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General Introduction 

A growing world population juxtaposed with dwindling phosphorus 

resources presents new challenges to current and future agricultural 

production. The burden of depleting phosphorus resources is particularly 

felt in sub-Saharan Africa (SSA). The expected doubling of its population by 

2050 (Cleland, 2013) and the widespread poor soil fertility (MacDonald et 

al., 2011) will pose an enormous task to future food security in SSA. Plant 

breeding can be considered as one major factor to improve agricultural 

production under these harsh low-input conditions. Nevertheless, until 

recently there have been no thorough breeding efforts to enhance crop 

production for low-phosphorus soil conditions in SSA.  

Phosphorus - a worldwide future challenge 
Phosphorus (P) is a key component of DNA, cell membranes and cellular 

energy, hence vital to every form of life. There is no substitute for P in food 

production and it is considered as the possibly most limiting mineral nutrient 

for plants across all arable land (Kochian, 2012). Currently, 90% of all mined 

rock phosphate is used in food production and its worldwide use is 

constantly increasing due to a higher demand in food, feed and fuel 

production (Cordell et al., 2009). Worldwide P reserves are expected to be 

exhausted in 40-400 years, depending on the source of information (Vaccari, 

2009; Cooper et al., 2011; Obersteiner et al., 2013; Cordell and White, 2013) 

and the estimated worldwide demand for this scarce mineral (MacDonald et 

al., 2011; Sattari et al., 2012). Geopolitical conflicts are likely, since mineable 

P reserves are heavily concentrated, with Morocco holding about 75% of the 

global share, followed by China 6% and Algeria 3% (Jasinski, 2013). Already 

in 2008, P fertilizer prices were skyrocketing and have since then been on a 

level 2.5 times higher than in 2007. While farmers worldwide are 

economically affected by increasing fertilizer prices, smallholder farmers in 

SSA are hardest struck by such strong increases. In SSA fertilizer prices are 

often relatively higher than in other developing countries, mostly due to 

lacking infrastructure and inefficient supply chains (van der Velde et al., 

2013). Already nowadays, fertilizer application rates are very low in SSA with 

levels mostly below 5kg P ha-1 (Obersteiner et al., 2013), thus leading in 

some regions e.g. West Africa (WA) to P deficits of the agricultural 

production system (MacDonald et al., 2011). Furthermore, most of the SSA 

soils are highly weathered low pH soils with a high P retention level 

(Kochian, 2012), thus fixing most (70-90%) of the applied P as plant 
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unavailable phosphate (Holford, 1997). Therefore, there is a strong need for 

developing plant varieties that are more P efficient –that is, crops that 

produce more with less external input.        

Sorghum 
Sorghum (Sorghum bicolor L. Moench, 2n=2x=20) is the world’s fifth and 

Africa’s second most grown cereal crop (FAO, 2012). Sorghum is a staple 

crop of SSA and is mostly grown in resource poor regions, with the largest 

share in WA. Its good adaptation to harsh environmental conditions makes 

it an important crop for the arid and semi-arid regions, hence a crop vital for 

food security and increasingly for farm income in WA. Sorghum originates 

from northeast Africa, where most of its diversity can still be found (Henzell 

and Jordan, 2009). But since it is cultivated across a wide range of dryland 

areas across the whole world, it has several other diversity hotspots, 

especially in SSA (Billot et al., 2013). Cultivated sorghums (S. bicolor ssp. 

bicolor) are classified into five basic botanical races (Bicolor, Caudatum, 

Durra, Guinea and Kafir) and ten intermediate ones (combinations of the 

five basic races), based on panicle and spikelet morphology (Harlan and de 

Wet, 1972). Sorghum is the first fully sequenced C4-grass and is considered a 

model crop for other C4-grasses due to its relatively small (~730Mb) genome 

(Paterson et al., 2009).   

Breeding sorghum for smallholder farmers in West Africa 
Farmers in WA mostly cultivate sorghum in less fertile fields, knowing that 

sorghum can more dependably produce grain than can maize under such 

conditions. Nevertheless, limited soil P availability is a serious and frequent 

constraint to sorghum growth and productivity across the range of 

environments in WA (Buerkert et al., 2001). Although sorghum has a grain 

yield potential of several tons per hectare in WA, average grain yields have 

only been about 1t ha-1 since 1960 (FAO, 2012), due in part to low soil 

fertility and low-input production systems (Vom Brocke et al., 2010). WA 

sorghum is known to experience P stress below a threshold of 7-10ppm 

plant available soil P (Bray-1P) content (Doumbia et al., 1993). Most of 

smallholder farmers’ fields and especially women fields show P levels below 

this threshold (N=207, mean=7.4, median=5.5; on-farm soil data collected 

by ICRISAT, Mali in 2011), therefore sorghum productivity is directly 

impeded by these low-P soil conditions. Increasing sorghum productivity by 

applying mineral P fertilizer is currently no viable option for most of the 

smallholder farmers in WA. The lack of financial resources, high prices, risk 
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aversion and inadequate rural infrastructure hinder many WA farmers’ use 

of fertilizers, resulting in average annual fertilizer application rates below 5kg 

P ha-1 (MacDonald et al., 2011; Obersteiner et al., 2013). Plant breeding is 

therefore a major tool to overcome this hurdle of sorghum production 

under smallholder farmers’ conditions. Until recently there have been no 

broader sorghum breeding efforts to directly address these low-input 

production conditions. Therefore there is a strong need to develop sorghum 

varieties, which are better adapted to low-P cropping systems, hence serving 

millions of smallholder farmers and helping to assure food security in WA.          

Breeding for wide versus specific adaptation  
Setting up a plant breeding program for a certain target region requires prior 

knowledge on the climatic and edaphic conditions of this region and how 

they might affect variety selection. It is necessary to know which stresses 

(e.g. low-P soil conditions in WA) prevail in the region and how variably 

these stresses occur across a range of different environments within this 

region. Furthermore it is essential to know how different varieties react 

(genotype-by-environment interaction) to the various conditions in the 

target region. Knowledge about the prevailing stresses and the amount and 

type of genotype-by-environment interaction (GEI) within the target region 

will guide the breeder to decide how to set up a breeding program. If there is 

a non-cross-over type GEI with a small extend, then a breeder may choose 

to select for a wide genotypic adaptation across many environmental 

conditions within the target region. Whereas, if there is a significant rather 

large GEI of cross-over type, hence genotypes are differently ranked in 

specific environmental conditions (e.g. in low-P versus high-P conditions; 

Figure 1), a breeding program specifically targeting these conditions should 

be pursued. Likewise, genotypes with high yields and low GEI across many 

environments are considered as widely adapted, whereas genotypes with 

high yields under specific conditions and high GEI are considered as 

specifically adapted (Ceccarelli, 1994). Therefore, knowledge of type and 

extent of GEI and the specific adaptation patterns of genotypes within the 

target region is vital for setting up an efficient breeding program and 

allocating resources. Furthermore, when targeting a specific environmental 

condition (e.g. adaptation to low-P soils), the question arises whether direct 

selection under these specific conditions (e.g. low-P) or indirect selection 

under normal conditions (e.g. high-P) is superior. The response to direct 

versus indirect selection depends on the heritabilities of the target trait (e.g. 

grain yield) under each condition and on the genetic correlation of the target 
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trait between both conditions (Atlin and Frey, 1989). Therefore, if genotypic 

performance in both conditions is highly correlated and the heritability 

estimates in the direct selection environment (e.g. low-P) are lower, then 

indirect selection would be more efficient and should be the method of 

choice.  

Although it is widely known that P-limitation is one of the major constraints 

to sorghum productivity within the target region WA, there was no 

knowledge on the extent and type of GEI in a sorghum breeding program 

targeting low-P conditions, at the beginning of this study. Therefore there is 

a dire need to define these quantitative genetic parameters for setting up an 

efficient breeding strategy, which might guide sorghum breeding within WA.  

 

 

Figure 1: Genotype-by-environment cross-over interaction for low versus 
high P soil conditions. 

Genotype selection under low-input conditions – 

challenges and solutions 
Response to selection under low-input conditions is often considered as less 

efficient based on an expected lower heritability, due to an expected higher 

experimental error and a lower genetic variation (Ceccarelli, 1989, 1994). But 
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contradictory results exist for this assumption (Atlin and Frey, 1989; 

Ceccarelli, 1994; Gallais et al., 2008; Burger et al., 2008; Mandal et al., 2010). 

Genetic variation has been reported to be greater in highly stressed 

environments, especially when locally adapted landraces were included in the 

trials (Ceccarelli, 1996), whereas in moderately stressed environments (cross-

over point; see Figure 1) a smaller genetic variation is expected (Simmonds, 

1991). Hence heritability under low input conditions can be comparable to 

high input conditions or even higher (Ceccarelli, 1996; Burger et al., 2008), if 

appropriate genetic materials are included in the study and if the 

experimental error is of the same magnitude as in high input conditions. The 

latter is mostly not the case, since spatial variation of environmental factors 

e.g. soil fertility, cannot be compensated by external inputs, and small 

fertility differences can have very large effects on plant growth especially 

under low-input conditions (Marschner, 1995 pp. 184–186; Voortman and 

Brouwer, 2003), thus genotypic variation and selection can be biased by 

environmental factors, leading to a higher unexplained  residual variance 

(Grondona et al., 1996). Therefore, environmental effects need to be 

controlled by design and analysis for effective genotypic selection. Different 

field designs and corresponding analyses have been created in the last 

century, mostly controlling environmental heterogeneity by blocking 

structures and replications (Edmondson, 2005). These techniques have their 

limitations if spatial variation cannot be captured by the applied design. 

Various spatial adjustment techniques have been developed (e.g. 

autoregressive models) and have been shown to significantly reduce residual 

error, hence increase heritability and therefore make selection more efficient 

especially in abiotic stress environments (Gilmour et al., 1997; Singh et al., 

2003). Prior to this study there was no knowledge if these methods are 

advantageous specifically under low-input conditions, which impact they 

have on genotypic selection and how they can be best employed in a 

breeding program targeting low-input conditions in WA. 

Adaptation of plants to low-P soil conditions 
Phosphorus in soils occurs mostly as orthophosphate and can be divided 

into mineral and organic P. More than 90% of the total soil P is inaccessible 

to plants since it is fixed in organic matter or as Al-, Fe- or Ca-phosphates 

(Mengel and Kirkby, 2001 p. 453). Plants evolved two basic adaptation 

strategies for soils with low plant available P levels: (1) higher P acquisition 

efficiency from soils and (2) improved internal physiological P use efficiency 

(Vance et al., 2003; Richardson et al., 2011). A higher P acquisition can be 
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achieved by root exudates (e.g. organic anions, phosphatases), greater root 

biomass, changes in root architecture (e.g. root angle, root hair, aerenchyma, 

finer roots) and by symbioses with mycorrhiza (Lynch and Brown, 2008; 

Lynch, 2011; Richardson et al., 2011). A higher internal P use efficiency (e.g. 

more plant biomass with less P uptake) is characterized by reduced growth 

rate, better internal translocation, alternative respiration pathways and 

modified carbon cycles (Vance et al., 2003). Both adaptation strategies show 

a large genotypic variation in several crops. Before this study there was no 

knowledge on the genetic diversity of sorghum for P uptake and P use 

efficiency and which mechanisms might be involved. 

Target traits in breeding for low-P soil conditions 
Although both adaptation strategies show a large genotypic variation, most 

of the low-P breeding efforts have been devoted to improve P acquisition 

efficiency since it showed higher correlations to final grain yield production 

(Rose and Wissuwa, 2012). Whether P acquisition or internal P use 

efficiency should be considered in a breeding program depends on the soil P 

status and the agricultural production system targeted (Richardson et al., 

2011; Simpson et al., 2011). In low-P soils with a high P retention potential, 

as predominant in SSA (Kochian, 2012), P acquisition efficiency is 

considered to be the more promising approach, whereas in high input 

cropping systems internal P use efficiency is regarded as more important 

(Wang et al., 2010). Nevertheless, both adaptation strategies should be 

considered in SSA in order to prevent further soil P mining (Stoorvogel et 

al., 1993). Most of SSA soils are characterized by low pH values, low organic 

matter content (Corg) and higher aluminum values (Al3+) (Eswaran et al., 

1993; Buerkert et al., 2001; Kochian et al., 2004; FAO/IIASA/ISRIC/ISS-

CAS/JRC, 2012). Under these harsh conditions especially root exudates 

might play a major role for crop growth. Release of citrate and other organic 

anions into the rhizosphere prevents root damage by chelating Al3+ and can 

lead to more plant available P by mobilizing previously bound P mainly by 

ligand exchange, dissolution and occupation of P sorption sites (Zhang et al., 

1997; Neumann and Römheld, 1999; Ma et al., 2001). Thus, exudation of 

organic anions can lead to a higher P acquisition rate by releasing more 

bound P and keeping roots intact for further soil exploration (Richardson et 

al., 2011). Plant growth under such stressful conditions as prevalent in WA, 

is not merely restricted to a sole abiotic or biotic stressor (Haussmann et al., 

2012). Considering these other constraints (e.g. foliar and root diseases, 

other minerals and water stagnation or drought) in a breeding program 
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targeting low-P conditions can lead to big yield increases under low-P 

conditions, without actually targeting traits directly related to higher P 

acquisition or internal P use efficiency (Simpson et al., 2011). Therefore, 

breeding crops adapted to low-P soil conditions is a complex task and must 

be seen as one tool among other measures to close the yield gaps in SSA 

(Mueller et al., 2012) and make the whole agricultural production system 

more nutrient efficient and sustainable. Before this study there was no 

knowledge on which adaptation strategy is the more important one 

contributing to the adaptation of WA sorghum to low-P soil conditions. 

Furthermore it is not known which P-efficiency trait should be considered 

as selection criteria for grain yield selection under low-P conditions and how 

different criteria can be combined. 

Genetics of low-P adaptation and its possible use in 

sorghum 
The underlying genetics of low-P adaptation have extensively been studied 

in A. thaliana (for review see: Nilsson et al., 2010; Rouached et al., 2010; 

Hammond and White, 2011) revealing a complex adaptation and response 

network. Nevertheless, most of these genes could not lead to higher yields in 

crop plants under field conditions. Among crop plants, rice is the most 

extensively studied one (Lafitte et al., 2007; Shimizu et al., 2008; Chin et al., 

2009, 2011; Panigrahy et al., 2009; Torabi et al., 2009; Li et al., 2009, 2010; 

Secco et al., 2010; Park et al., 2010; Famoso et al., 2011; Gamuyao et al., 

2012; Topp et al., 2013). The most important quantitative trait locus  PUP-1, 

which was shown to increase grain yield under low-P field conditions, was 

first mapped in 1998 (Wissuwa et al., 1998). Underlying PUP-1 is a single 

kinase gene, PSTOL1, which increases early root growth and P acquisition 

efficiency under low-P conditions and in several different genetic 

backgrounds (Gamuyao et al., 2012). PSTOL1 is one of the few genes, 

which was proven to contribute to enhanced productivity under low-P field 

conditions and is not merely a scientific concept. Since the rice genome 

exhibits substantial synteny to other grasses including sorghum (Soderlund 

et al., 2006; Ramu et al., 2009), it might be possible to exploit the genetic 

knowledge from rice and find similar genes to PSTOL1 in sorghum, which 

contribute to better root growth and higher P uptake rates under low-P 

conditions. Before this study there was no knowledge about the effect of 

several candidate genes, related to P efficiency, on the adaptation of 

sorghum to low-P soil conditions.  
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Genome wide association studies 
Genome wide association studies (GWAS), also known as linkage 

disequilibrium (LD) mapping, is a well established method to decipher the 

underlying genetic structure of simple or complex traits by exploiting the LD 

between DNA markers and the underlying causative genes of a specific trait, 

which is present in a germplasm set. It has been widely used in human and 

plant genetics (Hirschhorn et al., 2002; Zhu et al., 2008) and overcomes 

certain limitations of the classical linkage analysis mapping in plants, such as 

a restricted allelic diversity and a limited genomic resolution (Zhu et al., 

2008; Brachi et al., 2011). In combination with new DNA sequencing 

technologies e.g. genotyping-by-sequencing (Elshire et al., 2011), the 

mapping resolution and thus the chance of detecting causative SNPs using 

GWAS increased immensely (Morris et al., 2013). Employing GWAS using 

high resolution markers in a diverse set of sorghum genotypes, makes it 

possible to examine the genetics underlying the adaptation of sorghum to 

low-P soil conditions. No such study has been conducted before this study. 

Objectives of this study 
The goal of my thesis was to establish a selection strategy for breeding 

sorghum targeting P- limited soils in WA. In particular the following specific 

objectives were: 

1. To evaluate the impact of spatial models on genotypic selection in 

low-input field trials. 

2. To develop a selection strategy for sorghum targeting P-limited 

environments based on quantitative genetic parameters. 

3. To identify genomic regions influencing sorghum performance in 

P-limited environments using modern genomic tools.  
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Getting the most out of sorghum low-input 

field trials in West Africa using spatial 

adjustment1 

Willmar L. Leiser, Henry F. Rattunde, Hans-Peter Piepho, Heiko K. Parzies 

The original publication is available at: http://onlinelibrary.wiley.com/doi/ 

10.1111/j.1439-037X.2012.00529.x/full 

Abstract 
Breeding sorghum for low-input conditions is hindered by soil 

heterogeneity. Spatial adjustment using mixed models can help account for 

this variation and increase precision of low-input field trials. Large small-

scale spatial variation (CV 39.4%) for plant available phosphorous was 

mapped in an intensely sampled low-input field. Spatial adjustments were 

shown to account for residual yield differences due to this and other growth 

factors. To investigate the potential of such models to increase the efficiency 

of low- and high-input field trials, 17 experiments with 70 sorghum 

genotypes conducted in Mali, West Africa, were analyzed for grain yield 

using different mixed models including models with autoregressive spatial 

correlation terms. Spatial models (AR1, AR2)  improved broad sense 

heritability estimates for grain yield, averaging gains of 10 and 6 percentage 

points relative to RCB and lattice models, respectively. The heritability 

estimate gains were even higher under low-P conditions and in two-replicate 

analyses.  No specific model was best for all environments. A single spatial 

model, AR1xAR1, captured most of the gains for heritability and relative 

efficiency provided by the best model identified for each environment using 

Akaike’s Information Criterion. Spatial modeling resulted in important 

changes in genotype ranking for grain yield. Thus, the use of spatial models 

was shown to have potentially important consequences for aiding effective 

sorghum selection in West Africa, particularly under low-input conditions 

and for trials with fewer replications. Thus, using spatial models can improve 

the resource allocation of a breeding program. Furthermore, our results 

show that good experimental design with optimal placement and orientation 

of blocks is essential for efficient statistical analysis with or without spatial 

adjustment.  

http://onlinelibrary.wiley.com/doi/10.1111/j.1439-037X.2012.00529.x/full
http://onlinelibrary.wiley.com/doi/10.1111/j.1439-037X.2012.00529.x/full
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Selection Strategy for Sorghum Targeting 

Phosphorus Limited Environments in West 

Africa: Analysis of Multi-Environment 

Experiments2 

Willmar L. Leiser, H. Frederick W. Rattunde, Hans-Peter Piepho, Eva 

Weltzien, Abdoulaye Diallo, Albrecht E. Melchinger, Heiko K. Parzies, 

Bettina I.G. Haussmann 

The original publication is available at: https://www.crops.org/publications 

/cs/articles/52/6/2517 

Abstract 
Although sorghum [Sorghum bicolor (L.) Moench] in West Africa (WA) is 

generally cultivated with limited or no fertilization on soils of low 

phosphorous availability, no assessments of the genetic variation among WA 

sorghum varieties for adaptation to low soil P are known. We assessed grain 

yields of 70 diverse sorghum genotypes under –P (no P fertilization) and +P 

conditions at two locations in Mali over five years. Genetic variation for 

grain yield under –P conditions and the feasibility and necessity of sorghum 

varietal testing for grain yield under –P conditions were evaluated. Delayed 

heading dates (0-9.8 d) and reductions of grain yield (2-59%) and  plant 

height (13-107cm)  were observed  in –P relative to the +P trials. High 

estimates of genetic variance and broad sense heritabilities were found for 

grain yield across both –P (h²=0.93) and +P (h²=0.92) environments. The 

genetic correlation for grain yield performance between –P and +P 

conditions was high (rG=0.89), suggesting that WA sorghum varieties 

generally possess good adaptation to low P conditions.  However, genotype 

x phosphorus crossover interaction was observed between some of the 

highest yielding genotypes from the –P and +P selected sets, with the variety 

IS 15401 showing specific adaptation to –P. Direct selection for grain yield 

in –P conditions was predicted to be 12% more efficient than indirect 

selection in +P conditions.  Thus, selection under –P conditions should be 

useful for sorghum improvement in WA. 

  

https://www.crops.org/publications/cs/articles/52/6/2517
https://www.crops.org/publications/cs/articles/52/6/2517
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Two in one sweep: Aluminum tolerance 

and grain yield in P-limited soils are 

associated to the same genomic region in 

West African Sorghum3 

Willmar L. Leiser, Henry Frederick W. Rattunde, Eva Weltzien, Ndiaga 

Cisse, Magagi Abdou, Abdoulaye Diallo, Abocar O. Tourè, Jurandir V. 

Magalhaes, Bettina I.G. Haussmann 

The original publication is available at: http://www.biomedcentral.com/ 

1471-2229/14/206/  

Abstract  
Background 

Sorghum (Sorghum bicolor L. Moench) productivity is severely impeded by low 

phosphorus (P) and aluminum (Al) toxic soils in sub-Saharan Africa and 

especially West Africa (WA). Improving productivity of this staple crop 

under these harsh conditions is crucial to improve food security and farmer’s 

incomes in WA.  

Results 

This is the first study to examine the genetics underlying sorghum 

adaptation to phosphorus limitation in a wide range of WA growing 

conditions. A set of 187 diverse sorghum genotypes were grown in 29 –P 

and +P field experiments from 2006-2012 in three WA countries. Sorghum 

grain yield performance under –P and +P conditions was highly correlated 

(r=0.85***). Significant genotype-by-phosphorus interaction was detected 

but with small magnitude compared to the genotype variance component. 

We observed high genetic diversity within our panel, with rapid linkage 

disequilibrium decay, confirming recent sequence based studies in sorghum. 

Using genome wide association mapping based on 220 934 SNPs we 

identified one genomic region on chromosome 3 that was highly associated 

to grain yield production. A major Al-tolerance gene in sorghum, SbMATE, 

was collocated in this region and SbMATE specific SNPs showed very high 

http://www.biomedcentral.com/1471-2229/14/206/
http://www.biomedcentral.com/1471-2229/14/206/
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associations to grain yield production, especially under –P conditions, 

explaining up to 16% of the genotypic variance. 

Conclusion 

The results suggest that SbMATE has a possible pleiotropic role in 

providing tolerance to two of the most serious abiotic stresses for sorghum 

in WA, Al toxicity and P deficiency. The identified SNPs can help accelerate 

breeding for increased sorghum productivity under unfavorable soil 

conditions and contribute to assuring food security in WA. 
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General Discussion 

Spatial adjustments – applications and implications in 

low-P breeding 
Genotype selection in low-input and stress prone field trials is generally 

hampered by environmental noise, which cannot be accounted for by 

standard analysis of field trials. Consequently these trials can show lower 

broad-sense heritability (h²) within and across environments (Weber et al., 

2012), hence leading to a lower response to selection. Although additional 

measures e.g. soil/plant parameters, can lead to an increased h² by using 

them as covariates in a standard analysis (Mühleisen et al., 2013), particularly 

soil parameters account mostly only for a small proportion of genotypic 

performance (Voortman and Brouwer, 2003; Leiser et al., 2012a), are 

laborious to collect and expensive to analyze. Hence, spatial adjustment 

methods accounting for any environmental variation are a suitable 

inexpensive way of correcting for micro-variability and should be considered 

especially in trials, where spatial variability is due to many not clearly 

identifiable factors, such as in most of the soils in WA (Brouwer et al., 1993). 

In the present field trials, spatial trends were mostly identified along rows 

and columns, leading to the selection of spatial models accounting for both 

trends (Leiser et al., 2012a). These findings led us at ICRISAT-Mali to the 

conclusion to lay out our incomplete blocks in two-dimensions comprising 

both rows and columns in current field trials. This practice led generally to 

similar high h² estimates using either incomplete block or spatial model 

analyses (data not shown), thus showing that proper blocking based on prior 

knowledge can replace spatial adjustment methods as already proposed in 

Leiser et al. (2012a). Since two-dimensional blocking is incorporated in the R 

package DiGGer (www.austatgen.org), it can be easily applied in any 

breeding program, without the need to invest money into expensive 

software which can model spatial covariance structures in a mixed model 

framework.   

Whichever approach is finally chosen, in low-P field trials it is essential to 

correct properly for external errors either by design and/or analysis. It was 

shown that the use of spatial models, especially under low-P conditions, will 

lead to significantly higher h² estimates, more precise genotype estimates and 

different genotypic rankings, hence influencing genotype selection (Leiser et 

al., 2012a; b). In the era of molecular breeding, using either QTL-based or 

genomic selection methods, good phenotypic data are essential to identify 

http://www.austatgen.org/software/
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marker-trait associations. The power of detecting QTLs (Riedelsheimer et 

al., 2012a) and the accuracy of genomic prediction (Lado et al., 2013) are 

increasing with increasing h², hence spatial models, which can lead to more 

precise phenotypic data, are of great importance also for molecular breeding 

efforts targeting stress prone environments. The evaluated low-P trials can 

be considered as highly stress-prone environments, with large reductions of 

grain yield and plant height and delayed heading (Leiser et al., 2012b). 

Therefore, applying proper field designs and/or spatial modeling was a 

necessary step to gain phenotypic data, which could be used to formulate a 

sound breeding strategy and find genomic regions for future sorghum 

breeding targeting low-P soil conditions in WA. 

Genotypic variation and selection of sorghum for 

adaptation to low-P soils 
Sorghum growth is severely impeded under P deficient conditions. It shows 

large grain yield and plant height reductions and delay of flowering as 

observed in several plants (Rossiter, 1978; Fageria et al., 1988; Atlin and 

Frey, 1989; Wissuwa and Ae, 2001; Manske et al., 2001; Turk et al., 2003; 

Chen et al., 2008; Cichy et al., 2008; Parentoni et al., 2010; Leiser et al., 

2012b). Nevertheless, sorghum germplasm from WA is generally better 

adapted to low-P soils compared to other crops as seen in a stronger 

relationship between performance under high-P and low-P conditions (Atlin 

and Frey, 1989; Beebe et al., 1997; Hammond et al., 2009; Parentoni et al., 

2010; Ding et al., 2012; Leiser et al., 2012b). However, there is great genetic 

variation for response to P fertility status, with some genotypes showing 

significantly superior grain yields only under low-P conditions, hence giving 

the opportunity for selection for specific adaptation to soil P fertility status. 

A significant genotype-by-P cross-over type interaction, particularly among 

the best performing genotypes and similar high broad-sense heritabilities in 

low and high-P conditions, led to a higher response of direct selection under 

low-P conditions relative to indirect selection under high-P conditions 

(Leiser et al., 2012b) and points to the need of directly selecting sorghum 

under low-P conditions (<7 ppm Bray-1 P) to meet the needs of millions of 

smallholder farmers in WA, which generally crop sorghum under low-input 

conditions with plant available soil P levels below 7ppm. 

The evaluated set of genotypes in this study represented a wide range of 

sorghum diversity originating from WA. Although there were generally 

significant genotypic differences for low-P adaptation, some genotype 

groups showed distinct patterns. Among the racial groups, particularly 
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genotypes of the Guinea and Durra race showed specific adaptation to low-

P conditions, whereas the Caudatum-race genotypes were more adapted to 

high-P conditions (Leiser et al., 2014a; b). In WA, Guinea sorghums are 

mostly cultivated in the more wet Sudanian zone, whereas Durra sorghums 

are predominantly cultivated in the rather dry Sahelian zone (Zongo et al., 

1993; Deu et al., 2008; Sagnard et al., 2011). Hence, these two races are 

promising germplasm pools for sorghum breeding targeting P-limited 

conditions in different agroclimatic and farmer preferential zones in WA. 

Furthermore, genotypes classified as landraces were more specifically 

adapted to low-P conditions than varieties originating from breeding 

programs. This may reflect the selection history of both germplasm groups, 

while landraces have been selected by farmers under low-P conditions for 

millennia; official sorghum breeding was mostly conducted under well 

fertilized conditions. But since both variety types showed significant within 

group variation for grain yield under low-P conditions, both of them can be 

exploited to enhance grain yield production under farmer’s field’s 

conditions.  

The projected climate with more variable on- and off-sets of the rainy 

season will pose another great challenge to sorghum production in WA. 

Photoperiod sensitivity of sorghum is proposed to be a crucial property to 

better cope with these more variable rainfall events (Dingkuhn et al., 2006; 

Haussmann et al., 2012). Photoperiod sensitive genotypes proved to be 

more specifically adapted to low-P conditions, showed less delay in heading 

and had a higher P uptake rate than photoperiod insensitive varieties (Leiser 

et al., 2014b). It was observed that whereas photoperiod-insensitive 

sorghums having linear growth, early sown photoperiod sensitive sorghums 

exhibit bilinear rates of above ground growth (Clerget et al., 2008) whereas 

rooting depth continues at a constant rate, suggesting that P uptake rates can 

be maintained at later growth stages. Similar findings on phenological delay, 

root growth duration and adaptation to low-P conditions were also observed 

in A. thaliana (Nord and Lynch, 2008), pointing to the need of further 

research on this adaptation mechanism. By and large, photoperiod-sensitive 

sorghum genotypes provide a valuable germplasm source for future breeding 

efforts targeting low-P soil conditions and more variable rainy seasons in 

WA.  

WA sorghum exhibits a large genetic variation for P uptake and P utilization 

traits and proves to use P more efficiently than maize (Parentoni and Souza 

Jr., 2008; Leiser et al., 2014b). To date no single mechanism for the observed 
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higher P uptake level of some genotypes is known. We, at ICRISAT-Mali, 

evaluated all 187 sorghum genotypes under low-P soil conditions (<6ppm 

Bray-1 P) in a pot experiment for 38 days and measured mycorrhiza 

colonized root length and crown root angle, two major factors generally 

influencing P uptake in plants (Richardson et al., 2011). Mycorrhiza 

colonization had a negative influence on biomass production and P uptake 

at an early developmental stage, probably reflecting „carbohydrate costs“ of 

initial mycorrhizza colonization (Olatoye, 2013), and neither of the traits was 

correlated to grain yield production across 15 independent low-P field trials. 

This suggests that several different mechanism are involved in P acquisition 

of sorghum (unpublished data). Hence further research is needed to 

understand the possible mechanisms and how they interact and complement 

each other in different types of environments. Such knowledge could further 

guide breeders for specifically enhancing P acquisition efficiency in sorghum.  

Although P uptake traits are generally better at predicting grain yield across 

low-P conditions than P use efficiency traits (Jones et al., 1989; Manske et 

al., 2001; Araújo and Teixeira, 2003; Ozturk et al., 2005; Cichy et al., 2008; 

Parentoni et al., 2010; Leiser et al., 2014b), selection for a higher P use 

efficiency should be considered especially in breeding programs targeting 

areas that show P deficits of the overall agricultural production system and 

where high P uptake would lead to further soil P depletion (MacDonald et 

al., 2011; Rose and Wissuwa, 2012; van der Velde et al., 2014). The observed 

genetic variation for P use efficiency in WA sorghum and its positive 

correlation to grain yield production allow genotypic selection for a higher P 

use efficiency without any negative impact on final grain yield production in 

P-limited conditions (Leiser et al., 2014b). Leiser et al. (2014b) showed that 

P concentration in the grain is a reliable, simple and rather inexpensive 

measure of P use efficiency, which meets the criteria of being not 

confounded by harvest index (Rose et al., 2011; Rose and Wissuwa, 2012). 

Hence selection for a lower P concentration in the grain might be pursued 

to enhance P use efficiency, thus contributing to minimize further soil P 

mining in WA. The likely concurrent reduction of phytic acid content in the 

grain could increase Zn and Fe bio-availability (Hurrell et al., 2003), which 

would be of great importance in WA where most of the grain is used for 

food and a high level of malnutrition is still prevailing (Birner et al., 2007), 

but it might also lead to less vigorous early plant growth, hence has a 

negative impact on final biomass production under low-P conditions 

(Veneklaas et al., 2012).  Moreover, a high P acquisition rate is also crucial 

for grain yield production in soils with a high P retention potential, as 
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commonly occurring in WA (Kochian, 2012). Since genotypes were 

indentified combining a high P acquisition and high P use efficiency, leading 

to superior grain yield performance under low-P conditions, it was shown 

that both traits can be combined in one genotype. Exploiting natural 

variation is therefore a promising tool for enhancing overall P efficiency 

(Lynch, 2007). 

Genetics underlying adaptation to low-P conditions in 

sorghum 
Although sorghum is extensively cultivated under low-P conditions and its 

genome has been fully sequenced and has been available since 2009 

(Paterson et al., 2009), no study ever looked comprehensively at the genetic 

variation and the underlying genetics of low-P adaptation in sorghum. Due 

to its African origin (Wet and Harlan, 1971) and its long cultivation in WA 

under P-limited conditions, WA sorghum provides a promising source for 

studying the genetic architecture of several traits related to low-P adaptation. 

Two approaches were followed for examining the genetics underlying low-P 

adaptation in sorghum. First, SNPs within candidate gene homologs from 

A. thaliana and rice were identified and associated to low-P performance and 

secondly a whole genome scan using 220,934 SNPs derived from 

genotyping-by-sequencing (Elshire et al., 2011) was conducted. Although 

many SNPs were identified and studied in several different genes (namely 

homologs of: OsPHR2, SIZ1, PHO2, OsSPX1, PHT1, PSTOL1) involved in 

P starvation response, with functions ranging from P transporter, 

transcription factor, mycorrhiza inducer, root growth and P signaling  (Fang 

et al., 2009; Nilsson et al., 2010; Rouached et al., 2010b; Gamuyao et al., 

2012), no strong associations to traits related to low-P adaptation were 

identified, except for PSTOL1 homologs. PSTOL1 is the underlying gene of 

a major P uptake QTL (Pup-1) in rice. It encodes a protein kinase and 

enhances early root growth and P uptake under low-P conditions (Gamuyao 

et al., 2012).  SNPs within two PSTOL1 homologs located on chromosome 

3 and 7, showed significant associations to early shoot P uptake and shoot 

biomass production, and to grain yield under low-P conditions in the 

evaluated WA sorghum diversity panel. The same SNPs were also associated 

to grain yield and P uptake under low-P field conditions and to several root 

architectural traits in nutrient solution in a genetically independent mapping 

population evaluated in Brazil (Hufnagel et al., 2014). These results indicate 

that PSTOL1 homologs in sorghum have the ability to stably enhance P 

uptake and crop performance under low-P soil conditions by a mechanism 



24                                       General Discussion 

 

related to early root growth enhancement, similar to PSTOL1 in rice 

(Gamuyao et al., 2012). Although significant associations of the PSTOL1 

homologs to grain yield production under low-P field conditions were 

found, they generally only explained a small proportion (r²<7%) of the 

genotypic variance.  

Using 220,934 SNPs in a genome wide association study, one specific region 

was identified, which was highly associated to grain yield production under 

P-limited conditions. The Al-tolerance locus AltSB and its underlying gene 

SbMATE in sorghum was collocated in this region and AltSB specific SNPs 

showed very high associations to grain yield production, especially under 

low-P conditions, explaining up to 16% of the genotypic variance. The 

results suggest that AltSB has a pleiotropic role in providing tolerance to two 

of the most serious abiotic stresses for sorghum in WA, Al toxicity and P 

deficiency. Previously it was suggested that Al-tolerance and P uptake under 

low-P conditions can be regulated by similar processes in sorghum, since 

AltSB was associated to a higher citrate release of sorghum roots (Magalhaes 

et al., 2007). Release of citrate and other organic anions into the rhizosphere 

prevents root damage caused by Al-toxicity by chelating Al3+. At the same 

time, citrate can mobilize P that is bound to soil clays by ligand exchange, 

dissolution and occupation of sorption sites, thus increasing P availability to 

the plants (Zhang et al., 1997; Neumann and Römheld, 1999; Ma et al., 

2001). Hence, exudation of organic anions can lead to a higher P acquisition 

rate (Vance et al., 2003; Richardson et al., 2011). Recent work showed that 

over-expression of citrate synthesis and malate transporter genes in different 

species resulted in improved Al-tolerance and enhanced P uptake under low-

P conditions (Delhaize et al., 2009; Wang et al., 2013; Liang et al., 2013), 

supporting previous hypotheses that Al-tolerance and P uptake can be 

regulated by similar mechanisms (Magalhaes et al., 2007). The presented 

findings can be regarded as a further step to prove these assumptions under 

field conditions. Although the frequency of the positive low-P specific and 

Al-tolerant SNPs was low (9%) in the evaluated WA sorghum panel, the 

frequency is much higher in the Guinea-race germplasm, with 95% of the 

genotypes carrying the positive SbMATE alleles being either pure Guinea 

race or Guinea introgressed genotypes. A similar allele frequency of these 

SNPs and a higher frequency in WA Guinea sorghums was also found in a 

worldwide sorghum collection (Caniato et al., 2011), hence pointing to this 

germplasm group as an important source for Al-tolerance in sorghum 

(Caniato et al., 2014). Since both, P-limitation and Al-toxicity show a great 

spatial variation (Voortman et al., 2004) and have been reported to have a 
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major influence on crop growth in WA (Manu et al., 1996), marker assisted 

selection targeting both traits simultaneously, can and should be carried out 

to achieve genotypes with a staple performance across multiple soil 

conditions in WA. 

Although a highly associated genomic region with a plausible molecular link 

to low-P adaptation was identified, only a small proportion (r²<20%) of the 

total genotypic variance could be explained by this region (Leiser et al., 

2014a) and no single adaptation strategy (e.g. P uptake, P use efficiency) 

could be identified (Leiser et al., 2014b). Hence adaptation of sorghum to P-

limited soils is a complex, highly polygenic trait, encompassing different 

adaptation strategies involving P acquisition and or internal P use efficiency. 

A method of choice to overcome these hurdles of complexity may be 

genomic selection. In contrast to QTL-based selection strategies, genomic 

selection does not involve significance tests and uses all available markers to 

predict genotypic performance (Meuwissen et al., 2001), hence minor QTLs 

will not be neglected in genotypic selection. It gained recently much more 

attention in plant breeding, especially for highly polygenic traits, due to its 

higher response to selection compared to QTL-based or phenotypic 

selection (Heffner et al., 2010; Jannink et al., 2010; Massman et al., 2012). To 

exploit the potential of genomic selection for adaptation to P-limited 

environments, the predictive ability  of genomic selection within our 

diversity set was estimated for grain yield under low-P, high-P, across both 

low and high-P conditions and for grain yield ratios, as a measure for low-P 

specificity (Figure 2). Due to its generally good robustness and performance 

(Riedelsheimer et al., 2012b; Wimmer et al., 2013), the RR-BLUP-method 

was applied, as implemented in the R package rrBLUP (Endelman, 2011). 

Fivefold cross-validation with 100 replications was used to assess the 

prediction performance in our diversity panel. The data set was divided into 

five mutually exclusive subsets; four of them formed the training set for 

fitting marker effects and the fifth subset was used as a validation set. Its 

genotypic values were estimated using the formerly estimated marker effects 

of the training set (Endelman, 2011). Pearson’s correlation coefficient 

between predicted genotypic values and observed phenotypic values in the 

validation set describes the predictive ability. A high predictive ability could 

be found for grain yield under low-P, high-P and across both fertility 

conditions and a moderate one for grain yield ratios (Figure 2). These 

findings suggest that a higher response to selection can be reached by using 

genome wide approaches compared to QTL-based or phenotypic selection 

(Massman et al., 2012). Nevertheless, since Al-toxicity is a widespread 
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production constraint with a high spatial variability across WA, it is 

necessary to specifically consider this trait in a selection program targeting a 

wide range of edaphic conditions. Due to its mostly monogenic inheritance 

pattern (Caniato et al., 2014) and its low frequency in WA sorghum breeding 

material (Leiser et al., 2014a), it would be necessary to use an altered 

selection scheme. One possible option would be first to employ a single 

marker selection for the positive AltSB alleles (Caniato et al., 2014) and then 

apply a consecutive genomic selection step to further select the potentially 

best performing progenies among the Al-tolerant progenies. Another option 

would be to use prediction methods e.g. BayesB, LASSO, which might give 

more weight to specific QTLs in a genome wide selection approach 

(Daetwyler et al., 2010; de los Campos et al., 2013; Wimmer et al., 2013). 

Which genome wide approach will be chosen depends on the costs of DNA 

extraction and marker analyses. To date, the approach with prior Al-

tolerance selection, is the more cost efficient one, hence is the method of 

choice to simultaneously increase AltSB allele frequency and improve overall 

grain yield performance in WA sorghum.  
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Figure 2: Genomic selection predictive ability of grain yield BLUPs across 
+P, -P sites separately and combined (GY ALL) and grain yield ratios as –
P/+P performance. Values derived from 5-fold cross-validation with 100 
replications using RR-BLUP. 

Conclusions and implications for applied sorghum 

breeding in West Africa 
Sorghum breeding efforts targeting P-limited environments in WA were 

already initiated in 2006 at ICRISAT-Mali. Nevertheless, only with the 

presented findings in this study the necessity and possibility of breeding 

sorghum for low-P soil conditions in WA was clearly laid out. The following 

conclusions can be drawn, which are of direct relevance for sorghum 

breeding targeting P-limited environments in WA: 

 Adequate field designs and/or spatial analyses are necessary tools 

for efficient genotype selection under low-input conditions 

 WA sorghum is generally well adapted to low-P soil conditions and 

shows a large exploitable genetic variation for P efficiency 

 Direct selection under low-P conditions is feasible, necessary and 

more efficient than indirect selection under high-P conditions. 
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 Landrace genotypes are more specifically adapted to low-P 

conditions and show a higher P acquisition capacity than researcher 

bred varieties 

 Durra and Guinea race sorghums are a very promising source 

germplasm with a high low-P specificity 

 Photoperiod sensitive genotypes show less delay in heading, a 

higher P acquisition rate and low-P specificity, hence providing a 

valuable germplasm source for climate and low-P resilience 

breeding 

 Selection for low P concentration of grain can be used to enhance 

internal P use efficiency, without any negative impact on grain yield 

production 

 SNPs in PSTOL1 homologs of rice stably enhance P uptake and 

crop performance of sorghum under low-P soil conditions and can 

be used in marker assisted selection to increase root growth and 

final grain yield production 

 P-efficiency and Al-tolerance are pleiotropically regulated by the 

same genomic region. SNPs of this region can be used for marker 

assisted selection. 

 WA Guinea race sorghum is a major source for Al-tolerant and 

low-P specific SNPs and can serve as source germplasm for allele 

mining and marker assisted selection 

 Genomic selection appears to be a very promising approach to 

further increase the response to selection. Methods giving more 

weight to single SNPs should be considered 
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Future Challenges 

The presented findings show that breeding sorghum for P-limited soils is 

necessary and possible using different approaches. Although the presented 

conclusions were based upon a very good dataset, there are still many open 

questions and new challenges arising, which need to be addressed to increase 

sorghum production not just across a few sites, but on a large scale across 

millions of smallholder farmer’s fields in WA. First of all, I will present 

breeding challenges which are directly arising from the presented work and 

can and partly will be addressed in the near future. Afterwards, I will raise 

some issues, which are not directly related to breeding research, but are of 

major agronomic and socio-economic importance, and must be considered 

to tackle the issue of food and P scarcity in WA in an integrated manner. 

Breeding challenges 
The identified SNP markers for grain yield production under low-P 

conditions will need to be further validated to draw final conclusions and 

give final advices on how to proceed. At ICRISAT-Mali, we are currently 

evaluating further large diversity (571 genotypes) and bi-parental mapping 

sets (14 bi-parental populations, each having approx. 100 genotypes) for 

performance under low and high-P conditions to validate these SNPs. 

Furthermore, expression or knock-out studies of the identified genes will be 

necessary to prove the postulated mechanisms. Once validated, it should be 

possible to incorporate the desired loci for both traits into elite breeding 

material with minimum linkage drag using marker assisted selection. 

Furthermore, the already validated gene specific markers for Al-tolerance 

will make allele mining possible in large germplasm collections, hence 

increase allelic frequency and Al-tolerance of the currently used germplasm 

in WA. These markers have been converted to the cost-efficient (0.08€/data 

point) KASP system of LG Genomics and are available on the Integrated 

Breeding Platform of the Generation Challenge Programme 

(https://www.integratedbreeding.net/), hence can be directly used by all 

breeders in WA. Once validation steps are completed all other markers will 

be converted to the KASP-system and made accessible on the same open 

breeding platform.  

I could show that genomic selection provides a promising tool for grain 

yield selection. Nevertheless, the presented data were derived in-silico using 

cross validations. Therefore further validation steps with an independent set 

of genotypes will be required to prove the effectiveness of genome wide 
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versus QTL-based selection. At ICRISAT-Mali, we are currently evaluating 

571 S1-progenies derived from a random mating population, comprised of 

13 genotypes of which 12 were part of our diversity panel. The derived S1-

lines are currently genotyped for the identified SNPs and using GBS. This 

will give us the option to compare genome wide and QTL-based selection 

approaches, with a somewhat independent set of genotypes in independent 

environments. Once validated, all GBS marker effects will be made publicly 

available and can be used to predict genotype performance in other breeding 

populations in WA. 

Several adaptation mechanisms are involved in low-P adaptation. We could 

not detect a single mechanism which can be considered as major 

determinant for grain yield production under low-P conditions. Since we 

used a very diverse panel of sorghum genotypes, several mechanisms and 

strategies might have been involved in P adaptation. Using a less diverse set 

or even a bi-parental mapping population derived from contrasting 

genotypes might be an option to detect single contributing mechanisms. At 

ICRISAT-Mali there are several bi-parental populations available, which 

could be suitable for such a study. Especially populations having IS15401 as 

one parent should be a valuable source for such studies. IS15401 proved to 

be the most specific low-P adapted genotype, which showed a high P-use 

efficiency, high Al-tolerance, carrying AltSB, Striga hermonthica resistance, 

midge resistance, high photoperiod sensitivity and high grain yields under 

low-P conditions. 

Sorghum hybrid breeding is currently gaining much momentum especially in 

Mali. The lately released hybrid cultivars show farmer-preferred 

characteristics and yield superiorities of approximately 30% across multiple 

on-farm conditions compared to commonly used line cultivars (Rattunde et 

al., 2013). A steadily increasing seed demand (25t in 2012, 50t in 2013) for 

hybrid seed in Mali shows the importance of hybrid sorghum breeding for 

WA. To date there is no profound knowledge on the design of a hybrid 

sorghum breeding program specifically targeting low-P conditions. 

ICRISAT-Mali in collaboration with the University of Hohenheim will 

address this issue in a follow-up project from 2014-2017 (“Bringing the 

benefits of heterosis to smallholder sorghum and pearl millet farmers in 

West Africa”).  
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Agronomic and socio-economic challenges 
Breeding crops for higher yields under low-input conditions is a very 

promising tool to enhance food production in WA. Nevertheless, plant 

breeding must be considered in the context of the entire agricultural 

production system, hence it plays only one part in tackling food and soil 

nutrient scarcity in WA. Agronomic and socio-economic measures have vital 

roles in sustainable and P efficient production systems and for adoption of 

newly developed technologies (Cordell and White, 2013).  

Due to infrastructural and financial constraints of many smallholder farmers, 

a broad and highly intensified mineral fertilizer application is currently no 

valid option in WA. Agronomic measures such as intercropping (Henry et 

al., 2008), crop rotations (Horst et al., 2001), livestock integration, manure 

and compost applications (Simpson et al., 2011) display production 

measures, which are less dependable on external inputs and therefore 

provide options to smallholder farmers, which are most affected by low soil 

fertility conditions. Although the mentioned agronomic measures can help 

enhance crop production under P-limited conditions, their usefulness to 

improve Al-tolerance or decrease Al-toxicity is rather limited. It was shown 

that Al-toxicity and P-deficiency can be reduced by incorporating crop 

residues, hence increasing soil organic matter (Haynes and Mokolobate, 

2001), nevertheless, applying lime (CaCO3) is generally the method of choice 

to ameliorate soils, which show high levels of Al-toxicity (Pavan et al., 1984; 

Moody et al., 1998; Ila’ava et al., 2000). To date liming is no viable option to 

smallholder farmers in WA, due to the lack of and access to lime. Therefore 

the only sustainable solution for WA is to increase soil organic matter 

through agronomic measures and improve Al-tolerance within the current 

breeding germplasm. Since P efficiency and Al-tolerance are associated to 

the same genomic region and are most likely pleiotropically regulated by 

SbMATE, genotypic selection for Al-tolerance will also have a positive 

impact on P efficiency in WA sorghum, hence plant breeding provides a 

very important tool amongst other options to enhance crop production in 

WA.        

In recent decades several methods have been developed and proven to be 

effective in enhancing crop production under low-input conditions and 

many high yielding sorghum varieties have been released in WA. 

Nevertheless, the adoption rates of these new tools have been limited on 

farm level. Many factors were identified for being responsible for the 

observed lack of adoption among farmers, ranging from political and socio-
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economic to agronomic reasons (CGIAR and Stoop, 2002). By proper 

identification of the farmers’ needs using participatory research 

methodologies (e.g. participatory plant breeding), on-farm validation and 

farmer-led testing of new technologies under minimal risk (e.g. seed mini-

packs), strengthening of local seed production systems that work for 

smallholder farmers, and broad-based information distribution (e.g. learning 

DVDs), it is possible to increase adoption rates and reach a much larger 

scale of smallholder farmers. Hence, plant breeding itself is merely a 

research methodology. Only if it is integrated in the respective cultural and 

socio-economic context it can contribute to the entire agricultural 

production system by providing improved seeds. 

The future challenge of increasing food production with decreasing P-

resources can only be tackled if all stakeholders in the supply and demand 

chain take action and devote more efforts to sustaining the remaining P 

resources, hence closing the nutrient cycle of our current food production 

system. 
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Summary 

A growing world population juxtaposed with dwindling phosphorus (P) 

resources present new challenges to current and future global agricultural 

production. The burden of depleting phosphorus resources is particularly 

felt in sub-Saharan Africa (SSA). The expected doubling of its population by 

2050 and the widespread poor soil fertility will pose an enormous task to 

future food security in SSA. Plant breeding can be considered as one major 

factor to improve agricultural production under these harsh low-input 

conditions. Nevertheless, until recently there have been no thorough 

breeding efforts to enhance crop production for low-P soil conditions in 

SSA.  

Sorghum (Sorghum bicolor L. Moench) is the world’s fifth and Africa’s second 

most grown cereal crop. Sorghum is a staple crop of SSA and is mostly 

grown in resource poor regions under low-input cropping conditions, with 

the largest share in West Africa (WA). Its good adaptation to harsh 

environmental conditions makes it an important crop for the arid and semi-

arid regions, hence a crop vital for food security and increasingly farm 

income in WA. Breeding sorghum specifically targeting P-limited soils is 

considered as one of the major challenges for future food production and 

can serve millions of smallholder farmers in WA. Nevertheless, plant 

breeders are mostly reluctant to conduct breeding experiments under low-

input conditions due to a higher spatial variability of soil properties leading 

to a lower response to selection.  

In an unprecedented large scale multi-environment experiment from 2006-

2012 in three WA countries, namely Mali, Senegal and Niger, 187 WA 

sorghum genotypes were evaluated for their performance under P-sufficient 

and P-deficient conditions. The main goal of this study was to establish a 

breeding strategy for sorghum targeting P-limited environments. In order to 

establish such a strategy, the following objectives were defined: (I) to 

evaluate the impact of spatial models on genotypic selection in low-input 

field trials, (II) to develop a selection strategy for sorghum targeting P-

limited environments, based on quantitative genetic parameters and (III) to 

identify genomic regions influencing sorghum performance in P-limited 

environments using modern genomic tools.  

The major findings of this study can be summarized as follows:  
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Spatial models can increase the precision and efficiency especially of low-

input field trials and may lead to different genotype rankings. Hence spatial 

models and/or adequate field designs are necessary tools for efficient 

genotype selection under low-input conditions and must be considered in a 

breeding program targeting P-limited conditions.  

Sorghum performance is severely impeded by low-P soil conditions and 

shows large grain yield and plant height reductions and delayed flowering. 

Nevertheless, WA sorghum is generally well adapted to low-P soil 

conditions and shows a large exploitable genetic variation for P efficiency. 

Direct selection under low-P conditions is feasible, necessary and more 

efficient than indirect selection under high-P conditions and should be 

pursued in a breeding program targeting P-limited environments. Landrace 

genotypes are more specifically adapted to low-P conditions and show a 

higher P acquisition capacity, Durra and Guinea race sorghums show a 

similar specific low-P adaptation, hence these genotype groups are very 

promising source germplasm for further breeding efforts. Photoperiod 

sensitive genotypes show less delay in heading, a higher P acquisition rate 

and a specific low-P adaptation, hence should be considered for climate and 

low-P resilience breeding. Selection for low P concentration of grain can be 

used to enhance internal P use efficiency, therefore decreasing further soil P 

mining. WA sorghum shows a large genetic diversity, hence providing a 

valuable source for genetic studies examining the underlying genetics of low-

P adaptation.  

There are many genomic regions involved in sorghum adaptation to low-P 

soil conditions. Nevertheless, some regions could be identified as major 

contributors, showing large effects on and strong associations to genotypic 

performance. Molecular markers in sorghum homologs of the major P 

efficiency gene PSTOL1 from rice stably enhanced P uptake and crop 

performance through an increased root growth of sorghum under low-P soil 

conditions and can be used in marker assisted selection for grain yield 

production under P-limited conditions. Furthermore, it was observed that 

grain yield production under P-limited conditions and Al-tolerance are 

pleiotropically regulated by the same genomic region and most probably the 

same gene SbMATE. Molecular markers of this region and within the gene 

SbMATE should be used for marker assisted selection to simultaneously 

enhance the tolerance to two of the most serious abiotic stresses for 

sorghum in WA, Al toxicity and P deficiency. WA Guinea race sorghums are 

an excellent source not only for low-P specific alleles, but also for Al-
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tolerance and represent therefore an excellent source germplasm for allele 

mining and marker assisted selection. Genomic selection appears to be a 

very promising approach to further increase the response to selection. But 

methods giving more weight to single molecular markers linked to Al-

tolerance should be considered. 

The laid out results show that breeding sorghum specifically targeting P-

limited conditions is necessary and feasible using advanced statistical models 

and modern genetic tools, and should be pursued as a major selection 

criterion in WA sorghum breeding programs. Nevertheless, only by 

combining agronomic and socio-economic measures with plant breeding 

efforts, millions of WA smallholder farmers can be reached and major yield 

increases can be expected in the near future.  
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Zusammenfassung 

Die Weltbevölkerung wächst, die Phosphor (P) - Lagerstätten verringern 

sich: damit ist die derzeitige und vor allem zukünftige globale Landwirtschaft 

vor neue Herausforderungen gestellt. Das Problem der sich erschöpfenden 

P-Ressourcen wird speziell in Sub-Sahara Afrika (SSA) wahrgenommen. Die 

dort besonders stark zunehmende Bevölkerung und die weitverbreitete 

geringe Bodenfruchtbarkeit stellen eine enorme Aufgabe für die zukünftige 

Ernährungssicherheit in SSA dar. Hier kann die Pflanzenzüchtung potentiell 

einen großen Beitrag zur Steigerung der landwirtschaftlichen Produktion 

unter diesen rauen und extensiven Produktionsbedingungen leisten. 

Trotzdem wurden bis vor kurzem noch keine breiter angelegten 

Züchtungsvorhaben zur verbesserten Pflanzenproduktion unter P-

Mangelbedingungen in SSA durchgeführt.  

Im Getreideanbau steht Sorghum (Sorghum bicolor (L.) Moench) in Afrika an 

zweiter und weltweit an fünfter Stelle. Sorghum ist ein wichtiges 

Grundnahrungsmittel in SSA und wird vor allem in ressourcenschwachen 

Regionen, hauptsächlich in West Afrika (WA), unter extensiven 

Anbaubedingungen kultiviert. Die gute Anpassung an widrige 

Umweltbedingungen macht Sorghum zu einer lebenswichtigen 

Kulturpflanze für die ariden und semi-ariden Regionen, und somit leistet 

speziell dieses Getreide einen entscheidenden Beitrag zur 

Ernährungssicherung. Außerdem verbessert der Anbau von Sorghum auch 

zunehmend die Einkommenslage vieler Kleinbauern in WA. Daher könnte 

eine Sorghum-Züchtung, die speziell auf diese P-Mangelbedingungen 

ausgerichtet ist, der zukünftigen Nahrungsmittelsicherung und Millionen 

von Kleinbauern in WA dienen. Jedoch stehen viele Pflanzenzüchter 

Selektionsexperimenten unter extensiven Anbaubedingungen ablehnend 

gegenüber, da hier meist eine höhere Variation von Bodeneigenschaften 

vorherrscht und somit ein geringerer Zuchterfolg zu erwarten ist. 

In einer beispiellosen, groß angelegten mehr-ortigen Versuchsserie von 

2006-2012 in drei WA Ländern, namentlich Mali, Niger und Senegal, wurden 

187 WA Sorghum Genotypen hinsichtlich  ihrer Leistung auf Böden mit P-

Mangel sowie auf Böden mit ausreichender P-Düngung untersucht. 

Hauptziel dieser Studie war die Entwicklung einer effizienten 

Züchtungsstrategie für eine verbesserte Anpassung von Sorghum an P-

Mangelstandorte in WA. Um solch eine Strategie darzulegen wurden 

folgende Ziele genauer untersucht: (I) Einfluss geostatistischer Methoden 
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zum Ausgleich der Feldheterogenität auf die Güte genotypischer Selektion 

unter extensiven Anbaubedingungen, (II) Entwicklung einer auf quantitativ-

genetischen Parameteren basierenden Selektionsstrategie für Sorghum-

Züchtung unter P-Mangelbedingungen und (III) Identifikation von an der 

Anpassung von Sorghum an P-Mangelbedingungen beteiligten 

Genomregionen mittels modernster Genotypisierungsmethoden.  

Die wichtigsten Erkenntnisse dieser Studie können folgendermaßen 

zusammengefasst werden:  

Geostatistische Adjustierung kann speziell unter extensiven 

Anbaubedingungen die Präzision und Heritabilität der genotypischen 

Unterschiede erhöhen und zu einer unterschiedlichen Rangordnung der 

Genotypen führen. Daher sind geostatistische Analysen und/oder 

angepasste Versuchsdesigns notwendige Methoden für eine effiziente 

genotypische Selektion unter extensiven Anbaubedingungen und sollten auf 

jeden Fall in einem Zuchtprogramm für P-Mangelbedingungen beachtet 

werden.  

Das Wachstum von Sorghum ist unter P-Mangelbedingungen sehr 

beeinträchtigt, dies zeigt sich in einem stark reduzierten Ertrag, einer 

verringerten Pflanzenhöhe und einem späteren Blühzeitpunkt. Dennoch 

zeigt Sorghum aus WA eine sehr gute allgemeine Anpassung an P-

Mangelbedingungen und eine breite züchterisch nutzbare genetische Vielfalt 

für P-Effizienz. Eine direkte Selektion unter P-Mangelbedingungen ist 

notwendig, durchführbar und effizienter als eine indirekte Selektion unter 

gut mit P gedüngten Bedingungen und sollte daher in einem Zuchtprogram 

für P-Mangelbedingungen berücksichtigt werden. Genotypen, welche als 

Landrassen klassifiziert wurden, zeigten eine bessere Anpassung an P-

Mangelbedingungen auf und haben die Fähigkeit mehr P aus dem Boden 

aufzunehmen. Durra und Guinea Sorghum Rassen weisen eine vergleichbare 

spezifische Anpassung für P-Mangelbedingungen auf und somit stellen diese 

Genotyp-Gruppen eine wichtige Quelle für weitere Zuchtarbeiten dar. 

Photoperiodisch sensible Genotypen hatten eine geringere 

Blühzeitverzögerung, eine bessere P Aneignungsfähigkeit und eine allgemein 

spezifischere Anpassung an P-Mangelbedingungen. Demzufolge sollten 

photoperiodisch sensible Genotypen speziell in einer Züchtung für eine 

verbesserte Klima- und P-Mangel Resilienz verwendet werden. Durch die 

Selektion auf eine verringerte P Konzentration im Korn kann die interne P 

Nutzungseffizienz gesteigert und somit eine weitere Reduktion der 

Bodenfruchtbarkeit verringert werden. WA Sorghum weist eine sehr breite 
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genetische Vielfalt auf und stellt somit eine wertvolle Quelle für genetische 

Studien zur Anpassung an P-Mangelbedingungen dar.  

Eine Vielzahl von genomischen Regionen ist an der Anpassung von 

Sorghum an P-Mangelbedingungen beteiligt. Trotzdem wurden einige 

genomische Regionen identifiziert, welche große Effekte auf und eine enge 

Assoziation zur genotypischen Leistung zeigten. Durch molekulare Marker 

in Sorghum Homologen des Haupt-P-Effizienz Genes PSTOL1 aus Reis 

konnte die verbesserte P-Aufnahme aufgrund eines stärkeren 

Wurzelwachstums von Sorghum unter P-Mangelbedingungen erklärt 

werden. Somit können diese Marker zur markergestützten Selektion 

hinsichtlich Ertragssteigerung verwendet werden. Des weiteren wurde 

festgestellt, dass Kornertrag unter P-Mangelbedingungen und Aluminium-

Toleranz von der gleichen genomischen Region pleiotropisch reguliert sind 

und höchstwahrscheinlich auch von demselben Gen SbMATE. Molekulare 

Marker dieser Region und innerhalb des Gens SbMATE sollten daher für 

eine markergestützte Selektion verwendet werden, um eine simultane 

Verbesserung der Toleranz gegenüber den zwei wichtigsten abiotischen 

Stressfaktoren, Al-Toxizität und P-Mangel, in WA Sorghum zu erreichen. 

WA Sorghum der Guinea Rasse erwies sich als eine Hauptquelle für P-

Mangel- als auch für Al-Toleranz spezifischer Allele. Es bietet somit einen 

exzellenten genetischen Grundstock für das Auffinden von Allelen und zur 

markergestützen Selektion. Desweiteren erwies sich die genomweite 

Selektion als eine sehr vielversprechende Methode um den Zuchtfortschritt 

zu steigern, jedoch sollten Methoden, welche einzelnen molekularen 

Markern ein größeres Gewicht geben, in Betracht gezogen werden.  

Die dargestellten Resultate zeigen, dass eine Sorghum-Züchtung speziell für 

P-Mangelbedingungen notwendig und mit Hilfe von fortgeschrittenen 

statistischen Modellen und modernen genetischen Methoden effizient 

durchführbar ist. Eine spezielle Züchtung für P-Mangelbedingungen sollte 

ein Hauptselektionsmerkmal in WA Sorghum-Züchtungs-programmen sein. 

Jedoch können große Ertragssteigerungen bei Millionen von Kleinbauern in 

der nahen Zukunft nur erreicht werden, wenn pflanzenzüchterische 

Anstrengungen zusammen mit agronomischen und sozio-ökonomischen 

Maßnahmen realisiert werden.  
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