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1 General Introduction 

1.1 Importance of pastoral rangelands 

Drylands (arid and semiarid areas) cover 41% of Earth’s land surface and hosting approximately 

2.7 billion humans (Bai et al., 2008). Sixty-five percent of global drylands host rangelands, a 

base for livestock production that contributesto foods and livelihoods security of 800 million 

people (Mortimore, 2009). In Africa, drylands constitute about 43% of inhabited surface and are 

mainly used for pastoral and agro-pastoral activities to support 268 million people (IIED andSOS 

Sahel, 2010). In East Africa, grassland or savanna ecosystems coverextensive areas of the 

dryland surface, which account more than 60%of the total land area of the region (Neely and 

Bunning, 2008) and are a basis for livestock industry. In Ethiopia, pastoral and agro-pastoral 

areas support about 40% of the cattle, 50% of the small ruminants, and almost all camels (Hogg, 

1997). Livestock production largely carried out in dry areas provides foods and incomes for an 

estimated 12 - 15% of the Ethiopia’s pastoral and agro-pastoral population and also constitutes 

20% of total growth domestic product (GDP) of Ethiopa (Aklilu, 2002).  

Dry rangelands, because of theirvast nature, hold huge potential to be one of the terrestrial 

sinks for carbon (C), globally accounting for 36% of the total C stock of terrestrial ecosystems 

despite its low C density compared to forest ecosystems (Lal, 2004a). Their potential as C sinks 

could be an important ecosystem service to mitigate global warming (FAO, 2010; Tennigkeit and 

Wilkes, 2008; IPCC, 2007; Neely and Bunning, 2007). Reid et al. (2005) suggested that the 

payment for C sequestration could diversify livelihood options and potentially increase 

adaptation potentials of the resource-poor pastoral people to climate change. Whilethe potential 

for C sequestration in the dry rangelands was highlightedin the previous studies(e.g., Tennigkeit 

and Wilkes, 2008; Neely and Bunning, 2007), to date no empirical research work has been done 

to estimate C stocks in vegetation and soils of the southern Ethiopian rangelands.Management of 

rangeland aboveground vegetation (herbaceous and woody species) can have significanteffect on 

the ecosystem Cstocks. Similarly, C stocks in a soil particularly in degraded rangelands may be 

increased for C credit purposes through adoption of better grazing management practices that 

may include moderate stocking rates, sustainable grazing systems such as rotational grazing and 

seasonal use (Garnaut, 2008). However, the response of vegetation and soil C stock to such 

grazing management changeshas not been investigated and it has not been quantified the way the 

reduction in grazing pressure could increase C stocks in the Borana rangelands. 
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1.2 Major threats to Borana rangelands 

Historically, the Borana pastoralists in southern Ethiopia (Fig.1.1) , i.e., whose gross incomes 

from livestock keeping is at least 50% (Swift, 1988), specialized on extensive cattle keeping and 

their land use system was largely characterized by a sustainable exploitation of rangeland 

resources based on seasonal herd mobility in connection with flexible stocking densities (Oba 

and Kotile, 2001). 

 

Fig.1.1. Map of study area (all country and regional bounderies shown on the Map are not considered authoritaive) 

 

Movement patterns corresponded with local rainfall and according rangelands productivity, 

shifting towards dry areas in the wet season and to more humid areas in dry seasons (Swift, 

1995). The pastoralist’s rangeland management system also involved periodic burning of the 

rangelands (Coppock, 1994). Amongst the East African rangelands the Borana pastoral system in 

southern Ethiopia was regarded to be especially productive until the 1980s (Cossins and Upton, 

1987). These authors indicated thatthe Borana pastoral systemhad higher net primary 

productivity and returns of energy and protein per hectare compared to industrialized ranching 



11 
 

systems in North Australia which only realize 16% of the energy and 30% of the protein per 

hectare compared to the Borana system. However, increasing human and livestock populations, 

changes in fire regimes, expansion of crop production and changing demographics and 

traditional institutional conditions have forced pastoralists to intensify grazing, which have 

resulted in deterioration of the rangelands (Homann et al., 2008a; Homann et al., 2008b; Watson, 

2003; Oba et al., 2000b; Cossins and Upton, 1987). Climate variability including an increased 

frequency of extreme weather events and prolonged droughts exacerbated the degradation of 

rangelands in dry parts of Africa (Neely and Bunning, 2008).  

 The term rangeland degradation/deteriorationrefers to both soil and vegetation and is 

generally defined as the reduction of the economic or biological productivity of lands (FAO, 

2011). Loss of plant cover, undesirable change in herbaceous species composition (e.g. annual 

grasses replacing perennials), soil erosion of various types associated with intensification of 

grazing and woody encroachment have been dominant features in the Borana rangelands (Fig. 

1.2) which could have different implications for pastoral productivity and rangelands Cstorage 

potentials (Conant and Paustian, 2002).  

 

Fig.1.2. Rangeland degradation, i.e., loss in herbaceous plant cover, in semiarid Borana rangelands (pictures taken in 

dry season of 2011 by Hasen Yusuf).  

 

1.2.1 Intensification of grazing and ecosystem C and N stocks 

Grazing influences soil carbon (C)  and nitrogen (N) stocks, however, studies so far have shown 

mixed results of grazing impacts on soil C and N; studies showed increasing (Reeder and 

Schuman, 2002), neutral (Shrestha and Stahl, 2008) or even decreasing effects of grazing (Pei et 

al., 2008). Grazers influence soil organic C (SOC) and soil organic N (SON) through 
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mechanisms that change C and N input and output in the soil (Baisden and Amundson, 2003). 

Grazers (i.) decrease primary productivity by reducing photosynthetic surface areas, (ii.) change 

plant C and N belowground allocation (Semmartin et al., 2010; Reeder et al., 2004), and (iii.) 

affect litter quality, decomposition and mineralization rates (Semmartin et al., 2010). Grazers can 

also affect legume species abundance and, hence, N fixation rates, which may reduce N inputs to 

the soil (Allard et al., 2007). Ruminant enteric fermentation as well as C and N emissions from 

animal wastes through volatilization and leaching impact SOC and SON stocks in the rangeland 

soils (Pineiro et al., 2009).Loss of soil C and N associated with grazers arise mainly from 

changes in soil organic matter decomposition and mineralization rates (Wang et al., 2011) or 

increased erosion under heavy grazing (Savadogo et al., 2007).  

 Grazing decreases plant cover and, thus, may increase soil organic matter mineralization 

rates because of higher soil temperature and moisture variability and by increasing desertification 

(Wang et al., 2011). Livestock affect soil condition through an excessive removal of plant tissue, 

and physical compaction and break–up of the top soils; this is followed by loss of top soils by 

wind and water erosion, and overall depletion of soil physical, chemical and biological properties 

(Savadogo et al., 2007; Neff et al., 2005; Mwendera and Saleem, 1997). Intensification of 

grazing exacerbated rangeland degradation, particularly in dry areas because of their soil’s 

course texture, low organic matter content, low water and nutrient retention capacities, and low 

inherent soil fertility (Lal, 2004b). Therefore, decreasing the grazing pressure should increase 

Cstorage by the ecosystem, thereby removing CO2 from the atmosphere. However, the effect of 

grazing intensity on SOC and SON stocks depends on climate (precipitation and temperature), 

soil properties, and vegetation types (C3 vs. C4) (McSherry and Ritchie, 2013; Pineiro et al., 

2010).The overall consequences of grazing on herbaceous productivity, SOC and SON 

accumulation vary along gradients of these variables, however, only few studies have been 

conducted on quantifying the effects of grazing exclusion on SOC in dry rangelands of east 

African pastoral grazing systems (Verdoodt et al., 2009). Savanna ecosystems are complex and 

in a continuous state of change naturally, and also due to unsustainable land use practices 

(Walker and Abel, 2002). One of such dynamic changes in savanna rangelands is the increasing 

trend of woody encroachment in the grazed ecosystem and under livestock exclusion (Angassa 

and Oba, 2008, 2007), which could influence the effect of grazing on SOC and SON storage. 
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1.2.2 Woody encroachment and rangeland productivity 

1.2.2.1 Causesof woody encroachment 

The rapid expansion of woody encroachment in southern Ethiopia (Fig 1.3 and Fig. 1.4) has been 

widely reported as a common form of rangeland degradation (Angassa and Oba, 2008; Solomon 

et al., 2007; Gemedo et al., 2006; Oba and Kotile, 2001). Woody encroachment is an increase in 

cover, density and biomass of indigenous woody plant species (Van Auken, 2009), and has been 

reported globally for drylands and savannas in the recent decades (Eldridge et al., 2011). The 

causes of woody encroachment include overgrazing, reduced fire frequency and intensity 

(Higgins et al., 2007), increasing atmospheric CO2 concentration, and long-term climate 

variability especially increased precipitation intensity (Kulmatiski and Beard, 2013). 

 Rangeland burning practices by pastoralists is among the determinant factors for the 

occurrence of African savannas (Sankaran et al., 2005). Intense and frequent fires often suppress 

or kill woody plant seedlings, thus preventing the establishment of a continuous canopy cover 

which would limit further herbaceous plants growth (Smit et al., 2010; Higgins et al., 2007). 

When fires are less intense, woody plants saplings can grow and escape the fire flame zone and 

becomes fire-resistant (Brown and Archer, 1999). For example, prior to suppression of fires by 

government policy from Borana pastoral system in the 1970s rangeland management systems in 

the area, including fire, reduce woody species proliferation and may have maintained open 

rangelands for centuries (Angassa and Oba, 2008). According to Angassa and Oba (2008), the 

complete suppression of fire is the main cause of an increased woody encroachment in the 

Borana rangelands. 

Intensification of grazing may also contribute to woody encroachment in several ways: 

(i.) Herbaceous species compete with woody plants for resources (e.g., water) in the topsoil and 

reduction of herbaceous growth by grazing reduces the competitive vigor of herbaceous species, 

potentially enhances woody plants growth (ii.) Heavy grazing may weaken the intensity of fires 

by reducing the herbaceous biomass, fostering woody encroachment. (iii.) Animals may act as 

dispersal agents for seeds of woody species (Riginos et al., 2009; Riginos and Young, 2007; 

Brown and Archer, 1999). A tendency towards an increase in woody encroachment despite 

efforts of mechanical removal of woody plants, however, suggests that increases in atmospheric 

CO2 and long-term climate variability might contribute to woody encroachment in savanna 

ecosystems (Kulmatiski and Beard, 2013; D'Odorico et al., 2010; Polley et al., 1994). The 
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increases in global CO2 concentration may also have benefited C3 woody species at the expense 

of C4 grasses in arid and semiarid tropical ecosystems (Polley et al., 1994).  

 

 

Fig.1.3. Rangelands severely encroached by Acacia reficiensand with low herbaceous growth potential (pictures 

taken by Hasen Yusuf, 2011) 
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Fig.1.4. Rangelands severely encroached by Comiphora species (pictures taken by Hasen Yusuf, 2011) 

 

1.2.2.2 Effects of woody encroachment on pastoral productivity and ecosystem C stocks 

Compared to original savanna/grasslands, woody encroachment is often associated with reduced 

herbaceous productivity, species richness and diversity (van Auken, 2009). The Millennium 

Ecosystem Assessment (2005) described it as an ecological symptom of degradation and 

desertification of the savannas/grasslands (MEA 2005). In east Africa, asmall increase in woody 

encroachment in dry savannas resulted in strong reductions in pastoral production (Oba et al., 

2000a). Van Wijngaarden (1985) reported that in East African dry savanna ecosystems increases 

in woody cover by 10% reduced herbaceous production by 7%, while grazing potential was 

eliminated when woody cover reached 90%.This phenomenon encourages many pastoralists to 

control woody encroachment mechanically (Angassa and Oba 2008). However, this approach 

has shown unsuccessful for long-term woody encroachment control as the reductions in woody 

plant cover achieved are usually temporary, and woody plant abundance typically recovers 
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remarkably in the decade following treatment application (Grant et al., 1999; Scifres et al., 

1985). Although woody encroachment has been recognized as a major rangeland management 

issue in the Borana rangelands (Fig.1.5), neither the rate nor the spatial extent have yet been 

adequately quantified on a landscape level. 

 

Fig.1.5. The influence of woody encroachment, i.e., canopy density and cover, on understory vegetation and soils in 

semiarid Borana rangelands (both pictures were taken during the wet season by Hasen Yusuf in 2011)  

 

 While woody encroachment is often regarded as severe rangeland degradation in pastoral 

communities, particularly within the context of grazing (Oba et al., 2000a), it has been shown to 

trigger a significant increase in C sequestration potential in tropical American savanna and 

grasslands (Knapp et al., 2008), Australia (Daryanto et al., 2013), and South Africa (Shackleton 

and Scholes, 2011). This C accumulation appears to be a function of enhanced below- and 

aboveground net woody vegetation primary productivity (NPP), low decomposition rates 

beneath trees, biochemical recalcitrance of woody plants litter, and organic matter stabilization in 

protected soil aggregates (Knapp et al., 2008). Woody plants in a grassland system tend to 

increase C uptake by extending the growing season, expanding the depth of the niches from 

which soil nutrients and water are drawn and, in the case of nitrogen fixing trees, enhancing soil 

fertility (Nair et al., 2009). When woody plants occur in suitable soils, C is sequestered in 

thebiomass and soil as well (Jose and Bardhan, 2012).  

Management by tree clearing and re-clearing after woody regrowth (Daryanto et al., 

2013; Gifford and Howden, 2001) could have big effects on the total rangeland ecosystem 

Cstocks, mainly through the amount of woody biomass. On the other hand, a shift in vegetation 
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cover may also affect belowground carbon (BGC) allocation patterns of the herbaceous 

vegetation, ultimately reducing belowground C storage and perhaps offsetting gains in 

aboveground carbon (AGC) stocks (Jackson et al., 2002). Nonetheless, the influence of woody 

encroachment on SOC seems to be precipitation-dependent. For example, the drier sites in the 

Chihuahuan desert in USA (< 280 mm rainfall) gained soil C and N with encroachment while 

more wet sites (400 - 800 mm rainfall) lost C and N with encroachment (Jackson et al., 2002).  

The influence of woody encroachment on grassland SOC also seems to be determined by 

soil characteristics, woody species composition, structure, litter quality and quantity and other 

traits of encroacher woody species (Eldridge et al., 2011; Hudak et al., 2003; Jobbagy and 

Jackson, 2000). Given that southern Ethiopian rangelands occupy a large area (> 95 000 km
2
) 

and woody encroachment within tropical grasslands and savanna is a worldwide phenomenon 

(Van Auken, 2009; Eldridge et al., 2011), an understanding of how woody encroachment affects 

annual production and ecosystem C stocks is essential for quantifying and balancing rangeland 

ecosystem services and the global C budget (Daryanto et al., 2013; Gifford and Howden, 2001).  

Carbon storage in the vegetation (woody plants and grasses) and soils of the rangelands through 

change in livestock and rangeland management practices may hold potential to diversify pastoral 

livelihoods if linked to payment for sequestration or avoidance of C emissions. However, it is 

unclear how much C is currently stored in the vegetation biomass and soils of these rangeland 

ecosystems. It has further never been quantified by the way in which reduced grazing intensity 

and increased woody encroachment can enhance soil or ecosystem Cstocks in this semiarid 

rangelands. Therefore, this study aimed at providing answers to the following questions: 

1. How strongly has woody encroachment expanded in the Borana rangelands over the last 

four decades and how much C is currently and could potentially be stored in the 

aboveground biomass (AGB) in different grazing regimes? 

2. How much carbon is currently stored in the soils of semi-arid Borana rangelands and how 

are the soils organic C (SOC) and total soil nitrogen (TSN) stocks influenced by woody 

encroachment and grazing intensity? 

We expect that the area covered by woody plants have increased over the last 40 years. This 

could have led to a decline in open savanna areas, particularly valuable to pastoralists, but could 

have significantly increased the above-andbelowground C and N stocks, which could be positive 

from a global warming mitigation perspective. We also expect that the changes in the ecosystem 
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C stocks in different ecosystem components depends on the pastoral grazing land management 

i.e., grazing, browsing and woody plant utilization. We further would expect that long-term 

grazing relaxation (enclosures) increases ecosystem C and N stocks. However, the response of 

herbaceous vegetation to grazing will also be influenced by the amount of woody vegetation, 

which might highlight a joint effect on the C stocks in the herbaceous component of the 

ecosystem.  

1.3 Specific objectives 

The main objective of this thesis was to develop reliable tools to estimate AGC stocks in woody 

vegetation species. Further objectives were 

1. To analyze the changes in vegetation cover in Yabello district rangelands from 1976 to 

2012 at a landscape scale 

2. To analyse vegetation structure under different grazing regimes and various woody 

encroachment levels 

3. To determine the AGC stocks in woody and herbaceous vegetation under different 

grazing regimes and at various woody encroachment levels 

4. To determine SOC and TSN stocks in different grazing regimes at various levels of 

woody encroachment 

1.4 Outline of the thesis 

This research focused on the assessment of the rangeland ecosystem C stocks and how these 

stocks have been affected by woody encroachment and intensified grazing. The main body of the 

research consists of the analysis of the long-term trends of woody species encroachment 

expansion into savanna ecosystem and development and application of allometric tree/shrub 

biomass models for the quantification of aboveground biomass (AGB) at the plot level. It also 

presents an assessment of the effects of woody encroachment and intensified grazing on 

vegetation structure (objective 2), The newly developed allometric biomass models facilitated 

the quantitative estimation of woody AGC stock at the plot level and also enabled the assessment 

of the influence of woody encroachment and grazing on AGC pools in study areas. Overall, the 

research outcomes presented in chapters 2 and 3 provide extensive answers for objectives 1, 2, 3 

and 4 of this study.  
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Objective 5 is concerned with the assessment of the influences of the woody encroachment 

and grazing on SOC and TSN stocks. Examining the influence of woody encroachment and 

grazing on SOC and TSN leads to a better understanding of the overall ecosystem organic C and 

N dynamics. Hence, the aim was to determine the gain in SOC as a result of woody 

encroachment and reduction of grazing intensity. 

Taken together, the chapters of this thesis presents long-term changes in woody 

encroachment and the impacts of the woody encroachment expansion on rangeland vegetation 

structure as well as plot and site-based estimates of above-and belowground C pools (Fig. 1.6). 

Although each chapter provides new and important findings, it is only the combination of each 

part that can help understand the effects of grazing and vegetation cover dynamics on the 

rangeland ecosystem C storage. This information is necessary to develop sound rangeland 

management policies that link the C storage potential of the rangelands to global climate change 

mitigation and adaptation strategies through establishing viable mechanism of payment for 

ecosystem services. 
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Fig.1.6. Schematic representation of different aims and methodologies used in the study 
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Abstract 

Species-specific allometric models were developed to predict aboveground biomass (AGB) of 

eight woody species in the Borana rangelands, Ethiopia. The 23 equations developed (8 species; 

three biomass components: total aboveground, stem and branches) fit the data well to predict 

total AGB and by components for each of the species (r
2
> 0.7; p < 0.001). The AGB of tree 

shaped species (e.g., Acacia bussei and Acacia etabaica) were significantly predicted from a 

single predictor (circumference of the stem at ankle height), with a high coefficient of 

determination (r
2
> 0.95; p < 0.001). In contrast, the AGB of bushy shrubs (e.g., Acacia oerfota) 

was more effectively predicted by using the canopy volume (r
2
 = 0.84; p < 0.001). Shrubs with a 

tall stem and an umbrella-like canopy structure (e.g., Acacia mellifera) were most accurately 

predicted by a combination of both circumference of the stem at ankle height and canopy volume 

(r
2
 = 0.95; p < 0.001). Hence, our species-specific allometric models could accurately estimate 

their woody AGB in a semi-arid savanna ecosystem of southern Ethiopia. These equations will 

help in future carbon-trade discussions in times of climate change and CO2 emission concerns 

and mitigation strategies. 

Keywords: aboveground biomass, Acacia species, allometric equations, bush, carbon 

sequestration, rangeland, regression models 
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2.1 Introduction  

Woody plants have strongly increased in both cover and density in grasslands and savanna 

systems worldwide over the past century, which has been particularly visible in African savannas 

(Munyati et al., 2010; Sankaran et al., 2005; Bassett and Zuéli, 2001; Oba et al., 2000). These 

increases might trigger biome shifts from grassland to shrubland (Briggs et al., 2005). This is of 

concern to pastoralists and their grazing livestock, since the thickening woody vegetation 

competes with the herbaceous forage and reduces livestock carrying capacity (Angassa and Oba, 

2008; Abule et al., 2007; Oba.et al., 2000), whereas higher tree densities in grass dominated or 

mixed tree-grass systems will, on the other hand, significantly increase the carbon (C) storage 

capacity of the grassland systems (Hibbard et al., 2003; Hughes et al., 2006). While some authors 

have estimated the net gain in Csequestration through woody plant encroachment for Australian 

(Gifford and Howden, 2001) and tropical American savannas and grasslands (Asner et al., 2003; 

Lett et al., 2004; San Jose et al., 1998), to our knowledge there are no similar publications for 

East Africa. To quantify the net gain in C stock due to woody plant proliferation in grassland 

ecosystems reliable estimates of the standing biomass are required. These biomass estimates are 

also useful for making informed land management decisions including assessment of fuel loads 

for burning activities (Bird and Shepherd, 1989; Tietema, 1993a), estimating forage quantity and 

quality (Bellefontaine et al., 2000) or monitoring shrub invasion (Lett et al., 2004). 

Biomass can be estimated using direct or indirect methods. Direct measurement of tree 

AGB involves felling a proper number of trees/shrubs and estimating their field and oven-dry 

weights, a method that can be costly and impractical, especially when dealing with numerous 

species and large sample areas (Willebrand et al., 1993). An indirect method is to use allometric 

regression equations based on easily accessible and measurable woody plant dimensions, rather 

than performingthis so-called “destructive sampling” in the field. These equations can help 

predict the biomass component based on some easily measurable predictor variables such as 

stem diameter / circumference, shoot height or crown diameter, which can be measured non-

destructively (Whittaker and Woodwell, 1968). Therefore, the most accurate method is to 

calculate regression equations from destructively sampled trees that are in the size range of 
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interest and to apply these equations to every tree in the stand for verification purposes (Abola et 

al., 2005).  

The use of the available generalized and species-specific biomass equations across wider 

ecological zones can lead to a bias in estimating biomass for particular species and sites (Henryet 

al.,2011), because there are variations among species in wood-specific gravity, tree sizes, growth 

stages, and since some geographic areas have not been covered by the equations (Navar et al., 

2002). Consequently, developers of the equations often caution against extrapolation beyond 

their study area (Grundy, 1995; Navar et al., 2002). In addition, the accuracy of biomass 

estimations can be affected by several factors and are known to vary with soil, climate, 

disturbance regime, succession status, topographic conditions (Ketterings et al., 2001; Litton and 

Kauffman, 2008). Therefore, species-specific allometric biomass equations tailored to estimate 

biomass of a particular species in a given biome are essential for providing more accurate 

estimates (Litton and Kauffman, 2008). 

However, for many parts of east African dry savannas and shrublands either species-

specific or generalized allometric biomass equations, which could be used to assess biomass, C 

stocks and changes in these stocks, are very scarce (Henry et al., 2011). As this region, however, 

is strongly affected by climate change and since pastoralists have been reported to suffer due to 

declining grazing land resources caused by increasing woody cover (Angassa and Oba, 2008; 

Gemedo-Dale et al., 2006), species-specific allometric equations for dominant woody species 

should be developed and applied to estimate C stocks and C sequestration in standing vegetation 

in East Africa. While this information is of scientific interest to control for the uncertainties and 

biases involved in using inaccurate biomass equations it can also help to obtain financial rewards 

for sequestered C or for CO2 emission reductions through appropriate management of terrestrial 

biomass (Henry et al., 2011). We expect that for dryland woody species, the biomass predictor 

dendrometric variables vary depend on the woody species growth form and architecture. We also 

assume that for some of woody plant species, a combination of measurable dendrometric 

variables will provide the best estimates while only one single dimension is not as reliable. We 

further hypothesize that bushy-shaped woody species is less accurately predictable than tree-

shaped ones. 

Our objective was to develop site- and species-specific allometric functions through 

destructive harvest of woody vegetation to predict branch, stem, and total AGB for eight most 
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dominant woody species, based on their dendrometric measurements. The purpose of the study 

was to contribute to the accurate estimation of the woody vegetation biomass and Cstocks in the 

Borana rangelands, southern Ethiopia. 

2.2. Material and methods 

2.2.1. Study area 

The study area was located in the Borana rangelands at Masade plain (46
0
 83

’
 19’’ N, 38

0
 19

’
 50

’’ 

E) in Yabelo district, Borana Zone, at an altitude of 1485 m.a.s.l. The Borana rangelands cover 

about 95 000 km
2
 (Coppock, 1994) of the Southern Oromia Regional State of Ethiopia. The 

rangelands are characterized by an arid and semi-arid climate with pockets of sub-humid zones 

and an average annual rainfall between 238 mm and 896 mm, with a high coefficient of variation 

ranging from 18% to 69% across years (Angassa and Oba, 2008). Rainfall is bimodal, with 60% 

of the annual rainfall occurring in March - May, followed by a minor peak in September - 

November. Long-term variability in the quantity and distribution of rainfall often results in 

frequent recurrent droughts (Angassa and Oba, 2008). The mean annual maximum and minimum 

temperatures are 30
o
C and 13

o
C in the in the long warm dry and short cool season, respectively. 

The soil at this particular study site is categorized as Chromic-cambisols on coarse grained acid 

plutonic and/or crystalline foliated metamorphic rock and fine-grained acid (extrusive) organic 

sedimentary rocks. It is deep, well drained, moderately fine textured, characterized by few 

surface stone and few rocks outcrops and contains low levels of organic carbon and available 

phosphorus (OPADC, 2011). The vegetation is characterized by a dense tree / shrub savanna, the 

herbaceous layer being composed of perennial grasses and forbs. Woody vegetation is dominated 

by Fabaceae and Burseraceae families, the main woody species being Acacia mellifera (Vahl.) 

Benth., Commiphora africana (A. Rich.) Engl., Commiphora habessinica (Berg) Engl., Acacia 

senegal  (L.) Willd., Grewia bicolor Juss., Acacia bussei Harms ex Sjostedt., Acacia. tortilis 

(Forssk.) Hayne., Acacia oerfeta (Forssk) Schweinf. , Acacia reficiens Wawra., andAcacia 

drepanolobium Harms ex Sjoest.  

2.2.2 The species investigated 

For this study eight woody species namely, A. mellifera, A. senegal,A. bussei, A. drepanolobium, 

A. etabaica Schweinf., A. oerfota, A. reficiens and C. africanawere sampled. The species 

sampled were found to be most relevant for our research because: (1) they accounted for about 
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49 % of the woody vegetation cover in the study area(Gemedo-Dalle et al., 2006); (2) they are 

widely distributed with relatively higher cover abundance across the Borana rangelands 

(Gemedo-Dalle et al., 2006); (3) they are identified as the major encroacher woody species 

affecting rangeland productivity (Angassa and Oba, 2008; Coppock, 1994; Oba et al., 2000); (4) 

the species are natives to tropical savanna ecosystems and of socio-economic importance, for 

example, due to their fuel value, forage and medicinal values (Gemedo-Dalle et al., 2005).  

2.2.3. Samples 

The destructive sampling of the woody species was conducted in an open natural stand of 

vegetation of the Masade plain. This site was selected because it represented one of the most 

woody species encroached area in the Borana rangelands and also where individual plant of 

various size category i.e., from the smallest to the tallest size individuals of each species (data 

not shown) can easily be obtained for sampling purpose. Twenty individual woody plants of the 

species of interest were identified and tagged for destructive sampling. The woody plants varied 

in height from < 1m to the largest specimen typical to an area, this was > 5 – 10 m (Gemado-

Dalle et al., 2006). A sample of woody plants included individuals with heights of 0.5, 1, 1.5, 2, 

2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, and 10 m (Payton et al., 2004). Sampling of 

the woody species was undertaken during the end of long dry season, in April 2011, when the 

woody species had a minimal amount of leaves, to ensure that biomass increments would remain 

rather constant at this period of the year (Bellefontaine et al., 2000). 

Prior to harvest, woody plant canopy volume (radius of length (a) x width (b) x height 

(H)), circumference of the stem at ankle height (5 - 10 cm aboveground) and total plant height 

dimensions were measured to calculate predictor variable values for our allometric equations. An 

elliptic crown areaCA = π × a × b (Eq. (1)) and an ellipsoid crown volumeCV = 4/3 x π x a x bx 

H (Eq. (2)) were calculated since elliptic formulae best approximate the shape of shrubs and 

provide the highest flexibility for multiple canopy dimensions (Vora, 1988). The two longest 

canopy radii perpendicular to each other and parallel to the ground were measured and used to 

calculate  CA, using Eq. (1) (Vora, 1988). For multi-stemmed shrubby species (e.g., A. oerfota), 

shrubby canopy clump width radii and height were used to calculate CA and CV. For trees and 

single-stem tall shrubs, the circumference of the stem at ankle height (5 - 10 cm aboveground) 

(SB) above the ground was measured (Tietema, 1993a). The CA width measurements with 

vertical height at the highest foliage were used to calculate CV using Eq. (2) (Murray and 
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Jacobson, 1982). In total, 160 woody plants, i.e., twenty individual plants for each species were 

harvested and dendrometrically measured (see Table 2. 1).  
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Table 2. 1. Range of woody plant dendrometric variables and dry weight biomass component of stem (Ws), branch (Wb) and total dry aboveground biomass 

(Wt) for the sample woody plants. SB = circumference at stem base, H = height, CV = crown volume, CA = crown area, Mc=moisture content, nm= not 

measured. Values are sample mean ±standard error over 20 samples per species. 

Species SB (cm) H (m) CV (m
3
) CA (m

2
) Wb(Kg) Ws(Kg) Wt(kg) MC (%) 

Acacia mellifera 33.0 ± 4.7   4.7 ± 0.4 145.8 ± 69.1 32.6 ± 11.0  84.52 ± 36.09 15.40 ±  6.02 99.92 ± 42.02 37.70±1.45 

Acacia bussei 39.7 ± 5.4   4.5 ±0.3 102.2 ± 35.1 26.3 ± 6.4 77.00 ± 30.95  17.89 ±  5.98 94.89 ±  36.65 33.34±1.35 

Acacia etabaica 40.9± 4.5 4.6 ±0.3 54.0 ±15.1 14.2 ±3.2 37.87 ±9.87 20.41 ±7.19 58.29 ±16.43 33.36±1.37 

Acacia senegal 29.4 ±2.9 4.3 ±4.3 52.6 ±9.5 17.6 ±  2.4 26.25 ± 6.77 7.95 ±1.58 34.20 ±8.24  38.28±1.48 

Acacia drepanolobium 34.0 ±3.5 5.1 ±0.36 70.9  ±19.3 17.3 ±3.2 30.45±8.87 9.56 ±1.77 40.02 ±10.38 44.27±3.76 

Acacia oerfota nm 4.4 ±0.3 83.6 ±14.4 26.6 ±3.6 30.71 ±7.23 12.10 ±2.99 42.81 ±10.12 43.44±0.96 

Acacia reficiens nm 4.4 ± 0.6  55.8 ± 22.1  14.9 ±0.6  50.21 ±14.02 32.16 ±13.47 82.38 ±26.55 31.94±1.05 

Commiphora africana 25.7±1.7 2.0 ±0.1 9.5 ±1.6 6.3 ±0.8 2.3 ±0.48 1.9 ±0.32 4.2 ±0.60 66.6±0.81 
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After dendrometric measurements the AGB of each woody plant was harvested by cutting 

it at ground level and separating the biomass into live and dead gross branches, live and dead 

thin branches including leafy shoots, both of which hereafter referred as ‘’branches’’ and stem to 

achieve three main response variables: “branches” (including all leafy shoots), “stem” and 

“total” AGB (including both branches and stems). Stem was considered as the main upright 

portion of the plant below the first branch and the branches were considered all woody portions 

of the canopy above the stem (Navar et al., 2004). 

The stem was de-branched, and stem and branches were cut into sections to facilitate 

weighing in the field. Each component of the plant was weighed to the nearest 100 g using a 

spring balance, and the fresh weight was recorded in the field. A fresh biomass subsample of 250 

- 500 g for each stem, gross branch and thin branch component was brought to the laboratory for 

dry biomass determination, dried to constant mass for 72 hours at 60
o
C (Payton et al., 2004) and 

then weighed to the nearest 10 g. Dry to fresh weight ratios were determined for each sample per 

component and multiplied by the fresh weight of the biomass component to calculate dry 

biomass. The moisture content of each tree/shrub component was further determined by 

subtracting the dry from the wet biomass. SB, H, CA and CV data vs component biomass were 

used to develop allometric equations through multiple regression models.  

2.2.4. Statistical analyses 

Natural log (ln) linear regression techniques were used to develop allometric models from SB (in 

cm), H (in m), CA (in m
2
), CV (in m

3
) and their  interactions to predict individual woody plants 

branches biomass, stem biomass and total AGB separately for the selected eight woody species. 

We included all woody plant dimensional measurements in the allometric equation for biomass 

prediction to compensate for highly variable architecture and branching patterns of trees and 

shrubs in the dryland ecosystem, which often makes biomass prediction problematic (Cole and 

Ewel, 2006). The natural log (ln) transformed linear fit in form of ln(y) = α ln(x) + β (Eq.(3)) 

(Vacher, 1999) was used, with y representing  the total  AGB(in kg dry weight for every 

individual plant of each species), x representing the predictor variable (e.g., SB for each species 

under study), and αand βas the scaling coefficient (or allometric constant) and intercept term, 

respectively, derived from the regression fitted to the empirical data.  

We also explored the use of a nonlinear power function, y = β x
α
 (Eq.(4)) models for 

estimating biomass (Gayon, 2000). While natural log (ln) linear regression models have become 
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conventional practice to fit the empirical data to linear regression models (Vacher, 1999), the 

power function in Eq. (4) has also been a rather common mathematical model (e.g.,Liton and 

Kauffman, 2008). In both cases, the final model choice was based on the analyses of residuals. 

We decided to use natural log (ln) transformed linear model because: (1) all relationships 

examined showed a better fit to the log- linear function compared to the nonlinear power 

function (Eq. (4)); (2) for our data natural log (ln) transformed linear models always resulted in a 

more robust model fit compared to direct power transformed nonlinear models, based on the 

goodness-of-fit parameters and analysis of residuals; (3) a systematic bias introduced during log 

transformation of the data can easily be corrected using the back-transformation of the values 

(Sprugel, 1983). 

Generalized linear models (GLM) (SAS, 2002) were used for the analysis of the 

goodness of fit for all regression equations. The goodness of fit was determined by examining P-

values, the mean square of the error (MSE), the coefficient of determination (r
2
), the coefficient 

of variation (CV), and the degree of homoscedasticity of residual plots by regressing the 

residuals (observed minus predicted values) against predictor variables and the predicted versus 

observed values of each model. The difference between the chosen fit and the predictors and 

their interactions for each plant dry biomass was regarded significant if the 95% confidence 

intervals (CI) did not overlap. The assumption of multicolinearity in multiple regressions was 

considered as not violated since we systematically omitted the predictor variable that showed a 

strong correlation coefficient (≥ 0.9) with another predictor variable while being less strongly 

associated with a particular response variable (Tabachnick and Fidell, 1996). Accordingly, CA 

was completely omitted from all models as it was strongly correlated with CV for all species. 

2.3. Results 

The goodness of fit analysis for the models across all species indicated that the species–specific 

regression models relating biomass with selected predictor woody species dimensions were 

highly significant (Appendix 2.1). Acacia bussei, A. mellifera, and A. etabaica had a 

comparatively higher goodness of fit for total dry AGB compared to A.oerfeta, A. reficiens and 

C. africana (see Table 2.2). In general, the results showed that the total dry AGB was accurately 

predictable (adjR
2 

≥ 0.84) and that all models allowed for sound estimates of the AGB of the 

studied species based on their dendrometric measurements (see Appendix 2.1). However, the 

number and type of predictors, i.e., the woody species dendrometric measurements, required by 
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the equations to achieve the best fit differed across species (Table 2.2, Appendix 2.1). The 

simplest model, based on only one single predictor variable, was obtained for A. etabaica, A. 

bussei, and A. oerfota, which showed a good fit to the data (Appendix 2.1). The remaining 

species were explained by models requiring a combination of two predictor variables to obtain a 

good fit (Appendix 2.1).  

According to our hypothesis, the AGB of tall trees with open canopy architecture (e.g.,A. 

bussei and A. etabaica) was significantly well predicted by a single predictor (SB) only, leading 

to a high coefficient of determination (adj r
2
> 0.95; p< 0.001). In contrast, the AGB of bushy 

shrubs (e.g., A. oerfota) with a clumps-forming canopy structure was predicted well using 

canopy measurements (CV; adj r
2
= 0.84; p< 0.001). Shrubs with a tall stem and an umbrella-like 

canopy structure (e.g.,A. mellifera) were most accurately predicted by a combination of both 

stem circumference at the base and canopy volume (SB and CV, respectively; adjr
2
= 0.95; p< 

0.001). Each of the species-specific allometric regression models developed is described below: 
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Table 2.2.Allometric functions of the best fits for the different tree dendrometric variables: Height (H, in cm), circumference at of the stem ankle height (SB, in 

cm), crown volume (CV, in m
3
) and dry weight biomass components of branches + leafy shoots (Wb, in Kg), stem (Ws, in Kg) and total aboveground dry 

biomass (Wt, in Kg) of 20 individuals each for eight woody species of semi-arid Borana rangelands. 

Woody species  Allometric equation adj r
2
 F P 

Acacia bussei Wt ln (Wt)= -5.6308 + 2.5838 ln (SB) 0.96 435.39 p<0.001 

 Ws ln (Ws)= -6.5502 + 2.4056 ln (SB) 0.93 221.81 P<0.001 

 Wb ln (Wb)= -6.1253 + 2.6524 ln (SB) 0.95 395.53 P<0.001 

Acacia mellifera Wt ln (Wt)= -2.7777 + 0.963 ln (SB) + 0.7503 ln (CV) 0.96 203.89 p<0.001 

 Ws ln (Ws)=-3.596+0.7085 ln (SB) + 0.7463 ln (CV) 0.92 117.82 p<0.001 

 Wb ln (Wb)=-3.1639 +0.9991 ln (SB) +0.7625 ln (CV) 0.96 203.22 p<0.001 

Acacia etabaica Wt ln (Wt)=-7.0822 + 2.877 ln (SB) 0.96 425.24 p<0.001 

 Ws ln (Ws)= -4.8249 + 1.4757 ln (SB) 0.94 282.41 p<0.001 

 Wb ln (Wb)= -7.3611 + 2.8475 ln (SB) 0.94 287.09 p<0.001 

Acacia senegal Wt ln (Wt)=-1.5515 + 0.5579 ln (SB) + 0.5922 ln (CV) 0.82 44.60 p<0.001 

 Ws ln (Ws)=-2.4616 + 0.7157 ln (SB) + 0.3349 ln (CV) 0.90 87.04 p<0.001 

 Wb ln (Wb)= -3.4604 + 1.0684 ln (SB) + 0.6967 ln (CV) 0.76 31.63 p<0.001 

Acacia drepanolobium Wt ln (Wt)= -3.3387 + 1.1296 ln (SB) + 1.7012 ln (H) 0.84 45.78 p<0.001 

 Ws ln (Ws)= -2.6987 +0.8113 ln (SB) +1.2066 ln (H) 0.72 22.64 p<0.001 

 Wb ln (Wb)= -4.6227 + 1.3193 ln (SB) + 1.8487 ln (H) 0.82 40.99 p<0.001 

Acacia oerfota Wt ln (Wt)= -1.32 + 1.1084 ln (CV) 0.85 101.70 p<0.001 

 Ws ln (Ws)= -3.4682 + 1.2825 ln (CV) 0.77 63.63 p<0.001 

 Wb ln (Wb)= -1.4773 + 1.0726 ln (CV) 0.84 102.92 p<0.001 

Acacia reficiens Wt ln (Wt) =  0.1774 + 0.872 ln (CV) 0.88 143.00 p<0.001 

 Ws ln (Ws) = -0.1968 + 2.0115 ln (H) 0.70 45.45 p<0.001 

 Wb ln (Wb)= -0.2346 + 1.0438 ln (CV) 0.83 93.22 p<0.001 

Commiphora africana Wt ln (Wt)=-2.7882 + 1.1324 ln (SB) + 0.3163 ln (CV) 0.93 133.5 p<0.001 

 Ws ln (Ws)=-2.7882 +1.1324 ln (SB) 0.59 27.99 p<0.001 
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Acacia bussei. Stem circumference at the base (SB) alone was an effective predictor variable for 

estimating total dry AGB, stem biomass and branch biomass (Table 2.2). Models were highly 

significant for all tree AGB components (p <0.001), with adjr
2
 values of 0.934–0.958 (Appendix 

2.1). Model fit was comparable for all components of AGB, with minimal bias across the entire 

range of SB. In addition, regressing each plant dendrometric measurement alone against total dry 

AGB was fairly suitable for the indirect determination of dry AGB. Height H had the poorest fit 

(adj r
2 

= 0.819) compared to canopy parameters CV (adj r
2 

= 0.922), CA (adj r
2 

= 0.903) and the 

stem circumference SB (adj r
2
=0.958); Fig. 2.1). 

 

Fig 2.1.Natural log (ln) linear regression lines of total dry biomass versus height (H, filled triangles), crown area 

(CA, open triangles), crown volume (CV, open circles) and circumference of the stem at ankle height (SB, filled 

circles) for Acacia bussei.  

Acacia mellifera. A combination of SB and CV was the most effective predictor for all AGB 

components (Table 2.2). Models were highly significant for the different AGB components, with 

adr
2 

values of 0.924 –0.955 (Appendix 2.1). The fitted multiple regression model using both SB 

and CV as predictor variables significantly improved the accuracy of the predictability of  the 

AGB compared to simple linear models obtained from SB (adj r
2 

= 0.881), CA (adj r
2
= 0.892), 

CV (adj r
2 

= 0.936) and H (adj r
2
= 0.703) only. Model fit was better for “branches” and “total” 

AGBthan for “stem” biomass (Appendix 2.1). Further, residual plots (data not shown) 
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demonstrated that there was little bias towards over –or under estimation of biomass for both 

smaller and larger predictor values. 

 

Acacia etabaica. The circumference of the stem at ankle height (5-10cm aboveground) height 

(SB) accurately predicted all components of AGB with adj r
2 

values ranging from 0.94 to 0.96 

(p<0.01; Table 2.2) while regressions of other predictors achieved lower fits, i.e. H (adj r
2
 = 

0.867), CV (adj r
2
 =0.855) and CA (adj r

2
= 0.797; Fig. 2. 2). Residual plots also demonstrated 

that there was no large or systematic bias toward over-or underestimation of biomass at any SB 

within the range used to develop the models. 

 

Fig 2.2.Natural log (ln) linear regression lines of total dry biomass versus height (H, open circles), crown area (CA, 

open triangles), crown volume (CV, filled triangles) and stem base circumference (SB, filled circles) for Acacia 

etabaica 

Acacia senegal. The combination of SB and CV as predictors for the different AGB components 

was with ad r
2
 = 0.821 higher than using the single predictors of SB (ad r

2 
= 0.746), CV (ad r

2 
= 

0.706) or CA (adj r
2
= 0.741). Height H was unsuitable for prediction of total AGB(adj r

2
 = 

0.106). The regression models were highly significant for all AGBcomponents (p <0.001), with 

adjr
2
values of 0.76 to 0.90. Model fit was better for stem and total AGBthan for branch biomass 

(Appendix 2.1). 
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Acacia drepanolobium. The combination of SBand H explained most of the variability for total 

AGB, stem and branch biomass (Table 2.2). Models were significant for all AGBcategories (p 

<0.01), with adj r
2
 values of 0.75–0.84 (Table 2.2). The regression of total AGBagainst a 

combination of H and SB showed higher adj r
2
values (0.84) compared to any adjr

2
 values of a 

single use of H (adj r
2 

= 0.799), CV (adj r
2 

= 0.775) CA (adj r
2 

= 0.677) and SB (adj r
2 

= 0.75). 

Model fit was better for total AGBand branch biomass than for stem biomass (Appendix 2.1).  

 

Acacia oerfota. Canopy volume (CV) alone was a good predictor variable for estimating AGB, 

stem and branches in A. oerfota (Table 2.2) with adjr
2
 values ranging from 0.77 to 0.85 (p 

<0.001 for all models; Table 2.2). The regression of total AGB againstCV explained the 

maximum variation in total AGB as shown by higher adjr
2
 values (0.84) compared to CA (adjr

2
 

= 0.69) and H (adj r
2
 = 0.322; Fig. 2. 3). 

 

Fig 2.3.Natural log (ln) regression lines of total dry biomass versus crown volume (CV, open circles), crown area 

(CA, filled triangles) and height (H, filled circles) for A. oerfota 
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Acacia reficiens.Canopy volume (CV) accurately predicted branches and total AGB inA. 

reficiens with adj r
2 

values ranging from 0.83 to 0.88 (p<0.01 for all models; Table 2.2). Total 

AGB and of the stem was more reliably predicted compared to other components, with minimal 

bias across the entire range of CV and a better goodness of fit (Appendix 2.1). The variation in 

total AGB was better explained by CV as shown by higher adjr
2
 values (0.88) compared to CA 

(adj r
2
 =0.66) and H (adj r

2
 =0.556; Fig. 2.4). 

 

Fig 2.4.Natural log (ln) regression lines of total dry biomass versus crown volume (CV, open circles), crown area 

(CA, filled triangles) and height (H, filled circles) for A. reficiens 

 

Commiphora africana. A combination of CV and SB was most effective for estimating total dry 

AGB (adj r
2
= 0.924) compared to a single use of H (adj r

2
= 0.579), CV (adj r

2
= 0.579), CA (adj 

r
2
= 0.579) and SB (adj r

2
= 0.579). Biomass of branches and stem of C. africana was less 

predictable compared to total AGB. Models relating branches and stem to any of the measured 

predictor variables presented lower goodness of fit compared to total AGB. Further, the 

predicted model fitted less well when the branch biomass was estimated, suggesting that this 

component of biomass was less accurately predictable (Appendix 2.1). 
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2.4. Discussion 

A systematic screening of the regression models for estimating AGB and woody plant 

components showed that SB, CV, H and a combination of these variables could be used as 

predictor variables. The allometric equations were relatively satisfactory for predicting total 

AGB since total variation explained by the relationship was above 80% (Appendix 2.1). Actual 

model performance, expressed as a goodness of fit (adj r
2
) depended on both species involved 

and the biomass component to be estimated (Appendix 2.1). The relationship was much stronger 

for larger woody species such as A. mellifera, A. bussei, and A. etabaica (Table 2. 1; Appendix 

2.1). Allometric equations being strongly different for different tree species within the same 

climatic zones have been reported previously and mainly attributed to differences in specific 

wood gravity (weight per volume) of the species, the floristic composition and growth strategies 

of the species (Abola et al., 2005). In general, there is variability of basic wood density among 

species, individual of the same species, among geographical location and with age (Abola et al., 

2005; Nygard and Elfying, 2000). Moreover, wood specific gravity of the species also differs 

among woody plant sections: it is higher at the base of the stem than the top of the stem and 

branches (Nygard and Elfying, 2000). Even though the models we presented here were based on 

harvested dry AGB of woody plants, precluding the need for estimates of specific wood gravity 

of each plant and its parts (Liton and Kauffman, 2008), in our study, we have shown that the 

biomass of branches and total AGB were predicted very well with relatively good precision 

compared with the stem biomass in most of the species studied except for C. africana (Appendix 

2.1). This is in agreement with Navar et al., (2004) that the ability to predict the biomass of large 

woody components such as branches, constituting about 2/3 of total dry AGB in semi-arid or arid 

tree or shrub species, was as accurate as stem biomass. While species-specific and its 

components predictions were well fitted through our allometric equations, the growth form and 

location of a species needs to be taken into account (as seen by Henry et al., 2011), e.g. whether 

neighbouring trees compete for light and, thus, may reduce branch growth. 

The allometric models we present for predicting total AGB, biomass in stem and 

branches of different species here rely on different predictor variable or variables combination 

(Appendix 2.1). Generally, our models indicated that the most important single or set of 

predictor variable/s were represented by be stem basal circumference/diameters for tall trees with 

more or less open canopy structure (Table 2.2). In contrast, pairs of canopy volume and stem 
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basal circumferences were more reliable for predictions of tall trees with closed and umbrella- 

like canopy structures (Appendix 2.1). We also showed that, even if canopy volume only is used 

as a predictor variable, biomass can still be significantly well predicted for shrubs whose growth 

form comprises discrete canopy clumps with multiple stems (e.g., A. oerfeta;Fig. 2.3 and 2.4). 

This concurs with Hofstad (2005) observation that for shrubland woody plant species, a 

combination of stem and canopy related variables could improve the accuracy of AGB 

predictions substantially compared to diameter and height measures alone that have traditionally 

been used in the wet and humid ecosystems. In contrast, most of earlier models published in the 

tropical shrublands required the estimates of circumference or cross-sectional area of the stem at 

the base alone (Henry et al., 2011; Okello et al., 200; Poupon, 1979; Tietema, 1993a), stem 

diameter at breast height and total height of the woody plant (Cissé, 1980; Sawadogo et al., 

2010) while only few authors (e.g., Tietema, 1993b) combined stem and canopy related 

measurements as predictor variables. However, we observed that the biomass of woody plant 

species was significantly well predicted from dendrometric variable/s which is directly related 

with the parts of the plant which constitutes relatively larger proportion of dry biomass which in 

turn governed by the inherent growth form and plant architecture of the species (e.g., A. bussei 

and A. etabaica from SB; A. oerfota from CV; and A. mellifera and A. senegal from CV and SB). 

This showsthat the species which had larger proportions of their biomass allocated in their 

canopies, allowing the inclusion of crown volume, width or height as reliable predictor variable 

in the model, which might propose that the inclusion of canopy measurements will provide a 

more accurate predictability in the model of bushy species (e.g., A. oerfota, A. mellifera and A. 

senegal). We also emphasize here that developing a generalized allometric model for a group of 

woody species with similar growth forms and functional types could overcome the difficulty of 

species-specific model requirements for biomass and C stock estimations. This consideration is 

particularly crucial in tropical ecosystems with diverse species, growth forms and functional 

types as it integrates part of the variability related to the plant architecture and wood gravity 

(Henryet al., 2011). 

Our study provides a unique data set on biomass estimates for lowland woody species of 

eastern Africa. When comparing our results to studies conducted in Western and Southern 

Africa, the species-specific allometric equations for A. mellifera and generalized shrubland 

equations by (Tietema, 1993a, 1993b) provide by 32% and 48% lower total dry biomass values, 
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respectively. When using only stem base circumference (Tietema, 1993a), predictions were less 

accurate than when canopy measurements were included (Tietema, 1993b) to predict the biomass 

of A. mellifera. This implies the importance of canopy related measurements for precise and 

accurate estimation of biomass and C stocks in this species. Similarly, the total dry AGB we 

predicted for A. senegal individuals differed from predictions by Smektala et al. (2002), 

Poupon(1979) and Tietema (1993a) in western Africa by 42%, 43%, and 21%, respectively. 

Henry et al. (2011) also reported that allometric equations developed for A. senegal in Somalia 

(Bird and Shepherd, 1989) provided by about 90% and 21% higher estimates of the total AGB 

predicted using  allometric equations developed by  Smektala et al., (2002), and Poupon (1979), 

respectively. This shows how strongly biomass estimates can differ regionally and, accordingly, 

influence the the C-stock estimation attempts.  Hence, our estimates contribute to the thus far 

unknown biomass estimates of the eastern African varieties of Acacia species (Table 2. 1). A. 

drepanlobium allometric equations in Kenya (Okello et al., 2001), using stem basal area as 

predictor variable, underestimated the AGB by 32% compared to our study, which could be due 

to the difference in the predictor variables and tree age and size used. Our predictor variable 

being SB and H and this speciestree size range particularly for these predictor variables used as 

seen in (Appendix 2.1). The existing allometric equation of C. africana (Poupon, 1979), 

conducted in Cameroon, in west Africa showed a biomass estimate that was 42 % higher 

compared to our equation. This difference could be caused by size and age characteristics of the 

C. africana population structure. Our sampled C. africana individuals were rather young and 

small in size (the average height of the individual in the population of C. africana in the study 

area was less than 1.5 m; full data not shown), i.e., in its early phase of woody species succession 

in the grassland, indicating that our allometric functions for C. africana could not be applied to 

systems dominated by older and larger C. africana individuals.   

Besides using different predictor variables and variations of wood gravity in the different 

woody species and/or growth forms and its different parts within and across ecological zones, a 

significant part of the observed differences across modeled equations can also be explained by 

the variability of ecological and human impacts that determine the growth characteristics of a 

woody plant. For example, it has been shown that reduced water stress can allow for taller plant 

growth and biomass production (Brown et al., 1997). Moreover, soil properties also have been 

reported to affect woody plant biomass, e.g. lower biomass of the same tree species were 
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obtained in highly acidic and less deep soils in the humid tropics compared to less acidic and 

deep soils of the wet tropic climatic zone (Brown et al., 1997). Therefore, to predict woody plant 

biomass reliably, species- and site specific equations are of high importance, if carbon and 

nutrient storage or wood yields need to be assessed.  

Traditionally, species-specific models once developed can be used across sites with 

varying climatic characteristics (Abola et al., 2005). However, our study and the model 

comparisons indicated that care should be taken in applying one single model to estimate 

biomass across the entire climatic gradients in which the species are found. In addition, 

extrapolating beyond the data range of the predictor variables (see Appendix 2.1) used in these 

models development may cause bias when estimating, for instance, the biomass for tall trees. 

This is problematic because the tallest trees at a given site can account for most of the biomass 

(Brown and Lugo, 1984). Very importantly, the closet conformity of our models to other models 

in Eastern Africa (e.g., Bird and Shepherd, 1989) in contrast to models from West and South 

Africa indicates that our biomass predictions are adequate and can potentially be used across arid 

and semi-arid climatic zones of the East African ecosystem. We suggest that the most reliable 

way to determine whether the models can appropriately be used at a given site is to analyze the 

size structure for randomly selected individuals and then compare these values to the ones we 

used for our model development (Appendix 2.1). Therefore, our model could be applied to 

woody plants of the same species within the range of the structural characteristics measured. 

Rangelands usually carry natural or semi-natural vegetation that provides a habitat 

suitable for herds of a wide variety of wild or domestic ungulates (Homewood, 2004). The 

vegetation of Eastern African rangelands is largely composed of desert and semi-desert (26 % of 

the land surface), bushland (33 %), woodland (21 %), and pure grassland (7 %) (White, 1983). 

Although pure grassland is found only in Central and South-Eastern Sudan, Northern and 

Western Tanzania and Northwest Kenya, the herbaceous layer of semi-deserts, bushlands, and 

woodlands are dominated by grasses and forbs. The pure grasslands or grasslands areas with 

varying amounts of woody vegetation constituted 75% of eastern African land surface (Reid et 

al., 2005). Naturally, these woody components of the vegetation are dominated by Acacia 

species which are an integral feature of Eastern African vegetation, mainly of the arid and 

semiarid savanna regions (White, 1983). Furthermore, some of the native woody species, 

including the genus Acacia, have been progressively increasing in many parts of African 
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savannas. For example, in Ethiopia, A. drepanolobium, A. mellifera, A. senegal, A. reficiens, A. 

oerfeta, and Commiphora species have been identified as heavy encroachers (Angassa and Oba, 

2008; Abule et al., 2007; Gemedo-Dalle et al., 2006; Oba et al., 2000Coppock, 1994). In Kenya, 

A. drepanolobium (Okello  et al., 2001), in Tanzania, A. auriculiformis (Kotiluoto et al.,2009), in 

Botswana,  A. tortilis, A. erubescens, A. mellifera, Dichrostachys cinerea, Grewia flava, and 

Terminalia sericea (Moleele et al., 2002) and in Namibia, A. mellifera and A. reficiens are 

among the main encroacher species (Joubert et al., 2008).The reason for this woody plant 

encroachment in the grassland systems is equivocally established, but possible factors 

contributing to woody plant encroachment include changing land use practices such as high 

stocking rates and associated heavy grazing (Bassett and Zuéli, 2001), altered burning practices 

(Bassett and Zuéli, 2001), exclusion from fire and grazing (Oba et al., 2000), changing climate 

and rainfall (Sankaran et al., 2005), atmospheric nitrogen deposition (Brown and Archer, 1989) 

and elevated Carbon dioxide (CO2) (Wigley et al., 2010). 

While this generally has a negative effect on the available grass resources in rangelands 

(Angassa and Oba, 2008; Abule et al., 2007; Gemedo-Dalle et al., 2006; Oba et al., 

2000Coppock, 1994) the emergence of markets for climate change mitigation on the other hand 

presents new opportunities for increasing the economic and ecological returns to rangelands 

(IPCC, 2007). The fourth International Panel on Climate Changes indicates that rangelands have 

the second highest technical potential for mitigating C emission from agricultural management 

changes, at over 1400 Mt CO2 equivalents per year by 2030 (IPCC, 2007). One means of 

reducing net C emissions is to increase the rate of carbon sequestered in terrestrial ecosystems, 

including in soils, below- and aboveground biomass (IPCC, 2007). Accordingly, several authors 

showed the potential significant net increase in C stocks and C sequestration potential due to 

woody plant proliferations in the rangelands and savanna ecosystem, emphasizing the 

importance of integrating this potential to sustainable rangeland management practices and 

livestock production systems (Hibbard et al., 2003; Houghton, 2003; Gifford and Howden, 2001; 

San Jose et al., 1998). Allometric equations have become a common tool needed to quantify 

carbon stocks and changes in woody components of different vegetation types including the net 

gains in carbon sequestration potentials due to recent woody species encroachment in the 

rangelands (Henry et al., 2011; Asner et al., 2003). 
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The current established allometric equations may allow a rapid estimate of available 

potential biomass and C stock in the woody component of the Borana rangelands and aid in a 

sustainable management of the rangelands for both economic and environmental services. 

Circumference or the stem diameter is the most common predictor in many biomass allometric 

models (Henry et al., 2011) in tropical shrublands, but adding crown volume or a combination of 

the components of crown volume (i.e. widths or circumference, and height) variables can 

significantly improve the prediction power  (Vora, 1988). In addition, the fact that these 

variables can easily be measured in open savannas and rangelands could avoid practical 

problems and ensure future precise biomass estimations. Furthermore, Asner et al. (2003) 

demonstrated that the equations developed from crown dimensions can easily be integrated with 

a high resolution remote sensing analyses to estimate biomass and C-stock over large spatial and 

temporal scale in the open forest or shrublands.  

2.5. Conclusion 

The species-specific allometric equations we present for the eight most widespread woodyplant 

species in the Borana rangelands will significantly improve our capacity to accurately estimate 

biomass and corresponding carbon stocks in East African savanna systems. In particular, we 

highlight several dendrometic variables based on the architecture and growth form of each 

woody plant species that are essential predictors and simple tools for accurate equation 

development and for biomass and carbon stock estimates. In addition, our models can be used to 

predict AGB in branches and stems separately. Estimating biomass by component is essential for 

studies of carbon sequestration and fuelwood dynamics, as branches and stem wood have 

different carbon allocation and flux patterns as well as fuel wood characteristics (Litton and 

Kauffman, 2008). While our research provides unique data on important dominant woody plant 

encroacher species, further validation of the models developed here across different sites and 

land use systems within arid and semi-arid ecosystems is important for a wider application of our 

equations to biomass and carbon sequestration studies. In addition, care should be taken in 

applying the allometric equations developed in this study to other sites without knowledge of site 

characteristic and woody plants size structures. We recommend that the individual woody plant 

size structure of each species in the area of interest be evaluated and compared to the values 

presented in this study to determine how appropriate the allometric equations are for the study 

sites in focus. 
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Appendix 2.1. The aboveground biomass regression equations for eight woody tree/shrub species. Total aboveground, stem, and branches + leafy shoots dry biomasses were 

estimated based on destructive sampling in the semi-arid Borana rangelands. Note: CV = the ellipsoid crown volume, SB = the circumference at base of the stem, α = the slope 

parameter, β = the intercept parameter, MSE = the mean standard error of the estimate, CF = Correction factor, r
2
 = the coefficient of determination, p = the p-value (α=0.0001) 

nf = no fit possible.  Only the best predictors and/or their combination are shown. 

Species 
Dry biomass 

 component 

Predictor  

Variable 

Predictor 

 range 
α(SE) β(SE) MSE CF Adj r

2 
p 

Acacia bussei Total SB 11.9 - 99.8 cm 2.5838(0.1238) -5.6305(0.4410) 0.1063 1.89 0.96 <0.0001 

 Stem SB 11.9 - 99.8 cm
 

2.4056(0.1465) -6.5502(0.5218) 0.1488 1.86 0.93 <0.0001 

 Branches  SB 11.9 - 99.8 cm 2.6523(0.1333) -6.1253(0.4750) 0.1233 1.91 0.95 <0.0001 

Acacia mellifera Total 
SB 

CV 

11.0 - 86.4 cm 

1.8 - 1408.6 m
3 

0.9629(0.3263) 

0.7502(0.1353) 
-2.7777(0.6410) 0.121 1.82 0.96 <0.0001 

 Stem 
SB 

CV 

11.0  - 86.4 cm 

1.8 - 1408.6 m
3
 

0.7084(0.3892) 

0.7462(0.1614) 
-3.5960(0.7646) 0.1721 1.85 0.92 <0.0001 

 Branch 
SB 

CV 

11.0 - 86.4cm 

1.8 -1408.6 m
3
 

0.9991(0.3345) 

0.7625(0.1387) 
-3.1639(0.6572) 0.1272 1.82 0.96 <0.0001 

Acacia etabaica Total SB 11.9 - 97.1 cm 2.8769(0.1395) -7.0821(0.5066) 0.0942 1.83 0.96 <0.0001 

 Stem SB 11.9 - 97.1 cm 2.9514(0.1756) -8.5593(0.6378) 0.1493 1.80 0.94 <0.0001 

 Branch SB 11.9 - 97.1 cm 2.8475(0.1680) -7.3611(0.6103) 0.1367 1.84 0.94 <0.0001 

Acacia senegal Total 
SB 

CV 

4.1 -52.1 cm 

5.1 - 154.7 m
3 

1.1599(0.3277) 

0.5922(0.2052) 
-3.0190(0.6967) 0.3017 1.71 0.82 <0.0001 

 Stem 
SB 

CV 

4.1 - 52.1 cm 

5.1 - 154.7 m
3
 

1.4314(0.2219) 

0.3349(0.1389) 
-4.2728(0.4717) 0.1383 1.80 0.90 <0.0001 

 Branch 
SB 

CV 

4.1 - 52.1 cm 

5.1 - 154.7 m
3
 

1.0684(0.4028) 

0.6967(0.2522) 
-3.4604(0.8564) 0.4558 1.69 0.76 <0.0001 

Acacia drepanolobium Total 
SB 

H 

7.9 - 68.2 cm 

3.4 - 9.5 cm 

1.1295(0.3133) 

1.7011(0.5553) 
-3.3387(0.7125) 0.1716 1.88 0.84 <0.0001 

 Stem 
SB 

H 

7.9 - 68.2 cm 

3.4 - 9.5 cm 

0.8113(0.3182) 

1.2066(0.5640) 
-2.6987(0.7236) 0.1770 1.84 0.72 <0.0001 

 Branch 
SB 

H 

7.9 - 68.2 cm 

3.4 - 9.5 cm 

1.3193(0.3745) 

1.8487(0.6639) 
-4.6227(0.8517) 0.2452 1.89 0.82 <0.0001 

Acacia oerfota Total CV 6.3 - 255.8 m
3 

1.1084(0.1099) -1.320(0.4596) 0.2077 1.71 0.85 <0.0001 

 Stem CV 6.3 - 255.8  m
3
 1.2825(0.1607) -3.4689(0.6723) 0.4445 1.80 0.77 <0.0001 

 Branch CV 6.3 - 255.8  m
3
 1.0726(0.1057) -1.4773(0.4421) 0.1922 1.69 0.84 <0.0001 
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Acacia reficiens Total CV 1.2 - 439.8 m
3 0.0872(0.0872) 

 
0.1774(0.0872) 0.3369 1.71 0.88 <0.0001 

 Stem H 1.5 - 10.1 cm 2.0115(0.2983) -0.1968(0.4259) 0.6315 1.80 0.70 <0.0001 

 Branch CV 1.2 - 439.8 m
3
 1.0438(0.1081) -0.2356(0.3644) 0.7189 1.69 0.84 <0.0001 

Commiphora africana Total 
SB 

CV 

11.9 -  39.9 cm 

1.0 - 22.6 m
3 

1.1323(0.1563) 

0.3163(0.0683) 
-2.7881(0.4079) 0.0255 1.71 0.93 <0.0001 

 Stem SB 11.9 - 39.9 cm 1.1023(0.2083) -2.5611(0.6691) 0.098 1.80 0.59 <0.0001 

 Branches nf  nf nf nf nf nf nf 
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Abstract 

 

Background 

The widespread phenomenon of woody encroachment in savannas can strongly alter carbon 

(C) sequestration potentials in the long term, which could have regional and even global 

climate change mitigation implications. Carbon storage could represent an interesting 

ecosystem service for mitigation of global climate change and thereby payment for C 

sequestration could potentially diversify the livelihood options and increase the adaptation 

potentials of the resource poor pastoral people to climate changes. While the study so far 

highlighted the potential of the dry savannas for C sequestration, to date very few empirical 

research work has been carried out to estimate the vegetation cover change processes 

contribution to this ecosystem C stocks. In this study we analysed long term vegetation cover 

changes and assessed the structure and C stocks of aboveground biomass at different woody 

encroachment levels and grazing regimes. 

Results 

Areas covered by shrub and tree savanna (open savanna types) declined from 45% to 9%, 

while heavily encroached areas (bushland thickets and bushed savanna) increased from 22% 

to 61% from the year 1976 to 2012. The total and the regenerative woody plants (< 2m 

height) were higher in low- to high woody encroachment levels but greatly reduced at severe 

woody encroachment. Estimated total aboveground C stocks did not significantly vary 

between grazing regimes but varied significantly among the woody encroachment levels, with 

total aboveground C stocks ranging from 2.3 Mg ha
-1

 in the low encroachment level (LE) to 9 

Mg ha
-1

 in the severe encroachment level (SE). Enclosures contained 50% more herbaceous 

aboveground C stocks and had 47% higher woody plants density than openly accessible 

grazing land 

Conclusion 

Our results suggest that woody encroachment is an imminent and ongoing process in Borana 

rangelands. The observed large increases in aboveground C stocks that occurred through 

woody encroachment on landscape and regional scales will foster future C-trade discussions 

with respect to climate change mitigation and adaptation strategies. However, conserving 

woody biomass C stocks will threaten the sustainability of livestock production, particularly 

of those depending on grass rangelands, and this tradeoff must be quantified and considered in 

the future 

Keywords: Borana; Ethiopia; savanna; climate change; enclosure; carbon stock; land cover 

changes; communal grazing land 
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3.1 Introduction 

Savannas occupy 10 to 15% of terrestrial ecosystems (Scholes and Hall, 1996), supporting 

over 30% of the world´s human population and hosting most of its rangeland, livestock and 

wild animal’s biomass (Reid et al., 2005; Solbrig et al., 1991). Approximately 60% of east 

Africa is covered by savannas, comprising plant communities with a continuous herbaceous 

layer and a discontinuous woody stratum (Reid et al., 2005). Over the last century, African 

savannas have been encroached by woody species despite differing climate and management 

practices such as variable domestic herbivore stocking rates and fire regime (Wigley et al., 

2010). Woody encroachment, which refers to an increase in cover, density and biomass of 

indigenous woody plant species, has been reported over much of the world’s arid and semi-

arid environments (‘drylands’) in the recent decades (Van Auken, 2009). Similar to other 

African savannas, density and cover of woody plants has increased substantially within the 

southern Ethiopian savanna rangelands (Angassa and Oba, 2008; Solomon et al., 2007;Dalle 

et al., 2006). The woody cover in the Borana rangelands, southern Ethiopia, for example, was 

less than 40% in the 1980s (Coppock, 1994) but has increased to 52% in the early 2000s 

(Dalle et al., 2006).  

Factors contributing to this woody encroachment in Borana include the governmental fire 

prohibiting policy of the 1970s and high livestock grazing pressure (Angassa and Oba, 2008; 

Homann et al., 2008; Solomon et al., 2007;Dalle et al., 2006). Intensified grazing can decrease 

the vigor of grasses while favouring seed germination, establishment, and survival of woody 

plants (Brown and Archer, 1999). Secondly, animals may serve as dispersal agents for seeds 

of woody plants (Riginos and Young, 2007). Thirdly, intensive grazing may weaken the 

intensity of fires by reducing the herbaceous plants biomass burning fuel load, which further 

thrive the woody species (Riginos and Young, 2007; Scholes and Archer, 1997). The 

complete suppression of fire accelerated these encroachment processes and has allowed the 

woody species to thrive in the Borana rangelands (Angassa and Oba, 2008) whereas intense 

and frequent fires regularly maintain the woody species in a young state by ‘top-killing’ 

seedlings (Smit et al., 2010). When fires are rare events, woody plants can grow to a fire-

resistant size (Brown and Archer, 1999). 

Once woody plants form a dense stand with a canopy cover of more than 40 % and/or 

2400 plants ha
-1

 (Roques et al., 2001) their encroachment starts threatening the sustainability 

of pastoral subsistence (Angassa and Oba, 2008; Dalle et al., 2006;Oba et al., 2000) by 

affecting herbaceous productivity and cattle carrying capacity. Prior studies have documented 

strong negative impacts of encroaching woody plants on herbaceous species diversity and 
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productivity in the southern Ethiopian rangelands (Angassa and Oba, 2010; Oba et al., 2001; 

Oba et al., 2000). Although woody encroachment has been recognized as a major rangeland 

management issue in Borana rangelands, neither the rate nor the spatial extent have yet been 

systematically quantified on a landscape level. 

Despite its negative effect on herbaceous productivity, a net increase in carbon (C) 

sequestration potentials was reported from many savanna and tropical grassland ecosystems 

undergoing woody encroachment (Daryanto et al., 2013; Briggs et al., 2005; Hibbard et al., 

2003). While some authors have estimated the C stock and/or the net gain in Csequestration 

potentials through woody encroachment for South -and West African savanna systems 

(Woollen et al., 2012; Shackleton and Scholes, 2011), Australian (Daryanto et al., 2013) and 

tropical American savannas and grasslands (Knapp et al., 2008; Asner et al., 2003), to our 

knowledge, there is no similar quantitative estimate for southern Ethiopia rangelands. Plant 

biomass is a critical component within the C cycle that can provide both short- and long-term 

C sequestration. The biomass of woody plants in the system is influenced by age, species 

composition and size structure, and productivity of the entire vegetation stand (Litton et al., 

2006; Briggs et al., 2005), which is further largely impacted by herbivores and humans 

utilization (Wessels et al., 2011). Therefore, understanding the effect of woody encroachment 

and land use (grazing and browsing by domestic livestock) on different components of 

ecosystem biomass (herbaceous, trees, and shrub plants) represents a first crucial step towards 

identifying the potential impacts that land use and vegetation cover changes have on C 

cycling. This information is also of high scientific significance globally as C stocks need to be 

quantified for currently developed global models on C sequestration and emissions 

(Shackleton and Scholes, 2011). Further, potential financial rewards have been suggested for 

sequestered C or for CO2 emission reductions through appropriate management of terrestrial 

biomass in the savanna ecosystem (Daryanto et al., 2013; Woollen et al., 2012; Shackleton 

and Scholes, 2011). 

Thus, in our study we wanted to quantify the expansion of woody encroachment in the 

Borana rangelands over the last four decades. We expected that expansion will positively 

impact the aboveground C (AGC) stocks but that the changes in the AGC stock across 

different ecosystem components depend upon the pastoral grazing land management i.e., 

grazing, browsing and woody plant utilization. Therefore, the objectives of this study were (i) 

to analyze the changes in vegetation cover in Borana rangelands from 1976 to 2012 at a 

landscape scale and (2) to compare woody plant population structure and C stocks in AGB in 

two grazing land management systems (communal grazing vs. enclosure) among four woody 
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encroachment levels. We used Landsat imagery to examine changes in woody encroachment 

and undertook field based research to analyse woody vegetation structure and derive site-

based estimates of C pools. Woody plant biomass at each site was quantified using allometric 

biomass equations that had been developed for the most dominant woody species in the area 

by destructive sampling (Hasen-Yusuf et al., 2013).  

3.2 Methods 

3.2.1 Site description 

Study sites were located in a semi-arid pastoral system in Yabello and Dire Districts, Borana, 

of southern Ethiopia, predominantly used for livestock (cattle, camel, goat and sheep) 

production (Angassa and Oba, 2008). The sites represent with Chromic Cambisol 

(FAO/UNESCO, unpublished) with similar climatic conditions and livestock population 

density but vary considerably in vegetation cover (Table 3.1). On the study sites, < 40% of the 

shrubs had been established before the 1970s (Coppock, 1994) and the most extensive woody 

encroachment occurred after the 1980s because of fire suppression (Angassa and Oba, 2008)  

Mean annual precipitation was 550 mm in the region, with a 66% coefficient of variation 

across years. Rainfall is bimodal, with 55% of the annual precipitation occurring in March - 

May, followed by 30% in September - November. Mean annual air temperature is 20°C, with 

a mean monthly maximum of 21
°
C in February and a mean monthly minimum of 18.5°C in 

July (Ethiopian Meteorological Agency). 

The entire study area is dominated by savanna grasses, interspersed by trees and shrubs of 

different density and cover (Coppock 1994). The perennial grass species comprise Cenchrus 

ciliaris, Chrysopogon plumulosus, Cynodon dactylon,Sporobolus pyramidalis, Digitaria 

milanjiana, and Panicum repens. Shrubs such as Commiphora spp., Acacia mellifera, Acacia 

Senegal,Acacia reficiens, Acalypha fruticosa, and Grewia spp., have expanded throughout the 

study area. Main tree species are Acacia tortilis, Acacia bussei, Delonix baccal and Sterculia 

stencarpa. 



61 
 

Table 3.1. Woody encroachment levels, age of enclosure, soil and livestock population density characteristics of the research sites in the Yabello and Dire districts of Borana 

zone. Geological information was summarized from the Borana land use study project soil survey report (unpublished data). Woody encroachment levels: Low encroachment 

(LE), moderate encroachment (ME), high encroachment (HE), and severe encroachment site (SE).  

 

 

 

 

 

 

 

 

 

 

 

*. Tropical Livestock Unit was calculated using the livestock population data obtained for each site from local Agricultural Offices following (Jahnke, 1982). 1 TLU=250 kg live 

weight. 

Encroachment 

level 

Location 

(latitude, 

longitude) 

Average 

elevation 

(masl) 

Geology Enclosure 

age 

Soil texture (%) 

Textural 

class 

Livestock (head km-2) 

*TLU 

km -2 

Cattle Camel Goat Sheep Equines Sand Silt Clay 

LE 
040 56´ 33´´ 

380 10´12´´ 1550 
Quartz-feldspathic gneiss 
and alluvium (sand silt and 

clay) 

35 46 10 44 
Sandy 

Clay 
30 1.05 11 3 0.7 23.9 

ME 
040 24´02´´ 

380 17´ 03´´ 1480 
Alluvium: sand, silt and 

clay 
30 67 18 15 

Sandy 

Loam 
31 0.7 9 10 2 25.6 

HE 
040 38´ 58´´ 

380 04´ 58´´ 1290 
Plateau basalt: alkaline 
basalt and trachyte 

12 64 19 17 
Sandy  
Loam 

25 2.6 18 12 0.5 23.3 

SE 
040 41´ 08´´ 

380 1141´´ 1470 Quartz-feldspathic gneiss 8 65 20 15 
Sandy 

Loam 
25 2.6 18 12 0.5 23.3 
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3.2.2 Land cover change analysis 

Environment for Visualizing Images (ENVI) 4.5 software was utilized for image processing 

and mapping was undertaken using ArcGIS 9. A handled GPS (Garmin eTrex®) with 5 m 

accuracy was used for position location in the field. A Landsat Multi Spectral Scanner 

satellite image (hereafter MSS image) from the year 1976 and an Enhanced Thematic Mapper 

plus (ETM+ image) from the years 2000 and 2012, respectively, were selected for the study. 

All images were obtained from the United States Geological Survey (USGS) Denver, CO. 

The image dates spanned across the late short rainy season to the early dry season (December-

January); during this time, woody vegetation was largely still in leaf while grasses had wilted, 

which enabled a precise mapping of woody cover.  

Because images were historical, meteorological condition data (e.g., aerosol composition) 

were not available and, consequently, no atmospheric correction was undertaken for the 

multi-temporal remote sensing images. However, the training data for the classification were 

separately derived from the respectively classified images (Song et al., 2001) and image 

normalization techniques (Schott et al., 1988) were used to minimize non-earth surface target 

feature differences between the images. The images were geometrically registered to a 

common projection using geometric correction function in ENVI software and the spatial 

registration error was kept to subpixel (< 30m) level to avoid errors in the interpretation of 

feature changes in multi-temporal image sets (Lillesand et al., 2008),. As high resolution was 

preferred, the lower spatial resolution (60-m) image was re-sampled to the 30-m resolution of 

the 23 January 2012 landsat image using the image sharpening and color normalized (Brovey) 

nearest neighbor resampling method within ENVI. The technique performs an image fusion 

operation with higher resolution panchromatic data. A shape file of Yabello and parts of Dire 

district were then used in sub-setting from each of the multi-spectoral images. The delineated 

area of each respective image of the study area was estimated to be 7,554 km 
2 

(Fig.3.1A-C).  
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Fig. 3.1. Land use/cover in Yabello and Dire district, Borana rangelands, in 1976 (a), 2000 (b) and 2012 (c) 
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For ground verification purpose, four woody encroachment levels were identified in the 

field, namely low encroachment (here after named ‘LE’), moderate encroachment (here after 

‘ME’), high encroachment (here after named ‘HE’), and severe encroachment (here after 

‘SE’). The encroachment levels were differentiated mainly on the basis of the stage of woody 

encroachment determined through personal interviews with local people and rangeland 

managers but also based on woody plants density and structural variables of height and 

canopy cover. Canopy cover is the proportion of the ground area covered by the vertical 

projection of the tree/shrub canopy. 

The number of woody plants, their height, canopy cover and canopy height were collected 

from 8 plots of 100 m x 100 m size, representing 4 woody encroachment levels and two 

grazing management levels, respectively (Table 3.2). This field work was conducted in May –

June, 2011, during the late growing season. The GPS coordinates of the center of the plots 

were recorded to enable the location of the plots in the images. The data from the plots were 

used as training data in identifying and mapping the different levels of woody encroachment 

on the images. The training areas were three pixels (90 m) on the imagery utilized, selected in 

the field. In addition, GPS coordinates on historical and current vegetation cover maps were 

collected from 34 additional sites (including forest, bare ground and grassland, settlements, 

and cropland locations). Vegetation cover of these additional sites were visually assessed and 

categorized to represent severe (> 70% canopy cover), high (50 - 69% canopy cover), 

moderate (20 - 49% canopy cover) and low (< 20% canopy cover) woody vegetation cover. 

The data from these additional field sites, together with the data from the field plots (Table 

3.2) aided in the location and mapping of woody encroached areas. 
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Table 3.2. Woody encroachment site data from field plots of 100 x 100 m size at the study area, the total number of woody plants (total), proportion of plants taller than 3 m (> 

3m), the average canopy cover in % (canopy) and the canopy cover in % of trees taller than 3 m (canopy > 3m) as well as the dominant woody species. 

  

 

 

Land cover class  Plot No Total > 3m  canopy  canopy > 3m  vegetation description 

Severe encroachment 

(SE) 

1 1065 13 67 58 Contains mostly fully matured tree and shrub stands with a woody canopy cover of 

62%, almost bare of any herbaceous vegetation 

Dominant species: A. bussei, A. etbabica, A mellifera, Grewia spp, and 

Commiphora spp 

2 1331 5 57 41 

High encroachment 

(HE)  

3 2065 3 79 34 Comprise small to medium-sized shrubs and trees that formed an almost 

impenetrable thicket, with a woody canopy cover of 72% 

Dominant species: A. reficiens, A. senegal,  A. mellifera, and Commiphora spp 

4 2109 2 67 30 

Moderate 

encroachment (ME) 

5 1843 4 60 38 Comprise of dwarf shrubs and thick perennial grass-dominated stands with average 

woody canopy cover of 56% 

Dominant species: Commiphora africana,C. habessinica, C. schimperi 6 2400 2 57 30 

Low 

encroachment(SE)  

 

 

 

 

 

 

7 616 1 9 7 Comprise mosaic of tree and shrub patches in a perennial herbaceous species stand, 

with an average total woody canopy cover of 27% 

Dominant species:  Boscia mossambicensis, A.tortilis, Grewia spp,and Rhus 

natalensis 

8 1606 5 42 22 
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At training field plots, the number and canopy cover of woody plants > 3m height was 

high at severe -and high encroached sites (Table 3.2). The different levels of woody 

encroachment (SE, HE, ME and LE) were delineated on the respective image using 

supervised maximum likelihood classification techniques (Richards, 1994). Additionally, 

forest, settlements, cultivated area, bare lands and rock outcrops, i.e., a total of eight land 

cover classes were delineated (Fig.3.1). Local knowledge derived from herders and elders in 

the Borana region minimized spectral confusion to avoid classification inaccuracy.  

Classification accuracy was assessed using the most recent image of the year 2012 

according to Munyati et al. (2010). Two hundred fifty random sample pixel locations were 

generated from the classified 2012 images of the study site and visited in the field in May 

2013 to judge the accuracy of their classification, which reached above 70%. As similar 

classification methods were employed for the 1976 and 2000 images, accuracy was judged to 

be satisfactory. After selectively combining classes, classified images were sieved, clumped 

and filtered with a 3×3 median filter to smoothen the classified images in ENVI (Version 4.2, 

Research Systems Inc., CO, USA). The area covered by each woody encroachment and land 

cover class shapefile, converted from raster imagery, was calculated with the Arc View GIS 

(Version 3.1, ESRI, Redlands, USA).  

3.2.3 Field sampling design 

Field based observation complemented woody vegetation structure and helped deriving C 

pool estimates along the four wood encroachment levels (LE, ME, HE, and SE, Fig.3.2) 

identified during the land cover change analysis (see section 2.2, Table 3.2, Fig.3.1). The 

other land cover classes (e.g., forests, bare lands) were not included in our study due to time 

and financial constraints.  
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Fig. 3.2. Study sites: low encroachment site (A), moderate encroachment site (B), severe encroachment site (C), 

high encroachment site (D) in the semi-arid rangelands of Yabello and Dire districts, Borana, southern Ethiopia. 

Pictures taken by HasenYusuf in 2011. 

Each woody encroachment level was divide into two grazing regimes, namely, 

rangeland enclosure (hereafter named ‘enclosure’) and communal grazing land (hereafter 

named ‘open’). The open grazing land represents the most common land use system in the 

Borana rangelands and is defined as communal rangelands belonging to the communities 

whose members have equal access rights (Oba, 1998). Enclosures in this study represent a 

shrub-fenced area that excludes grazers during the wet season, although some grazing may be 

allowed in the late dry season and in drought years when the forage is extremely scarce 

(Napier and Desta, 2012).  

We randomly selected four replicate of enclosures within the same age group at each 

encroachment levels, and 10 - 25 ha in size and 1 - 2 km apart (aerial distance, measured 

using Garmin GPS 72 (Garmin International Inc., USA) and adjacent open grazing lands in 

each of the four encroachment levels to examine the influence of grazing exclusion across the 

woody encroachment gradients (Fig3.2). To measure soil and vegetation attributes within 

each grazing regime we established four belt-transects (10 x 500 m), 300 – 500 m apart from 

A B

C D



68 
 

each other. Along each transect, four (10 x 10 m) plots were established at a 100 m intervals 

(4 woody encroachment level × 2 grazing regime ×4 replicate of grazing regimes ×5 plots). 

Previous studies in the present study area have shown that plot sizes = 100 m
2
 were 

effectively used for sampling shrub-dominated vegetation (Angassa and Oba, 2010). To 

assess herbaceous species composition, biomass, and diversity inside and outside the 

enclosures, caged subplots of (1× 1 m) were randomly nested within the larger 100 m
2
 plots 

used for woody species. 

3.2.4 Data collection 

3.2.4.1 Vegetation species composition and structure 

Percentage basal cover by species of herbaceous plants rooted within the caged 1 x 1 m
2
 

subplot was recorded during the peak season of primary production each at the end of the long 

rainy season (March-June) and the short rainy seasons (September-November). Percentage 

bare ground and rock cover (hear after named ‘bare ground’) was recorded where no 

vegetation was encountered in each plot. Relative basal cover abundance (% RCA) by species 

was calculated from total herbaceous basal cover across each grazing regime excluding bare 

ground.  

The species composition of woody species rooted within 10 x10 m
2
 plots were 

assessed using the plot count method (t’Mannetje and Jones, 2000). To analyze woody 

vegetation structure canopy diameter, crown rise, and height of the woody plants were 

measured using a 5 m long graduated wooden pole. Relative canopy area cover (in %) by 

species was calculated from total woody species canopy area cover. Canopy area of each 

woody plant with a canopy starting at ≥ 1 m height was calculated from longest canopy 

diameter and the canopy diameter perpendicular to the longest diameter. The distance 

between the ground and the bottom of the canopy (crown rise) were also measured to classify 

the total canopy area cover for each woody plant height class. Woody canopy area cover per 

height class was then compared across each bush encroachment level and grazing 

management (Wessels et al., 2011). These canopy height classes were also used to relate to 

the influence of herbivory and human utilization on herbaceous and woody plant structure 

(Wessels et al., 2011). 

All woody plants rooted in the 10 x 10 m
2 

plot, were counted and total density and 

canopy area cover were computed as the number of individual woody plants and total canopy 

area cover, respectively, divided by the area sampled and converted to ha (Kent and Coker 

1992). Plant height was measured as the total height of the plant stem from the ground level to 
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the highest foliage. Total woody plants rooted within the 100 m
2
 plots were further divided in 

to six functional height classes (< 1 m, 1 - 2 m, 2 - 3 m, 3 - 4 m, 4 - 6 m and > 6 m, Wessels et 

al., 2011) to calculate the height-specific density for woody plant structural population 

analysis. 

3.2.4.2 Abovegroundbiomass C stock 

Peak herbaceous species biomass rooted within 0.5 x 0.5 m
2
 were harvested to the ground 

level (t’Mannetje and Jones, 2000) in May and December 2011, the end of the long and short 

rainy season, respectively (n = 20 caged subplots per grazing management, total 160 

subplots). Harvested material was oven dried (at 60°C for 48 h) and weighted. To 

nondestructively estimate woody biomass, (i) basal circumference at 10 cm AGB, (ii) 

maximum tree/shrub height, (iii) longest canopy diameter, (iv) canopy diameter perpendicular 

to longest diameter, and (v) crown rise were used. Woody canopy area and volume was 

calculated from these dimension measurements (Smit 1996) and biomass was quantified using 

species-specific allometric equations developed for the most dominant species (Hasen-Yusuf 

et al., 2013, see also Henry et al., 2011). For the less dominant trees and shrubby growth 

forms we developed two additional allometric equations (Hasen-Yusuf et al., 2013). The 

woody vegetation was classified into trees (> 3 m in height) and shrubs (< 3 m in height) in 

order to separately approximate the biomass of tree and shrubs in this rangeland (Levick et al., 

2009). The leaf dry biomass (leaf dry matter (DM) yield of the woody vegetation was 

estimated using the Biomass Estimates From Canopy Volume Model (BECVOL-model; Smit, 

1996), based on the relationship between tree canopy volume and its leaf DM for 

microphyllous (y = -3.880 + 0.7080 x) and broad-leaved species (y = -5.45 +0.079 x) 

separately (Smit, 1996). Here y = total leaves dry mass per tree (in g); x = leaves spatial 

volume (m
3
) per tree. Leaf DM yield for each woody plant was summed to estimate leaf DM 

yield by species and total woody vegetation leaf DM yield per plot. Carbon concentrations of 

the total dry AGB (woody and leaves) (kg ha
-1

) were estimated by multiplying dry biomass by 

0.48 (Schlesinger, 1977).  

3.2.4.3 Statistical analyses 

The influences of grazing, woody encroachment and their interactions on woody plant 

density, canopy cover, and height distribution, tree biomass C pool, shrub biomass C pool, 

and herbaceous biomass C pool were analyzed using the General Linear Model Procedure in 

SAS version 9 (SAS Institute, 2002). Differences in all response variables were evaluated by 

treating woody encroachment level as main effect; grazing management regime was nested 
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within woody encroachment level. Mean comparisons were made using Tukey’s test (p< 

0.05). All values reported are means (± Standard Error).  

3.3 Results 

3.3.1 Land cover changes 

The most striking change in vegetation cover between 1976 and 2012 was the continuous 

decline in open shrub and tree savanna areas from 45% in the 1976 to 9% in the 2012 (-36%) 

and the noticeable increase in the amount of moderate and severe woody encroached areas 

(bushed savanna and dense bushland thicket, respectively) from 22% in 1976 to 61% in 2012 

(+39%) (Fig3.1, Table 3.3). This pattern indicated a continuous trend of new woody 

encroachment and thickening of the already existing tree/shrub savanna and 

woodlands/shrublands (Table 3.3). The bare land, and settlement areas remained relatively 

stable while cropland increased slightly and forest land declined by 6% from 1976 to 

2012.The cropland was expanded into the wetter and most valuable grazing tree savanna 

or/and shrub savanna areas. Dense shrubland in 1976 fully developed into dense bushland 

thickets in 2000 and 2012(Table 3.3).  
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Table 3.3. Change in area of vegetation cover class (in km
2
 and % of total area) indicative of woody encroachment for the study district. 

Cover class 1976 2000 2012 Percent land cover change 

  km
2
 % km

2
 % km

2
 % 1976-2000 2000-2012 1976-2012 

Settlement 20 0.3 40 0.5 56 0.7 0.3 0.2 0.5 

Cultivated land 22 0.3 117 2 550 7 1.3 5.7 7.0 

Bare land 1394 19 1565 21 1500 20 2.3 -0.9 1.4 

Shrubsavanna 721 10 612 8 172 2 -1.5 -5.8 -7.3 

Tree savanna 2641 35 1620 21 486 6 -13.5 -15.0 -28.5 

Bushed savanna 958 13 2191 29 1912 25 16.3 -3.7 12.6 

Bushland thicket 688 9 1045 14 2720 36 4.7 22.2 26.9 

Dense shrubland 485 6 0 0.0 0 0.0 0.0 0.0 0.0 

Forest 623 8 365 5 157 2 -3.0 -3.0 -6.0 

Total area 7554  7554  7554     
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3.3.2 Floristic composition 

There were considerable variations in the species composition among the four encroachment 

levels (Table 3.4 and Table 3.5). At the Low encroachment sites the three woody species that 

contributed most to the woody AGC stocks were Commiphora africana, C. habessinica , and 

C. schimperi (47% combined ). Dominating grass species at the LE site were Chrysopogon 

plumulosus, Cenchrus ciliaris, Achyranthes aspera, contributing 27% to RCA of the 

herbaceous species.The top two woody species in terms of AGC stock at the moderate 

encroachment site  were A. tortilis and Rhus natalensis which when combined contributed to 

57% of the total woody AGC stocks. The top three herbaceous species at ME site in terms of 

relative basal cover abundance (RCA) were Chrysopogon plumulosus, Xerophyta humilis and 

Barleria argentea when combined contributed to 16% of RCA.At the HE site the three woody 

species that contributed more than half (59%) to the woody AGC stock were A. senegal, A. 

mellifera, and A. bussei. The herbaceous layer of HE site was dominated by Cynodon 

dactylon, Sporobolus pyramidalis, Helichrysum glumaceum,which when combined 

contributed to 34 % to RCA of the herbaceous community of this site. At the SE site almost 

half (48%) of total AGC stock was contributed by A. mellifera followed by A. bussei (14%), 

and A. etabaica (11%). The dominant herbaceous species of this site (RCA = 35% when 

combined) included C. plumulosus, C. ciliaris,and H. glumaceum. 

Table 3.4. The top five woody plant species contributing greater aboveground (AGC) stocks in each 

encroachment level sorted by decreasing C stocks. LE =low encroachment, ME = moderate encroachment, HE = 

high encroachment, SE = severe encroachment.Density ha
-1 

=total number of individual plants of each species 

per 10m x 10m plots. Canopy cover (m
2
 ha

-1
) = the sum total of individual canopy of each speies per 10m x 10m 

plots. 

Encroachment 

levels 

Species Density  

ha
-1

 

Canopy cover  

(m
2
 ha

-1
) 

AGC stock 

kg ha
-1 

% 

LE Commiphora africana  1220 1854 853 24 

 Commiphora schimperi  270 675 493 14 

 Commiphora habessinica  267 669 295 8 

 Acacia tortilis 97 244 274 8 

 Lannea rivae 167 419 238 7 

ME Acacia tortilis 130 325 653 33 

 Rhus natalensis 67 168 481 24 

 Grewia bicolor  112 281 94 5 

 Ormocarpum 

trichocarpum  

145 362 91 5 

 Acacia drepanolobium 110 275 61 3 

HE Acacia senegal 597 1494 3204 41 

 Acacia mellifera  135 337 703 9 

 Acacia bussei 15 37 685 9 
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Table 3.5. The dominant top five herbaceous species based on relative percent cover abundance (%RCA) in 

each woody encroachment level. LE =low encroachment, ME = moderate encroachment, HE = high 

encroachment, SE = severe encroachment. RCA = relative percent basal cover abundance and RF = relative 

frequency. 

Encroachment level Species RCA (%) RF (%) 

LE Chrysopogon plumulosus 16 10 

 

Achyranthes aspera 10 8 

 

Sporobolus confinis  9 8 

 

Cenchrus ciliaris 8 7 

 

Indigofera schimperi 7 6 

ME  Xerophyta humilis 6 3 

 

Barleria argentea 5 5 

 

Chrysopogon plumulosus 5 9 

 

Cenchrus ciliaris 4 6 

 

Entropogon macrostachyus 3 8 

HE Cynodon dactylon 14 7 

 

Helichrysum glumaceum 13 1 

 

Sporobolus pyramidalis 7 6 

 

Sporobolus festivus 5 4 

 

Digitaria milanjiana 4 5 

SE Helichrysum glumaceum 13 11 

 

Chrysopogon plumulosus 13 9 

 

Cenchrus ciliaris 9 5 

 

Indigofera spinosa 7 5 

 

Digitaria milanjiana 4 6 

 

3.3.3 Woody vegetation structure 

There was a gradient of increasing woody plants density and canopy area cover in > 6m 

height class from low encroachment site to severe encroachment, though the height of woody 

plants at moderately encroached site was only limited to < 6 m(Fig. 3.4 and Fig.3.5). The 

size-class distribution profile of LE, ME, and HE differed from that of the SE; the woody 

plants at these sites were mostly in the smaller size class (< 2 m), with only few woody plants 

in the larger size classes (Fig.3.4). 

 Acacia reficiens 45 112 577 7 

 Grewia bicolor  172 431 431 6 

SE Acacia mellifera 332 831 3730 49 

 Acacia bussei 35 87 1044 14 

 Acacia etabaica  62 156 817 11 

 Grewia bicolor  297 743 505 7 

 Commiphora habessinica  77 193 394 5 
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Fig.3.4. Size class frequency distributions for woody plants in communal open grazing lands (black bar) and 

enclosures (grey bar) in LE, low encroachment, ME, moderate encroachment, HE, high encroachment, and SE, 

severe encroachment sites in semiarid rangelands of Southern Ethiopia. Lower letters represent statistical 

differences between grazing regimes. Means not represented by similar letter are different. 
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Fig.3.5. Percent area in each height classes covered by woody plants canopy cover in communal open grazing 

(black bar) and enclosure (grey bar) in LE, low encroachment, ME, moderate encroachment, HE, high 

encroachment, and SE, severe encroachment in semiarid rangelands of Southern Ethiopia. Lower letters 

represent statistical differences between grazing regimes. Means not represented by similar letter are different. 

Regenerative woody plant density (< 1 m height) was significantly affected by woody 

encroachment levels and grazing regime and levels of woody encroachment interactions 

(Table 3. 6). Moderate to high woody encroached sites (ME and HE) had 50-100% 

significantly higher density of small woody plants in the enclosures, while at the SE site it 

was similar to the adjacent open grazing area (Table 3. 7). The medium-sized woody plant (2 

- 3m, 3 - 4 m height) density was significantly affected by grazing, woody encroachment 

levels and their interactions (Table 3. 6). However, the mean densities of woody plants in this 

height classes (2 - 3m, 3 – 4 m) did not differ significantly among the levels encroachment 

and grazing regimes except at LE site (Table 3. 7, Fig. 3.4). The density of tall trees (> 6m 

height) was significantly affected by encroachment levels and encroachment and grazing 

regime interaction (Table 3. 6). High to severely encroached sites tended to have higher 

densities of tall woody plants (6 - 15 m height) in the open grazing regime, but only 

significantly so at the SE site (Table 3. 7). Levels of encroachment significantly influenced 
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total woody plant density independently of grazing regimes and vice versa (Table 3. 6). Mean 

density of total woody plants increased through the moderate and high woody encroachment 

levels (ME and HE) but declined at severely encroached site. However, the mean total woody 

plant density of the ME, HE, and SE site were statistically the same (Table 3. 7).The total 

woody plant density inside the enclosures was with 6 – 130% higher than communal grazing 

land ,and highly variable, but also significantly higher than that of communal grazing land 

across all encroachment levels (Table 3. 7). 

Table 3.6. Results from analysis of variance of the effects of woody encroachment and grazing regime on woody 

plants density (number of plants ha
-1

) in each height class.  

 

 

 

 

 

 

 

 

 

 

 

 

 

**. highly significant at p < 0.01 

*. significant at p < 0.05 

ns. not significant at p=0.05 

 

 

Variable  Source  df F p 

woody plant density      

< 1m Encroachment 3 21 ** 

 Grazing 1 2 ns 

 Encroachment x grazing 5 4 * 

1 – 2m Encroachment 3 4 * 

 Grazing 1 17 ** 

 Encroachment x grazing 5 5 ** 

2 – 3m Encroachment 3 3 * 

 Grazing 1 18 ** 

 Encroachment x grazing 5 7 ** 

3 – 4m Encroachment 3 4 * 

 Grazing 1 0.01 ns 

 Encroachment x grazing 5 3 * 

5 – 6m Encroachment 3 1 ns 

 Grazing 1 6 * 

 Encroachment x grazing 5 3 * 

6 – 15m Encroachment 3 5 ** 

 Grazing 1 1 ns 

 Encroachment x grazing 5 5 ** 

Total Encroachment 3 16 ** 

 Grazing 1 11 ** 

 Encroachment x grazing 5 2 ns 
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Table 3. 7. Mean (± SE) woody density (number of plants ha
-1

) in each height class across two grazing regimes along four woody plants encroachment levels (LE, low 

encroachment, ME, moderate encroachment, HE, high encroachment, and  SE, severe encroachment) in semiarid rangelands of Southern Ethiopia. Different lowercase letters 

represent statistical differences determined by the grazing regime and woody encroachment interaction term in the General Linear Model and Turkey’s means comparisons (P < 

0.05). N, replication of grazing regime per encroachment levels. 

 

 

 

 

 

 

 

 

 

**. highly significant at p < 0.01 

*. significant at p < 0.05 

ns. not significant at p = 0.05 

 

 

   Density of woody plants (No. of plants ha
-1 

) in height class 

Encroachment  

level 

Grazing 

 regime 

N < 1 m 1 – 2 m 2 – 3 m 3 – 4 m 5 – 6 m 6 – 15 m Total 

LE Open 4 345±49a 205±29a 60±25a 5±5a 0a 5±5a 745±126a 

 Enclosure 4 725± 2b 550±4b 230±30b 55±12b 10±2a 15±2.3a 1690±6b 

ME Open 4 985±149b 385±47ab 280±58b 65±21b 20±12b 0a 1905±22b 

 Enclosure 4 1500±237c 510±80b 325±40b 35±13b 5±5a 0a 2460±224bc 

HE Open 4 990±163b 510±55b 115±25c 40±15b 0a 10±7a 1665±57b 

 Enclosure 4 1400±165c 545± 64b 155±24c 25±12b 15±8.2bc 8±4a 2148±194b 

SE Open 4 325±67a 335±32a 205±30bc 95±20c 30±13bc 55±22b 1395±163b 

 Enclosure 4 380±49a 500±31b 380±24b 65±23bc 5±5a 10±6.9a 1485±85b 
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3.3.4 Aboveground carbon stocks 

The mean annual herbaceous AGC stock (summed over two growing seasons) was 0.7 (± 

0.06) Mg ha
-1

 (derived from1.5 Mg dry matter ha
-1

), representing 12% of total vegetation 

AGC stock (Table3.9). The low encroachment (LE), ME, HE, and SE sites comprised 1.3 (± 

0.2), 0.5 (± 0.04), 0.7 (± 0.09), 0.2 ± (0.03) Mg C ha
-1

, respectively. The mean AGC stock in 

communal grazing land and enclosures was 0.5 (± 0.06) and 0.8 (± 0.1) Mg C ha 
-1

, 

respectively.The herbaceous AGC stocks in the communal grazing lands were up to 50% as 

low as that of enclosures, depending on the woody encroachment levels (Table 3.9) but 

differences were only significant at LE and HE sites. 

A mean total aboveground carbon (AGC) stocks of 5.9 Mg ha
-1 

(1.6 Mg ha
-1

 – 9.8 Mg 

ha
-1

) were estimated summing all woody vegetation (trees and shrubs) and herbaceous layer C 

pools at our study site (Table 3.9). The mean AGC of our LE, ME, HE, and SE sites 

constituted 2.3 (±0.4), 3.9 (± 0.4), 7.8 (± 1.7), and 8.6 (± 1.4) Mg ha
-1

, respectively. The mean 

AGC stock across all encroachment levels in communal grazing lands and enclosures was 6.4 

(± 1.1) and 6.1 (± 0.6) Mg ha
-1

respectively. The mean total AGC, shrub AGC, and tree AGC 

stocks were significantly increased with an increasing gradient of woody encroachment 

levels, independent of grazing regime (Table 3.8, Table 3.9). The mean total AGC at heavily 

encroached sites HE and SE sites were more than 2-3 times higher than that of ME and 

LE(Table 3.9). Mean shrub AGC stock was by 68% significantly higher in ME compared to 

HE and SE whereas AGC stocks of trees were more than five times higher in HE and SE 

compared to ME (Table 3.9). 
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Table 3.8. Results from analysis of variance of the effects of woody encroachment and grazing regime on 

aboveground Carbon (AGC ) stocks in tree, shrub and herbaceous vegetation biomass. 

 

 

 

 

Variable  Source  df F p 

Carbon stocks(Mg ha
-1

)     

Shrub wood AGC Encroachment 3 42 ** 

 Grazing 1 2 NS 

 Encroachment x grazing 5 2 NS 

Tree wood AGC Encroachment 3 10 ** 

 Grazing 1 4 NS 

 Encroachment x grazing 5 3 NS 

Herbaceous AGC Encroachment 3 21 ** 

 Grazing 1 11 ** 

 Encroachment x grazing 5 5 ** 

Woody leaves carbon Encroachment 3 16 ** 

 Grazing 1 3 NS 

 Encroachment x grazing 5 5 ** 

Total AGC stocks Encroachment 3 9 ** 

 Grazing 1 4 NS 

 Encroachment x grazing 5 3 NS 
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Table 3.9. Means (+SE) of grazing management regime and woody encroachment levels for calculated AGC stocks in tree, shrub and herbaceous vegetation. Different lowercase 

letters represent statistical differences determined by the grazing regime and woody encroachment interaction term in the General Linear Model and Tukey’s means comparisons 

(p< 0.05) Abbreviation of encroachment level see Table 3. 7. 

Encroachment 

levels Grazing regime 

Shrub wood AGC 

(Mg ha
-1

) 

Tree wood AGC 

(Mg ha
-1

) 

Herbaceous AGC 

(Mg ha
-1

) 

Woody vegetation 

 leaves C (Mg ha
-1

) 

Total AGC 

(Mg ha
-1

) 

LE Open 0.1±0.05a 0.5±0.4a  1.0± 0.1b  0.01±0.4a 1.6±2.4a 

 

Enclosure 0.5 ±0.07a 2.3±0.6b 1.7±0.2c  0.5±0.04b 5.0±1.3b 

ME Open 2.0±0.30b  1.1±0.50ab 0.4±0.03a 0.8±0.1b 4.3±0.6b 

 

Enclosure 1.6 ±0.2b 0.9 ± 0.50a 0.3±0.03a 0.7±0.05b 3.5±0.5b  

HE Open 0.7±0.0a  6.4±0.2c 0.5±0.1a 0.9±0.2b 9.0±2.4c 

 

Enclosure 0.4±0.0a  6.3±1.2c  1.0±0.1a 0.7±0.1b 8.2±1.3c 

SE Open 0.7±0.2 a 8.1±2.7d 0.03±0.01d 1.2±0.1b 9.8±2.9c 

 

Enclosure 0.5±0.09a  4.3±0.2e 0.2±0.01a 0.6±0.1b 5.6±1.6b 

**. highly significant at p < 0.01 

*. significant at p < 0.05 

Ns. not significant at p =0.05 
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3.4 Discussion 

Our multi-temporal satellite imagery analysis and quantitative studies demonstrated extensive 

encroachment of woody plants in the Borana rangelands over the last four decades following 

fire suppression. The most striking change in rangeland vegetation cover was the dramatic 

drop in the open vegetation types such as shrub savanna and tree savanna and the significant 

area increase in dense vegetation types such as dense shrubland thickets and bushed savannas. 

This woody vegetation increase is consistent with results from other savanna systems world-

wide (Hughes et al., 2006; Briggs et al., 2005; Hibbard et al., 2003; Asner et al., 2003; Gifford 

and Howden, 2001). Savannas may, therefore, switch from grass-dominated ecosystems to 

dense shrub or woodland ecosystems once fire is suppressed (Hibbard et al., 2003). 

Significant changes in woody cover seemed to have occurred across our study sites due to 

human influences such as changes in fire and grazing management, and climate variability 

(Angassa and Oba, 2008; Dalle et al., 2006;Oba et al., 2001; Oba et al., 2000). 

All our study sites encompassed woody vegetation cover of less than 40% in the 1970s 

(Coppock, 1994). Trees and shrubs likely expanded out from small patches to form larger 

patches, similarly to other studies (Wiegand et al., 2006; Gillson, 2005). Furthermore, the 

local informants noticed that woody plant encroachment processes seemed accelerated over 

the last decades. This was also reflected by our woody density, canopy cover, and population 

size assessment, which indicates that woody plant populations in low, moderate, and high 

encroachment sites are still expanding and will remain increasing in density and cover while 

the most severely encroached site (SE) contained mainly old woody vegetation without many 

seedlings, and, thus, might be in a climax woody state. Given the complete suppression of fire 

and increasing trends of livestock population in the Borana rangelands, these woody 

encroachment trends are likely to continue. On the contrary, the lack of regeneration as shown 

by the low seedling and sapling densities (< 1 m tall) at the severely encroached site may 

gradually lead to an open savanna as trees die off over time. This agrees with findings of 

(Belay and Moe, 2012; Wiegand et al., 2006) who indicated that the woody patch density 

declined in savannas as tree/shrub patches get older because of ‘self thinning’. The high 

number of seedlings and saplings in enclosures across all encroachment levels indicates that 

besides other factors (e.g., fire suppression, moisture, competition with grasses) livestock 

exclusion will play a major role in the establishment, encroachment, and growth of woody 

species.  

 Floristically, the four woody encroachment levels are typical of the broader vegetation 

types of the semiarid Borana rangelands, each with the vegetation community composition 
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differentiated largely on the basis of topo-edaphic gradients (Coppock, 1994). However, the 

density and canopy area cover of the taller woody plants (< 6 m in height) increased gradually 

with woody encroachment levels, with SE being dominated by tall trees. Generally, the 

woody plant species composition and structure in the savanna ecosystem are influenced by 

edaphic factors (Venter and Govender, 2012), age of patch establishment (Wiegand et al., 

2006), impacts through herbivores, and human utilization of woody plants (Wessels et al., 

2011; Augustine and Mcnaughton, 2004; Roques et al., 2001).  

 In our study, enclosures had higher total woody density, which concurs with findings 

of (Scogings et al., 2012). Enclosures at LE, ME, and HE had more than double the woody 

plant densities, particularly in the 1 - 2 m height classes, inside enclosures compared to 

communal open grazing sites, indicating that herbivore exclusion strongly impacts woody 

plants in their early ages (Scogings et al., 2012; Roques et al., 2001). Enclosures are currently 

expanding in the Borana rangelands, which might foster young woody plant establishment 

and growth. The lower density of woody plants of < 3 m in the communal grazing sites on the 

other hand indicates the significance of browsers such as goats in reducing the rate of bush 

encroachment by lowering the regeneration potential of encroaching woody plants in savanna 

systems (Levick et al., 2009; Augustine and Mcnaughton, 2004). The lack of significant 

differences in this higher height classes between enclosures and communal open grazing lands 

reflects human utilization impact on tall trees at both sites (Wessels et al., 2011). Woody plant 

density and cover values were by 60-100% uniquely higher in the enclosures than communal 

grazing areas for all height levels at the low encroached site. This might reflect heavy 

browsing and selective harvesting of woody vegetation in the communal grazing land as this 

area borders fully sedentary pastoral village.  

Our estimates of AGC stocks of 5.9 Mg C ha
-1 

(1.6 Mg C ha
-1

 – 9.8 Mg C ha
-1

) are higher 

than, e.g., those of a Sudanese woodland savanna (1.1 Mg C ha
-1 

, Alam et al., 2013) but 

lower than those of savanna woodlands (9.5 Mg C ha
-1

 – 26 Mg C ha
-1

) in West and South 

Africa (Woollen et al., 2012; Shackleton and Scholes, 2011;Williams et al., 2008) 

highlighting the importance of vegetation composition, climatic regimes, soils and impacts of 

land uses (Woollen et al., 2012). 

 Our comparisons of different encroachment levels indicated that the expansion of 

woody plants into relatively open savanna, and subsequent conversion to bushland/shrublands 

substantially increased the AGC stocks. Our estimate of AGC stocks in highly encroached 

sites (SE, HE) were up to three times greater than that of the less encroached sites (LE, ME). 

Similar trends of AGC stock increase were reported when open savannas are encroached by 
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woody plants (Lett et al., 2004; Asner et al., 2003).The significance of additional C stocks in 

woody species is further emphasized by the low understory (herbaceous species) C stock 

values contributing only 12% to the total AGC stock of this ecosystem. Hence, the dramatic 

shift in the AGC stock with woody plant encroachment is likely to increase overall AGC 

stock within the ecosystem, overriding the herbaceous C stock component of the ecosystem. 

However, the differences in the AGC stock across encroachment level seemed to be 

influenced by woody species composition and size structure rather than by total canopy cover 

or density alone. The abundance of tall trees ( > 6 m) with complex canopy structure e.g., A. 

mellifera, A. bussei, A. senegal, A. tortilis in HE and SE help to store more than twice as 

much C as compared to the dominant shrubs at ME, though these sites were comparable in 

terms of total woody density and cover. This is in agreement with the findings of (Litton et 

al., 2006) who reported that a large proportion of the total AGC stock in dry forests and 

savanna ecosystems was comprised of tall trees with large canopy cover. In addition, C 

storage is influenced by the wood gravity of the dominant trees/shrubs in the area. For 

example, LE site was predominantly (60%) covered by Commiphora species, which havealow 

wood gravity (with ≈ 67% water content in fresh wood biomass) compared to other woody 

species (e.g., A. senegal  ≈ 38%, A. mellifera ≈ 37%,A. bussei ≈ 33%) found at SE and HE 

(Hasen-Yusuf et al., 2013).  

The impact of long-term enclosures was more clearly visible in the herbaceous AGC 

stocks than in the woody AGC stocks across all encroachment levels. Higher herbaceous 

biomass in enclosures compared to open grazing sites have been reported from grazing 

systems worldwide such as the Borana rangelands (Angassa and Oba, 2010), northern and 

central Ethiopia (Yayneshet et al., 2009), South Africa (Eccard et al., 2000) and New Zealand 

(McIntosh et al., 1997).  

Our data set has demonstrated that a long-term livestock exclusion may not necessarily 

increase the herbaceous biomass in the savanna ecosystem due to the suppressive effect of 

woody plants on herbaceous biomass (Smit, 2001; Harrington and Johns, 1990). Therefore, 

the herbaceous biomass difference was not more pronounced between enclosures and 

communal open grazing sites at highand severe encroachment areas. This also highlights the 

tradeoffs between C sequestration in the woody vegetation vs. pastoral production in 

rangeland systems. 

A complete understanding of the effect of vegetation cover changes (woody 

encroachment) and grazing pressure on ecosystem C stock should also take belowground 

dynamics into account. Belowground tree/shrub root biomass also is assumed to also increase 
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over time following woody encroachment in the savanna system (Jobbagy and Jackson, 

2000). However, woody encroachment could also decrease the belowground C stock by 

affecting the large amount captured by herbaceous biomass to be allocated in the 

belowground through roots and soil organic C in wet regions (Jackson et al., 2002). In this 

semiarid rangeland, soil organic carbon (SOC) stocks did not show similar patterns of AGC 

stock increase along the gradients of woody encroachment but stocks were rather largely 

influenced by variations in soil characteristics (HasenYusuf et al., in press).  

Our current estimates of an AGC stock of 6 Mg C ha
-1

 was largely derived from woody 

plants that thrived after long-term fire suppression from the rangelands. This estimate 

enhanced is probably even higher taking belowground C stocks into account. The mean AGC 

stocks estimated by this study could also be increased under appropriate management as 

demonstrated in the benchmark site in an arid and semi-arid woodland vegetation of South 

Africa (Shackleton and Scholes, 2011). What constitutes appropriate management would have 

to be determined in consultation with local pastoralists (Shackleton and Scholes, 2011). 

However, pastoralists are currently unaware of the potential of C credits via appropriate 

management of rangelands including woody plants in their rangeland systems (Lipper et al., 

2010). To increase C sequestration in vegetation and soils could, though, represent a highly 

valuable alternative livelihood income source if appropriate and efficient financing systems 

would be established (Follett and Reed, 2010; Lipper et al., 2010). Co-management of the 

rangelands for environmental services (C sequestration and reduction of emissions from 

livestock systems) through an environmental payment service scheme could also be 

considered to help the pastoralists to diversify and sustain their livelihood in the long run 

(Neely et al., 2009). Implementation of a sustainable rangeland management practices that 

includes moderate stocking rates and sustainable grazing systems, for example, rotational 

grazing and seasonal land use, will promote the sustainability of both economic (livestock 

production) and environmental services (C sequestration). 

3.5 Conclusion 

Historical and on-going woody encroachment in the savanna ecosystem has a significant 

implication for the global C-cycle. Assessment of its contribution to the global C budget has 

practical importance for C accounting and global C-credit / offset programs. Our data indicate 

that the wide-spread woody encroachment in semi-arid savanna of Borana rangelands 

substantially increased the C stock in the aboveground biomass but was largely determined by 

species composition, size structure, grazing management and site characteristics. The woody 

population structure suggested high recruitment except at the oldest encroached site, 
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indicating the increase in AGC stocks is expected. Further investigation of the belowground C 

stock associated with woody encroachment is necessary. Our result also shows that woody 

encroachment had an overriding influence on the impact of grazing management on 

herbaceous biomassC stocks with significant reduction in herbaceous biomass in heavily 

encroached sites compared to less encroached sites. Our C stock estimates can then be 

compared to other studies and used in calibrating the AGC stocks in the future model of land 

use and cover changes. The observed large increases in AGC stocks that occurred through 

woody encroachment on landscape and regional scales will foster future C-trade discussions 

with respect to climate change mitigation strategies. However, conserving woody biomass C 

stocks will threaten the sustainability of livestock production, and this tradeoff must be 

quantified and considered in the future. 
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Abstract 

Intensified grazing and wide-spread woody encroachment may strongly alter soil carbon (C) 

and nitrogen (N) pools. However, the direction and quantity of these changes have rarely been 

quantified in East African savanna ecosystem. As shifts in soil C and N pools might further 

potentially influence climate change mitigation we quantified and compared soil organic 

carbon (SOC) and total soil nitrogen (TSN) content in enclosures (“enclosure”) and 

communal grazing lands (“open”) across varying woody cover (woody encroachment levels). 

Estimated mean SOC and TSN stocks at 0 - 40 cm depth varied across grazing regimes and 

among woody encroachment levels. The open grazing land at the heavily encroached site on 

sandy loam soil contained the least SOC (30 ± 2.1 Mg ha
-1

) and TSN (5 ± 0.57 Mg ha
-1

) while 

the enclosure at the least encroached site on sandy clay soil comprised the greatest mean SOC 

(81.0 ± 10.6 Mg ha
-1

) and TSN (9.2 ± 1.48 Mg ha
-1

). Soil OC and TSN did not differ under 

enclosure at heavily encroached sites but were twice as high in enclosure compared to open 

grazing soils at low encroached sites. Mean SOC and TSN in soils of 0 - 20 cm depth were up 

to 120% higher than that of the 21 - 40 cm soil layer. Soil OC was positively related to TSN, 

cation exchange capacity (CEC), but negatively to sand content.The results show that SOC 

and TSN stocks were partly affected by woody encroachment and grazing management but 

more importantly by inherent soil characteristic such as sand content. On the sites of sandy 

loam texture soils, maintaining high woody cover may not increase SOC and TSN stocks, or 

reduce their loss. Hence improving the herbaceous layer cover through a reduction in 

livestock grazing and woody encroachment restriction are the key strategies to maintain SOC 

and TSN stocks or reducetheir losses and, thereby, for climate change mitigation in semi-arid 

rangelands.  

 

Key words: Borana rangelands, carbon stock, climate change mitigation, drylands, enclosure, 

exclosure, grasslands, grazing management, land use change, livestock, savanna, SOC, TSN 
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4.1 Introduction 

Soil is the largest terrestrial reservoir of carbon (C) and nitrogen (N) [1] and can store about 

three times as much C and N than the atmosphere [2], sequestered mainly in decomposed 

plant litter and residues. Recent rapid losses of soil C and N due to intensive livestock or 

agricultural uses and changes of fire regimes have been reported for tropical savannas, which 

cover ca. 10 to 15% of all terrestrial ecosystems [3 - 4]. These ecosystems, if well managed, 

may have a high potential to store an appreciable fraction of atmospheric CO2 as organic 

carbon (OC) in the soil [4]. Given the vast area cover of savanna systems, enhanced C and N 

fluxes from these systems linked to land use and cover changes could greatly influence the 

global C and N cycle, with direct impact on potential climate change mitigation and 

adaptation strategies [2]. Nevertheless, the ways in which to steer soil C and N stocks in 

savanna ecosystems are complex and poorly understood as the impacts of land use and 

associated vegetation cover changes, climate and soils are complex and vary spatially and 

temporally. 

Previous studies have shown mixed results of grazing effects on soil organic carbon 

(SOC) and soil organic nitrogen (SON), with studies showing positive [5], neutral [6] or 

negative effects of grazing [7]. Grazers affect SOC and SON by mechanisms that alter C and 

N cycles in the soil [8]: i. grazers reduce primary productivity [9], ii. alter plant C and N 

belowground allocation [10], and iii. affect litter quality and mineralization rates [10]. 

Further, grazers can affect legume abundance and hence N fixation rates, which may alter N 

inputs to the soil [11]. Ruminant metabolism, C and N emissions from animal wastes through 

volatilization and leaching impact SOC and TSN stock in the soil [12]. Changes in soil C and 

N outputs associated with grazers arise mainly from changes in soil organic matter 

decomposition and mineralization rates [13] or increased erosion under intense grazing [14]. 

Grazing generally decreases herbaceous plant cover and thus may increase soil organic matter 

mineralization rates because of greater soil temperature and/or soil moisture fluctuations and 

by increasing desertification [13]. The effect of grazing on SOC and SON stocks depends on 

precipitation, soil properties, plant species composition, and grazing intensity [5-14]. Hence, 

the overall consequences of grazing on SOC and SON accumulation may vary along gradients 

of these variables and so far only few studies have been conducted on quantifying these 

effects in semi–arid rangelands of east African pastoral grazing systems. 

Over the last century, African savannas have been encroached by woody species 

despite differing climate and management practices such as variable domestic herbivore 

stocking rates and fire regime [15]. Woody encroachment, which refers to an increase in 
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cover, density and biomass of indigenous woody plant species, has been reported over much 

of the world’s arid and semi-arid environments (‘drylands’) in the recent decades [16]. The 

causes of woody encroachment include grazing intensification, changes in fire frequency and 

intensity [17], changes in N deposition [18], increasing atmospheric CO2 concentration and 

climate change [19]. Similarly, the structure and composition of semi-arid southern Ethiopian 

rangeland vegetation has changed dramatically, mainly due to the Ethiopian government fire 

prohibiting policy and grazing intensification since the 1970s [20]. Large areas of southern 

Ethiopian rangelands have become encroached by woody plant species, resulting in a 

substantial reduction of the herbaceous layer and, as a result, pastoral production [21]. While 

the woody encroachment is often regarded as severe rangeland degradation, particularly in the 

context of cattle grazing or pastoral production [21], it was also shown to trigger a large 

increase in C sequestration potential in tropical America [22], Australia [23], and South 

African [24] savanna systems. This C accumulation appears to be a function of enhanced 

below- and aboveground net primary productivity (NPP), low decomposition rates beneath 

shrubs, biochemical recalcitrance of shrub litter, and organic matter stabilization in protected 

soil aggregates [23]. However, this seems to be precipitation-dependent, i.e., the drier sites in 

the Chihuahuan desert in USA (< 280 mm rainfall) gained soil C and N with encroachment 

while wetter sites (> 600 mm rainfall) lost C and N with encroachment [25]. So far, little 

quantitative information is available on soil C and N stocks capacities and the influence of 

woody encroachment on these stocks in east African semi-arid savanna systems.  

A recent assessment of AGB biomass and woodycover data has indicated an 

increasing potential for AGC stocks by encroaching woody plant species in a semi-arid 

Ethiopian rangeland (26). However, it is not yet clear how the influence of this woody 

encroachment has affected soil C sink and the soil C influx that arises when grazing pressure 

is relaxed. This information is critically important since more than 70% of an ecosystem C 

pool is located in the soil [2] and could potentially be influenced by intensification of grazing 

and vegetation cover changes.  

The main aim of this study was to investigate whether soil C and N stock will increase 

with woody encroachment and under rangeland enclosure. If so, we would expect that 

severely woody encroached sites will contain the most SOC and total soil nitrogen (TSN) 

stocks. We further would expect that long-term grazing relaxation (rangeland enclosure) will 

increase SOC and TSN stocks. Thirdly, we hypothesize that woody encroachment and grazing 

exclusion will interact and that, thus, severely encroached sites from which grazing has been 
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excluded for long time would have greater SOC and TSN than sites that are less encroached 

and grazed.  

4.2 Material and Methods 

4.2.1 Study area 

Study sites were located in a semi-arid pastoral system within approximately 10 - 70 km 

geographic range in Yabello and Dire Districts, Borana, southern Ethiopia. This semi-arid 

rangeland is used predominantly for livestock (cattle, camel, goat and sheep) production [27]. 

The sites represent similar soil types, climatic conditions and livestock population density 

(Table 4.1). The soils in the study sites comprise a Chromic Cambisol according to 

FAO/UNESCO system (unpublished data). The study sites are representatives of the recent 

woody encroachment phenomenon, in which < 40% of the shrubs established before 1970s 

[28], and the most extensive woody encroachment occurred after the 1980s because of 

grazing pressure and fire suppression [20]. 

Fifty years (1957-2012) of climate data (Ethiopian Meteorological Agency) indicated a 

long-term mean annual precipitation of 550 mm in the region, with a 66% coefficient of 

variation across years and 85% falling during two growing seasons. Rainfall is bimodal, with 

55% of the annual precipitation occurring in March - May, followed by 30% in September - 

November. Mean annual air temperature is 20°C, with a mean monthly maximum of 21
°
C in 

February and a mean monthly minimum of 18.5°C in July. 
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Table 4.1. Woody encroachment levels, age of enclosure, soil and livestock population density characteristics of the research sites in the Yabello and Dire districts of Borana 

zone. Geological information was summarized from the Borana land use study project soil survey report (unpublished data). Woody encroachment levels: Low woody 

encroachment site (LE), moderate woody encroachment site (ME), severe woody encroachment site (SE), highest woody encroachment (HE). 

*. Tropical Livestock Unit was calculated using the livestock population data obtained for each site from local Agricultural Offices following [28].  

1 TLU=250 kg live weight. 

 

 

 

Encroachment 

level 

Location 

(latitude, 

longitude) 

Elevation 

(masl) 
Geology Soil type 

Enclosure 

age 

Soil texture (%) 

Textural 

class 

Livestock (head km-2) 

*TLU 

km -2 

Cattle Camel Goat Sheep equines Sand Silt Clay 

LE 
040 56´ 33´´ 

380 10´12´´ 1542-1564 
Quartz-feldspathic 
gneiss and alluvium 

(sand silt and clay) 

Cambisols 35 46 10 44 Sandy Clay 30 1.05 11 3 0.7 23.9 

ME 
040 24´02´´ 
380 17´ 03´´ 1439-1514 

Alluvium: sand, silt and 
clay 

Cambisols 30 67 18 15 
Sandy 
Loam 

31 0.7 9 10 2 25.6 

SE 
040 41´ 08´´ 
380 1141´´ 1436-1518 

Quartz-feldspathic 
gneiss 

Cambisols 8 65 20 15 
Sandy 
Loam 

25 2.6 18 12 0.5 23.3 

HE 
040 38´ 58´´ 

380 04´ 58´´ 1247-1323 
Plateau basalt: alkaline 

basalt and trachyte 
Cambisols 12 64 19 17 

Sandy  

Loam 
25 2.6 18 12 0.5 23.3 
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4.2.2 Land use and grazing patterns in Borana 

Historically, the land use system in the Borana pastoral system was largely characterized by 

sustainable exploitation of rangeland resources based on herd mobility in connection with 

flexible stocking densities [30]. Movement patterns corresponded with local rainfall and 

associated natural resource productivity, shifting towards dry areas in the wet season and 

more humid areas in dry seasons [28]. The land use also involved periodic burning of the 

rangelands [28]. Following the 1970s drought period in the area, several ponds or deep wells 

were established in some parts of the rangelands and the pastoralists shifted to use the areas 

near these ponds or deep-wells (permanent water points) for grazing in the dry season and 

drought years  whereas the other parts of the landscape were utilized during the wet season 

[30].  

However, this extensive, the season based rotational grazing system has changed to a 

semi-sedentary year-round intensive grazing system since the 1980s because of increasing 

human and livestock populations, water points, roads and market infrastructure development, 

settlement programs and frequent drought events [20]. The Borana pastoral community was 

estimated to be 480,000 people in 1980s, increasing with an annual population growth rate of 

about 2.5 - 3% [31]. The livestock density in 1982, measured by aerial observation, was 14.3 

and 11.9 Tropical Livestock Unit (TLU) km
-2

 (1 TLU = 250 kg live weight) [29] domestic 

herbivore stocking rates in the wet and the dry-season, respectively [32]. By 2000, a 

household based survey provided stocking densities of 45 - 153 TLU km
-2

 [33]. Similarly, 

Homann et al. [2008] estimated 105 and 43 TLU km
−2

 during and after the 1999/2000 drought 

year, respectively [31]. Though the livestock population increase is often dampened by 

frequent drought events (occurring every 5 to 6 years), a rise in the net livestock density 

beyond stocking carrying capacity has been reported in the Borana rangelands [31, 33].  

More exclusive forms of land ownership have been induced since the mid-1960s by the 

establishment of traditional rangeland enclosures and government ranches [33]. The former is 

a small section of grazing land put aside during the wet season by individual pastoral 

households or the community at large to conserve pasture for calves, heifers, and sick animals 

during the dry season. Fires have been completely suppressed by pastoralists in the rangelands 

since the 1970s because of government regulations and because the standing biomass was 

rather used for forage, to feed high cattle densities [28].  

By 1980s, with the expansion of ponds, boreholes and shallow wells and government 

settlement programs, crop cultivation has drastically expanded into wetter and most valuable 

grazing areas [31]. By 2000, more than 16% of the total grazing area had been converted to 
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crop cultivation [33]. Year-round intensive grazing combined with suppression of fire and 

other climatic factors led to the conversion of grass into shrub-dominated savanna/woodlands 

[20].  

4.2.3 Sampling design 

The study was conducted along a gradient of woody plants encroachment representing four 

levels of woody encroachment in southern Ethiopia pastoral rangelands. The levels were 

based on the stage of woody encroachment determined through personal interviews with local 

people and district agricultural office managers, and also supported by ground quantification 

of the woody plants canopy cover and density (Table 4.2). Woody vegetation structure was 

quantified by measuring tree/shrub density; canopy diameters, canopy height, and stem height 

of the woody species using an 8-m long graduated wooden pole. Canopy cover was calculated 

using the average of the two longest canopy diameters perpendicular to each other and 

parallel to the ground. Stem height was measured as the total height of the plant stem from the 

ground level to the highest foliage. These data were used to compute tree and shrub densities 

and canopy cover per hectare for the grazing regimes and encroachment levels (Table 4.2). 

The woody encroachment levels were arranged from low to highest encroachment. The site of 

low encroachment (LE) has a mosaic of tree and shrub patches in a perennial herbaceous 

species stand, with an average total woody canopy cover of 27%. The site with moderate 

encroachment (ME) is composed of dwarf shrubs and thick perennial grass dominated stands 

with an average total woody canopy cover of 56%. The site with highest level of 

encroachment (HE) has small to medium-sized shrubs and trees that form an almost 

impenetrable thicket with a canopy cover 72% (Table 4.2, Fig.4.1). The site with severe 

encroachment (SE) contains fully matured tree and shrub stands with a woody canopy cover 

of 62% of the ground, in which herbaceous plants have been almost eliminated(Table 4.2, 

Fig.4.1).  
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Fig. 4.1. Study sites: low woody encroachment site (A), moderate woody encroachment site (B), severe woody 

encroachment site (C), high woody encroachment site (D) in the semi-arid rangelands of Yabello and Dire 

districts, Borana, southern Ethiopia. Pictures taken by HasenYusuf in 2011. 
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Table 4.2. Average values of vegetation characteristics of the grazing regimes for each encroachment level in the Yabello and Dire districts of Borana, southern Ethiopia. Low 

woody encroachment site (LE), moderate woody encroachment site (ME), severe woody encroachment site (SE), highest woody encroachment site (HE). Open = open access 

grazing land, enclosure = areas of livestock exclosure, reserved for heifers and calves only in the dry season. Canopy cover and woody density were assessed from 160 plots of 

10m × 10m, 20 plots from each grazing regime. 

Variables LE ME HE SE 

 Open Enclosure  Average Open Enclosure  Average Open Enclosure  Average Open Enclosure  Average 

Tree canopy cover* (%) 0 10 5 19 7 13 16 20 18 46 18 32 

Shrub canopy cover (%) 9 34 22 40 45 43 48 60 54 23 36 30 

Total woody canopy 

cover (%) 9 44 27 59 52 56 64 80 72 69 54 62 

Herbs canopy cover 70 62 66 72 71 72 51 67 59 24 62 43 

Tree density ha
-1 

0 74 36 111 32 71 170 214 192 200 116 158 

Shrubs density ha
-1 

616 1532 1074 1732 2368 2050 1425 1895 1660 865 1215 1040 

Total density 616 1606 1110 1843 2400 2121 2065 2109 1852 1065 1331 1198 

* Canopy cover is the proportion of the ground area covered by the vertical projection of the tree/shrub/herb canopy 
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Each woody encroachment level was divided into two grazing regimes namely, 

rangeland enclosure (hereafter named ‘enclosure’) and communal grazing land (hereafter 

named ‘open’) (Fig.4.2). The open grazing land represents the most common land use system 

in the Borana rangelands and is defined as the communal rangelands that are not privately 

owned, yet belonging to the communities whose members have equal access rights to the 

communal resources [34]. Enclosures in this study represent a shrub fenced area that covers 

10 - 25 ha grazing land and protects from grazing during the wet season, while the adjacent 

openly grazed rangelands are utilized, although some grazing may occur in the enclosure in 

the late dry season and in drought years when the forage is extremely scarce [35].  

We randomly selected four replicate of enclosures within the same age group and 10 - 

25 ha in size and 1-2 km apart (aerial distance, measured using Garmin GPS 72 (Garmin 

International Inc., USA) and adjacent open grazing lands in each of the four encroachment 

levels to examine the influence of grazing exclusion across the gradients of woody 

encroachment (Fig.4.1). The replicates in each site were located on similar lithology, soils, 

topography and slope. To measure soil and vegetation attribute within each grazing regime we 

established three belt-transects (10 m width × 1000 m length) at 300 - 500m apart. Along each 

transect, four (10 × 10 m) plots were established at a 200 m interval along the linear belt 

transect using meter tape, GPS and compass (4 woody encroachment level × 2 grazing regime 

× 4 replicate grazing regimes × 5 plots). Previous studies in the present study area have shown 

that plot sizes < 100 m
2
 were effectively used for sampling shrub dominated vegetation [36]. 

To assess herbaceous species composition, biomass, and diversity inside and outside the 

enclosures, caged subplots of (1m x 1m = 1m
2
) were randomly nested within the larger 100 

m
2
 plots used for woody species. 

4.2.4 Sampling and laboratory analysis 

Vegetation sampling was done at the end of the long and short rainy seasons (end of May and 

mid December, respectively), soil samples were collected at the end of the long rainy season. 

Herbaceous AGB was destructively quantified [37]; grass and forb species rooted within the 

caged 1 m
2
 subplot were harvested to ground level, oven dried (at 60°C for 48 h) and 

weighted using a 0.1 g scale. Four soil core samples at 0 - 20 and 21 - 40 cm depth were 

collected from each corner of the subplots using intact soil core sampler of 6.5 cm diameter 

and using the intact soil core sampling method [38]. Samples of the same depth were mixed 

thoroughly in a large bucket in order to obtain one composite soil sample per depth increment 

per plot [38]. The soil samples to the depth increments excavated in pits were removed from 

the hole and extracted before the core was augered to the next depth increment to minimize 
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compaction of each depth increment. The device also allowed estimating the bulk density of 

each soil depth increment from intact soil core samples [38, 39]. Soil cores were placed in 

plastic lined paper bags and oven dried (70°C) until constant weight [40]. Cores were sieved 

through a 2 mm sieve, and fine soil (< 2 mm), coarse roots (> 2 mm), and gravel /rocks (> 2 

mm) were separated and weighed to the nearest 0.01 g. Coarse herbaceous roots and other 

belowground organic material were separated both visually and by floatation methods from 

soils, rocks, and gravel and oven dried (60°C) to constant weight [39]. The carbon (C) content 

of the above- and belowground vegetation biomass estimated as 47% of the dry mass [41]. 

The fine soil (< 2 mm) fraction was then ground using an analytical mill (IKA
®
, Model A10) 

[39]. A fraction of a soil samples were treated with 0.1 M HCl before analysis to test for 

inorganic carbon. Samples which tested positive for inorganic C were completely digested 

with 0.1M HCl to remove inorganic C [39].  

 Standard analytical procedures of the Ethiopian National Soil Testing Center were 

used for all chemical and physical analyses. SOC was determined using the Walkley–Black 

method [42] and TSN was determined using Kjeldahl [43]. Ammonium and sodium acetate 

extracts were used to determine exchangeable cations (EC) and cation exchange capacity 

(CEC) [44], pH and electric conductivity (EC) were determined using a suspension of 1:5 

soil:water. Particle size analyses were determined using the Hydrometer method [45]. Bulk 

density (g m
-3

) was calculated as the mass of the fine soil (< 2 mm) fraction divided by the 

volume of the entire core to avoid overestimating the mass of the soil when stones and gravels 

were present [46]. Percent SOC and TSN were multiplied by each sample fraction mass to 

obtain total SOC and TSN per core sample [39]: 

 SOC (kg ha
-1

) = Mass < 2mm soil (kg) / Volume of core (cm
3
) * d * cf * C  (1) 

TSN (kg ha
-1

) = Mass < 2mm soil (kg) / Volume of core (cm
3
) * d * cf * N  (2) 

Where d = depth (cm), C = organic carbon concentration, N = total nitrogen concentrationand 

cf is the conversion factor = (kg cm
-3

) * (10,000 cm
2
 m

-2
) * (10,000 m

2
 ha

-1
). 

4.2.5 Statistical analyses 

The influences of grazing, woody encroachment and soil depth and their interactions on SOC 

% and SOC stock, herbaceous root OC content, TSN % and total TSN stock, SOC:TSN ratio, 

and soil bulk density were evaluated using SAS version 9.1 mixed model procedures (Proc 

MIXED). Differences in all response variables were evaluated by treating woody 

encroachment level as main effect, grazing management regime and soil depth was nested 

within woody encroachment level, age of enclosures was considered as random effect. Mean 
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comparisons were made using Tukey’s test (p < 0.05). All values reported are means (± SE). 

Linear regressions were used to determine the relationship between SOC and TSN 

concentration, soil texture, cation exchange capacity (CEC), pH, and soil bulk density. 

4.3 Results 

4.3.1 Carbon stock in the herbaceous vegetation 

Significant differences in herbaceous AGC and root stocks (HRC) were found between open 

and enclosure area with the exception of the LE site which had lower stocks in a comparison 

to the other sites (Table 4.3 and Table 4.4).However, mean herbaceous aboveground -and root 

C stocks did not show a consistent trend of decrease or increases with the increase in the 

levels of woody encroachment. More than 85% of herbaceous root biomass C storage was 

found in the top 20 cm soil depth and its vertical distribution in the 21 - 40 cm soil depths was 

not significantly affected by grazing management and woody encroachment (Table 4.3, Table 

4.4).  

Table. 4.3. Results from analysis of variance of the effects of woody encroachment and grazing regime and soil 

depth on herbaceous root biomass carbon (HRC) and herbaceous aboveground C (HAGC) stocks. 

Variables Sources Num df F p 

HRC  Encroachment  3 2.5 NS 

 Grazing 1 0.2 NS 

 Soil depth 1 34.9 ** 

 Encroachment × depth 3 1.6 NS 

 Encroachment × grazing  3 4.5 * 

 Grazing × depth 1 0.1 NS 

HAGC  Encroachment 3 21 ** 

 Grazing 1 11 ** 

 Encroachment x grazing 3 5 ** 

** highly significant at p < 0.01 

*significant at p < 0.05 

NS not significant at p <0.05 
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Table 4.4. Mean (± SE) herbaceous root C (HRC) and herbaceous aboveground C (HAGC) stocks in enclosures 

and open grazing land across four levels of woody encroachment. Encroachment levels: Low woody 

encroachment site (LE), moderate woody encroachment site (ME), highest woody encroachment site (HE), 

severe woody encroachment site (SE). N, replication of grazing regimes per site. Different lowercase letters 

represent statistical differences determined by the interaction of grazing regime and woody encroachment terms 

in the mixed Model and Tukey’s means comparisons (P < 0.05) 

 

4.3.2 Soil organic carbon and nitrogen 

The mean total soil organic carbon stock (SOC stock) and total soil nitrogen stock (TSN 

stock) in 0 - 40 cm soil depth ranged from 30 ± 2.1 and 5 ± 0.57 Mg ha
-1 

respectively, in the 

open grazing soils at the HE site to 81.0 ± 10.6 and 9.2 ± 1.48 Mg ha
-1

 respectively, in the 

enclosure soils at the LE site (Table 4), with low variances except at LE (Fig. 4.2 A and B).  

 

Fig. 4.2. Means and standard errors by levels of woody encroachment and grazing regime (grey bars = enclosure, 

black bars = open grazing land) for soil organic carbon (A), total soil nitrogen content (B), and soil organic 

carbon to total soil nitrogen ratio (C). Low woody encroachment site (LE), moderate woody encroachment site 

(ME), highest woody encroachment site (HE), severe woody encroachment site (SE). Different lowercase letters 

represent statistical differences determined by woody encroachment by grazing interaction term in the mixed 

model and Tukey’s means comparisons (P < 0.05).  

Encroachment 

level 

Grazing 

regime 

 HRC (Mg ha
-1

) HAGC (Mg 

ha
-1

) 

  N 0 – 20cm 21 – 40cm 0 - 40 cm  

LE Open 4 1.01±0.3 0.04±0.04 1.06±0.4
b
 0.97±0.06

b
 

 Enclosure 4 1.53±0.4 0.08±0.05 1.61±0.4
c
 1.65±0.15

c
 

ME Open 4 0.49±0.1 0.03±0.02 0.52±0.3
a
 0.37±0.03

a
 

 Enclosure 4 0.20±0.2 0±00 0.29±0.7
a 

0.29±0.03
a
 

HE Open 4 0.50±0.5 0±0 0.50±0.3
a
 0.55±0.06

a
 

 Enclosure 4 1.84±0.5 0.12±0.07 1.96±0.4
cd

 0.90±0.06
a
 

SE Open 4 0.47±0.3 0.08±0.08 0.54±0.1
a
 0.03±0.01

d
 

 Enclosure 4 1.11±0.9 0.26±0.13 1.37±0.5
d
 0.17±0.01

a
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Soil OC stock for 0-40 cm had been significantly affected by grazing regime, woody 

encroachment levels and their interactions (Table 4.4). Total SN stocks for 0-40cm had 

significantly affected by woody encroachment levels and encroachment level by grazing 

regime interaction (Table 4.4), suggesting that increasing the level of woody encroachment 

affected the response of SOC and TSN stocks to grazing regime. The LE site tended to have 

higher SOC and TSN stock in the enclosures while the mean SOC and TSN stocks in the 

enclosure at ME, SE, HE was statistically the same as the adjacent open grazing area (Table 

4.5, Fig. 4.2) 

Mean SOC and TSN stocks tended to be higher in the 0-20 cm soil layer, 

independently of the level of woody encroachment and grazing regime (Table 4.5). The 0 – 20 

cm soil layer tended to have twice as much SOC and TSN stock in the enclosures at low 

woody encroachment level while the mean SOC and TSN stocks in the 0-20cm at all other 

treatment was not statistically different from the 21-40cm soil layer(Table 4.5). 

SOC:TSN ratio had been significantly affected by woody encroachment levels, soil 

depth and interaction of woody encroachment and grazing regime(Table 4.4) with enclosures 

showing both higher and lower ratios at the LE and ME sites but remaining relatively 

unchanged at severely SE and HE sites, despite an increase in percent SOC and percent TSN 

concentrations (Table 4.5). 

Table 4.4.Results from analysis of variance of the effects of woody encroachment and grazing regime and soil 

depth on soil bulk density (BD), percent soil organic carbon (SOC %), soil organic carbon (SOC) stocks, percent 

total soil nitrogen (TSN %), total soil nitrogen (TSN) stock. 

Variables Sources Num df F p 

SOC (%) Encroachment 3 29 ** 

 

Grazing 1 2 ** 

 

Depth 1 43 ** 

 

Encroachment x depth 3 0,8 NS 

 

Encroachment x grazing 3 6 * 

 

Grazing x depth 
3 1 

NS 

SOC (Mg ha
-1

) Encroachment 3 9 ** 

 

Grazing 1 9 ** 

 

Depth 1 41 ** 

 

Encroachment x depth 3 0.2 NS 

 

Encroachment x grazing 3 4 * 

 

Grazing x depth 
3 0.1 

NS 

TSN (%) Encroachment 3 2 ** 

 

Grazing 1 0.1 NS 

 

Depth 1 45 ** 

 

Encroachment x depth 3 4 * 

 

Encroachment x grazing 3 0.4 NS 

 

Grazing x depth 
3 0.1 

NS 
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TSN (Mg ha
-1

) Encroachment 3 11 
 

** 

 

Grazing 1 0.5 NS 

 

Depth 1 36 ** 

 

Encroachment x depth 3 4 * 

 

Encroachment x grazing 3 0.7 NS 

 

Grazing x depth 
3 0.2 

NS 

SOC:TSN Encroachment 3 5 ** 

 

Grazing 1 2 * 

 

Depth 1 4 ** 

 

Encroachment x depth 3 2 * 

 

Encroachment x grazing 3 3 * 

 

Grazing x depth 
3 0.4 

NS 

Soil bulk density Encroachment 3 46 ** 

 

Grazing 1 22 ** 

 

Depth 1 4 * 

 

Encroachment x depth 3 04 NS 

 

Encroachment x grazing 3 17 ** 

 

Grazing x depth 
1 0.7 NS 

** highly significant at p < 0.01 

*significant at p < 0.05 

NS not significant at p = 0.05 
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Table 4.5. Mean (± SE) soil bulk density (BD), percent soil organic carbon (SOC %), soil organic carbon (SOC) stocks, percent total soil nitrogen (TSN %), total soil nitrogen 

(TSN) stock for two soil depths in enclosures and open grazing land across four levels of woody encroachment (for characteristics see also Table 1). Encroachment levels: Low 

woody encroachment site (LE), moderate woody encroachment site (ME), highest woody encroachment site (HE), severe woody encroachment site (SE). N, replication of 

grazing regimes per site. Different lowercase letters represent statistical differences determined by the grazing regime and woody encroachment interaction term in the mixed 

Model and Tukey’s means comparisons (P < 0.05) 

Encroachment level Grazing regime Depth 

(cm) 

N BD 

(g cm
-3

) 

TSN 

(%) 

SOC 

(%) 

SOC:TN TSN 

(Mg ha
-1

) 

SOC 

(Mg ha
-1

) 

LE Open 0 - 20 4 1.3±0.10 0.13±0.01 1.00±0.10 7.6±0.60 3.9±0.27 29.5±2.98 

  21 - 40 4 1.5±0.08 0.13±0.01 0.90±0.09 6.2±0.60 3.5±0.21 24.9±2.53 

  Total      7.4±0.47
a 

54.4±6.51
a 

 Enclosure 0 - 20 4 1.0±0.04 0.21±0.03 1.85±0.24 9.8±1.50 6.1±1.05 55.6±8.18 

  21 - 40 4 1.1±0.05 0.11±0.02 0.94±0.10 9.1±1.40 3.1±0.43 25.4±2.42 

  Total      9.2±1.48
b 

81.0±12.60
b 

ME Open 0 - 20 4 1.3±0.07 0.13±0.01 0.97±0.09 7.5±0.63 3.2±0.36 23.1±2,20 

  21 - 40 4 1.3±0.05 0.09±0.01 0.72±0.11 7.9±0.72 2.2±0.23 17.3±2.74 

  Total      5.4±0.59
c 

40.4±3.94
c 

 Enclosure 0 - 20 4 1.3±0.05 0.23±0.01 1.2±0.07 5.3±0.30 5.0±0.33 26.1±1.45 

  21 - 40 4 1.4±0.04 0.15±0.01 0.77±0.02 5.4±0.37 3.3±0.23 17.2±0.69 

  Total      8.3±0.56
ab 

43.3±3.14
c 

HE Open 0 - 20 4 1.2±0.03 0.13±0.01 0.73±0.05 6.0±0.40 3.1±0.39 17.3±1,22 

  21 - 40 4 1.4±0.04 0.08±0.01 0.48±0.03 6.3±0.32 1.2±0.17 12.5±0.93 

  Total      4.8±0.57
c 

29.8±3.70
c 

 Enclosure 0 - 20 4 1.3±0.05 0.13±0.02 0.83±0.11 6.48±0.46 3.0±0.29 19.6±2.21 

  21 - 40 4 1.1±0.06 0.07±0.01 0.45±0.04 6.82±056 2.0±0.19 11.1±1,36 

  Total      5.1±0.48
c 

30.7±4.90
c 

SE Open 0 - 20  1.7±0.04 0.12±0.02 0.70±0.11 6.0±0.36 3.5±0.55 20.9±3.15 

  21 - 40  1.5±0.04 0.08±0.01 0.47±0.05 5.8±0.24 2.3±0.34 14.1±1.27 

  Total      5.9±0.88
c 

35.0±4.42
c 

 Enclosure 0 - 20  1.6±0.03 0.12±0.02 0.70±0.09 6.5±0.64 3.6±0.50 21.4±2.49 
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  21 - 40  1.8±0.05 0.07±0.01 0.46±0.06 7.6±0.72 2.4±0.23 17.0±2,77 

  Total      6.0±0.74
c 

38.3±5.26
c 
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4.3.3 Soil bulk density 

Significant differences in soil bulk density was not found between open and enclosure area 

with the exception of the LE site which had lower soil bulk density in the enclosures 

compared to openly grazed area (Table 4.4 and Table 4.5).The bulk density tended to be 

lower in 0 - 20 than in 21 - 40 cm soil depths in less woody encroached sites (LE and ME 

sites), while it was not consistent for severely encroached sites (SE and HE) sites (Table 4.5). 

The bulk density in the 0 - 20 cm soil ranged from 1.0 ± 0.04 gm
-3

 (in LE, enclosure) to about 

70% higher values in the enclosure and open grazing land of SE site (Table 4). The deeper 

soil (21 - 40 cm) bulk density ranged from 1.1 ± 0.05 gm
-3

 (in LE, enclosure) to 1.8 ± 0.05 

gm
-3

 (in SE, enclosure). 

4.3.4 Factors related to SOC retention 

Percent SOC was linked to the %TSN (0 - 20 cm soil depth) for all study areas (Fig 4.4A). 

Soil OC concentration (% SOC) were significantly but weakly negatively related to % soil 

sand contents and bulk density (Fig. 4.4 C and D). 
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Fig. 4.4. Regression of soilorganic C concentration (%SOC) against total soil 

nitrogen(%TSN,A), cation exchange capacity (CEC; B), soil bulk density (C), sand fraction 

(% sand; E) and soil pH (F) within a depth of 0 - 20 cm. r
2
 and P values are given for each 

plate.  

4.4 Discussion 

4.4.1 Effects of grazing on SOC and TSN stocks 

Our results showed that the response of herbaceous above- and belowground biomass C 

stocks to grazing was strongly influenced by the woody encroachment site characteristics. The 

pattern of the herbaceous above- and belowground biomass C stocks response to grazing in 

most of the woody encroachment sites (e.g., LE, HE and SEsites) agree with a herbaceous 

biomass decrease observed in other semi-arid environments [9, 38]. Angassa and Oba, (2010) 

reported an increase of about 64% in mean herbaceous AGB in the enclosure compared to 

surrounding open grazing lands after 15 - 25 years of livestock exclusion in Borana [36]. A 

more than 200% increase in herbaceous AGB within the enclosure was also reported from 5 - 

15 years enclosures in northern Ethiopian rangelands [47]. Bagchie and Ritchie (2010) 

reported a 32 – 33% increase in AGC stocks and a 21 – 63% increase in root biomass C in 

enclosures compared to open grazing land in the Trans-Himalayas pastoral system [48]. 

Schuman et al.(1999) observed a 20 – 52% and 7–16% increase of C and 15 – 30% and 18 – 

52% increase of N in AGB and roots (0 – 60 cm depth), respectively, after 12 years of 

enclosure on a native mixed grassland in Wyoming, USA [49].  

In our study, however, we found that the effects of grazing on herbaceous above- and 

belowground biomass C stock were significantly influenced by woody encroachment. In low 

encroached site, grazing influences on the herbaceous above- and belowground biomass C 

stocks were clearly visible. However, the lack of significant grazing impacts on herbaceous 

above- and belowground biomass C stocks at moderate woody encroachment site (LE) may 

be associated with the relatively higher woody density and canopy cover in the enclosure 

compared to adjacent open grazing land at this site (Table 3.2) that indicates woody 

encroachment could have a significant effect on the expression of grazing in the dynamics of 

herbaceous above- and belowground biomass C stocks. These results are consistent with other 

studies that have shown the significant decrease of the understory herbaceous vegetation 

productivity with an increase in woody density and cover [21, 49]. This decrease may be 

linked to the competitive advantage of encroacher woody species for soil moisture through 

their deep root systems and rainfall interception by shrub/tree canopies which could reduce 
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available soil moisture in arid and semi-arid environments where rain falls mostly occurs as 

small events, a response that may increase competitive effects under tree/shrub canopies [50]. 

Generally, though influenced by woody encroachment, the greater accumulations of 

herbaceous biomass C in most of our enclosures studied suggest that there is potential to store 

more C in the rangelands by reducing grazing intensity.  

Our result demonstrated that the response of SOC and TSN to grazing interacted 

strongly with woody encroachment sites suggesting increasing the level of woody 

encroachment and other related site variation (e.g., soil texture) may affect the response of 

SOC and TSN stocks to grazing. Soil OC and TSN stocks were significantly higher in the 

enclosures than in the open grazed in low woody encroachment level on sandy clay soils, but 

the difference in SOC and TSN was statistically the same in moderate to highest 

encroachment levels on sandy loam soils. The increase may be related to increased vegetation 

(woody and herbaceous) production, litter quality and nutrient cycling [52], and the ability of 

the soil to retain the extra N after exclusion of herbivory [53]. Higher grazing intensity is 

generally thought to decrease soil C and N by direct removal of AGB, i.e., reduction of 

potential CO2 fixation in photosynthetic tissue and reduction in belowground C inputs through 

lower root production and higher root litter turnover [9]. Our result is in agreement with 

Mekuria (2013) who reported increased soil organic matter (SOM) and TSN after grazing 

exclusion for 5-10 years in northern Ethiopia [54]. Similarly, studies from Central Asia, found 

a significant decrease of SOC and TSN due to intensive grazing in semi-arid environments [7, 

55]. Cumulative root biomass not only increases soil C inputs but also N retention within the 

soil [57] because both organic N and C changes are closely linked in the SOM [13]. Hence, 

the allocation of N in root biomass and tight cycling within the soil has been suggested as a 

mechanism that can reduce N loss [57].The higher N concentration and TSN stocks in our 

enclosures soils might be a result of lower N losses via volatilisation of ammonia and nitrate 

through animal urine and dung patches and, thereby, an enhanced in N availability for SOM 

formation and storage [53]. Higher N losses will decrease N concentration in the soil and limit 

SOM formation and SOC stroge in the open grazed system [54].  

 High SOC and TSN stocks in the enclosures can also potentially improve soil physical 

properties such as soil structure and bulk density, which in turn may increase water infiltration 

rates into the soil [54, 58]. In our study, soil bulk density was lower in the enclosures 

compared to the open grazing land and the difference was particularly high at LE site, which 

may be linked to the fine, sandy clay textured soils of this site. The effect of grazing intensity 

on bulk density is especially remarkable in wet and fine textured soils [14] as it is susceptible 
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to soil compaction caused by trampling through livestock [14, 58]. Soil compaction 

potentially can reduce water infiltration and increase runoff which often resulted in decreasing 

water availability for plant growth. In addition this can lead to loss of fertile top soil and 

nutrients especially under heavy grazing conditions [14, 54]. As a result this can reduce plant 

productivity and SOC and TSN storage as observed in most of our open grazing lands. 

Increased soil erosion due to a decrease in vegetation cover associated with continuous, heavy 

grazing was reported as the main causes for the loss of soil OM in many parts of African and 

Central Asian grasslands [7, 14, 55]. The lack of significant differences in SOC and TSN 

between the grazing regimes at severely encroached sites (e.g., SE and HE sites) may be the 

result of both labile and minerals associated OM loss in the top soil due to livestock trampling 

induced soil erosion, which increase the negative effects of heavy grazing on herbaceous 

productivity and C and N inputs [59]. Our findings suggest that intensified grazing decreases 

SOC and TSN stocks, and the losses from the top soil layer may not effectively be restored by 

short period (< 15 years) grazing exclusion at severely woody encroached sites, particularly 

on coarse, sandy loam textured soils, which are less resistant to rainfall (e.g., at HE and SE 

sites).  

4.4.2 Effect of woody encroachment on SOC and TSN stocks 

On average, our SOC stocks of about 44 Mg ha
-1 

fall within the range reported by earlier 

studies for tropical woodland and savanna ecosystems, i.e., 20 - 80 Mg ha
-1 

[60, 61].Our 

results demonstrated that SOC and TSN stocks have declined with the increase of woody 

encroachment level. Several qualitative and quantitative indicator data that we collected at HE 

and SE sites included (i) high bare soil cover, i.e., 40% and 57%, respectively, (ii) low 

herbaceous (grasses and herbs) ground cover, i.e., 60 % and 40 %, respectively, (iii) exposed 

tree roots (pers. obs.), (iv) a similar SOC and TSN stocks-soil depth relationship of upper and 

lower soil layers, and (v) similar soil bulk density within the top soil (< 20 cm soil) of HE and 

SE sites with the sub soils (> 20 cm soil ) at LE and ME sites (Table 4.5), indicate the likely 

loss of organic matter with the top soils by erosion at the severely shrub encroached sites 

suggesting woody encroachment management is as important as that of grazing to restore 

herbaceous aboveground -and root C, SOC and TSN stocks in this semiarid rangelands. 

Previous study from the same region had shown a 30 - 61% lower OM in the top 10 cm soil 

layer in woody encroached sites compared to open grasslands [62]. The finding also concurs 

with Guo and Gifford (2002) who showed SOC stock losses when grassland was converted to 

plantations in New Zealand rangeland systems [67]. Jackson et al., (2002) also reported a 

decrease in SOC stocks in semiarid grasslands experiencing woody encroachment and 
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associated the reduction in SOC stocks to the incorporation of soil N to aboveground woody 

plant parts [25]. Hudak et al., (2003) linked the reduction of SOC and TSN stocks at severely 

woody encroached site in South African dry savanna to a reduction of herbaceous root 

production caused by woody encroachment [63].  Woody plant species once established often 

outcompete herbaceous species, reduce the herbaceous above- and belowground biomass [51] 

that might further expose top soil to livestock trampling and rain. Schlesinger et al. (1990) 

similarly showed that the bare inter-space between woody plants experiences higher 

temperatures leading to higher evapotranspiration, resulted  to a slow organic N incorporation, 

ammonia volatilization and increased soil erosion (6 4).  

However, several studies have shown that many other biotic and abiotic factors can 

determine SOC and TSN stocks (Jobbagy and Jackson, 2000). Soil properties can influence 

SOC concentrations and the occurrence of woody encroachment itself (Sankaran et al 2005, 

Archer et al., 2001). For example, Archer et al. (2001) indicated that soil texture strongly 

influences where Prosopis can establish in a southern Texas savanna rangeland [68]. 

Similarly Vågen and Winowiecki, (2013) has shown inherent high soil sand fraction strongly 

limits SOC stocks in East African savanna and woodlands, independently of climatic factors 

and vegetation type differences [60]. Similarly, our study suggested that soil texture could 

played an important role for the low SOC and TSN stocks observed in the heavily encroached 

sites as the sand content independently explained 37% of the variations in % SOC and % TSN  

across the sites. High soil sand content often associated with less adsorption and stabilization 

of organic matter [63].In contrast, soils with higher clay content form tight aggregates that 

protect SOC from microbes [64]. The historical land use pattern and disturbance, including 

soil erosion, condition and productivity of the sites before the occurrence of woody 

encroachment may also influence the variation in SOC and TSN stocks across the sites [69]. 

Hence, the initial causes of top soil losses due to erosion in severely woody encroached sites 

may stem from long term overgrazing and livestock trampling rather than woody 

encroachment given the common notion that the latter has been considered a symptom of 

grazing pressure induced rangeland degradation [28].  

Further, semi-arid ecosystems generally have extreme rainfall events that can be highly 

erosive [61]. Therefore, the low SOC and TSN in the severely shrub encroached sites of our 

study area might be linked to a high prevalence of soil erosion caused by confounding effects 

of long term grazing, i.e., livestock trampling in addition to the impacts of high shrub cover 

on understory herbaceous vegetation productivity. Lack of sufficient replications in our 

experimental design limits us to isolate the role of woody encroachment for SOC and TSN 
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storage decline at heavily encroached sites in the presence of uncontrolled these many 

potential factors (e.,g., soil texture) that could determine the SOC stocks in these semiarid 

rangelands. On the basis of our data presented here SOC and TSN stocks tended to decrease 

as result of the expansion of woody encroachment into semiarid savanna ecosystem. 

However, as savanna soils, vegetation structure and climate are highly variable and the SOC 

and TSN storage can be determine by these factors further field studies will be needed to 

evaluate the large scale net effects of woody plants encroachment and site characteristics on 

SOC storage in the Borana rangeland ecosystem.  

4.5 Conclusion 

The results show that SOC and TSN stocks were partly affected by woody encroachment and 

grazing management but more importantly by inherent soil characteristic such as sand 

content. On the sites of sandy loam texture soils, maintaining high woody cover may not 

increase SOC and TSN stocks, or reduce their loss. Hence improving the herbaceous layer 

cover through a reduction in livestock grazing and woody encroachment restriction are the 

key strategies to maintain SOC and TSN stocks or reduce their losses and, thereby, for climate 

change mitigation in semi-arid rangelands.  
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5 General Discussion 

5.1 Trends of expansion of woody encroachment 

Our multi-temporal satellite imagery analysis and quantitative vegetation studies 

demonstrated extensive expansion of woody encroachment in the Borana rangelands over the 

last four decades following fire suppression. Low woody encroached areas (shrub savanna 

and tree savanna) declined from 45% to 9%, while heavily woody encroached areas (bushland 

thickets and bushed savanna) increased from 22% to 61% in the years from 1976 to 2012 

(chapter 3, fig. 3.1 and Table 3.3). This result suggests a continuous trend of new woody 

encroachment into the existing tree/shrub savanna and a thickening of the existing 

woodlands/shrublands (Table 3.3). A similar trend was shown by Mesele et al. (2006) for the 

Yabello District of Borana for the period between 1973 and 2003; here, the total grassland 

cover decreased by 86% while bushland and bushed grassland increased by 46% and 48% 

respectively. Our research area represented an example of the trend of vegetation cover 

changes in many savanna ecosystems, mainly due to suppression of fire from the system (see 

Angassa and Oba, 2008; Roques et al., 2001). Though fire was suppressed by the government 

policy around the same time period across the entire study area, our study indicates that the 

woody species structure across the landscape are in different stages and varied strongly (see 

chapter 3), which implies a nonlinear pattern of woody encroachment across the landscape. 

Variations in topo-edaphic factors (see Venter and Govender, 2012), and impacts through 

herbivores, and human utilization of woody plants across the landscape could have 

contributed to the nonlinear pattern of these changes(see also Roques et al., 2001; Augustine 

and Mcnaughton, 2004; Wessels et al., 2011).  The rate and pattern of vegetation dynamics in 

the dry savanna ecosystem could also be determined by several other ecological processes, 

including episodic periods of drought or favorable precipitation, altered fire regimes, and 

severe soil erosion (see Westoby et al., 1989).
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Fig. 5.1. Land cover in Yabello district, Borana rangelands, in 1976 and 2012  
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Floristically, the four woody encroachment levels studied are typical of the broader 

vegetation types of the Borana semi-arid savannas and woodlands, each with plant community 

compositions differing largely on the basis of topo-edaphic gradients (Coppock 1994, chapter 

3). However, several changes were evident along the gradient of increasing levels of woody 

encroachment. Density, height of the canopy and canopy area cover of large woody plants (> 

6 m height class) increased with the increase in woody encroachment level/stage (chapter 3). 

However, total woody plant density and the density of regenerative woody plants (< 1 m 

height class) increased in a curvilinear fashion along the gradients of woody encroachment 

levels. Higher total woody plant density and a greater proportion of woody plants in small 

size classes (<1 m height) were found in the moderate and highly woody encroached sites 

(chapter 3, Table 3.6 and Fig 3.4). The greater proportion of regenerative woody plant (< 1 m) 

density shown in recent and low encroached sites suggests an ongoing active expansion of 

woody encroachment into relatively open grasslands, while a greater proportion of old and 

larger woody vegetation without many seedlings in the highest level of woody encroachment 

site suggests that a woody vegetation climax state might have been reached. Given the 

complete suppression of fire in the Borana rangelands, these woody encroachment trends are 

likely to continue, thus the encroaching woody species, whether occurring in isolated patches 

or as extensive shrublands/woodlands, can cause an irreversible state transition from historical 

savanna grasses dominance to an alternative, but stable, woody vegetation state ( chapter 3 

see also Briske et al., 2005). On the contrary, though further information on woody species 

soil seed bank still required, low recruitment as shown by the low regenerative woody plants 

(< 1 m height woody plants) at severely encroached site could gradually lead to an open 

woodland as larger trees die off over time due to “self thinning” (chapter 3, see also Belay and 

Moe, 2012; Wiegand et al., 2006). 
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a) Grassy  state (cleared of shrubs)    b) Woody state  

Fig. 5. 2. A shift in a vegetation state from open savanna state (a) to woody state (b) (Picture taken from 

the study sites HasenYusuf, 2011) 

 

5.2 Allometric functions 

Biomass estimates of single species were successfully derived and the performance of the 

allometric models used depended on the species and biomass components to be estimated (see 

chapter 2). The allometric models were highly accurate for larger tree species such as A. 

mellifera, A. bussei, and A. etabaica (Table 2.2). The allometric models we present for 

predicting total AGB in stem and branches of different species here rely on the combination 

of different predictor variable/s (see chapter 2). The models indicated that the most important 

single or set of predictor variables were represented by be stem basal circumference for tall 

shrubs with a more or less simple canopy structure (see chapter 2). In contrast, pairs of 

canopy volume and stem basal circumferences were more reliable for predictions of tall 

shrubs with closed and umbrella- like canopy structures (see chapter 2). We also showed that, 

even if canopy volume only is used as a predictor variable, biomass can still be well predicted 

for shrubs whose growth form comprises discrete canopy clumps with multiple stems (e.g., A. 

oerfota, chapter 2). This concurs with observations by (Hofstad, 2005) that for shrubby 

woody plant species, a combination of stem and canopy related variables could improve the 

accuracy of AGB predictions substantially compared to diameter and height measures alone 

that have traditionally been used in the wet and humid forest ecosystems (Henry et al., 2011, 

see chapter 1).The indicators of the goodness of fit of the species-specific models such as r
2, 

p, 

MSE, and cv have shown the strong relationship between total tree/shrub or components dry 

biomass and selected dendrometric variable or variables. The accuracy of the woody AGB 

estimate is vastly enhanced when a unique set of equations locally derived for individual 

species is used (see also Henry et al., 2011). Similarly, Hofstad (2005) and Tietema (1993) 
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recommended that species-specific allometric equations be used for the dominant species, and 

a general summary equation for the less abundant species. The low comparability of our 

allometric equation results with others in different ecoregions within African savanna for the 

same species (chapter 2, see also Henry et al., 2011) questions the general applicability of a 

single equation across different ecoregions. However, rapid assessment of tree/shrub 

aboveground biomass could be possible if a single equation can be applicable for a group of 

species or functional types of closely related shapes, but can led to significant compromises of 

the biomass prediction accuracy as shown by lower models goodness of fit indicators. For 

example, two separate equations for shrubs and larger trees can be used for general estimates 

of standing AGB for a given ecoregion. Generally, the selection of appropriate dendrometic 

predictor variables (CV vs, stem or height), and species- specific or generalized (shape 

dependent) tree/shrub allometric fuctions depend on the purpose of the study and the accuracy 

level required.  

5.3 Woody encroachment and aboveground biomass C stock 

Herbaceous biomass C stocks are maximized at the lowest levels of woody 

encroachment with the study sites in this study holding 1.3, 0.5, 0.7, and 0.2 Mg C ha
-1

 

herbaceous AGC stocks at LE, ME, HE, and SE sites respectively. The decrease in 

herbaceous biomass with increases in the levels of woody encroachments shows non-linear 

patern. This non-linear relationship suggests that species-specific traits (e.g. canopy shape, 

plant height, and rooting patern) in the plant community across the woody encroachment 

levels might have influenced the outcome of tree density and/or tree canopy cover and 

herbaceous biomass C stock relationships.The lower herbaceous bimass C stock at ME 

compared to HE levels might be linked to variation in woody species compositon and 

associated species traits between the sites (see chapter 3, Table3.4).The average 

herbaceousAGC stocks across sites (0.7 Mg C stock ha
-1 

≈ 1.5 Mg dry mass ha
-1

) was within 

the range of 1.5 - 2.7 Mg dry mass ha
-1 

reported by Cossins and Upton (1987), but lower than 

5 Mg dry matter ha
-1

 reported byAngassa and Oba (2010) from Borana rangeland system. 

However, our herbaceous biomass data provide only a snapshot of two seasons during a rather 

dry year and, hence, comparisons with other studies have to be taken with care. In addition, 

the high and severely woody encroached sites which significantly lowered our mean 

herbaceous biomass estimations of the rangelands were not included byAngassaand Oba 

(2010). Adding woody plants AGC stocks at each site rapidly increases total aboveground 

biomass C stocksof the ecosystem and shifts the balance of biomass C stocks contribution 

from herbaceous to woody plants. The estimatedAGC stocks in the woody components of the 
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ecosystem at this study site increased by more than 300% from low woody encroachment 

levels to the highest encroachment levels (see chapter 3). This emphasizes that woody plants 

expansion into the savanna grasslands can dramatically increase the amount of C stored on a 

site. The significance of additional C stocks in woody species is further emphasized by the 

low understory (herbaceous species) C stock values contributing only 12% to the total AGC 

stock of this ecosystem. Similar trends of woody AGC stock increases were reported when 

open savanna or grasslands were encroached by woody plants in other ecosystems (see also 

Lett et al., 2004; Asner et al., 2003, chapter 3). 

 The AGC stock of the woody vegetation stand of this study area has shown general 

increasing patterns with an increase in the encroachment levels, but was not linearly related to 

total woody plant density and/or canopy cover. For example, at the SE site, AGC stock was 

more than double that of theME site, though the tree/shrub density and cover of SE was lower 

or comparable to ME level indicating clear influence of species composition and traits, and 

size structureof thevegetation community (see chapter 3).The latter is often governed by the 

genetic make up of each species in the community and environmental factors. This finding is 

in agreement with Litton et al. (2006) that the total biomass of the vegetation stand was 

largely determined by larger trees (see chapter 2). This may suggest that keeping a low 

density of larger trees species of high C storing potential like Acacia tortilis, Acacia 

senegal,Acacia etabaica, Acacia mellifera, Acacia bussei and Acacia reficiens (see chapter 

3)in the landscape can increase the amount of biomass and C stored in the trees and 

herbaceous vegetation; thereby, also livestock production will not greatly be compromised. 

However, the question how much woody plants density/cover is enough is difficult to predict 

as the influence of woody plants on understory herbaceous production and total ecosystem C 

stock including woody C pool is not linear. It is rather largely determined by functional traits 

such as plant height, canopy height, canopy shape, rooting pattern, allelopathy, and wood 

density of each woody plant species in the community. Management of woody species with 

afacilitative role on understory herbaceous production and overall ecosystem C storage in this 

ecosystem requires further work on evaluation of morphological, phonological, and 

ecophysiological traits of encroaching woody species in the plant community. Further, more 

information on their impacts on ecosystem structural (e.g., herbaceous diversity) and 

functional processes (e.,g., biomass production, N, C, and water cycling) needs to be gathered 

additionally. 

The plot level woody cover estimates in this study suggested that rangelands sites 

reached cover values of > 55% (see Chapter 3) which is slightly above the 50% woody cover 



126 
 

in 2004 reported by Dalle, et al. (2006) for Borana rangelands. The landscape scale analysis 

using satellite imageryhas shown that heavily encroached areas (bushland thickets and bushed 

savanna) increased from 22% to 61% in the years from 1976 to 2012 (see chapter 3). If the 

woody encroachment expansion in the Borana rangelands continues at their present ratethe 

remaining open savanna would likely be totally covered with woody vegetation within a few 

decades. The woody canopy coverranged from 30 to 70 % in the study sites, and the 

corresponding C stocks ranged from 2 - 9 Mgha
-1

respectively (see chapter 3).There are 

relatively few data from eastern Africa savanna vegetation types against which we can 

compare our AGC stocks. However, our lowest mean estimate of2.3 Mg AGC stock ha
-1

 at 

low woody encroachment with 30% woody cover is higher than the average value of 1 Mg 

AGC stock ha
-1

 reported in a Sudanese Acacia woodland savanna region (Allan et al., 2013). 

The authors have linked this low value to rapidly declining woody cover in their region. 

Though larger scale studies will berequired for the Borana rangeland systems, our results thus 

far indicate that the high woody cover increases observed was probably due to a fire 

suppression that has resulted in very high woody AGC stocksvalues compared to other East 

African savannas. Therefore,the Borana savanna case may highlight the importance 

ofmanaging woody plants; by avoiding fire and tree/shrub clearing a significant increase in 

East African savanna total ecosystem Cstocks, mainly through the amount of woody biomass, 

is expected. 

5.4 Woody encroachment, soil organic carbon and total soil nitrogen 

In contrast to the AGC stocks, the value of SOC stocks was lower in the heavily encroached 

sites compared to the low encroachment site, but the difference among woody encroachment 

levels was not statistically significant on similar soil texture(see chapter 4). ). The result also 

showed that high SOC and TSN stocks were found at high herbaceous cover (yield) and vice 

versa. However, the relationship between herbaceous biomass yield and SOC and TSN 

seemed additionally influenced by soil characteristics. Several studies also showed that 

though biomass accumulation in the soil through plant litter or root is the first step to increase 

SOC and TSN stocks in the soil the long-term SOC sequestration can only be achieved when 

the organic molecules from the biomass form tight associations with mineral soil particles 

(Jobbagy and Jackson, 2000). Clay particles have larger space and greater affinity to form 

such tight associations as compared to sand particles (Jobbagy and Jackson, 2000). 

Therefore,the higher SOC and TSN obtained at low encroachment on clay loam soil could be 

a function of both high accumulation of herbaceous biomass and greater clay particles. A 

trend of reduced soil organic matter with a shift of grassland/savanna vegetation to woodland 
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vegetation was reported from the same region by Mesele et al. (2006) and in agreement with 

Guo and Gifford (2002) who showed SOC losses when grassland was converted to plantations 

in New Zealand rangeland systems. Jackson et al. (2002) also reported a decrease in SOC in 

semiarid grasslands experiencing woody encroachment and associated the reduction in SOC 

to the incorporation of soil N to aboveground woody plant parts. Hudak et al. (2003) linked 

the reduction of SOC and TSN at severely woody encroached site in South African dry 

savanna to a reduction of herbaceous root production caused by woody encroachment. 

Schlesinger et al. (1990) similarly showed that the bare inter-space between shrubs 

experiences higher temperatures and evapo-transpiration, leading to a slow organic N 

incorporation, ammonia volatilization and increased soil erosion.  

However, several studies have shown that many other biotic and abiotic factors can 

determine SOC stocks (Jobbagy and Jackson, 2000). Soil properties can influence SOC 

concentrations and the occurrence of woody encroachment itself (Sankaran et al., 2005, 

Archer et al., 2001). For example, Archer et al. (2001) indicated that soil texture strongly 

influences where Prosopis can establish in a southern Texas savanna rangeland. Similarly 

Vågen and Winowiecki  (2013) has shown inherent high soil sand fraction strongly limits 

SOC stocks in East African savanna and woodlands, independently of climatic factors and 

vegetation type differences (see chapter 4). The historical land use pattern and disturbance, 

including soil erosion, condition and productivity of the sites before the occurrence of woody 

encroachment may also influence the variation in SOC and TSN stocks across the sites (Burke 

et al., 1989). Lack of sufficient replications in our experimental design limits us to isolate the 

role of woody encroachment for SOC and TSN storage decline at heavily encroached sites in 

the presence of uncontrolled many potential factors (e.,g., soil texture) that could determine 

the SOC stocks in these semiarid rangelands 

The estimated mean SOC stocks of about 44 Mg ha
-1 

in the current study (see chapter 

4) falls within the 20 - 80 Mg ha
-1 

range reported by earlier studies for east African woodland 

and savanna ecosystems (see Alam et al., 2013; Vågen and Winowiecki, 2013). The 

understanding of belowground C dynamics due to woody encroachment is also important 

(Jobaggy and Jackson, 2000; Conant and Paustian, 2002) as soils can store about three times 

more C than the vegetation AGC stocks in grassland/savanna ecosystems (Lal, 2004). On the 

basis of the data on AGC and SOC analysis presented here, SOC stocks tended to decrease 

while AGC stocks increases as result of the expansion of woody encroachment into semiarid 

savanna ecosystem. However, as savanna soils and vegetation compositions and structure are 

highly variable and the SOC storage can be determined by these factors further field studies 
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will be needed to evaluate the large scale net effects of woody plants encroachment and site 

characteristics on SOC storage in the Borana rangeland ecosystem.  

5.5 Grazing, vegetation structure and aboveground biomass carbon 

At all levels of woody encroachment sites the presence of grazers and browsers in the open 

grazing land led to a significant reduction of total woody plant density, particularly of plants < 

1m in height (see chapter 3). The increased density of total woody plants in enclosures was 

shown in the previous studies (see Wessels et al., 2011; Angassa and Oba, 2010). As reported 

in Chapter 3 protection from browsing and grazing led to increased woody plant recruitment 

in the enclosures, i.e., the areas protected from herbivory in agreement with the finding of 

Angassa and Oba (2010) and Wessels et al. (2011). Medium-sized browsers such as goats can 

severely limit woody species recruitment through seedling predation (see Moe et al., 2009; 

Allred et al., 2012). In this thesis it was also shown that herbivory is important to limit the 

expansion of woody encroachment in the semiarid savanna rangelands.  

The impact of long-term livestock exclusion during the plant growing season on C stocks 

was only clearly visible for herbaceous AGC stocks. Enclosure at low encroachment sites 

increased herbaceous AGC stocksby 0.7 Mg ha
-1

. Although grazing is less likely at severe 

encroachment site with a woody cover exceeding 60 % and herbaceous cover is less than 25% 

(see chapter 4, Table 4.2). Enclosure at severe encroachment site increasedonly 0.2 Mg ha
-

1
herbaceous AGC stocks, nearly five times lower than that gainedby enclosureat low 

encroached site. In general, an increase of herbaceous AGC stock by enclosure at our severely 

encroached site was insignificant and suggested the contribution of herbaceous biomass C to 

the whole rangeland ecosystem C stock was overridden by the gains in woody plants biomass 

C. Further, the response of herbaceous AGC stocks to grazing was also strongly influenced by 

the woody encroachment characteristics includingwoody density, canopy cover, species 

composition and their specific traits and other site characteristics (see chapter 3). These 

results are consistent with other studies that showed a significant decrease of the herbaceous 

biomass yield with persistent heavy grazing in the communal rangelands (Angassa and Oba, 

2010; Yayneshet et al., 2009), and with an increase in woody encroachment (Oba et al, 2000).  

5.6 Grazing, herbaceous root biomass carbon, soil organic carbon and total soil 

nitrogen 

In most of woody encroachment levels, our data showed that long-term enclosure resulted in 

an increase in herbaceous root C stocks (see chapter 4). This pattern of lower herbaceous root  

C stocks under grazing agrees with observations in other semi-arid grasslands (400 to 850 mm 
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of mean annual precipitation) (Reeder et al., 2004, Qiu et al., 2012). However, in our savanna 

ecosystem, unlike in other semiarid grassland systems, the increase in herbaceous root due to 

enclosure might have been limited by woody encroachment (see Hudak, et al., 2003; Scholes 

and Archer, 1997).  

Long-term enclosure at the low encroachment site increased SOC and TSN stocks by 50% 

and 25% due to the increased C concentration mainly in the top 20 cm soil depth (see chapter 

4). As the woody encroachment levels increased to moderate- high -and severe encroachment 

levels, enclosure resulted in only7%, 3%, 9% increase in SOC stocks respectively. Similar 

trendswere observed for TSN stocks. This suggests that the increase in SOC and TSNby 

enclosurewere maximized in the low encroachment site, and decreased with the increasing 

woody encroachment levels (see chapter 4). The SOC increase in the enclosures might be 

linked to an increased herbaceous above- and belowground production and nutrient deposition 

(Austin and Vivanco, 2006). Higher grazing intensity is generally thought to decrease soil C 

and N by direct removal of aboveground herbaceous biomass, i.e., a reduction of potential 

CO2 fixation in photosynthetic tissue and in belowground C inputs through lower root 

production and higher root litter turnover (Reeder et al., 2004). The increase of the cumulative 

root biomass by exclusion of herbivory not only increases soil C inputs but also N storage 

within the soil (Piñeiro et al., 2009; Stewart and Frank, 2008).As both organic N and C 

dynamics are closely linked in the soil organic matter (SOM) (Wang et al., 2006) the storage 

of N in root biomass and cycling within the soil has been suggested as a mechanism that can 

reduce N loss (Stewart and Frank, 2008). The N allocated to herbaceous AGB is not fully 

recycled into the soil because of grazing, surface respiration by decomposers and photo-

oxidation (Austin and Vivanco, 2006). Livestock exclusion can reduce the loss of N by 

volatilisation of ammonia and nitrate through animal urine and dung patches and, thereby, the 

resulting N availability will enhance SOM formation and SOC storage (Piñeiro et al., 2009). 

The decrease of herbaceous plant cover in open grazing land may also increase SOM 

mineralization rates because of high soil temperature fluctuations and soil moisture variability 

and, hence, a decrease in SOC storage (Wang et al., 2006).The increase of SOC and TSN 

associated with enclosure at the low encroachment site was exceptionally strong and could be 

related to deeper and clay dominated soils compared to other sites. Piñeiro et al., (2009) 

suggested SOC and TSN storage increased underenclosure, determined by the ability of the 

soil to retain the extra N after exclusion of livestock. Jobbagy and Jackson, (2000) also 

indicated that SOC storage capacity is largely linked to soil texture and soil depth since the 

adsorption of organic matter to clay and silt particles determines SOM stabilization.Our 
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dataset also showedan overall negative correlation between SOC stocks and soil sand fraction. 

This makes measuring changes in SOC stocks in soils at larger scale very difficult in spatially 

highly variable savanna ecosystem,as more data will be needed from multiple sites and 

grazing regimes to make definite conclusion about the response of SOC stocks to grazing 

management. 

Only few studies have attempted to explain the mechanism behind SOC reduction due to 

grazing pressure in African savanna systems. The available studies highlighted increased soil 

erosion associated with soil compaction caused by trampling through livestock as the main 

causes for the loss of top soil OM in many parts of African and Central Asian grasslands 

(Mekuria, 2013; Savadogo et al., 2007: Su et al., 2005; Mwendera and Saleem et al., 1997). 

Soil compaction potentially can reduce water infiltration and increase runoff which often 

results in decreasing water availability for plant growth. In addition, this can lead to a loss of 

top soil and nutrients especially under intense grazing conditions (Savadogo et al., 2007; 

Mwendera and Saleem et al., 1997).  

5.7 Ecosystem level carbon stocks 

The expansion of woody encroachment into the rangelands increased the AGC poolsthrough 

woody vegetation biomass.Our result showed that on average > 95% of estimated rangeland 

ecosystem C stocks at the low encroachment site measured to a depth of 40 cm was stored in 

soils, but at heavy woody encroachment level aboveground woody biomass C stocks 

accounted to 30% of ecosystem C stocks.These AGC stocks in woody biomass which 

constituted 30% of total ecosystem C (even more if root biomass carbon was included) at 

highly encroached sandy soil sites can be considered as addition to the grassland ecosystem C 

storage potential. However, this can only be considered as a gain to the system if the lower 

SOC found at these high woody encroachment sites were caused by the inherent low SOC 

storage potential of sandy soils or historical disturbances (overgrazing and associated soil 

erosion). Hence, woody encroachment on sandy soils will give an overall benefit from a 

global warming perspective. 

 However, the SOC stocks at the heavy encroachment siteswereby 50% lower when 

compared to the low encroachment site, but it is unclear at this point whether this low value in 

soil C and Nstocks at the heavily encroached site is associated to woody encroachment or 

inherent sandy dominated soils of the sites. It is also unclear if original savanna grasslands 

can be restored, particularly with respect to soils, aiming at an increase in SOC stocks. This is 

currently beyond the scope of our study but an important consideration for future studies. 
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Long term enclosure at low woody encroachment (< 30 % woody cover) effectively increased 

above-and belowground herbaceous biomass C, SOC and TSN (see chapter 4), and may have 

positive impacts on overall ecosystem C pools due to herbaceous above- and belowground 

biomass increases being incorporated into the soil.Enclosures at higher encroachment sites (> 

30% woody cover) showed no significantly increased AGC stocks of woody components as 

the large trees or shrubs which constituted greater proportion of ecosystem C pools were 

harvested by humans to foster herbaceous production in the enclosures. Increases of 

ecosystem C stocks through enclosures were also not consistent along woody encroachment 

levels and seemed dependent of the interactions between herbaceous plants and woody 

speciesand soil properties. Eventually, the total net gain of rangeland ecosystem C stocks by 

woody encroachment and grazing will be determined by the stage of woody encroachment, 

functional traits of woody species and soil characteristics. 

5.8 Limitations and conclusion of the study  

Expansion of woody encroachment and intensification of grazing present difficulties on how 

best to manage the semiarid Borana rangelands to encompass the tradeoff of livestock 

production and C sequestration. The empirically derived biomass models and C stocks we 

presented here constitute a first attempt to estimate C pools in encroaching woody vegetations 

of southern Ethiopian savanna rangelands. The biomass models are applicable in similar 

ecoregions of east African savannas and woodlands. This study offers insights into our 

knowledge gap on soil C and herbaceous root biomass dynamics in relation to woody 

encroachment and intensification of grazing. The C stocks estimated across woody 

encroachment levels only represent a small fraction of the landscape within the vast and 

highly variable Borana savanna rangelands. However, the estimates provide baseline data and 

framework for future research works. Further work needs to be carried out to determine other 

biophysical factors that may determine the influence of grazing and woody encroachment on 

ecosystem C dynamics. Hence, care must be taken on extrapolating our results over a wider 

range of Borana rangelands. The result represents plot level estimates, and may not be 

applicable for landscape or regional scale analysis. Therefore, upscaling the plot level 

estimate to landscape or regional scale estimate using fine resolution satellite image is 

important in future works. The total C storage potential of this rangeland ecosystem to 40 cm 

soil depth (not including aboveground litter biomass C stock, woody plant root biomass C 

stock,and SOC in the below 40 cm soil depth) ranged between 40Mg C ha
-1 

to 83 Mg C ha
-1

. 

It was shown that 95% of the estimated ecosystem C stocks on our plots were stored in soils 

up to 40 cm depth at lowest encroachment level, but at heavy woody encroachment levels 
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AGC stocks accounted for over 30% of our estimated ecosystem C stocks. Though woody 

encroachment tends to increase woody biomass C stock in the grassland system, the stability 

of the woody biomass C stock gained via woodybiomass in the pastoral grazing system is 

highly dependent on its intended use (pastoralists land use preference). Because of a 

preference for grasses, woody encroachment is likely to result in a degradation of the land use 

value with respect to cattle and sheep grazing, but in a positive effect on land use value for 

goat and camel browsing, given the preference of goats for woody browse. In the Borana 

rangeland system many pastoralists have considered few alternative land uses for highly 

woody encroached sites apart from limited goat and camel browsing (Angassa and Oba 2008). 

Carbon sequestration services could be potentially an alternative land use option for highly 

encroached sites, however, many uncertainties (e.g. lack of C credit mechanisms for savannas 

or/and shrublands, low C price of < $10 tone
-1

C, quantification belowground C dynamics) are 

likely to influence practical applicability and the profitability C production in the 

rangelands.Therefore, a careful introduction of higher domestic browser numbers (i.e., camel 

and goat feeding on woody vegetation) will enable the pastoral community to benefit from 

and adapt to the vegetation changes at least in the short term. Management of woody plants, 

through e.g., browsers or selective thinning may be just as critical as grazing management for 

sustainable livestock production. Co-management of the rangelands for broader 

environmental services (biodiversity conservation, C sequestration and reduction of emissions 

from livestock systems) through an environmental payment service scheme (PES) could also 

help the pastoralists to diversify and sustain their livelihood in the future. 
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6 Summary 

The Borana rangelands in southern Ethiopia are facing deterioration caused by intensification 

of grazing and woody plant encroachment, resulting in marked reductions in pastoral 

production. This process affects the food security and livelihoods of the Borana pastoral 

people negatively. Woody plant encroachment might result in an increase in carbon (C) 

storage in these rangelands, which represents an important aspect for climate change 

mitigation potentials. However, it is unclear how much C is currently stored in the above-and 

belowground vegetation biomass and in the soils of these rangeland ecosystems and how 

grazing intensity and woody cover influence soil or ecosystem C-stocks. 

The research work presented in this thesis aimed at developing tools to estimate the 

aboveground woody biomass C stocks. It describes the structure of semiarid savanna 

vegetation in different grazing regimes at various levels of woody encroachment, examines 

changes in woody plant encroachment, and provides field-based quantification methods and 

tools to derive site-based estimates of above- and belowground C pools. The thesis also aimed 

at assessing the influence of grazing on herbaceous above- and belowground biomass C 

stocks, soil organic carbon (SOC) and total soil nitrogen (TSN) to estimate possible increases 

in ecosystem C stocks by long term reduction of grazing intensity (e.g., low livestock density 

and seasonal grazing) at various levels of woody plant encroachment. 

A long-term temporal satellite imagery over the last 37 years and GIS mapping aided by 

ground truthing was used to investigate vegetation cover changes. In the field, data was 

collected to analyze vegetation attributes such as composition and structure under different 

grazing regimes and woody encroachment sites. Herbaceous species were destructively 

harvested to quantify the biomass and C stocks in the herbaceous vegetation community. 

Allometric tree biomass models were developed by destructively harvesting eight woody 

species to indirectly quantify the woody biomass and C stocks. Total soil nitrogen and SOC 

stocks in the different grazing management systems and woody encroachment levels were 

assessed from soil cores collected within 0- 40 cm soil depth. 

The performance of allometric biomass models as expressed as a goodness of fit (adj r
2
) 

depended on the species and biomass components estimated. The allometric models were 

highly accurate for large woody species such as A. mellifera, A. bussei, and A. etabaica. The 

most important single models predictor variable identified was stem basal circumference for 

tall shrubs with more or less open canopy structure. Meanwhile, for tall shrubs with closed 

and umbrella-like canopy structures, pairs of canopy volume and stem basal circumferences 
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were more reliable predictors. It was further shown that, by using canopy volume as a stand-

alone predictor variable, biomass can still be accurately predicted for shrubs whose growth 

form comprise discrete canopy clumps with multiple stems (e.g., A. oerfota). 

Vegetation cover analysis using temporal Landsat imageries from 1976 to 2012 revealed that 

areas covered by shrub and tree savanna (open savanna types) in the 1970s declined from 

45% to 9%, while heavily encroached areas (bushland thickets and bushed savanna) increased 

from 22% to 61% during this time interval. The abundance of total and the regenerative 

woody plants (< 1 m height) were high in lower woody encroachment sites but significantly 

reduced at heavily woody encroachment sites. At all levels of woody encroachment 

enclosures significantly increased total woody plant density, especially the proportion of 

woody plants in < 1 m height size class compared to the open rangelands. 

Estimated total aboveground biomass C stocks varied significantly between woody 

encroachments levels, with total aboveground biomass C stocks ranging from 2 Mg ha
-1

 in the 

low encroachment site to 9 Mg ha
-1

 in heavy encroachment sites. Enclosures significantly 

raised the herbaceous biomass C stocks, with enclosures containing 50% more herbaceous 

aboveground biomass C stocks than openly grazed land. However, the response of herbaceous 

aboveground biomass C stocks to grazing was also strongly influenced by the woody 

encroachment characteristics including woody density, canopy cover, species composition 

and other specific traits of woody species.  

Mean total SOC stock in the 0 - 40 cm soil depth ranged from 30 Mg ha
-1

 in the openly grazed 

soils at the high woody encroachment site to 81 Mg ha
-1

 in the enclosure soils at the low 

encroachment site ha
-1

. Soil OC and TSN did not differ in the enclosure at heavily encroached 

sites but were two times  as high in enclosures compared to openly grazed soils at low 

encroached sites. Soil OC was positively related to TSN and soil cation exchange capacity 

(CEC), but negatively to sand content. Contrary to expectations, SOC stocks did not 

uniformly follow the pattern of increasing aboveground biomass C stocks with increasing 

woody encroachment. Rather, it seemed to be influenced by variations in soil characteristics 

across the Borana rangelands. 

The study highlights the influence of woody encroachment and reduction of grazing pressure 

on ecosystem C stocks. The allometric models developed by this study can serve as a tool for 

future biomass and C sequestration studies in semiarid regions of east Africa. The information 

presented on the ecosystem C stocks by this thesis could help integrate the effects of grazing 
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and vegetation cover dynamics on the rangeland C storage. An understanding of these 

interactions are deemed necessary to develop a sound rangeland management policy that can 

link the C storage potential of the rangelands to global climate change mitigation and 

adaptation strategies through establishing a viable mechanism of payment for ecosystem  

services. 
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Einfluss von Änderungen in der Landnutzung und -bedeckung auf Weideland in 

Südäthiopien – Wie viel Waldbedeckung ist genug? 

 

7 Zusammenfassung 

Das Borana Weideland in Südäthiopien steht vor einer Veschlechterung, die durch 

intensivierte Beweidung und die Ausbreitung von Gehölzpflanzen verursacht wird Dies führt  

zu einer deutlichen Abnahme der pastoralen Produktion und hat auch einen negativen Einfluss 

auf die Nahrungssicherheit und den Lebensunterhalt der Borana Bevölkerung. Auf der 

anderen Seite resultiert die Ausbreitung von Gehölzpflanzen möglicherweise in einer 

erhöhten Kohlenstoffspeicherung, ein wichtiger Aspekt bezüglich des Potentials zur 

Abmilderung des Klimawandels. Jedoch ist unklar wie viel Kohlenstoff (C) tatsächlich in der 

ober- und unterirdischen Biomasse und im Boden dieses Weidelandes gespeichert ist und wie 

Beweidungsintensität und die zunehmende Bedeckung von Gehölzpflanzen die 

Kohlenstoffvorräte des Ökosystems beeinflussen. 

Die vorliegende Arbeit hat zum Ziel, Methoden zur Schätzung der oberirdischen 

Gehölzbiomasse bzw. der C-Vorräte zu entwickeln. Sie beschreibt die Struktur der semi-

ariden Savannenvegetation unter verschiedenen Beweidungsformen, unter zunehmendem 

Deckungsgrad an Gehölzpflanzen und präsentiert feldbasierte Methoden zur Quantifizierung 

und standort-basierten Schätzung der ober-und unterirdischen C-Vorräte. Außerdem bezweckt 

diese Arbeit, den Einfluss von Beweidung auf die ober-und unterirdischen Biomasse bzw. C-

Vorräte des Unterwuchses (Krautschicht) zu bewerten sowie den Effekt auf Bodenkohlenstoff 

(Soil organic carbon – SOC) und Gesamtstickstoff (total soil nitrogen – TSN) abzuschätzen. 

So kann eine mögliche Zunahme des Ökosystemkohlenstoffvorrats durch langfristige 

Reduktion der Beweidung (z.B. niedrigere Viehdichte und saisonale Beweidung) unter 

variierender Gehölzbedeckung eingeschätzt werden. 

Mittels Satellitenbildern der letzen 37 Jahre, eines Geoinformationssystems (GIS) und 

Kartierung wurden langfristige und groß-skalige Änderungen der Vegetationsbedeckung 

untersucht. Im Feld wurden Daten gesammelt, um Vegetationseigenschaften wie 

Artzusammensetzung und -struktur in Abhängigkeit von Beweidung und Bedeckung zu 

analysieren. Krautige Arten wurden destruktiv geerntet, um die Biomasse und C-Vorräte zu 

quantifizieren. Durch destruktives Ernten von acht Baumarten wurden allometrische Modelle 

entwickelt, um indirekt die hölzerne Biomasse und C-Vorräte zu quantifizieren. 
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Gesamtstickstoff des Bodens und organischer Kohlenstoff (SOC) wurden mittels Bohrkernen 

von 0-40 cm Tiefe untersucht. 

Die Güte der allometrischen Biomassemodelle (adj r
2
) hing von der geschätzen 

Baumart und Biomassekomponente ab. Bei Baumarten mit hoher Gesamtbiomasse, z.B. A. 

mellifera, A. bussei und A. etabaica, trafen die allometrischen Modelle sehr akkurat zu. Die 

wichtigste Prädiktorvariable der Modelle bei hohen Stäuchern mit mehr oder weniger offener 

Krone war der Basalumfang, während Kronenvolumen und Basalumfang des Stammes die 

zuverlässigsten Prädiktoren bei Arten mit geschlossener schirmförmiger Kronenstruktur 

waren. Weiterhin wurde gezeigt, dass die Biomasse von Sträuchern mit büschelartiger 

Kronenstrukur und mehreren Stämmen (e.g. A. oerfota) auch mittels des Kronenvolumens als 

alleinigem Prädiktor akkurat bestimmt werden konnte. 

Die Analyse der Vegetationsbedeckung mittels Landsat Bildern von 1976 bis 2012 

zeigte, dass die mit Sträuchern und Baumsavanne bedeckte Fläche seit 1970 von 45% auf 9% 

abgenommen hat, während die Fläche mit hoher Dichte an Gehölzpflanzen von 22% auf 61% 

zunahm. Die Häufigkeit von regenerativen Gehölzpflanzen (<1 m Höhe) war hoch in den 

Gebieten mit niedriger Deckung an Gehölzpflanzen, aber signifikant geringer in Gebieten mit 

hoher Deckung an Gehölzpflanzen. In eingezäunten Flächen erhöhte sich die Gesamtdichte an 

Gehölzen im Vergleich zu offenem Weideland unabhängig vom Deckungsgrad, besonders der 

Anteil an Nachwuchs (<1 m Höhe). 

Die oberirdische Biomasse bzw. C-Vorräte unterschieden sich signifikant in den 

Gebieten mit unterschiedlich starker Gehölzausbreitung, wobei die C-Vorräte von 2 Mg ha
-1

 

in Gebieten mit niedriger Ausbreitung bis zu 9 Mg ha
-1

 in Gebieten mit hoher Ausbreitung 

reichten. In den eingezäunten Flächen war der C-Vorrat in der Krautbiomasse um 50% höher 

als im offenen Weideland. Allerdings war dieser Beweidungseffekt auf die oberirdische 

Biomasse stark von den Charaktereigenschaften der Gehölzpflanzen beeinflusst, 

beispielsweise von der Dichte an Gehölzen, deren Kronenbedeckung, Artenzusammensetzung 

und weiteren Merkmalen. 

Der SOC-Vorrat in 0-40 cm Bodentiefe reichte von 30 Mg ha
-1

 im offenen Weideland 

und hoher Gehölzausbreitung bis zu 81 Mg ha
-1

 in eingezäunten Flächen unter niedrigem 

Ausbreitungsniveau. Soil OC und TSN unterschieden sich nicht im eingezäunten Gebiet bei 

hoher Gehölzausbreitung, waren aber zwei mal so hoch in eingezäunten Flächen im Vergleich 

zum offenen Weideland bei geringer Gehölzdichte. Soil OC korrelierte positiv mit TSN sowie 

der Kationaustauschskapazität (CEC) des Bodens, aber negativ mit dem Sandgehalt. Entgegen 

der Erwartung folgte der SOC-Vorrat nicht dem Muster ansteigender oberirdischer Biomasse 
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und zunehmender Gehölzausbreitung sondern schien stattdessen von den variierenden 

Bodeneigenschaften beeinflusst zu sein. 

Diese Studie hebt den Einfluß der Ausbreitung von Gehölzpflanzen und die Abnahme 

des Beweidungsdrucks auf den Kohlenstoffvorrat des Ökosystems hervor. Die hier 

entwickelten allometrischen Modelle können als Werkzeug für zukünftige Biomasse und 

Kohlenstoff-Sequestrierungsstudien in semiariden Regionen Ostafrikas dienen. Die in dieser 

Arbeit präsentierten Informationen über Ökosystemkohlenstoffvorräte können dabei helfen, 

Beweidungseffekte und Vegetationsdynamik zu integrieren. Das Verständnis dieser 

Wechselwirkungen ist notwendig, um ein geeignetes Weidemanagement und eine Politik zu 

entwickeln, die das C-Speicherpotenzial des Weidelandes als Klimaschutzbeitrag und 

Anpassungsstrategien bzw. Mechanismen wie „Zahlung für Ökosystemdienstleistungen“ 

miteinander verknüpfen kann. 
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