
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Neither clay fractions nor the >2.0 g cm
-3

 fraction differed between FYM+NPK and Control 

(P >0.05). 

 

Table 2: Soil organic carbon contents in bulk soil and fractions by treatment (sampling

 years 1956, 1992, and 2004). Treatments were: FYM+NPK (farmyard manure and

 mineral fertilizer, n=3), FYM (farmyard manure, n=1), NPK (mineral fertilizer, n=1),

 Control (CON, no fertilizer inputs, n=3). Different letters indicate significant

 differences within each row (P < 0.05) and standard errors are given in parentheses. 

 

 Treatment F
c 

LSD0.05
e 

 FYM+NPK FYM NPK CON   

TOC [g kg
-1

]
a 

23.4 (0.8) 19.7 (1.1) 18.3 (0.5) 16.5 (0.4) 18.1 0.5 

CHWE [mg kg
-1

]
a 

657 (13) 598 (8) 470 (38) 332 (21) 27.2 21.9 

HIX
a 

10.6 (0.7) 9.2 (0.5) 9.7 (0.7) 11.0 (0.6) 1.6 ns
f
 

C<1μm [g kg
-1

]
a 

8.7 (0.4) 8.0
b 

7.6
b
 8.0 (0.1) 2.1

d 
ns 

C1-2μm [g kg
-1

]
a
 5.5 (0.4) 4.9

b
 4.6

b
 4.9 (0.5) 4.5

d
 ns 

C<1.8 g cm
-3

 [g kg
-1

]
a
 5.8 (1.2) 5.3

b
 3.2

b
 2.5 (0.4) 13.3

d
 2.4 

C1.8-2.0 g cm
-3

 [g kg
-1

]
a
 0.5 (0.1) 0.4

b
 0.3

b
 0.2 (0.0) 27.5

d
 0.1 

C>2.0 g cm
-3

 [g kg
-1

]
a
 1.4 (0.3) 1.0

b
 0.7

b
 1.0 (0.2) 1.9

d
 ns 

 
a
 TOC = total organic C; CHWE = hot water extractable C of bulk soil; HIX = humification 

index (435 to 480 nm divided by 300 to 345 nm) of CHWE; C<1μm = C in <1 μm fraction; C1-

2μm = C in 1-2 μm fraction; C<1.8 g cm
-3 

= C in <1.8 g cm
-3

 fraction, C1.8-2.0 g cm
-3

 = C in 1.8-2.0 g 

cm
-3

 fraction, C>2.0 g cm
-3

 = C in >2.0 g cm
-3

 fraction. 

Units are g C contained in the fraction per kg of whole soil calculated from the mass balance 

of the weight of the recovered fraction. 
b
  Only one sample from treatments FYM and NPK was fractionated, therefore standard 

errors were not calculated. 
c
  F-statistic. 

d
  Statistical comparison only between FYM+NPK and Control treatments. 

e
  Least significant difference (P <0.05). 

f
  not significantly different (P <0.05).
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2.4.2 DRIFTS analysis of bulk soil 

In the spectra of the studied bulk soil samples, the 1620 cm
-1

 peak contributed most to the 

total relative area in bulk soil scans, followed by peaks at 2930 cm
-1

, 1159 cm
-1

 and 1530 

cm
-1

 (Figure 1 and 2). The DRIFTS peaks of the four investigated bands were affected 

significantly by fertilizer treatment (P <0.05) (Figure 2). The average relative area of the 

2930 cm
-1 

peak was 36.5% in the FYM+NPK treatment, decreasing in the FYM treatment 

(4% smaller), and was 13% and 19% smaller in NPK and Control, respectively. The relative 

peak areas at 1620 cm
-1

 also varied significantly across all four treatments with the smallest 

peak area in the FYM+NPK, and the largest in the Control (P < 0.05). The peaks at 1530 cm
-1

 

and 1159 cm
-1

 only showed a difference between the FYM treatments and non-FYM 

treatments (P <0.05), with larger relative peak areas in the NPK and Control. A positive 

relationship was found between the ratio of the peaks at 1620 and 2930 cm
-1

 (1620:2930) and 

the ratio of stable C (sum of C contained in clay and >1.8 g cm
-3

 fractions) to labile C 

(amount of C in the <1.8 g cm
-3

 fraction) (R
2
=0.62, P = 0.012) (Figure 3). 
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Figure 2. DRIFTS relative peak area by fertilizer treatment of bulk soil at wavenumbers: a)

 2930 cm-1 b) 1620 cm-1, c) 1530 cm-1, and d) 1159 cm-1. Treatment averages of

 years 1956, 1979, 1992, 2004, and 2008: FYM+NPK = farmyard manure and mineral

 fertilizer; FYM = farmyard manure; NPK = mineral fertilizer; CON = control (no

 fertilizer/manure inputs). Letters indicate significant differences (P  <0.05) along with

 standard errors. 
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Figure 3. Relationship between the ratio of the DRIFTS peak areas at 1620 and 2930 cm
-1

 
and the ratio of stable C (sum of C contained in clay and >1.8 g cm

-3
 fractions) to

 labile C (amount of C in the <1.8 g cm
-3

 fraction) in soils collected in 1956, 1992, and

 2004. 

 

 

The relative peak areas of the bulk soil by sampling year increased slightly in the 2930 cm
-1

 

in the FYM managements (R
2
 = 0.75, P = 0.057), but there was no significant change in the 

non-FYM managements (Figure 4). Likewise, the 1620 cm
-1

 relative peak area decreased in 

the FYM (R
2
 = 0.77, P = 0.05), but no trend was observed in the non-FYM treatments. There 

was no statistically discernible linear trend in the relative area of the other two peaks (1530 

and 1159 cm
-1

) among the sample years. 
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Figure 4. Dynamics of DRIFTS relative peak areas by sampling year of farmyard

 manure (FYM) and non-farmyard manure treatments (non-FYM): a) 2930cm
-1

 relative peak area, b) 1620cm
-1

 relative peak area. Symbols: ● = FYM, average of

 both farmyard manure treatments (FYM+NPK and FYM); ○ = non-FYM, average of

 NPK (mineral fertilizer) and CON (control no fertilizer input) treatments. Bars

 indicate standard errors. 

 

2.4.3 Spectra of size and density fractions 

In the spectra from the size and density fractions, the 2930 cm
-1

 relative peak area of the <1.8 

g cm
-3

 fraction was the largest among the size and density fractions with a 88.7% relative 

peak area (Figure 5), while there was no detectable organic peak present at this wavelength 

for the >2.0 g cm
-3

 fraction (data not shown). The relative 2930 cm
-1

 peak areas of the <1 μm 
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and 1-2 μm clay fractions (50.7 and 62.9% respectively) were larger than that of the 1.8-2.0 g 

cm
-3

 fraction (20.9%), which had the largest variation. Relative peak areas at 1620 cm
-1

 were 

largest in the >2.0 g cm
-3

 fraction (79.5%) (data not shown) declining with decreasing density 

to 10.9% in the <1.8 g cm
-3

 fraction, whereas the clay fractions were intermediate between 

the <1.8 g cm
-3

 fraction and the fractions 1.8-2.0 and >2.0 g cm
-3

. The ratio of the relative 

peak areas at 1620 and 2930 cm
-1

 (1620:2930) was greatest in the fraction 1.8-2.0 g cm
-3

 

(median = 2.17) and smallest in the <1.8 g cm
-3

 fraction (median = 0.12). The peaks at 1530 

and 1159 cm
-1

 were not discernible as distinct peaks in all the fractions, possibly because of a 

lack of a significant contribution of the respective organic compounds, and were not 

quantified by peak area integration. 

 

 

Figure 5. DRIFTS spectra of soil organic matter fractions: a) relative peak area of 2930 cm
-1

,

 b) relative peak area of 1620 cm
-1

, c) Ratio of the peak area at 1620 cm
-1

-to-2930

 cm
-1

). Values are from the years 1956, 1992, and 2004. The center line indicates the

 median and the end lines the 25th and 75th percentiles. Legend: <1μm and 1-2μm =

 clay fractions; <1.8 g cm-3 and 1.8-2.0 g cm-3  
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2.4.4 Bulk soil peak area correlations with SOM fractions 

Correlations (results presented are the correlation coefficient r) of the 2930 cm
-1

 and 1620 

cm
-1 

corrected peaks areas of the bulk soil samples with SOM characteristics were correlated 

significantly to measured SOM contents and fractions while correlations with 1530 cm
-1

 and 

1159 cm
-1

 were mostly smaller (Table 3). The corrected 2930 cm
-1

 peak area was positively 

correlated with TOC (r = 0.88, P < 0.0001), CHWE (r = 0.93, P < 0.0001), <1.8 g cm
-3

 fraction 

C (r = 0.86, P < 0.01), and 1.8-2.0 g cm
-3

 fraction C (r = 0.90, P < 0.05). The corrected peak 

area at 1620 cm
-1

 was negatively correlated to TOC (r = -0.68, P < 0.01), clay fraction <1 μm 

C (r = -0.79, P < 0.01), and <1.8 g cm
-3

 fraction C (r = -0.95, P < 0.01). 

 

Table 3: Spearman correlation (H1:ρ ≠ 0) coefficients between DRIFTS corrected peak areas

 of bulk soil and soil organic carbon parameters. 
 

  Correlation coefficient by peak 

 N 2930 cm
-1

 1620 cm
-1

 1530 cm
-1

 1159 cm
-1

 

TOC 15 0.88*** -0.68** -0.49* -0.08 

CHWE 15 0.93*** -0.79** -0.57* 0.03 

HIXHWE 15 -0.13 -0.13 -0.13 -0.65** 

C<1μm 8 0.69 -0.79* -0.67 -0.07 

C1-2μm 8 0.40 -0.33 -0.17 0.00 

C<1.8 g cm
-3

 8 0.86** -0.95** -0.69* -0.17 

C1.8-2.0 g cm
-3

 8 0.90* -0.81 -0.48 0.12 

C>2.0 g cm
-3

 8 0.24 -0.55 -0.43 -0.67* 

Significance levels: *** = P <0.0001, ** = P <0.01, * = P <0.05. 

TOC = total organic C; CHWE = hot water extractable C; HIX = humification index (435 to 

480 nm divided by 300 to 345 nm) of CHWE; C<1μm = C of <1 μm fraction; C1-2μm = C of 1-2 

μm fraction; C<1.8 g cm
-3

 = C of <1.8 g cm
-3

 fraction, C1.8-2.0 g cm
-3

 = C of 1.8-2.0 g cm
-3

 fraction, 

C>2.0 g cm
-3

, C of >2.0 g cm
-3

 fraction. 
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2.5 Discussion 

 

2.5.1 Comparing DRIFTS of bulk soil with size and density fraction characteristics 

to derive information on SOM composition and quality 

DRIFTS peaks of the bulk soil with the C contents of the size and density fractions and hot-

water extractable C (CHWE) were used to study the relationship between different SOM 

compounds represented by the four peak areas 2930, 1620, 1530 and 1159 cm
-1 

and with the 

C contents of different fractions. The positive correlation of the corrected 2930 cm
-1

 peak 

area with CHWE indicated the hypothesized labile nature of the compounds related to this 

peak; CHWE has been used previously as a measure of a relatively labile pool of SOM 

(Hoffmann, et al., 2006). The link between the corrected 2930 cm
-1

 peak area to labile 

organic compounds was further corroborated with the highly significant correlation with the 

light fraction C content (<1.8 g cm
-3

), which represents an active SOM pool (von Lützow et 

al., 2007). Additionally, the peak around 2930 cm
-1

 reflects mainly aliphatic C-H stretching 

(Baes and Bloom, 1989) which are less stable than aromatic bonds. Both hot-water extracts 

and light fractions contain heterogeneous materials, though they are dominated by labile 

organic compounds. Thus, positive relationships with these indicators with DRIFTS results 

do not necessarily provide proof of a casual relationship. However, both indicators support 

the theoretical framework based on the energy state of the predominant C-H stretching at 

2930 cm
-1

. The corrected peak area of 3010 to 2800 cm
-1

 has also been correlated with humic 

substances in sediments of different composition and supposed stabilities (Tremblay & 

Gagné, 2002). In contrast to Tremblay & Gagné’s approach and their contrasting 

environment, we observed changes i) in the relative abundance of peaks which takes into 

account shifts between more labile and stable C compounds and ii) between samples obtained 

from the same soil where the mineralogy is constant and any differences in the studied peaks 

must have occurred as the result of changes in SOM. Since spectral regions around 3050 cm
-1

 

are also known vibrations of C-H functional groups associated to aromatic compounds (Baes 

and Bloom, 1989), careful interpretation of the spectral assignments for each case is 

necessary. 

Significant negative correlations of the corrected peak areas at 1620 cm
-1

 with CHWE and 

C<1.8  g cm
-3 indicated that the 1620 cm

-1
 peak may be related more to recalcitrant organic 
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compounds. This was also supported by the fact that the corrected peak areas at 1620 cm
-1

 in 

the Control, which had received the smallest amount of organic inputs (crop stubble and 

roots), was largest and slowly increased over time through the continuous decomposition of 

more labile compounds. The negative correlations with C<1μm and C1.8-2.0 g cm
-3

, however, did 

not directly support this conclusion, as these fractions should have contained relatively 

stabilized SOM (Schulz et al., 2011). This provides evidence for the heterogeneity of the 

isolated SOM fractions: that although they are composed of a continuum of organic 

compounds, they may be more enriched or depleted in certain compounds. Additionally, it 

has been suggested that because there is usually more than one stabilization mechanism 

present, this may result in the non-homogeneous turnover rate of organic compounds within 

most of the fractions (von Lützow et al., 2007). The negative correlations of the peak at 1530 

cm
-1 

and the SOM fractions followed the same trend as 1620 cm
-1

, but with generally poorer 

correlation coefficients. Both of these peaks were assigned to aromatic C=C vibrations, while 

the 1620 cm
-1

 peak was also assigned to the –COO
-
 stretching vibrations. The absence of the 

–COO
-
 vibrations at 1530 cm

-1
 may partly explain the poorer correlations of the peak with the 

fractions’ C contents. Unexpectedly, the corrected peak 1159 cm
-1

 peak area did not correlate 

with any of the fractions except for the humification index (HIX) and the fraction >2.0 g cm
-

3
. The negative correlation with the HIX, which increases with increased humification of the 

hot-water extract, may indicate that this peak represents labile compounds and results in the 

negative correlation with the >2.0 g cm
-3 

fraction. However, the relative contribution of this 

peak area was greater for the Control than for FYM+NPK treatments which would not 

support the contention that the 1159 cm
-1

 peak represents compounds of greater lability. 

The increase in the 1620:2930 ratio with increasing stabilized C in the SOM fractions also 

confirmed other studies which have found a positive relationship with a aromatic to aliphatic 

ratio and the amount of humic substances (Inbar et al., 1989) and increasing degree of 

decomposition in forest soil organic horizons (Haberhauer et al., 1998). Through correlations 

with SOM fractions, distribution of C among the fractions, and their implied stabilities from 

literature, the hypothesis was confirmed that the aliphatic stretching peak at 2930 cm
-1

 was 

dominated by SOM components of greater lability, and the peaks at 1620 and 1530 cm
-1

 

represented more stable components in our soils.  The evidence for attributing SOM quality 

characteristics for 1159 and 1530 cm
-1

 peaks was less clear. These findings might not be 

relevant to other soils, as mineralogical interferences might obscure or alter visibility and 

extent of peaks in different soils and complicate comparisons across sites. On the other hand, 
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the preferential pre-selection of peaks took this aspect partly into consideration by selecting 

those peaks which do not have strong mineral interferences. Additionally, the choice of 

integration to consider overlapping vibrations of different functional groups at a certain peak, 

and using a peak analysis approach with corrected or absolute areas may also help to extend 

the applicability of the method. 

2.5.2 Confirming quality findings with DRIFTS analysis of SOM fractions 

The selected peak areas as applied to the SOM fractions themselves corroborated our 

conclusions from the correlation analyses of different stabilities of the fractions determined 

by DRIFTS. The largest relative value for the 2930 cm
-1 

peak was found in the <1.8 g cm
-3

 

fraction, again indicating that this peak represented labile organic compounds. Organic C in 

the <1.8 g cm
-3

 was shown by (Schulz et al., 2011) to be only loosely associated with 

minerals and consisted of relatively un-decomposed plant residues with weak physical 

protection: this was also indicated by the small value for the 1620:2930 ratio of the 

<1.8 g cm
-3

 fraction of our soil. The larger relative value for the 1620 cm
-1

 peak area of the 

two clay fractions compared with the relatively less decomposed <1.8 g cm
-3

 fraction 

indicates their greater degradation. Leifeld & Kögel-Knabner (2005) suggested that clay 

fractions may have both old, relatively inert C which does not respond to land use and 

another more active component which does respond to changes.  This could explain why the 

2930 cm
-1

 relative peak areas for the clay fractions were greater than that of the density 

fraction of 1.8-2.0 g cm
-3

: this supports the idea of an interaction of stabilization mechanisms 

and heterogeneity within these fractions. The greater 1620:2930 ratio of the clay fractions 

compared with the <1.8 g cm
-3

 fraction is also compatible with their slower turnover rate 

compared with fresh material (von Lützow et al., 2007). Using relative peak areas of the 

SOM fractions, it was found that not only the quantity of OM contained in each fraction was 

different, but also the composition. This has also been observed by using 
13

C NMR (Kögel-

Knabner et al., 2008); Gerzabek et al., 2006); however, DRIFTS is more rapid, less costly, 

and is also able to show the inherent heterogeneity of the SOM fractions. 
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2.5.3 SOM dynamics in the Static Fertilization experiment as demonstrated by bulk 

soil DRIFTS  

As the corrected peak areas of the bulk soil were significantly correlated to different 

stabilities and qualities of SOM (also reflected in the relative peak areas of the SOM fractions 

themselves), the differences in relative peak area in different fertilizer treatment indicated the 

changing quality of SOM under the long-term management. We can surmise that the peak at 

2930 cm
-1

 increased mainly by additional residue inputs, both through FYM and also 

increased plant residues in the NPK treatment: this also followed the same trend as TOC and 

CHWE. A similar influence of organic and mineral inputs on the corrected peak area between 

3000 and 2800 cm
-1

 normalized to TOC was found by Capriel (1997) . This peak changed in 

medium textured soils during a one-year incubation experiment (Spaccini et al., 2001), but 

also seemed changed over the longer term with farmyard manure application as we have also 

shown. . An increase in labile SOM of FYM+NPK compared with the Control has been 

found by using other methods including KMnO4 oxidation (Blair et al., 2006) and differential 

scanning calorimetry (Leifeld et al., 2006) and supports what was found with the specific 

DRIFTS peak method. The increasing relative peak area at 1620 cm
-1

 in the NPK and Control 

treatments compared with the FYM treatments showed an enrichment of more stable organic 

compounds. This is consistent with smaller TOC, CHWE and <1.8 g cm
-3

contents of the 

Control compared to the FYM+NPK and FYM treatments.  Our DRIFTS results complement 

the 
13

C NMR spectroscopy results of Kiem et al. (2000) of increased aromaticity in the 

Control treatment compared with the FYM+NPK treatment in the Bad Lauchstädt long-term 

experiment. Additionally, an increase in the aromatic nature (1620 cm
-1

 peak) of SOM has 

been found in increasing maturities of manures (Hsu & Lo, 1999), in soil under treatments of 

fallow and no organic inputs (Gerzabek et al., 2006), and in increasingly decomposed forest 

litter layers and Ah horizons (Haberhauer et al., 1998; Haberhauer & Gerzabek, 1999). 

Furthermore, with increasing soil depth from the surface to 30 cm, the aliphatic peak at 2920 

cm
-1

 in the humin fraction declined and the aromatic peak at 3050 cm
-1

 increased (Tatzber et 

al., 2007). Likewise, in our study, according to the bulk soil DRIFTS results, the SOM in the 

Control treatment has become relatively more aromatic (increased 1620 cm
-1

 peak) compared 

with the FYM+NPK treatment (decreased 1620 cm
-1

 peak). It seems that the compounds 

represented by the peaks at 1530 and 1159 cm
-1

 were mainly influenced by either the 

presence or absence of FYM and not by mineral fertilizer. It was not immediately clear why 

this was the case, as these peaks represent very different C compounds (1530 cm
-1

: C=C 
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aromatics (Baes & Bloom, 1989), and 1159 cm
-1

: C-O poly-alcohol and ether group 

vibrations (Senesi et al., 2003). Additional sampling years and greater SOM characterization 

would be needed in order to detect more precisely the temporal trends in these two peaks. 

Conversely, Spaccini et al. (2001) did not detect any significant peak changes in sandy and 

clayey soils of a one-year incubation experiment, possibly indicating that the method may 

have interferences in certain soil textures. 

 

2.6 Conclusions 

This study substantiated the hypothesis that specific peaks obtained by DRIFTS of bulk soils 

can be used to study the changing composition of organic matter in a Haplic Chernozem. It 

was shown that long-term application of organic and mineral fertilizers affected not only the 

quantity, but also the composition of SOM as compared with an unfertilized control 

treatment. These changes were strongly reflected in DRIFTS spectra, especially in some of 

the selected predominant aliphatic and aromatic peak areas at 2930 and 1620 cm
-1

, 

respectively. For the Haplic Chernozem the ratio of the relative peak areas at 1620 and 2930 

cm
-1

 (1620:2930) was particularly shown to be a useful indicator of changes in stable and 

labile C in bulk soil samples. Here we demonstrated that this approach applied to our size and 

density fractions also reflected the interaction of organic matter stabilization mechanisms and 

heterogeneity. 

While the current study confirms similar results from other investigations, other studies have 

found relationships of other peak ratios and OM quality in different environments, suggesting 

that the findings might not be fully transferable to all soils as mineralogical interferences 

might obscure or alter visibility and the quantification of peaks in different soils. This would 

complicate comparisons across sites. However, as we show, a careful pre-selection of peaks 

avoiding strong mineral interferences is needed. Additionally, the choice of integration 

method considering possible overlapping vibrations of different functional groups at a certain 

peak, and analysis using corrected peak or relative peak areas are important. The 

demonstrated relationship between specific peaks and SOM stability and use of undiluted soil 

samples should enhance the applicability of DRIFTS, if specular reflection is avoided, as an 

improvement over FT-IR transmission spectroscopy. The peak area method is probably best 

suited for investigations within the same soil type and with small numbers of samples which 

are not suitable for multivariate prediction models. The demonstrated relationships of relative 
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peak areas with the suggested composition of SOM need to be tested when applying the 

method to soils with different mineralogies. Further research is needed to quantify organic C 

in the different peak regions regardless of possible mineral interferences in order to make a 

better link between the peak areas and functional SOM pools. This may be possible through 

the use of coupling technologies such as thermal analysis, paralysis, or fluorescence 

spectroscopy. 
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3.1 Abstract 

An optimized spectroscopic method combining quantitative evolved gas analysis via Fourier 

transform infrared spectroscopy (FTIR-EGA) in combination with a qualitative in situ 

thermal reaction monitoring via diffuse reflectance Fourier transform infrared spectroscopy 

(in situT DRIFTS) is being proposed to rapidly characterize soil organic matter (SOM) to 

study its dynamics and stability. A thermal reaction chamber coupled with an infrared gas 

cell was used to study the pattern of thermal evolution of carbon dioxide (CO2) in order to 

relate evolved gas (i.e., CO2) to different qualities of SOM. Soil samples were taken from 

three different arable sites in Germany: i) the Static Fertilization Experiment, Bad Lauchstädt 

(Chernozem), from treatments of farmyard manure (FYM), mineral fertilizer (NPK), their 

combination (FYM+NPK) and control without fertilizer inputs; ii) Kraichgau; and iii) 

Swabian Alb (Cambisols) areas, Southwest Germany. The two latter soils were further 

fractionated into particulate organic matter (POM), sand and stable aggregates (Sa+A), silt 

and clay (Si+C), and NaOCl oxidized Si+C (rSOC) to gain OM of different inferred 

stabilities; respiration measured from fresh soil samples incubated at 20°C and 50% water 

holding capacity for 490 days. A variable long path length gas cell was used to record the 

mid-infrared absorbance intensity of CO2 (2400 to 2200 cm
-1

) being evolved during soil 

heating from 25 to 700°C with a heating rate of 68°C min
-1

 and holding time of 10 minutes at 

700°C. Separately, the heating chamber was placed in a diffuse reflectance chamber 

(DRIFTS) for measuring the mid-infrared absorbance of the soil sample during heating. 

Thermal stability of the bulk soils and fractions was measured via the temperature of 

maximum CO2 evolution (CO2max). Results indicated that the FYM+NPK and FYM 

treatments of the Chernozem soils had a lower CO2max as compared to both NPK and CON 

treatments. On average, CO2max of the Chernozem was much higher (447°C) as compared to 

the Cambisol sites (Kraichgau 392°C; Swabian Alb 384°C). The POM fraction had the 

highest CO2max (477°C), while rSOC had a first peak at 265°C at both sites and a second peak 

at 392°C for the Swabian Alb and 482°C for the Kraichgau. The CO2max increased after 490 

day incubation, while the C lost during incubation was derived from the whole temperature 

range but a relatively higher proportion from 200 to 350°C. In situT DRIFTS measurements 

indicated decreases in vibrational intensities in the order of C-OH = unknown C vibration < 

C-H < -COO/ C=C < C=C with increasing temperature, but interpretation of vibrational 



63 

changes was complicated by changes in the spectra (i.e., overall vibrational intensity 

increased with temperature increase) of the sample during heating. The relative quality 

changes and corresponding temperatures shown by the in situT DRIFTS measurements 

enabled the fitting of four components or peaks to the evolved CO2 thermogram from the 

FTIR-EGA measurements. This gave a semi-quantitative measure of the quality of evolved C 

during the heating experiment, lending more evidence that different qualities of SOM are 

being evolved at different temperatures from 200 to 700°C. The CO2max was influenced by 

long-term FYM input and also after 490 days of laboratory incubation, indicating that this 

measurement is an indicator for the relative overall SOM stability. The combination of FTIR-

EGA and in situT DRIFTS allows for a quantitative and qualitative monitoring of thermal 

reactions of SOM, revealing its relative stability, and provides a sound basis for a peak fitting 

procedure for assigning proportions of evolved CO2 to different thermal stability components.          

 

3.2 Introduction 

Various thermal analytical methods have been explored to study the quantity of soil organic 

matter (SOM) (Gaál et al., 1994) and its quality (Lopez-Capel et al., 2005), the basic 

hypothesis being that more labile OM such as carbon (C) associated with microbial biomass 

or light fraction C would also be thermally degraded at lower temperatures due to the lower 

activation energy needed to break the associated bonds, and that more stable compounds 

being evolved at higher temperatures. Thermal degradation of organic molecules is affected 

by the arrangement of the molecules in the larger macromolecule and likewise influenced by 

interactions with mineral surfaces (Blumstein, 1965). These biochemical characteristics are 

also the basic factors which influence the stabilization of OM in soils (von Lützow et al., 

2007; von Lützow et al., 2008). Further, organo--mineral interactions such as ligand 

exchange, cation ion bridging, and complexation are influenced by clay as well as Fe- and 

Al-oxide content and type of soil (von Lützow et al., 2008). 

Traditional thermal analytical techniques relied on weight loss (i.e., thermal gravimetric 

analysis (TGA)), energy changes (differential scanning calorimetry (DSC)), or differential 

thermal weight loss (DTA) between a sample and a reference material (Siewert, 2004); 

(Leinweber et al., 1992). Different land uses (e.g., grassland, arable, fallow) and different 

SOM fractions (e.g., light free and inter-aggregate OM) have been shown to affect the 

distribution of weight losses during heating treatments (Lopez-Capel et al., 2005), where it 
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was inferred that weight losses at lower temperatures were related to labile SOM and at 

higher temperature more stabile SOM was degraded. The TGA/DSC/DTA methods have the 

drawback that the thermal decomposition of SOM may be difficult to infer due to additional 

reactions in the same temperature range (Gaál et al., 1994), such as loss of absorbed or 

interlayer water up to 250°C and from 400 to 700°C with crystallization and dehydroxylation 

reactions (Pansu and Gautheyrou, 2006). Isotope measurements ex post facto of different 

thermal treatments have been used to determine the age or contribution of maize residues to 

SOM after conversion from winter wheat. (Dorodnikov et al., 2008; Dorodnikov et al., 2007) 

found that SOM turnover times, as calculated via 
13

C enrichment from free air carbon 

enrichment (FACE) experiments, did not increase with increasing temperature treatment, 

although C evolved at temperatures >480°C was slightly less bio-available compared to C 

evolved at temperatures <480°C. Likewise, Helfrich et al. (2010) did not find a significant 

increase in recent maize-derived SOM in a >1.8 g cm
-3

 fraction as measured by 
13

C dating 

after a C3 to C4 vegetation conversion with increasing heating treatments up to 500°C. 

Although these studies cast doubt on the use of thermal analytical approaches as an indicator 

of SOM stability, several factors may have affected the results: i) it was hypothesized that 

younger SOM would be thermally decomposed at lower temperatures, which may not be the 

case anymore if the light fraction has been removed and the remaining sample had undergone 

microbial mediated transformations; ii) it is not well understood what changes a soil sample 

undergoes after being exposed to a thermal treatment and then cooled to room temperature to 

be analyzed for isotope composition; and iii) very slow heating rates, as in the case of 

(Dorodnikov et al., 2008; Dorodnikov et al., 2007)) of 2°C min
-1

, may shift thermal reactions 

to significantly lower temperatures (Fernández et al., 2011); and may possibly v) lead to 

increased char formation, as has been shown during combustion of cellulose (Baldry et al., 

1988). Hence, an improved method to directly quantify thermal decomposition products and 

their quality would greatly advance the investigation of SOM via thermal analysis.  

To avoid the aforementioned drawbacks of TGA/DTG and ex post facto analysis, on-line 

analyses such as FTIR-EGA (Fourier transform infrared-evolved gas analysis) (Plante et al., 

2009) and in situT DRIFTS (in situ monitoring of thermal reactions via diffuse reflectance 

Fourier transform infrared spectroscopy) (Murakami et al., 1997) could be developed for 

monitoring thermal reactions of SOM. An online method provides the direct measurement of 

the combustion/decomposition products of thermal degradation of OM and has been used in 

conjunction with TG/DSC for studying SOM (Fernández et al., 2012). FTIR-EGA has been 
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used extensively for the rapid quantification of gaseous reaction products such as CO2, 

carbon monoxide, water, aliphatics and others for the analysis of lignite, chars of coal and 

spruce wood (Haselsteiner et al., 2011), and inorganic compounds (e.g., calcium carbonate, 

barium chloride, etc.) (Mittleman, 1990). This method relies on the vibrational frequencies of 

polar gas molecules in the mid-infrared range from 4000 to 400 cm
-1

 and it is usually the case 

that combustion products can be quantitatively determined by integrating the wavenumbers 

of the gas of interest (i.e., CO2 at 2400 to 2200 cm
-1

) and creating a calibration curve using a 

known standard (i.e., sodium bicarbonate) (Court and Sephton, 2009); (Toops et al., 2005). 

The in situT DRIFTS method, on the other hand, allows observations of the changes in 

vibrational intensities at wavenumbers of interest of a sample during heating (Toops et al., 

2005). Hence, combining FTIR-EGA and in situT DRIFTS has the potential for the rapid 

characterization of SOM based on the properties of the evolved gas profile (i.e., peak 

temperature, distribution of evolved gas) and the changes in vibrational intensity of mid-

infrared wavenumbers during heating. In addition to quantifying the total C amount in a soil 

sample, by optimizing the combustion conditions the distribution and peak temperature may 

be related to different chemical and or physical traits. This could then be linked to changes in 

vibrational frequencies of the soil at different temperatures during in situT DRIFTS 

measurements to unravel qualitative changes in the types of compounds undergoing thermal 

degradation. 

 The objectives of this study were to i) develop improved experimental techniques of FTIR-

EGA and in situT DRIFTS systems for analyzing SOM across the range of C contents and 

stability found in bulk soil and SOM fractions; and ii) to use these techniques to characterize 

SOM of different stabilities, treatments, and microbial decomposition status. The hypothesis 

was that the characteristics of thermal CO2 evolution (i.e., temperature of peak CO2 

evolution, changes in low temperature CO2 evolution versus higher temperature CO2 

evolution) are affected by different qualities of SOM. Soils or fractions which are more 

enriched in labile compounds (e.g., farmyard manure treated soil, POM) will have lower 

thermal stability as compared with soils or fractions which are more enriched in stable 

compounds (e.g., soil with long history of low residue return after harvest, silt+clay fraction 

(von Lützow et al., 2007), or a chemically resistant fraction (Zimmermann et al., 2007b). The 

third objective was to develop an innovative approach to combine the use of FTIR-EGA and 

in situT DRIFTS to provide a theoretical molecular based framework for deconvolution of 

different components of the evolved gas thermogram. 
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3.3  Materials and methods 

3.3.1 Organic compounds for experimental testing 

Pure, reagent grade glucose (anhydrous, BDH Chemicals Ltd, Poole, UK), xylan (Sigma-

Aldrich Chemie, Munich, Germany), and tannic acid (Carl Roth GmbH, Karlsruhe, Germany) 

were compared to gain initial information on thermally evolved CO2 of different organic 

substances in the absence of any mineral influence. These substances were chosen as they 

vary in their chemical structure, ranging from a simple sugar in glucose to the more complex 

polyphenol type structure of tannic acid, and to test the effect of a dilution with preheated 

quartz sand (1:100) on CO2 evolution to optimize combustion conditions. 

3.3.2  Soils 

Soil samples were from three different sites in Germany. The first site was the Static 

Fertilization Experiment, Bad Lauchstädt, Germany (51°24' N, 11°53' E). Archive soil 

samples were taken from the years 1956, 1992, and 2004 of the treatments of farmyard 

manure (FYM, 30 t ha
-1

 every second year), and NPK (mineral) fertilizer (123, 30 and 30 kg 

ha
-1

yr
-1

 N, P and K, respectively), combination of both (FYM+NPK, 30 t ha
-1

 farmyard 

manure every second year and 103, 6 and 25 kg ha
−1

yr
-1

 N, P and K, respectively as mineral 

fertilizers), and a control (CON) to examine how long-term fertilizer treatments affect SOM 

properties and thermal characteristics of the bulk soil. The experiment has been running since 

1902 under a rotation of winter wheat, potatoes, spring barley, and sugar beets. Soil samples 

were taken in the fall following harvest of winter wheat from a depth of 0 to 30 cm. The soils 

were classified as Chernozems (IUSS Working Group WRB, 2007). Bulk mineralogy (<2 

mm) is predominantly quartz with lesser amounts of feldspars and micas (Dreibrodt et al., 

2002). More information about the experiment can be found in (Körschens et al., 1994) and 

Table 1. The second study site (48°55.7' N, 8°42.2' E) was in the vicinity of Pforzheim, 

Germany, in the Kraichgau region, which is characterized by loess parent material and 

intensive agriculture. Soils sampled were classified as Cambisols (IUSS Working Group 

WRB, 2007) with bulk mineralogy a mixture of quartz, feldspars, and micas. The third site 

(48°31.7' N, 9°46.2' E) was near the village of Nellingen, Germany, in the Swabian Alb. The 

Swabian Alb soils were formed from limestone residuum and also classified as Cambisols 

(IUSS Working Group WRB, 2007) with a similar mineralogy as the Kraichgau soil. The 

crop rotation in the fields of both areas typically consists of winter wheat, maize, and oilseed 

rape. In both the Kraichgau and Swabian Alb sites, two fields were selected with three plots 
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each with a subplot sampled in the vegetation (winter wheat and maize in the Kraichgau, 

winter wheat and oil seed rape in the Swabian Alb) and a bare fallow subplot which was kept 

clear of vegetation during the experiment by hand pulling and periodic spot spraying of 

glyphosate. The fallow plots were used to investigate the turnover of SOM without fresh 

organic inputs such as roots, aboveground crop residues, and manure/slurry. Soil samples 

were taken one month after the establishment of the bare fallow subplots and in adjacent 

vegetated subplots at the end of May to beginning of June 2009. Soil samples for 

fractionation (Kraichgau and Swabian Alb) and thermal analysis (all three sites) were air-

dried and made to pass a 2 mm sieve. Visible roots and plant residues were removed prior to 

analysis. The mean annual precipitation and elevation gradients, from lowest to highest, are 

Bad Lauchstädt (483 mm), Kraichgau (780 mm), and Swabian Alb (962 mm) (Table 1). 

Mean annual temperature is nearly the same in the Kraichgau and Bad Lauchstädt sites (9.1 

and 8.8°C, respectively), but more than two degrees lower in the Swabian Alb (6.7°C). The 

clay percentage was highest in soils of the Swabian Alb site (38%) and lowest in those of the 

Kraichgau site (18%).   

 

Table 1.  Study site characteristics. 

Study Site Location 

MAP
1
/ 

mm 

MAT

/     

°C Soil  

Elevation

/ MASL pH 

Clay

/ % 

Bad 

Lauchstädt 

N 51° 24', E 

11° 53' 483 8.8 

Haplic 

Chernozem 113 6.6 21 

Kraichgau 

N 48° 55.7', E 

8° 42.2' 780 9.1 

Cambisol/Reg

osol 232 6.7 18 

Swabian 

Alb 

N 48° 30', E 

9° 42'  962 6.7 Cambisol 686 6.5 38 
1
 MAP-mean annual precipitation, MAT-mean annual temperature, soil-FAO classification,  

MASL-meters above sea level. 

 

 

 

3.3.3 Fractionation  

The soil fractionation method was modified from (Zimmermann et al., 2007a). Briefly, 30 g 

of <2 mm soil was made up to 150 ml with deionized water and sonified for two minutes at 
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30 J s
-1

. The mixture was poured onto a 63 µm sieve and gently sieved until water passing 

through the sieve was clear. The <63 µm portion was collected and dried at 40°C overnight to 

yield the silt and clay (Si+C) fraction. Before drying the bulk, moist Si+C fraction, 1 ml of 

0.01 M calcium chloride solution for flocculation was added to a 20 ml subsample of the 

suspension and centrifuged for 15 min at 3000 x g. The clear supernatant was taken as 

extractible OC. The fraction remaining on the 63 µm sieve was transferred to a 10 ml test 

tube and 5 ml of 1.8 g cm
-3

 density sodium polytungstate (SPT) solution was added, mixed, 

and centrifuged for 15 min at 3000 x g. The fraction floating on top of the SPT was poured 

off and 4 ml SPT was added to the remaining fraction, mixed, and centrifuged again to 

remove any remaining light fraction material. The floating material yielded the particulate 

organic matter (POM) and the heavy material yielded the sand and >63 µm stable aggregates 

(Sa+A) fraction. The separated fractions were rinsed with deionized water and dried at 40°C. 

A sub-sample of the silt and clay fraction was combined with 10 ml sodium hypochlorite and 

placed in a water bath at 95°C for 15 min (Anderson, 1963) to speed up the partial oxidation 

of the labile organic matter. The mixture was centrifuged for 8 min at 200 x g, decanted, and 

the oxidation, centrifugation, and decanting steps repeated twice. Finally, the residue was 

rinsed with deionized water and dried at 40°C to yield a resistant organic carbon (rSOC) 

fraction. Two aliquots of each soil sample were fractionated separately. 

Total carbon (TC) of bulk soil and soil fractions were measured by dry combustion. 

Carbonate content of bulk soils was measured by the HCl gasometric method (Scheibler 

method) (Schlichting et al., 1995), while carbonates in the SOM fractions were destroyed by 

fumigation with hydrochloric acid (Harris et al., 2001). Bulk soils and fractions were then 

measured for TC by dry combustion with a Vario-EL III elemental analyzer (Elementar, 

Hanau, Germany).  

3.3.4  Incubation experiment 

Field moist samples from the Kraichgau and Swabian Alb sites’ vegetated plots were sieved 

to <4 mm and stored at 4°C. One kg moist soil was transferred to 2.5 l glass jars and 

incubated in a dark, climate controlled room at 20°C for 490 days.  The lids to the jars were 

left slightly open to enable gas exchange, but to prevent rapid drying. Additionally, a 100 ml 

beaker of deionized water was placed in the jars for better moisture retention. Periodically, 

deionized was added to the soils to keep the soil moisture content at 50% of field capacity.  
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Additionally, at the beginning of the experiment, two 20 g moist weight replicates were taken 

from each field sample, sieved to 2 mm, adjusted to 50% of field capacity and placed in a 

Respicond IV automated respirometer (Nordgren Instruments, Bygdeå, Sweden) for the 

continuous measurement of CO2 evolution during 44 days at 20°C (the same temperature as 

the climate controlled room). At the end of the 44 day period, the incubation temperature was 

increased to 25°C (standard temperature for microbial biomass determination) and, after 

stabilization of respiration, a 1:3 (w:w) glucose and talc mixture was added to measure 

(substrate-induced) microbial biomass (Anderson and Domsch, 1978). A pre-test was done 

with varying amounts of glucose mixture, with the maximum respiration response being 

~0.16 g for Kraichgau and ~0.32 g for Swabian Alb, respectively.  

3.3.5  FTIR-EGA method 

Setup of FTIR-EGA thermal chamber  

For measuring thermally evolved gases, a high temperature heating system was utilized in 

conjunction with a Bruker Tensor 27 (Bruker Optik GmbH, Ettlingen, Germany) infrared 

spectrometer. The high temperature reaction chamber (HTC) (Harrick Scientific Products, 

Pleasantville, NY, USA) and with an integrated sample holder which could hold 

approximately 50-70 mg of soil sample and was equipped with a cartridge type heating 

element and a K-type thermocouple. The HTC was interfaced with an automatic temperature 

controller (Harrick Scientific Products, Pleasantville, NY, USA) with an integrated 

temperature/process controller (Watlow Winona, Minnesota, USA) for programmed heating 

rates and set-point temperatures. The HTC was closed by a gas tight dome with a high 

temperature O-ring. The dome had three windows, two made from potassium bromide to 

enable diffuse reflectance measurements (DRIFTS) of the soil, while the third window was 

made from quartz glass. The approximate internal volume of the heating chamber with 

installed dome was 20 ml. In the gas measurement mode (FTIR-EGA), the heating chamber 

was linked via a stainless steel Swagelok system (Swagelok-Stuttgart GmbH, Reutlingen, 

Germany) to a variable long path gas cell (Bruker Optik GmbH) which was placed in the 

accessory chamber of the Tensor 27 spectrometer (Fig. 1a). In the gas transfer line, 

immediately after the heating chamber, there was a water trap of magnesium perchlorate and 

a sintered metal filter (2 µm) to prevent any particulate matter from reaching the gas cell and 

to act as a heat sink. The gas cell had a volume of 136 ml and a path length of 1 m.   
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Figure 1. Schematic of experimental setups. (a) FTIR-EGA system: 1) synthetic air

 purge/carrier gas, 2) pressure regulator and flow gauge, 3) automatic temperature

 controller, 4) high temperature reaction chamber with potassium bromide (KBr)

 windows and integrated sample cup, 5) recirculating cooling water, 6) glass tube with

 magnesium perchlorate (Mg(ClO4)2) water trap, 7) sintered metal particulate trap, 8)

 variable path length gas cell, 9) FTIR spectrometer). (b) In situT DRIFTS system: (1)

 infrared source, 2) diffuse reflectance chamber, 3) globular mirror, 4) high

 temperature reaction chamber with potassium bromide (KBr) windows and integrated

 sample cup, 5) detector. Dashed lines indicate source infrared beam; dotted lines

 indicate diffusely reflected infrared beam. 
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Taking into consideration the range of C contents of the samples to be analyzed (0.13% being 

the lowest in the NaOCl oxidized silt+clay fraction to 48% in tannic acid) for this study, the 

state conditions of purge flow rate, sample size, heating rate, infrared spectrometer scan rate, 

and mid-infrared wave number integration range were optimized (see supplement figures S1-

S4). This optimization was necessary to quantitatively determine the mid-infrared 

spectrometer signal response to total C amount, minimize secondary reactions, and to ensure 

similar heat transfer rates from the heating element to the sample, as the shape and 

distribution of the evolved gas were to be used as additional parameters to link to SOM 

properties. 

After the pre-test the following procedure was adopted for the FTIR-EGA measurements. A 

scan was recorded every 4 seconds, with a resolution of 8 cm
-1

. Synthetic air was used as the 

purge and carrier gas of the system with a flow rate of 15 L hr
-1

. The chamber was purged for 

5 minutes after introducing the sample. Additionally, a baseline was taken before the 

beginning of each analysis in order to zero the signal in the gas cell. An optimized heating 

rate of 68°C min
-1

 (see section below) and set-point temperature of 700°C were used. The 

set-point temperature was reached after 10 minutes and held for another 20 minutes, which 

resulted in a total of 400 individual FTIR scans. After pretesting, in which it was found that 

CO2 evolution ended after a shorter time duration, the final number of scans taken was 

reduced to 300 for a total analysis time of 20 minutes.  

In the present experiment, lower heating rates were also tested (10 and 28°C min
-1

), but were 

found to result in an increase in the formation of secondary reaction products during heating, 

as shown by in situT DRIFTS (see Figure S3). Heating rates >68°C min
-1

 resulted, however, 

in non-linear increases in temperature and an overshoot of the final set point temperature. 

After the heating rate was set, the purge gas flow rate was adjusted in order that the 

maximum absorbance of the CO2 peak (2400 to 2200 cm
-1

) evolution was <2.5 absorbance 

units (A.U.). If the absorbance is >2.5 A.U., then there may not be a linear relationship 

between absorbance and the content of the compound of interest (Conzen, 2003). A relatively 

high purge rate of 15 L hr
-1 

was needed in order to minimize retention time in the gas cell due 

to the large volume (136 mL). The scanning or wavenumber resolution of 8 cm
-1

 was found 

adequate, as the main gas of interest, CO2, has a relatively broad spectral absorbance range 

(100 wavenumbers) and does not require a very high resolution. The time in between each 

scan was first set at 40 seconds as this was the calculated time to purge the entire system, but 

was found to be too coarse a measurement interval, especially for rapid increases in CO2 
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evolution. A scan every 4 seconds gave a better time resolution of the rate of change with 

respect to time of CO2 evolution. It was found that if any of these state variables were 

changed (i.e., purge rate, scan time, resolution, or heating rate), then a new calibration curve 

would need to be constructed to quantify CO2 evolution. 

3.3.6 Deriving FTIR-EGA thermal characteristics  

The individual scans from a single FTIR-EGA analysis were then assembled into a single file 

or thermogram for further processing using the spectral processing software OPUS v 6.5 

(Bruker Optik GmbH). The spectra were baseline corrected using the concave rubberband 

method with 64 baseline points and 10 iterations. Integration was performed on the baseline 

corrected spectra between 2400 to 2200 cm
-1

, following equation 1: 

1

1

2400

2200

)(

cm

cm

peak vAArea           (1) 

 where A(v) is the absorbance value of the investigated wavenumbers. The cumulative peak 

area was calculated by equation 2: 

300

1

)(
j

peakcum AreajArea          (2) 

where j is the scan number, which was taken every 4 seconds for a total of 300 scans, and 

j(Areapeak) is the Areapeak at scan j. The presence of a linear response of cumulative peak area 

found by equation 2 to the theoretical CO2 yield of the thermal decomposition of a sodium 

bicarbonate standard was checked to establish a quantitative relationship.   

Each CO2 evolution thermogram was exported from OPUS and further processed in Excel 

(Microsoft) to normalize Areapeak to analyzed sample weight: 

)(mgweightsample

Area
Area

peak

wt .        (3) 

Furthermore, different characteristics of the nature of CO2 evolution were calculated 

including normalizing Areapeak to C content: 

contentCxweightsample

Area
Area

org

peak

C
  

       (4) 
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where Corg content is the total organic C content of the sample as measured by elemental 

analyzer minus any carbonates. 

The temperature of maximum CO2 evolution was identified with the following equation: 

)(max 700

25max2 peakAreafCO ,       (5) 

during the heating from 25 to 700°C.  

Due to the large range in C contents of samples analyzed (0.1 to 48% OC), the sample weight 

was adjusted to fit into a range from 0.1 to 2.5 mg OC content in order to stay within the 

linear range of the calibration curve (Fig. 3). In the case of POM, which had between 26-32% 

C by weight, the above C content would only result in a maximum sample weight of 6 mg as 

compared to 30 to 50 mg of the other fractions and bulk soil. Thus, due to the small sample 

weight and the small volume occupied within the heating chamber, a 1:50 dilution was made 

with ball-milled quartz sand, which had previously been heated to 600°C overnight to remove 

any C impurities. This dilution ratio was used to gain roughly the same volume of material as 

was analyzed with the bulk soil and lower C content fractions and to result in C amounts 

between the 0.1 to 2.5 mg range. 

 

Figure 3. CO2 calibration curve of the FTIR-EGA with NaHCO3. 

 

3.3.7. In situT DRIFTS method 

To follow the molecular vibrational changes of the soil sample during heating, a Praying 

Mantis diffuse reflectance (DRIFTS) chamber (Harrick Scientific) was fitted in the Tensor 27 
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(Bruker Optik GmbH) and the HTC (Harrick Scientific) placed inside the DRIFTS chamber 

to record absorbance measurements from 4000 to 400 cm
-1

 of the bulk soil or SOM fraction 

surfaces during heating, thus referred to in this paper as in situT DRIFTS (Fig. 1b). The 

heating conditions and purge rate remained the same as in the FTIR-EGA mode. A scan was 

taken every 4 seconds at a resolution of 4 cm
-1

. Potassium bromide (KBr) was used to take a 

background scan before measuring the sample. Additionally, the POM fraction was diluted 

1:50 with KBr for analysis. Identification of important wavenumbers corresponding to OM 

functional groups was done based on the assignments by Demyan et al. (2012) and also by 

inspecting which wavenumbers were changing in intensity during the heating experiment. As 

previously mentioned, not only is OM thermal degradation ongoing during this temperature 

interval (200-700°C) but also water loss and mineral changes (silica structure) occur. The 

known OH stretching area at 3400 to 3000 cm
-1

 was used to monitor changes in water loss 

and was compared to behavior of other bands to determine if there was also an influence of 

water loss on the decrease of a peak instead of OM combustion. Collected spectra were 

baseline corrected as described above and smoothed using a running average with a 15 point 

window.  

3.3.8 Data combination of FTIR-EGA and in situT DRIFTS for curve fitting 

The Areawt outputs from a single FTIR-EGA analysis (300 readings) (Eq. 3) of bulk soil were 

then subjected to a curve fitting procedure. First, changes in molecular vibration intensities  

related to specific OM compounds were followed during the heating process between 200 

and 700°C using in situT DRIFTS. A decrease in the identified molecular vibrational peaks 

during this period were assumed to coincide with the combustion of OM. Points of maximum 

decrease were identified by using 100% of the value at 200°C (start of thermal degradation of 

OM) and calculating the rate of change between each measurement point. These points of 

largest decrease were then taken as center points for the fitted components of the peak fitting 

procedure of the FTIR-EGA evolved CO2 of the bulk soil. A series of constraints were made 

for the curve deconvolution routine based on the results of the in situT DRIFTS results. 

Temperatures of maximum decrease in intensity of a vibrational organic functional group 

above 200°C were taken to be the peak of an individual “component” of the FTIR-EGA CO2 

profile. The most rapid decreases of the peak intensities were found at the following 

temperatures: C-O vibrations (2200-2000 cm
-1

) at 320°C and taken as 1
st
 peak, 2

nd
 peak at 

380°C of the C-H vibrations (3000-2800 cm
-1

), 3
rd

 peak COO-/C=C (1620 cm
-1

), and 4
th

 peak 
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at 1525 cm
-1

 (C=C). An iterative least squares approach was used for the curve fitting of the 

CO2 evolved gas profiles using the software PeakFit version 4.12 (Systat Software, San Jose, 

California, USA). Additionally, the following rules were followed during FTIR-EGA peak 

fitting: peaks were placed first where there was a visible peak or a change in the rate of 

increase or decrease of CO2 evolution as determined by 2
nd

 derivative, peaks were then added 

at the local maximum of the residuals to improve the R
2
 and decrease the standard error (SE). 

The temperatures of these peak positions were again verified with the results from the in situT 

DRIFTS given above to justify the presence of a specific component at a certain temperature. 

The residuals of the final fit were also inspected for normality and heteroscedasticity. A 

fitting procedure was considered completed when  R
2
 > 0.999, SE < 0.005 and there was a 

homoscedasticity of residuals. The peak fitting was repeated three times on a single analytical 

replicate to ensure stability or robustness of the fit and to determine if the fit was the most 

likely combination of solutions based on the data. 

Analysis of variance (significance at P <0.05) was used to compare CO2max among the 

treatments at the Bad Lauchstädt site. A mixed modeling approached was used to compare 

the CO2max of the bulk soils and fractions in Kraichgau and Swabian Alb areas. The factors 

were site and fraction, with plot location as the random error.  

3.4   Results  

3.4.1  Soil characteristics 

Results of total C elemental analysis revealed that the soils of Swabian Alb had nearly double 

the TOC content (18.33 mg C g
-1

 soil) compared to the Kraichgau site (9.17 mg C g
-1

 soil) 

(Table 2). The TOC contents ranged from a low 14.8 in the CON to 21.2 mg C g
-1

 soil in the 

FYM+NPK treatment. Carbon contents of the fractions were generally twice the amount in 

the Swabian Alb as compared to the Kraichgau with the exception of extractible SOM, which 

was only 0.04 mg C g
-1

 soil in the Kraichgau compared to 0.36 mg C g
-1

 soil in the Swabian 

Alb. Additionally, microbial biomass C as measured by the SIR method of incubated soils 

was more than twice as much in the Swabian Alb site (0.59 mg C g
-1

 soil) as compared to the 

Kraichgau site (0.24 mg C g
-1

 soil).  
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Table 2.  Mean values (± standard errors) of organic carbon (OC) of bulk soil and

 fractions from the sites of Bad Lauchstädt, Kraichgau, and Swabian Alb based

 on oven dried (105°C) basis. All values are mg C g
-`1

 bulk soil. 

 
    

Soil  

parameter
a
 Site 

 Kraichgau Swabian Alb Bad Lauchstädt 

     FYM+NPK FYM NPK CON 

Bulk soil 9.17 (0.24) 18.33 (1.16) 22.1(1.1) 20.4(0.8) 16.5(0.3) 14.8(0.3) 

Extractible 

SOM 0.04 (0.00) 0.36 (0.02) nd
b
 nd nd nd 

POM 0.84 (0.07) 1.34 (0.14) nd nd nd nd 

Sa+A 0.42 (0.02) 0.63 (0.09) nd nd nd nd 

Si+C 7.92 (0.14) 13.31 (0.59) nd nd nd nd 

rSOC 1.38 (0.05) 2.94 (0.24) nd nd nd nd 

Cmic 0.24 (0.04) 0.59 (0.07) nd nd nd nd 

C lost
4 

 0.9 (0.01)  1.9 (0.07) nd nd nd nd 

a Bulk soil <2 mm, Extractible SOM-dissolved SOM captured during wet sieving of silt 

andclay from sand and stable aggregates, POM-sand fraction < 1.8 g cm
-3

, Sa+A sand 

fraction > 1.8 g cm 
-3

, Si+C < 63 µm, rSOC < 63 µm treated with hot sodium hypochlorite, 

Cmic-microbial biomass as measured by substrate induced respiration method (Andersen and 

Domsch, 1993), 
b 

Not determined. c Carbon lost over 490 day incubation at 20°C and 50% 

water holding capacity. 

 

3.4.2  FTIR-EGA derived properties of organic substances  

In order to quantify evolved CO2 from the thermal reactions, sodium bicarbonate was used as 

a standard due to its known stoichiometric thermal decomposition (Janković, 2009). An 

example of a single mid-infrared gas cell scan of evolved gas from NaHCO3 decomposition 

can be found in Fig. 2, showing the three main vibrational modes of CO2 (in order of 

decreasing intensity) at 2400-2200, 715-615, and 3760-3657 cm
-1

. Absorbance values of >2.5 

of the main CO2 peak at 2400-2200 cm
-1

 resulted in a non-linear response of Areacum and 

calculated C evolved from the NaHCO3 (see Figure S4). Thus, for the heating rate of 68 °C 

min
-1

 and reaction chamber purge rate of 15 L hr
-1

, a C weight between 0.1-2.5 mg could be 

analyzed and resulted in a linear response (R
2 

= 0.99) (Fig. 3). The three pure substances (i.e., 

glucose, xylan, tannic acid) had very different FTIR-EGA CO2 thermograms, such as number 
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of peaks, peak position and general shape of the curve of CO2 evolution (Fig. 4). In the 

undiluted samples (Fig. 4a), xylan was found to have the first CO2 evolution peak at 320°C, 

one at 500°C, and the highest CO2 temperature peak at 680°C. Undiluted glucose had a 

prominent peak at 442°C and a shoulder at 537°C. The first two CO2 peaks of undiluted 

tannic acid were present at 380 and 450°C, and a final peak at 660°C. To test if there was any 

effect on sample volume to FTIR-EGA derived thermal characteristics, a dilution of 1:100 

(w/w) with preheated quartz sand was done. This dilution resulted in relatively the same 

volume of heating chamber occupied compared with the bulk soils for the same quantity of 

OC. The dilution resulted in shifts of the peak temperatures and also the peak heights relative 

to C content. Xylan still had the earliest CO2 peak, but that was shifted to a higher 

temperature at 346°C and a second peak at 518°C. Glucose had only one CO2 peak at 380°C. 

Tannic acid had two poorly resolved peaks, one at 410°C and a final peak around 577°C. As 

a percentage of total evolved C, 80% was recovered upon reaching 700°C (10 minutes) from 

undiluted samples, while in the diluted samples, 90% was recovered.  

 

Figure 2. Single scan of online evolved gas as measured by the FTIR-EGA system, with

 corresponding CO2 peaks. 
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Figure 4. FTIR-EGA CO2 thermograms of three selected substances. A) neat samples, B)

 diluted 1:100 with preheated, ball-milled quartz sand. * Normalized intensity is the

 integrated area of the CO2 peak from 2400 to 2200 cm
-1

 normalized to C content of

 the sample. 

 

3.4.3  FTIR-EGA derived properties of soils and fractions 

The CO2max varied both by long-term fertilizer application in the case of the Bad Lauchstädt 

soils (Table 3) and also when comparing by site (Bad Lauchstädt, Kraichgau, Swabian Alb) 

(Figure 5). In the Bad Lauchstädt soils, the CO2max increased from 419°C in the FYM+NPK 

treatment to 428°C in FYM and 473°C in the NPK and control soils. Compared to the TOC 

contents (Table 2), which were only significantly affected by FYM application, the FTIR-

EGA method also indicated a difference between the FYM+NPK and FYM treatments (Fig 

6). When comparing soils from the three sites (Fig. 5), the peak CO2 evolution not only had 



79 

different maximum heights for the three soils, but also different temperatures. The average 

for the Swabian Alb site soils had the lowest CO2max at 384°C, while that of the Kraichgau 

soils was at a significantly higher (P <0.05) temperature (392°C). The CO2max average of all 

Bad Lauchstädt samples was much later at 447°C (P <0.05), even factoring in the effect of 

long-term manure treatment. The CO2 thermograms further revealed that while the Kraichgau 

and Swabian Alb soils had a similar CO2 evolution pattern with a rapid increase in CO2 

evolution between 275 to 380°C (Figure 5), the Bad Lauchstädt soils had a much broader 

peak covering a range of approximately 80°C (Figure 5). Compared with the results from the 

elemental analyzer, total C contents as measured by FTIR-EGA were underestimated on 

average by 7%.  

 

Table 3. FTIR-EGA measured peak temperature of CO2 evolution during heating from 25 to

 700°C of soils from the Static Fertilization Experiment, Bad Lauchstädt (average 

 years 1956, 1992, 2004). Values in parentheses are standard errors. Different letters

 within each column indicate a significant difference (P < 0.05) among the four

 treatments.  

Treatment 

Peak 

Temperature/ °C 

FYM+NPK
1 

419 (3)a 

FYM 428 (2)b 

NPK 473 (2)c 

Control 473 (2)c 
1
 FYM+NPK (farmyard manure and mineral fertilizer), FYM (farmyard manure), NPK 

(mineral fertilizer), Control (no fertilizer inputs). 
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Figure 5. FTIR-EGA average CO2 thermograms of soils from three different agroecological

 sites (Bad Lauchstädt, Kraichgau, Swabian Alb). * Normalized intensity is the

 integrated area of the CO2 peak from 2400 to 2200 cm
-1

 normalized to weight of the

 sample.    

 

Figure 6. FTIR-EGA CO2 thermograms of bulk soil from the Static Fertilization Experiment,

 Bad Lauchstädt heating from 25 to 700°C at 68°C min-1 under synthetic air purge.

 Treatments: FYM+NPK (farmyard manure and mineral fertilizer), FYM (farmyard

 manure), NPK (mineral fertilizer), Control (no fertilizer inputs). * Normalized

 intensity is the integrated area of the CO2 peak from 2400 to 2200 cm
-1

 normalized to

 weight of the sample.    
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Soils measured after incubation for 490 days showed a decrease in thermally evolved CO2 

(Figure 7) and a shift in the CO2max. The difference CO2 thermograms (Figure 7C) taken by 

subtracting the two thermograms show from which temperature regions C has been released 

during the long-term incubation. The maximum difference between pre- and post-incubation 

evolved CO2 was at 360 and 378°C for the Kraichgau and Swabian Alb, respectively, with 

CO2max shifted to a slightly higher temperature (increase of 4°C).   

 

Figure 7. Effects of 490 day incubation on thermally evolved CO2 thermogram. A)

 Kraichgau soils, B) Swabian soils, C) difference when subtracting thermogram of soil

 at beginning of incubation from thermogram at the end of the incubation. *

 Normalized intensity is the integrated area of the CO2 peak from 2400 to 2200 cm
-1

 normalized to weight of the sample. 
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The temperature of the individual CO2 evolution peaks of SOM fractions separated from the 

bulk soil of the Kraichgau and Swabian Alb sites were generally found to be the same among 

the sites, with the exception of the second peak of rSOC fraction, which was much higher at 

the Kraichgau site (482°C) compared to the Swabian Alb site (392°C) (Table 4, Figure 8). 

The largest differences in relation to the bulk soil were the rSOC fractions, which had two 

well defined peaks and the POM, which had a first poorly defined peak or “shoulder” around 

380°C, the same temperature as the bulk soil, but then a main peak much later compared to 

the bulk soil at 477°C (Figure 8). C contents of the fractions as estimated by FTIR-EGA 

compared with the elemental analyzer were 7% overestimated in the case of Sa+A and rSOC, 

8% underestimated in Si+C and 20% underestimated in the case of POM.  

 

Table 4. Mean values (± standard error) for soil (Kraichgau and Swabian Alb) at the

 temperatures (°C) of peaks or “shoulders” of thermally evolved CO2 of bulk soil and

 SOM fractions as measured by FTIR-EGA. Lowercase letters indicate significant

 differences (P < 0.05) between peak temperatures in a row (among the sites), different

 letters indicate significant differences (P < 0.05) within a site, among fractions.   

 Site 

 Kraichgau Swabian Alb 

 200-350°C 350-450°C 450-550°C 200-350°C 350-450°C 450-550°C 

fraction       

Bulk soil
a,b  

392(2)Aa   384(2)Ab  

POM
a
 *   477(5)B   476(6)B 

Sa+A
a
  362(1)A   369(7)A  

Si+C
a 

 400(1)A   399(4)A  

rSOC
a
 265(1)C   482(17)Ba 265(5)C   392(15)Ab 

1
 Bulk soil <2 mm, POM-sand fraction <1.8 g cm

-3
, Sa+A sand fraction >1.8 g cm 

-3
, Si+C 

<63 µm, rSOC <63 µm treated with hot sodium hypochlorite. 
2
 No value indicates that a peak 

was not present in these temperature regions.  

* POM fraction was diluted 1:50 with preheated ball-milled quartz sand for thermal analysis 
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Figure 8. FTIR-EGA CO2 thermograms of bulk soil and fractions heating from 25 to 700°C

 at 68°C min-1 under synthetic air purge from the (a) Kraichgau and (b) Swabian Alb

 sites. Bulk soil <2 mm, POM-sand fraction < 1.8 g cm
-3

:
 
fraction diluted 1:50 with

 preheated ball-milled quartz sand for thermal analysis, Sa+A sand fraction > 1.8

 g cm
-3

, silt+clay < 63 µm, rSOC < 63 µm treated with hot sodium hypochlorite. *

 Normalized intensity is the integrated area of the CO2 peak from 2400 to 2200 cm
-1

 normalized to weight of the sample. 

 

3.4.4  In situT DRIFTS 

In situT thermal DRIFTS measurements showed changing vibrational intensities which 

depended on the heating chamber temperature and the functional groups being studied. 

Certain organic functional group associated vibrations (i.e., aliphatic, carboxylate, aromatic) 

differed in their temperature sensitivity shown by specific temperature ranges of changing 

vibrational intensity (Figures 9-11). In the bulk soil samples, consistent changes were found 

for all three sites with regard to the C-H and -COO
-
/C=C vibrations.  The C-H vibrations 
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consistently decreased starting 220 to 250°C and accelerating rapidly around 350°C, while 

the -COO
-
/C=C vibrations began to decrease around 380°C with a maximum decline around 

440°C. Between 300 to 370°C, there was a drastic decrease in C-H vibrations while at the 

same temperature range there was a slight increase in C=C/-COO vibrations and a stronger 

increase in C=C vibrations. At approximately 400°C, the C=C/-COO vibrations decreased 

and after 430°C the C=C vibrations decreased. Vibration intensities of wavenumbers below 

1000 cm
-1

 were rather difficult to interpret due to the lack of clear trends, high variation from 

one scan to the next, and absorbance values of >2.5 A.U., especially at temperatures >500°C.      

 

Figure 9. In situT DRIFTS of bulk soil samples from Bad Lauchstädt, Kraichgau, and

 Swabian Alb of a) C-H (2930 cm
-1

) vibrations and b) C=O/C=C (1620 cm
-1

)

 vibrations. 

 

Differences among the fractions via in situT DRIFTS is illustrated in Figure 10 for the C-H 

and -COO
-
/C=C vibrational groups as an average of the Kraichgau and Swabian Alb samples. 

The behavior of the 2930 cm
-1

 peak is consistent among the fractions with the exception of 
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the rSOC fraction from the Kraichgau site. After an initial slight decrease between 200 to 

250°C, the decrease in intensity of the 2930 cm
-1

 peak accelerated after 280°C with the 

decrease in intensity ending around 450°C. The POM fractions showed an increased in 

intensity after 550°C, until 700°C. The 1620 cm
-1

 peak was found to be relatively stable from 

200 and 220°C and then increase in intensity from 280°C to approximately 360°C with some 

variation between fractions. The onset of decrease was around 380°C, the same as for the 

bulk soils.   

 

Figure 10. In situT DRIFTS the bulk soil and fractions of a) C-H (2930 cm
-1

) vibrations and

 b) C=O/C=C (1620 cm
-1

) vibrations. Average of Kraichgau and Swabian Alb sites.  

 

3.4.5 Peak fitting of FTIR-EGA CO2 gas thermograms 

With the temperatures of maximum change of different functional groups as measured by in 

situT DRIFTS analyses as the first step for peak placement and determining the number of 

peaks followed by an examination of the shape of the evolved CO2 thermogram, a peak 

fitting of the FTIR-EGA CO2 gas profiles from bulk soils resulted in four different peaks or 
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“fitted components” (Figure 11). Component 1 corresponded to the decrease of the C-OH 

vibration and the C-H vibration. Component 2 was mainly the C-H vibration, while 

component 3 was –COO/C=C vibrations. Finally, component 4 corresponded to C=C 

vibration and also again C-OH vibrations. The main effect in the Bad Lauchstädt experiment 

was seen between the two FYM treatments compared to the two without FYM (Table 5). The 

temperature of the center of the first component was at 298 and 301
o
C for FYM+NPK and 

FYM, respectively, while at 293 and 292
o
C for NPK and CON, respectively. The relative 

contribution of fitted component 1 was similar between the treatments (3.3 to 4.2%). Larger 

differences were found with components 2 and 4 between the treatments. For example, 

component 2 was representative of 25 and 23% of the evolved CO2 for the FYM+NPK and 

FYM treatments compared to 18.8 and 18.6% in the non-FYM treatments. The opposite trend 

was seen with component 4, and which was the largest pool, where the FYM treatments had a 

lower share (43.3 and 45.1%) compared to the non-FYM treatements (49.1 and 49.2%).  
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Table 5. Temperature and relative contribution to total evolved CO2 of  fitted peaks/components  (± standard errors) from an iterative least

 squares approach of thermally evolved CO2 from 25 to 700°C (68°C min
-1

 heating rate) as measured by FTIR-EGA. Peak temperatures of

 the components were derived from relative changes of vibrational intensity of organic functional groups by in situT DRIFTS.   

         

 Site Component 1 Component 2 Component 3 Component 4 

 Temp/°C %
a 

Temp/ °C % Temp/°C % Temp/°C % 

BL FYM+NPK
2 

298 (2) 4.2 (0.1) 361 (2) 25.0 (1.8) 442 (2) 27.3 (1.1) 540 (3) 43.4 (0.7) 

BL FYM 301 (3) 4.4 (0.3) 367 (3) 23.0 (0.7) 446 (3) 26.9 (0.8) 547 (6) 45.1 (1.1) 

BL NPK 293 (1) 3.3 (0.0) 360 (0) 18.8 (0.4) 439 (1) 28.1 (0.7) 528 (5) 49.1 (1.0) 

BL CON 292 (2) 3.7 (0.2) 357 (1) 18.6 (1.3) 435 (1) 28.6 (2.5) 527 (5) 49.2 (1.6) 

Kraichgau 290 (2) 3.4 (0.2) 353 (1) 46.1 (0.6) 445 (1) 27.3 (0.4) 549 (2) 23.3 (0.6) 

Swabian Alb 289 (2) 4.7 (0.3) 344 (1) 35.3 (1.0) 432 (2) 33.9 (0.7) 541 (2) 26.1 (0.9) 
a
 Percent contribution of component to total evolved CO2. 

b
 BL – Bad Lauchstädt experiment; FYM+NPK – farmyard manure and NPK 

fertilizer, FYM – farmyard manure, NPK – NPK fertilizer, CON-control.
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Figure 11. Summary of qualitative changes in organic functional groups during heating as a

 guide to fitting components to quantitative evolved gas anlaysis: (a) In situT DRIFTS

 measurements of bulk soil from the Kraichgau site as a percentage of the vibrational

 intensity at 200°C to identify temperature of maximum change of functional groups.

 (b) Peak fitting with four components of evolved gas profile as measured by FTIR-

 EGA of bulk soil from Kraichgau site using previously identified temperatures of

 maximum change of functional groups. Statistics are from the goodness of fit of the

 four fitted components to the measured data. Reference lines 1 to 4 indicate the peak

 of the fitted components of the FTIR-EGA gas profile in 6b. * Normalized intensity is

 the integrated area of the CO2 peak from 2400 to 2200 cm
-1

 normalized to weight of

 the sample. 

 

As with the measured CO2max, the center of each fitted component was at a slightly lower 

temperature in the Swabian Alb compared to the Kraichgau soils. Component 1 had a peak 

center at almost the same temperature in both soils (i.e., Kraichgau, 290°C; Swabian Alb, 

289°C), but there was a nearly 10°C difference between the two sites regarding the second 
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and third components. Component 2 in the Kraichgau had a peak center at 353°C compared 

to 344°C in the Swabian Alb, while that of component 3 was at 445°C in the Kraichgau 

compared to 432°C in the Swabian Alb. Again, a similar but smaller difference was found for 

component 4 with its center at 549°C in the Kraichgau soils compared to 541°C in the 

Swabian Alb soils. The largest contribution to the total CO2 evolution was provided by 

component 2 (35-46%) for both soils. Component 1 was the smallest fraction, being slightly 

higher in Swabian Alb soils (4.7%) compared to Kraichgau (3.4%). Larger differences 

between sites were found for components 2 and 3 with 46 and 27.3% for the Kraichgau and 

35 and 34% for the Swabian Alb. Lastly, component 4 was larger in the Swabian Alb at 26% 

compared to 23% in the Kraichgau. 

3.5  Discussion 

3.5.1 Thermal stability of organic matter of soils and fractions 

Using the temperature of peak CO2 evolution as one indicator of thermal stability, the results 

from the three contrasting soils indicated that there may be a large portion of stable OM 

present in the Bad Lauchstädt soils given the large proportion of a high temperature 

component and its associative thermal behavior with aromatic-like structures. These findings 

are in agreement with what others have found during previous analyses of soils from Bad 

Lauchstädt by DTA and TGA (Leifeld et al., 2006), as well as pyrolysis-field ionization mass 

spectrometry methods (Leinweber and Schulten, 1993). This thermal stability may be due to 

the presence of very stable humus compounds formed within a Chernozem or the presence of 

black C (Eckmeier et al., 2007). The effect of long-term manure application was evident in 

the FYM+NPK and FYM treatments of the Bad Lauchstädt soils with a relative enrichment 

of thermally labile substances as indicated by a lower temperature of CO2max. It has been 

shown previously that in the control treatment relative to the FYM+NPK treatment there is a 

relative enrichment of C in the clay, heavy density fractions, and of aromatic functional 

groups in the bulk soil via specific DRIFTS peak areas at the expense of the more labile 

fractions (Demyan, et al., 2012). 

Further evidence of a link between FTIR-EGA results and dynamic changes of SOM quality 

was shown by the changes in thermal stability after 490 day incubation, which confirmed that 

ongoing microbial decomposition altered the thermal CO2 thermogram of the remaining 

SOM. Although, after a 490 day laboratory incubation experiment, the quality of lost C 

spanned the entire range of thermal stabilities, the maximum peak of C lost during incubation 



90  Ch 3 Combining FTIR-EGA system and in situT DRIFTS to study SOM in arable soils 

 

was slightly lower than the non-incubated soil CO2max. This indicated that the possible source 

of a large part of the respired C during incubation came from the Si+C fraction, which was 

also the largest fraction by weight in the bulk soil, and also had a similar peak temperature as 

compared with the bulk soil. While the effect of the 490 day incubation did shift the CO2max 

to a slightly higher temperature, the C loss was not confined to lower temperatures (below 

350°C), but was also evolved at higher temperatures indicating, some apparently labile 

compounds easily decomposable to microorganisms are quite thermally resistant, as shown 

for the pure substances. (Plante et al., 2009)1) also found that soils incubated for 588 days at 

35°C have a higher thermal stability, as indicated by the temperature at which 50% of the 

mass loss or energy loss occurred measured via TG/DSC. Using the same 50% as threshold, 

but with evolved CO2 via FTIR-EGA, our results showed an increase from 433 to 442°C after 

incubation. From these results, we could conclude that both CO2max and 50% evolved C loss 

as measured by FTIR-EGA were indicators of the relative stability of SOM in these soils.        

The thermal stability gradient of the SOM fractions did only partially follow their implied 

stabilities. There was a gradient in the mineral associated fractions tending from lower to 

higher thermal stability as shown by CO2max in the order Sa+A < bulk soil < Si+C but was not 

statistically different. The non-mineral associated POM did not fit into this relationship, as it 

had a higher peak temperature compared to the Sa+A, Si+C and bulk soil. As was shown 

with the pure substances, a high thermal stability was also found for components within xylan 

and tannic acid. These components are present in the form of hemicelluloses and 

polyphenols/lignins in relatively undecomposed plant residues having lost their labile 

compounds prior to sampling, as being the case with the analysed POM having been sampled 

seven months after last residue inputs. Dell’Abate et al. (2000) confirmed such changes in 

thermal stability during decomposition via DSC and TG measurements of compost in a 56 

day incubation observing an increase in the proportion of the higher temperature (450 °C)  

peak relative to the lower temperature peak (300 °C), indicating an enrichment in more 

thermally stabile humic substances. Others have also shown that there is a resistant POM 

fraction based on the size separation of >100 µm of <1.8 g cm
-3

 being more labile and 100 to 

53 µm of <1.8 g cm
-3

 being more stable (Cadisch et al., 1996). However, in our case this 

comparison may not be straightforward, as it was shown in this study that dilution with quartz 

sand changed the CO2max of POM. A similar observation was made by Rovira et al. (2000) 

who observed that mineral interferences in the change of thermal stability of pure residues 
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compared with residues mixed with red earth, even after subtracting the DSC curves of the 

unamended red earth from the DSC curves of the red earth mixed with residues.  

 

Sodium hypochlorite (NaOCl) is normally used to efficiently remove OM from soils and 

clays without greatly altering the clay mineral structure (Mikutta et al., 2005). Our FTIR-

EGA results indicated that the NaOCl treatment has greatly altered the nature of the Si+C 

fraction, as measured on the remaining residue (rSOC), so that a much less thermally stable 

peak evolved at relatively low temperature.  This may have been the effect of the complete 

dispersion of any microaggregates and also exchange of organic substances from the clay 

minerals. It was surprising that this relatively thermally labile pool had survived oxidation by 

the NaOCl. That may have been due to the fact that NaOCl does not completely attack 

aliphatic C compounds (Sleutel et al., 2009), which has been shown to have a lower thermal 

stability as compared to aromatic C (Schulten and Leinweber, 1999) and seems to lend 

evidence that physiochemical protection is playing a role in influencing the thermal stability 

of the Si+C fraction. This was also shown qualitatively in our in situT DRIFTS measurements 

of the bulk soils in which C-H vibrations decreased rather rapidly and at an earlier 

temperature compared to C=C vibrations. Due to the evident chemical alteration of the rSOC 

fraction by the NaOCl oxidation that has been used to isolate a supposedly very stable 

fraction, the thermal properties are greatly altered and this fraction may not be suitable for 

analysis by FTIR-EGA to infer biological stability.     

3.5.2 Allocation of thermally evolved carbon 

Using a novel approach of a peak fitting procedure, we were able to identify different “pools” 

of SOM with characteristic thermal signatures. This might lend evidence to link with 

functional properties such as used in SOM decomposition models. Through the peak fitting 

procedure, evolved C, as measured by the FTIR-EGA, was allocated into several peaks or 

fitted components. Additional support for obtained pool allocation results were that the 

centroid or maximum of each fitted peak was consistent among the three sites and that these 

peaks coincided with different maximum or near maximum decreases in vibrational 

absorbances. As measured by in situT DRIFTS, there was an initial slight decline in C-O, C-

OH, and C-H vibrations, then a strong decrease in C-H and continued decline in C-O 

vibrations, and finally a decline in C=C, lending evidence to different organic compounds 

being decomposed at different temperatures. Three main trends were seen in the changing 
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vibrational intensities over the heating experiment. First, at relatively low temperatures (200 

to 300°C) a decrease in intensity was found for the C-O and C-H vibrations. This was 

evidence for the breakdown of aliphatic groups and also carbohydrates. Secondly, at slightly 

higher temperatures the rapid decrease of C-H groups indicated the cracking of longer 

chained aliphatic compounds with an almost simultaneous increase in both C=O/C=C and 

C=C intensities. This clearly indicates the formation of secondary products such as more 

condensed aromatic structures, which was previously suggested during the heating under an 

inert atmosphere of brown coal (Murakami et al., 1997)(Murakami et al., 1997). Thirdly, 

there was a final decrease of both the C=O/C=C and C=C peaks at >400°C.  The lower 

temperature at which the C=O/C=C peak decreased relative to the C=C peak showed 

decarboxylation happening before the breakdown of the aromatic structures, which was also 

found by (Lu et al., 1997) via FTIR emission spectroscopy of humic substances. (Kiem et al., 

2000)) found a similar stability or depletion sequence in comparisons of long-term managed 

fallow treatments compared with fertilized treatments using 
13

C nuclear magnetic resonance 

and carbohydrate analysis. In the case of the increase in the “C-O” group at 2226 cm
-1

, this 

suggested the formation of nitriles as was earlier found in humic acid salts (Woelki and 

Salzer, 1995)as C≡N vibrations can also be present in this mid-infrared range. Additionally, 

via pyrolyis field ionization mass spectroscopy (Py-FIMS), (Sleutel et al., 2011)) shown that 

at <400°C combustion products are relatively enriched in lipids, carbohydrates, and peptides 

compared to >400°C where there was a greater proportion of alkyl-aromatics. Other previous 

work on Py-FIMS has led to the general molecular framework of three thermal classes: i) 

unbound undecomposed plant fragments relatively rich in aliphatics; ii) a thermally labile 

fraction containing N-containing compounds and carbohydrates associated with humified 

OM; and iii) thermally stable mineral bound OM (Schulten & Leinweber 1999). In the soils 

of the Bad Lauchstädt experiment, Mertz et al. (2005) found in the coarse clay fractions a 

general increase of thermal stability of pyrolyis compounds after 98 years of fertilizer 

deprivation compared to the full fertilized treatment, which would complement our results of 

increased thermal stability of the bulk soil in the CON treatment relative to the FYM+NPK 

treatment. In our experiment, the peak fitting results also showed an enrichment in the most 

thermally stable compounds in the non-FYM treatments as compared to the FYM-treatments. 

In the current study, the larger percentage of fitted component 1 in the Swabian Alb 

compared to the Kraichgau may be related to the slightly larger portion of labile C in the 

Swabian Alb site as measured by extractible C and microbial biomass. Additionally, the 
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larger percentage in the most thermally stable component, the 4
th

 component, in the Swabian 

Alb may have been a result of the higher clay content of the Swabian Alb compared to the 

Kraichgau soils. Further vibrational functional groups may be of interest and related to OM, 

but in our study it was found that the absorbance values of the wavenumbers <1000 cm
-1

, 

where there is a strong influence of mineral vibrations (Nguyen et al., 1991) increased during 

the entire heating procedure or were highly variable from one scan to the next, complicating 

interpretation. As the studied vibrational frequencies were selected based on the fact that they 

represent mostly organic and not mineral functional groups (Demyan et al., 2012), any 

changes in absorbance intensity due to mineralogical changes especially >540°C should have 

been avoided. This combined use of both in situT DRIFTS and FTIR-EGA information to 

assign evolved CO2 of different temperature intervals to different qualities of organic matter 

is a promising and new step towards application of this method.  

3.5.3 Specific considerations using FTIR-EGA thermal approaches 

Several conditions must be met to obtain satisfactory FTIR-EGA results. First, a major 

drawback in oxidative thermal combustion reactions is the potential of formation of 

secondary reactions, e.g., charring, during the heating process. It is thus important to set up 

experimental conditions with minimal interference from such secondary reactions. Our tests 

showed that low heating rates favored formation of secondary reactions. We therefore 

identified 68 °C min
-1

 as the optimal heating rate for soils for our system to balance the need 

for reproducible heating rate and also minimizing secondary reactions. This heating rate is 

similar to the 70°C min
-1 

used in pyrolysis-field ionization mass spectrometry (Py-FIMS) 

experiments by (Schulten and Leinweber, 1993). This may also have led to the occurrence of 

only one CO2 peak for the bulk soils as opposed to traditional TGA or DSC profiles which 

even for bulk soils usually show two distinct peaks of OM associated weight loss (Dell'Abate 

et al., 2003). A possible reason for the lack of additional peaks is that we used a much higher 

heating rate (68°C min
-1

) compared to other studies (Siewert, 2004); (Plante et al., 2009)1; 

(Leinweber et al., 1992), which used a rate of 10-30 °C min
-1

 and therefore may be subject to 

more charring effects.  

Secondly, the amount of potential CO2 evolution will determine the experimental conditions 

used during analysis. In our case a C content of >2.5 mg in the sample cup resulted in 

absorbances of >2.5 A.U. which were no longer linear in respect to C concentration.  
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Thirdly, the combustion conditions should be similar among the tested materials. This is 

particularly true for material with high OC content. In the case of POM and the organic 

standards (e.g., glucose, xylan, tannic acid), the CO2 evolution profiles were changed by 

diluting a sample with pre-heated quartz sand. This may have been the consequence of 

increasing the aeration within the sample and also changing its heat conductivity compared to 

a pure sample. It has been suggested that secondary reactions such as charring are present 

during combustion of cellulose, hemicellulose, and tannic acid (Court et al., 2009). As these 

secondary reactions do not necessarily reflect the thermal stability of the compound but are 

rather a result of the heating procedure, care must be taken in interpreting the thermal 

characteristics of high OC content substances. For the current experimental setup, we propose 

that for non-mineral samples (POM, organic soils, plant samples) a dilution with inert 

material (quartz sand) is beneficial in replicating the thermal conditions of mineral soils and 

fractions. This will reduce charring and standardize the aeration and thermal conductivity of 

the sample, which is important at high heating rates.  

3.6 Conclusion 

Linking a high temperature thermal reaction chamber with a FTIR gas cell was shown to be 

able to quantify evolved gas (CO2) in order to characterize SOM of different soils and SOM 

fractions. The conditions for an optimized FTIR-EGA procedure were 1) the use of a 

standard with well known thermal decomposition reaction (i.e., NaHCO3) to quantify mid-

infrared absorbance units to CO2 production and to identify the optimal purge and scan rates, 

which for our 136 mL gas cell were 15 L hr
-1

 synthetic air purge with a scan every 4 s; 2) a 

rapid heating rate (68°C min
-1

) to minimize char formation, and 3) a dilution of high C 

content samples, especially POM and plant samples, for similar heating conditions in the 

heating chamber as compared to mineral soils. The amount and shape of evolved CO2 under 

an oxidizing atmosphere evolved from 25 to 700°C depending on the chemical composition 

(e.g., simple C-C bonding of glucose compared to complex ring structure of tannic acid), type 

of soil (e.g., Chernozem versus Cambisol) and also fraction of soil investigated (e.g., silt and 

clay fraction versus bulk soil versus POM). Temperature-dependent changes in the intensity 

of mid-infrared molecular vibrations also indicated different OM compounds decomposing at 

different temperatures.   

In a novel approach, a peak fitting procedure based on changes of molecular vibrations 

derived from situT DRIFTS measurements was used to allocate C evolved at different 
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temperature into separate C pools of inferred stability. The in situT DRIFTS results gave 

evidence of different C components (i.e., C-OH = unknown C vibration < C-H < -COO and 

C=C < C=C) being evolved at different times during the 220 to 700°C, which justified and 

lent a quality aspect to the curve fitting procedure for the FTIR-EGA evolved CO2. A 

combination of the FTIR-EGA and in situT DRIFTS methods will provide an improved 

approach for SOM characterization. Even though analysis of soils with different clay 

mineralogies and land use types is needed to test the applicability of this method to different 

soils and land uses, the current results prove that the combined use of FTIR-EGA and in situT 

DRIFTS provides a good theoretical molecular basis and a major step forward for the fitting 

of different components to the evolved gas thermogram. 
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4.1 Abstract  

New methods are needed to parameterize various pools (particularly intermediate turnover 

pools which, thus far, are often conceptual only) of multi-compartment soil organic matter 

(SOM) models. The objectives of this study were to examine different SOM pool 

initialization approaches to model short and medium-term (decadal) carbon dynamics at two 

study sites in Southwest Germany (Kraichgau and Swabian Alb) using the Land Use Change 

Impact Assessment tool with a SOM sub-model based on Century (LUCIA-Century).  

Measurements were done in two representative cropped fields within each study site. Three 

plots were allocated in each field with subplot measurements done under the crop and in an 

adjacent bare fallow subplot to follow the decomposition of SOM without any input of fresh 

plant material or manure application. Total organic carbon (TOC) and soil surface carbon 

dioxide (CO2) fluxes were used to test the short-term accuracy of the different pool 

initialization methods. Additionally, a 20 year simulation was used to explore the sensitivity 

on SOC of the different initializations methods. Besides a Default setup (1), model 

parameterization was based on (2) a fitting to a long-term equilibrium (long-term 140 year 

model run; Equilibrium), and measured fractions derived from (3) diffuse reflectance Fourier 

transform mid-infrared spectroscopy (DRIFTS), (4) Fourier transform infrared-evolved gas 

analysis coupled to in situ thermal DRIFTS (EGA-1 and EGA-2 initializations) and (5) 

classical SOM fractionation (Fractions). Model parameterization included the allocation of 

initial sizes of the active, slow, and passive pools for the Century SOM module. Results 

showed that short-term accuracy of both soil organic carbon (SOC) contents and soil CO2 

fluxes were only slightly affected by initial parameterization. Generally, measured CO2 

fluxes were underestimated earlier in the season (May-June) and better modeled later in the 

season (July-November). Model efficiency ranged from -4.28 to 0.35 for CO2 fluxes. The 

Fractions, DRIFTS, and EGA-1 methods were the most accurate methods (shown by root 

mean square error, modeling efficiency, and model bias) for predicting soil CO2 fluxes during 

the short-term simulation (2009-2010). Modeled results of SOC were within ± one standard 

error of the measured values at the end of the measurement period at both sites for the bare 

fallow plots and the vegetated Swabian Alb plots, but not for the vegetated Kraichgau plots. 

Over a 20-year simulation, however, there were large predicted ranges in SOC (6 Mg ha
-1

 and 

14 Mg ha
-1

 in the Kraichgau and Swabian Alb sites, respectively) between the different 

parameterizations. This showed that correct initialization of SOM pools, while not affecting 



103 

 

SOC levels much over one or two growing seasons, had large impacts for the medium-term 

simulations. This was controlled by the percentage allocated to the intermediate turnover pool 

which varied from 35 to 75%. DRIFTS and EGA-1 were able to give a reasonable estimate of 

the intermediate SOM pool with relatively little sample preparation and analysis time. 

 

4.2 Introduction 

Soil organic matter (SOM) modeling has increasingly become an important tool to study 

SOM dynamics as responding to different agricultural management (Grant, 1997), land use 

change (Cerri et al., 2004), changing climate (Heinemeyer et al., 2010), and for calculating 

carbon (C) credits (Yadav et al., 2009). Agricultural models such as Roth-C (Jenkinson and 

Coleman, 1994; Coleman et al., 1997), Daisy (Hansen et al., 1991) and Century (Parton et al., 

1987) include a compartmental SOM sub model with two or more pools of varying size, 

turnover rates, and C to nitrogen (N) ratios. As most SOM models are primarily C driven, 

emphasis has been given to the parameterization of soil organic carbon (SOC) pools with 

mostly fixed C:N ratios. Several approaches have been used to initialize or parameterize these 

SOC pools. This is particularly challenging for purely conceptual pools of intermediate 

turnover which do not have any measureable counterpart. Initial approaches included 

changing SOC pool sizes iteratively and then running a 10-30 year simulation until the pool 

sizes better fitted measured SOC data for the start of the experiment (Kelly et al., 1997). 

Alternatively, long-term incubations have been used for determining the size of both the 

active and intermediate pools (Collins et al., 2000). 

A commonly used approach to initialize SOM pools is to simulate past climate conditions, 

management and residue input to the soil (Bruun and Jensen, 2002) often seeking equilibrium 

conditions under a set environment. Further approaches try to identify methods which allow 

the division of SOM into several isolated fractions or pools that have a certain implied 

stability, e.g. soil fractionation based on particle size, density, chemical methods or a 

combination of them (Skjemstad et al., 2004; Zimmermann et al., 2007c). Isotopic tracers 

have also been applied to identify fluxes of organic C to identify SOM pools and their 

turnover, e.g. manure labeled with 
14

C (Tatzber et al., 2009) or “natural” tracers such as 

13
C:

12
C ratios associated with the changing from a C3 to a C4 crop (Ludwig et al., 2003) or 

the flux of 
14

C from thermonuclear bomb testing during the middle part of the 20th Century 

(O'brien and Stout, 1978). Transfer functions including SOC and clay content have been used 
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to initialize pools in Roth-C (Weihermüller et al., 2013). Finally, different statistical fitting or 

optimization approaches have been found useful in initializing SOM pools. These aim to fit 

the model outputs to one or more measured outputs (e.g. SOC) while adjusting several model 

parameters to optimize the fit and have included the Bayesian (Yeluripati et al., 2009), or 

Gauss-Marquardt-Levenberg estimation technique (Liu et al., 2008), and Monte Carlo 

simulations (Stamati et al., 2013). 

Drawbacks of the previously mentioned methods range from improper assumptions to 

difficulty in implementing analytical methods in all situations. The actual lack of equilibrium 

conditions under changing agricultural land use has been cited (Wutzler and Reichstein, 

2007), which has been shown under long-term experiments in the case of the Askov 

experiment in Denmark with still declining SOM (Bruun et al., 2003) or when prior land use 

is not well known. The influence in the slow SOM pool may still be responding theoretically 

up to 100 years after management change (Bruun and Jensen, 2002), while it has been 

pointed out that the uncertainty derived from not knowing the initial starting conditions has 

rarely been accounted for (Juston et al., 2010; Lardy et al., 2011; Stamati et al., 2013). 

Additionally, individual soil fractions may not be related to a single homogenous pool (von 

Lützow et al., 2007), a precondition for most common SOC models, or that C3 to C4 

vegetation changes are not always present at a site. As the effects from thermonuclear testing 

are decreasing in the atmosphere, the impact of this anthropogenic 
14

C tracer source is 

lessening and thus plant inputs to the soil will have a 
14

C value closer to pre-bomb SOM 

(Rutberg et al., 1996). Incubation methods can be influenced by the method used and also it 

is not always clear how long the experiment must be run in order to make a separation 

between the active and slow pools. Lastly isotopic labeling of plants or plant residues may 

not be applicable for field experiments, as too costly or difficult to implement on a field scale 

basis. The statistical methods (e.g. Bayesian, Monte Carlo) are adequate at modifying 

parameters for optimal model fit, but may ignore the underlying model architecture or 

mechanisms while arriving at a best fit. Alternatively, SOM models can be designed around 

measurable pools but as pools in reality are not uniform this still needs further investigation. 

 

The fore mentioned drawbacks make the search for new methods or approaches better suited 

for SOM pool identification enticing. Different spectroscopic and thermal analytical methods 

have previously shown promising results. For example, several C-compound specific mid-

infrared peaks have been shown to be indicative of SOM quality, as well as allowing 
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monitoring of the depletion of labile substrates in different soil fractions over time (Demyan 

et al., 2012) and thus may have the potential to be used as a model pool initialization 

approach. Mid-infrared spectroscopy has been used both qualitatively and quantitatively to 

estimate or measure different SOM fractions (Zimmermann et al., 2007b). Mid-infrared peak 

intensity has been shown to change over time in response to decomposition (Spaccini et al., 

2001), different agricultural management (Capriel, 1997), and soil formation (Egli et al., 

2010). Additionally, thermal analyses have been used to isolate SOM fractions of different 

implied stability (Manning et al., 2005). If these methods can be further developed they could 

represent a rapid and cost effective method for parameterizing SOM models. Demyan et al. 

(2013) developed a novel approach to deconvolute thermal oxidation spectra into different 

meaningful fractions by combining thermal evolved gas analysis (FTIR-EGA) with in situ 

monitoring of diffuse reflectance data (in situT DRIFTS). To our knowledge, no work has 

focused on using either SOM molecular vibrational characteristics (DRIFTS) or coupled 

FTIR-EGA with in situT DRIFTS for direct SOM model pool parameterization.  

 

To date, no universal method exists in parameterizing conceptual SOM models and few 

efforts have been made to compare the effectiveness or impact on the long-term (20 or more 

years) of different SOM parameterization approaches. Thus, the goal of this research was to 

investigate the impact of different analytical approaches to parameterize SOM models with 

defined pools with constant C:N ratios. The approach included the use of different methods to 

obtain measureable SOM fractions (i.e. size/density fractionation, spectroscopic, thermally 

derived) as model pools and to better understand the potentials and implications of using 

these different measureable SOM qualities for parameterization of a widely used SOM model 

(Century). The specific objectives of this study were 1.) to compare different 

physical/chemical soil fractionation, spectroscopic and thermal analytical approaches for pool 

parameterization to model short-term C dynamics at two arable sites in Southwest Germany 

on contrasting soils by the Century SOM model implemented in the Land Use Change Impact 

Assessment (Century-LUCIA, (Marohn and Cadisch, 2011)) tool and 2.) identify the specific 

effects of different model pool distributions on the sensitivity of medium-term (20 year) 

simulations. 
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4.3 Materials and methods 

4.3.1 Site characteristics 

The first site (48° 55.7’ N, 8° 42.2’ E) was in the Kraichgau area (Southwest Germany) which 

is characterized by loess derived soils. The second site (48° 31.7’ N, 9° 46.2’ E) was in the 

Swabian Alb region. The Swabian Alb soils were formed from upper Jurassic limestone. The 

Kraichgau site has an annual precipitation of 780 mm yr
-1

 and annual average temperature of 

9.1°C (Pforzheim-Eutingen Station (DWD, 2013)) and the Swabian Alb 962 mm yr
-1

 of 

precipitation and average temperature of 6.7°C (Merklingen Station (DWD, 2013)). Both 

sites have a temperate climate (Cfb, Kottek et al., 2006). A more detailed description of the 

study sites can be found in Wizemann et al. (submitted). Soils at the two field sites have been 

under arable land use since at least the late Middle Ages (farmers’ personal communication). 

Typical crops in rotation have consisted of cereals (e.g. winter wheat, oats, barley), and more 

recently silage maize, and oilseed rape.  

 

In both the Kraichgau and Swabian Alb sites two farmers’ fields were selected as being 

representative of the respective study areas and three plots were designated in each field with 

a subplot sampled in the vegetation, while adjacent to these vegetated plots, bare fallow plots 

were established during spring of 2009 in order to study SOM dynamics without residue 

inputs and the relationship of soil carbon dioxide (CO2) fluxes between root free soil and soil 

with plants. Plots were located in representative locations in each field, with each subplot 

measuring 25 m
2
. Planting, harvesting, and fertilizer application dates are listed in Table 1.  

4.3.2 Soil sampling 

Soils were sampled in May, 2009 and November, 2010. Soil samples were taken with a soil 

corer at three different depths, 0-30, 30-60, and 60-90 cm. Each sample was a composite of 6-

8 sampling points within each subplot. Visible plant residues and roots were removed, and 

the soil gently crushed and mixed by hand in the field and transported to the laboratory in 

coolers and kept at 4°C. Soil samples for mineral nitrogen (Nmin) and microbial biomass were 

extracted the next day, while the remaining soil was dried for further analysis. Samples from 

May 2009 were used for physical and chemical characterization, and were used for model 

initialization.  
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Table 1. Management and crop rotations during 2008-2010. 

Crop
a 

Planting Harvest Fertilizer date, type
b
, amount/ kg N ha

-1
 Manure/ kg ha

-1
 

Kraichgau 

ww 01.Nov.08 06.Aug.09 
19.Mar.09, KA 61; 7.Apr.09, Urea 122; 

6.Jun.09, KA 49 
none 

mustard 

silage maize 

28.Aug.09 

17 Apr.10 
14.Oct.10 15.Apr.10, Urea 164; 17.Apr.10, DAP 29 

16.Apr.09 1600 

Biogas slurry 

     
Swabian Alb 

ww 13.Oct.08 20.Aug.09 
19.Mar.09 & 07.Apr.09, Urea 115;  5.Jun.09, 

KAS 24 
none 

wr 30.Sep.09 05.Sep.10 
24.Aug.10, UAN 46; 19.Sept.10, 13/10/18 26; 

9.Apr.10, Piamon 66 
none 

a
-catch crop, ww-winter wheat, wr-winter oilseed rape. Crop varieties: Kraichgau ww- Cubus, silage maize- Agro-Gas,  

Swabian Alb: ww-Skalmeje, wr-Visby. 
b
- DAP-diammonium phosphate, KA-calcium ammonium nitrate, KAS-calcium  

ammonium sulfate, UAN-urea and ammonium nitrate, Piamon-32% nitrogen and 12% Sulfur.  
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4.3.3 Soil physical and chemical parameters 

Soil bulk density was determined by the intact core method, and pH in a 1:2 (w/v) 0.01 M 

CaCl2 solution. Soil texture was determined by laser defractometer (LS 200 Series, Beckman 

Coulter GmbH, Krefeld, Germany). Exchangeable potassium was determined by the BaCl2-

TEA replacement method (Gillman and Sumpter, 1986) and available phosphorous by the 

calcium lactate/acetate method (CAL-P) (Schüller, 1969). 

4.3.4 Physical/chemical SOM fractionation 

Five different SOM fractions were isolated using the SOM fractionation method of 

(Zimmermann et al., 2007b). Briefly, 30 grams of <2 mm air dried soil was made up to 100 

ml with deionized water and macroaggregates dispersed by sonfication (30 J s
-1

). The water 

and soil passing a 63 µm sieve, was then centrifuged at 3000 x g for 15 min and the pellet 

dried at 40°C representing silt and clay (Si+C), while a subsample of the clear supernatant 

was taken for dissolved organic carbon (DOC) analysis (Multi N/C analyser, Analytik Jena, 

Jena, Germany). The >63 µm fraction remaining on the sieve was subject to density 

separation by sodium polytungstate (SPT) solution of 1.8 g cm
-3

. The <1.8 g cm
-3

 was the 

particulate organic matter (POM), while the >1.8 g cm
-3

 was the sand and stable aggregate 

fraction (S+A). A subsample of the Si+C fraction was oxidized with 6% sodium hypochlorite 

(NaOCl) for 15 min at 95°C, centrifuged at 200 x g for 8 min and repeated twice to isolate a 

chemically resistant organic matter fraction (rSOC). 

Carbonate content of bulk soils was measured by the gasometric Scheibler method 

(Schlichting et al., 1995), while carbonates in the SOM fractions were destroyed by 

fumigation with hydrochloric acid (Harris et al., 2001) prior to total carbon (TC) 

determination. Dry combustion (Vario-EL III elemental analyser, Elementar, Hanau, 

Germany) was used to measure TC of the bulk soil and total organic carbon (TOC) of the 

SOM fractions.  

4.3.5 MIRS-DRIFTS method 

Mid-infrared spectroscopy measurements via the diffuse reflectance method (DRIFT-MIRS) 

were performed on dried, ball milled soil samples with a Bruker Tensor 27 (Bruker Optik 

GmbH, Ettlingen, Germany) mid-infrared spectrometer equipped with a Praying Mantis 

diffuse reflectance chamber (Harrick Scientific Products, Pleasantville, NY, USA). 

Wavenumbers from 4000 to 600 cm
-1

 with a 4 cm
-1

 resolution were scanned with 16 co-
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added scans combined for one analysis with three analytical replicates averaged per sample. 

Specific peaks were analyzed according to Demyan et al. (2012) with integrations with a 

local base line performed from 3010 to 2800 cm
-1

 (2930 cm
-1

 peak assigned to aliphatic C-H 

vibrations (Baes and Bloom, 1989)) and 1660 to 1580 cm
-1

 (1620 cm
-1

 peak assigned to 

COO-
-
 and C=C vibrations (Baes and Bloom, 1989)). Then these relative peak areas at 2930 

cm
-1

 and 1620 cm
-1

 were taken as the size of active (Ca) and slow (Cs) pools of the Century 

model, respectively, while the passive pool (Cp) was calculated as difference (Cp = 100 – Ca – 

Cs). Further explanation is given below in the SOM pool parameterization section.  

4.3.6 FTIR-EGA and in situT DRIFTS methods 

For measuring thermally evolved gases during oxidative combustion of SOM, a high 

temperature heating system was utilized in conjunction with the Bruker Tensor 27 infrared 

spectrometer (Demyan et al., 2013). The high temperature reaction chamber (HTC, Harrick 

Scientific Products, Pleasantville, NY, USA) was equipped with a cartridge type heating 

element and a K-type thermocouple and interfaced with an automatic temperature controller 

(Harrick Scientific Products, Pleasantville, NY, USA) with an integrated temperature/process 

controller (Watlow Winona, Minnesota, USA). The dome had three windows, two made from 

potassium bromide (KBr) to enable diffuse reflectance measurements of the soil during the 

heating period (in situT DRIFTS). Furthermore, the heating chamber was linked via a 

stainless steel Swagelok system (Swagelok-Stuttgart GmbH, Reutlingen, Germany) to a 

variable long path gas cell (Bruker Optik GmbH, Ettlingen, Germany) which was placed 

inside the Tensor 27 spectrometer to monitor CO2 evolution (Fourier transform infrared-

evolved gas analysis, FTIR-EGA) during the heating period. The gas cell had a volume of 

136 ml and a path length of 1 m.   

For the FTIR-EGA measurements, a scan was recorded every 4 sec, with a resolution of 8 

cm
-1 

in the gas cell. Synthetic air was used as the purge and carrier gas of the system with a 

flow rate of 15 L hr
-1

. The chamber was purged after introducing the sample for 5 min. 

Additionally, a baseline was taken before the beginning of each analysis in order to zero the 

signal in the gas cell. A heating rate of 68°C min
-1

 and set-point temperature of 700°C were 

used. The set-point temperature was reached after 10 min and held for another 20 min, which 

resulted in a total of 300 individual FTIR scans.  

Alternatively, the Praying Mantis diffuse reflectance chamber was fitted in the Tensor 27 and 

the thermal reaction chamber placed inside in order to take DRIFTS measurements of the soil 
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or SOM fraction surface during heating (i.e., in situT DRIFTS). The heating conditions and 

purge rate remained the same. A scan was taken every 4 sec, at a resolution of 4 cm
-1

. 

Potassium bromide was used to take a background scan before measuring the sample.  

4.3.7 Fresh soil analysis 

Microbial biomass was measured by the chloroform fumigation extraction method (Vance et 

al., 1987) on field moist, homogenized, unsieved soil samples. Extraction was performed 

using 20 g soil and 80 ml 0.5 M K2SO4 solution for 30 min on an oscillating shaker at 200 

revolutions min
-1

, while in parallel another 20 g subsample was placed in a desiccator with a 

50 ml beaker of ethanol free chloroform at 25°C under vacuum and kept overnight. The 

fumigated subsample was then extracted identically as the non-fumigated subsample. 

Extracts were then analyzed using a Multi C/N analyser (Analytik Jena) for both OC and N 

contents. Microbial biomass was taken as the difference between the C or N contents in the 

fumigated and non-fumigated samples multiplied by 0.45 for microbial biomass C (Cmic) 

(Joergensen, 1996) and 0.54 for microbial biomass N (Nmic) (Joergensen and Mueller, 1996). 

Non-fumigated extracts were taken as extractible C and N and additionally analyzed for 

ammonium (NH4
+
) and nitrate (NO3

-
) contents via a continuous flow analyzer (Alliance 

Instruments GmbH, Ainring, Germany). 

4.3.8 Soil surface CO2 fluxes 

Field soil surface daytime CO2 fluxes were measured via EGM-2 and EGM-4 non-dispersive 

infrared field Environmental Gas Monitor instruments equipped with a soil respiration 

chamber and a soil temperature probe (PP Systems Amesbury, Massachusetts, USA). Three 

measurement campaigns were done during the year (end of May beginning of June, middle of 

July, end of October) to coincide with soil sampling times.  During the week of soil sampling, 

soil CO2 fluxes (ICO2) were measured during the daytime (usually between 08:00 and 18:00) 

for 5 days. Due to weather (heavy rain) or farmer field operations (herbicide spraying), the 

measurement days were sometimes not consecutive. The measurement order of the plots was 

rotated each day. Six measurements were taken in each subplot i.e., vegetated and bare fallow 

treatments. Data of the EGM-2 were calibrated against the EGM-4 to ensure compatible data. 

To compare with model results, raw data from the closed chambers as measured in g CO2 m
-2

 

hr
-1

 were converted to Mg C ha
-1

 day
-1

. Results are presented in Mg C ha
-1

 day
-1

. Soil 

temperature at 10 cm and ICO2 were related via the following relationship 
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ICO2 = a e
bT

 ,        Eq 1 

 

where a and b are fitted constants and T is soil temperature  measured at 10 cm depth.  

4.3.9 Plant phenology and crop management 

In adjacent plots to where soil sampling was conducted, crop leaf area index (LAI; LAI-2000 

Plant Canopy Analyzer, LI-COR Biosciences, Bad Homburg, Germany), final harvest of 

above- and belowground biomass (belowground measured 2009/estimated from harvest index 

in 2010) were measured during the 2009 and 2010 growing seasons. Table 1 shows crop 

planting and harvesting dates, as well as fertilizer and manure inputs. Plant phenology 

(BBCH growth stages according to Meier (2001)) and management information were used to 

parameterize the LUCIA-Century model and to assure that model C residue inputs were of 

corresponding values.  

4.3.10 Abiotic variables 

At a central location in each field, a weather station was installed in spring of 2009 to 

measure rainfall, air temperature, humidity, wind speed, solar radiation, and soil temperature 

at 6 and 15 cm. Interpolation was used to fill small data gaps (<1 day), while larger data gaps 

(>1 day) were filled via a transfer function developed from data of a weather station in an 

adjacent field. Simple linear regressions were performed for the variable of interest (e.g. soil 

temperature) with the variable of the adjacent field acting as the predictor and the field with 

missing data as the predicted. 

Long-term weather data from the German weather service (Stötten for Swabian Alb and 

Öhringen for Kraichgau (DWD, 2013)) were used for the long-term equilibrium model run 

and 20 year simulation (see below). Reference evapotranspiration (ETo, [mm d
-1

]) was 

estimated via the FAO Pennman-Monteith equation (Allen et al., 1998)) using average daily 

wind speed [m s
-1

], average daily air temperature, minimum and maximum daily air 

temperature [°C], and average daily relative humidity (RH %). Soil temperature for the 

equilibrium run and 20 year simulation was first estimated via a Fourier expansion function 

from air temperature and day of the year (Roodenburg, 1985). The LUCIA-Century model 

was run, using this soil temperature estimate as an input. The generated LAI from the model 

run was then used in the approach of (Kätterer and Andrén, 2009) to estimate a soil 

temperature at 10 cm using air temperature, LAI, and snow cover which were then used as 

the final soil temperature input for the 20 year simulation. 
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4.4 Model conditions 

4.4.1 Model structure 

The Land Use Change Impact Assessment tool LUCIA (Marohn and Cadisch, 2011) is a 

dynamic spatially explicit landscape scale model, which runs at a daily time step. LUCIA is 

typically used for watershed simulations of land cover change over decades (Marohn et al., 

2012), while for this study version 1.2 was used at the single plot level. The model integrates 

established concepts of hydrology (KINEROS 2; (Semmens et al., 2008)), erosion (Rose et 

al., 1983), plant growth (WOFOST-CGMS; (Supit, 2003)), litter decomposition and SOM 

transformations (Century; Parton et al., 1987) and combines them with routing functions 

provided by the PCRaster programming language (van Deursen, 1995) and farmer 

management options. 

Daily input data required includes average air and soil temperature, rainfall, reference 

evapotranspiration (ETo) and solar radiation. Soils consist of two user-defined horizons, 

which require initial input data of SOC, texture, bulk density and coarse fragment contents 

(>2mm) to calculate hydraulic variables such as porosity, field capacity, and hydraulic 

conductivity, based on pedotransfer functions by (Saxton and Rawls, 2006). The stand level 

plant module builds on WOFOST routines and leaves, stems and roots have specific N and 

lignin contents, which determine their decomposition characteristics once they become litter. 

Litter decomposition into SOM as well as SOM dynamics follow the Century concept of 

active, slow and passive C pools, as implemented in LUCIA and will be referred to as the 

LUCIA-Century model version 1.2 (Marohn and Cadisch, 2011). The LUCIA-Century model 

was used in the current study to test five different methods for parameterization of SOM pool 

sizes (see section 4.4.6). The SOM pool turnover rates were left as defaults (ka = 0.02 d
-1

, ks = 

0.00543 d
-1

, kp = 1.86x10
-5

 d
-1 

for active, slow, and passive pools, respectively) (Parton et al., 

1987) (Appendix 3, Table A.1) and all pool C:N ratios were left as Century defaults. A pre-

modeling step involved updating the temperature function affecting SOM turnover. The 

original Century function was an exponential temperature response function (Parton et al., 

1987), while in the DayCent daily time step model, this has been changed to a tangential 

function (Del Grosso et al., 2005), which results in higher respiration at lower temperatures 

and better reflected conditions in the study region. 
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4.4.2 Modeling 

A four step modeling procedure was followed (Fig. 1) in which the approach was divided into 

several sub-steps.  

4.4.2.1 Iterative calibration of the crop growth model  

At the beginning of all model runs, soil parameters (i.e. TOC, TN, Nmin) were set to the 

measured values at the start of the experiment in May 2009 (Table 2). Table 2 gives the site 

soil characteristics of the two study sites. The Swabian Alb topsoils had nearly two times 

SOC of the Kraichgau soils (0.92 and 1.83% in the Kraichgau and Swabian Alb, 

respectively). Sand contents were relatively similar (between 3 to 8%), but clay contents 

differed strongly with 18% in the Kraichgau soils and 38% in the Swabian Alb. Total N 

contents were again nearly double in the Swabian Alb compared to the Kraichgau (0.78 to 

1.30 g kg
-1

 in the Kraichgau and Swabian Alb, respectively). At time of sampling the topsoil, 

Nmin concentration was much higher in the Swabian Alb (65.0 mg kg
-1

) compared to the 

Kraichgau (15.3 mg kg
-1

). The pH of both sites was circum neutral (6.8 for the Kraichgau and 

6.6 for the Swabian Alb). The 30-90 cm horizon was relatively similar to the 0-30 cm horizon 

in texture and pH, while for TOC and TN, values were nearly 2:3 less.  

An adjacent field at each study site was used for calibration of the crop growth module. The 

crop rotation was silage maize and winter wheat in the Kraichgau in 2009 and 2010 

respectively, and winter rape (2009) and winter wheat (2010) in the Swabian Alb. 

Meteorological data (Fig. 2) from the weather stations of the study sites were used from April 

2009 until November 2010. Measured soil data was used for soil input parameters, while the 

default SOM pool distribution was used, as the SOM pool parameterization was found to not 

have an effect on the final crop biomass. Plant growth parameters (degree days to flowering 

and maturity, assimilation rate, and partitioning) of the WOFOST maize, winter wheat, 

oilseed rape (also used for winter mustard), summer barley routines (Supit, 2003) were used 

as a starting point and then iteratively modified during the manual calibration phase in order 

to achieve the correct growth pattern using LAI, plant biomass, planting and harvesting times, 

and harvest biomass for the used cultivars in LUCIA-Century.  
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Table 2. Initial site soil characteristics used for model parameterization. 

  

Horizon 

depth/cm 

CF 

/%
a
 

Db/g 

m
-3

 Sand/% Clay/% SOC/% 

TN/g 

kg
-1 

Nmin/ 

mg kg
-1 

Paval/ 

mg 

kg
-1 

K 

exch/ 

mg 

kg
-1

 
  

pH 

Kraichgau 0-30 0 1.3 3 18 0.92 0.78 15.33 40 210 6.8 

 

30-90 0 1.5 2 18 0.29 0.22 4.0 8 90 6.4 

            Swabian 

Alb 0-30 7 1.32 6 38 1.83 1.30 65.0 55 240 6.6 

  30-90 17 1.4 8 40 0.70 0.80 8.0 6 70 6.6 
a-

CF-coarse fragments (>2 mm), Db-bulk density, SOC-soil organic carbon, TN-total nitrogen, Nmin-soil mineral  

nitrogen, Paval-available phosphorous taken from representative soil profile data (calcium acetate lactate  

method), Kexch-exchangeable soil potassium (BaCl2-TEA method). 
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Figure 1. Modeling outline: 1) the first step was an iterative calibration of the plant growth module using measured values for both the Kraichgau and 

Swabian Alb sites, using measured weather and soil data from April 2009 until November 2010. 2) the second step was a validation of the crop growth 

parameters from the calibration step applied to an independent field for both sites, 3) while the third step utilized the different SOM pool initialization 

methods of FTIR-EGA, DRIFTS, size/density fractionation, and equilibrium run for the April 2009 to November 2010 period for measured short-term pool 

dynamics, and then 4) for a 20-year simulation to examine the medium-term impact of different pool parameterization compared to a 2010 baseline measured 

SOC level. 
1
- The calibrated plant growth module was used for a 140-year simulation to gain the equilibrium SOM distribution between active (Ca), slow (Cs), 

and passive (Cp) pools, equilibrium run was done with German Weather Service (DWD) data as inputs from the years 1952-2007 looped for the long-term 

simulation. 
2
-DWD- German Weather Service data from the years 1989 to 2008 was used for the 20-year simulation. 
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Figure 2. Measured monthly air temperature and precipitation from April 2009 until

 December 2010 of a) Kraichgau and b) Swabian Alb sites. 
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4.4.2.2 Crop module validation  

After calibration of crop growth parameters with measured values from the 2009 and 2010 

growing seasons, these parameters were applied to an adjacent field at both sites (step 2 in the 

modeling simulation) for a validation of the crop growth module. Appendix 3, Fig. A.1 shows 

the comparison between measured LAI and modeled LAI during the validation phase, using 

the results obtained during the calibration phase of the plant growth module. Measured and 

modeled final aboveground biomass, root biomass, and aboveground litter inputs (2009 and 

2010, respectively) are given in Table 3.    

4.4.2.3 SOM pool size parameterization 

The pools size parameterization methods were: 

1) Values from Parton (1987) were used as a Default parameterization which is usually used 

as a starting point for pool parameterization.  

2) A parameterization was done running a long-term simulation (140 years) to arrive at pool 

equilibrium values, which was called the Equilibrium method. Historical daily weather 

data (e.g. air temperature and precipitation) from 1952 to 2007 from the Stötten and 

Öhringen weather stations were used as model inputs. The crop parameters derived in the 

calibration step were used for the crop growth module. Planting times, rotation, fertilizer 

application details can be found in Appendix 3, Table A.3.  

3) A DRIFT-MIRS relative peak area method was used as defined in Demyan et al. (2012) 

and detailed above (Section 3.5) and called DRIFTS. Previously, the peak (2930 cm
-1

) 

assigned to C-H groups correlated well with hot water extractable C, and was taken as 

the active pool, while the peak at 1620 cm
-1

 (–COO/C=C groups) was taken as the slow 

pool, as this peak has been shown to be negatively correlated to labile SOC and was 

assigned to more stable aromatic groups (Demyan et al., 2012). The % sum of these two 

pools was then subtracted from 100 and was taken as the passive pool.  

4) A FTIR-EGA method based on thermal characteristics of evolved C during SOM 

oxidation under certain temperature intervals (Demyan et al., 2013) was used for a FTIR-

EGA/in situT DRIFTS method called EGA-1. An example is shown in Fig. 3. For this 

parameterization, fitted component 1 was taken as the active pool (peak temperature 

around 290°C corresponding to decreases in vibrational intensity of C-O and C-H 

groups), the slow pool was the component 2 (peak temperature around 360°C and 

corresponding to a decrease in C-H vibrations), while the passive pool was a sum of 



118  Ch 4 Implications of different approaches for parameterizing SOM model 

 

Table 3. Observed (average and standard error) and modeled above- and belowground biomass and residues carbon 

 inputs to the soil for model validation.  

 

AGB
a
/  

Mg DW ha
-1

 

BGB/ 

Mg DW ha
-1 

AGR-C/ 

Mg C ha
-1

 

BGR-C/  

Mg C ha
-1

 (0-30 

cm) 

BGR-C/ 

Mg C ha
-1

 

Site obs mod obs  mod obs mod obs mod mod 

Kraichgau 

         winter 

wheat 17.4  (0.2) 20.6 1.7 (0.3) 1.2 0.34 (0.02) 0.39 0.36 (0.01) 0.5 1.6 

mustard-

maize 20.1 (1.1) 21.5 1.2 (0.1) 1 0.28 (0.01) 0.3 0.48 (0.08) 0.27 2.5 

          Swabian Alb 

        winter 

wheat 17.7 (0.8) 18.5 1.4 (0.4) 1.2 0.40 (0.1) 0.26 0.5 (0.1) 0.51 1.7 

winter rape 9.3 (1.1)  10.6 0.8 (0.1) 0.7 1.90 (0.3) 3.43 0.3 (0.0) 0.29 0.9 
          a-

AGB-aboveground biomass (dry weight), BGB-belowground biomass (dry weight), AGR-aboveground residue at harvest,  

       BGR-belowground residue at harvest, BRG crop-belowground residue including final harvest and cumulative dead root inputs  

       during crop cycle. 
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components 3 and 4 which corresponded to decreases in –COO/C=C and C=C vibrations 

at higher temperatures.  

5) The second FTIR-EGA/in situT method (EGA-2) was a derivation of EGA-1 in that the 

active pool size was identical (component 1) but the slow pool was the sum of fitted 

components 2 and 3, while the slow pool was fitted component 4 (Fig. 3).    

6) Using the fractions isolated by the method of (Zimmermann et al., 2007b) the pool sizes 

were initialized as follows, the extractable and POM amounts were taken as the active 

pool, the sum of Sa+A fraction and Si+C minus rSOC was taken as the slow pool, and 

the rSOC fraction was taken as the passive pool. The method was defined as Fractions. 

All other values used in the modeling exercises were identical between the different pool 

parameterization methods.  

4.4.2.4 Short-term model performance  

As this paper was focused on the SOM dynamics, several performance indicators were used 

to compare observed values with modeled values of soil CO2 flux and SOC: The coefficient 

of determination (r
2
) (Nash and Sutcliffe, 1970): 

     Eq 2 

where n is the number of observations, Oi are the observed values, Ō is the average of the 

observed values, Pi are the predicted values with a perfect model fit to observed values r
2
 =1.  

The relative root mean error square (RMSE%) (Loague and Green, 1991) was calculated as: 

         Eq 3 

with an optimum value RMSE = 0. Furthermore, we computed the model efficiency (Loague 

and Green, 1991): 

                                            Eq 4 

An optimum value is EF = 1, which will indicate a perfect fit of the model, while values <0 

indicate that predicted values are worse than using the observed mean value. Model bias 

(MBE) (Bennett et al., 2013) was defined as: 

         Eq 5 

where an optimum value is MBE = 0.
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Figure 3. Derivation of the SOM pools from the combined in situT DRIFTS and FTIR-EGA:

 a-In situT DRIFTS measurements of bulk soil from the Kraichgau site as a percentage

 of the vibrational intensity at 200°C to identify temperature of maximum change of

 functional groups. b- Peak fitting with four components of evolved gas profile as

 measured by FTIR-EGA of bulk soil from the Kraichgau site using previously

 identified temperatures of maximum change of functional groups. Statistics are from

 the goodness of fit of the four fitted components to the measured data. Figure is taken

 from Demyan et al. (2013). *- Normalized intensity is the integrated area of the CO2

 peak from 2400 to 2200 cm
-1

 normalized to weight of the sample. **-fitted

 component. 



121 

 

4.4.2.5 Medium-term simulations 

The Century model was then run for an additional 20 years to examine the effect of the 

different pool parameterizations on the medium-term effect of SOC with weather data of 

1989-2008 from the weather stations of Öhringen for the Kraichgau and Stötten for the 

Swabian Alb (DWD, 2013) (Appendix 3, Table A.2) and typical crop rotations of the areas 

(Appendix 3, Table A.3) used as inputs. Twenty years were used as time duration to show 

differences brought about by the proportion of the intermediate pool, which on a scale of 20 

years potentially 10% of the pool would turn-over based on the ks value of 5.43*10
-4

 d
-1

. 

Since the cropping systems at both sites have already been running for decades, it was 

assumed for this SOM parameterization method that SOM would be in equilibrium without 

considerable changes in total SOM contents if continuing these cropping systems under the 

same conditions. With this in mind, the SOC content result at the end of 20 years of different 

parameterization methods were compared to a baseline of ±1 standard error of the measured 

SOC value at the end of 2010, assuming under continuing current agricultural practices that 

SOC would be maintained at current levels.   

 

4.5 Results 

4.5.1 Site CO2 flux characteristics 

The general pattern of soil CO2 flux was found to increase from the early growing period, 

reaching a maximum during the summer months, and decreasing again in the fall (Fig. 4) 

under the vegetation. There was a large variation in the measurements in the Kraichgau in 

May of 2009 under winter wheat, ranging from 0.03 to 0.07 Mg C ha
-1

d
-1

. In the Kraichgau 

under maize in 2010, measured CO2 fluxes were lower, especially late in the season in 

November. The Swabian Alb followed the same general pattern, although there was strong 

variation during the end of the winter oilseed rape growing period. Similarly in the bare 

fallow plots (Fig. 5), a maximum CO2 flux was reached during the summer growing months 

and declining to the end of the growing period. At both sites measured CO2 fluxes were 

higher during the first year compared to the second, though the difference was less in the 

Swabian Alb soils compared to the Kraichgau. Looking at the overall average CO2 flux 

(Table 4), the flux was similar under vegetation between the two sites (3.12*10
-2

 and 3.08*10
-

2
 Mg C ha

-1
d

-1
 in the Kraichgau and Swabian Alb, respectively). The CO2 flux in the bare  
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Figures 4a & 4b. Measured and modeled soil surface CO2 flux showing the results of

 different parameterization methods for the Kraichgau site (4a): ww-winter wheat, cc

 cover crop, m-maize, F-fertilizer application, P-plowing, S-slurry application; and 

 Swabian Alb site (4b): ww-winter wheat, wr-winter oilseed rape, F-fertilizer 

 application, P-plowing, S-slurry application. 
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Figures 5a & b. Measured and modeled soil surface CO2 flux showing the results of different

 parameterization methods under bare fallow for the Kraichgau site (5a) F-fertilizer

 application, P-plowing, and Swabian Alb site (5b) F-fertilizer application, P-plowing. 
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Table 4. Average of measured CO2 fluxes by site during 2009-2010. Values in parentheses

 are the standard error. 

           Bare fallow             Vegetated
a 

ratio 

bare:vegetated 

Site 

 

Mg C ha
-1 

d
-1

    Mg C ha
-1 

d
-1

      

Kraichgau 1.35*10
-2

 (1.63*10
-3

) 3.12*10
-2

 (1.63*10
-3

) 0.43 

 
Swabian Alb  2.08*10

-2
 (1.39*10

-3
) 3.08*10

-2
 (1.94*10

-3
) 0.67   

a
-crops for the Kraichgau site were winter wheat and silage maize, and the Swabian Alb were 

winter wheat and oil seed rape. 

 

fallow was lower at both sites compared to that under vegetation (1.35*10
-2

 and 2.08*10
-2

 Mg 

C ha
-1

d
-1

 in the Kraichgau and Swabian Alb, respectively). The ratio of bare to vegetated CO2 

flux was 0.43 in the Kraichgau and 0.67 in the Swabian Alb. 

The temperature response of soil respiration at each site was similar as shown in Fig. 6. Since 

certain dates (e.g. 25 May 2009) were found to be greatly underestimated by the modeling, 

the time of CO2 measurement was investigated relative to the diurnal pattern of soil 

temperature (Fig. 7). It was found that on these days the CO2 measurements represent an 

average for the daily flux as they were taken nearly at the point of the average soil daily 

temperature.  

 

4.5.2 SOM pool parameterization by different methods 

SOM pool parameterization results for the model initialization for the 2009-2010 simulations 

are given in Table 5. The Default method was 5, 55, and 40% for Ca, Cs, and Cp, respectively, 

for both sites. In the Kraichgau, the Equilibrium method allocated 0.88% to the Ca pool 

which was the lowest amount out of any of the methods. The DRIFTS method by contrast 

allocated 14% to the Ca pool. The Fractions method allocated the lowest amount of any 

methods to the passive pool (15%). The EGA-1 and EGA-2 methods both allocated 3.4% to 

the Ca pool, but 73.4% was allocated to Cs from EGA-1 while 46.1% from EGA-2. For 

Swabian Alb, besides the default method, which was the same for both sites, pool allocation 

among the methods followed the same trend as in Kraichgau. The lowest Ca resulted from the 

equilibrium pool method while the largest derived from the DRIFTS method. Contrasting the  
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Figures 6a & b. Relationship between temperature and measured soil surface CO2 flux at the

 a) Kraichgau and b) Swabian Alb sites during measurements taken during 2009 and

 2010 growing seasons. 
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Figure 7. Measured soil surface CO2 flux in relationship to soil temperature at 10 cm for 25

 May 2009. 

 

 

Table 5.  SOM pool parameterization estimates by different methods. 

Method
a
 

Kraichgau Swabian Alb 

Ca/%
b
 Cs/% Cp/% Ca/% Cs/% Cp/% 

Default 5 55 40 5 55 40 

Equilibrium 0.9 62.3 36.8 1.3 53.3 45.4 

DRIFTS 14.0 67.6 18.3 23.6 62.1 14.3 

Fractions 9.5 75.5 15.0 10.9 70.3 18.8 

EGA-1 3.4 73.4 23.3 4.7 69.2 26.1 

EGA-2 3.4 46.1 50.6 4.7 35.3 60.0 
a
-methods are as follows: Default-from Parton et al. (1987), Equilibrium-model run for 140 

years using crop rotations (see Table 2 and daily weather values from 1952-2008), DRIFTS-

diffuse reflectance Fourier transform infrared spectroscopy derived pools, Fractions-SOM 

fractionation method according to Zimmermann et al. (2007a), EGA in situT DRIFTS-evolved 

gas analysis and in situ thermal DRIFTS (Demyan et al., 2012).
b
-Ca-percent of SOC allocated 

to Century active pool, Cs-percent of SOC allocated to slow pool, Cp- percent of SOC 

allocated to passive pool. 
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two sites, all methods, except for the Default method, allocated a larger Ca in the Swabian 

Alb site compared to that of the Kraichgau. Conversely, all methods except DRIFTS found a 

higher Cp in the Swabian Alb compared to the Kraichgau site. 

4.5.3 SOM dynamics of short-term simulation 

Modeled day time soil CO2 fluxes are shown in Figs. 4 and 5 along with model statistics in 

Table 6. The general behavior of all model parameterizations was similar in that during the 

middle of the growing season CO2 fluxes were underestimated, while the model 

approximated late season CO2 fluxes more accurately. In general, respiration in the Swabian 

Alb was more accurately modeled compared to the Kraichgau as measured by RMSE and EF 

statistics (Table 6) and the bare fallow treatment in the Swabian Alb was most successfully 

modeled. 

During the first year of simulation, SOM parameterization methods varied greatly as 

compared to the second year, particularly in the vegetated plots. In the Kraichgau a maximum 

flux difference of 9.9*10
-3

 Mg C ha
-1

 d
-1 

was found between the DRIFTS (2.2*10
-2

 Mg C ha
-1

  

d
-1

; Fig. 4a) and Default (1.2*10
-2

 Mg C ha
-1

 d
-1

) method on 25.05.2009, while in 2010 the 

maximum difference of 2.5*10
-3 

Mg C ha
-1

 d
-1 

was between Fractions (2.3*10
-2

 Mg C ha
-1

 d
-

1
) and EGA-2 (2.0*10

-2
 Mg C ha

-1
 d

-1
) on 06.06.2010. The maximum modeled flux difference 

at the Swabian Alb site of 3.3*10
-2

 Mg C ha
-1

 d
-1 

 (Fig. 4b)  occurred on 26.05.2009 between 

DRIFTS (5.1*10
-2

 Mg C ha
-1

 d
-1

) and Equilibrium (1.7*10
-2

 Mg C ha
-1

 d
-1

). Likewise the 

maximum difference of modeled values in 2010 at the Swabian Alb was much lower 6.8*10
-3

 

Mg C ha
-1

 d
-1 

between DRIFTS (3.2*10
-2

 Mg C ha
-1

 d
-1

) and EGA-2 (2.3*10
-2

 Mg C ha
-1

 d
-1

) 

on 04.07.2010.       

 

The SOC did not show much change over the measurement period and even after the bare 

fallow period from May 2009 until November 2010 there was no significant measurable 

change, even though there was a general trend of decreasing SOC compared to the first 

sampling (Figs. 8a & 8b). Modeled SOC contents of the 0-30 cm horizon were predicted 

within ±1 standard error, except for the Kraichgau vegetated plots, where SOC was modeled 

higher than the measured values (measured 35.6 Mg C ha
-1

, modeled 38.2 Mg C ha
-1

).  

4.5.4 SOM dynamics of long-term simulation 

Modeled long-term (20 years) SOC contents to 30 cm continued the inter-annual dynamics of 

an increase of SOC upon crop residue incorporation and manure application and subsequent  
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Table 6. Indicators of modeling accuracy of two year (2009-2010) simulations of soil CO2

 flux by different SOM parameterization methods. 

 

    Kraichgau         

 

vegetated bare fallow 

Method
a
 RMSE%

b 
EF r

2
 MBE RMSE% EF r

2 
MBE 

Default 55 -4.28 0.42 0.016 76 -0.15 0.38 0.006 

Equilibrium 76 -1.46 0.01 0.016 80 -0.29 0.34 0.006 

DRIFTS 65 -0.79 0.07 0.013 60 0.26 0.42 0.003 

Fractions 67 -0.90 0.03 0.014 64 0.18 0.41 0.004 

EGA-1 73 -1.27 0.00 0.015 74 -0.11 0.36 0.005 

EGA-2 77 -1.48 0.01 0.017 81 -0.32 0.36 0.007 

         

   

Swabian 

Alb 

     

 

vegetated bare fallow 

Method
 

RMSE%
 

EF r
2
 MBE RMSE% EF r

2 
MBE 

Default 69 -0.20 0.25 0.012 66 -0.03 0.44 0.008 

Equilibrium 69 -0.22 0.25 0.013 68 -0.08 0.43 0.008 

DRIFTS 64 -0.05 0.10 0.003 57 0.25 0.36 0.001 

Fractions 62 0.03 0.17 0.007 53 0.35 0.40 0.003 

EGA-1 64 -0.04 0.22 0.010 58 0.21 0.43 0.005 

EGA- 2 70 -0.24 0.20 0.013 67 -0.05 0.39 0.008 
a
-methods are as follows: Default-from Parton et al. (1989), Equilibrium-model run for 56 

years using crop rotations (see Appendix 3 and daily weather values from 1952-2008), 

DRIFTS-diffuse reflectance Fourier transform infrared spectroscopy derived pools, 

Fractions-fractionation method according to Zimmermann et al. (2007), EGA-1 and EGA-2-

evolved gas analysis and in situ thermal DRIFTS (Demyan et al., 2012). 
b
-RMSE%-root mean 

square error of prediction, EF-modeling efficiency, r
2
-coefficient of determination, MBE- 

model bias. Optimum values are RMSE-0, EF-1, CD-1, MBE-0.  

 

decrease of SOC during decomposition for all parameterization methods (Figs. 9a & 9b). At 

the end of the 20 year period the difference in SOC estimates among the different SOM 

parameterization methods was 6 Mg C ha
-1

 for the Kraichgau and 14 Mg C ha
-1

 for the 

Swabian Alb. This represents 17 and 19% of the 2010 measured SOC values of the 

Kraichgau and Swabian Alb soils, respectively.  For the Kraichgau site, the EGA-2 resulted in  

the highest SOC, followed by the Default and Equilibrium methods, with the EGA-1, 

DRIFTS, and Fractions methods grouped together with the lowest modeled SOC amounts (37 

Mg C ha
-1

). In the Swabian Alb the EGA-2 again estimated the highest SOC amount (79 Mg 
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C ha
-1

), followed by the Equilibrium and Default methods (75 Mg C ha
-1

). EGA-1, Fractions, 

and DRIFTS were again grouped closely together (68, 66, and 65 Mg C ha
-1

, respectively). 

 

 

 

Figure 8. Observed and modeled (DRIFTS parameterization) SOC of bare fallow and

 vegetated plots at the a) Kraichgau sites during the 2009 and 2010 growing

 seasons.*ww-winter wheat, cc-cover crop, m-maize, F-fertilizer application,

 P=plowing, S-biogas slurry application and b) Swabian Alb site during the 2009 and

 2010 growing seasons. *ww-winter wheat, wr-winter oilseed rape, F-fertilizer

 application, P-plowing. 
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Figure 9.  Medium-term simulation (20 years) of SOC contents in 0-30 cm depth using

 different SOM pool size parameterization methods
1
  for a) Kraichgau and b) Swabian

 Alb sites. 
1
 Default-from Parton et al. (1987), equilibrium-model run for 140 years,

 DRIFTS-diffuse reflectance Fourier transform infrared spectroscopy derived pools,

 Fractions- SOM fractionation method according to Zimmermann et al. (2007a),

 EGA-1 and EGA-2-in situT DRIFTS-evolved gas analysis and in situ thermal DRIFTS

 method 1 and method 2. Note: y-axis scale break. Different scales were used for the

 y-axis in order to make the differences between methods visible. 
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4.6 Discussion 

4.6.1 Different measured fractions as model pool inputs 

It was evident that some of the pool size parameterizations (i.e. DRIFTS large active pool 

size) would be very different from pool distributions used in previous studies. The decision of 

how to split the different measured fractions into the different modeled pools is always a 

difficult operation. In the current study this can be seen in the EGA-1 and EGA-2 methods, 

where fitted component 3 was allocated either to the slow or to the passive pool. As was 

shown in the results, this had major consequences for the 20 year simulation as this 3
rd

 

component was a large portion of the TOC (27.3 and 32.9% in the Kraichgau and Swabian 

Alb, respectively). As the functional groups that the 3
rd

 and 4
th

 fitted components represent 

were different (-COO and C=C in the 3
rd

 component and solely C=C in the 4
th

 component), it 

may make sense to allocate them to the slow and passive pools, respectively. For pool 

assignments for the fraction method, we did not split any of the fractions between more than 

one model pool. While it may be the case that the SOM fractions are not homogeneous, 

especially the POM fraction, it is not an easy matter to divide them among model pools. 

While the EGA-1 and EGA-2 methods have not been used previously for SOM pool 

parameterization, and therefore are difficult to compare to other studies, there are examples 

of splitting and allocating size/density/chemical fractions to model pools (Zimmermann et al., 

2007c; Leifeld et al., 2009; Xu et al., 2011). For the Roth-C model and using the same 

physical/chemical fractionation method as in the current study (Zimmermann et al., 2007c), 

the measured fractions were split via running the Roth-C to equilibrium with an assumed 

annual C residue input and then used the model pool ratios between the decomposable and 

resistant plant residues and biomass and humus pools as the ratios to allocate the measured 

fractions to the model pools, so it was not a simple one to one relationship between a fraction 

and a model pool. In the current study, we wanted to independently investigate the strengths 

and weaknesses of the new approaches (i.e. DRIFTS and EGA-1 and EGA-2) in order to test 

how they behaved in the Century model framework. Previously, SOM fractions separated 

based on physical (e.g. size, density) (Zimmermann et al., 2007c), chemical (Zimmermann et 

al., 2007a), and chemical combined with biological methods (Paul et al., 2006) have been 

used as measureable model inputs. Additionally, near infrared spectroscopy (NIRS) has been 

used through a partial least squares cross validation approach to predict Roth-C generated 

SOM pools (Michel and Ludwig, 2010).   
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The parameterization methods utilized various principles relating to the recalcitrance of SOM 

to allocate C to the different pools. The DRIFTS method relied on the hypothesis that the 

integrated area of the C-H groups (around 2930 cm
-1

) was influenced more by labile 

compounds and has previously been related to hot water extractible C (Demyan et al., 2012). 

The EGA methods were an extension of the DRIFTS application with the added analysis of 

the evolved gas while heating and also monitoring of the DRIFT spectrum of the soil sample 

while heating. This allowed both a quantification of the evolved C during a controlled 

increase of temperature, but also the changes in DRIFT peak intensity giving a quality aspect 

to the evolved C, with different stabilities of C evolved at higher temperatures. The Fractions 

method was based on classic SOM size-density fractionation, which aimed to isolate SOM 

with less to more association with the mineral fraction and thereby lower to higher 

recalcitrance (Zimmermann et al., 2007a). The Equilibrium method was the only model based 

parameterization method which used assumed long-term management and inputs for both 

sites and relied on the structure of the model to derive the pool allocations. The analytical 

methods, although somewhat differing in principle, had linkages. It has been shown that light 

fraction OM was enriched in C-H groups as measured by DRIFTS in contrast to heavy 

mineral fractions (Demyan et al., 2012). Likewise a chemically resistant fraction was found 

to have a second peak of CO2 evolution not found in other fractions as measured by EGA 

(Demyan et al., 2013) lending evidence that the fraction contained very recalcitrant OM. This 

at least theoretically implied that through the different methods, they were measuring partly 

similar portions of the same labile to recalcitrant SOM pools. 

Another promising result of the SOM pool initializations was that in the tested methods of 

DRIFTS, Fractions, EGA-1, and EGA-2, the general trend of a larger active pool in the 

Swabian Alb soils compared to the Kraichgau soils was consistently found, indicating that the 

methods, in part, are measuring some part of the same active pool even though they are 

relying on different properties, such as solely molecular vibrations for DRIFTS, 

size/density/chemical separation in SOM fractionation, and a combination thermal 

decomposition and molecular characterization for the EGA-1 and EGA-2 methods.  

 

4.6.2 Importance of pool parameterization to simulate short-term soil C dynamics  

In the current study, modeled SOC contents were within the standard error of measured 

values at the end of the short-term simulation, except for the Kraichgau vegetated plots. This 



133 

 

seems to indicate that generally residue inputs to the soil were more or less correct and the 

turnover times were relatively accurate, with the exception of the Kraichgau vegetated plots. 

The general inter-annual SOC dynamics were represented by the model which has also been 

found for applications of Century to arable soils of long-term experiments. The fact that the 

SOC levels of the bare plots were modeled correctly leads one to believe that the turnover 

rates for the different SOM pools are reasonable.   

The difference in measured and modeled SOC for the Kraichgau vegetated plots could 

indicate an influence of several factors such as too much litter additions to the soil either 

through aboveground or root inputs. The modeled root biomass at harvest was nearly always 

within ±1 standard error of the measured values while the aboveground residue inputs were 

also well modeled. What is not taken into account in the root measurements are the dead 

roots and exudates deposited during the season (rhizo-deposition), so that the final root 

biomass measurement is under estimating the amount of root residue input to the soil. 

The more dynamic soil CO2 flux values were less well modeled, although the general 

tendency of increasing respiration in the spring to a maximum during the summer and 

declining toward the end of the growing season was reflected in the modeled results, but soil 

CO2 fluxes were generally underestimated. (Jensen et al., 1996) also found a similar decline 

in soil surface CO2 fluxes after incorporation of crop residues during late August until the 

beginning of October using an EGM-1 CO2 analyzer. It was shown that initial flux values 

were much higher under residue incorporated plots compared to non-amended plots, but that 

this difference nearly disappeared as the soil temperature decreased below 10°C.  

The effects of the different parameterization methods were more evident in the 1
st
 year (2009) 

as compared to the 2
nd

 year with the 1
st
 year difference being controlled by the allocation to 

the Ca pool as DRIFTS was found to have the maximum single day flux at both sites and this 

method allocated the largest amount to Ca. While alternatively Equilibrium had the lowest 

flux on the same day and had the smallest allocation to the active pool. In the Kraichgau, 

then, during the second year, the intermediate pool was found to have more influence as the 

Fractions method had the maximum daily flux and also the largest allocation to the Cs pool 

and Fractions, with the smallest Cs allocation, had the lowest flux on the same day. In the 

Swabian Alb, though, DRIFTS still had the maximum flux, which was due to the initial large 

allocation to the Ca pool (23.6%) and general slower turnover due to lower annual 

temperature. 
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Others also have had varying success in modeling soil surface CO2 fluxes. Chirinda et al. 

(2011) found model efficiencies ranging from -0.95 to 0.54 when modeling fluxes from 

winter wheat using FASSET and MoBiLE-DNDC and yearly CO2 fluxes were 

underestimated by 10 to 30%. As evidenced by the wide range in the initial active pool 

percentages (1 to 14%), the response of soil CO2 flux was greater during the initial year 

(2009) as compared to 2010 when all methods resulted in similar CO2 fluxes.  

In general, it is difficult to compare point measurements of temporally highly variable values 

such as soil respiration to daily model outputs. (Jensen et al., 1996) modeled CO2 flux with 

the SOILCO2 model and found a strong decline after rainfall events when the soil moisture 

was at or above field capacity, owing to the fact of the low diffusivity of CO2 through water 

filled pore space. In general, our model results between the plots showed a very low variation 

while the measured values were much higher. A point of error in the CO2 flux measurements 

would be temporally up-scaling point measurements taken over several hours to a 24 hour 

period. This would most likely lead to the most error during days of large diurnal temperature 

changes and measuring at either the low or high extreme of this range. In the current study, 

this did not seem the case as during days that were greatly underestimated by the model (e.g. 

Fig. 7), the CO2 flux measurements were taken at soil temperatures close to the average daily 

value.  

In regards to plant growth and residue inputs, root exudates, which are assumed to be around 

30% for cereal crops of C allocated belowground (Kuzyakov and Domanski, 2000) are not 

explicitly included in the model. Especially during times of rapid root growth and exudate 

production, this can have a significant effect on soil respiration as the exudates provide an 

easily utilizable source of C for soil microbes. Possibly this is one reason why there is an 

underestimation of soil CO2 flux by the model in the early growing period. As is shown both 

by the estimates for root biomass at harvest compared to the measured (low) and by the 

simulation over two growing seasons for the Kraichgau, there is an abundance of root litter 

entering the soil that is not decomposing quickly and is leading to an increase in SOM.  

 

4.6.3 Medium-term implications 

During a medium-term model simulation, the slow and passive pool sizes start to affect the 

SOC contents more strongly, which was seen by the divergence after 20 years of the modeled 

SOC contents among the different model parameterization methods. As we did not test the 



135 

 

pool parameterizations with a long-term experiment, we tested the methods against an 

assumed steady state as measured by the SOC contents at the end of 2010. If the assumption 

of a current steady state SOC is correct, then for the Kraichgau the Fractions method, 

followed by the DRIFTS and EGA-1 methods were within one standard error of the baseline, 

while in the Swabian Alb, the Equilibrium method was the closest to the baseline value. 

There is some evidence of mostly relatively stable long-term SOC contents in the region. In 

the neighboring state of Bavaria 54% of SOC contents in cropland plots were unchanged, 

25% significantly decreased, while 21% significantly increased during the period 1986 to 

2007 (Capriel, 2013). In some long-term experiments in Western Europe, varying results 

have been given for the dynamic level of SOC under different fertilizer and crop management 

regimes (Kelly et al., 1997). Werth et al. (2005) studied long-term SOM in the Black Forest 

and Swabian Alb areas in differently managed grasslands and found some treatments 

declining in SOC. Additionally, in a 13-year liming experiment in Norway Spruce forests it 

was found that SOC was declining in organic horizons (Lorenz et al., 2001). In Central 

Germany, it was shown in a two-year study using eddy covariance measurements and 

modeling, that one year the soil was a net sink of C, while the next year a source and 

modeling of pre-experiment site conditions showed that SOC levels have decreased around 

7% during the last 30 years under typical management (Anthoni et al., 2004).  

The amount of litter returns to soil is a major driver of SOC dynamics and hence for the 

equilibrium run, historical litter returns to the soil are rough estimates at best. As has been 

shown (Prince et al., 2001) as crop yield per hectare has increased, the harvest index has also 

changed, making it difficult to estimate returns of residue to soil from yields. Additionally, 

farmers’ practices over the years may also have changed such as removing all residues in 

some years, while retaining in others. This would additionally add to uncertainties in the 

long-term equilibrium run and additionally to the influence on SOM pools in the past. This 

would be a major reason to use measured fractions instead of assuming equilibrium at a site 

of unknown historical land use. 

 

Correct model initialization is important as was shown by our long-term simulation that 

already after 20 years a more then 14 Mg ha
-1

 divergence could be found among the model 

initialization methods. In general the EGA-2 method allocates too much to the passive pool 

and results in too slow of a turnover and accumulation of SOC. It seems that the allocation in 

EGA-1 is a more acceptable approach. As mentioned previously about the importance and 
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difficulty of splitting measured fractions into model pools, this would also be affected by the 

constant C:N ratio and turnover time.  

4.6.4 Better matching model pools with measured pools 

Century and other compartmental SOM models are based on the assumption that SOM within 

a certain pool is homogeneous and has a single turnover rate which responds equally to soil 

moisture, temperature, and other external variables. As we know that this is not necessarily 

the case, it may be advantageous to design model pools that more mimic natural pools which 

are easily measureable and more compositionally (e.g. chemically, physically) homogenous 

and react similarly in relation to temperature, moisture, or other factors. The approaches 

tested in this study cover a wide range of properties measured via different analytical 

methods (chemical, size, density, vibrational spectroscopy, thermal analytical coupled to 

vibrational spectroscopy), and while the approaches allocated different amounts to the active, 

slow, and passive pools, found the same general distribution for the two soils studied. The 

active and passive pools were large in the Swabian Alb compared to the active and passive 

pools in the Kraichgau site.   

An alternative modeling approach instead of the compartmental SOM models is the 

continuous quality SOM approach (Ågren and Bosatta, 1996). The continuous quality 

approach (Q-Soil), while not easily measureable, has a gradient of SOM quality which can 

vary simultaneously in temperature, moisture, and other parameters along the entire range, 

more closely approximating the “natural” response of SOM. The EGA analytical methods 

used in the current study offer a continuous measurement of the thermally evolved CO2 from 

a soil sample and a “quality” attribute from the corresponding in situT DRIFTS data. It may 

be possible to adopt this analytical method for use in deriving a continuous quality attribute 

for the Q-Soil model, but this would require additional testing with the EGA model inputs on 

long-term experimental data to follow longer term dynamics. 

 

4.7 Conclusions 

Six different SOM pool parameterization methods were explored for use in the Century 

module implemented in LUCIA. It was found that there were differences in pool 

parameterization effects during the first year (2009), but decreasing in the second year. As 

compared to measured values of soil respiration and TOC, generally predictions were more 

successful for the Swabian Alb site compared to the Kraichgau. Possibly this was due either 
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to too much residue input in the way of roots in the Kraichgau, which decompose more 

slowly compared to aboveground residues, or also that the pool turnover times were too slow 

for the Kraichgau. This does not seem to be the case as the bare plot SOC dynamics were 

modeled relatively well. The methods of DRIFTS, Fractions, and EGA-1 parameterizations 

were similar in the results, as the allocation to the slow pool were all in the same range, while 

the default and  EGA-2 method were found to be similar. For the short-term dynamics of 

CO2, Fractions and DRIFTS methods had the highest indicators of model success, but in most 

cases had a modeling efficiency of <0, meaning that the model result was worse than using a 

simple average for predicting the measured values. Overall, in the medium-term simulation 

(20 years) there was a wide divergence between the pool parameterizations at the end of the 

simulation period. In the Kraichgau site, the Fractions, DRIFTS, and EGA-1 were the closest 

to the 2010 baseline for SOC, while in the Swabian Alb the Equilibrium method was the 

closest. The different simulation behaviors between the sites may indicate either too high of a 

residue input at the Kraichgau or too slow of a turnover, as there was a general tendency for 

increasing SOC. Overall the measured SOM pools performed better as compared to the 

default and equilibrium derived SOM pools. This study has shown that the wide variation in 

initial Ca affected the first year results, but not the following year in regards to short-term 

variation in SOC dynamics, while the Cs parameterization method influenced medium-term 

results, over a 20 year time period. 
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5 General Discussion 

5.1 Molecular characterization of bulk SOM and distribution within SOM 

fractions  

Mid-infrared spectroscopy, utilizing the diffuse reflectance method, has shown itself to be 

very valuable in soil analysis for the main reasons of ease of sample preparation (dried, ball 

milled), rapid analysis of a sample, and wide ranging applicability to different soils. The 

development of chemometric models (soft-modeling), specifically partial least squares and 

principal component analysis has allowed the successful prediction of soil physical/chemical 

(Cobo et al., 2010) and biological (Rasche et al., 2013) soil properties. With these soft-

modeling approaches, there are no assumptions to the underlying data structure, e.g., that a 

specific vibrational peak represents a certain parameter of interest. If more of a link of a peak 

or certain peaks to different SOM properties can be found, this would add to the functionality 

of the mid-infrared technique in that soil properties could be deduced based strictly on a peak 

intensity or combination of peaks, without the need for development of chemometric models.  

While mid-infrared spectra offer additional information as compared to near-infrared spectra 

(Soriano-Disla et al., 2014), there is the issue with vibrational functional groups being of 

overlapping ranges or the same range as another functional group. Special care needs to be 

taken for a direct interpretation or assignment of the spectral peaks to a molecular functional 

group or groups. This is why studying a single soil but with differing treatments is valuable in 

discerning changes which are the result of management and not of soil type or mineralogy. In 

the current study (chapter 2), it was shown that DRIFT-MIRS specific peaks can be used 

semi-quantitatively to study the changing composition of SOM in bulk soil in response to 

different long-term fertilizer applications of either farmyard manure or mineral fertilizer. 

When certain assumptions hold (i.e. minimal specular reflection and similar mineralogy), this 

method offers a rapid assessment on the relative contribution of certain functional groups 

(e.g. C-H, -COO
-
, and C=C) in SOM. Additionally the ratio of the aromatic to the aliphatic 

peaks (1620 cm
-1

 to 2930 cm
-1

) in the samples from the Haplic Chernozem were positively 

correlated to the ratio of stable C (that within the >1.8 g cm
-3

 and clay fractions) to labile C 

(that contained within the light density fraction of <1.8 g cm
-3

). It offers a quicker, non-

destructive alternative to expensive and time consuming analyses (e.g. nuclear magnetic 

resonance). Previous studies have investigated the use of other peaks for studying SOM (Egli 
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et al., 2010; Grube et al., 2006) which either were not found in the current study or were not 

found to be affected by the long-term treatments. It could be the case that certain peak areas 

may reflect the fact of different mineralogies or textures of the soils or parent materials. 

Another promising approach in linking peaks with SOM quality is the use of 2D correlation 

and combining MIRS and NMR data (Forouzangohar et al., 2013). A possible way forward 

would be to use different statistical methods in order to discern mineral contribution as a first 

step and then as a second step, to distinguish spectral differences based on SOM differences. 

This would require some a priori information about the soils and a hypothesis about which 

peak(s) should represent either solely mineral, mineral and SOM, and solely (or nearly 

solely) SOM. Once the three groups of peaks are formed, this could be used as constraints or 

data inputs for a cluster or principle components analysis using a decision tree of where to 

divide the sample set. Principal component analysis has been used to distinguish different soil 

types which were then used as different classes to form predictions for soil nitrate (Linker et 

al., 2005) and decision tree regression has been used for predicting soil parameters as an 

alternative to PLSR ((Minasny and McBratney, 2008). 

 

5.2 Thermal stability and SOM quality 

The current study used the working hypothesis that under thermal decomposition, less stable 

SOM component will be evolved at lower temperatures, while more stable compounds will 

be evolved at higher temperatures, though this premise has also been cast into doubt by 

previous studies (as already mentioned). Intuitively, the hypothesis makes sense, as the 

strength of a chemical bond should be proportional to the energy that is required to break it, 

either through microbial utilization or through thermal decomposition, which is why 

previously thermal stability was related SOM stability. If we go back to the development and 

first utilization of the main thermo-analytical methods such as thermogravimetry or scanning 

colorimetery, these were mainly used in material sciences and on relatively simple 

compounds (e.g. clay minerals, chemical catalysts). The reaction pathways were relativity 

simple, usually a loss of water or dehydration reactions, changes in crystal structure, and 

evolvement of different volatiles if present. It was recognized that applying this methods to 

SOM, that there were overlapping reactions and that SOM was thermally decomposed over a 

large temperature range (ca. 200-700°C) (Gaál et al., 1994). Additionally it is known that 

SOM is made up of a multiple of organic and inorganic functional groups which can be 
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associated with the mineral portion of the soil. There is also the production of reaction 

intermediates during analysis especially when using a non-oxidzing atmosphere. These 

factors could be the reasons why sometimes there is not a clear connection between SOM 

thermal stability and age. In the current study, through the use of in situT DRIFTS in 

combination with FTIR-EGA and a peaking fitting routine, it was possible to follow both the 

thermal degradation of SOM while heating and also create a quality distribution of the 

evolved C based on changes in molecular vibration intensities (chapter 3). While evolved gas 

analysis under an oxidizing atmosphere does not give much information by itself other than 

the total amount of C evolved, when coupling with monitoring of the mid-infrared spectra of 

the surface of the soil sample itself, it was shown that different functional groups were being 

thermal degraded at different temperatures in the order of C-O, C-H, -COO
-
/C=C, and C=C 

during the interval from 200 to 700°C. This then enabled a least squares peak fitting 

procedure to be done on the evolved gas thermograms giving a distribution of different 

fractions or stabilities of the SOM. Typically peak or curve fitting is used in vibrational 

spectroscopy to unravel overlapping peaks for further quantification (Meier, 2005), while in 

the current study, peak fitting was used on the EGA-FTIR thermogram. In cases of severely 

overlapped peaks, further independent information should be obtained regarding peak 

position (Meier, 2005), which in our case has been supplied by the maximum or near 

maximum decreases in vibrational intensity as measured by in situT DRIFTS. Without this 

independent biochemical information, the curve fitting of the thermogram would just be a 

statistical exercise, without any biochemical basis. This seems to show that indeed, there are 

overlapping reactions during thermal decomposition. 

Other studies have investigated the use of in situT DRIFTS mainly for the study of humic 

acids (Lu et al., 1997), coal samples (Murakami et al., 1997), or clay minerals (Frost and 

Vassallo, 1996) in which thermal reactions were monitored. While this new method is not an 

inline method, that is the in situT DRIFTS and FTIR-EGA procedures must be done one at a 

time, unless there is a second mid-infrared spectrometer available, the instrumentation does 

not have expensive columns to replace such as in a mass spectrometer or gas chromatograph, 

and sample preparation only requires a finely ball milled sample. This method joins the other 

established methods of coupling different types of analyses such as thermogravimetry and 

EGA (Ferrasse et al., 2003), gas chromatography (GC) and mass spectroscopy (MS) (De la 

Rosa et al., 2008), and differential thermal analysis/thermogravimetry with a field ionization 

mass spectrometer (FIMS) (Leinweber et al., 1992) for studying soils or SOM fractions. 
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Interpretation of FTIR-EGA data is relatively straightforward for polar gases (e.g. CO2, H2O, 

NH3) and can be calibrated with known standards (Eigenmann et al., 2006), and when 

coupled with in situT DRIFTS measurements, gives a complimentary quality indicator during 

the reaction sequence. This is in contrast to the large numbers of peaks in the data output of 

FIMS, the problems with overlapping reactions in thermogravimetery, and already mentioned 

expensive columns for GC and MS.    

 

5.3 Linkage of measureable fractions to model pools 

It has been previously pointed out, that most conceptual SOM model pools do not very well 

correspond to fractions that are easily measured (Christensen, 1996). Smith et al. (2002) 

argued that a measured SOM fraction is only equivalent to a model pool if it is both unique 

(related to the inputs, decomposition products, and turnover) and non-composite (do the 

proportions of decomposition products, order and rate of decomposition change with different 

soil conditions). At present most models assume an equal response of all pools to abiotic 

factors which is being cast into doubt in the case of temperature response of different ages of 

SOM (Vanhala et al., 2007; Conen et al., 2008). While it would not necessarily be better to 

have additional SOM model pools compared to the 3 to 5 that are common in most models, it 

may also cause difficulties in forcing different measureable fractions into a defined model 

pool. As was mentioned previously, Zimmermann et al. (2007) used a model run (Roth-C) to 

derive the partitioning of different fractions into model pools. In the case of Sitompul et al. 

(2000), a modification of the slow Century pool was made in order to better fit decomposition 

as measured by different density fractions in a land-use change sequence. In the current work 

experience of using different measureable fractions as model pool inputs, it was seen that 

with the current model construction and turnover rates of pools, that certain pool allocations 

(i.e. EGA-2, Chapter 4) were not suited to the model structure to simulation SOM dynamics. 

Perhaps as in the approach of Sitompul et al. (2000), a splitting of the slow model pool could 

facilitate better results, but this would also raise the question of whether this model structure 

could be applied at other sites.     

A positive result from the current work, was that in all SOM pool parameterization methods 

except for the default pool parameterization, the active and passive pools were smaller in the 

Kraichgau, while the passive pool was larger in the Swabian Alb in the model initialization. 
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This consistent distribution would indicate that the different methods are in some way 

measuring the same active, slow, and passive pools.  

Alternatively, the mechanisms behind substrate availability and microbial use efficiency of a 

particular residue may be more important driving factors in SOM turnover and mineralization 

then previously though, which have implications for long-term stabilization (Sierra et al., 

2011). Since these factors are often confounding in that one factor may increase turnover, 

while another factor may inhibit it, making it difficult to study under field conditions. A first 

step could be to focus on the mechanisms as affected by different forcing variables 

(temperature, moisture, substrate quality, soil type) in the laboratory where conditions are 

easier to control and then upscale to the plot level through the use of bare fallow plots to 

study native SOM and microbial interactions, or to apply residues of different qualities. 

Another method could be to use root exclusion via fine mesh (i.e. Gavrichkova et al., 2010) 

to exclude root growth into inter-row areas but still have the shading effect and water and 

nutrient uptake from the crop that would better mimic “natural” conditions compared to 

fallow plots and be easier to implement compared to pulse isotopic labeling. Such an 

approach could attempt to reconcile the differences in short-term (within season) dynamics, 

to be combined with the characterization of the slow and passive pools via FTIR-EGA and 

DRIFTS for medium and long-term SOM dynamics.    

 

5.4 Future work 

It is evident not only from the work in this dissertation, but in the wealth of SOM work, that 

there is not a “one size fits all” approach for studying SOM, nor is there one single method 

which can accomplish all research objectives in the realm of SOM characterization. A 

strength of any one method is if it can be applied across many different conditions, soil types, 

management types, and ecosystems and compliments results found via other methods. While 

in the current study (chapters 2-4) we have applied the various methods to a wide variety of 

compounds (e.g. chemical standards, SOM fractions, 3 different soils of different 

managements), it would be a further test of the methods to apply to different land-use types 

(e.g. forest, grasslands) and also to a variety of soil types. As already seen in the current 

study, there was a different behavior of the different pool parameterization methods between 

the two sites, suggesting additional influences on the SOM dynamics which was not well 

modeled. Inputs of residues, especially below ground root and root exudates are very 
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important to the C dynamics and must be correctly accounted for. With model integration, 

future work should focus on the further incorporation of measureable compounds/pools to use 

as model inputs. While conceptual pools that work on a mechanistic basic and do provide for 

the relative accurate modeling of SOC dynamics, nearly always the models must be adapted 

for use in different soils/sites/ecosystems. The interaction of environmental factors (e.g. 

temperature, moisture, SOM quality) which influence the turnover and cycling of SOM need 

to be further investigated in order to be able to prediction future behavior of the soil system 

under climate change.  Further development of methods to measure microbial community 

dynamics and soil structure and SOM distribution in situ with new sensor technology (e.g. 

Allen et al., 2007) and incorporation of this additional information may be a promising way 

forward to further SOM modeling in addition to the physiological status and changes of the 

microbial biomass during the year (Kramer et al., 2013). If the goal of a model is merely to 

predict changes in SOM in response to different variables up to the present, then the models 

thus far have done a fairly good job at this task but usually need to be adjusted for new sites. 

If we want to deepen our understanding of the complex mechanisms and interrelationships 

between different components of the system and arrive at reasonably accurate forecasts for 

the future, we need to develop both better methods for SOM characterization of not just the 

quantity but also the quality and measuring both short term and long term dynamics. 

Additionally, it is essential to develop long-term experiments in land use or geographical 

areas which are underrepresented in the current suite of long-term experiments (tropics, semi-

arid, both extensive and intensive land uses) for the study of SOM dynamics and to maintain 

existing networks and experiments. In the current study and in many others, the Static 

Fertilization Experiment at Bad Lauchstädt (Körschens et al., 1994) has proven invaluable as 

it offers a long-term record of differing fertilizer management schemes and crop and soil data 

that can be studied using various methods.  

 

SOM modeling approaches such as the Q-soil model (Ågren and Bosatta, 1996) cognitively 

provide a better conceptual fit to what hypothesized SOM pools are like, as compared to the 

classical discrete or compartmental models (e.g. Century, Daisy). The model has been used 

previously, but in the application of following the decomposition of a single litter source such 

as pine and spruce forests (Ågren and Hyvönen, 2003), or of studying the impact of different 

residues applied over decades where starting native SOM was assumed to have the same 

quality distribution (Hyvönen et al., 1996). Most likely an issue in the limited amount of 
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applications of this model has been the ability of current SOM characterization methods to 

measure the quality distribution of SOM that is related to its turnover and defining what 

exactly is “quality.” While several methodological approaches have been proposed (Bruun et 

al., 2010), these methods have not been applied to the quality distribution question for model 

incorporation. It seems as though a combination of methods will probably be needed in order 

to characterize SOM in multiple facets relevant for both short and long-term turnover such as 

substrate quality and association with mineral surfaces.  Such an approach as suggested in 

(Bruun et al., 2010) could combine a continuous density separation via a heavy liquid 

(Dyrkacz et al., 1996) and then chemical characterization (DRIFTS, FTIR-EGA, Fe/Al oxide 

content, stable isotopes) of discrete fractions taken from the continuous separation. In this 

way not only is SOM separated on an increasing association with mineral particles, but also 

the chemical composition is studied.  

 

We have seen that even though there has been much done in the way of SOM research over 

the last 15-20 years, we are still struggling to understand not only the complex interplay of 

factors operating on a mechanistic level, but also at large spatial scales (e.g. 

continental/global) or over time. Understanding the feedbacks between the different cycles on 

different scales will require the development of additional new techniques and integration of 

different earth science (geology, meteorology, paleoclimatology, and hydrology) and social 

sciences with the agricultural/soil sciences. The general topics that we are studying today 

have already been realized for nearly a century and are building on the early work of some of 

the first soil and agricultural scientists, whom even a century ago realized the complex web of 

factors influencing the soil-sphere. In the intervening century, our methods have advanced 

exponentially, but as the saying goes, “the more we know, the more we know we don’t 

know.” Hopefully this dissertation can serve as a small advancement in development of 

methods in the quest that McBratney et al. (2006)  has called “solving the soil data crisis.”     
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6  Summary 

Soil organic matter (SOM) is a large part of the global carbon cycle both as a stock, as a 

source of fluxes (gaseous, dissolved, or sediments) to other stocks, and is also an important 

component of soil fertility and likewise plant productivity. Due to the growing need for 

additional data for both global studies related to climate change and soil fertility, additional 

information is needed not only on the total quantity of SOM, but its distribution within time 

and space and also its quality. In this study the use of mid-infrared spectroscopy in different 

applications was explored as an indicator of soil quality or composition, to measure the 

distribution of quality in different soils and fractions, and how these new methods could be 

used for SOM model parameterizations compared to other methods for both short and 

medium term model simulations. Firstly, certain mid-infrared active functional groups as 

measured with diffuse reflectance spectroscopy (DRIFTS) were studied in a long term 

fertilization experiment (Bad Lauchstädt) to ascertain the suitability of these different 

functional groups as indicators of the long term impacts of different fertilizer applications and 

also in various SOM fractions as separated by size-density approaches. Secondly, a coupled 

mid-infrared thermally evolved gas analysis was combined with in-situ monitoring of 

changes in vibrational functional groups to assign different qualities to different temperature 

ranges during a thermal oxidation experiment to 700 °C.  Lastly, these two approaches were 

compared to traditional SOM fractionation as more rapid alternatives to parameterizing SOM 

pool sizes in the Century multi-compartment SOM model applied to arable soils at sites in the 

Kraichgau and Swabian Alb areas in Southwest Germany. 

In the long-term experiment (Bad Lauchstädt) it was found that certain vibrational functional 

groups (i.e. aliphatic (2930 cm
-1

) and aromatic (1620 cm
-1

)) in bulk soil  varied (P < 0.05) 

according to long-term farmyard manure (FYM) and/or mineral fertilizer application. The 

application of 30 Mg ha
-1

 every second year of FYM increased the proportion of aliphatics as 

compared to aromatics, while the opposite was true for the control treatment (without any 

mineral and FYM fertilizer). The ratio of the aromatic to aliphatic relative peak areas were 

found to be positively related to the ratio of stabilized (SOC in heavy density fractions and 

clay size fraction) to labile SOC (light density fraction). This indicated that this peak area 

ratio (aromatic to aliphatic) is an indicator for the relative contribution of stabile to labile 

SOM as a stability index. 
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In the next phase of the methodological development, evolved gas analysis (EGA) was used 

during a programmed heating of soil samples to 700°C to link EGA characteristics with 

SOM. An additional methodological step was the utilization of in-situ diffuse reflectance (in 

situT DRIFTS) measurements during heating as an indicator of the nature of SOM being 

decomposed at different temperatures. Thermal stability was found to be affected by 

experimental conditions and also sample type. The heating rate, amount of C in the sample, 

and volume of the sample in the heating chamber changed the rate and overall shape of the 

CO2 evolution curve and needed to be optimized when comparing different SOM fractions. In  

the long term experiment of Bad Lauchstädt, a decreasing thermal stability as measured by 

temperature of maximum CO2 evolution was found in the order from control > mineral 

fertilizer > manure > manure and mineral fertilizer. Furthermore, after a 490 day soil 

incubation at 20°C the thermal stability of SOC increased, but only slightly. In the in-situT 

DRIFTS method, the intensity of previously identified vibrational functional groups 

decreased (degraded) at different temperatures. The functional groups decreased in the order 

of aliphatic, alcoholic, and carboxylates, and at higher temperatures, also aromatic groups 

decreased. These findings were used as rules for fitting multiple peaks to the total evolved 

CO2 curve to derive SOM pools of different reactivity. 

Pools derived from the measured fractions of mid-infrared functional groups (aliphatic, 

carboxylate/aromatic, aromatic), evolved gas analysis (CO2) fitted peaks (centered at 320, 

380, 540°C), and size-density fractionation (particulate organic matter, heavy density 

fraction, silt and clay fraction) in addition to a long-term equilibrium model run, were used to 

parameterize the SOM pools of the Century model as implemented in the Land Use Change 

Assessment tool (LUCIA) and compared to measured soil surface CO2 fluxes and soil 

organic carbon (SOC) contents after 2 years. The best fits for the short term study were found 

to be the SOM fractionation DRIFTS and EGA pool initialization methods, but the 

differences over two years were very small for the three different parameterization methods 

and generally CO2 fluxes were underestimated. A 20 year simulation, keeping all rate 

constants the same, on the other hand, showed large changes in both the SOC (14 Mg ha
-1

 to 

30 cm) and the distribution in the pools. As compared to the 2010 baseline SOC, the 

DRIFTS, EGA-1, and SOM fractionation methods were closest in the Kraichgau site, while 

the equilibrium method was closest in the Swabian Alb. 

Overall, DRIFT mid-infrared spectroscopy showed its utility as a rapid assessment of the 

general distribution of stable to labile SOM in bulk soil. Additionally, when coupled with 
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EGA and in-situ DRIFTS measurements, the integrated method can provide additional 

information during the thermal degradation of SOM during heating. All methods investigated 

found changes as a result of soil fertilization management, and between SOM fractions. 

Lastly, it was shown that such information can be used for direct SOM model inputs, 

although the methods should be tested on further land uses and soil types. These mid-infrared 

thermally coupled spectroscopic techniques represent an advance in the use of mid-infrared 

spectroscopy in the field of detailed SOM characterization for modeling SOM dynamics. 
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7 Zusammenfassung 

Organische Bodensubstanz (OBS) hat als Kohlenstoffspeicher, sowie als Ursprung von 

Stoffflüssen (gasförmig, gelöst, oder als Sediment) zu anderen Speichern oder Prozessen, 

einen großen Anteil am globalen Kohlenstoffkreislauf und ist ein wichtiger Faktor der 

Bodenfruchtbarkeit und somit der pflanzlichen Produktivität . Auf Grund des steigenden 

Bedarfs an genaueren Daten für globale Studien zu Klimawandel und Bodenfruchtbarkeit 

werden  zusätzliche Informationen, nicht nur für die Ermittlung der Gesamtmenge an OBS 

benötigt, sondern auch für dessen Verteilung in Raum und Zeit und zu dessen Qualität. In 

dieser Studie wurde die Verwendung der Spektroskopie im mittleren Infrarot-Bereich (MIR-

Spektroskopie) als Indikator für Bodenqualität oder Bodenzusammensetzung für 

verschiedene Anwendungen untersucht, um somit die Verteilung der Beschaffenheit 

verschiedener Böden und Fraktionen zu messen und um zu erörtern wie diese neuen 

Methoden im Vergleich zu traditionellen Methoden für Kurz- und Langzeitsimulationen bei 

einer OBS-Modellparametisierung verwendet werden können. Als erstes wurden durch 

Diffus-Reflexions-Infrarot-Fourier-Transformations-Spektroskopie (DRIFTS) bestimmte, im 

mittleren Infrarot aktive, funktionelle organische Gruppen in Bodenproben von einem 

Langzeitdüngungsexperiment (Bad Lauchstädt) untersucht, um die Eignung der 

verschiedenen schwingungsfähigen funktionellen Gruppen als Indikatoren für die 

langfristigen Auswirkungen verschiedener Düngebehandlungen, als auch deren Vorkommen 

in verschiedenen, mit Dichtefraktionierungsmethoden getrennten, OBS-Fraktionen 

festzustellen. Als zweites wurde eine gekoppelte MIR-Emissionsgasanalyse mit einem In-

Situ-Monitoring kombiniert um  bei einer thermischen Oxidation bis 700°C den in 

unterschiedlichen Temperaturbereichen auftretenden Veränderungen der 

schwingungsfähigen, funktionellen Gruppen bestimmte Eigenschaften zuordnen zu können. 

Schließlich wurden anhand von Ackerböden von Standorten in der Kraichgau und 

Schwäbischen Alb in Südwestdeutschland beide Ansätze als effizientere Alternativen zu 

traditionellen OBS-Fraktionierungen zur Parametrierung von OBS-Poolgrößen im Century-

OBS-Modell verglichen. 

Das Langzeitexperiment (Bad Lauchstädt) hat gezeigt, dass bestimmter schwingungsfähige, 

funktionelle Gruppen (z.B. aliphatisch (2930 cm
-1

) und aromatisch (1620 cm
-1

)) sich je nach 

Langzeitapplikation von Stalldünger und/oder Mineraldünger im Boden unterscheiden (P < 

0.05). Die Applikation von 30 Mg ha
-1

 Stalldünger alle  zwei Jahre erhöhte den Anteil an 
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Aliphaten gegenüber Aromaten, während das Gegenteil für die Kontrollbehandlung (ohne 

Mineraldünger oder Stallmist) gilt. Das Verhältnis der relativen Peakflächen der Aromaten zu 

dem der Aliphaten steht in positivem Zusammenhang zum Verhältnis von stabilem 

(organischer Bodenkohlenstoff (SOC) in schweren Dichtefraktionen und Tonfraktion) zu 

labilem SOC (leichte Dichtefraktion). Das ließ darauf schließen, dass das 

Peakflächenverhältnis (aromatisch zu aliphatisch) ein Indikator für den relativen Beitrag von 

stabilem zu unbeständigem OBS ist und somit als Stabilitätsindex dient. 

In der nächsten Phase der methodischen Entwicklung, wurde die Emissionsgasanalyse (EGA) 

während einem programmierten Aufheizen von Bodenproben bis 700°C eingesetzt, um die 

Verbindung von EGA-Eigenschaften mit OBS zu untersuchen. Ein zusätzlicher 

Verfahrensschritt war die Verwendung der In-Situ Diffus-Reflexions (in situT DRIFTS) 

Messungen, als ein Indikator des Zersetzung der OBS s bei verschiedenen Temperaturen. Es 

wurde festgestellt, dass die thermische Stabilität sowohl durch die experimentellen 

Bedingungen als auch durch den Probentyp beeinflusst wurde. Die Aufheizgeschwindigkeit, 

die Menge C in der Probe und das Volumen der Probe in der Heizkammer veränderten die 

Geschwindigkeit und die Gesamtform der CO2-Emissionskurve und mussten für einen 

Vergleich der verschiedenen OBS Fraktionen optimiert werden. Auch bei dem 

Langzeitexperiment wurde anhand der gemessenen Temperatur, der maximalen CO2
-

Entwicklung, eine abnehmende thermische Stabilität in folgender Reihenfolge gefunden: 

Kontrolle > Mineraldünger > Stallmist > Stallmist und Mineraldünger.  Es wurde auch 

festgestellt, dass sich nach einer 490 Tage dauernden Inkubation die thermische Stabilität 

geringfügig erhöhte. Bei der In-SituT DRIFTS Methode nahm die Intensität der zuvor 

identifizierten schwingungsfähigen funktionellen Gruppen bei verschiedenen Temperaturen 

ab. Zuerst verringerte sich die Intensität der aliphatischen, alkoholischen und 

Carboxylatgruppen, bei höheren Temperaturen auch bei aromatischen Gruppen. Diese 

temperaturabhängigen Veränderungen dienten der Identifizierung von mehreren Peaks 

unterschiedlicher Reaktivität auf der  CO2-Kurve, aus denen sich  verschiedene OBS-Modell-

Pools ableiteten lassen. 

Die von den gemessenen Fraktionen der funktionellen Gruppen im  mittleren Infrarotbereich 

(aliphatisch, carboxyl/aromatisch, aromatisch), den angepassten Peaks der CO2-

Emissionsgasanalyse (320°C, 380°C, 540°C), und von den Größen- und Dichtefraktionierung 

(partikuläre organischen Substanz, schwere Dichtefraktion, Schluff- und Tonfraktion) 

abgeleiteten Pools, wurden zusammen mit dem Langzeitlauf eines Gleichgewichtsmodells 
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verwendet um die OBS-Pools des Century-Modells, welches Bestandteil des Modells zur 

Bewertung von Landnutzungsänderung (LUCIA) ist, zu  parametrisieren und mit den an der 

Bodenoberfläche in zwei Jahren gemessenen CO2-Flüssen und der organischem 

Bodenkohlenstoffmenge verglichen. Der erfolgreichsten OBS-Modellpool-

Parameterisierungsansätze für die Kurzzeitstudie waren die OBS-Fraktionierung zusammen 

mit den DRIFTS und EGA Pool-Initialisierungsmethoden. Die Unterschiede über zwei Jahre 

Laufzeit für die drei verschiedenen Parametrisierungsmethoden waren sehr klein und für 

gewöhnlich wurden die CO2-Flüsse  unterschätzt. Andererseits hat eine Simulation über einen 

Zeitraum von 20 Jahren, bei Beibehaltung aller anderen Konstanten, große Veränderungen 

sowohl bei der Menge an SOC (14 Mg ha
-1

 bis 30 cm) als auch bei der Verteilung in den 

Pools gezeigt. Im Vergleich zur SOC-Basislinie von 2010, zeigten die DRIFTS, EGA-1 und 

OBS-Fraktionierungsmethoden für den Standort Kraichgau die größte Annäherung, während 

die Equilibrium-Methode für den Standort Schwäbische Alb am nächsten war.  

 

Insgesamt zeigte die DRIFT MIR-Spektroskopie ihre Nützlichkeit als schnelle 

Bewertungsmethode für die allgemeinen Verteilung von stabiler zu unbeständiger 

organischen Substanz im Boden.  Ergänzend kann diese Technik, zusätzliche Informationen 

zur thermischen Zersetzung von OBS beim Erhitzen liefern, wenn  sie  mit EGA und In-SituT 

DRIFTS Messungen gekoppelt wird. Alle untersuchten Methoden zeigten Veränderungen 

zwischen den OBS-Fraktionen als Folge des Bodendüngemanagements. Schließlich wurde 

gezeigt, dass diese Informationen für direkte OBS-Modelleingaben verwendet werden 

können, wobei die Methode aber auch noch für andere Landnutzungen und Bodenarten 

getestet werden sollte. Diese thermisch gekoppelten spektroskopischen Techniken im 

mittleren Infrarot stellen einen Fortschritt bei der Verwendung der MIR-Spektroskopie auf 

dem Gebiet der detaillierten OBS-Charakterisierung zur Modellierung von OBS-Dynamiken 

dar. 
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Appendix 1: Sources for CENTURY Soil organic matter modelling pool 

size literature search 
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Grassland land use 

location 

SOM pool 
equilibriza-

tion/initalization 

method equilibrium landuse 

Century  

version 

depth/ 

cm 

sand/ 

% 

clay/ 

% 

MAP/ 

mm 

MAT/ 

°C 

TOC/ 

Mg 

ha-1 soil type  

A/ 

% 

S/ 

 % 

P/  

% source 

Nairobi National Park, Kenya 5000 yr. eq. grassland 3 30 40 35 680 19.7 23.5 vertisol 2.5 62.2 35.3 Parton, 1993 

Klong HK Hat Yai, Thailand 5000 yr. eq. grassland 3 30 58 2 1540 26.4 19.9 humic gley 9.5 61.8 28.6 Parton, 1993 

Montecillos Chapingo, Mexico 5000 yr. eq. grassland 3 30 47 18 590 14.2 53.4 solonet 3.6 57.1 39.3 Parton, 1993 

Lamto, Ivory Coast 5000 yr. eq. grassland 3 30 85 5 1170 28.8 15.2 sandy 3.9 55.9 40.1 Parton, 1993 

CPER Pawnee, Colorado, USA 5000 yr. eq. grassland 3 20 70 15 300 10.5 20.5 sandy loam 2.9 61.0 36.1 Parton, 1993 

Konza Prairie, Kansas, USA 5000 yr. eq. grassland 3 30 25 40 818 13.2 50.9 clay loam 3.7 41.3 55.0 Parton, 1993 

Khomutov, Ukraine 5000 yr. eq. grassland 3 30 20 52 441 13 61.2 vermiboroll 4.4 60.5 35.1 Parton, 1993 

Kursk, Russia 5000 yr. eq. grassland 3 30 32 37 560 6.05 112.5 haplaboroll 3.0 48.9 48.1 Parton, 1993 

Otradnoye, Russia 5000 yr. eq. grassland 3 30 43 17 543 8.55 55.5 soddy podzolic 2.7 55.9 41.4 Parton, 1993 

Shortandy, Kazahkstan 5000 yr. eq. grassland 3 30 36 37 351 1.3 59.6 calciboroll 2.9 36.9 60.2 Parton, 1993 

Tuva, Russia 5000 yr. eq. grassland 3 30 74 9 214 -6.3 41.9 Haplustosol 2.4 35.8 61.8 Parton, 1993 

Oensingen,Switz. Monte Carlo unknown DayCent 20 na 43 1109 9 68.4 
Eutri-Stagnic Cam-

bisol 
10.
3 41.0 48.7 

Yeluripati, 

2009 

Oensingen,Switz. Monte Carlo unknown DayCent 20 na 43 1109 9 68.4 

Eutri-Stagnic Cam-

bisol 

20.

7 30.4 49.0 
Yeluripati, 

2009 

Park Grass-control, UK 10-30 yr. eq. managed grassland 4 20 19 23 728 9.1 68.2 Aquic Palendalf 1.8 64.5 33.7 
Kelley et al., 

1997 

Park Grass-organic, UK 10-30 yr. eq. 
grassland+FYM 

(post-1905) 4 20 19 23 728 9.1 71.7 Aquic Palendalf 2.4 65.6 32.1 
Kelley et al., 

1997 

Park Grass-inorganic, UK 10-30 yr. eq. 

grassland+NPK 

(post-1905) 4 20 19 23 728 9.1 71.2 Aquic Palendalf 1.7 66.0 32.3 
Kelley et al., 

1997 
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Forest land use 

location 

SOM pool 

equilibriza-

tion/initalization 
method equilibrium landuse 

Century  
version 

depth/ 
cm 

sand/ 
% 

clay/ 
% 

MAP/ 
mm 

MAT/ 
°C 

TOC/ 

Mg 
ha-1 soil type  

A/ 
% 

S/ 
 % 

P/ 
 % source 

Lavarone, Italy 5000 yr. eq. managed forest  4.5 20 25 28 1150 7.8 84.4 humic umbrisol 2.5 54.9 42.6 
Chiti et al., 

2010 

San Rossore, Italy 5000 yr. eq. managed forest  4.5 20 94 2 920 14.2 50.9 albic arenosol 2.2 77.1 20.7 
Chiti et al., 

2010 

Roca 1, Italy 5000 yr. eq. managed forest  4.5 20 36 33 876 15.2 55.1 chromic luvisol 1.6 46.8 51.7 
Chiti et al., 

2010 

Roca 2, Italy 5000 yr. eq. managed forest  4.5 20 40 35 876 15.2 55.7 chromic luvisol 1.3 61.0 37.7 
Chiti et al., 

2010 

Collelogo, Italy 5000 yr. eq. managed forest  4.5 20 30 30 1140 7.4 92.2 humic alisol 2.6 59.2 38.2 
Chiti et al., 

2010 

Castelporziano, Italy 5000 yr. eq. managed forest  4.5 20 89 6 767 15.6 29.1 haplic arenosol 2.0 72.9 25.1 
Chiti et al., 

2010 

Secano 
Interior, Chile,  2000 yr. eq. 

open woodland to 
Espino 4.5 20 na 

28-
340  695 14.8 44.7 Ultic Palexeralfs 2.6 51.5 38.6 

Stople et al., 

2008 

Secano 
Interior, Chile,  2000 yr. eq. 

open woodland to 
Espino 4.5 20 na 

28-
40  695 14.8 40.2 Ultic Palexeralfs 2.4 46.8 43.8 

Stople et al., 

2008 

Secano 

Interior, Chile,  2000 yr. eq. 

open woodland to 

Espino 4.5 20 na 

28-

40  695 14.8 24.7 Ultic Palexeralfs 2.2 52.6 36.7 
Stople et al., 

2008 

Geescroft wilderness, UK 

 

hardwood forest 
Parton, 

87 20 na 21 704 9.3 24.9 
Aquic/Typic Paleu-

dalf 4.7 38.1 57.2 
Falloon and 

Smith, 2002 

Calhoun Forest, SC, USA  10-30 yr. eq. loblolly pine forest 4 20 68 15 1250 17 14.4 Typic Kanhapludult 2.8 27.8 69.4 
Kelley et al., 

1997 

Geescroft, UK 10-30 yr. eq. hardwood 4 20 19 23 728 9.1 26.2 Aquic Palendalf 4.7 38.1 57.2 
Kelley et al., 

1997 

Yarraman State For., Australia 3000 yr. eq. tropical rainforest 4.5.1 30 27 53 744 

4.4 to 

29.7 138.0 Ferrasol  na 46.7 na 
Richards et 

al., 2007 

Nova Vida Ranch, Brazil  10000 yr. eq. 
open humid tropical 

forest 4 20 67 26.2 2200 25.6 25.0 
Kandiuldults, 

Paleudults 2.0 61.0 37.0 
Cerri et al., 

2004 
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Arable land use 

location 

SOM pool 

equilibriza-

tion/initalization 
method equilibrium landuse 

Century  
version 

depth/ 
cm 

sand/ 
% 

clay/ 
% 

MAP/ 
mm 

MAT/ 
°C 

TOC/ 

Mg 
ha-1 soil type  

A/ 
% 

S/  
% 

P/ 
 % source 

Agramunt, Spain 5100 yr. eq. 

open forest to barley-

fallow  4 30 47 11.8 430 13.8 29.8 Typic Xerofluvent 7.5 18.1 74.4 

Álvaro-

Fuentes, et al., 

2012 

Prague-organic+NPK, Czech Republic 10-30 yr. eq. rotation-1 4 20 46 27 523 8 26.2 Medudalf 4.7 22.9 72.5 
Kelley et al., 

1997 

Prague-control, Czech Republic 10-30 yr. eq. 

sugar beet, spring 

wheat 4 20 46 27 523 8 31.2 Medudalf 3.9 19.2 76.9 
Kelley et al., 

1997 

Tammworth, Australia 10-30 yr. eq. lucerne/clover+cereal 4 20 10 50 676 17.5 24.3 Pellic Vertisol 5.2 20.6 74.2 
Kelley et al., 

1997 

 

10-30 yr. eq. fallow, cereal 4 20 10 50 676 17.5 28.3 Pellic Vertisol 4.5 17.7 77.8 
Kelley et al., 

1997 

Waite, Australia 10-30 yr. eq. wheat, fallow 4 20 43 25 604 16.8 113.3 Rhodoxeralf 1.1 57.4 41.5 
Kelley et al., 

1997 

 

10-30 yr. eq. 
wheat, oat, pasture, 

fallow 4 20 43 25 604 16.8 113.3 Rhodoxeralf 1.1 57.4 41.5 
Kelley et al., 

1997 

Ultuna, Sweden  other 1 na na 20 na 35 570 5.4 na Typic Eutrochrept 3.0 37.0 60.0 
Paustian et al., 

1992 

La Montan˜a 

Research Station, Costa Rica na. na 4 20 25 41 2648 21.7 51.7 Eutric Cambisol 3.0 65.0 42.0 

Oelbermann 

& Voroney, 

2011 

Uni. Guelph Agrofor. Res. St., Canada na temperature forest 4 20 65 10 820 7.2 45.0 luvisol 3.0 65.0 42.0 

Oelbermann 

& Voroney, 

2011 

Kellogg Biolog. St., MI, US other 2 na 

DSSAT-
CEN-

TURY 20 43 19 890 9.7 41.1 Typic Hapludalf 2.0 54.0 44.0 
Basso et al., 

2011 

Kellogg Biolog. St., MI, US other 2 na 

DSSAT-
CEN-

TURY 20 59 14 890 9.7 30.9 Typic Hapludalf 2.0 54.0 44.0 
Basso et al., 

2011 

Zaragoza province, Spain 5100 yr. eq. tree/grass system 
Parton 
87, 94 30 29 22.3 340 14.7 32.1 Xerollic Calciorthid 1.3 6.7 92.0 

 Álvaro-

Fuentes et al., 

2009 

Zaragoza province, Spain 5100 yr. eq. tree/grass system 

Parton 

87, 94 30 29 22.3 340 14.7 32.1 Xerollic Calciorthid 1.3 6.7 92.0 

 Álvaro-

Fuentes et al., 

2009 

Coimbra, Brazil  6100 yr. eq. forest to maize/beans 4 20 38 46 1350 19 64.0 Typic Kandiudult 2.5 27.8 69.7 

 Carvalho 

Leite et al., 

2004 

Coimbra, Brazil  6100 yr. eq. forest to maize/beans 4 20 38 46 1350 19 64.0 Typic Kandiudult 2.5 47.0 50.5 

 Carvalho 

Leite et al., 

2004 

Saskatchewan, Canada  
Monreal et al., 

1997 no vegetation 
Parton 
87, 94 10 30 20 350 3.5 1.5 Typic Haploboroll 3.0 45.0 52.0 

Wang et al., 

2002 

Martonvasar, Hungary fit 

forest arable with 

FYM 

Parton, 

87 20 na 31 453 10.3 73.4 Calcic Chernozem 2.6 63.0 34.0 
Falloon and 

Smith, 2002 
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Arable land use (cont.) 

location 

SOM pool 

equilibriza-

tion/initalization 
method equilibrium landuse 

Century  
version 

depth/ 
cm 

sand/ 
% 

clay/ 
% 

MAP/ 
mm 

MAT/ 
°C 

TOC/ 

Mg 
ha-1 soil type  

A/ 
% 

S/  
% 

P/  
% source 

Woburn-ley arable, UK fit fallow, cereal 

Parton, 

87 20 
 

63 506 9.3 32.6 Cambic Arenosols 3.0 50.0 47.0 
Falloon and 

Smith, 2002 

Bad Lauchstadt-FYM+NPK, Germany 10-30 yr. eq. Rotation-2 4 20 12 21 484 8.7 55.9 Haplic chernozem 1.6 53.7 44.7 
Kelley et al., 

1997 

Bad Lauchstadt-nil, Germany 10-30 yr. eq. Rotation-2 4 20 12 21 484 8.7 44.9 Haplic chernozem 2.0 24.5 73.5 
Kelley et al., 

1997 

1- sugar beet, spring wheat+organic+NPK 

2- sugar beet, winter wheat, spring barley, potatoes 

3- clay loam texture, not exactly specified 

na-not available or not specificed in text. 

Additional initialization methods. Fit-pools adjusted to fit measured TOC values, 1-slow pool varied between 37 to 47% to fit 

measured values, 2-iterative method based on site conditions. 

Equilibrium land use-land use used for long-term equilibrium run, MAP-mean annual precipitation, MAT-mean annual temperature, 

TOC-total organic carbon, soil type-either by FAO-WRB classification (IUSS Working Group WRB, 2007) or by Soil Taxonomy 

(Soil Survey Staff, 1998), A-active pool, S-slow pool, P-passive pool size. 
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Appendix 2: Supplementary information for chapter 3. 

 

For the optimization of the FTIR-EGA and in situT DRIFTS systems, purge rate, heating rate, 

and calibration range were investigated in order to obtain the optimal operating conditions. 

Figure A.1 shows the effect of purge rate of the heating chamber and gas cell. At low purge 

rate the CO2 concentration is more than twice as high and the residence time of the gas in the 

system is much longer, as seen by the lack of a decrease of the curve upon reaching the end 

of the programmed heating at 700°C. The change in heating rate from 10 to 68°C also 

produced a marked change in the evolved gas profile (Fig. A.2). An increase in both the peak 

temperature of maximum CO2 evolution was found and also an increase in the absorbance 

values. Figure A.3 shows the effect of the two extreme heating rates on the change in relative 

intensity of the mid-infrared peak at 1620 cm
-1

 (COO=/C=C). The lower heating rate seems 

to produce a greater overall increase in this peak area and likewise at the end of the 

programmed heating increase, the intensity of the peak has not declined as much as compared 

to 68°C min
-1

 possibly indicating the formation and retention of more thermal recalcitrant C 

which justified our use of the higher heating rate. Figure A.4 shows the linear range of the 

FTIR-EGA gas cell calibration with NaHCO3 and also shows the “overflow” or non-linear 

area where the absorbance values no-longer respond linearly to an increase in C content of 

the sample. Additionally if any of the variables are changed in the experimental setup 

(heating rate, purge rate, purge gas), then a new calibration must be developed. 
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Figure A.1. Effect of flow rate (synthetic air) on evolved gas profile of CO2 as measured by

 FTIR-EGA of bulk soil from Kraichgau site. Sample was heated from 25 to 700°C at

 68°C min
-1

 under synthetic air purge.  

 

 

 

 

 
 

 

 

Figure A.2. Effect of heating rate on evolved gas profile of CO2 as measured by FTIR-EGA

 of bulk soil from Kraichgau site heated from 25 to 700 °C under synthetic air purge.  
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Figure A.3. In situT DRIFTS of effect of heating rate on vibrational intensity change of peak 

 at 1620 cm
-1

 (COO-/C=C) of bulk soil samples heated from 25 to 700°C under  

 synthetic air purge. 

 

 

 

 
Figure A.4. Extended range of NaHCO3 standard showing no-linear response with increasing

 C content under synthetic air purge. 
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Appendix 3: Supplementary information for chapter 4 

 

Table A.2. Rate constants. 

pool rate constant (K) 

surface litter metabolic 4 *10
-2

 

surface litter structural 1.08*10
-2

 

soil litter metabolic topsoil 5*10
-2

 

soil litter metabolic subsoil 5*10
-3

 

soil litter structural topsoil 1.34*10
-2

 

soil litter structural subsoil 1.34*10
-3

 

active topsoil 2*10
-2

 

slow topsoil 5.43*10
-4

 

passive topsoil 1.86*10
-5

 

active subsoil 2*10
-3

 

slow subsoil 4.43*10
-5

 

passive subsoil 1.86*10
-6

 

  CN ratios 

 target metabolic 25 

structural 150 

active 8 

slow 11 

passive 11 

bold=Century default (Parton et al., 

1987) 
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Table A.3.  Monthly weather data (DWD, 2013) (average of 1989-2008) used for 20 year simulation. 

Site Location Elevation parameter Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec Annual 

Kraichgau  

N 

49°12', E  

09°31' 276 m ppt (mm) 63 57 63 64 85 94 75 76 59 63 68 74 841 

(Öhringen) 

  

solar 

radiation 

(W m
-2

) 39 69 112 166 211 228 230 196 145 88 46 33 130 

   

air 

temperature 

(°C) 0.1 1.4 4.7 8.6 13.1 16.2 18.0 17.4 14.1 9.5 4.5 1.3 9.1 

   

Eto (mm 

day
-1

) 0.39 0.48 1.21 1.89 2.91 3.43 3.71 3.08 2.01 1.03 0.52 0.36 1.8 

   

soil temp 

10 cm (°C) -0.9 0.2 3.3 6.8 11.0 14.1 15.7 15.2 12.2 8.0 3.3 0.2 7.4 

Swabian 

Alb 

(Stötten) 

N 48°40' 

E 09°51' 734 m ppt (mm) 78 68 71 88 109 135 101 107 75 72 83 82 1068 

   

solar 

radiation 

(W m
-2

) 40 69 111 161 206 227 231 194 145 89 48 33 130 

   

air 

temperature 

(°C) -2.1 -1.1 2.2 6.0 10.4 13.5 15.6 15.3 12.5 7.9 2.3 -1.0 6.8 

   

Eto (mm 

day
-1

) 0.38 0.61 1.20 1.97 2.77 3.25 3.60 3.09 2.11 1.15 0.58 0.40 2 

      

soil temp 

10 cm (°C) -2.5 -1.5 1.6 5.3 9.6 12.7 14.5 14.1 11.3 7.0 1.9 -1.4 6.0 

*-ppt-precipitation, SR-solar radiation, AT-air temperature 2 meters above ground, ETo-reference evapotranspiration (estimated by Penman 

equation), ST-soil temperature at 10 cm depth (estimated by Kätterer a & O. Andrén, 2008) 
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Table A.4. Management parameters during 20 year simulation. 

crop 

planting 

date 

harvest 

date N  P  K  

manure 

application 

remaining 

residue/ 

% 

Kraichgau 

       winter 

wheat 01 Nov 06 Aug 149 46 0 

 

10 

mustard-

maize 

28 Aug, 

17 Apr  14 Oct 192 75 0 

Apr 16 

1600 

Biogas 

slurry 10 

winter 

wheat 07 Nov 09 Aug 232 0 0 

 

10 

winter rape 20 Aug 20 Jul 194 37 66 

Aug 20, 

32 biogas 

slurry 100 

        Swabian 

Alb 

       winter 

wheat 13 Oct 20 Aug 255 0 0 

 

10 

winter rape 30 Sep 05 Sep 153 44 36 

 

100 

winter 

wheat 22 Sep 20 Aug 235 20 36 

 

10 

mustard-

maize 

01 Sept, 

25 Apr 19 Sep 92 0 0 

biogas 

slurry Apr 

20 1400 

kg 
10 

mustard-

summer 

barley 

30 Oct, 

01 Apr  15 Jul 92 0 0   10 
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Resources, The Ohio State University, Columbus, Ohio, USA. 

Teaching associate for introductory soil science laboratory and 

pedology courses. 
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Nov 1999-Nov 2005 Ohio Air National Guard-Services Journeyman November 1999-

November 2005.  Food preparation for large scale bases in austere 

conditions. 

Sept 2001-Dec 2003 Laboratory (part time), Soil Characterization Lab with the Cooperative 

Soil Survey, The Ohio State University, Columbus, Ohio, USA. Job 

included all tasks pertaining to handling of samples received for the 

Cooperative Soil Survey including soil sample processing and 

performing analysis on total carbon, pH, particle size, extractable 

bases, X-ray diffraction, and surface area. 

Oct 2000-Sept 2001 Laboratory technician (part time), Plant Biotechnology Center, The 

Ohio State University, Columbus, Ohio, USA. Job included general lab 

duties such as dish washing, making of solutions and growth media, 

and care of corn and Arabidopsis plants. 

Publications 

Demyan, M.S., Rasche, F., Schütt, M., Smirnova, N., Schulz, E. & Cadisch, G. 2013. 

Combining a coupled FTIR-EGA system and in situ DRIFTS for studying soil organic 

matter in arable soils. Biogeosciences, 10, 2897-2913.  

Demyan, M.S., Rasche, F., Schulz, E., Breulmann, M., Müller, T. & Cadisch, G. 2012. Use 

of specific peaks obtained by diffuse reflectance Fourier transform mid-infrared 

spectroscopy to study the composition of organic matter in a Haplic Chernozem. 

European Journal of Soil Science, 63, 189-199.  

Other publications not included in dissertation 

Giacometti, C., Demyan, M.S., Cavani, L., Marzadori, C., Ciavatta, C. & Kandeler, E. 2013. 

Chemical and microbiological soil quality indicators and their potential to differentiate 

fertilization regimes in temperate agroecosystems. Applied Soil Ecology, 64, 32-48.  

Rhoades, J.L., Demyan, M.S. & Orr, B. 2011. Impacts of Deforestation and Land Cover 

Change on Mountain Soils in Hrazdan, Armenia. Journal of Sustainable Forestry, 30, 

677-696.  

Siewert, C., Demyan, M.S. & Kučerík, J. 2012. Interrelations between soil respiration and its 

thermal stability. Journal of Thermal Analysis and Calorimetry, 110, 413-419.  

 

 

 

 



176  Curriculum-vitae 

 

Conference contributions 

Demyan, S., F. Rasche, S. Becker-Fazekas, M. Schütt, A. R. Zinkeng, E. Schulz, T. Müller, 

G. Cadisch.
 
 Coupled mid-infrared spectroscopy (MIRS) and thermally evolved gas analysis 

to study SOM dynamics in arable soils.  3
rd

 International Symposium on Soil Organic Matter:  

Organic matter dynamics-from soils to oceans. 11
th

-14
th

 July, 2011.  Leuven, Belgium.  Oral 

presentation. 

Demyan. S., F. Rasche, E. Schulz, S. Becker-Fazekas, M. Breulmann, T. Müller, and G. 

Cadisch.  2010.  Soil organic matter (SOM) characterization by coupled mid-infrared 

spectroscopy and thermal analyses to compliment SOM fractionation. 4
th

 International 

Symposium on Organic Matter Stabilization: Organic matter stabilization and ecosystem 

functions. 19
th

-23
rd

 September 2010. Presqu’île de Giens, France. Poster 

Demyan, S., N. Smirnova, F. Rasche, T. Müller, G. Cadisch. 2010. Characterization of Soil  

Organic Matter by Mid-Infrared Spectroscopy/Evolved Gas Analysis, Long Term Dynamics.  

Workshop: Regulation of soil organic matter and nutrient turnover in agriculture. University 

of Kassel, 12
th

-13
th

 November 2009. Oral presentation 

Demyan, S., F. Rasche, S. Becker-Fazekas, E. Schulz, T. Müller, and G. Cadisch. Soil 

organic matter characterization utilizing mid-infrared spectroscopy and thermal analyses. 

Euroleague for Life Sciences (ELLS) Science Student Conference on Climate Change, 4
th

-5
th

 

November, 2009 Hohenheim 2009. Poster 

Demyan, S. and N. Smeck.  2005.  Rapid pedogenesis in minesoils, changes in minesoils over 

25 years.  Soil Science Society of America Conference, Salt Lake City. Oral presentation. 

Other experiences 

Aug 2012 expert for short-term IAEA-FAO training mission on mid-infrared 

spectroscopy for research uses to Lima, Peru  

Jul 2004 Soil Science-Ecological Field Excursion to Western Siberia, Russia (July 4th- 

    28th, 2004) 

2002-2004 Soil Judging at the American Society of Agronomy Regional Contests (2002, 

2003) and National Contest (2004) 

2002-2003 deployed in support of Operation Enduring Freedom in 2002 and 2003 as a 

     member of the Ohio Air National Guard 

Dec 2002 American Society of Agronomy Cross Cultural Exchange Scholarship 

Mar 1998 Eagle Scout, Boy Scouts of America 
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Activities and Organizations 

 -Association of Ohio Pedologists –associate member 

 -Soil Science Society of America –graduate student member 

 -Associate Professional Soil Scientist (since 2007) 

 -Ohio State Soil Judging Team (2002-2004) 

 

 

 

 

 

 


