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Summary 

Lactobacilli are Gram-positive bacteria used throughout the food industry as 

traditional starters for various fermented foods. Lactobacilli would be superior for 

recombinant enzyme production regarding the food safety demands since most of 

them are Generally Recognised As Safe (GRAS) organisms. The major advantages 

of Lactobacilli as food-associated microorganisms used for recombinant enzyme 

production are their safe and sustainable use as overall safety food-grade expression 

systems. In the work presented, Lactobacilli were studied in detail as food-grade 

expression systems for recombinant enzyme production. In a first analysis, the two 

pSIP expression systems, pSIP403 and pSIP409, were investigated to produce a 

hyper-thermophilic β-glycosidase (CelB) from Pyrococcus furiosus in Lactobacillus 

plantarum NC8 and Lactobacillus casei as hosts, respectively. Both Lactobacilli 

harbouring the pSIP409-celB vector produced active CelB in batch bioreactor 

cultivations, while the specific CelB activity of the cell-free extract was about 44% 

higher with Lb. plantarum (1,590 ± 90 nkatpNPGal/mgprotein) than with Lb. casei (1,070 ± 

66 nkatpNPGal/mgprotein). A fed-batch bioreactor cultivation of Lb. plantarum NC8 

pSIP409-celB resulted in a specific CelB activity of 2,500 ± 120 nkatpNPGal/mgprotein. A 

basal whey medium with supplements was developed as an alternative to the cost 

intensive MRS medium used. About 556 ± 29 nkat pNPGal/mgprotein of CelB activity was 

achieved in bioreactor cultivations using this medium. It was shown that both 

Lactobacilli were potential expression hosts for recombinant enzyme production.  

An additional approach was performed to produce a metagenome-β-galactosidase 

using Lb. plantarum NC8 with the pSIP expression system. Using this system, a quite 

low maximal galactosidase activity of only 0.18 nkatoNPGal/mgprotein was detected. A 13 

times higher activity of 2.42 nkatoNPGal/mgprotein was produced after the knock out of 

the interfering native Kluyveromyces lactis β-galactosidase in the well-known food-

grade K. lactis pKLAC2 expression system. Nevertheless, the best performing 

expression system for the recombinant production of the metagenome-derived 

enzyme was the Escherichia coli BL21 strain with a pET vector, resulting in the 

highest β-galactosidase of 82.01 nkatoNPGal/mgprotein. 

Beside the use of the pSIP expression system, a novel expression system for Lb. 

plantarum was developed. This system is based on the manganese starvation-

inducible promoter from the specific manganese transporter of Lb. plantarum NC8 
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which was cloned for the first time. The expression of CelB was achieved by 

cultivating Lb. plantarum NC8 at low manganese concentrations with MRS medium 

and the pmntH2-celB expression vector. A CelB activity of 8.52 µkatoNPGal/L was 

produced in a bioreactor. The advantages of the novel expression system are that no 

addition of an external inducing agent was required, and additionally, no further 

introduction of regulatory genes was necessary. The new promoter meets the 

general demands of food-grade expression systems.  

The glutamic acid racemase of Lb. plantarum NC8 was cloned and characterized in 

this work for the first time as a possible target for a food-grade selection system for 

this species. Glutamic acid racemases (MurI, E.C. 5.1.1.3) catalyse the racemisation 

of L- and D-glutamic acid. MurIs are essential enzymes for bacterial cell wall 

synthesis, which requires D-glutamic acid as an indispensable building block. 

Therefore, these enzymes are suitable targets for antimicrobial drugs as well as for 

the potential design of auxotrophic selection markers. A high expression system in E. 

coli BL21 was constructed to produce and characterize the biochemical properties of 

the MurI from Lb. plantarum NC8. The recombinant, tag-free Murl was purified by an 

innovative affinity chromatography method using L-glutamic acid as the relevant 

docking group, followed by an anion exchange chromatography step (purification 

factor 9.2, yield 11%). This two-step purification strategy resulted in a Murl sample 

with a specific activity of 34.06 µkatD-Glu/mgprotein, comprising a single protein band in 

SDS-PAGE. The purified Murl was used for biochemical characterization to gain in-

depth knowledge about this enzyme. Only D- and L-glutamic acid were recognised 

as substrates for the Murl with similar kcat/Km ratios of 3.6 sec-1/mM for each 

enantiomer.  

The findings in this study may contribute to further development and implementation 

of food-grade Lactobacilli expression systems for recombinant enzyme production. 

Furthermore, the results obtained may help to optimise and select hosts and 

expression systems for industrial enzyme production for the needs of the food 

industry.  
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Zusammenfassung 
Lactobacilli sind Gram-positive Bakterien, deren Einsatz als traditionelle 

Starterkulturen für verschiedenste Nahrungsmittel in der Lebensmittelindustrie weit 

verbreitet ist. Als GRAS-Organismen (``generally recognised as safe´´) eignen sie 

sich hinsichtlich Lebensmittelsicherheit hervorragend zur rekombinanten 

Enzymproduktion. Sie bieten als lebensmittelassoziierte Mikroorganismen große 

Vorteile für die rekombinante Enzymproduktion, da sie als sogenannte ``food-grade´´ 

Expressionssysteme sicher und nachhaltig eingesetzt werden können. Ziel der 

vorliegenden Arbeit war es, den Einsatz von Lactobacilli als food-grade 

Expressionssysteme für rekombinante Enzymproduktionen detailliert zu analysieren. 

In ersten Untersuchungen wurde dafür das pSIP Expressionssystem mit den 

Vektoren pSIP403 und pSIP409 zur rekombinanten Produktion der hyper-

thermophilen β-Glucosidase (CelB) aus Pyrococcus furiosus in Lactobacillus 

plantarum NC8 und Lactobacillus casei als Wirtsorganismen genutzt. Mit beiden 

Organismen konnte mit dem Vektor pSIP409-celB in Bioreaktor-Kultivierungen im 

Batch-Verfahren aktives Enzym produziert werden. Mit Lb. plantarum wurde dabei 

eine um 44% höhere CelB-Aktivität (1.590 ± 90 nkatpNPGal/mgProtein) im Vergleich zu 

Lb. casei (1.070 ± 66 nkatpNPGal/mgProtein) generiert. Durch ein Fed-Batch-Verfahren 

gelang es, die spezifische CelB-Aktivität im Bioreaktor mit Lb. plantarum auf ein 

Maximum von 2.500 ± 120 nkatpNPGal/mgProtein zu steigern. Als Alternative zu dem 

genutzten kostenintensiven MRS-Medium wurde ein basales Molkemedium mit 

Zusätzen entwickelt. Unter Verwendung dieses Mediums wurde eine maximale 

spezifische CelB-Aktivität von 556 ± 29 nkat pNPGal/mgProtein im Bioreaktor erzielt. 

Somit konnte gezeigt werden, dass sich Lactobacilli grundsätzlich als potentielle 

food-grade Expressionssysteme zur rekombinanten Enzymproduktion anbieten. 

In weiteren Untersuchungen erfolgte die Produktion einer Metagenom-β-

Galactosidase mit Lb. plantarum und dem pSIP409 Expressionssystem. Unter 

Nutzen dieses Systems konnte eine geringe maximale β-Galactosidase-Aktivität von 

nur 0,18 nkatoNPGal/mgProtein detektiert werden. Eine 13-fach höhere Aktivität der 

Metagenom-β-Galactosidase konnte in dem food-grade Expressionssystem 

Kluyveromyces lactis unter Verwendung des pKLAC2 Vektors, nach knock-out der 

störenden nativen β-Galactosidase, generiert werden. Als leistungsfähigstes 

Expressionssystem zur rekombinanten Produktion dieses Enzyms stellte sich in 
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weiteren Experimenten Escherichia coli BL21 mit pET Vektor heraus, dessen Einsatz 

zu der höchsten β-Galactosidase-Aktivität von 82,01 nkatoNPGal/mgProtein führte. 

Zusätzlich zu dem genutzten pSIP System erfolgte die Entwicklung eines neuen 

Expressionssystem für Lb. plantarum NC8. Dieses Expressionssystem basiert auf 

dem Manganmangel-induzierbaren Promotor eines spezifischen Mangantransporter-

Proteins von Lb. plantarum, welcher erstmalig zur rekombinanten Proteinproduktion 

genutzt wurde. Eine Expression der CelB konnte bei Kultivierung von Lb. plantarum 

mit dem pmntH2-celB Expressionsvektor in MRS-Medium bei niedrigen 

Mangankonzentrationen nachgewiesen werden. Es wurde in Bioreaktor-

Kultivierungen eine maximale CelB Aktivität von 8,52 µkatoNPGal/L erzielt. Die Vorteile 

dieses neuen Promotorsystems bestehen darin, dass keine Zugabe eines externen 

Induktors notwendig ist und dass keine weiteren regulatorischen Gene in den 

Wirtsorganismus eingebracht werden müssen. Somit erfüllt dieser neue Promotor die 

generellen Anforderungen an ein food-grade Expressionssystem. 

In weiteren Arbeiten wurde die Glutaminsäure-Racemase von Lb. plantarum als 

möglicher food-grade Selektionsmarker in der vorliegenden Studie erstmalig kloniert 

und charakterisiert. Glutaminsäure-Racemasen (MurI, E.C. 5.1.1.3) katalysieren die 

Racemisierung von L- und D-Glutaminsäure und sind essentielle Enzyme für den 

bakteriellen Zellwandaufbau. Daher eignen sie sich als mögliche Ziele für 

antimikrobielle Arzneimittel sowie zur Konstruktion möglicher auxotropher 

Selektionsmarker. Nach rekombinanter Expression der MurI von Lb. plantarum NC8 

in E. coli BL21 wurde das rekombinante Enzym durch eine Affinitätschromatographie 

mit L-Glutaminsäure als Kopplungsgruppe und folgender Anionenaustausch-

chromatographie gereinigt (Reinigungsfaktor 9.2, Ausbeute 11%). Dies resultierte in 

einer spezifischen MurI-Aktivität von 34,06 µkatD-Glu/mgProtein, und einer Einzelbande 

in der SDS-PAGE-Analyse. Eine detaillierte biochemische Charakterisierung zeigte 

unter anderem, dass nur D- und L-Glutaminsäure als Substrate mit gleichem kcat/Km 

von 3,6 sec-1/mM von der MurI akzeptiert werden. 

Die Resultate dieser Arbeit können für eine Weiterentwicklung und Implementierung 

von food-grade Lactobacilli Expressionssystemen von rekombinanten Enzymen 

beitragen. Außerdem können die erzielten Erkenntnisse zukünftig helfen, Wirts- und 

Expressionssysteme für die industrielle Enzymproduktion gemäß den Anforderungen 

der Lebensmittelindustrie auszuwählen und zu optimieren. 
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Chapter 1 

1. General Introduction and Thesis Outline 

 

 

Abstract 

In addition to the well-established recombinant microbial expression systems, such 

as Escherichia coli, Bacillus subtilis and others, increased attention has been paid to 

lactic acid bacteria, such as Lactobacilli, as expression host systems in the last few 

years. Lactobacillus spec. are a diverse genus of Gram-positive lactic acid bacteria 

which are widely used in the food industry. Different species of this genus have been 

applied since the 1990s as recombinant expression hosts. They have been used as 

so-called food-grade cell factories for the production of recombinant proteins, such as 

enzymes and antigens, as well as other pharmaceuticals. The major advantages of 

Lactobacilli as food-associated microorganisms used for recombinant protein 

production are the safe and sustainable use as overall safety food-grade expression 

systems. Some progress has been made over the past few years in the development 

of these promising bacterial expression systems, mostly on a laboratory scale. In this 

general introduction, an overview of some well-characterized tools for heterologous 

gene expression in Lactobacilli (host organisms, promoters, selection markers) is 

presented with a particular regard to food-grade approaches.    
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Lactic acid bacteria 

Lactic acid bacteria (LAB) are extensively used in the food industry for the production 

and the preservation of fermented foods. The LAB group includes about 20 different 

genera; those mainly important for technical applications in the food industry are the 

genera Lactococcus, Lactobacillus, Leuconostoc, Oenococcus, Pediococcus, and 

Streptococcus. LAB are a phylogenetically heterogeneous group of Gram-positive, 

facultative anaerobic microorganisms that are clustered due to similarities in their 

metabolic pathway and physiological characteristics [Canchaya et al. 2006; Claesson 

et al. 2007; Hugenholtz and Smid 2002; Mozzi 2010]. The genus Bifidobacteria, as 

another important genus for industrial application, also has some of their typical 

features, but is phylogenetically unrelated to them [Sonomoto and Yokota 2011]. All 

of those mentioned are characterized due to a good degradation of different kinds of 

carbohydrates, which are metabolized to the predominant end-product – lactic acid. 

Because of that, they have been used for thousands of years for the acidification of 

food and feed, which has a preservative effect. This results in a good growth and 

viability even at low pH values of about 3.5 to 4 [de Vries et al. 2006]. They are 

inhabitants in different environments with a high level of carbohydrates, such as 

different kinds of fermented foods, as well as plant-derived substrates. LAB are used 

for the production of a variety of food and feed raw materials and are added as 

starter or adjunct cultures in different food products, such as yogurt, cheese, 

sausages, and fermented vegetables [Bron and Kleerebezem 2011; Pedersen et al. 

2005]. They are involved in effecting the texture, flavour and shelf life of this food. 

Therefore, they are a common part of the human diet and generally harmless to 

humans. They do not generate endotoxins and are non-sporulating. Thus, they have 

a long history of safe use and many LAB have obtained the GRAS status 

[Bernardeau et al. 2008]. Additionally, specific LAB strains, mainly of the genus 

Lactobacillus, are known for their health-promoting capacity by the production of 

specific metabolites with a beneficial effect on healthy human gut microbiota and are 

used in probiotic products.  

The genus Lactobacillus belongs to the phylum Firmicutes, class Bacilli, order 

Lactobacillales, and family Lactobacillaceae. They are rod-shaped bacteria with 

either homo- or heterofermentative lactic acid production. Thereby, the major 

fermentation pathway of glucose resulting in the end-product lactate or lactate, 

ethanol and/or acetic acid in equimolar amounts. The genus Lactobacillus contains 
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over 100 recognised species and is characterized by a high level of diversity 

[Canchaya et al. 2006]. This diversity is reflected by the G + C content of the 

genomic DNA of species included in the genus. This range is twice the span usually 

accepted for one genus and between 32-55% [Axelsson 2004]. The high diversity of 

the genus Lactobacillus is also obvious in the different kinds of habitat of various 

species. Some Lactobacillus sp. appear to be highly specialized only in a limited 

number of habitats, such as Lactobacillus delbrueckii which is found only in dairy 

environments. Other species, such as Lactobacillus plantarum, have been isolated 

from a diverse range of habitats including vegetables, meat, fish, and dairy products, 

as well as the gastro-intestinal tract of humans. The high adaption to habitats rich in 

carbohydrates and other nutrients leads to a poor biosynthetic capability and to high 

nutrient requirements for the cultivation of Lactobacilli.  

Due to a broad range of carbon sources which can be metabolised, Lactobacillus sp. 

have been used for the production of lactic acid from whey for decades [Kulozik and 

Wilde 1999]. A lot is known about the cultivation of Lactobacilli in a bioreactor 

[Schiraldi et al. 2003]. The industrial importance of Lactobacilli leads to the fact that 

this LAB has been extensively studied and is nowadays one of the best investigated 

microorganisms. A huge amount of knowledge has been obtained in research fields, 

such as microbiology, physiology, genetics, gene modification, and metabolic 

engineering, by applying biochemical, molecular biological and bioinformatic 

techniques.    

For these reasons, interest in Lactobacilli as suitable production hosts for 

recombinant proteins has increased over the last two decades. Different kinds of 

applications are conceivable using recombinant LAB. They have, for example, 

potential as delivery systems for valuable proteins, such as antibodies and antigens, 

and are used as live vaccines [Diep et al. 2009]. Additionally, due to the particular 

demands of the food industry, Lactobacilli are desirable cell factories for the 

production of food-grade enzymes [Garcia-Fruitos 2012; Peterbauer et al. 2011]. All 

these reasons explain why different Lactobacilli expression systems have been 

developed recently.  
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Food-grade concept: Consideration of regulatory 

framework 

Novel applications of recombinant food-grade Lactobacilli as production hosts of 

proteins, enzymes or other molecules need a regulatory framework for the safe use 

of this organism [de Vos 1999a; Salminen et al. 1998; Sybesma et al. 2006]. 

Nevertheless, recombinant Lactobacilli are, even as a food-grade organism, a 

genetically modified organism (GMO) and their use in the food industry is, therefore, 

strongly regulated. Besides regulatory rules, different public opinions have been 

established globally about the use of GMO in food [Gruère and Rao 2007; Renault 

2002]. Within the United States of America there is only slight public resistance 

against it. In other areas of the world, such as Europe and Oceania, contrary public 

attitudes to using GMO for food production have been observed. The definition of 

“genetic modification” and GMO differs according to the geographic location and the 

legislative authority involved. In the USA, for example, a “genetic modification” is any 

alteration of the DNA sequence using any technique, and the approval depends on 

the characteristics of the resulting strain [FDA 2001]. The foods produced by 

organisms modified using recombinant DNA technology are indicated as 

“bioengineered foods” and the term GMO is not used [Pedersen et al. 2005]. In USA, 

genetically modified LAB are able to obtain GRAS status and have been on the 

market for several years. In contrast to that, no genetically modified LAB are on the 

market in Europe and the definition of GMO is quite different as well. In Europe, all 

organisms in which genetic material has been modified in vitro in a way that does not 

occur naturally are designated as GMO [EC 2001]. Contrary to that, GMOs in 

Oceania are defined as organisms in which any genetic material has been modified 

using in vitro techniques [Hobbs 2001]. Labelling is also quite varied in the different 

regions. Table 1 shows an overview of the different formalities in the context of the 

food industry.  
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Table 1: Guidelines for the use of GMO in food prod ucts in several regions 
[Carter and Gruère 2007] 

Area Definition GMO Product Labelling Authority 

China 

Organism in which DNA 
has been modified using 

any recombinant 
technology 

Yes, also if no novel 
DNA or recombinant 
protein is detectable 

Chinese Ministry 
of Science and 

Technology 
(MOST) 

Europe 

Organism in which DNA 
has been modified in a 
way that does not occur 

naturally by mating and/or 
natural recombination 

Yes, also if no novel 
DNA or recombinant 
protein is detectable,  

product threshold 
0.9% 

European Food 
Safety Authority 

(EFSA) 

Oceania 
Organism in which DNA 

has been modified by any 
in vitro technique 

Only when novel 
DNA or recombinant 
protein is detectable, 

otherwise not 
required 

Food Standards 
Australia New 

Zealand (FSANZ) 

United 
States 

Term not used; GMO 
foods are designated as 

bioengineered 

Only if food differs 
significantly from 

conventional 
equivalent 

Food and Drug 
Administration  

(FDA) 

       

In addition to the regulatory fundamentals of GMO and their application, some extra 

recommendations for the use of certain microorganisms in food production processes 

have to be fulfilled to ensure product safety. The GRAS status of the US FDA was 

the leading standard for this purpose in the past. All organisms used for food 

processing had to hold GRAS status. A long history of safe use was the basic 

requirement of the microorganism to get this status. In the last decade, the European 

Union introduced a similar system to the GRAS status of the FDA. Due to the fact 

that the term “long history of safe use” is indistinct, the EU’s system is 

unambiguously based on state-of-the-art microbiological, biochemical and molecular 

biological techniques [EFSA 2007]. This generic approval system, called Qualified 

Presumption of Safety (QPS), provides a more scientific, generic approval tool for 

use within the EFSA and is obligatory in the EU. All qualified microorganisms, without 

any properties that may be harmful for human health or the environment, and which 

have been introduced into the food chain are announced on a list of organisms which 

have obtained QPS status. This list, first established in 2007, is reviewed and 

modified by the EFSA annually via its panel on Biological Hazards (BIOHAZ) [EFSA 

2011].  
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Due to the fact that Lactobacilli are non-toxic, some of them are even probiotics with 

health promoting effects, and their usage in food production processes have existed 

for thousands of years, they have obtained either GRAS status and/or are a QPS 

organism. This has lead to an increased usage of Lactobacilli as recombinant 

expression hosts over the last decade. While the model LAB Lactococcus lactis was 

predominantly used in the early-1990s, in the last decade, more and more 

Lactobacilli-based systems have been developed [Kleerebezem et al. 1997; Konings 

et al. 2000; Mierau and Kleerebezem 2005].  

The use of GM-LAB-based expression systems requires the consideration of various 

specifications that should be met for a safe use in food. These considerations are 

summarised under the so-called “food-grade” concept. This term was established in 

the 1990s when the first LAB expression systems were developed. The theory 

behind the term “food-grade” describes what kind of genetic engineering in LAB 

could be appropriate for an intended usage in food. A strict definition of food-grade 

expression systems was published by Johansen [1999]. The most important criterion 

of these expression systems is primarily that the host strains used for genetic 

engineering should be safe, highly characterized, stable, and have the GRAS or QPS 

status. Only food-compatible selection markers should be used. Antibiotic resistance 

genes or markers have to be avoided, and any harmful, toxic or allergenic 

compounds should not be produced by the organism or be applied with the 

expression system. All genetic modifications should fulfil the criteria of self-cloning. 

Another important characteristic of food-grade systems is the ability for large scale 

industrial application for biotechnological purposes or in food production. 

Furthermore, food-grade modifications of LAB should result in chromosomal 

integrations in microorganisms that are stable in the gastro-intestinal tract if they 

might be consumed by humans. The strict food-grade definition declares that genes 

introduced in food-grade LAB need to be based on either genes obtained from 

species of the same genus, or from other genera of food microorganisms with GRAS 

or QPS status. In a broader definition, it is acceptable to use genes from non-GRAS 

or QPS donors during the construction process, if the DNA is removed completely in 

the final food-grade strain. This is in clear contrast to the current EC regulation about 

food enzymes and the guidance of the EFSA [EC 2008; EFSA 2009]. The EC 

regulation about food enzymes states clearly that, after accurate and detailed 
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evaluation of safety, each enzyme can be added to food after approval via a 

community list.  

Based on this food-grade concept, a large number of systems have been developed 

in the last two decades, beginning with the LAB model organism L. lactis, and were 

further applied for recombinant Lactobacilli as food-grade expression systems. 

Different kinds of Lactobacilli hosts, promoters and food-grade selection markers 

were developed [Diep et al. 2009; Morello et al. 2008]. All this work was focusing 

mainly on the application of Lactobacilli on a laboratory scale for the recombinant 

production of enzymes and on the use of recombinant Lactobacilli as live vaccines. 

Lactobacilli hosts for recombinant protein production 

The first step in genetic modification of an organism and its use as a recombinant 

host is the introduction of foreign genes into the genetic material of the 

microorganism by transformation. Since the first reports about transformation of 

Lactobacilli in the late-1980s and the early-1990s, several Lactobacilli have been 

used as host organisms for recombinant protein production [Aukrust and Blom 1992; 

Aukrust and Nes 1988; de Vos 1987; Natori et al. 1990]. Electroporation emerged as 

the most successful method for the introduction of foreign genes into different 

Lactobacilli. Additionally, protocols were also developed for the generation of several 

recombinant hosts using protoplast formation or even conjugation methods, both of 

them with only limited efficiency. Using these techniques, some Lactobacilli, such as 

Lb. acidophilus, Lb. casei, Lb. helveticus, Lb. plantarum Lb. reuteri, Lb. sakei, and 

Lb. pentosus, were analysed as organisms for heterologous protein production, 

beside the popular expression hosts, such as E. coli or others like the Gram-positive 

Bacilli strains, for example, Bacillus subtilis or L. lactis [Hashiba et al. 1992; Kok 

1996; Pouwels and Leer 1993; Wanker et al. 1995]. Many different proteins were 

successfully expressed in the different strains (Table 2). Different kinds of antigens 

from various origins were also produced in some Lactobacillus sp., which were 

summarized in recently published reviews and, therefore, are not listed here 

[Bermudez-Humaran et al. 2011; Tarahomjoo 2012; Wells and Mercenier 2008].  
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Table 2: Lactobacilli which have been used for the recombinant expressio n of 
proteins 

Strain Recombinant protein Yield* Induction Reference 

α-Amylase 1,154 nkat/L constitutive 
[Fitzsimons et 

al. 1994] 

Aminopeptidase N n. d. constitutive 
[Takala and 

Saris 2002] 

Aminopeptidase N 
53 nkat 

/mgprotein 
sppIP 

[Sorvig et al. 

2005] 

Chitinase 
0.42 

nkat/mgprotein 
sppIP 

[Nguyen et al. 

2012] 

Cholesterol Oxidase 
0.06 

nkat/mgprotein 
constitutive 

[Kiatpapan et 

al. 2001] 

 

Lb. plantarum 

 

 

β-galactosidase 
1,017 

nkat/mgprotein 
sppIP 

[Halbmayr et 

al. 2008] 

β-glucosidase 
2,500 

nkat/mgprotein 
sppIP 

[Böhmer et al. 

2012] 

β-glucuronidase 
1680 Miller 

Units 
sppIP 

[Sorvig et al. 

2005] 

Green fluorescent 

protein 
n. d. Nisin 

[Geoffroy et 

al. 2000] 

Oxalat Decarboxylase 
43.3 

nkat/mgprotein 
sppIP 

[Kolandaswa

my et al. 

2009] 

Malolactic enzyme 
368 

nkat/mgprotein 
sppIP 

[Schümann et 

al. 2012] 

 

Green fluorescent 

protein 
n. d. Nisin 

[Geoffroy et 

al. 2000] 

Cholesterol Oxidase 
0.015 

nkat/mgprotein 
constitutive 

[Kiatpapan et 

al. 2001] 
Lb. casei 

 

 β-glucosidase 
1,070 

nkat/mgprotein 
sppIP 

[Böhmer et al. 

2012] 

 L Levanase 8,335 nkat/L Inulin 
[Wanker et al. 

1995] 
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Strain Recombinant protein Yield* Induction Reference 

Xylose-isomerase n. d. D-Xylose 
[Posno et al. 

1991] 

Aminopeptidase N 
80 

nkat/mgprotein 
sppIP 

[Sorvig et al. 

2005] 

β-glucuronidase 
1590 Miller 

Units 
sppIP 

[Sorvig et al. 

2005] 

 

Lb. sakei 

β-galactosidase 
492 

nkat/mgprotein 
sppIP 

[Halbmayr et 

al. 2008] 

α-Amylase 
82 nkat/mL 

per OD600nm 
Nisin 

[Wu et al. 

2006] 

 

Lb. reuteri 

β-glucanase / 

Xylanase 

14.3/25.0 

nkat/mL 
Lactose 

[Liu et al. 

2007] 

Lb. acidophilus β-galactosidase 35 nkat/mL Lactose 
[Lin et al. 

1996] 

Lb. brevis 

Alcohol 

dehydrogenase / 

Pyruvate 

decarboxylase 

30/58 

nkat/mg 
Lactose 

[Liu et al. 

2007] 

Lb. bulgaricus Nuclease 

1250 µg 

digested 

DNA/mL 

constitutive 
[Chouayekh 

et al. 2009] 

Lb. helveticus α-Amylase n. d. Lactose 
[Hashiba et 

al. 1992] 

Lb. paracasei 
scFv antibody 

fragment 
500 µg/L constitutive 

[Martin et al. 

2011] 

Lb. paracasei Mannanase 90 nkat/mL constitutive [Yoon 2012] 

Lb. pentosus 
Chloramphenicol-

acetyltransferase 
n. d. Xylose 

[Lokman et al. 

1994] 

* denoted in nkat in order to make them comparable, if no conversion possible similar 
to that presented in the original publications  
sppIP: sakacin P inducing peptide; inducing peptide of 19 amino acids  
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Lactobacillus plantarum 

After L. lactis, Lb. plantarum seems to be the most popular lactic acid bacterium used 

for recombinant protein production with Gram-positive, food-grade Bacilli [Axelsson 

et al. 2012]. It is a highly versatile, facultative anaerobic and heterofermentative 

organism. During the last decade, Lb. plantarum has developed into one of the best 

characterized Lactobacilli and is considered as a model organism in the research of 

this genus [de Vries et al. 2006; Siezen and van Hylckama Vlieg 2011; Sturme et al. 

2007]. The high phenotypic diversity of this species is caused by the different kinds of 

habitat from which they were isolated, such as decaying plant materials, and also 

from the human vaginal and intestinal tracts, and faeces. Additionally, they were 

found in fermented foods, such as sauerkraut, sourdough, olives, kimchi, and 

fermented dairy products. They dominate in the later phase of the fermentation 

processes of these foods due to their high acid tolerance. The probiotic attribute of 

Lb. plantarum and the high survival rate during passage through the human gastro-

intestinal tract was studied, focusing on the beneficial effects on human health and 

possible use for delivery of pharmaceutical proteins [Pouwels et al. 2001]. Lb. 

plantarum WCFS1, originally isolated from human saliva, was, in 2003, the first 

Lactobacillus whose complete genome was fully sequenced and published 

[Kleerebezem et al. 2003; Siezen et al. 2012]. The 3.3 Mb genome is still the largest 

of any organism of this genus. The complete genomes of the strains Lb. plantarum 

NC8, JDM1, Stm-III, and ATCC14917 have been sequenced and show high 

homology > 98% [Axelsson et al. 2012; Wang et al. 2010]. Detailed genomic and 

proteomic studies were possible after the genome sequences became available. The 

most extensive model strains of Lb. plantarum are the strains WCFS1 and NC8, 

which have been used for the development of genetic tools, metabolic engineering 

and studies of bacteriocin production, as well as general fermentation.  

Lb. plantarum NC8 was originally isolated from grass silage in the 1980s [Aukrust 

and Blom 1992]. Nowadays, it is the most widely applied Lactobacillus strain for 

heterologous protein production [Diep et al. 2009; Peterbauer et al. 2011]. It has a 

number of favourable features as an expression host, including the fact that it is 

naturally plasmid free, shows a low protease activity and has the ability to secrete 

proteins. Additionally, it is known for good growth using different substrates due to a 

high metabolic capacity. The first expression of heterologous genes was reported in 

the 1990s [Fitzsimons et al. 1994] and has become even more popular in the 2000s. 
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Over the years, a number of promoters as well as selection systems have been 

constructed. In some cases, the recombinant protein level amounted to 

approximately 55-60% of the total intracellular protein of Lb. plantarum, which is one 

of the highest expression levels ever obtained with gene expression systems in lactic 

acid bacteria [Halbmayr 2008]. Other studies showed that the yields of recombinant 

protein were almost the same as those obtained in E. coli [Böhmer et al. 2012; 

Kolandaswamy et al. 2009]. Therefore, Lb. plantarum seems to be the most 

promising host organism and an interesting species for industrial and pharmaceutical 

protein production.  

 

Lactobacillus casei 

Lb. casei is not as well-studied and characterized as Lb. plantarum, but it is also a 

promising host for recombinant protein production. Lb. casei is facultative anaerobic, 

homofermentative and known as a good L-lactic acid producer [Ding and Tan 2006; 

Rodriguez-Diaz et al. 2012]. It is found in the human intestine and is most commonly 

used as a probiotic in the dairy industry. Because of that, there is good knowledge 

about the cultivation of this organism on an industrial scale. Its viability at a broad pH 

range is a reason, therefore, that it persists for a long time in the digestive tract. 

Some studies were performed with recombinant Lb. casei as live vaccines and 

vehicles for the delivery of medically relevant proteins to mucosal surfaces 

[Bermudez-Humaran et al. 2011]. The most widely used strain is the well-known Lb. 

casei BL23, which is a plasmid-free strain, whose complete genome sequence has 

been available with 3.1 Mb since 2010 [Maze et al. 2010]. BL23 is easily 

transformable and widely used for physiological, genetic and biochemical studies, 

and is a kind of model organism of the species Lb. casei. 

There are different kinds of expression systems described for the use of Lb. casei 

using constitutive and inducible promoters, as well as several selection markers 

[Binishofer et al. 2002; Böhmer et al. 2012; Hazebrouck et al. 2007; Rochat et al. 

2006; Takala et al. 2003]. Heterologous expressed proteins can be localized 

intracellularly or linked to the cell surface and, thereby, presented on the cell wall. 

Furthermore, recombinant proteins can be secreted directly out of the cell. However, 

it should be mentioned that the yields of recombinant proteins obtained produced 

with Lb. casei were most frequently very low and obtained only µg/L extracellularly or 

1-1.5% of total soluble protein intracellularly [Maassen et al. 1999].   
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Lactobacillus sakei  

Lb. sakei is a facultative anaerobic and heterofermentative food-associated and 

important LAB. The genome of the strain 23k was the first one sequenced 

completely, and revealed, with 1.8 Mb, a smaller size than that of Lb. plantarum or 

Lb. casei. Regarding the gene products, the Lb. sakei genome shares the highest 

level of conservation with Lb. plantarum [Chaillou et al. 2005]. Lb. sakei was isolated 

and described for the first time from Japanese rice wine [Katagiri et al. 1934], and it is 

found most commonly in fresh meat and fish, and also on fermented plants. 

Nowadays, it is widely used as a starter and adjunct culture in the meat industry, 

tolerating harsh conditions, such as high salt, low water activity, and low temperature 

and pH, and producing antimicrobial bacteriocins as biopreservation [McLeod et al. 

2010]. The bacteriocins produced by Lb. sakei belong to the so-called class II of 

bacteriocins and are small, heat-stable and antimicrobial peptides. An overview of 

some class II bacteriocins from Lactobacilli is given in Table 3. 

Table 3: Class II bacteriocins produced by Lactobacilli [Ennahar et al. 2006] . 

Bacteriocin Lactobacillus size sequence 

Sakacin A Lb. sakei 41 aa 
ARSYGNGVYC NNKKCWVNRG EATQSI

IGGM ISGWASGLAG M 

Sakacin P Lb. sakei 37 aa 
KYYGNGVHCG KHSCTVDWGT AIGNIG

NNAA ANWATGGNAG WNK 

Bavaricin A Lb. sakei 37 aa 
KYYGNGVHXG KHSXTVDWGT AIGNIG

NNAA ANXATGXNAG G 

Pediocin PA-1 Lb. plantarum 44 aa 
KYYGNGVTCG KHSCSVDWGK ATTCIIN

NGA MAWATGGHQG NHKC 

Plantaricin-A Lb. plantarum 23 aa AYSLQMGATA IKQVKKLFKK WGW 

Curvacin A Lb. curvatus 41 aa 
ARSYGNGVYC NNKKCWVNRG EATQSI

IGGM ISGWASGLAG M 

 

The production of these peptides is strictly controlled and highly induced by a 

mechanism based on quorum-sensing controlled by a secreted peptide pheromone. 

The mechanisms and promoters of the gene clusters coding for the bacteriocins 

sakacin A and sakacin P from Lb. sakei have been used for recombinant protein 

production since the beginning of the 2000s [Axelsson et al. 2003]. The so-called 

pSIP expression system developed for recombinant enzyme production is one of the 
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strongest expression systems known for Lactobacilli, and is used not only with Lb. 

sakei, but even more often with Lb. plantarum as host. Different kinds of proteins 

have been produced, usually with somewhat higher yields in Lb. plantarum compared 

to Lb. sakei [Diep et al. 2009]. Nevertheless, Lb. sakei also has a great potential and 

interest for the food industry and especially from the meat industry as a food-grade 

recombinant production host.  

 

Promoters used for recombinant expression in LAB 

It is necessary to obtain high expression levels of the desired recombinant proteins 

for an efficient industrial application of food-grade Lactobacilli. High-level production 

of recombinant proteins in Lactobacilli were obtained with either constitutive or 

inducible promoters and their regulatory elements [Axelsson et al. 2003; Pavan et al. 

2000; Pouwels and Leer 1993; Rud et al. 2006; Sorvig et al. 2005]. 

Generally, inducible expression is preferable in applications where the aim is the 

overproduction of a desired protein at high levels at a defined moment during 

fermentation, e.g. when toxic proteins are to be produced. In other cases, inducible 

expression systems are less suitable, e.g. during in situ production of recombinant 

proteins by Lactobacilli as live vaccines in the human body or when steady-state 

gene expression is required in metabolic engineering approaches. The expression 

system of choice for such applications may be constitutive promoters, even if they 

are usually characterized by lower expression levels.   

 

Constitutive Promoters 

Various expression systems using constitutive promoters have been described to 

date for different Lactobacilli [Gasson et al. 1994; Lizier et al. 2010; Pouwels and 

Leer 1993]. Research has been done to identify and isolate strong constitutive 

promoters from housekeeping genes. The level of expression from these constitutive 

promoters was demonstrated to be organism- and promoter-dependent [Chen and 

Steele 2005]. The use of native promoters was often beneficial, as the endogenous 

transcriptional signals are guaranteed to be recognised by the host strain 

[Stephenson et al. 2011]. A general functional promoter for Lactobacilli is as yet 

unknown because of the high diversity of the genus.  

One of the widely used constitutive promoters is the highly efficient promoter of the 

lactate dehydrogenase genes (ldh) from different Lactobacillus species [Gory et al. 
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2001; Pouwels et al. 1996]. Pouwels et al. showed a high expression level of the ldh 

promoter even in different kinds of Lactobacilli. The ldh gene is constitutively highly 

expressed in Lactobacilli due to the key role in the fermentation of lactic acid. 

Therefore, the ldh promoter was one of the first promoters used for recombinant 

protein expression in different kinds of Lactobacilli and is still today one of the 

strongest constitutive promoters known [Rud et al. 2006]. Several other promoters 

have been identified over the last decade for strong constitutive expression, such as 

the one of the surface layer protein A (PslpA) [Kahala and Palva 1999; McCracken et 

al. 2000] or the clpC gene coding for an ATPase (PcplC). Those constitutive 

promoters achieved amounts of recombinant protein up to 28% of total intracellular 

protein. Different synthetic promoters were also constructed and showed a good 

expression in Lb. plantarum. [Stephenson et al. 2011]. 

 

Inducible Promoters 

Extensive studies have been done on inducible promoters of Lactobacilli. These 

promoters express proteins when there is a specific stimulation from the 

environment. Regulated promoters are clearly favourable in industrial fermentations 

because of the possibility of controllable overproduction of proteins at any desired 

moment of cultivation [Diep et al. 2009; Kuipers et al. 1997; Peterbauer et al. 2011]. 

This specific induction of recombinant protein production may be advantageous, for 

example, when the protein is toxic or harmful for the production host. An additional 

benefit is the option to vary the intracellular amount of protein to reduce inclusion 

bodies or for detailed studies and control of metabolic pathways.  

 

Inducible Promoters without externally added inducing agents  

Considering the food-grade concept for gene expression systems in Lactobacilli, the 

specific stimulation or inducing agent used has to be non-toxic, safe and food-

approved. Therefore, it is highly desirable to obtain expression systems which may 

be inducible without adding an inducing agent, for example, by thermal or pH-shifts 

during cultivation [D'Souza et al. 2012; De Vos 1999b]. Different examples of these 

systems have been described in the last few decades, mainly for the well-known L. 

lactis system [Nauta et al. 1997; Sanders et al. 1997]. Similar approaches in 

recombinant protein production by stress conditions without the adding of external 

inducers are the so-called auto-inducing promoters. Using that kind of promoter, 
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recombinant expression starts during cultivation after limiting media components are 

depleted and starvation conditions are obtained. Auto-inducing expression systems 

have been developed for L. lactis and B. subtillis in recent years. These are based on 

phosphate or metal starvation transporter systems [Kerovuo et al. 2000; Sirén et al. 

2008]. Because phosphate is an essential component for bacterial growth, the 

promoters of these transport proteins are turned on under starvation conditions, and 

this can be used for recombinant protein expression. A similar expression system 

based on regulatory elements of high specific Zn2+ uptake during Zn2+ starvation was 

developed for recombinant protein production in L. lactis [Lull and Poquet 2004]. The 

only starvation inducible expression system applied in Lactobacilli is the auto-

inducing expression system based on the manganese starvation-inducible promoter 

from the specific manganese transporter of Lb. plantarum NC8 [Böhmer et al. 

2013b]. 

 

Inducible Promoters based on externally added agents  

Due to the fact that sugar utilisation has been extensively studied in Lactobacilli, and 

that the genes involved in sugar metabolism are strongly expressed and controlled, 

different kinds of sugar-inducible expression systems have been developed. 

Nowadays, induction of recombinant protein production can be obtained with several 

promoters and sugars as the inducer, such as lactose, xylose or trehalose [Duong et 

al. 2010; Lokman et al. 1994; Perez-Arellano and Perez-Martinez 2003].  

The strongest inducible promoters known for LAB up to now are based on 

quorum-sensing systems and need specific peptides as inducers. So far, only the 

lactoccocal-based so-called Nisin-controlled-expression (NICE) system has found 

widespread use as an inducible expression system and has also been realised on an 

industrial scale [de Ruyter et al. 1996; Diep et al. 2009; Kuipers et al. 1997; Mierau 

and Kleerebezem 2005; Mierau et al. 2005]. It has been derived from the molecular 

characterization of the production of the anti-microbial peptide nisin consisting of 34 

amino acids. Nisin is a food-grade peptide and can be used to induce the PnisA 

promoter, which has been used for successful recombinant expression in lactococci 

and other LAB, such as Lb. plantarum [Hazebrouck et al. 2007; Pavan et al. 2000].  

Another food-grade expression system based on quorum-sensing and used for 

induced gene expression in Lactobacilli is the so-called pSIP system. The first 

application of these quorum-sensing based expression system with the promoters of 
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the Sakacin gene cluster was described by Axelsson et al. [1998]. Subsequently, a 

series of versatile expression vectors based on regulatory elements of Sakacin A 

(pSIP300) and Sakacin P (pSIP400) was developed by the same group [Axelsson et 

al. 2003; Sorvig et al. 2003; Sorvig et al. 2005]. Figure 1 gives a schematic overview 

of the pSIP vectors. The functionality of the pSIP vectors have been analysed using 

several homologous and heterologous genes of interest, e.g. a β-glucoronidase from 

E. coli, an aminopeptidase from L. lactis, β-galactosidases from Lactobacilli, a 

chitinase from Bacillus licheniformis, or a β-glucosidase from Pyrococcus furious 

[Böhmer et al. 2012: Halbmayr et al. 2008; Nguyen et al. 2012; Sorvig et al. 2005]. 

Expression studies have been conducted with Lb. plantarum, Lb. sakei and Lb. casei 

as host strains. It was shown that the promoters are tightly controlled and very high 

expression levels were reached upon induction. Levels of recombinant protein up to 

46% of total intracellular protein were obtained with the PsppQ promoter of the 

Sakacin P gene cluster. This is almost twice as high as the highest level of 

recombinant protein obtained with constitutive promoters in Lactobacilli, which 

distinguishes the superiority of these inducible promoters. Additionally, the amount of 

inducing peptide (sppIP, a peptide consisting of 19 amino acids) needed for induction 

was extremely low, in the range of only 25-50 ng/L. A clear dose-response effect was 

observed at lower sppIP concentrations. A lesser yield of recombinant enzyme as 

well as lower control of the promoter’s tightness were analysed under the same 

conditions, using a nisin-based analogous (pSIP500) [Sorvig et al. 2003]. 

Nevertheless, it has to be mentioned that the pSIP vectors applied for recombinant 

expressions are non-food-grade expression systems due to the antibiotic resistance 

used for selection. An advantage of the pSIP vectors is the modular cassette system 

from which they are composed, which enables a fast and easy exchange of the non-

food-grade antibiotic resistance.   
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Figure 1: Schematic overview of the pSIP vector exp ression system (modified 
after Sorvig et al. 2005) 

Figure 1 illustrates the pSIP vector series map and the modular cassette system. The 
sppK and sppP genes encode a histidin kinase and response regulator, which are 
proteins of the regulatory system. The gene of interest is under the control of either 
the PsppA or PsppQ promoter from the sakacin A (sppA) or sakacin P (sppQ) gene 
cluster. The ori is derived from the pUC ori for E. coli and the 256rep for Lactobacilli. 
Restriction sites for an easy exchange of different modules are indicated. The 
selection marker ermB is the resistance to the antibiotic erythromycin used in those 
vectors.    

 

Food-grade selection markers  

A fundamental aspect of the concept of food-grade expression systems is avoiding 

antibiotic resistance markers, because of the risk of the transfer of antibiotic 

resistance to the human intestine microbiota [De Vos 1999b; Peterbauer et al. 2011]. 

Several potential selection markers have been developed that fulfil the requirements 

of the food-grade definition and avoid the use of any harmful or toxic substances. 

Resistance markers used in food-grade approaches can be classified, based on the 

method of selection, into dominant or complementation selection markers; this is 

explained in detail below.  

Dominant selection markers 

Dominant selection markers share the benefit that they can often be used species 

independently in different kind of Lactobacilli, similar to antibiotic selection markers. 
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They allow the direct selection of positive transformants and the stable integration of 

plasmids in host organisms as long as selection pressure is obtained. A widely 

applied approach of dominant selection is based on the capacity of Lactobacilli to 

utilise a large range of rare sugars. In addition to glucose, several Lactobacilli are 

capable of fermenting sugars such as D-xylose, inulin and others. Characterization of 

the genes and enzymes responsible for this unusual sugar fermentation were studied 

extensively and later on employed as dominant selection markers. This was possible 

due to the fact that not all species are able to use that sugar and the genes involved 

in their utilisation can be introduced in non-fermenting hosts without any homologues 

of these genes. The ability of D-xylose catabolism of Lb. pentosus, for example, is 

known to be coded by the genes xylRAB (D-xylose isomerase, D-xylose kinase and 

D-xylose catabolism regulatory protein). These three genes were successfully 

implemented in hosts like Lb. plantarum and Lb. casei and were used as selection 

markers similar to the antibiotic erythromycin [Posno et al. 1991]. A similar selection 

approach based on the scrA/scrB genes from Pediococcus pentosaceus coding for a 

sucrose transporter system can be used for dominant selection of recombinant LAB 

with sucrose [Leenhouts et al. 1998]. 

Another dominant selection marker applied in Lactobacilli is the nisI gene coding for 

the NisI protein responsible for nisin immunity of L. lactis [Takala and Saris 2002]. 

NisI is a lipoprotein and protects the cell against the antimicrobial peptide nisin. The 

actual mechanism of NisI-mediated nisin immunity is not fully clear. The constructed 

plasmid containing nisI was originally used for L. lactis and was constructed entirely 

of food-grade lactococcal DNA. It was also successfully transformed and applied in 

Lb. plantarum. The food-grade preservative agent nisin was used as a dominant 

selection marker. Among others, there is also a food-grade dominant selection 

marker based on a bile salt hydrolase gene bsh from Lb. plantarum which was 

demonstrated to be functional in Lactobacilli in a recent study. Within this approach, 

transformed cells showed normal growth in the presence of bile salt, while growth of 

wild-type Lactobacilli was significantly inhibited [Yin et al. 2011].  

 

Complementation selection markers   

Food-grade complementation selection markers are based on specific mutations or 

deletions in a chromosomal gene of the host organism encoding an essential step in 

a metabolic pathway. A copy of the knocked out gene can then be inserted in an 
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expression vector and, thereby, used as a selection marker after transformation. Due 

to the fact that a mutant with a specific knock out must be generated to use 

complementation selection markers, followed by the construction of particular 

expression vectors, a two-step protocol is always required. As a consequence, these 

selection markers are only applicable in specific host-vector combinations. The 

limited use and high effort of construction are clear drawbacks of that type of marker 

system. However, a benefit of selection by complementation is that no supplements 

in the cultivation medium are required to maintain selective pressure during 

fermentation, e.g. in food production processes [Hansen 2002]. 

The first expression systems described for this class of selection markers at the 

beginning of the 1990s are based on lactose complementation. In Lb. helveticus, a 

vector-based β-galactosidase was able to complement a chromosomal mutation in 

the gene coding for the β-galactosidase for more than 100 generations when 

cultivated in milk [Hashiba et al. 1992]. In another approach, a mutation in the lacF 

gene, coding for an essential protein of the lactose transport system in Lactobacilli, 

was used as a selection marker. Lactose-deficient mutants containing a complete 

deletion of the 0.3 kb lacF gene or even only a missense mutation in this gene were 

complemented by a vector-borne wild-type lacF gene [De Vos 1999b]. Several 

proteins were produced recombinantly using this marker with expression systems 

that comply with all food-grade requirements. 

Another example of a food-grade complementation selection marker in Lactobacilli is 

the alr gene encoding an alanine racemase [Bron et al. 2002; Nguyen et al. 2011a; 

Renault 2002]. The alanine racemase catalyses the interconversion of L-alanine to 

D-alanine, which is crucial for the cross-linking of peptidoglycan and, therefore, for 

cell wall biosynthesis. Thus, alanine racemase is described as an essential enzyme 

for the growth of prokaryotic cells. Knock out of the alanine racemase, encoded by a 

single alr gene in Lactobacilli, resulted in Lb. plantarum being strictly able to grow 

only in the presence of D-alanine [Hols et al. 1997; Palumbo et al. 2004]. Plasmids 

carrying a heterologous alr were able to complement the D-alanine auxotrophy in Lb. 

plantarum and selection was found to be highly stringent and stable over more than 

200 generations [Bron et al. 2002]. D-alanine is no common ingredient of complex 

substrates, which are often used in large-scale fermentation media, and therefore 

this expression system is a potential alternative for industrial application of 

recombinant food-grade Lactobacilli. Similar to the lacF marker, an expression 
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system that complies with all food-grade requirements was developed based on the 

pSIP vectors by an exchange of the antibiotic resistance with the alanine racemase 

as the selection marker [Nguyen et al. 2011a]. The usability of the markers was 

confirmed by overexpression of heterologous β-galactosidases and by comparison of 

the new vectors with the alanine racemase selection with the conventional pSIP 

vectors with antibiotic resistance. Another possible selection marker is the glutamic 

acid racemase, an enzyme similar to the alanine racemase essential for the cross-

linking of peptidogylcan. In a recent study, the glutamic acid racemase of Lb. 

plantarum NC8 was overexpressed, purified and characterized [Böhmer et al. 

2013a]. This enzyme may be another target to create auxotroph Lactobacilli strains 

for food-grade approaches in the future.   

 

Examples and prospects for application of recombina nt 

enzyme production in Lactobacilli 

Lactobacilli are receiving increased attention for their application as expression 

systems for the recombinant production of food-related industrial enzymes; this is 

additional to their usability to produce pharmaceutical proteins. In this section, some 

examples for the production of food-related enzymes will be presented and further 

prospect applications will be discussed. The usage of recombinant Lactobacilli in 

pharmaceutical applications has been reviewed in detail in already published 

literature and is not the topic of this work [Bermudez-Humaran et al. 2011; Wells and 

Mercenier 2008]. Different enzymes were produced in the last two decades using 

recombinant Lactobacilli (see Table 1). However, many of these examples are not 

fully food-grade as described above, for example, antibiotic resistance markers have 

often been used. Nevertheless, due to the fact they present proof of principle studies, 

these examples are presented here. 

The first recombinant enzymes produced in Lactobacilli were mainly so-called 

reporter genes, such as the β-glucoronidase GusA from E. coli or the 

aminopeptidase PepN from L. lactis [Kahala and Palva 1999; Mathiesen et al. 2004; 

Pouwels and Leer 1993]. These enzymes were used mainly because they have been 

studied intensively and enzyme activity can be easily determined with chromogenic 

substrates. In addition, they have the advantage that their activity is usually not 

present in Lactobacilli. Accessorily, they were expressed well in this genus using 
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different expression systems with high yields up to 30% of total intracellular protein. 

After analysing the expression performance and applicability of new expression 

systems using reporter genes, more recombinant produced enzymes were mostly 

food- or feed-related. An example of this is the expression of the phytase from B. 

subtillis in Lb. plantarum described by Kerouvo and Tynkynnen [1999]. Phytases are 

enzymes hydrolysing phytate, the major storage form of phosphorus in cereals and 

legumes. Due to the fact that different animals, like pigs and poultry, have no 

phytate-degrading enzymes in their intestine, it is important for the feed industry to 

increase the nutritive value of feed by use of phytases. An ancillary effect of the 

degrading of phytate in feed is the reduction of the environmental phosphate 

pollution.  

The expression of a B. subtillis phytase was carried out using a Lb. plantarum host 

and an inducible amylase promoter. The recombinant phytase was secreted and 

after overnight cultivation, 2 mg/L catalytically active phytase was present in the 

culture supernatant. In comparison to the expression levels needed for industrial 

enzyme production, this is a quite low amount of enzyme produced in Lb. plantarum. 

However, it is an interesting example of the production of an industrial enzyme in 

Lactobacilli. By using the recombinant host strain as a starter culture in fermented 

plant materials like silage, it may be applicable even with the low amount of 

recombinant enzyme.  

In a recent study, the enzyme produced was a 2,5-diketo-D-gluconic acid reductase 

from Corynebacterium glutamicum [Kaswurm et al. 2013]. The 2,5-diketo-D-gluconic 

acid reductase catalyses the reduction of 2,5-diketo-D-gluconic acid to 2-keto-L-

gulonic acid, an important precursor of L-ascorbic acid, and is thus essential for the 

biotechnological production of this important food-supplement. The 2,5-diketo-D-

gluconic acid reductase is usually produced recombinantly, mainly with E. coli as the 

host organism [Banta et al. 2002]. Kaswurm et al. analysed the alternative 

food-grade host systems L. lactis with the NICE system and Lb. plantarum with the 

pSIP vector system, and evaluated the effectiveness of both systems by cultivation in 

stirred-tank reactors of a 0.5 L scale. Both expression systems were able to produce 

the recombinant reductase, while the better production performance was observed 

with Lb. plantarum TLG02, a WCFS1 derivative, and the pSIP system. Reductase 

activity of about 262 U/Lfermentation broth was detected in Lb. plantarum, which was a 2.5 

times higher level than in L. lactis and is the highest heterologous expression level so 
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far reported for this enzyme. It was shown by optimisation of the fermentation 

processes that the yields of recombinant enzymes produced by Lactobacilli with the 

pSIP expression system can be increased further [Böhmer et al. 2012]. Accordingly, 

Lb. plantarum/pSIP might be an interesting alternative to E. coli expression systems 

for industrial 2,5-DKG reductase production. Due to the use of an alanine racemase 

complementation-based selection system, the experiments presented fulfilled all the 

requirements of food-grade recombinant enzyme production. Several other enzymes 

applicable in the food industry were produced in Lactobacilli. Examples are the 

heterologous production of a catalase by Lb. casei, which functions as protection 

against oxidative damage, the production of malolactic enzyme by Lb. plantarum, 

important for the ageing and stability of wine, or even the metabolic engineering of 

Lb. plantarum, which resulted in a strain producing high yields of the low calorie 

sugar sorbitol [Ladero et al. 2007; Rochat et al. 2006; Schümann et al. 2012].   

Most of the studies about food-grade Lactobacilli as a production host for 

recombinant enzymes focused on β-galactosidases as proteins of interest. Different 

β-galactosidases were produced with high yields [Halbmayr et al. 2008; Nguyen et al. 

2007; Nguyen et al. 2011a; Nguyen et al. 2011b]. In a recent work published by 

Nguyen et al., a full food-grade expression system was used for the recombinant 

production of Lb. reuteri β-galactosidase in the host organism Lb. plantarum using an 

expression vector based on the selection of alanine racemase with highest activities 

up to 109 U/mg [Nguyen et al. 2011a]. A clear difference in the yields obtained is 

described for β-galactosidases from different microbial sources. The expression level 

of the β-galactosidases from Lb. reuteri and Lb. acidophilus, for example, differed 

about 18 fold when using the same expression vectors and cultivation strategies, 

resulting in 144 U/mg for the Lb. reuteri β-galactosidase and significantly lower 3.94 

U/mg for the Lb. acidophilus β-galactosidase. The reason, therefore, was different 

mRNA stabilities resulting in different mRNA levels and translational effects. 

Nevertheless, Lactobacilli showed good expression levels and high yields in most 

cases when used for recombinant β-galactosidase production. The highest amount of 

recombinant intracellular protein ever produced with Lactobacilli was reported in a 

published study with up to 63% of total intracellular protein when producing the β-

galactosidase from Lb. delbrueckii in Lb. plantarum resulting in 196 U/mg [Nguyen et 

al. 2011b]. 
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β-Galactosidases are enzymes belonging to the class of glycoside hydrolases (EC. 

3.2.1.23) catalysing the hydrolysis of terminal non-reducing β-D-galactose residues in 

β-D-galactosides [Oliveira et al. 2011]. They are ubiquitous enzymes produced by a 

vast majority of microorganisms. β-Galactosidases are industrially important 

enzymes with a widespread use in the dairy industry. They are applied for the 

hydrolysis of lactose, the main carbohydrate in milk or milk-derived products. A 

significant part of the worldwide population is lactose intolerant, resulting from absent 

or reduced β-galactosidase activity in the small intestine, and so are not able to 

consume milk products. Additionally, due to their transgalactosylation activity, they 

can be applied for the synthesis of prebiotic sugars, such as galacto-

oligosaccharides (GOS) [Gosling et al. 2010]. Most of the commercially available β-

galactosidases used today in industry are derived from Kluyveromyces sp. or 

Aspergillus sp., which are known to produce high yields, making these enzymes cost 

effective, for example, by a rapid growth on lactose as a carbon source [Nor et al. 

2001]. β-Galactosidases can be produced on a large scale with a high yield giving 

them an important commercially acceptable price for application in the food industry. 

Beside the β-galactosidases of this species, the use of recombinant technologies for 

the production of β-galactosidases of different origin with high yields has emerged 

over the last few years.   

Several expression systems and host organisms, such as E. coli, Pichia pastoris and 

B. subtilis, or food-grade organisms, such as K. lactis or Lactobacilli, were applied for 

the recombinant production of β-galactosidases [Halbmayr et al. 2008; Oliveira et al. 

2011]. New β-galactosidases from the metagenome with superior properties have, by 

the use of recombinant production processes, also become available for the dairy 

industry [Wang et al. 2010]. Due to the drawbacks of commercially available 

β-galactosidases, for example, an inhibition by galactose, sodium or calcium, or less 

activity at low temperatures, new enzymes are highly desirable for industrial 

application.  

Metagenomics have emerged among classical microbial screening over the last 

decade, as an alternative approach to screen for new, up-to-date completely 

unknown enzymes with favourable characteristics [Lorenz and Eck 2005; Streit and 

Schmitz 2004]. Metagenomics concerns the extraction, cloning and analysis of the 

entire genetic complement of a habitat [Handelsman et al. 1998]. Only about 1% of 

all bacteria in the environment are cultivable under laboratory conditions, for which 
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reason, 99% of all microorganisms in the environment are unknown. The direct 

cloning of DNA from environmental probes for generating gene libraries, first 

described by Torsvik et al. in the 1980s, was the key to access these uncultivable 

organisms for biotechnological purposes [Torsvik et al. 1980]. Thus, metagenomics 

have developed since the 1990s to identify novel enzymes with superior 

characteristics for industrial applications. Since its introduction, metagenomics has 

identified a lot of formerly unknown biocatalysts with high potential for use in 

industrial processes. Different kinds of enzymes have been identified in 

metagenome-derived DNA libraries, e.g. dehydrogenases, oxioreductases, lipases, 

esterases, proteaeses, and β-galactosidases [Lorenz and Eck 2005; Wang et al. 

2010]. Screening approaches, therefore, were mainly function-based. These 

screening approaches used the detection of specific activities detectable in 

metagenomic libraries, for example, by the use of artificial chromogenic substrates. 

In the last few years, using next-generation sequencing techniques, a huge number 

of metagenome sequences have been made available and sequence homology-

based screening approaches developed using in silico analysis [Simon and Daniel 

2010]. Consequently, the metagenome has also developed as an interesting source 

of new enzymes for the food industry. However, it is mandatory to produce 

metagenomic-derived enzymes by the use of recombinant expression techniques 

with genetically engineered organisms. As described above, Lactobacilli may be the 

ideal host candidates for the recombinant production of that kind of new biocatalysts 

for food applications.   
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Thesis Outline 

The research described in this thesis was initiated to gain a better understanding of 

Lactobacillus sp. as food-grade expression systems for recombinant enzymes. Better 

cultivation strategies as well as new promoters and food-grade selection markers 

may lead to more efficient and economic approaches for recombinant enzyme 

production regarding the food-grade concept. All in all, the development and deep 

knowledge of Lactobacilli-based expression systems offer unprecedented 

opportunities for new products derived from GMO organisms. The results described 

in this thesis may aid new processes for recombinant enzyme production for food 

applications. 

Chapter 1  provides an introduction to the thesis and gives an overview of general 

aspects of lactic acid bacteria food-grade expression systems. Throughout this 

thesis, new processes were designed, promoters analysed and possible new 

selection markers investigated mainly with Lb. plantarum as the host organism. 

Almost all studies of Lactobacilli as recombinant expression systems were conducted 

to date only on a laboratory scale by shaking-flask cultivation, and there is still limited 

knowledge about the cultivation and application of food-grade Lactobacilli expression 

systems on a bioreactor scale. In chapter 2 , a detailed study about process 

optimisation in bioreactors with recombinant Lactobacillus sp. using the well-known 

pSIP expression system was carried out. About 60% higher yields of recombinant 

enzyme were obtained using fed-batch cultivation strategies. A comparison of the Lb. 

plantarum/pSIP409 expression system with the well-known E. coli BL21/pET 

expression system and the K. lactis/pKLAC2 expression system with a new 

metagenome-β-galactosidase as the target enzyme is presented in chapter 3 . 

Growth of Lb. plantarum under manganese-limiting conditions was investigated in 

chapter 4 , resulting in the development of a new kind of manganese starvation-

inducible promoter system for Lb. plantarum. This auto-inducing promoter system 

enables food-grade recombinant enzyme production without the need of the addition 

of specific inducers. In chapter 5 , the glutamic acid racemase (MurI) of Lb. 

plantarum NC8 was expressed, purified and characterised. This first study showed 

that the assigned murI gene of Lb. plantarum NC8 codes for a glutamic acid 

racemase. The racemase, after generations of knock out mutants, may be a food-

grade complementation selection marker.         
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Abstract  

Lactic acid bacteria (LAB) are used widespread in the food industry as traditional 

starters for various fermented foods. For recombinant protein production, LAB would 

be superiour with view from the food safety demands since most of them are 

Generally Recognized As Safe (GRAS) organisms. We investigated the two pSIP 

expression systems, pSIP403 and pSIP409 (Sørvig et al. 2005), to produce a hyper-

thermophilic β-glycosidase (CelB) from Pyrococcus furiosus in Lactobacillus 

plantarum NC8 and Lactobacillus casei as hosts, respectively. Both lactobacilli 

harbouring the pSIP409-celB vector produced active CelB in batch bioreactor 

cultivations (MRS medium) while the specific CelB activity of the cell free extract was 

about 44% higher with Lb. plantarum (1,590 ± 90 nkat/mgprotein) than with Lb. casei 

(1,070 ± 66 nkat/mgprotein) using p-nitrophenyl-β-galactoside (pNPGal) as the 

substrate. A fed-batch bioreactor cultivation of Lb. plantarum NC8 pSIP409-celB 

resulted in a specific CelB activity of 2,500 ± 120 nkat pNPGal /mgprotein after 28 h. A 

repeated dosage of the inducer spp-IP did not increase the enzyme expression 

further. As alternative for the cost intensive MRS medium, a basal whey medium with 

supplements (yeast extract, Tween 80, NH4-citrate) was developed. In bioreactor 

cultivations using this medium 556 ± 29 nkat pNPGal /mgprotein of CelB activity was 

achieved. It was shown, that both LAB were potential expression hosts for 

recombinant enzyme production. The pSIP expression system can be applied in Lb. 

casei. 
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Introduction 

Lactobacillus sp. are gram positive, facultative anaerobic microorganisms belonging 

to the diverse group of lactic acid bacteria (LAB) whose primary fermentation end 

product is lactic acid when grown on sugars. The genus Lactobacillus contains more 

than 100 species (Canchaya et al. 2006), and is used extensively for fermentation in 

the food industry. Lactobacillus sp. are added as starter or adjunct cultures in 

different food products such as yogurt, cheese, sausages and fermented vegetables 

(Konings et al. 2000). Additionally, several Lactobacillus sp. are applied as probiotic 

strains with a beneficial effect on healthy human gut microbiota. They do not 

generate endotoxins and are nonsporulating. Thus, many lactobacilli obtained the 

generally recognized as safe (GRAS) status (Bernardeau et al. 2008). Due to a broad 

range of  carbon sources, which can be metabolized, LAB were used for the 

production of lactic acid from whey for decades (Kulozik and Wilde 1999). There is a 

good knowledge about the cultivation of lactobacilli in a bioreactor (Schiraldi et al. 

2003). Therefore, the interest to employ lactobacilli for biotechnological applications, 

like production hosts for recombinant proteins, increased over the last decade. Here, 

recombinant lactobacilli demonstrated potential as delivery systems for 

pharmaceutical proteins like truncated antibodies or antigens and, especially to the 

needs of the food industry, as cell factories for the production of so called “food 

grade” enzymes (Renault 2002; de Vos 1999). All these reasons explain why 

different lactobacilli expression systems have been developed recently. Several of 

the expression systems for lactobacilli are based on the regulatory system of 

antimicrobial peptides called bacteriocins. The production of bacteriocins by 

lactobacilli is strictly controlled by strong inducible promoters and, regulated via 

quorum sensing mechanism based on a secreted peptide pheromone. A two-

component system is activated by action of this peptide pheromone. The first step of 

this control mechanism is the binding of the pheromone on a histidine kinase which is 

located in the cell membrane. By this the signal is transmitted to an intracellular 

response regulator, which gets phosphorylated and enhances the transcription of the 

operons for bacteriocin production. The best known bacteriocin based expression 

system is the so called NIsin Controlled Expression (NICE) system from Lactococcus 

lactis (Mierau and Kleerebezem 2005; de Ruyter et al. 1996). Another of these 

systems is the so called pSIP expression system (Mathiesen et al. 2004; Sørvig et al. 

2003). The pSIP system is one of the best performing expression system for 
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lactobacilli. It is derived from Lb. sakei and uses the regulatory elements from the 

class IIb bacteriocins, sakacin A when using the pSIP403 vector and sakacin P when 

using the pSIP409 vector. The production of the heterologous proteins is induced by 

an externally added peptide pheromone. Different kinds of enzymes like 

aminopeptidase N from Lb. lactis, β-glucoronidase from Escherichia coli and several 

β-galactosidases from Lactobacillus sp. were recombinantly expressed with high 

yields in Lb. plantarum and Lb. sakei, employing the pSIP systems (Halbmayr et al. 

2008; Sørvig et al. 2005). However, most expression studies were performed in 

shaking flask experiments and only limited results exist about the performance of the 

pSIP system in controlled bioreactor cultivations. 

In our work the ability of recombinant Lactobacillus sp. harbouring the pSIP 

expression system was investigated for the production of CelB (EC 3.2.1.21;  

β-glucosidase) from the thermophilic archae Pyrococcus furiosus in bioreactor 

cultivations. The recombinant production of CelB was already done previously in E. 

coli (Lebbink et al. 2001). CelB has a very high β-galactosidase side activity of about 

60% compared to its glucosidase activity. Therefore it can be used for the enzymatic 

formation of the prebiotic sugar lactulose by galactosylation of fructose via the 

transgalactosylation mechanism (Fischer et al. 1996; Mayer et al. 2010). Lactulose is 

a sugar with higher sweetness and better solubility than lactose. It is added as a 

prebiotic ingredient to infant formula products and has several possible applications 

in the pharmaceutical and food industry. It can be deployed in the treatment of 

chronic constipation and portal systemic encephalopathy and can be given to 

different milk products (Strohmaier 1998). For an application of CelB in the food 

industry it is important to use so called “food grade” expression hosts and vector 

systems as it is the case with Lactobacillus sp. and the pSIP system. 
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Material and methods 

Chemicals and Enzymes 

All chemicals were of analytical grade or higher and supplied from Sigma-Aldrich 

(Seelze, Germany) or Carl Roth (Karlsruhe, Germany). Bayolan PT ultra-filtrated 

whey powder was obtained from BMI Bayerische Milchindustrie eG (Landshut, 

Germany). T4 DNA Ligase and Hexokinase/Glucose-6-Phosphate Dehydrogenase 

(HK/G6P-DH) were purchased from Roche (Mannheim, Germany). All restriction 

enzymes were from New England Biolabs (Frankfurt, Germany). HotStar HiFidelity 

Polymerase was purchased from Qiagen (Hilden, Germany). 

Bacterial Strains and Culture Conditions 

Bacteria used in this study are listed in table 1. Escherichia coli XL1-blue was 

purchased from Stratagene (Santa Clara, USA), and grown in Luria-Bertani media at 

37°C with shaking (120 rpm). Lactobacillus plantarum NC8 was obtained from the 

culture collection of the Norwegian University of Life Science (Ǻs, Norway) and grown 

in MRS media according to De Man Rogosa and Sharp (De Man et al. 1960) or in 

whey based medium, developed in this work, at 30°C with shaking (90 rpm). 

Lactobacillus casei 2421 was obtained from the culture collection of the Department 

of Food Microbiology, Institute of Food Science and Biotechnology, University of 

Hohenheim. Lb. casei 2421 is originating from sauerkraut, and was grown in MRS 

media at 37°C with shaking (90 rpm). Agar plates we re solidified by adding 1.5% 

(w/v) agar. When required, erythromycin was added as follows: 200 µg/mL for E. coli 

and 10 µg/mL for Lb. plantarum and Lb. casei. Ampicillin was added when required 

with a concentration of 100 µg/mL for E. coli. The sakacin P inducing peptide (spp-IP) 

used for induction studies was obtained from EMC Microcollections (Tübingen, 

Germany) and it was added to the growth medium to accomplish a final concentration 

of 50 ng/mL. 
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Table 1 Bacterial strains and plasmids 
 

 

Cultivation in microtiter plate scale 

A whey based medium for Lb. plantarum was developed by using a microtiter plate 

equipped Bioscreen C automatic cultivator (LabSystems, Finland). Ultra-filtrated 

whey powder was used as carbon source instead of glucose. The solubilized ultra-

filtrated whey (UFW) powder was dissolved in water, the solution heated up for 15 

min to 90°C and centrifuged at 8000 g in order to separate from the denaturated 

protein. After that, the other supplements were added to the UFW-medium and it was 

autoclaved. The following components and concentrations were used: Ultra filtrated 

whey (30-100 g/L), yeast extract (0-5 g/L), MnSO4 (0-0.05 g/L), TWEEN 80 (0-1 g/L) 

and NH4-citrate (0-2 g/L). For details of media composition see results section. 

Cultivation was done at 30°C with continuous shakin g in microtiter plates. 

Determination of growth was done in 250 µL scale. 240 µL of the autoclaved medium 

Strains and plasmids Characteristics Source or reference 

E. coli XL1 Host strain Novagene 

Lb. plantarum NC8 
Host strain, silage 

isolate, plasmid free 
(Axelsson et al. 2003) 

Lb. casei 2421 
Host strain, sauerkraut 

isolate, plasmid free 
Our institute 

pLUW511 
pET9d derivate carrying 

CelB gene 
(Lebbink et al. 2001) 

pLUW511_KpnI 
Source of CelB gene 

with NcoI and KpnI sites 
This work 

pSIP403 
p256rep/pUC(pGEM)ori; 

PsppA::gusA; EmR 
(Sørvig et al. 2005) 

pSIP409 
p256rep/pUC(pGEM)ori; 

PorfX::gusA; EmR 
(Sørvig et al. 2005) 

pSIP403-celB 
p256rep/pUC(pGEM)ori; 

PsppA::celB; EmR 
This work 

pSIP409-celB 
p256rep/pUC(pGEM)ori; 

PorfX::celB; EmR 
This work 
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were inoculated with 10 µL of an overnight starting tube culture in the respective 

medium. Four wells were used as quadruplicate testing of each media.  Optical 

density at 600 nm (OD600nm) was measured and readings for each well were taken 

every 15 min for 16 h. 

Preparation of Plasmids, Cloning and Transformation 

The lactobacilli expression vectors pSIP403 and pSIP409 were kindly provided by Dr. 

Lars Axelsson, MATFORSK Norwegian Food Research Institute (Ǻs, Norway). 

Construction of the expression vectors pSIP403-celB and pSIP409-celB was done 

using E. coli XL1-blue and standard molecular biology techniques (Ausubel 1994). 

Plasmids used in this study are listed in table 1. The celB gene was translationally 

cloned to the promoters of the pSIP403 and pSIP409 vectors using the NcoI site. 

Cloning of the CelB gene was done using NcoI and KpnI restriction sites. The 

pLUW511 vector, kindly provided by Dr. Kengen, University of Wageningen, was the 

source of the celB gene. The KpnI restriction site was constructed in the pLUW511 

vector by exchange of the BamHI site through quick change PCR using 

pLUW_KpnI_fw (5’-CGGGCTTTGTTAGCAGCCGGTACCCTACTTTCTTGTAAC) 

and pLUW_KpnI_rev (5’-GTTACAAGAAAGTAGGGTACCGGCTGCTAACAAAGCCC 

G) Primer. The PCR was done with an initial denaturation step of 95 °C for 5 min, 

followed by 14 cycles of denaturation at 95°C for 1 5 sec, an annealing at 52°C for 1 

min and elongation at 68°C for 12 min.  This result ed in the pLUWKpnI plasmid after 

DpnI digestion and transformation.  It was used as source of the CelB gene to 

construct pSIP403-celB and pSIP409-celB expression plasmids. The plasmids were 

transformed into E. coli. Plasmid DNA was purified from E. coli by the QIAprep Spin 

Miniprep Kit from Qiagen (Hilden, Germany) and subsequently transformed into 

lactobacilli like described in literature (Aukrust and Blom 1992). After electroporation 

positive clones were selected by plating on MRS agar containing 10 µg/mL 

erythromycin and incubation for 24-48 h at the required temperatures under 

anaerobic atmosphere using an anaerobic jar and Anaerocult A reagent from Merck 

(Darmstadt, Germany). Plasmid DNA was purified from overnight cultures of 

lactobacilli after centrifugation (13000 g, 10 min, 4°C) by incubation of the cells for 1 

h at 37 °C with 1 ng/mL Lysozyme and 50 U/mL Mutano lysin. Lactobacilli DNases 

were denaturated for 20 min at 70°C, following by t he QIAprep Spin Miniprep Kit from 

Qiagen according to the manufacturer. 
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Expression experiments in shaking flask 

First expression experiments were done in baffled shaking flasks (500 mL) under 

aerobic conditions. Freshly prepared lactobacilli clones were grown over night in test 

tubes (5 mL volume) and transferred to 50 mL MRS Medium, pH 6.4, with 

erythromycin to an OD600nm about 0.1 at 30°C like described above.  

Induction was done with 50 ng/mL spp-IP at different optical densities to find the best 

expression conditions. The best performing expression times were analyzed by 

harvesting the cells at different times. After centrifugation (10 min, 8000 g) the cells 

were washed and resuspended in sodium acetate buffer (50 mM, pH = 5.0) before 

disruption. Cells were disrupted by grinding with glass beads (diameter 0.1-0.11 mm) 

using a bead mill from Rentsch (Haan, Germany). Cell free extract (supernatant) was 

obtained after separation the cell debris by centrifugation (10 min, 8000 g, 4°C).  

Fermentation experiments in bioreactor 

Expression experiments were continued in a Multifors parallel bioreactor system from 

Infors (Bottmingen, Switzerland) in 500 mL working volume. The lactobacilli were 

cultivated at 100 rpm, N2 gassing < 0.1 vvm (volumegas per volumemedium
 and min). 

The pH was controlled at pH = 6.45 by addition of 1 M NaOH. The experiments were 

performed in batch and fed-batch mode. The latter with addition of glucose to a final 

concentration of ≥10 g/L at different periods of cultivation when the glucose 

concentrations depleted below 2 g/L. Induction was done at OD600nm = 0.3 with 50 

ng/mL spp-IP. Samples were withdrawn throughout the fermentation to analyse 

biomass, carbon source as well as CelB activity. Lactobacilli precultures were grown 

over night in test tubes (5 mL volume), then transferred into 50 mL appropriate 

medium in shaking flasks and grown over night (MRS-Ery or UFW-Ery). The 

bioreactor was inoculated with 50 mL of this overnight cultures. The cells were 

harvested and disrupted like described above. 

Analytical Methods 

Cell growth was monitored by measuring the optical density at 600 nm. Biomass was 

quantified gravimetrically as cell dry weight of cells (CDW). Samples were 

centrifuged, twicely washed with saline, and dried in pre-weighted tubes at 40°C at 

10 mbar in a RVC 2-33 IR vacuum centrifuge from Christ (Osterode, Germany). 
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Protein concentrations were determined by the method of Bradford with bovine 

serum albumin as standard (Bradford 1976).  Expression of CelB was analyzed by 

SDS-PAGE using  12% polyacrylamid gel according to the method of Laemmli 

(Laemmli 1970). Therefore 5 µg of protein were loaded onto a gel, separated, and 

stained with Coomassie blue R250 like described by Fairbanks (Wong et al. 2000). 

The glucose concentrations were enzymatically determined with HK/G6P-DH-test kit 

by a photometric assay at 340 nm in microtiter plates, following the manufacturers 

protocol for the D-glucose/D-fructose test kit (R-Biopharm AG, Darmstadt, Germany; 

product code 10 139 106 035). Lactose concentrations from ultra filtrated whey 

based medium were analyzed by HPLC. This was done using a ThermoFinigan 

Surveyor system (degaser, LC pump, autosampler ) equipped with a Ca2+ column 

(300 mm x 7.8 mm Rezex, Phenomenex, Aschaffenburg, Germany) at 85°C with a 

Sedex 75 evaporative light scattering detector (Sedere, France). Elution was done 

isocratic with water and a flow rate of 0.5 mL/min. 

Enzyme activity measurements 

CelB activity (EA) was determined in 50 mM sodium acetate buffer, pH 5.0, using p-

nitrophenyl-β-D-galactopyranoside (pNPGal) as substrate at 75 °C (1 mL scale) as 

described previously (Mayer et al. 2004). Prior activity determination, the cell free 

extracts (see above) were heat denaturated for 15 min at 75 °C and the interfering 

heat-labile host proteins were precipitated by centrifugation (10 min, 8000 g, 4°C). 

Afterwards 100 µL of the clear enzyme solution was added to the substrate solution 

(25 mM pNPGal). Both solutions were pre-heated for 10 min at 75 °C separately. The 

release of p-nitrophenol was detected photometrically over a time period of two 

minutes at 405 nm using a temperature controlled cuvette in a spectrophotometer 

(Ultrospec 3000, GE Healthcare, Freiburg, Germany). CelB activity was calculated 

from the slope of the straight line with the molar absorption coefficient of 0.523 

L/mmol/cm and was done at least three times. One nanokatal was defined as the 

amount of enzyme that catalyzed the release of 1 nmol of p-nitrophenol from pNPGal 

per second. 
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Results 

Construction of expression vectors and generation of  recombinant 

lactobacilli  

In this study the CelB gene was cloned in the pSIP403 and pSIP409 vectors by 

exchanging the gusA gene, present in these vectors, to obtain the pSIP403-celB and 

pSIP409-celB vectors (see table 1). The source of the CelB gene was the pLUW511 

E. coli expression vector. The required NcoI restriction site was present in the 

pLUW511 vector, the missing KpnI site was constructed by a quick change PCR 

resulting in pLUW511_KpnI vector. Out of this vector the CelB gene was cloned in 

the pSIP expression vectors. Construction and storage of the vectors was done 

initially in E. coli XL1. Lactobacilli competent cells were transformed by 

electroporation and were plated for selection on MRS-Erythromycin medium. Positive 

clones were analyzed by plasmid isolation and restriction with NcoI and KpnI 

resulting in a 1.4 kb fragment of the CelB gene. These positive clones were chosen 

for further expression experiments. 

Expression of CelB in shaking flask experiments 

First expressions of CelB were done using Lb. plantarum NC8 (Halbmayr et al. 2008; 

Sørvig et al. 2005) and either the vector pSIP 403-celB or pSIP409-celB under the 

same cultivation conditions in 50 mL scale (MRS medium, 30°C, starting pH 6.45, 

aerobic). Both vectors contained different promoters PsppA and PorfX, respectively, 

which were investigated for recombinant CelB production. The expressions were 

induced by 50 ng/mL spp-IP at an OD600nm of 0.3, followed by cell harvest at an 

OD600nm of 1.8. The cells harbouring the pSIP409-celB plasmid reached a higher 

specific β -galactosidase activity of 170 nkatpNPGal / mgprotein in comparison to the cells 

harbouring pSIP403-celB with 151 nkatpNPGal / mgprotein. Thus, for further expression 

experiments the pSIP409-celB vector was chosen. The moments of induction and of 

harvesting were varied (table 2). The best result was obtained when the time 

between induction (OD600nm 0.3) and harvesting (OD600nm 6.0) was longest (6 h). 

Here, the specific CelB activity reached 426 nkatpNPGal / mgprotein. 
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Table 2 Specific β-galactosidase activities of CelB in cell free extr acts of Lb. 
plantarum NC8 harbouring pSIP409-celB plasmid  

 

Production of CelB in bioreactor experiments 

For the bioreactor cultivations of the lactobacilli a parallel bioreactor system 

(Multifors, 500 mL working volume, 100 rpm) with pH control (pH 6.45) and anaerobic 

gassing (0.1 vvm N2) was used. 

First the CelB production using the recombinant Lb. plantarum NC8 pSIP409-celB 

was assigned from shaking flask (see above, 30°C) t o the anaerobic bioreactor 

system. The induction with 50 ng/mL spp-IP was done at an optical density of 0.3 

again. The batch bioreactor cultivation led to an increase of biomass up to an 

OD600nm ~12, equal to 4.8 g cell dry weight/L after 15 hours, when the glucose was 

consumed and the stationary growth phase was reached. This was a two-fold 

increase of biomass in comparison to the shaking flask experiments. The maximal 

specific growth rate for Lb. plantarum was determined with 0.42 h-1, equal to a 

doubling time of 1.6 h. The cells were harvested, disrupted and, the obtained cell free 

extract reached a specific CelB activity of about 1590 ± 90 nkat pNPGal /mgprotein. This 

was ca. 3.7-fold of CelB activity in comparison to the shaking flask experiments. 

As a novel and alternative expression host for the recombinant production of 

enzymes Lb. casei was implemented with the pSIP-vector system, to our best 

knowledge for the first time. Lb. casei was selected because of good results in 

preliminary expression studies in our laboratory (data not shown). The Lb. casei 

species is used in many food applications for dairy products as starter and probiotic. 

The cultivations of Lb. casei pSIP409-celB were done accordingly to Lb. plantarum in 

a bioreactor (see above), but at 37°C, that is the optimum temperature for Lb. casei. 

Figure 1 illustrates the cultivation of Lb. casei pSIP409-celB. After 4 hours cultivation 

time CelB activity was detected in the cell free extract prepared (see material and 

OD600nm 

induction harvest period of induction [h] specific activity [nkatpNPGal/mgprotein] 

0.3 1.8 2.5 169  

0.3 6.0 6 426  

1.0 6.0 4 245  
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methods). The highest specific CelB activity of 1070 ± 66 nkat pNPGal /mgprotein was 

measured after 10 h cultivation time, which was about 69% compared to the Lb. 

plantarum host system. However, the functionality of the pSIP-vector system in Lb. 

casei was successfully demonstrated. Compared with the Lb. plantarum NC8 

pSIP409-celB batch cultivation (see above), Lb. casei pSIP409-celB reached the 

stationary growth phase faster after ca.10 h of cultivation (see figure 1). The OD600nm 

came up to a value of ~13, equal to the same biomass of 4.8 g cell dry weight/L as 

with Lb. plantarum pSIP409-celB in the standard MRS medium. Thus, in difference to 

Lb. plantarum, the maximal specific growth rate of Lb. casei was 0.59 h-1 (doubling 

time of 1.2 h). Because in batch cultivations the higher CelB activities were achieved 

with the Lb. plantarum pSIP409-celB expression system we investigated this 

expression system further. 

 

Figure 1 Recombinant production of CelB from batch fermentation of Lb. casei 
pSIP409-celB with MRS medium at 37°C 

(Open triangle: OD600nm; filled circle: glucose concentration; bars: specific CelB 
activity, error bars indicate the standard deviation) 
 

Due to the fact, that the highest CelB activities were obtained at the beginning of the 

stationary growth phases of the recombinant lactobacilli, we presumed a better 

performance of the recombinant CelB production by an extended growth phase and 



2. Recombinant production of hyperthermostable CelB 54 

at higher biomasses. Thus we cultivated Lb. plantarum pSIP409-celB using a fed-

batch strategy. The conditions were as described before (see above, 30°C). Now, a 

sterile glucose solution (400 g/L) was injected into the bioreactor when the glucose 

concentration depleted to 2 g/L in order to raise the glucose concentration of above 

10 g/L again. The fed-batch cultivation of Lb. plantarum pSIP409-celB is shown in 

figure 2.  

 

Figure 2 Recombinant production of CelB from fed-ba tch fermentation of Lb. 
plantarum pSIP409-celB with MRS medium at 30°C 

(Open triangle: OD600nm; filled circle: glucose concentration; bars: specific CelB 
activity, error bars indicate the standard deviation, arrows indicate glucose feed) 
 

The stationary growth phase was reached after 28 hours although the glucose 

concentration was still at about 14 g/L. So, one or more of the essential complex 

medium components (e.g. amino acids, vitamins) of the MRS medium was consumed 

and further growth of the cells was stopped. At this time a biomass of about 7.0 g cell 

dry weight/L and an OD600nm = 22.5 was determined. The highest specific CelB 

activity of 2500 ± 120 nkat pNPGal /mgprotein was measured at the beginning of the 

stationary growth phase after 28 hours. This value was about 57% more compared to 

the batch cultivation. After 38 hours of cultivation the glucose was nearly consumed 

and the specific CelB activity of the cells decreased to 2210 ± 90 nkat pNPGal /mgprotein.  
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The high level of CelB expression by Lb. plantarum pSIP409-celB was also proven 

by gel electrophoresis experiments (SDS-PAGE). Figure 3 shows the SDS-PAGE 

from samples of the cell free extracts of the wild type Lb. plantarum (lane 1) and of 

the Lb. plantarum pSIP409-celB (lanes 2 and 3). The overexpressed CelB was the 

visible protein band at the expected molecular mass of about 56 kDa. 

M    1      2      3

60 kDa
50 kDa CelB

M    1      2      3

60 kDa
50 kDa

M    1      2      3

60 kDa
50 kDa CelB

 

Figure 3 SDS-PAGE of intracellular protein producti on of Lb. plantarum  
M: Molecular weight marker; lane 1: Lb. plantarum wild type (5 µg); lane 2: Lb. 
plantarum pSIP409-celB from fed batch cultivation after 28 h (5 µg); lane 3: Lb. 
plantarum pSIP409-celB heat denaturated crude extract (5 µg).  
CelB protein (molecular mass 56 kDa). 
 

In addition, the influence of a repeated induction with the inducer spp-IP on the CelB 

production was tested in the cultivation experiments with glucose feeding. The 

peptide spp-IP was added to the glucose stock solution and co-injected after 13 h 

(final concentration of 50 ng/mL spp-IP). This action decreased the maximum specific 

CelB activity to a value of 1860 ± 90 nkat pNPGal /mgprotein after 28 h of cultivation. So, 

the highest CelB activity with Lb. plantarum pSIP409-celB was obtained using pure 

glucose feeding resulting in a calculated volumetric CelB activity of 625 µkat/Lculture.  

Development of a whey based medium 

Due to the auxotrophic metabolism of lactobacilli, the MRS standard medium is a 

very reliable complex medium accredited with diverse essential salts and organic N-

sources. However, the MRS medium is quite expensive. So, we investigated ultra-

filtrated whey powder, which was supplemented with particular additives, as a 

potential low cost medium for the cultivation, first with the wild-type of Lb. plantarum 

NC8 (see table 3).  
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Table 3 Growth of Lb. plantarum in microtiter plate scale in different whey 
based media (250 µL, 30°C, continuous shaking, quad ruplicate test for each 
media, standard deviation < 2%) 
 

 

 

 

UFW = ultra-filtrated whey powder; YE = yeast extract; T = TWEEN 80; NH4-C = 

NH4-citrate 

 

The medium screening was accomplished in microtiter plate cultivations (total volume 

250 µL). The media with a concentration of 55 g ultra-filtrated whey powder/L 

resulted in finally 45 g lactose/L. The added yeast extract was used as organic N-

source and complex nutrient source, respectively. NH4-citrate was tested as an 

additional N-source. Tween 80 was known as important source for fatty acids when 

cultivating lactobacilli. Also manganese was known for optimal growth of Lb. 

plantarum and it was added to the medium as MnSO4. The standard MRS medium 

was used in parallel as reference (table 3). The highest biomass estimated by 

OD600nm measurement was achieved with a medium containing 55 g ultra-filtrated 

whey powder/L, 5 g yeast extract/L, 1 g Tween 80/L and 0.05 g MnSO4/ L (OD = 

1.43). This was about 66% compared to the standard MRS medium (OD = 2.17).  

# UFW [g/L] YE [g/L] MnSO4 [g/L] T [g/L] NH4-C [g/L] OD600nm [-] 

1 55 - - - 2 0.03 

2 55 - 0.05 - 2 0.03 

3 55 - 0.05 1 2 0.03 

4 55 2.5 0.02 - - 0.03 

5 55 - - - - 0.04 

6 55 - 0.05 1 - 0.04 

7 55 - - 1 - 0.05 

8 30 5.0 0.05 1 - 0.10 

9 55 5.0 - - - 0.24 

10 100 - 0.05 - - 0.39 

11 55 5.0 0.02 - - 0.69 

12 55 5.0 0.05 - - 1.10 

13 55 5.0 0.01 - - 1.10 

14 100 5.0 0.05 - - 1.27 

15 55 5.0 0.05 1 - 1.43 

16 MRS medium 2.17 
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Production of CelB with whey based medium in a biore actor 

The ascertained whey based medium (see above) was used for cultivation 

experiments of Lb. plantarum pSIP409-celB in a bioreactor (500 mL scale, pre-

cultures were also grown in the same whey based medium). This cultivation is shown 

in figure 4.  

 

Figure 4 Recombinant production of CelB from batch fermentation of Lb. 
plantarum pSIP409-celB with whey based medium at 30°C 

(Open triangle: OD600nm; filled circle: lactose concentration; bars: specific CelB 
activity, error bars indicate the standard deviation) 
 

Induction with spp-IP occurred at an OD600nm = 0.3 again. As expected from the 

microtiter experiments cell growth was slower and biomass less when compared with 

the MRS medium (see bioreactor results above). The stationary growth phase was 

reached after 24 h of cultivation with an OD600nm = 8.3 (about 65% in comparison to 

MRS medium). The lactose concentration decreased from 48 g/L to 35 g/L in this 

time, indicating a limitation of one of the needed supplements. Also the maximal CelB 

activity achieved after 28 h of cultivation (556 ± 29 nkat pNPGal /mgprotein) was 

significantly lower than in MRS medium (1590 ± 90 nkat pNPGal /mgprotein after 15 h, see 

above). This was in accordance with SDS-PAGE experiments of the cell free extracts 

from whey based medium grown cells (data not shown). Thus, if a whey based 
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medium will be considered for recombinant protein production in Lb. plantarum 

further improvements are necessary. Nevertheless, the proof of principle using a 

whey based medium for recombinant Lb. plantarum as host organism was 

demonstrated. 
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Discussion 

The application of new expression hosts such as lactic acid bacteria (LAB) 

propagated over the last decade, so nowadays not only the well known prokaryotic E. 

coli and Bacillus hosts are used for recombinant protein production. Particularly for 

the recombinant production of food relevant enzymes new expression systems based 

on food-grade microorganisms, which are generally recognized as safe, were 

generated as cell factories (Peterbauer et al. 2011). Also the use of recombinant 

LAB, such as Lb. plantarum, as potential delivery vehicles for mucosal vaccines and 

other therapeutic applications was discussed in the literature (Wells and Mercenier 

2008).  

In our studies two expression vectors, pSIP403 and pSIP409, with different 

promoters, were tested for CelB expression in Lb. plantarum. The pSIP409-celB 

vector showed a higher CelB expression, which was also ascertained by Sørvig et al. 

(2005) when comparing both vectors/promoters for β-glucoronidase expression in Lb. 

plantarum and Lb. sakei. However, Sørvig et al. (2005) harvested the cells with 

highest enzyme activities at an OD600nm 1.8 while in our case longer cultivation 

periods up to OD600nm 6.0 (shaking flask) or 22.5 (bioreactor), respectively, were 

favourable. 

In bioreactor cultivations of the recombinant Lb. plantarum pSIP409-celB the β-

galactosidase activity was maximum using a fed-batch strategy with glucose. 

Herewith a CelB activity of about 675 µkatpNPGal/Lculture was achieved. This was a 

much higher amount of enzyme activity (ca. 67-fold) then it was described for the 

recombinant expression of a thermophilic α-glucosidase from Sulfolobus solfataricus 

in Lactococcus lactis by batch cultivation (Giuliano et al. 2004). It has to be 

mentioned, that Giuliano et al. (2004) applied a NICE-system (NIsin Controlled  

Expression system) with L. lactis and that the activities of the thermophilic α-

glucosidase were detected with thermo-treated whole cell biocatalysts. The NICE-

system is the best known expression system for L. lactis and comparable to the pSIP 

system based on a bacterocin induction. Another study from Halbmayr et al. (2008) 

described the recombinant production of β-galactosidases from Lactobacillus sp. in 

Lb. plantarum and Lb. sakei. The highest expression levels were found with Lb. 

plantarum WCFS1 harbouring pSIP403 containing β-galactosidase genes from Lb. 
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reuteri with 383 µkatoNPGal/L (Halbmayr et al. 2008). In our study the expression level 

of CelB acting as a β-galactosidase was 1.8 times higher. 

Nevertheless it must be mentioned, that the wild-type P. furiosus produced 300 

nkatpNPGal/mgprotein CelB in shaking flasks (Kengen et al. 1993), corresponding to two-

third of these activities in recombinant Lb. plantarum in shaking flasks. Furthermore, 

when CelB was recombinantly expressed in the E. coli pET system, one of the 

strongest known expression systems, the β-galactosidase activity reached values up 

to 4300 nkatpNPGal/mgprotein (Lebbink et al. 2001). That is 1.7 times more than in our 

expression system Lb. plantarum pSIP409-celB. 

The recombinant production of CelB was done in our studies also in Lb. casei 2421. 

To our best knowledge that is the first time, that the pSIP expression system was 

succesfully deployed in Lb. casei. There are different other expression systems 

described for the use in Lb. casei. For example the promoter system based on the 

phage ΦFSW regulatory elements or the constitutive promoter of pepR from Lb. 

rhamnosus (Binishofer et al. 2002; Takala et al. 2003). The functionality of the pSIP 

vector system in Lb. casei may be due to the coding for the regulatory elements on 

the pSIP vector. So the histidine kinase and response regulator, coding on the 

expression vector and acting as regulatory elements, can be expressed in Lb. casei. 

There they may operate regulatory like in the native host Lb. sakei and in Lb. 

plantarum. It was also described, that a Lb. casei strain, named CRL 705, has a class 

IIb bacteriocin producing system, which is quite similar to the sakacinP system from 

Lb. sakei. Even the inducing peptides spp-IP and Lactocin705β from Lb. casei share 

50% similarity (Cuozzo et al. 2000). So it is also possible, that a native Lb. casei 

regulation mechanism for bacteriocin production recognizes and interacts with the 

vector based system additionally. In our studies the CelB activities of the Lb. casei 

expression host were not as high as with Lb. plantarum as host, so modifications of 

the cultivation strategies were done for Lb. plantarum only. Anyhow the pSIP-system 

should be considered as system, which is functional in Lb. casei, too. Other 

recombinant proteins may be expressed as well or even better in Lb. casei then in 

Lb. plantarum. 

In this study supplemented whey based medium for the cultivation of Lb. plantarum 

and recombinant expression of CelB was investigated. The standard MRS medium is 

a very costly one (lab price about 6.40 €/L), which was replaced for several 

applications by low cost media (Sawatari et al. 2006; Trinetta et al. 2008). It was 
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known, that lactobacilli grew well on whey, a huge by-product of the dairy industry 

(Brinques et al. 2010; Kulozik and Wilde 1999). The recombinant protein production 

in E. coli was also carried out using whey and ultra filtrated whey (Viitanen et al. 

2003). We used ultra filtrated whey powder as basal low cost medium supplemented 

with other essential nutrients for LAB. A similar approach was done in order to 

cultivate Lb. plantarum UG1 for bacteriocin production.  

The best performing medium mixture consisting of ultra-filtrated whey permeate 

powder, yeast extract, Tween 80 and MnSO4 was quite inexpensive (lab price about 

0.65 €/L) compared to the MRS medium. This medium fulfils the food grade 

requirements. The final biomass obtained with this medium was 65% of the biomass 

achieved in MRS medium. For commercial considerations, the partly lower activity of 

recombinant enzyme gained with this medium probably would be negligible due to 

the much lower medium costs. So, this whey based medium might be a starting point 

for the development of a low cost alternative in recombinant enzyme production using 

Lb. plantarum in the future. The overall results confirmed that lactobacilli are an 

interesting host organism in the recombinant production of enzymes for the food 

industry.   
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Abstract 

β-Galactosidases are industrially important enzymes with manifold applications in the 

food industry. β-galactosidases are necessarily produced on a large scale with a high 

yield giving them a commercially acceptable price for industrial applications. We have 

compared the expression of a new metagenome-β-galactosidase on a bioreactor 

scale in the well-known E. coli BL21/pET expression system, the food-grade 

Klyuveromyces lactis/pKLAC2 expression system and the food-grade Lb. 

plantarum/pSIP409 expression system. The highest β-galactosidase activities of 

82.01 nkatoNPGal/mgprotein were obtained with the E. coli expression system, which was 

also used as the host organism during the metagenome screening. Much lower 

activity levels of 0.2% (Lb. plantarum) to 2.5% (K. lactis) were observed in the food-

grade expression systems. Therefore, the E. coli expression system used for the 

screening approach is also the preferable system for further expression of the 

metagenome-β-galactosidase for industrial applications.  

Keywords 

Metagenome-β-Galactosidase; Escherichia coli; Lactobacillus plantarum; Kluyveromyces 

lactis; recombinant production; comparison  
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Introduction 

β-Galactosidases (E.C. 3.2.1.23) catalyse the hydrolysis of the disaccharide lactose 

to glucose and galactose. They are industrially important enzymes with a widespread 

use in the dairy industry (Harju et al. 2012). They are applied for the hydrolysis of 

lactose in milk or derived products and for the utilisation of lactose in whey as a by 

product from the cheese industry. In addition to the hydrolysis of lactose, the 

synthesis of prebiotic galacto-oligosaccharides is also performed by these enzymes 

with transgalactosylation activities (Gosling et al. 2010). Production of the β-

galactosidases on a large scale and with a high yield is important to achieve a 

commercially acceptable price for application in the food industry. Therefore, most of 

the commercially available β-galactosidases used today in the industry are derived 

from Kluyveromyces ssp. or Aspergillus ssp., which are known to produce high yields 

of these enzymes cost effectively, e.g. by a rapid growth on lactose as a carbon 

source. Beside the β-galactosidases of this species, the use of recombinant 

technology for the production of β-galactosidases of different origin with high yields 

has emerged over the last few years (Oliveira et al. 2011). Thus, new β-

galactosidases from the metagenome with superior properties have also become 

available for the dairy industry (Niehaus and Eck 2012; Wang et al. 2010). Due to the 

drawbacks of commercially available β-galactosidases, such as an inhibition by 

galactose, sodium or calcium, or less activity at low temperatures, new enzymes are 

highly desirable. 

Several expression systems and host organisms, such as Escherichia coli, Pichia 

pastoris, Bacillus subtilis, or Lactobacillus ssp. have been applied for the recombinant 

production of β-galactosidases. At present, it is impossible to predict on a rational 

basis which host strain may be the best choice for the production of a given 

heterologous protein (Terpe 2006). Therefore, performance of different expression 

systems has to be analysed. The E. coli expression system is usually the first choice 

for laboratory investigations and initial development due to the good knowledge and 

handling over decades (Sorensen and Mortensen 2005). Other expression systems 

used for the demands of the food industry, such as K. lactis or food-grade 

Lactobacillus ssp., are the more desirable host systems. While the K. lactis system 

has been used for more than 20 years for the recombinant production of recombinant 

enzyme preparations, also on a large scale, Lactobacillus ssp. has received more 
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attention in the last decade as an alternative expression host (Peterbauer et al. 2011; 

van Ooyen et al. 2006).    

In the present study, we examined the production of a metagenome-β-galactosidase 

in three different expression host systems (E. coli, Lb. plantarum and K. lactis), 

analysed the performance of the different systems and optimised the production in E. 

coli, the best one of those compared. 

 

Materials and methods 

Strains, vectors, reagents, and media 

E. coli XL1-blue (Stratagene, Waldbronn, Germany) was used for the propagation 

and manipulation of plasmids. E. coli BL21 and the pET20b(+) expression vector 

from Novagene (Darmstadt, Germany). E. coli were grown in either LB or 2YT 

medium at 20-37°C with shaking (120 rpm). Lactobacillus plantarum NC8 and the 

pSIP409 expression vector were provided by Dr. Lars Axelsson, MATFORSK 

Norwegian Food Research Institute (Ås, Norway). Lb. plantarum was grown in MRS 

medium at 30°C with shaking (90 rpm). Kluyveromyces lactis GG799 and the 

pKLAC2 expression vector were from New England Biolabs (Frankfurt, Germany). K. 

lactis was grown either in YCB or YPGal medium at 30°C wi th shaking (120 rpm). 

The pUG6 and pSH65 knock-out vectors with the cre/lox-system were obtained from 

EUROSCARF (Frankfurt, Germany). All chemicals were of analytical grade or higher. 

T4 DNA Ligase and Hexokinase/Glucose-6-Phosphate Dehydrogenase (HK/G6P-

DH) were purchased from Roche (Penzberg, Germany). All restriction enzymes, 

Klenow polymerase and Mung bean nuclease were obtained from New England 

Biolabs. HotStar HiFidelity Polymerase was purchased from Qiagen (Hilden, 

Germany). 

Construction of the expression vectors 

Construction of the expression vectors was performed using E. coli XL1-blue and 

standard molecular biology techniques (Sambrook and Russel 2001). In order to 

construct the pET20-M1 expression vector for E. coli, the M1 β-galactosidase was 

amplified by PCR using primers M1_for_NdeI, M1_rev_XhoI (see Table 1) and the 

PCS-M1 screening vector as template DNA (Niehaus and Eck 2012). The PCR 
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product and the pET20b vector were digested with Nde1 and Xho1 and ligated with 

T4-Ligase to generate pET20b-M1. The pSIP409-M1 expression vector for Lb. 

plantarum was constructed using the pET20b-M1 vector as a template. A PCR was 

performed using the M1_for_NdeI and M1_rev_Xho primers to amplify the M1 gene 

(see Table 1). The PCR product was digested with NdeI and blunted with Klenow 

polymerase. The pSIP409 plasmid was digested with NcoI and blunted using Mung 

bean nuclease. After blunting, the vector and the PCR product were purified and 

digested with XhoI to get compatible ends. Afterwards, a ligation with T4-Ligase was 

performed and the expression vector pSIP409-M1 was transformed in E. coli XL1-

blue. 

The pKLAC2-M1 expression vector for K. lactis was constructed using the pET20b-

M1 vector as a template. A PCR was performed using the M1_for_NdeI and 

M1_rev_SalI primers (see Table 1) to amplify the M1 gene. Additionally, the pKLAC2 

vector was digested with HindIII and XhoI, blunted with Klenow polymerase and 

ligated by T4-Ligase to generate pKLAC2∆mf with a removed α-mating factor 

secretion signal for an intracellular expression of M1. The PCR product and the 

pKLAC2∆mf vector were digested with Nde1 and Sal1 and ligated with T4-Ligase, 

whereby the PCR product was cloned downstream of the Lac4 promoter, yielding the 

pKLAC2-M1 expression vector. 

 

Table 4: Primers used in this study 

Primer Sequence 

M1_fw_NdeI 5’-agagtctgcatatgcgacaaaagcttgttta 

M1_rev_XhoI 5’-actaatctcgagaatggtgcgaaacgtaaag 

M1_fw_SalI 5’-ctgagtgtcgacttaaatggtgcgaaacgtaaagtc 

lac4_loxP_fw 5’-gattgcctactagggcttactactatgatcaggatattttcgaatcagctgaagcttcgtacgc 

lac4_loxP_rev 5’-
cttattcaaaagcgagatcaaactcaaagttgaaatcttgagcttgcataggccactagtggatctg 

 

Deletion of the native β-galactosidase lac4 in K. lactis GG799 

The deletion of the lac4 gene was carried out using a loxP marker cassette and a 

Cre-mediated gene knockout for the removal of the geneticin antibiotic resistance 
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(Gueldener et al. 2002). The lac4 disruption cassette was generated by PCR using 

the pUG6 plasmid as a template of lox-sites and kanR, and the primers lac4_loxP_rev 

and lac4_loxP_fw (see Table 1). The primers were designed to disrupt the lac4 gene 

from +55 to +3066 (Genbank accession number M84410.1) without changing the 

promoter sequence of the lac4. K. lactis GG799 competent cells were transformed 

with a 2 µg lac4 disruption cassette using the electroporation method. Transformants 

were grown on YPD plates containing geneticin 418 (G418) and transferred to YPGal 

plates containing 40 µg X-Gal ml-1 to analyse the remaining β-galactosidase activity 

resulting in K. lactis GG799∆lac4. The loxP-KanR integrated in the genome was 

removed by transformation of K. lactis GG799∆lac4 with 2 µg of the pSH65 plasmid 

by electroporation, such as described elsewhere, to generate a food-grade K. lactis 

GG799∆lac4 expression host.  

Expression of the β-galactosidase M1 in E. coli BL21  

E. coli BL21 (DE3) was transformed with pET20-M1 and used for recombinant 

expression of the β-galactosidase. First expression experiments were carried out 

aerobically in baffled shaking flasks using 2YT in 100 ml scale at 37°C at 120 rpm. 

Induction was carried out at an OD600nm = 0.5 with a final concentration of 0.5 mM 

Isopropyl-β-D-thiogalactopyranoside (IPTG). After induction, the temperatures were 

lowered to 30°C. The cells were harvested by centri fugation (8000 g, 10 min, 4°C) 

after the stationary growth phase was reached, resuspended with 100 mM 

potassium-phosphate buffer, pH 6.75 with 5 mM MgCl2 (30% w/v). Cells were 

disrupted by sonification. Crude extract was obtained after separation of the cell 

debris by centrifugation (8000 g, 10 min, 4°C).  

Expression experiments were continued in a bioreactor with a 500 ml working 

volume. The E. coli pET20-M1 were cultivated in 2YT-medium with different glucose 

concentrations at 500 rpm, air gassing vvm = 2 (pO2 > 30%) and pH = 7.0, controlled 

with 12.5% v/v NH4 and 0.66 M H3PO4. Induction was carried out at OD600nm = 5 with 

0.5 mM IPTG; after that, the temperature was lowered to 20-30°C. Cells were 

harvested after the stationary growth phase was reached and centrifuged, as 

described above.  
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Expression of the β-galactosidase M1 in Lb. plantarum NC8 

The pSIP409-M1 vector was used for the electroporation of Lb. plantarum NC8 to 

generate Lb. plantarum-pSIP409-M1 after selection with MRS-Erythromycin plates at 

30°C in an anaerobic jar. First expression experime nts were carried out aerobically in 

baffled shaking flasks at 30°C at 90 rpm. Freshly p repared Lb. plantarum clones 

were grown in 100 ml MRS-Erythromycin medium. Induction was carried out with 50 

ng/ml-1 spp-IP at OD600nm = 0.3. The cells were harvested by centrifugation (8000 g, 

10 min, 4°C) after the stationary growth phase was reached, resuspended with 100 

mM potassium-phosphate buffer, pH 6.75 with 5 mM MgCl2 (30% w/v). Cells were 

disrupted by sonification. Crude extract was obtained after separation of the cell 

debris by centrifugation (8000 g, 10 min, 4°C). Exp ression experiments were 

continued in a bioreactor with a 500 ml working volume. The Lactobacilli were 

cultivated at 100 rpm, N2 gassing < 0.1 vvm. The pH was controlled at pH = 6.45 by 

the addition of 1 M NaOH. Induction was carried out at OD600nm = 0.3 with 50 ng/ml-1 

spp-IP. The cells were harvested and disrupted as described above. 

Expression of the β-galactosidase M1 in K. lactis GG799∆lac4  

The pKLAC2-M1 vector was linearised with SacII and 2 µg were used for the 

electroporation of K. lactis GG799∆lac4. Selection of K. lactis GG799∆lac4-pKLAC2-

M1 was carried out with YCB-plates containing 5 mM acetamide, according to the 

supplier’s instructions (NEB). A first analysis of M1 expression was carried out by 

plating the transformants on YPGal plates containing X-Gal.  

First expression experiments were carried out aerobically in baffled shaking flasks at 

30°C at 120 rpm in 100 ml YPGal medium. After 36 h,  the cells were harvested by 

centrifugation (8000 g, 10 min, 4°C). Cell-free crude extract was obtaine d by 

centrifugation after vortexing (5 x 2 min) a 30% w/v cell suspension in 100 mM 

potassium-phosphate buffer, pH 6.75 with 5 mM MgCl2 with glass beads (diameter 

0.75-1.0 mm). Expression experiments were continued in a bioreactor with a 500 ml 

working volume. The K. lactis GG799∆lac4-pKLAC2M1 were cultivated at 750 rpm, 

air gassing 1 vvm (volumegas per volumemedium
 and min). The pH was controlled at pH 

= 6 by the addition of 12.5% NH4 and 0.66 M H3PO4. The experiments were 

performed in a fed-batch mode with the addition of galactose to a final concentration 

of ≥ 20 g/l-1 at different periods of cultivation when the galactose concentrations were 

depleted below 1 g/l-1. The cells were harvested and disrupted, as described above.  
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Analytical methods and enzyme assay 

Protein concentrations were determined by the Bradford method with bovine serum 

albumin as a standard. Expression of M1 was analysed by SDS-PAGE using 12% 

polyacrylamid gel, according to the Laemmli method. Cell growth was monitored by 

measuring the optical density at 600 nm. Biomass was quantified gravimetrically as 

the cell dry weight. The glucose concentrations were enzymatically determined with 

an HK/G6P-DH test kit by a photometric assay at 340 nm in microtitre plates. 

Galactose concentrations were analysed by capillary electrophoresis, according to 

Deak et al. (2003). The β-galactosidase activity (EA) was determined in 100 mM 

potassium-phosphate buffer, pH 6.75 with 5 mM MgCl2, using o-nitrophenyl-β-D-

galactopyranoside (oNPGal) as a substrate at 30°C (1 ml scale). Therefo re, 100 µl of 

the enzyme solution was added to the substrate solution (25 mM oNPGal). Both 

solutions were pre-heated for 10 min at 30°C separa tely. The release of o-

nitrophenol was detected photometrically over 2 min at 405 nm using a temperature-

controlled cuvette in a spectrophotometer. β-galactosidase activity was calculated 

from the slope of the straight line with the molar absorption coefficient of 1.667 l mM-

1/cm-1 and was carried out at least three times. One nanokatal was defined as the 

amount of enzyme that catalysed the release of 1 nM of o-nitrophenol from oNPGal 

per second. 

Results and discussion 

Production of M1 in E. coli BL21  

First expressions of the metagenome-β-galactosidase M1 were performed in the 

well-known E. coli BL21 production host. Different kinds of β-galactosidases have 

been produced with high yields using this host in the past (Oliveira et al. 2011). 

Additionally, the metagenome screening was carried out in an E. coli host resulting in 

an active metagenome-derived enzyme (Niehaus and Eck 2012). Therefore, we 

assumed a good production performance in E. coli BL21. The M1 gene was cloned in 

the pET20b vector resulting in pET20b-M1. After transformation in E. coli, basic 

expression experiments were carried out in a shaking flask (data not shown). Further 

expression experiments were performed in a 0.5 l bioreactor as batch cultivations. 

The highest M1 activities up to 82.01 nkatoNPGal/mgprotein were obtained after 16 h of 

cultivation using 2YT medium supplemented with 2% w/v glucose and lowering the 
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temperature after induction to 30°C. A detailed ove rview of the cultivation is given in 

Figure 1.  

 

Figure 1: Recombinant production of M1 with E. coli BL21 pET20b-M1 (2YT 
medium + 2% w/v glucose; 0.5 l scale bioreactor cul tivation)  

(open triangles OD600nm; filled circles: glucose concentration; filled squares: bio dry 
mass; bars: specific M1 activity, error bars indicate the standard deviation; arrow: 
addition of IPTG for induction and lowering of the temperature from 37 to 30°C)    
 

The high level of M1 expression by E. coli BL21 pET20b-M1 was also proven by gel 

electrophoresis experiments (SDS-PAGE). Figure 2 shows the SDS-PAGE from 

samples of the cell-free extracts of E. coli BL21 wild-type and E. coli BL21 pET20b-

M1 after different cultivation times. The overexpressed M1 appeared as a visible 

band on SDS-PAGE with an apparent mass of ~ 120 kDa (see Figure 2). This result 

is in agreement with the predicted mass of 122.4 kDa calculated in silico. 

 

 

 

induction 
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Figure 2: 12.5% SDS-PAGE analysis of the expression  of M1 in E. coli BL21   

M: Protein Ladder 10-250 kDa; 1: E. coli BL21 wild-type ;2: E. coli BL21 pET20b-M1 
before induction;  
3-8: E. coli BL2 pET20b-M1 2 h, 5 h, 9 h, 11 h, 13 h, and 15 h after induction;  
5 µg total protein loaded per lane, Coomassie-stained. 
 

Production of M1 in Lb. plantarum NC8 

Lactobacilli are receiving increased attention concerning their application as 

expression systems for the recombinant production of food-related industrial 

enzymes. Therefore, Lb. plantarum NC8 was used with a strong pSIP expression 

system for the production of M1 in a food-grade system. Different β-galactosidases 

were produced with high yields using this expression system (Halbmayr et al. 2008; 

Nguyen et al. 2011a; Nguyen et al. 2011b). After construction of the pSIP409-M1 

vector and transformation of Lb. plantarum, the production of M1 was performed in a 

0.5 l bioreactor system using a standard expression procedure (Böhmer et al. 2012; 

Sorvig et al. 2005). A detailed overview of the cultivation of Lb. plantarum NC8 

pSIP409-M1 is given in Figure 3.  

metagenome-β-
galactosidase M1 
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Figure 3: Recombinant production of M1 with Lb. plantarum pSIP409-M1 (MRS 
medium; 0.5 l scale bioreactor cultivation)  

(open triangles: OD600nm; filled circles: glucose concentration; arrow: addition of IP for 
induction; filled squares: bio dry mass; bars: specific  M1 activity, error bars indicate 
the standard deviation)       
 

Only very low amounts of M1 with an activity of 0.18 nkatoNPGal/mgprotein (0.01 U/mg) 

were obtained at the beginning of the stationary growth phase. This is about 450 

times less when compared to E. coli BL21 pET20b-M1. No overexpression of the M1 

was detectable by gel electrophoresis. A clear difference in the yields obtained, even 

from closely related species, is described for the recombinant expression of 

β-galactosidases from different microbial sources in Lb. plantarum. The expression 

level of the β-galactosidases from Lb. reuteri and Lb. acidophilus, for example, 

differed about 18-fold when using the same expression vectors and cultivation 

strategies, resulting in 144 U/mg for the Lb. reuteri β-galactosidase and significantly 

lower 3.94 U/mg for the Lb. acidophilus β-galactosidase (Nguyen et al. 2011b). The 

reason, therefore, was different mRNA stabilities resulting in different mRNA levels 

and translational effects. Codon usage as well as the folding and stability of mRNA 

are also known to hamper the expression performance of foreign genes (Kudla et al. 

2009). 

induction 
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Construction of the K. lactis GG799∆lac4 expression strain 

The recombinant expression of the M1 β-galactosidase in K. lactis with the use of the 

pKLAC2 expression system is controlled by the lac4 promoter and induced by 

galactose. Thereby, the production of the native K. lactis β-galactosidase lac4 is also 

induced. Because of that, the chromosomal lac4 was knocked out in the expression 

strain K. lactis GG799 before transformation with the pKLAC2-M1 expression vector.    

The lac4 gene was disrupted from bases +55 to +3066 without any change in the 

promoter sequence. Therefore, the integration sites for the pKLAC2-M1 expression 

construct were not affected. A deletion of the lac4 gene was analysed by plating on 

YPGal-X-Gal agar-plates and visualised by white colonies. In our study, we obtained 

about 20% gene targeting efficiency using the cre/lox system with 45-50 bp of 

homologue targeting regions. In previous studies, an integration efficiency of 0% 

using small homologue targeting regions of 50 bp for K. lactis was reported, which is 

contrary to our results (Kooistra et al. 2004; Ribeiro et al. 2007). Additionally, 

cultivation in shaking flasks was carried out with YPGal medium without the detection 

of any β-galactosidase in the cell-free extracts (data not shown). 

Production of M1 in K. lactis GG799∆lac4  

Due to the inefficient expression performance of the food-grade Lb. plantarum NC8 

pSIP409-M1, the M1 was produced in K. lactis, another food-grade expression host 

for recombinant enzyme production. After transformation with the expression plasmid 

pKLAC2-M1, stable integrations of the expression construct in the genome of K. 

lactis resulting in K. lactis GG799∆lac4-pKLAC2-M1 were generated. Correct 

integration was analysed by PCR (data not shown). An intracellular localization of the 

recombinant M1 was performed, because it is known that K. lactis secretes only low 

amounts of β-galactosidases in the culture supernatant even when homologous 

secretion signals are used (Rodriguez et al. 2006). A first analysis of β-galactosidase 

activity was carried out by plating the K. lactis transformants on YPGal plates 

containing X-Gal. All of the transformants checked showed an expression of the 

recombinant M1 resulting in blue colonies. The production of the M1 in K. lactis was 

performed after first experiments in a shaking flask on 0.5 l bioreactor scale using a 

standard expression procedure (van Ooyen et al. 2006). A detailed overview of the 

cultivation of K. lactis GG799∆lac4-pKLAC2-M1 is given in Figure 4. 
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Figure 4: Recombinant production of M1 with K. lactis pKLAC2-M1 (YPGal 
medium; 0.5 l scale bioreactor cultivation)  

(open triangles: OD600nm; filled circles: galactose concentration; filled squares: bio dry 
mass; bars: specific M1 activity, error bars indicate the standard deviation; arrows: 
galactose feed)       
 

Maximal M1 activity of 2.42 nkatoNPGal/mgprotein (0.01 U/mg) were obtained after 24 h 

of cultivation and repeated feed of the inducer galactose. The yield of M1 produced 

with the food-grade system K. lactis is 13 times higher when compared to the food-

grade Lb. plantarum expression system. Nevertheless, the highest activities were 

obtained with the E. coli BL21 pET20b-M1 expression system. A comparison of the 

yields of recombinant M1 using different expression systems is given in Table 2.  

Table 2: β-galactosidase activities obtained with different e xpression systems 

Expression system Specific activity 
 [nkatoNPGal/mgprotein] 

Volumetric activity 
[nkatoNPGal/mlbioreactor] 

Lb. plantarum NC8 
pSIP409-M1 0.18 0.5 

K. lactis ∆lac4 pKLAC2-M1 2.42 18.8 
E. coli BL21 pET20b-M1 82.01 1090 

 

Another study from Wang et al. (2010) describes the recombinant production of a 

metagenome-β-galactosidase in the yeast Pichia pastoris. Comparable to our work, 

the β-galactosidase screening was performed using E. coli as the host organism. 

Afterwards, the expression of the enzyme using P. pastoris as the host and secretion 
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of the recombinant enzyme in the culture supernatant resulted in the highest 

expression level of ca. 300 mg/l. Contrary to that, in our work, the best expression 

performance for the metagenome-β-galactosidase M1 was observed in the screening 

host E. coli. 

The efficient production of a functional metagenome enzyme does not only depend 

on the promoter strength and gene dosage, but also on the availability of respective 

precursors and cofactors, on putative codon bias, type and amount of chaperones, 

posttranscriptional and posttranslational modifications, and unwanted protein 

degradation (McMahon et al. 2012; Troeschel et al. 2012). It is known that E. coli as a 

screening host is often problematic because of insufficient and biased expression of 

metagenomic DNA (Aakvik et al. 2009; Uchiyama and Miyazaki 2009). Similar 

challenges might be the reason for a low expression efficiency of the metagenome-β-

galactosidase M1 in expression systems other than the screening host. Therefore, if 

a specific expression system is desired for industrial scale production of 

metagenome-derived enzymes at competitive prices, the expression system should 

be considered at the beginning of the screening approach (Lorenz and Eck 2005). 

The use of a novel broad host range of shuttle vectors is also a promising approach 

to enable and optimise the production of functional proteins for the rapid and easy 

comparison of expression systems (Troeschel et al. 2012). 

The present study shows that different expression systems for the production of 

metagenome enzymes lead to wide differences in the yields obtained. Moreover, the 

best expression performance of the metagenome-β-galactosidase M1 was gained 

with the screening host E. coli and the pET20b-M1 vector. This is the preferable 

system for further expression of the M1 for industrial applications such as the 

production of lactose-depleted milk products. 
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Abstract 

A novel expression system for Lactobacillus plantarum was developed. This system 

is based on the manganese starvation-inducible promoter from specific manganese 

transporter of Lb. plantarum NC8 which was cloned for the first time. The expression 

of a β-glucosidase from Pyrococcus furiosus (CelB) was achieved by cultivating Lb. 

plantarum NC8 at low manganese concentrations with MRS medium and the 

pmntH2-celB expression vector. A CelB activity of 8.52 µkatoNPGal L
-1 was produced in 

a bioreactor (4 L). The advantages of the novel expression system are that no 

addition of an external inducing agent was required, and additionally, no further 

introduction of regulatory genes was necessary. The new promoter meets the 

general demands of a food-grade expression system.   
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1 Introduction 

Lactic acid bacteria (LAB) are gram-positive, facultative anaerobic bacteria that are 

widely used in the food industry to produce various fermented foods (Konings et al., 

2000). Because they do not generate endotoxins and are non-sporulating, they are 

Generally Recognized As Safe (GRAS) by the U.S. Food and Drug Administration. 

There is widespread knowledge about the cultivation of LAB at bioreactor scale. 

Lactococcus lactis was considered as a model organism for a long time, in the last 

decade also other Lactobacilli became more deeply studied. For instance 

Lactobacillus plantarum was established and used for metabolism studies as well as 

for the development of genetic tools (Siezen et al., 2011). For these reasons, interest 

in Lb. plantarum as a suitable production host for recombinant proteins has increased 

over the last decade. Here, the LAB have potential as delivery systems for valuable 

proteins like antibodies and antigens (Diep et al., 2009). To the particular demands of 

the food industry, Lactobacilli are desirable cell factories for the production of food-

grade enzymes (Peterbauer et al., 2011).  

Several different types of promoters from Lb. plantarum have been isolated to 

produce recombinant proteins. Some of them are constitutive, while a few of them 

are inducible (Rud et al., 2006). The most common expression systems are the NICE 

and pSIP expression systems (de Ruyter et al., 1996; Sørvig et al., 2003). The 

promoters of these systems are based on the regulatory system of antimicrobial 

peptides and the quorum sensing mechanism. Thus, for the induction of recombinant 

proteins in Lb. plantarum, an inducing peptide must be added during cultivation. The 

pSIP system is the most extensively used inducible system. It is derived from Lb. 

sakei and uses the regulatory elements from the class IIb bacteriocins, either Sakacin 

A when using the pSIP403 vector, or Sakacin P for the pSIP409 vector (Sørvig et al., 

2003; Sørvig et al., 2005). The recombinant overproduction of heterologous proteins 

is induced by an externally added peptide pheromone. When these systems were 

employed in previous studies, different types of enzymes such as aminopeptidase N 

from L. lactis, β-glucuronidase from Escherichia coli, β-galactosidases from 

Lactobacillus sp. and a β-glucosidase from Pyrococcus furiosus were recombinantly 

expressed in Lb. plantarum and Lb. sakei with high yields (Sørvig et al., 2003; 

Halbmayr et al., 2008; Böhmer et al., 2012). Other types of auto-inducing expression 

systems were developed for L. lactis and Bacillus subtillis in recent years. These are 

based on phosphate or metal starvation transporter systems (Sirén et al., 2008; 
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Kerouvo et al., 2000). Because phosphate is an essential component for bacterial 

growth, the promoters of these transport proteins are turned on under starvation 

conditions, and this can be used for recombinant protein expression. A similar system 

based on regulatory elements of high specific Zn2+ uptake during a Zn2+ starvation 

was developed for recombinant protein production in L. lactis (Llull and Pouqet, 

2004). Such systems can be more convenient for the recombinant production of 

proteins in some cases because they require no addition of any inducing agents. This 

will extend the tools for recombinant protein expression in Lactobacilli, and it 

completes the well established systems with external inducers. 

In addition to phosphate and Zn2+, trace amounts of manganese are of physiological 

importance in a variety of ways for almost all bacteria, including its need as cofactors 

of enzymes. Therefore manganese ions are present in microorganism in very low 

amounts. However, in Lb. plantarum and some other lactic acid bacteria, high 

amounts of manganese up to 30 mM accumulate intracellularly due to the absence of 

superoxide-dismutase (SOD) in these species (Archibald & Fridovich, 1981a/b; 

Archibald & Duong, 1984). The Mn2+ ions are used instead of the SOD to scavenge 

the toxic product superoxide (O2
-) when the bacteria are grown in the presence of 

oxygen or during fermentative growth (Horsburgh et al., 2002).  In the presence of 

Mn2+ ions, superoxide is chemically converted to hydrogen peroxide (H2O2), which is 

further enzymatically converted by a catalase. Thus, Lb. plantarum requires high 

concentrations of manganese in the standard MRS medium to be able to grow 

successfully. The uptake of Mn2+ ions occurs by different types of cation transporters 

with an active Mn2+ ion transport system (Hantke, 2005). The transporters were 

identified and described after the genome sequencing of Lb. plantarum WCFS1 in 

previous work by in silico analysis as ABC (ATP-binding cassette) transporter type 

(called mntH2) and Nramp (natural resistance associated macrophage protein) 

transporter (called mtsCBA) (Groot et al., 2005). Expression of these transporters 

during manganese starvation was verified by Northern blot analysis. In our work 

presented here, the promoter of the specific transport protein MntH2 was cloned and 

investigated for its use as novel promoter for recombinant protein production.   

 

 

 

 



4. A novel manganese starvation-inducible expression system 85 

2 Material and Methods 

2.1  Chemicals and Enzymes 

All chemicals were of analytical grade or higher and were purchased from Sigma-

Aldrich (Seelze, Germany) or Carl Roth (Karlsruhe, Germany). T4 DNA Ligase and 

Hexokinase/Glucose-6-Phosphate Dehydrogenase (HK/G6P-DH) were purchased 

from Roche (Mannheim, Germany). All restriction enzymes were from New England 

Biolabs (Frankfurt, Germany). HotStar HiFidelity Polymerase was purchased from 

Qiagen (Hilden, Germany). 

2.2  Bacterial Strains and Culture Conditions 

Escherichia coli XL1-blue was purchased from Stratagene (Santa Clara, USA), and 

was grown in Luria-Bertani medium at 37 °C with sha king (120 rpm). Lb. plantarum 

NC8 was obtained from culture collection by the Norwegian University of Life Science 

(Ǻs, Norway) and grown in MRS medium according to De Man, Rogosa and Sharp 

(1960) or in MRS media with different MnSO4 concentrations at 30 °C. Agar plates 

were solidified by adding 1.5% (w/v) agar. When required, erythromycin was added 

as follows: 200 µg mL-1 for E. coli and 10 µg mL-1 for Lb. plantarum.  

2.3  Cultivation at microtiter plate scale 

A microtiter plate-based Bioscreen C automatic cultivator (LabSystems, Finland) was 

used for growth analysis of Lb. plantarum at different MnSO4 concentrations (0-296 

µM). Cultivation was performed in microtiter plates at 30 °C with continuous shaking. 

Determination of growth was performed in 250 µLs of solution, and 240 µL of each 

media was inoculated with 10 µL of an overnight culture in the respective medium. 

Four wells were used for quadruplicate testing of each medium.  Optical density at 

600 nm (OD600nm) was measured and readings for each well were taken every 15 min 

for 16-24 h. 

2.4  Preparation of Plasmids, Cloning and Transforma tion 

Construction of the expression vector pmntH2-celB was performed using E. coli XL1-

blue and standard molecular biology techniques (Sambrook et al., 2001). 

The promoter was amplified using the genomic DNA of Lb. plantarum NC8 as 

template. Isolation of genomic DNA was performed according to Sørvig (Sørvig et al., 
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2005). Primers (Table 1) were constructed using the sequenced genome from Lb. 

plantarum WCFS1 (Kleerebezem et al., 2003, GenBank: AL935263.2).  

 

Table 5: Primers used in this study 

Primer Sequence 

mntH2fw_SalI 5’-gtcgacttcacacctccaagcacatcgtac 

mntH2rev_NcoI 5’-ccatggcaattaaaagaccacctttctatatc 

 

The resulting PCR product of approximately 500 bp in length was cloned in the 

pSIP409-celB vector using SalI and NcoI restriction sites to remove the PorfX 

promoter and regulator elements of this induction system. This generated the 

expression plasmid pmntH2-celB. The plasmid was transformed into E. coli. Plasmids 

used in this study are shown in Table 2.  

 

Table 6: Plasmids used and constructed in this stud y 

Plasmid Characteristics Source 

pSIP409-celB 
p256rep/pUC(pGEM)ori; 

PorfX::celB; EmR 
Böhmer et al., (2012) 

pmntH2-celB 
p256rep/pUC(pGEM)ori; 

PmntH2::celB; EmR 
This work 

 

Plasmid DNA was purified from E. coli by the QIAprep Spin Miniprep Kit from Qiagen 

(Hilden, Germany) and subsequently transformed into Lb. plantarum by 

electroporation (Aukrust and Blom, 1992). Positive clones were selected by plating 

on MRS agar containing 10 µg mL-1 Erythromycin and incubation for 24-48 h at 30°C 

under anaerobic atmosphere using an anaerobic jar and Anaerocult A reagent from 

Merck (Darmstadt, Germany).  

2.5  Expression experiments in shaking flasks 

Initial expression experiments were performed aerobically in baffled shaking flasks at 

30 °C. Freshly prepared Lb. plantarum clones were grown over night in test tubes (5 

mL scale) and transferred to 100 mL MRS media with erythromycin and different 

MnSO4 concentrations. The cells were harvested by centrifugation (10 min, 8000 g) 

after the stationary growth phase was reached, washed, and resuspended with 

sodium acetate buffer (50 mM, pH = 5.0). Cells (30% w/v) were disrupted by 
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sonification using an Ultrasonic Processor UP 200S (Hielscher Ultrasonic, Teltow, 

Germany). Crude extract was obtained after separating the cell debris by 

centrifugation (10 min, 8000 g, 4 °C). The best performing MnSO 4 concentrations for 

recombinant expression of CelB were determined by analysis of the CelB activity.  

2.6  Fermentation experiments in the bioreactor 

Expression experiments were continued in a Biostat E fermenter (B. Braun, 

Melsungen, Germany) with 4 L working volume. Lb. plantarum was cultivated at 100 

rpm, anaerobic with N2 gassing < 0.1 vvm or aerobic with O2 gassing with pO2 > 

30%, 0.5 vvm, and pH = 6.45, controlled with 2 M NaOH at 30 °C. The experiments 

were run in batch mode. Samples were withdrawn throughout the fermentation to 

determine biomass, glucose concentration, CelB activity and manganese 

concentrations. Before bioreactor inoculation precultures were first grown overnight 

at 5 mL, followed by precultures at 50 mL scale over night and finally, were grown 

overnight at 400 mL scale in baffled shaking flasks in the appropriate medium under 

aerobic conditions. The cells were harvested and disrupted as described above. 

2.7  Analytical Methods 

Cell growth was monitored by measuring the optical density at 600 nm (OD600nm). 

Biomass was quantified gravimetrically as cell dry weight of cells (CDW). Samples 

were centrifuged, twice washed with saline, and dried in pre-weighted tubes at 40°C 

at 10 mbar in a RVC 2-33 IR vacuum centrifuge from Christ (Osterode, Germany). 

Protein concentrations were determined by the method of Bradford (Bradford, 1976). 

The glucose concentrations were measured in microtiter plates by a photometric 

assay at 340 nm. HK/G6P-DH was used as the coupling enzyme for the reaction, and 

the technique was based on the manufacturers protocol for the D-glucose/D-fructose 

test kit (R-Biopharm AG, Darmstadt, Germany; product code 10 139 106 035). The 

total Mn2+ content was measured with a Perkin-Elmer model 2380 atomic absorption 

spectrophotometer. For intracellular Mn2+ determination lyophilized cells were 

digested overnight in 70% nitric acid at 37°C. The digestion mixture was diluted with 

water to a final nitric acid concentration of 10% before measurement with atomic 

absorption spectrophotometer.     
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2.8  Enzyme activity measurements 

CelB activity (EA) was determined using o-nitrophenyl-β-D-galactopyranoside 

(oNPGal) as a substrate at 75 °C with 50 mM sodium ac etate buffer, pH 5.0, in 1 mL 

of solution as described previously (Mayer et al., 2010). One nanokatal is defined as 

the amount of enzyme that catalyzes the release of 1 nmol of o-nitrophenol from 

oNPGal per second. 

The native protein in cell free crude extracts used for the enzyme solution was heat-

denaturated for 15 min at 75 °C.  After that the he at-denaturated, interfering native 

Lactobacillus protein was precipitated by centrifugation (10 min, 8000 g, 4°C). CelB 

activity was calculated with an absorption coefficient of 0.495 L mmol-1 cm-1. All 

measurements were performed in triplicate. 
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3 Results and Discussion  

3.1  Growth analysis of Lb. plantarum at different Mn 2+ 

concentrations  

As previously reported, due to the absence of a SOD, Lb. plantarum needs a relative 

high concentration of manganese ions for optimal growth (Archibald & Fridovich, 

1981a/b; Archibald & Duong, 1984). Lb. plantarum NC8 was grown in MRS media 

supplemented with decreasing Mn2+ concentrations (0-296 µM) in order to determine 

the limiting concentration for this ion. The growth investigations by optical density 

(OD600nm) were performed in microtiter plate-based cultivations as described above. 

The results are shown in Figure 1. 

 

Figure 2: Growth curve of Lb. plantarum NC8 at different MnSO 4 concentrations in 
microtiter cultivations (MRS medium, 30°C, 250 µL s cale, aerobic) 
♦ 0 µM MnSO4, □ 1.5 µM MnSO4, ■10 µM MnSO4, ∆ 20 µM MnSO4, ▼ 50 µM MnSO4, ○100 
µM MnSO4,   ● 296 µM MnSO4, at least four replicates of all cultivations were performed. 

 

The highest OD600nm of 1.78 was reached in microtiter scale with the highest Mn2+ ion 

concentration tested (296 µM). Up to Mn2+ ion concentrations of 100 µM, a clear 

limitation of growth was observed. These results illustrated that the growth of 

Lb. plantarum NC8 was directly correlated to the amount of Mn2+ ions in the medium. 

It was in accordance with previously published data, when the extracellular 
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concentration of MnSO4 was below 150 µM, its intracellular concentration became 

dependent on the quantity of Mn2+ ions added in the culture medium (Archibald & 

Duong, 1984). In chemically defined media, no growth was observed without 

manganese salt supplementation (Hao et al., 1999; Groot et al., 2005), but in 

complex media, such as the MRS medium used in the present study, slight growth 

was detectable even without adding any MnSO4 into the medium. This observation 

was also described in previous literature (Watanabe et al., 2012) and is due to trace 

amounts of manganese in the complex compounds of MRS medium, such as yeast 

and meat extracts or tryptone.  

 

3.2 Performance of the promoters in MRS medium witho ut MnSO 4 

The promoter region of the gene encoding the manganese transporters MntH2 from 

Lb. plantarum WCFS1 have been studied (Groot et al., 2005). As the gene is induced 

by manganese starvation, we amplified a 496 bp DNA fragment encompassing of the 

mntH2 promoter region. This promoter sequence included the transcription start site 

and Shine-Dalgarno sequence. Additionally, parts of the promoter sequence (19 bp) 

are similar to target regions for the metalloregulator MntR from B. subtillis (Que & 

Hellmann, 2000). The binding site of the ScaR regulator protein from Streptococcus 

gordonii was a part of the promoter sequence of PmntH2, as well (Jakubovics et al., 

2000). The promoter was cloned upstream from the celB gene as reporter gene in 

the pSIP409-celB vector replacing the PorfX promoter and regulator elements. This 

resulted in the plasmid pmntH2-celB. The vector backbone of the pSIP409-celB 

vector was used, which consists of replication origins for E. coli (pUCori) and 

Lactobacilli (256rep), an erythromycin resistance marker (ermL) and the pepN 

terminator (Böhmer et al 2012, Sørvig et al 2003). As described by Sørvig et al. 

(2005) the used minimal replicon 256rep results in a copy number of about 6 and is 

known to replicate via a theta mechanism.  

The expression performance of PmntH2 was investigated using the thermophilic 

glucosidase (CelB) from Pyrococcus furiosus (Voorhorst et al., 1995) as reporter 

gene. Initial expression experiments with Lb. plantarum transformants were 

performed in baffled shaking flasks in MRS medium without any MnSO4 (aerobically, 

pH 6.45, 30°C). Lb. plantarum pmntH2-celB achieved a CelB activity of 17 nkatoNPGal 

mgprotein
-1. Thus, the proof of principle for recombinant protein production using a 

manganese starvation based promoter was demonstrated. For the next expression 
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experiments, different amounts of MnSO4 were added to the MRS medium in order to 

analyze the dependency of PmntH2-celB expression of Mn2+ concentration in the 

growth medium (see Table 3). The highest specific CelB activity of 20.27 nkatoNPGal 

mgprotein
-1 was reached at 10 µM MnSO4.  

 

Table 7: Growth and CelB activity of Lb. plantarum NC8 pmntH2-celB at 
different concentrations of MnSO 4

 (baffled shaking flasks, anaerobic 
conditions, 100 mL medium, 30°C)  

MnSO4 concentration [µM] Final OD600 [-] CelB activity [nkatoNPGal mgprotein
-1] 

0 0.78  17.55 ± 0.43 
1.5 0.96 19.04 ± 0.12 
10 2.01 20.27 ± 0.51 
20 2.85 16.36 ± 0.18 
50 4.72 9.60 ± 0.10 
100 7.45 7.67 ± 0.17 

150 8.44 5.63 ± 0.15 

296 11.85 2.63 ± 0.07 
 

Our results demonstrated that in addition to the reported phosphate starvation 

promoter system for Lactococcus and Bacillus species (Sirén et al., 2008; Kerouvo et 

al., 2000) another starvation promoter system based on manganese ions can be 

applied to suitable hosts such as Lactobacilli. A similar system was developed for L. 

lactis using promoter and repressor protein of a zinc uptake system (Llull and Poquet, 

2004). Using the Zn2+ starvation inducible system induction factors of ~ 50 were 

reached after zinc consumption during cell growth. In our study, an induction factor of 

~ 10 was detected comparing the medium with 10 µM MnSO4 to the medium with 296 

µM MnSO4. Induction factors obtained with some other promoters using LAB systems 

are quite in the same order of magnitude (de Vos, 1999). To the best of our 

knowledge, this is the first time a starvation promoter expression system was used 

successfully in a “food-grade” Lactobacillus host, that did not need any addition of an 

inducing agent. It may also be possible to use this food-grade promoter PmntH2 for the 

production of live vaccines in Lb. plantarum as delivery vehicle, as was previously 

discussed with different type of lactic acid bacteria as host organisms, and for the 

expression of therapeutic proteins or vaccines (Diep et al., 2009; Renault, 2002; 

Wells & Mercenier, 2008). 
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3.3  Bioreactor experiments with Lb. plantarum pmntH2-celB 

The performance of the CelB production of Lb. plantarum pmntH2-celB in the 

bioreactor using MRS medium with 20 µM MnSO4 is shown in Figure 2.  

 

Figure 2 Recombinant production of CelB from anaero bic batch cultivation of 
Lb. plantarum pmntH2-celB (4 L scale, MRS medium with 20 µM MnSO 4, 30°C, 
100 rpm)  

(Open triangle: OD600nm; filled circle: glucose concentration; bars: specific CelB 
activity, error bars indicate the standard deviation) 

 

To enhance the amount of biomass formation, and still have a good induction level of 

PmntH2, 20 µM MnSO4 was chosen as limiting concentration of Mn2+. Contrary to the 

shaking flasks experiments described above, the cultivation was done anaerobic (N2 

gassing) to avoid unwanted oxidative damage by superoxide under Mn2+ limiting 

conditions. Figure 2 illustrates the bioreactor cultivation of Lb. plantarum pmntH2-

celB under N2 -gassing conditions. The maximal achieved biomass of 4.0 g L-1 cell 

dry weight is equal to an OD600nm
 = 10.8 under manganese starvation conditions (20 

µM MnSO4). This is about 11% lower than the biomass obtained by bioreactor 

cultivation in standard MRS medium (296 µM MnSO4), were a cell dry weight of 4.5 g 

L-1, equal to an OD600nm
 = 12.3, was reached. A bioreactor cultivation was also 

performed under aerobic (air gassing) conditions using the same medium. Using this 

technique, we determined whether the expression rate of the promoter PmntH2 was 
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influenced by oxygen. The biomass as well as the expression performance of PmntH2 

by aerobic cultivation (data not shown) was quite the same to the cultivation with N2 

gassing. Therefore the presented system may be easily applicable due to less 

technical demands in kind of N2-gassing. In other studies it was shown that Lb. 

plantarum, grown aerobically in standard MRS medium (with 296 µM MnSO4), 

resulted in higher OD600nm values than when grown under anaerobic conditions 

(Brooijmanns et al., 2009). However, Watanabe et al. (2012) ascertained that this 

growth difference did not occur when the cultivation was performed without the 

addition of MnSO4 into the MRS medium. This was also the case in our studies in 

which we used a very low MnSO4 supplementation of 20 µM. 

Maximal specific CelB activities were obtained in aerobic and anaerobic bioreactor 

cultivations with 22.4 ± 0.9 nkatoNPGal mgprotein
-1 and 20.9 ± 0.5 nkatoNPGal mgprotein

-1, 

respectively (anaerobic see Figure 2). So, the induction of PmntH2 did not depend on 

oxygen. In the bioreactor cultivations, the specific CelB activities were approximately 

as high as in the shaking flask experiments (see above). The biomass was four times 

higher in the bioreactor, and a maximal volumetric activity of 8.52 µkatoNPGal L
-1 was 

obtained after 14 hours of cultivation under N2-gassing conditions.  

 

3.4  Kinetic of P mntH2  induction during manganese depletion 

Analysis of the induction kinetics of Lb. plantarum pmntH2-celB in medium with 20 

µM MnSO4 is shown in Figure 3 and was done by quantification of the extracellular 

and intracellular manganese concentrations by AAS.  
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Figure 3 Manganese concentrations and kinetic of P mntH2  induction from 
anaerobic batch cultivation of Lb. plantarum pmntH2-celB  
(Open triangle: extracellular manganese; filled circle: intracellular manganese; bars: 
specific CelB activity, error bars indicate the standard deviation)       
 

In the beginning of the cultivation the manganese accumulates intracellular up to 

concentrations of about 40 µmol gcdw
-1 due to an uptake of manganese. In standard 

MRS medium with 296 µM MnSO4 the intracellular manganese accumulates with 76 

µmol gcdw
-1 almost twice as high. An intracellular enrichment of manganese due to 

transport systems as protection mechanism against the damaging effect of oxygen 

radicals in Lb. plantarum is described in the literature (Archibald & Fridovich, 

1981a/b; Archibald & Duong, 1984; Groot et al. 2005). The mntH2-promoter was 

induced by manganese depletion due to the bacterial growth in the medium with 20 

µM MnSO4 by auto-induction. An increase of CelB activity was visible after 8 hours of 

cultivation in the mid exponential phase of growth when extracellular manganese 

decreases less than 1.5 µM and the intracellular manganese decreases due to 

starvation conditions less than 10 µmol gCDW
-1. No increase of CelB activity was 

recognised in standard MRS medium, where a 20 times lower activity of 1.1 

nkatoNPGal mgprotein
-1 was detected. The intracellular manganese concentration did not 

reduce below values of 31 µmol gcdw
-1, also the extracellular concentration did not 

decrease below 19.7 µM. So, no inducing concentrations were reached due to an 
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excess of MnSO4 resulting in low induction of the mntH2 promoter. In the literature, 

no expression of the MntH2 transporter was described also at Mn2+ concentrations of 

about 100 µM or higher (Groot et al. 2005).   

The proof of principle of the recombinant protein expression by manganese 

starvation in Lb. plantarum was successfully demonstrated, although further 

improvement to the expression system will be needed before an industrial application 

will become economically feasible. Nevertheless it has to be mentioned, that in 

comparison to the established pSIP409-celB system the activity was 60 times lower, 

in this system a specific CelB activity of 675 µkatpNPGal L
-1 was achieved (Böhmer et 

al, 2012). The presented auto-inducing pmntH2 expression construct may be 

beneficial in applications, were no high yields of recombinant proteins are necessary 

e.g. Lactobacilli as food-grade live vaccines.  
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Abstract 

Glutamic acid racemases (MurI, E.C. 5.1.1.3) catalyse the racemisation of L- and D-

glutamic acid. MurIs are essential enzymes for bacterial cell wall synthesis, which 

requires D-glutamic acid as an indispensable building block. Therefore these 

enzymes are suitable targets for antimicrobial drugs as well as for the potential 

design of auxotrophic selection markers. A high expression system in Escherichia 

coli BL21 (DE3) was constructed to produce and characterise the biochemical 

properties of the MurI from Lactobacillus plantarum NC8. In a 4-L-bioreactor 

cultivation, 3,266 nkatD-Glu/mgprotein of specific enzyme activity was produced. The 

recombinant, tag-free Murl was purified by an innovative affinity chromatography 

method using L-glutamic acid as the relevant docking group, followed by an anion 

exchange chromatography step (purification factor 9.2, yield 11%). This two-step 

purification strategy resulted in a Murl sample with a specific activity of 34,060 nkatD-

Glu/mgprotein, comprising a single protein band in SDS-PAGE. The purified Murl 

possessed an assay temperature optimum of 50°C, but  it was not stable at this 

temperature. The half-lives of the purified Murl were 162 h at 20°C and only 1.9 h at 

40°C. The Murl activity was maximum between pHs 7 a nd 10, resulting in a maximal 

half-life of 287 h at pH 7. Only D- and L-glutamic acid were recognised as substrates 

for the Murl with similar kcat/Km ratios of 3.6 sec-1/mM for each enantiomer.
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Highlights 

- Recombinant expression of the MurI from Lb. plantarum in E. coli for the first 
time 

- Use of a novel, L-Glu affinity chromatography for purification to a single band  
wihtout use of His-tag or other affinity tags 

- First enzymological characterisation of the MurI from Lb. plantarum at this 
level of detail 
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enzyme purification, 
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Introduction  

Glutamic acid racemases (E.C. 5.1.1.3) catalyse the racemisation of L- and D- 

glutamic acid. They are cofactor-independent enzymes with two cysteines acting as 

the catalytic residues [1]. Bacteria use this racemase for direct generation of D-

glutamic acid from the proteinogenic amino acid L-glutamic acid. The product D-

glutamic acid is an important feature that is incorporated into all bacterial cell walls. 

With D-alanine, it is used in the peptidoglycan layer as part of the cross-linking 

pentapeptides, that result in a strong, elastic polymer, encapsulating the bacterial cell 

and serving as protection against osmotic lysis [2]. The gene for glutamic acid 

racemase was first described in Escherichia coli and designated murI [3]. Currently, 

the genes encoding amino acid racemases have been identified as essential genes 

in many bacteria [4, 5]. For this reason, these enzymes have emerged as targets for 

the design of new antibiotics. In addition, there is an industrial application of glutamic 

acid racemases in the biotransformation of L-glutamic acid to the D,L-form [6]. A 

further conversion of the racemic mixture to pure D-glutamic acid can be obtained by 

selective decarboxylation. The resulting D-glutamic acid is an important intermediate 

for the production of pharmaceuticals. 

For industrial applications of glutamic acid racemase, it is important to obtain the 

enzyme in sufficient amounts and with high specific activities. Generally, the amounts 

of glutamic acid racemase from wildtype organisms are limited due to their low 

activities in most cellular metabolisms. The existence of glutamic acid racemase was 

first demonstrated in diverse lactobacilli, including Lb. fermenti, Lb. brevis, Lb. casei 

and Lb. plantarum, but with low activities [7-10]. Recombinant production of MurIs 

from different organisms was performed in E. coli to gain higher activities, and mainly 

reported as using shaken flask cultivations [5, 11, 12]. Recombinant production of  

MurI from Lb. fermenti in E. coli gave approximately 3000-fold higher yields 

compared to the wildtype Lb. fermenti [13]. For accurate biochemical characterisation 

or structure analysis, it is necessary to make the recombinantly expressed enzymes, 

such as glutamic acid racemases in native, active and highly purified form. Recently, 

the glutamic acid racemases from pathogenic as well as non-pathogenic bacteria 

were recombinantly expressed in an active form in E. coli, purified by precipitation, 

ion exchange chromatography and His-tag affinity chromatography and subsequently 

characterised [5, 12, 14]. With the use of affinity chromatography, the purification of 

proteins to homogeneity can often be achieved in fewer purification steps [15]. 
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Nevertheless the use of His-tags and other added affinity tags sometimes causes 

significant effects on the enzymatic activities of some proteins. Thus, the use of a 

tag-free purification system prevents this disadvantage. [16]. Therefore, it is desirable 

to generate a tag-free recombinant MurI. Enzymes can be purified by affinity 

chromatography using the enzymes substrates, products or even inhibitors as 

ligands [15]. With this strategy, a recombinant enzyme should be efficiently purified in 

a tag-free, native form. In the present study, the glutamic acid racemase from Lb. 

plantarum NC8 was investigated for recombinant production in a bioreactor 

cultivation of Escherichia coli BL21 (DE3) and tag-free purified by substrate affinity 

chromatography. Additionally, the purified, tag-free enzyme was biochemically 

characterised.  
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Materials and Methods 

Chemicals and enzymes 

All chemicals were obtained from Sigma-Aldrich (Seelze, Germany) or Carl Roth 

(Karlsruhe, Germany) in analytical grade or higher. L-glutamic acid dehydrogenase 

from bovine liver was purchased from Sigma-Aldrich. T4-DNA Ligase and 

hexokinase/glucose-6-phosphate dehydrogenase (HK/G6P-DH) were purchased 

from Roche (Mannheim, Germany). All restriction enzymes were from New England 

Biolabs (Frankfurt, Germany). HotStar HiFidelity polymerase was purchased from 

Qiagen (Hilden, Germany).  

 

Bacterial strains, media, cultivation conditions and  plasmids 

Escherichia coli XL1-blue was purchased from Stratagene (Santa Clara, USA), 

Escherichia coli BL21 (DE3) and the pET20b(+) expression plasmid from Merck 

KGaA (Darmstadt, Germany). Both were grown in Luria-Bertani media or 2YT media 

+ 1 % (w/v) glucose at 37°C with shaking (120 rpm).  Lactobacillus plantarum NC8 

(CCUG 61730) was obtained from the culture collection of the Norwegian University 

of Life Science (Ǻs, Norway) and grown in MRS media according to De Man Rogosa 

and Sharp [17] at 30°C with shaking (90 rpm) . Agar  plates were solidified by adding 

1.5% (w/v) agar. Ampicillin was added when required to a concentration of 100 µg 

mL-1. 

 

Analytical methods 

Cell growth was monitored by measuring the optical density at 600 nm (OD600nm). 

Glucose concentrations were measured by a photometric assay at 340 nm with 

HK/G6P-DH as a coupling enzyme reaction in microtiter plates, based on the 

manufacturer’s protocol for the D-glucose/D-fructose test kit (R-Biopharm AG, 

Darmstadt, Germany; product code 10 139 106 035). Protein concentrations were 

determined using the method of Bradford with bovine serum albumin as the standard 

[18]. Expression of the racemase was analysed by SDS-PAGE using a 12.5% 

polyacrylamide gel according to the method of Laemmli [19].  For this procedure 5 µg 

of protein was loaded onto a gel, separated and stained with Coomassie blue R250 

as described by Fairbanks [20]. 

 



5. Recombinant expression, purification and characterization of MurI  106 

Cloning of the murI from Lb. plantarum NC8 and construction of the 

pET20b-murI expression vector 

The glutamic acid racemase gene (murI) from Lb. plantarum NC8 was amplified from 

genomic DNA by PCR. Genomic DNA was isolated as described [21]. The primers 

were designed using the genome data for Lb. plantarum WCFS1 [22], according to 

the DNA sequence of the murI gene (NCBI GeneID: 1062262), and ordered from 

biomers.net (Ulm, Germany). The primers, murI_fw (cga cat atg gca aat gaa cat gca 

att ggc) and murI_rev (tag gaa ttc tta gtc att cgc ttc act ccc taa atc), carried NdeI and 

EcoRI restriction sites (underlined) for cloning into the corresponding sites of 

pET20b. The amplification was carried out using genomic DNA (100 ng) as the 

template and 100 pmol of each primer. After an initial denaturation of the DNA at 

95°C for 5 min, 35 cycles of denaturation (95°C for  15 s), annealing (52°C for 60 s) 

and extension (72°C for 90 sec) were executed, with  a final extension at 72°C for 10 

min. The expression plasmid was constructed using standard molecular biology 

techniques and designated pET20b-murI [23].  

The PCR fragment obtained was sequenced to confirm the full length DNA sequence 

of the murI gene using a Long ReadIR 4200 DNA sequencer (LI-COR Corporation, 

Lincoln, USA) with the Thermo Sequenase™ Cycle Sequencing Kit (Affymetrix, 

Santa Clara, USA). The pET20b-murI construct was used for the production of MurI 

in E. coli BL21 (DE3) cells.  

 

Recombinant expression of MurI in E. coli 

E. coli BL21 (DE3) was transformed with pET20b-murI and used for recombinant 

expression of MurI. Initial expression experiments were performed in baffled shaking 

flasks using 2YT medium at the 100 mL scale at 37°C . Induction was done at an 

OD600nm = 0.5 with a final concentration of 0.4 mM isopropyl-β-D-

thiogalactopyranoside (IPTG). After induction, the temperatures were lowered to 

30°C or 20°C and the cells were harvested by centri fugation (8,000xg, 10 min, 4°C) 

after 16 h. 

Large-scale cultivation was performed using a Biostat E fermenter (B. Braun, 

Melsungen, Germany) with 4 L of the above-mentioned medium at 500 rpm, air 

gassing (pO2 > 30%) and pH 7.0, controlled with 12.5% (v/v) NH4 and 0.66 M H3PO4. 

An initial preculture was grown over night in test tubes (5 mL) and second (50 mL) 

and third precultures (400 mL) were grown overnight in shaking flask in the 
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appropriate medium before inoculation of the bioreactor. Induction was initiated at 

OD600nm = 10 with 0.4 mM IPTG, after which the temperature was lowered to 20°C. 

Cells were harvested after the stationary growth phase was reached and centrifuged 

as described above. Samples were withdrawn throughout the fermentation to analyse 

biomass, glucose and MurI activity.  

 

Purification of MurI 

A 30% (w/v) cell suspension in 25 mM potassium phosphate buffer with 0.5 mM 

EDTA (pH 7.5, buffer A) was prepared for the purification of MurI. The cells were 

lysed by sonification using an Ultrasonic Processor UP 200S (Hielscher Ultrasonic, 

Teltow, Germany). A cell-free extract was obtained after separation of the cell debris 

by centrifugation (8,000xg, 10 min, 4°C). 

The purification was performed using an Äktapurifier system (GE Healthcare, Munich, 

Germany). As the first step, a glutamic acid affinity chromatography was used with L-

glutamic acid coupled onto pre-activated BioFox 40ACT agarose (Wissenschaftliche 

Gerätebau Dr. Ing. Herbert Knauer GmbH, Berlin, Germany). To accomplish this 

step, 25 g of BioFox 40ACT agarose was washed with 10 volumes (w/v) of distilled 

H2O. Next, the agarose was resuspended in 25 mL of 50 mM Na2CO3 (pH = 8), 10 

mM L-Glu and agitated gently overnight at room temperature. Unreacted L-Glutamic 

acid was removed by washing with distilled H2O. Remaining active groups were 

blocked by resuspending in 1 M ethanolamine in distilled H2O (pH = 8) and reacted 

overnight. Afterwards, derivatised BioFox 40ACT-L-Glu was washed with ddH2O. 

After filtration (0.45 µm), the cell-free extract was loaded onto the L-Glu-Affinity 

column (1 column volume (CV) = 18 mL) with a flow rate of 0.1 mL min-1. Unbound 

protein was eluted with 3 CV of buffer A and a flow rate of 0.1 ml min-1. MurI was 

eluted with a linear gradient (0-1,000 mM NaCl in buffer A) of 5 CV and a flow rate of 

0.5 mL min-1. Fractions containing MurI activity were pooled and dialysed overnight 

against 25 mM potassium phosphate buffer with 0.5 mM EDTA and 1 mM L-Glu (pH 

7.5, buffer B) at 4°C. The sample was then loaded o nto a BioFox 40Q anion 

exchange column (Wissenschaftliche Gerätebau Dr. Ing. Herbert Knauer GmbH, 

Berlin, Germany) and washed with 2 CV (1 CV = 20 mL) of buffer B. MurI was eluted 

with a linear gradient (0-1,000 mM NaCl in buffer B) of 10 CV. Load, wash and 

elution were performed with a flow rate of 2 ml min-1. Finally, the pooled fractions with 

MurI activity were dialysed as described above. 
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Enzyme assay for MurI activity 

MurI activity was assayed enzymatically for the substrate D-glutamic acid using a 

Ultrospec 3000 spectrophotometer (GE Healthcare, Munich, Germany), as described 

by Glaser [7] with minor modifications. The enzyme assay consisted of two 

consecutive reactions. The first MurI reaction mixture contained 1 mL 25 mM 

potassium phosphate, pH = 7.5, 0.5 mM EDTA and, as the substrate 12 mM D-

glutamic acid. The enzyme was added to a final volume of 1.5 mL. The reaction was 

started by addition of the enzyme and incubated at 37°C with vigorous shaking. After 

120 sec, the reaction was stopped by addition of 0.1 mL 3 M perchloric acid, and 

denatured protein was removed by centrifugation (13,000xg, 5 min, 4°C). The 

supernatant was decanted and neutralised by addition of 0.1 mL 3 M potassium 

hydroxide and incubation for 15 min on ice. The precipitate was removed by 

centrifugation (13,000xg, 5 min, 4°C) and the super natant, containing 0.03-0.15 µM 

L-glutamic acid, was subsequently analysed with L-glutamic acid dehydrogenase in 

the second reaction mixture. The second reaction mixture contained 0.2 mL 0.5 M 

TRIS-HCl (pH = 9.5), 0.1 mL 0.1 M NAD+ and 0.1 mL of the first reaction mixture in a 

total volume of 1 mL. The reaction was started by addition of 0.03 mL of L-glutamic 

acid dehydrogenase and was incubated at 25°C with v igorous shaking for 1 h. 

Finally, the rate of the NAD+ reduction was measured spectrophotometrically at 340 

nm.  

One nkat of enzyme was defined as the amount of enzyme that produced 1 nmol of 

L-glutamic acid from D-glutamic acid per sec.       

 

Circular Dichroism (CD) assay for MurI activity 

The kinetic parameters of MurI were analysed for the substrates D- and L-glutamic 

acid, for which the enzymatic assay for MurI activity was not suitable. A circular 

dichroism assay was used, whereby the change in ellipticity was monitored using a 

Jasco J-715 CD spectrophotometer (JASCO Germany GmbH, Gross-Umstadt, 

Germany), according to the method described by Potrykus [12] with slight 

modifications. Reactions were conducted in 10 mM potassium phosphate buffer (pH 

8.0) at 37°C with substrate concentrations of 0.5-5  mM in a final volume of 800 µL in 

a 0.5 cm quartz cuvette. The reaction was started by addition of the purified MurI 

(dialysed against 10 mM potassium phosphate buffer (pH = 8) and at a final 

concentration of 0.6 µg mL-1). The change in ellipticity at 202 nm was measured over 
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a period of 5 min. The assay mixture was agitated by a magnetic stirrer after addition 

of MurI. Velocities were determined using a molar ellipticity ([ ]) of 34.8 mdeg mM-1 

cm-1 for L-glutamic acid and 34.4 mdeg mM-1 cm-1 for D-glutamic acid. The values of 

kcat were calculated by dividing vmax values by total MurI concentrations using 59,424 

Da as the MW value for the dimer. 

 

Effect of temperature and pH on MurI activity 

The effect of temperature on the activity of the recombinant MurI was investigated 

using the enzymatic assay at 20, 30, 35, 40, 45, 50, 55 and 60°C in 25 mM 

potassium phosphate, 0.5 mM EDTA,1 mM L-Glu (pH 7.5) after pre-incubation of the 

substrate solution for 5 min. The effect of pH on the activity of the recombinant MurI 

was examined with different buffers in the pH range of 5.0 - 11.0. The buffers 25 mM 

potassium phosphate (pH 5.0 – 7.0), 25 mM TRIS-HCl (pH 7.0 – 9.0) and 25 mM 

glycine-NaOH (pH 9.0-11.0) were used. The relative activity was calculated using the 

sample with the highest activity as 100%. 

Thermal stability was investigated by incubating the recombinant MurI over 24 h at 0, 

10, 20, 30 and 40°C in 25 mM potassium phosphate, 0 .5 mM EDTA, 1 mM L-Glu (pH 

7.5). The pH stability was investigated by incubating  the recombinant MurI over 22 h 

at pH 7.0, 8.0, 9.0 (TRIS-HCl) and 10.0 (NaOH) at 0°C. The residual enzyme activity 

at various time points was measured under enzyme assay conditions. The relative 

activity was calculated using the 0 h sample activity as 100%. 

 

Determination of the substrate specifity 
 
A preliminary survey of the substrate specificity of MurI was performed in potassium 

phosphate buffer, 0.5 mM EDTA (pH 7.5) by incubating MurI with 1 mM of amino acid 

(D/L-glutamic acid, D/L-glutamine and D/L-aspartic acid) at 37°C for 10 min in  a 

volume of 1 mL. The products were analysed after derivatisation with BOC-L-Cys-

OPA according to Hashimoto [24] by HPLC using a Thermo SpectraSYSTEM 

(degasser, P2000 LC pump, AS1000 Autosampler, UV1000 UV-Vis detector, Thermo 

Fisher Scientific, Dreieich, Germany) with a RP C18 column (Gromsil 120-ODS-3, 

125 x 4.6 mm, 3 µM, GROM Analytik + HPLC GmbH, Herrenberg, Germany).  
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Determination of the molecular weight 

The molecular weight and the quaternary structure of the recombinant MurI were 

examined under native conditions by gel filtration using a Superdex 75 10/300 GL 

column with an Äkta FPLC (GE Healthcare, Munich, Germany). Purified MurI and 

standard protein mix (Gel Filtration Calibration Kit LMW, GE Healthcare) were eluted 

under isocratic conditions using 25 mM potassium phosphate buffer + 150 mM NaCl, 

0.5 mM EDTA, 1 mM L-Glu (pH 7.5) with a flow rate of 0.5 mL min-1 and a detection 

at 280 nm. The molecular weight of the subunits was analysed by SDS-PAGE. 
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Results and Discussion 

Cloning and expression of murI 

The murI of the complete genome of Lb. plantarum WCFS1 was found in GenBank 

(NCBI GeneID: 1062262) [22]. In a recent study, complete resequencing of the Lb. 

plantarum WCFS1 genome and analysis were performed by InterProScan. The murI 

gene was afterwards ‘inferred by homology’ as the glutamic acid racemase gene 

[25]. The important cysteine residues of the active centre were conserved in Lb. 

plantarum MurI as Cys74 and Cys185, as described for the Lb. fermentum MurI and 

the B. subtilis RacE [1, 9].   

Based on this sequence information an 837 bp NdeI-EcoRI fragment containing the 

822 bp murI gene was amplified with genomic DNA from Lb. plantarum NC8 as the 

template and ligated in pET20b. The plasmid obtained (pET20b-murI) was used for 

the recombinant production of the enzyme in E. coli BL21 (DE3) after sequencing of 

the murI insert. The cloned murI gene from Lb. plantarum NC8 showed complete 

homology to the murI gene from Lb. plantarum WCFS1 (NCBI GeneID: 1062262). 

Recently, the genome of Lb. plantarum NC8 was sequenced [26]. The cloned gene 

also showed complete homology to the now available murI gene sequence from Lb. 

plantarum NC8 (NCBI AGRI01000006.1). 

In the literature the formation of inclusion bodies has been described as occuring 

when recombinant glutamic acid racemases were produced in E. coli [27-29]. The 

formation of inclusion bodies resulted in misfolded, insoluble and inactive MurI. A 

widely used strategy to overcome this problem is the cultivation of the recombinant E. 

coli at low temperatures, even as low as 6 – 10°C [30]. In our case, preliminary 

expression experiments were performed in baffled shaking flasks with E. coli BL21 

(DE3) pET20b-murI at 20°C. At this temperature, rea sonable growth of the cells was 

obtained, an overexpressed protein band occurred in SDS-PAGE of the clear cell-

free extract, and glutamic acid racemase activity could be detected (data not shown). 

Therefore, a subsequent bioreactor cultivation (4 L-scale) was performed over 21 h 

at 20°C (Figure 1). The highest MurI activity of 3, 266 ± 13 nkatD-Glu/mgprotein was 

obtained at the end of the cultivation when the cells reached the stationary growth 

phase, and the glucose was completely consumed.  
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Figure 1: Recombinant production of MurI with E. coli BL21 pET20b-murI (2YT 
medium + 1 % (w/v) glucose; 4-L-scale bioreactor cu ltivation) 
A: Cell growth and glucose consumption; B: cell growth and recombinantn MurI 
expression. (filled circles: OD600nm; open triangles: glucose concentration; arrow: 
addition of IPTG for induction and lowering of the temperature from 37 to 20°C; bars: 
specific MurI activity, error bars indicate the standard deviation) 
 
To our knowledge this is the first time that a tag-free, “native” glutamate racemase 

(Murl) from Lb. plantarum NC8 has been recombinantly expressed at such high 

activity levels. Our maximum MurI activity value was approximately 62,000-fold 

higher than that previously described for native MurI in the original wildtype Lb. 

plantarum [31]. In other studies the MurI from Lb. fermenti was recombinantly 

expressed in E. coli DH5α [13], and a specific activity of 621 nkatD-Glu/mgprotein was 

achieved. This value is 5-fold less than our result. In addition, the MurI from 

Lactobacillus brevis ATCC8287 was expressed in E. coli TM93 producing a specific 

activity of 153 nkatL-Glu/mgprotein [9]. This value is approximately 21-fold lower than in 

our study.  

 

Purification of the recombinant MurI 

MurI was purified 9.16-fold by L-glutamic acid affinity chromatography and anion 

exchange chromatography (BioFox 40Q), with an overall yield of 11% (Table 1). 

Table 1: Purification of recombinant MurI from Lb. plantarum NC8 

 Total 

protein [mg] 

Specific activity 

[nkatD-Glu /mg] 

Total activity 

[nkatD-Glu] 

Yield 

[%] 

Purification 

[fold] 

Crude extract 32.5 3,720 121,110 100 1 

L-Glu affinity chromatography 4.6 11,700 53,710 44 3.15 

Biofox40Q chromatography 0.4 34,060 13,450 11 9.16 

 

A B 
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Most common purification procedures published for native MurIs are based on 

ammonium sulphate precipitation, followed by hydrophobic interaction 

chromatography and ion exchange chromatography and finally by hydroxyapatite 

chromatography [31, 32]. The affinity chromatography resulted in a purification factor 

of 3.15, with an activity yield of 44% (see Table 1). After the first purification step, 

further buffers used for Murl purification required supplementation with 1 mM L-/D-

Glu, otherwise the enzyme became unstable. This requirement was also recognised 

for the native MurI from Lb. plantarum [7]. After the BioFox 40Q chromatography, the 

purified MurI appeared as a homogenous single band on SDS-PAGE with an 

apparent mass of 30 kDa (see Figure 2).  

 

Figure 2: 12.5% SDS-PAGE analysis of the expression  and purification of MurI 
in E. coli BL21   
M: Molecular weight markers; lane 1: E. coli BL21-pET20, crude extract; lane 2: E. 
coli BL21-pET20-murI crude extract after 21 h cultivation; lane 3: MurI after L-Glu 
affinity chromatography; lane 4: MurI after Biofox40Q chromatography; 5 µg total 
protein loaded per lane, Coomassie stained. 
 

This result is in agreement with the predicted mass of 29.7 kDa calculated in silico. 

As negative control crude extract of E. coli BL21 pET20b was used, where no activity 

of the E. coli MurI was detectable using the assay under standard parameters 

indicating a very low level of expression of the E. coli MurI in the stationary growth 

phase. 

To determine the molecular weight and the quaternary structure of the active MurI, 

size exclusion chromatography (SEC) was performed, and the molecular weight was 

calculated according to the retention times of calibration standards (Fig. 3). 
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Figure 3: SEC of the purified recombinant MurI from  Lb. plantarum NC8. 
(25 mM potassium phosphate buffer + 150 mM NaCl, 0.5 mM EDTA, 1 mM L-Glu (pH 
7.5); flow rate = 0.5 mL min-1; detection at 280 nm) 
 

Using this method, a homodimeric structure with an apparent molecular weight of 

55.8 kDa was determined for MurI, which is in accord with the 30 kDa monomer size 

determined using SDS-PAGE (Fig. 2). Additionally, no aggregated soluble MurI is 

present after purification. This result was contrary to the monomeric form of the active 

MurI from Lb. fermentum, analysed and described by Gallo et al. [13].  However, 

some glutamic racemases from Gram-positive bacteria, such as Bacillus subtilis, 

Staphylococcus aureus and Enterococcus faecalis are known to assemble into 

homodimeric structures similar to the MurI of Lb. plantarum [5]. The MurI from E. coli 

is also described as a monomer [33].  

 

 

Characterisation of the recombinant MurI 

Substrate specificity 

Because glutamic acid racemases are highly conserved enzymes and supply the 

bacterium with the essential D-glutamic acid for cell wall synthesis, they are known to 
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be very specific for glutamic acid [10, 12, 34]. An HPLC analysis was performed to 

investigate whether the structurally similar amino acids glutamine and aspartic acid 

were substrates for Murl. No enzymatic racemisation reaction was detected for either  

D- or L-glutamine or for D- or L-aspartic acid. Therefore, the substrate specificity of 

MurI was the same as for other glutamic acid racemases. A similar strict substrate 

specificity is described also for the alanine racemases, which catalyse only the 

racemisation of D- or L-alanine [32]. 

 

Determination of kinetic parameters 

The kinetic parameters of the purified MurI were analysed using CD spectroscopy. 

This technique is common found in the literature because it allows the kinetic 

parameters for both of the substrates, D- and L-Glu, to be determined [12, 13, 35]. 

The resulting Hanes linearisation is shown in figure 4, and the kinetic parameters are 

listed in table 2.  

 

Figure 4: Calculation of Km and vmax for MurI from Lb. plantarum NC8 with D-
Glu (filled circles) and L-Glu (open circles) as su bstrates using a Hanes plot.  
 



5. Recombinant expression, purification and characterization of MurI  116 

The Km for D-Glu was 1.64 mM and for L-Glu 0.84 mM. While the Km, D-Glu is 

approximately 2-fold higher than the Km, L-Glu, the efficiency ratio kcat/Km is similar for 

both substrates (see table 2).  

Table 2: Kinetic parameters for purified MurI from Lb. plantarum NC8 
 

Substrate kM [mM] vmax [nkat/mL] Kcat [sec-1] kcat/ Km [sec-1/mM] 

D-glutamic acid 1.64 ± 0.12 60.4 ± 4.9 5980 3.64 

L-glutamic acid 0.84 ± 0.14 30.6 ± 5.9 3029 3.61 

 

 

The same observation was described for the MurI from Fusobacterium nucleatum 

[12]. Therefore, the MurI from Lb. plantarum NC8 seems to exhibit pseudosymmetry 

for the racemisation of Glu in both directions. Generally, the Km and kcat values 

determined for the Murl from Lb. plantarum NC8 were in the same ranges as those 

described for MurIs from Lactobacillus sp. and other bacteria [5, 9, 13]. 

 

Effect of temperature and pH of MurI Activity 

The analyses to determine MurI’s temperature optimum, its pH optimum and its 

stability were performed with D-Glu as the substrate and are illustrated in figure 4. 

The recombinant MurI showed a temperature optimum of 50°C (Fig. 5 A). At a 

temperature of 55°C, MurI was completely inactive. The temperature optimum for 

another recombinant glutamic acid racemase [9] from Lb. brevis was significantly 

lower at 37°C. The more important temperature stabi lity of the Murl from Lb. 

plantarum NC8 is shown in Fig. 5 B. After an incubation time of 22 h, a residual Murl 

activity of 77% was estimated at 30°C (half-life of  54 h). At lower temperatures, the 

enzyme was quite stable over this time frame (half-life of 162 h at 20°C). 

MurI was similarly active between pH 7 and 10 (see Fig. 5 C), whereas the enzyme 

was stable only at pH 7 to 8 (see Fig. 5 D), resulting in residual activities of 97% after 

22 h. The half-lives were estimated by extrapolation of the data and equalled 287 h at 

pH 7, 154 h at pH 8, 25 h at pH 9 and 6 h at pH 10. The purified native MurI from Lb. 

plantarum was described by Glaser [7]. The pH stability of this enzyme was maximal 

at pH 6.5 to 7.5, and at pH 8.5, only 70% residual activity was reported. The native 

MurI from Lb. brevis ATCC 8287 possessed a pH optimum between 8.0 and 9.0 [9].  



5. Recombinant expression, purification and characterization of MurI  117 

 
Figure 5: Characterisation of recombinant purified MurI from Lb. plantarum NC8 analysed with 
D-Glu as substrate. 
(A: temperature profile; B: temperature stability; C: pH profile; D: pH stability) 
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