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1 General Introduction

Maize has a long and fruitful history of genetics studies aiming at understanding the inher-
itance of quantitative traits. During the last twenty years, catalogues of specific results for
quantitative trait loci (QTL) have been assembled by conducting numerous linkage mapping
(LM) studies with biparental populations that carry genetic mosaics of two contrasting parental
inbred lines (Mauricio, 2001). Despite the high power of LM for detecting QTL specific to the
parental lines, however, most detected QTL were not subsequently fine mapped for identifying
the underlying causal genetic variants. Thus, most LM studies have contributed only little
in deepening our functional understanding of how complex traits are regulated at the genetic
level. Most detected QTL were also not used in marker-assisted breeding (MAS) (Bernardo,
2008), mainly because the amount of explained genetic variance of the detected QTL turned
out to be only weakly transferable to different populations and backgrounds (Melchinger et al.,
1998; Xu and Crouch, 2008), especially if no major QTL are present.

GWAS as an alternative to LM

The development of inexpensive high-throughput genotyping platforms such as the Illumina
MaizeSNP50 Beadchip (Ganal et al., 2011) or genotyping-by-sequencing (Elshire et al., 2011)
has generated new hope to overcome the limitations of LM. Genotyping costs have fallen so
much that they are now frequently among the least-expensive parts of an experiment (Wallace
et al., 2014). With such an abundant marker density, it became possible to conduct genome-
wide association studies (GWAS) by exploiting ancestral linkage disequilibrium (LD) in a
diverse population capturing a much broader diversity than the biparental populations used
in LM (Fig. 1.1). Depending on the level of LD in the population, the resolution can be up to
the single nucleotide level.

GWAS was first developed as a necessity for large-scale human studies and has been extremely
popular in this field. As of May 30th, 2013, 1,613 human GWA studies have been published and
their specific results combined in a public database (http://www.genome.gov/gwastudies/).
In contrast to human genetics, the application of GWA mapping to plant populations and
especially elite breeding material is hampered by high levels of population structure and cryp-
tic relatedness which can lead to spurious associations (Astle and Balding, 2009). However,
powerful techniques became available for decoupling genetic associations with confounding fac-
tors (Sillanpää, 2011; Yu et al., 2006). Their application with current genotyping platforms
was however only possible after the development of variance component based computational
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1 General Introduction

algorithms which allow an extremely efficient testing of thousands to millions of SNPs while
correcting for spurious associations in a mixed model framework (Svishcheva and Axenovich,
2012; Zhang et al., 2010).

Meanwhile, several GWA studies in maize reveald that most traits are highly polygenic, e.g.
controlled by a large number of small effect QTL. The largest QTL detected for most maize
traits typically explained < 5% of the phenotypic variance (Wallace et al., 2014). Interestingly,
this has been even found for traits like flowering time (Buckler et al., 2009), disease resistances
(Kump et al., 2011; Poland et al., 2011), kernel starch, protein, and oil content (Cook et al.,
2011), or morphological traits such as leaf architecture (Tian et al., 2011) which were initially
expected to be genetically less complex than e.g. grain or biomass yield. The total summed
up variance explained by all QTL detected in these studies is typically well below 30 %, e.
g. 25.9 % for upper leaf angle, 23.2 % for leaf length, 23.3 % for leaf width, and 21.6 % for
southern leaf blight (calculated from supporting information of Tian et al. (2011) and Kump
et al. (2011)).

It is important to note that these results were not the result of a very limited population size
as several of theses studies analysed the nested association mapping (NAM) panel comprising
≈ 5, 000 genotypes, a number which is barely manageable even for large public organizations.
Thus, the majority of genetic factors underlying these traits are still unknown and unravelling
the chain from the genes to the phenotype is still largely unresolved for most quantitative
traits in maize. As this is scientifically dissatisfying, the problem has been coined ’bridging
the genotype-phenotype gap’ and to do so remains a big challenge. An obvious approach
would be to further extend the population size to increase the power for detecting QTL with
even smaller effect sizes. In fact, GWA studies in maize with more than 30,000 genotypes are
currently conducted (Ed Buckler, Cornell, personal communication).

This thesis research aims to present an alternative route by mapping not the polygenic trait of
primary interest itself, but genetically correlated molecular and physiological component traits.
As such components represent biological sub-processes underlying the trait of interest, they
are supposed to be genetically less complex and thus, more suitable for genetic mapping. This
approach is demonstrated with (i) biomass yield by using metabolites and lipids as molecular
component traits and (ii) chilling sensitivity by using physiological component traits such as
photosynthesis parameters derived from chlorophyll fluorescence measurements.

Metabolites and lipids as molecular component traits of
biomass yield

Metabolomics refers to the mass spectrometry-based quantitative measurement of hundreds of
different biochemical compounds from a wide range of chemical classes within a single sample
(Fig. 1.2) (Saito and Matsuda, 2010). Whereas metabolomics is already a rather mature field
in medicine (Suhre and Gieger, 2012), it has received larger attention in plants only in recent
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1 General Introduction

Figure 1.1: Conceptual overlappings and differences between linkage mapping (left) and genome-wide
association mapping (right) (Mackay et al., 2009).
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1 General Introduction

years after analytical methods for blood and human tissues could be adapted to plant tissues
(De Vos et al., 2007; Lisec et al., 2006).

An important finding of some early metabolomics studies in Arabidopsis thaliana was that
an array of metabolites can be linked to biomass accumulation (Meyer et al., 2007; Sulpice
et al., 2009). In turn, from a physiological perspective, biomass accumulation can be seen
as the plants’ ultimate outcome of its metabolic performance (Stitt et al., 2010). The tight
connection between metabolism and growth can arise from different reasons: either a high
supply of metabolites triggers growth, or growth drains metabolites to a minimum tolerable
level. Alternatively, metabolites may exert control on growth not only by acting as substrates
for the synthesis of cellular components but also by acting as signals that are sensed leading
to subsequent changes in growth (Meyer et al., 2007; Stitt et al., 2010).

Because the correct functioning of metabolic networks is crucial for proper development, the
regulation of individual metabolites is tightly controlled (Kooke and Keurentjes, 2012). Thus,
their genetic architecture is probably less complex than for most agronomic traits. As a
consequence, instead of trying to map the genetic factors of highly polygenic traits, it has been
suggested to study the inheritance of genetically more simple metabolites representing distinct
physiological sub-processes underlying the trait of interest (Keurentjes, 2009)

Previous genetic analysis of metabolites are rather limited and restricted to either single com-
pounds like carotenoids (Wong et al., 2004) or model plants like Arabidopsis in which metabolic
QTL could be successfully mapped with LM of recombinant inbred lines (Lisec et al., 2008).
In this thesis, our objective was to significantly expand this ”genetical metabolomics” coined
approach (Keurentjes, 2009) by moving (i) from the model plant Arabidopsis to the staple crop
maize, (ii) from well-controlled greenhouse conditions to field conditions, and (iii) from LM to
GWAS. In contrast to Arabidopsis, where hundreds of plants can be easily cultivated under
controlled conditions in the greenhouse without a sophisticated randomization, the application
of metabolomics in the field requires more consideration of the randomization layout. Thus,
one important objective in the first place was to develop a sampling and processing scheme
which allows to integrate the field randomization with the processing layout for measuring
metabolites in the lab.

Recently, the lipidome has emerged as an especially rich subgroup of the metabolome (Mutch
et al., 2006). The lipidome contains hundreds to thousands of individual lipids species showing
an enormous chemical diversity due to the high plasticity of the underlying biosynthetic ma-
chinery (Broun, 1998). Commonly only known for their role as a storage compound, lipids are
also involved in many other processes including cell integrity, membran formation and scaf-
folding for membrane proteins, energy storage, and cell signaling (Brown and Murphy, 2009).
In this study, we seeked for the first time to (i) genetically characterize the diversity of the
lipidome by GWAS and (ii) explored its connection to complex traits in maize measured at
the testcross level in multi-environment field trials.
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1 General Introduction

Figure 1.2: Untargeted metabolic profiling of a single plant sample by mass spectrometry with chro-
matographic separation (Last et al., 2007).
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1 General Introduction

Physiological component traits of chilling sensitivity

Chilling sensitivity is of increasing relevance for expanding the cultivation of maize into cooler
regions (Frei, 2000). However, fluctuating climatic conditions and high genotype × environ-
ment interactions hamper its evaluation in the field (Presterl et al., 2007) and thus aggravate
the identification of cold tolerant genotypes by phenotypic selection. Hence, marker-based
approaches would be a promising alternative to increase the selection efficiency for chilling
sensitivity.

Unfortunately, previous LM studies for chilling tolerance yielded only erratic results, probably
because of the large genetic complexity of the trait. In a large biparental population of 720
doubled haploid lines, the seven and ten QTL found for line per se and testcross performance
explained without cross-validation on average only 11.3 % and 4.3 % of the phenotypic variance,
respectively (Presterl et al., 2007). In the intermated B73 × Mo17 (IBM) population, the
detected QTL explained only 3.7 % of the genetic variance after cross-validation (Rodŕıguez
et al., 2008). In this case, marker-assisted selection could therefore not be recommended. The
fact that chilling sensitivity is no simple trait is reflected in the deep and major changes with
which plants react after perception of cold temperatures. These involve changes in gene and
osmotic regulation, hormone and energy balance as well as major modifications of membranes
and cell walls (Xin, 2000) and reconfigurations of metabolic networks (Guy et al., 2008).

Whereas changes at these levels are difficult to measure in populations of hundreds of genotypes,
many physiological reactions in response of cold temperatures are easier detectable, at least
in growth chambers with a controlled temperature regime (Table 1.1). Similar to metabolites
for biomass yield, genetic analysis of these physiological parameters would allow to genetically
dissect physiological sub-processes of chilling tolerance, which are probably genetically less
complex, easier to interpret, and probably more reliable than barely significant minor QTL
found for chilling sensitivity itself. Building on previous LM results for these parameters,
we aimed to perform GWAS with high precision to dissect the genetic causes underlying the
observed phenotypic differences in chilling sensitivity in a parallel evaluation in both field
environments and growth chambers.

Objectives

The goal of this thesis research was to examine the feasibility to dissect the genetically complex
traits biomass yield and chilling sensitivity in maize by performing GWAS on genetically
simpler molecular and physiological component traits correlated with the target trait itself. In
particular, the objectives were to

1. develop a sampling and randomization procedure for the application of metabolomics
and lipidomics in large-scale field trials of maize inbred lines;

6



1 General Introduction

2. explore repeatabilities and the correlation patterns in the leaf metabolome and lipidome
in a diversity panel of maize inbred lines grown under field conditions;

3. perform GWAS of the leaf metabolome and lipidome using 56k SNPs;

4. perform GWAS of physiological component traits of chilling sensitivity in two diversity
panels of maize inbred lines grown in parallel under field conditions and growth chambers;

5. identify plausible candidate genes underlying QTL mapped for metabolites, lipids, and
physiological traits;

6. explore whether and how the genotype-phenotype gap of complex traits in field-grown
maize can be narrowed by genetically characterized component traits.

7



1 General Introduction
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2 Genome-wide association mapping of leaf
metabolic profiles for dissecting complex
traits in maize

Christian Riedelsheimer1a, Jan Lisec2a, Angelika Czedik-Eysenberg3, Ronan Sulpice3, Anna
Flis3, Christoph Grieder1, Thomas Altmann4, Mark Stitt3, Lothar Willmitzer2,5, and Albrecht
E. Melchinger1

1Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim,
70593 Stuttgart, Germany

Departments of 2Molecular Physiology and 3Metabolic Networks, Max Planck Institute of
Molecular Plant Physiology, 14476 Potsdam, Germany

4Department Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research
(IPK), 06446 Gatersleben, Germany

5King Abdulaziz University, Jeddah 21589, Saudi Arabia

aThese authors contributed equally

Proc. Natl. Acad. Sci. USA 109:8872-8877 (2012).

The original publication is available at
http://dx.doi.org/10.1073/pnas.1120813109

Abstract

The diversity of metabolites found in plants is by far greater than in most other organisms.
Metabolic profiling techniques, which measure many of these compounds simultaneously, en-
abled investigating the regulation of metabolic networks and proved to be useful for predicting
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2 GWAS of leaf metabolic profiles

important agronomic traits. However, little is known about the genetic basis of metabolites in
crops such as maize. Here, a set of 289 diverse maize inbred lines was genotyped with 56,110
SNPs and assayed for 118 biochemical compounds in the leaves of young plants, as well as for
agronomic traits of mature plants in field trials. Metabolite concentrations had on average a
repeatability of 0.73 and showed a correlation pattern that largely reflected their functional
grouping. Genome-wide association mapping with correction for population structure and
cryptic relatedness identified for 26 distinct metabolites strong associations with SNPs, ex-
plaining up to 32.0% of the observed genetic variance. On nine chromosomes, we detected 15
distinct SNP-metabolite associations, each of which explained more then 15% of the genetic
variance. For lignin precursors, including p-coumaric acid and caffeic acid, we found strong
associations (P -values 2.7 × 10−10 to 3.9 × 10−18) with a region on chromosome 9 harboring
cinnamoyl-CoA reductase, a key enzyme in monolignol synthesis and a target for improving the
quality of lignocellulosic biomass by genetic engineering approaches. Moreover, lignin precur-
sors correlated significantly with lignin content, plant height, and dry matter yield, suggesting
that metabolites represent promising connecting links for narrowing the genotype-phenotype
gap of complex agronomic traits.

10



3 The maize leaf lipidome shows multilevel
genetic control and high predictive value
for agronomic traits

Christian Riedelsheimer1a, Yariv Brotman2a, Michaël Méret2a, Albrecht E. Melchinger1, and
Lothar Willmitzer2

1Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim,
70593 Stuttgart, Germany

2Department Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, 14476
Potsdam, Germany

aThese authors contributed equally

Sci. Rep. 3:2479 (2013)

The original publication is available at
http://dx.doi.org/10.1038/srep02479

Abstract

Although the plant lipidome shows an enormous level of structural and functional diversity,
our knowledge about its genetic control and its connection to whole-plant phenotypes is very
limited. Here, we profiled 563 lipid species with UPLC-FT-MS in 289 field-grown inbred lines
genotyped with 56,110 SNPs, Genome-wide association study identified 174 associations for 76
lipids explaining up to 31.4% of the genetic variance (P -value 8.4 × 10−18). Candidate genes
were found for lipid synthesis, breakdown, transfer, and protection against peroxidation. The
detected SNP-lipid associations could be grouped into associations with 1) individual lipids,
2) lipids from one biochemical class, and 3) lipids from several classes, suggesting a multilevel
genetic control architecture. We further found a strong connection between the lipidome and
agronomic traits in field-evaluated hybrid progeny. A cross-validated prediction model yielded
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3 The maize leaf lipidome

correlations of up to 0.78 suggesting that the lipidome accurately predicts agronomic traits
relevant in hybrid maize breeding.
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4 Association mapping for chilling
tolerance in elite flint and dent maize
inbred lines evaluated in growth
chambers and field experiments

Alexander Strigens1, Niclas M. Freitag2, Xavier Gilbert2, Christoph Grieder1, Christian Riedels-
heimer1, Tobias A. Schrag1, Rainer Messmer2, and Albrecht E. Melchinger1

1Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim,
70593 Stuttgart, Germany

2Group of Crop Science, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland

Plant Cell Environ. 36:1871-1887 (2013)

The original publication is available at
http://dx.doi.org/10.1111/pce.12096

Abstract

Chilling sensitivity of maize is a strong limitation for its cultivation in the cooler areas of
the northern and southern hemisphere because reduced growth in early stages impairs on
later biomass accumulation. Efficient breeding for chilling tolerance is hampered by both
the complex physiological response of maize to chilling temperatures and the difficulty to
accurately measure chilling tolerance in the field under fluctuating climatic conditions. For
this research, we used genome-wide association (GWA) mapping to identify genes underlying
chilling tolerance under both controlled and field conditions in a broad germplasm collection
of 375 maize inbred lines genotyped with 56,110 single nucleotide polymorphism (SNP). We
identified 19 highly significant association signals explaining between 5.7 and 52.5% of the
phenotypic variance observed for early growth and chlorophyll fluorescence parameters. The
allelic effect of several SNPs identified for early growth was associated with temperature and
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4 GWAS of chilling tolerance

incident radiation. Candidate genes involved in ethylene signalling, brassinolide, and lignin
biosynthesis were found in their vicinity. The frequent involvement of candidate genes into
signalling or gene expression regulation underlines the complex response of photosynthetic
performance and early growth to climatic conditions, and supports pleiotropism as a major
cause of co-locations of quantitative trait loci for these highly polygenic traits.

14



5 General Discussion

Genome-wide association studies (GWAS) link genetic variants to complex traits at high pre-
cision by exploiting ancestral linkage disequilibrium (LD) between genetic markers and causal
variants in diverse population (Rafalski, 2010; Stich and Melchinger, 2010). To cope with the
polygenic architecture of most agronomic traits, our objective was to investigate the feasibil-
ity to apply GWAS to molecular and physiological component traits (Fig. 5.1) representing
genetically often simpler controlled sub-processes of the target trait itself.

Figure 5.1: Life’s complexity pyramid illustrating the different ’omics’ layers as well as their integra-
tion to build up the large-scale organization of an organism and its phenotypic expression in a given
environment (Oltvai and Barabási, 2002).

Challenges for phenotyping and data integration of molecular
component traits

A first necessity was to ensure the high quality phenotyping of metabolites and lipids. Prior to
this thesis research, research on metabolic profiles has mainly been performed under controlled
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5 General Discussion

conditions and not with large-scale field trials. Thus, a sampling procedure had to be developed
to obtain highly repeatable metabolic profiles in the field. The main challenges were to:

i shock freeze samples of 600 field plots (6,000 individual plants pooled into 600 sample
bags) in a short period of time to minimize metabolic changes over time;

ii correct for potential time trends in the metabolic profile;

iii correct for environmental differences within the field due to e.g. soil differences;

iv randomize the measurement batches to catch potential systematic lab effects due to e.g.
differences in intensity of extraction, derivatization, chromatographic separation;

v minimize loss in precision if one batch defrosts or gets destroyed;

vi obtain genotypic means in a single-step procedure, e.g. correct for all systematic effects
simultaneously.

The solution we developed fulfils all these requirements (Fig. 5.2). The high mean reapeatabil-
ities of 0.73 for metabolites and 0.66 for lipids show that highly repeatable metabolic and lipid
profiles can be generated in large-scale trials of maize inbred lines. The obtained repeatabilites
were significantly higher than those reported for recombinant inbred lines of Arabidopsis grown
under controlled conditions (Chan et al., 2010; Keurentjes et al., 2006).

The stability of metabolites is however still an open research question. Because leaf samples
were collected in one year and one location only, the repeatabilities might not necessarily reflect
the heritabilities over a series of years and locations. In addition, it remains unclear how
sensitive metabolic profiles are regarding the climatic conditions during the day of sampling
and the days before.

Since metabolic profiling is still an expensive and resource-demanding task, the question arises
how metabolic profiling data from different experiments can be compared and integrated.
If possible, this would allow to perform GWAS meta-analyses as routinely done in human
genetics. By expanding the population size in the combined analysis, power to detect QTL
could be substantially increased.

A crucial first criteria to meet is a sufficiently high repeatability. If one dataset with high
repeatability is combined with one having a low repeatability, the power to detect QTL might
be decreased by diluting a high quality signal with random noise. As spatial metabolic analysis
showed a clear separation of different organs on the metabolic level (Hanhineva et al., 2008), an
important decision concerns the organ from which the sample is taken and its developmental
stage. Ensuring comparability in the environmental conditions appears to to be more difficult.
Although quantification of the relative contributions of the genotype × environment inter-
actions to the phenotypic variance is still missing, metabolomics studies with a case-control
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5 General Discussion

set-up found clearly differentiable metabolic pattern when changing different growth conditions
such as light (Lubbe et al., 2012) or fungicide treatment (Hanhineva et al., 2008). In maize,
it has recently been shown that the common fungus Ustilago maydis which often infect plants
in the field, produces a secretory protein which severely alters the metabolic status of the host
plant (Djamei et al., 2011). As it is clear that many more factors might influence the obtained
metabolic profile, information about their relative importance seems to be crucial for assessing
whether distinct data sets can be combined.

Figure 5.2: Steps involved until plant extracts for MS-based metabolic profiling were obtained from
the field experiments. After randomizing the genotypes in three adjacent α-lattice designs according
to their three maturity groups, ten plants per plot were pooled and immediately frozen using dry ice.
Grinding of plant material was done with a robotized platform which keeps the plant samples at -80◦C
to prevent metabolic activities during grinding. Ethanolic extraction with pipetting robots was done
in batches of 50 samples allocated on 96-well plates. To account for batch effects in the subsequent
mixed model normalization, batches contained samples from randomly chosen field blocks of one field
replication within one maturity group only. Randomization of batches was therefore nested in between
complete field replications and field blocks which allowed a combined correction of both field and batch
effects in one analysis step.

17



5 General Discussion

The genetic architecture of the maize leaf metabolome and
lipidome

Using a false discovery rate (Storey and Tibshirani, 2003) of 2.5 %, GWAS detected significant
associations for 26 metabolites and 76 lipids. For both metabolites and lipids, associations
explaining more than 30 % of the genetic variance were detected. Thus, our results demonstrate
that at least some molecular component traits are under a relatively simple genetic control with
large-scale allelic effects detectable by GWAS. Metabolic QTL with allelic effects of this size
have not been detected in previous studies in Arabidopsis using either LM (Lisec et al., 2008)
or GWAS (Chan et al., 2010; Keurentjes et al., 2006). However, studies in human urine (Suhre
et al., 2011) or blood (Illig et al., 2010) suggest that associations of this size exist in nature.
Thus, the inability to detect QTL with large effects in Arabidopsis despite large number of
metabolites and SNPs is more likely attributable to insufficient populations size or too low
repeatabilities.

Although several studies reported the agglomeration of SNP-metabolite associations (Fu et al.,
2009; Keurentjes et al., 2006; Lisec et al., 2008), we could not find any. Besides the small num-
ber of total associations found, an explanation for such hotspots might be the occurrence of
biochemically connected or otherwise highly correlated metabolites leading to indirect associ-
ations with the same genetic region.

An important finding of the GWA mapping of the lipidome was the ability to establish a
conceptual framework for assigning hierarchical levels at which the underlying candidate genes
control the lipidome. The detected SNP-lipid associations could be grouped into associations
with 1) individual lipids, 2) lipids from one biochemical class, and 3) lipids from several classes.
This suggested a multilevel genetic control architecture similar as employed in engineering of
complex controlled mechanical systems. In many cases, the assigned control levels matched
with a priori knownledge about the specificity of candidate genes found in the vicinity of the
QTL region. Whereas e.g. specific peroxidases were uniquely associated with single lipids,
prominent lipid signaling genes such as sphingosine kinase were associated with large sets of
lipids from multiple chemical classes.

Linking genetic variants for component traits back to
agronomic traits traits

Our results show that GWAS results from individual molecular components, e.g., monolignols
can yield valuable information on the genetic control of correlated biomass-related agronomic
traits in mature plants. Such information can be a valuable source for both (i) enriching
the functional understanding how complex traits are controlled and (ii) identifying targets for
knowledge-based breeding approaches aiming at improving a specific physiological process.
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5 General Discussion

The identification of genetic loci underlying molecular component traits are however not likely
to yield markers suitable for directly selecting the trait of interest. For example, the detected
QTL on chr. 9 for caffeic acid explains > 30% of the genetic variance but less than 2 % of
the correlated agronomic traits. This was however not unexpected from the high polygenic
architecture of most agronomic traits.

The different signs of the correlations between caffeic acid and biochemical related metabo-
lites with lignin content also indicate that the relationships between pathway intermediates
and the final product is not simple. Directly modeling complex traits with individual compo-
nent traits may therefore require consideration of feedback loops and other interdependencies.
Structural equation modeling might be a promising technique for this task. This statistical
method originally developed by the geneticist Sewall Wright (1921) tests causal relations using
both experimental data and qualitative causal assumptions, the latter of which could be de-
rived from known plant biochemistry. This approach has already been applied for deciphering
complex interrelationships in various settings such as ecological modeling (Arhonditsis et al.,
2006) or in the pathophysiology of human diseases (Stevenson et al., 2012). Knowledge about
interdependencies of metabolites such as the lignin pathway intermediates are crucial for suc-
cessful genetic engineering projects aiming to e.g. alter lignin composition without detrimental
side effects on biotic or abiotic stress resistance (Weng et al., 2008).

If the goal is merely to predict the phenotypic value of a genotype across a given set of envi-
ronments without deciphering any causative gene-phenotype relationships, genomic selection
(GS) seems to be the current tool of choice. The approach uses a training population to create
a statistical model by assigning effects to all markers instead of only the significant ones de-
tected in GWAS or LM studies (Lorenz et al., 2011). Initially developed in the field of animal
breeding (Meuwissen et al., 2001), it is currently replacing traditional marker-assisted selection
procedures in plant breeding (Heffner et al., 2009). GS is anticipated to be highly successful
for increasing selection gain in breeding practice (Riedelsheimer et al., 2012a) and is already
implemented in the private sector. GS is designed for and work best with a highly polygenic
genetic architecture by sourcing its predictive information from a very precise estimation of ge-
netic relatedness, i.e., the deviation from the expected relationship due to Mendelian sampling
(Hill and Weir, 2011).

Our results suggest that molecular component traits can be used in the same way as SNPs for
GS by estimating effects for all predictor variables irrespective of their individual impact on the
target trait. For both metabolites (Riedelsheimer et al., 2012a) and lipids (Riedelsheimer et al.,
2013), prediction accuracies for general combining abilities evaluated in multi-environment field
trials were found to be close to those obtained with SNPs (Riedelsheimer et al., 2012a).

It is still an open question though, what extra value molecular component traits may carry
on top of SNPs as their combination did not yield improved prediction accuracies. In contrast
to SNPs, metabolic or lipid profiles are expected to carry information about the environment
in which they were measured. Thus, if the goal is to predict the performance of genotypes
in environment A but phenotypic data is only available for environment B (which shows a
genotypic correlation < 1 with environment A), we speculate that a GS prediction model with
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both SNPs and molecular profile data from the target environment A can be superior to a
model with SNPs alone. Further research is, however, necessary to investigate this hypothesis.

GWAS conceptually complements GS in that it delivers insights about the genetic architecture
of the trait, commonly described as the number of genes and the distribution of their effects
affecting the trait as well as their interactions (Hill, 2012). Both approaches therefore de-
liver answers to different questions. Figure 5.3 illustrates the two different strategies for using
metabolites either for dissecting or predicting complex traits. Prediction models with molec-
ular component traits might also be further enriched with other sources of information like
structural variation (copy number variants, CNVs) or knowledge from crop models or climate
data about the conditions at a specific target environment.

Recently, Bayesian GS models were developed which precisely capture the individual QTL
effects instead of merely modeling genome-wide relationship structure at the SNP effect level
(de Los Campos et al., 2012). It was suggested that such models could integrate GWAS and GS
as one would be able to both identify the genetic regions controlling the trait and predicting it
at the same time. Recently, however, Gianola (Gianola, 2013) demonstrated that SNP effects
from such Bayesian models should be treated with caution if claims about genetic architecture
are to be made. It was shown that in a situation with many more predictor variables (i.e.
SNPs) than genotypes, the obtained predictor effects are always influenced by the chosen prior
distribution because its parameters are never likelihood-identified. Alternatively, one might
compare prediction accuracies obtained with models having different assumptions about the
distribution of the underlying genetic effects. The model which yields the highest accuracies
is then assumed to be the one whose assumptions match best. However, differences between
GS models were in general found to be only very small (Heslot et al., 2012) and also prone to
a large sampling variance. Riedelsheimer et al. (2012b) found models assuming a non-normal
distribution of genetic effects slightly superior for predicting metabolic traits with strong GWAS
signals explaining > 30 % of genetic variances. However the differences between the models
were only small which limits the use of such model comparisons for drawing inferences about
the genetic architecture of the trait of interest. GS models therefore provide only limited
biological insights into how the genetic make-up results in the variation of a trait.

Linking genetic variants for physiological traits back to chilling
sensitivity

As outlined in the general introduction, chilling sensitivity is an economically important trait
for which only little is known about its underlying genetic control. Because exposure to chilling
temperatures is expressed in an array of physiological responses in the plant, we aimed to
map the genetic factors underlying physiological component traits correlated with chilling
sensitivity. The detected QTL explained up to 12 % of the phenotypic variance for the measured
parameters, thus, demonstrating the feasibility of the approach.
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Figure 5.3: Strategies for using molecular component traits for dissecting and predicting complex
traits. Complex traits are deconstructed with e.g. mass-spectroscopy based profiling techniques into
genetically simpler regulated molecular component traits like metabolites or lipids. Genetic analysis of
them can reveal genetic signals for shedding light on the genetic regulation of the (correlated) complex
trait. As a complementary approach, the full amount of molecular profile data might be used in a
prediction model for predicting the complex trait. The statistical prediction model might be adopted
from fields such as machine learning or genomic selection and might further integrate several layers of
information including pedigrees, SNPs, copy number variants (CNVs) or knowledge from crop models
or climate data about the target environment.

However, relative growth rate in the field were in many cases not or only for specific heterotic
groups significantly correlated with the physiological parameters measured under controlled
conditions in growth chambers. Thus, drawing inferences from the genetic variants for those
parameters to early growth in the field remains highly speculative. On the other hand, early
growth in the field showed as expected a high level of genotype × environment interactions
resulting in QTL which are highly specific for a certain environment only and, thus, are not
suitable for marker assisted selection either.

For improving selection gain, we speculate that GS is the way to go here, too. For drawing
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inferences about biological processes underlying chilling sensitivity, the space of inferences from
the results of GWAS is limited to a single physiological process (such as photosynthetic perfor-
mance) in a single environment unless genotype × environment interactions can be successfully
controlled and stable relationships to chilling sensitivity in the field can be established.

General limitations of GWAS of component traits

Confounding with structure

The confounding of associations with population structure and cryptic relatedness is a well
known problem in GWAS (Astle and Balding, 2009). Yet, it appeared to be a smaller problem
for molecular component traits than for e.g. flowering time, a prominent example trait which
correlates strongly with population structure (Van Inghelandt et al., 2012). Meanwhile, it
has even been shown that the prominent flowering time locus dwarf8 which was published in
Nature Genetics in 2001 (Thornsberry et al., 2001) is most likely an artefact due to insufficient
control of population structure. This has become evident after reanalysis of the results from
Thornsberry et al. (2001) by the same authors of the original study (Larsson et al., 2013).

To overcome the problem of confounding with population structure in maize, the maize com-
munity has created the nested association mapping (NAM) population by crossing 25 diverse
lines to a common parent (B73) and developing ≈ 200 recombinant inbred lines from each cross
(McMullen et al., 2009). The NAM panel allows to perform joint-linkage association mapping.
This approach combines the advantages of LM (high power) with GWAS (high precision) while
breaking confounding with population structure by having a common parent for all crosses.
Meanwhile, the NAM population has been very effective in dissecting complex agronomic traits
although no major QTL were found for different traits ranging from kernel composition (Cook
et al., 2011) and leaf architecture (Tian et al., 2011) to various disease resistances (Kump et al.,
2011; Poland et al., 2011).

Epistasis

Classical GWAS with inbred lines as performed in this thesis research provides only estimates
of additive effects. Unfortunately, power to detect moderate sized two-way interactions is low
and extremely low for higher-order interactions. With increasing tests to be made, also the
significance threshold for controling the experiment-wise error becomes more stringent. In
addition, the number of tests to be made for all all two-way interactions rise for the 56k SNP
chip from 5.6 × 104 to 3.1 × 109 if all two-way interactions should be tested. This produces
enormous practical challenges requiring the development of new algorithms for efficient testing.

Given the natural complexity of biological pathways and gene regulatory networks, epistasis
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seems to be prevalent in nature. Yet, the relative importance of epistatic interaction effects
play a role is a question which still has to be resolved. For maize, the literature gives contra-
dicting answers to this question. For example, whereas Durand et. al. (2012) found a strong
contribution of epistasis in a major locus for flowering time, Mihaljevic et al. (2005) did not
find evidence for epistasis using generation mean and LM analysis for grain yield and grain
moisture.

In natural or diverse populations, empirical evidence points towards mainly additive genetic
variance (Hill et al., 2008). For example, Riedelsheimer et al. (2012b) found that fitting all
56k SNPs simultaneously in an additive regression model accounts for most of the heritability
of dry matter yield, plant height, and lignin content in a diversity panel of maize inbred lines.
However, Hill (2012) recently pointed out that such findings do not imply that gene action is
additive. Under the assumption of mutation-drift balance, the frequency density of alleles is
proportional to 1/[p(1−p)], i.e., U-shaped where p is the allele frequency. Thus, if at most loci
one genotype is likely to be very infrequent in the diversity panel subject to GWAS, epistasis
can contribute only little to the total phenotypic variance. This imbalance in allele frequencies
is no issue in biparental populations. Therefore, it has been suggested to favor classical LM as
the more appropriate tool for mapping epistatic interactions (Rafalski, 2010).

Rare variants

Empirical studies suggest that most alleles are rare in maize. For example, 30 % of the
polymorphisms between 27 diverse maize inbred lines were found to be unique to a single line
(Myles et al., 2009). Unfortunately, detecting rare variants in GWAS is difficult unless their
effect is very large (Rafalski, 2010).

For a given number of individuals and level of environmental variation, power to detect a QTL
with additive effect a on the trait is proportional to r2a2 where r2 is the squared LD correlation
between QTL and marker alleles (Hill, 2012). If a QTL is rare (p < 5 %) any SNP within
this QTL has been discarded because only markers with a minor allele frequency (MAF) > 5
% were used for GWA mapping in our studies to decrease the number of false positives. In
addition, the used marker panel was designed with the idea in mind that most practitioners
should be able to work with a high proportion of polymorphic SNPs. It is likely that most rare
SNPs were not represented in the used SNP panel. Thus, low frequent QTL would have been
only found if in LD with a nearby SNP showing a MAF > 5 %. However, only for 48.1 % of
the SNPs, there exists at least one SNP in strong LD (r2 > 0.8) in the vicinity. In addition,
the higher the MAF of an SNP, the lower the maximum LD with a rare variant in the vicinity.

Recently, Mackay et al. (2012) found an inverse relationship between allele frequency and
allelic effects detected with GWA mapping in Drosophila, i.e. less frequent variants showed
stronger allelic effects making them easier to detect even with lower r2 with genotyped SNPs.
However, Marjoram et al. (2014) pointed out that this finding is probably due to the fact that
the expected overestimation of effect sizes increases with decreasing allele frequency (Lynch
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and Walsh, 1998).

Increasing r2 between genotyped SNPs and rare variants could be achieved by more dense
genotyping platforms with a wider allele frequency distribution, especially around the MAF
cutoff used in GWAS. A currently available option to accomplish this in maize would be
genotyping-by-sequencing (Elshire et al., 2011). However, even if r2 would be high, the small
number of genotypes with the causal rare variant limit the power for testing the significance of
phenotypic differences between the allele classes using a standard t-test. In order to increase
the power of detecting rare variants in humans, it has been suggested to not only increase the
population size but also to use ’collapsing strategies’ which test the combined effect of multiple
rare variants (Bansal et al., 2010). Further research is necessary to investigate whether this
approach is also feasible in maize.

In conclusion, as pointed out by Rafalski (2010), classical LM with biparental populations
derived from contrasting inbred lines remains the easier method for mapping rare alleles such
as disease resistances or alleles introgressed from exotic germplasm. In the aforementioned
NAM population, variants unique to one of the founder lines can also be mapped within the
individual segregating population created by crossing the line to the common parent line B73.

Validation of QTL and candidate genes

Because GWAS is a data-driven approach which yields only statistical i.e. indirect evidence
for the association of a genomic region with the target trait, validation of the detected QTL are
necessary. Such validations can be (i) confirmative in different germplasm, or (ii) functional.
Failure of confirmative validation of detected marker-trait are often observed. A prominent
example is the aforementioned dwarf8 locus for flowering time (Andersen et al., 2005; Larsson
et al., 2013). Because associations are called significant if below a certain arbitrary significance
threshold, lack of QTL confirmation might be due to spurious associations because of a two
weakly chosen P -value threshold. Another reason might be insufficient control of population
structure or LD between unlinked loci. In addition, failure of confirmative validation might be
because of insufficient power in the validation population, QTL × environment interactions,
or QTL × genetic background interactions. The latter might only be alleviated by testing the
QTL allele effect in nearly isogenic backgrounds by marker-assisted introgression or genetic
engineering approaches.

In companion to confirmative validations, functional validations need to be conducted if the
biological basis underlying a QTL is of interest. With the availability of searchable genome
databases, candidate genes are searched with a preconceived idea about the underlying mecha-
nism which might, however, not be true. Thus, GWAS takes biological knowledge into account
only a posteriori (Marjoram et al., 2014). In addition, the SNPs on the used MaizeSNP50
BeadChip were selected to lie within gene-rich genomic regions (Ganal et al., 2011). As a
consequence, tens to hundreds of coded genes exist (or in most cases: are predicted to exist
using bioinformatic algorithms) within the region around the most significant SNP in which
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LD is sufficiently high.

Possible approaches for a functional validation include antisense methods or the production of
knock-out mutants for inducing loss-of-function point mutations in the candidate genes. For
metabolic QTL, a first approach would be measure the transcription level of the candidate
genes. Because the levels of many metabolites are assumed to be transcriptionally regulated,
it is likely that the transcription rate of the causative gene shows the same association as
the metabolite. This would be an additional line of empirical evidence pointing to the same
candidate gene.

Conclusions

The results of this thesis research demonstrate that the genotype-phenotype gap of highly
polygenic biomass-related traits can be successfully narrowed by the genetic analysis of ge-
netically simpler component traits from metabolic and lipid profiles. High levels of genotype
× environment interactions for chilling sensitivity were however found to limit the ability to
use physiological component traits to draw inferences about its genetic control. Our specific
conclusions are:

i In contrast to previous experiments in Arabidopsis, the developed sampling and random-
ization procedure allows to generate highly repeatable metabolic and lipid profiles from
a diversity panel of maize inbred lines grown under field conditions.

ii The maize leaf metabolome and lipidome is intensively structured with a correlation
pattern reflecting their functional grouping.

iii GWAS with 56k SNPs is able to unravel the genetic architecture of the maize leaf
metabolome and lipidome. At least some metabolites and lipids have a very simple
genetic architecture with individual SNPs explaining more than 30 % of genetic variance
in GWAS.

iv The lipidome shows a multilevel genetic control architecture similar as used in engineering
complex regulated mechanical systems.

v Functional, biological connections between genetic variants of molecular component traits
and agronomic traits are possible in some instances. Examples are enzymes in the mono-
lignol pathways detected for lignin precursors, which correlated with dry matter yield,
plant height, and dry matter yield. Interrelations and feedback loops seems to be present
in many instances.

vi Whereas GWAS of molecular component traits provides information about functional
relationships, it does not provide allelic effects of SNPs usable in marker-assisted selection
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programs for improving the polygenic agronomic traits. If the goal is merely to predict
the phenotypic value, the application of black-box genomic selection methodology with
either SNPs, molecular profiles, or both combined are promising tools to achieve this
goal.

vii QTL for physiological component traits of chilling sensitivity under controlled condi-
tions can be detected and plausible candidate genes assigned. However, connecting ge-
netic variants underlying these physiological components with early growth in the field
is hampered by insignificant correlations and large amount of genotype × environment
interactions. The complex and environment-dependent response of plants after expo-
sure to chilling temperatures challenges the genetic dissection and modeling of chilling
sensitivity with physiological component traits.
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Genome-wide association (GWA) mapping emerged as a powerful tool to dissect complex
traits in maize. Yet, most agronomic traits were found to be highly polygenic and the detected
associations explained together only a small portion of the total genetic variance. Hence, the
majority of genetic factors underlying many agronomically important traits are still unknown.
New approaches are needed for unravelling the chain from the genes to the phenotype which
is still largely unresolved for most quantitative traits in maize.

Instead of further enlarging the mapping population to increase the power to detect even
smaller QTL, this thesis research aims to present an alternative route by mapping not the
polygenic trait of primary interest itself, but genetically correlated molecular and physiological
component traits. As such components represent biological sub-processes underlying the trait
of interest, they are supposed to be genetically less complex and thus, more suitable for genetic
mapping. Using large diversity panels of maize inbred lines, this approach is demonstrated with
(i) biomass yield by using metabolites and lipids as molecular component traits and with (ii)
chilling sensitivity by using physiological component traits such as photosynthesis parameters
derived from chlorophyll fluorescence measurements.

In a first step, we developed a sampling and randomization scheme which allowed us to obtain
metabolic and lipid profiles from large-scale field trials. Both profiles were found to be inten-
sively structured reflecting their functional grouping. They also showed repeatabilities higher
than in comparable profiles obtained in previous studies with the model plant Arabidopsis
under controlled conditions.

By applying GWAS with 56,110 SNPs to metabolites and lipids, large-scale genetic associations
explaining more than 30 % of the genetic variance were detected. Confounding with structure
was found to be a problem of less extent for molecular components than for agronomic traits like
flowering time. The lipidome was also found to show a multilevel control architecture similar as
employed in controlling complex mechanical systems. In several instances, direct links between
candidate genes underlying the detected associations and agronomic traits could be established.
An example is cinnamoyl-CoA reductase, a key enzyme in the lingin biosynthesis pathway. It
was found to be a candidate gene underlying a major QTL found for several intermediates in the
lignin biosynthesis pathways. These intemediates were in turn found to be correlated with plant
height, lignin content, and dry matter yield at the end of the vegetation period. The different
signs of these correlations indicated that the relationships between pathway intermediates and
the final product is not simple. Directly modeling complex traits with individual component
traits may therefore require consideration of feedback loops and other interdependencies.
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Such connections were however found difficult to be established with physiological components
underlying chilling sensitivity. The main reasons for this were the weak correlations between
physiological components under controlled conditions and chilling sensitivity in the field as well
as high levels of genotype × environment interactions caused by the complex and environment-
dependent responses of maize after perception of chilling temperatures.

The approach explored in this thesis research uses component traits to gain biological insights
about the genetic control of biomass yield and chilling sensitivity evaluated in diverse popu-
lations of still manageable sizes. We showed that GWAS with 56k SNPs can identify large
additive effects for component traits correlated with these traits. For mapping epistatic in-
teractions and rare variants, classical linkage mapping with biparental populations will be a
reasonable complementary approach. However, controlling and modeling genotype × environ-
ment interactions remains an important issue for understanding the genetic basis of especially
chilling sensitivity. If the goal is merely to predict the phenotypic value in a given set of en-
vironments, black-box genomic selection methods with either SNPs, molecular profiles, or a
combination of both, are very promising strategies to achieve this goal.

28



7 Zusammenfassung

Die genomweite Assoziationskartierung (GWA) hat sich als hilfreiches Werkzeug zur genetis-
chen Analyse komplexer Merkmale in Mais erwiesen. Die meisten Merkmale von agronomischer
Bedeutung haben sich allerdings als hochgradig polygen herausgestellt, mit sehr vielen genetis-
chen Loci, die in der Summe nur einen Bruchteil der gesamten genetischen Varianz erklären.
Folglich sind die meisten genetischen Faktoren, welche wichtige agronomische Merkmale kon-
trollieren, immer noch unbekannt. Es besteht daher ein großes Interesse, Alternativen für
die Aufklärung der kausalen Kette zwischen den Genen einerseits und der phänotypischen
Ausprägung komplexer Merkmale andererseits zu finden.

In dieser Arbeit wird ein solcher alternativer Ansatz untersucht. Anstatt die komplexen
agronomischen Merkmale direkt zu kartieren, verfolgt diese Arbeit das Ziel, deren korrelierte
molekulare und physiologische Komponenten zu untersuchen. Da solche Komponenten meist
klar interpretierbare biologische Unterprozesse repräsentieren, sind sie höchstwahrscheinlich
genetisch einfacher kontrolliert und daher für GWAS besser als die meisten agronomischen
Merkmale geeignet. In dieser Arbeit wird dieser Ansatz mit Hilfer großer diverser Maispopula-
tionen an zwei Beispielen untersucht: (i) Biomasseertrag mit Metabolit- und Lipidprofilen als
molekulare Komponentenmerkmale, und (ii) Kältetoleranz mit physiologischen Komponenten-
merkmalen wie z.B. photosynthetische Leistungsparametern, die von Chlorophyllfluoreszenz-
Messungen abgeleitet wurden.

Als erster Schritt wurde eine Probenahme- und Randomisationsstruktur entworfen, die es
ermöglichte, Metabolit- und Lipidprofile von mehreren Hundert Maislinien unter Feldbedinun-
gen zu generieren. Die Wiederholbarkeiten der molekularen Komponenten überstiegen dabei
deutlich jene, welche für vergleichbarer Profile in Arabidopsis unter kontrollierten Bedingungen
ermittelt wurden. Die Profile zeigten eine innere Korrelatiosstruktur, welche die funktionelle
Gruppierung der Komponenten widerspiegelt.

Bei den genetischen Analysen der Metabolit- und Lipidprofile mittles GWAS mit 56.110 SNPs
wurden Assozationen mit Genorten gefunden, welche mehr als 30 % der gesamten genetis-
chen Varianz erklären. Der Einfluss der Populationsstruktur war dabei geringer als bei vielen
agronomischen Merkmalen, wie beispielsweise der Blühzeitpunkt. Für das Lipidom wurde
außerdem eine genetische Mehrebenen-Kontrollarchitetur gefunden, welche Ähnlichkeit mit
Steuereinrichtungen für komplexe mechanische Systeme besitzt. Direkte Verknüpfungen zwis-
chen Kandidatengenen der detektierten Assoziationen und den agronomischen Merkmalen
konnten in mehreren Fällen festgestellet werden. Bespielsweise wurde für mehrere Lignin-
vorstufen die gleiche genetische Assoziation mit Cinnamoyl-CoA Reductase gefunden – einem
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Schlüsselenzym der Ligninbiosynthese. Im Umkehrschluss korrelierten diese Ligninvorstufen
signifikant mit Pflanzenhöhe, Lingingehalt und Trockenmasseertrag am Ende der Vegetation-
periode. Die unterschiedlichen Vorzeichen dieser Korrelationen wiesen allerdings darauf hin,
dass die Verbindung zwischen Stoffwechselprodukten und Endprodukt komplex ist. Die Mod-
ellierung von komplexen Merkmalen mit molekularen Komponenten erfordert daher die Ein-
beziehung von gegenseitgen Abhängigkeiten und Rückkopplungsschleifen.

Solche Brücken zwischen einzelnen Genen und phänotypischen Merkmalen konnten allerd-
ings nur bedingt für Kältetoleranz etabliert werden. Die Gründe lagen hierfür sowohl in den
schwachen Korrelationen zwischen physiologischen Komponten unter kontrollierten Bedingun-
gen und Kältetoleranz im Feld, als auch in den bedeutenden Genotyp × Umwelt Interak-
tionen, welche durch die komplexen und stark umweltabhängigen Reaktionen von Mais nach
Einwirkung kühler Temperaturen hervorgerufen wurden.

Der in dieser Arbeit verfolgte Ansatz benützt Komponentenmerkmale, um Erkenntnisse über
die genetische Regulierung komplexer Merkmale in diversen Maispopulationen von handhab-
barer Größe zu erlangen. Unsere Ergebnisse zeigen, dass mittles 56 Tausend SNPs für die
Komponentenmerkmale Assoziationen mit starken additiven Effekten gefunden werden können.
Zur Kartierung von epistatischen Interaktionen oder niedrig-frequenten (rare) Varianten kann
die klassische Kopplungsanalyse mit biparentalen Populationen ein hilfreicher komplementärer
Ansatz sein. Ist das Ziel allerdings aussschließlich die Vorhersage der phänotypischen Leis-
tung unter gegebenen Umweltbedingungen, bieten Methoden der genomischen Selektion mit
SNPs, molekularen Profilen, oder beiden Biomarkern kombinert, einen erfolgsversprechenden
komplementären Ansatz.
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