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1 German summary – Kurzfassung auf Deutsch 

Wissenschaftler und Politiker sind sich heutzutage zunehmend einig, dass das 

Produktivitätswachstum und der Wohlstand von fortschrittlichen Industrienationen weniger 

von deren Rohstoffvorräten abhängt, als von deren Fähigkeit, neues, technologisches Wissen 

zu entwickeln und dieses in marktfähige Produkte zu überführen. Aus diesem Grund haben 

die Regierungen führender Industrienationen in den letzten Jahrzehnten damit begonnen, 

Förderprogramme zu implementieren, die die Generierung und Diffusion von neuem 

technologischem Wissen fördern sollen. So hat beispielsweise die Europäische Union in 

ihrem siebten Rahmenprogramm beschlossen, zwischen 2007 und 2013 mehr als 53 

Milliarden Euro für Forschung und Entwicklung auszugeben (European Communities 2007). 

Die Produktion von technologischem Wissen unterscheidet sich von der Produktion 

materieller Güter. Kogut und Zander (1992) haben gezeigt, dass technologisches Wissen 

durch die Rekombination von bestehendem Wissen generiert wird und somit einen 

kumulativen und pfadabhängigen Charakter hat. Durch die Tatsache, dass das 

technologische Wissen heterogen zwischen den in Forschung und Entwicklung (F&E) aktiven 

Akteuren (e.g. wissenschaftliche Institutionen, Unternehmen) verteilt ist, sind diese 

permanent gezwungen, während des Innovationsprozesses externes Wissen zu absorbieren 

(z.B.  Chesbrough 2003, Edquist 2005, Powell and Grodal 2005, Lundvall 2010, Giuliani 2011). 

Während der erste Ansatz einen Schwerpunkt auf die systemische Natur des 

Innovationsprozesses legt, betont und untersucht der Innovationsnetzwerk-Ansatz die 

strukturelle Dynamik des Wissensaustauschs zwischen den Akteuren.  

Ein von F&E-aktiven Institutionen oftmals gewählter Weg, um externes Wissen zu 

akquirieren sind dabei F&E-Kooperationen mit einer oder mehreren externen Institutionen. 

Empirische Analysen, die einen solchen Wissenstransfer zwischen Einrichtungen im Rahmen 

des Innovationsprozesses untersuchen, basieren ihre Untersuchungen dabei zumeist auf 

Daten zu formalen F&E-Kooperationen. Formale Kooperationsvereinbarungen sind solche 

Kooperationen, die  in irgendeiner Weise formalisiert sind (z.B. auf Verträge aufbauen).  
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Die Motive, Mechanismen und Konsequenzen des formalen Wissenstransfers sind im 

Vergleich zu denen des informalen Wissenstransfers empirisch weit umfassender erforscht. 

Bönte und Keilbach (2005) argumentieren, dass informaler Wissenstransfer, dadurch dass er 

keinen Formalien unterliegt, im Vergleich zu formellem Wissens- und Technologietransfer 

schwerer zu definieren und messen ist und dass aus diesem Grund vergleichsweise wenig 

empirische Studien zu informalem Wissenstransfer im Innovationsprozess existieren. 

Dabei  haben großangelegte empirische Untersuchungen auf institutioneller Ebene gezeigt, 

dass formale Kooperationsaktivitäten oft nur einen Bruchteil der eigentlichen 

Wissenstransferaktivitäten der forschenden Institutionen reflektieren, da ein großer Teil des 

Wissensaustauschs zwischen F&E-aktiven Institutionen auf einem informellen Weg geschieht 

(z.B. Link und Bauer 1989, Bönte und Keilbach 2005). Die existierenden empirische Studien 

zeigen auf, dass dieser informelle Wissens- und Technologietransfer dabei eine besonders 

hohe Bedeutung für den Wissensaustausch zwischen Industrie und Wissenschaft und für den 

Wissensaustausch innerhalb von wissensbasierten Industrien hat (z.B. Meyer-Kramer und 

Schmoch 1998, Prevezer 2001, Owen-Smith und Powell 2004, Salavisa et al. 2012).  

Zum anderen wird aktuell die Thematik des informalen Wissenstransfer von 

Wissenschaftlern in Zusammenhang mit „Brain Drain“-Debatten und Debatten über die 

wirtschaftlichen Nutzungsrechte von Erfindungen, die mit öffentlichen Mitteln unterstützt 

worden sind, in vielen Ländern diskutiert (z.B. Nguyen 2006, Link et al. 2007).  

Darüber hinaus existieren in der ökonomischen Theorie unterschiedliche Ansichten 

bezüglich der Konsequenzen informaler Wissenstransferaktivitäten von Unternehmen. 

Während Arbeiten aus der ressourcenbasierten Ökonomie nahe legen, dass der informelle 

Abfluss von Wissen an Konkurrenten die Wettbewerbsfähigkeit von Unternehmen mindert 

(z.B. Liebeskind 1996, Brown und Duguid 2001), zeigen beispielsweise die Arbeiten von 

Hippel (1987) und Schrader (1991), dass der informelle Wissensabfluss in Unternehmen 

oftmals nicht unkontrolliert geschieht, sondern dass eher ein Handel mit informellen 

Wissensabflüssen und Wissenszuflüssen zwischen konkurrierenden Unternehmen besteht. 
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Diese Arbeit beinhaltet – neben einem theoretischen Teil – vier empirische Kapitel, die neue 

Evidenz auf Mikroebene zu der Thematik der informellen Wissensflüsse im 

Innovationsprozess beinhalten.  

 Der erste empirische Teil der Arbeit analysiert, inwieweit individuelle und fakultäts-

bezogene Faktoren die Entscheidung eines Wissenschaftlers beeinflussen, an informellen 

Wissenstransfer zu Unternehmen zu partizipieren. Wir zeigen auf Basis einer Befragung von 

deutschen Wissenschaftlern, dass die Entscheidung eines Forschers, sich in informellen 

Wissenstransfer zu engagieren,  sowohl von fakultätsbezogenen Faktoren (z.B. 

Forschergruppengröße) als auch von individuellen Charakteristika des Wissenschaftlers (z.B. 

Geschlecht, Stellung in der Fakultät) abhängt. Die meisten Ergebnisse unserer Studie sind 

dabei in Einklang mit den Ergebnissen einer Studie von Link et al. (2007), die US-

Wissenschaftler an Universitäten zu ihrem Engagement in informellen Wissens- und 

Technologietransfer befragt haben. Im Unterschied zu Link et al. (2007) zeigen wir für unsere 

deutschen Wissenschaftlerdaten, dass die Anzahl der Patente eines Wissenschaftlers einen 

positiven Einfluss auf die Entscheidung des Wissenschaftlers hat, an informellem 

Wissenstransfer teilzunehmen.  

Der zweite empirische Teil der Arbeit basiert ebenfalls auf einer Befragung deutscher 

Wissenschaftler und zeigt, inwieweit internationale Mobilität von Wissenschaftlern deren 

Wahrscheinlichkeit beeinflusst, sich in informellen und formellen Wissens- und 

Technologietransfer an Unternehmen in ihrem Heimatland und/oder in ihrem Gastland zu 

engagieren. Wir zeigen, dass die Dauer eines Forschungsaufenthaltes einen positiven 

Einfluss auf die Wahrscheinlichkeit des Wissenschaftlers hat, sowohl Wissen in das Gastland 

als auch in das Heimatland zu transferieren. Die Häufigkeit von Forschungsaufenthalten 

dahingegen scheint nur eine positive Auswirkung auf die Wahrscheinlichkeit eines Forschers 

zu haben, Wissenstransfer zu der Industrie im Heimatland zu betreiben. Unsere Ergebnisse 

zeigen zumindest für Deutschland, dass internationale Mobilität von Wissenschaftlern also 

nicht wie oftmals befürchtet zu einem Wissensabfluss, sondern eher zu einem 

Wissensgewinn führt. 
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Während die ersten beiden empirischen Kapitel Faktoren analysieren, die kritisch für die 

Initiierung von informellem Wissenstransfer sind, untersuchen die anderen beiden 

empirischen Teile der Arbeit zwei Phänomene, die hauptsächlich als Konsequenz von 

informellem Wissenstransfer auftreten: Wissensflüsse von Unternehmen zu 

wissenschaftlichen Einrichtungen und geteilte Eigentumsrechte von Erfindungen. 

Der dritte empirische Teil der Arbeit untersucht Wissensflüsse von Unternehmen zu 

wissenschaftlichen Einrichtungen in der biotechnologischen Industrie. Wissensflüsse in diese 

Richtung sind bisher relativ unerforscht geblieben. Auf der Basis von Patentdaten 

identifizieren wir Wissensflüsse anhand von Patentzitationen und vergleichen die 

Zitationswahrscheinlichkeit der Patente, zwischen denen Wissensflüsse bestehen, zu 

selektierten Kontrollpatentpaaren. Wir zeigen, dass nicht nur institutionsspezifische 

Merkmale, wie beispielsweise das Kollaborations- und Patentprofil oder die geographische 

Lokation von den Patent anmeldenden Institutionen, sondern auch inventionsbezogene 

Faktoren, wie etwa der approximierte ökonomische Wert, die wissenschaftliche Komplexität 

oder die technologische Spezifität einer Erfindung einen Einfluss auf die 

Zitationswahrscheinlichkeit haben. 

Der letzte empirische Teil der Arbeit beschäftigt sich mit Innovationen mit geteilten 

Eigentumsrechten. Solche Innovationen entstehen häufig aus informalen F&E-

Kooperationen, da hier die Eigentumsrechte an einer möglichen Invention a priori nicht 

geklärt sind. Genauer untersucht der letzte empirische Teil der Arbeit die Motivation von 

Unternehmen, gemeinsam ein Patent anzumelden. Gegeben dem legalen und 

organisatorischen Aufwand, der mit gemeinschaftlichen Patentanmeldungen einhergeht, 

haben Unternehmen normaler Weise einen starken Anreiz, gemeinsame 

Patentanmeldungen zu verhindern. Wir testen wiederum auf der Basis von Patentdaten aus 

der Biotechnologie die Hypothese, dass die Entscheidung von Unternehmen, gemeinsam ein 

Patent anzumelden, von dem zukünftigen, erwarteten ökonomischen Nutzen des Patents 

abhängt. Wir zeigen als Beitrag zur Methodenentwicklung, dass sich nichtparametrische 

Matchingverfahren dazu eignen, kausale Inferenz auf Patentebene zu testen. 
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Basierend auf den Erkenntnissen aus den empirischen Teilen, können wir folgende, 

übergreifende Schlussfolgerungen ableiten: Wir finden in unseren Studien starke Evidenz 

dafür, dass Wissen kontinuierlich – sei es aufgrund regulärer Forschungstätigkeiten oder 

aufgrund von Mobilität von Wissenschaftlern – aus wissenschaftlichen Einrichtungen 

abfließt. Offensichtlich befinden sich deutsche, wissenschaftliche Einrichtungen immer noch 

in einem Lernprozess, wie sie die Nutzungsanreize von eigenen 

Technologietransfermechanismen steigern können.  

Auf der anderen Seite haben wir gezeigt, dass Unternehmen von diesen informellen 

Wissensflüssen aus der Wissenschaft (z.B. durch die Mobilität von Wissenschaftlern) 

profitieren. Von daher schlussfolgern wir, dass die Politik es nicht zwangsläufig als oberste 

Priorität sehen sollte, den Wissensabfluss aus der Wissenschaft gänzlich zu verhindern, 

sondern eher Rahmenbedingungen zu schaffen, damit die inländische Industrie und 

Wissenschaft stärker von diesen informellen Wissensflüssen profitieren kann. Dieses gilt 

insbesondere in wissensbasierte Industrien wie die biotechnologische Industrie, wo die 

Grenze zwischen industrieller und wissenschaftlicher Forschung stark aufgeweicht ist. 

Wissenschaftliche Einrichtungen und Unternehmen müssen ihrerseits sicherstellen, dass sie 

die Kapazitäten und Expertise aufweisen, um in zunehmend offeneren Innovationsprozessen 

zu partizipieren und von informellen Wissenszuflüssen zu profitieren.   
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2 Introduction 

"Coming together is a beginning, staying together is progress, and working together is 

success." - Henry Ford 

Nowadays economic scholars widely agree that the productivity growth and wealth of 

developed countries depend far more on a country’s ability to generate new technological 

knowledge and to transfer it into marketable inventions, than on its natural resources (David 

and Foray 2002). Peter Drucker (2001) has introduced the term “knowledge society” to 

describe this starting transformation process of societies in developed countries, where 

knowledge is regarded to be the most important resource in the future.  

Politics around the world have started to support and foster this transformation process, 

well knowing that due to the scarcity of natural resources, the successful generation of new 

knowledge will sustain the economic competitiveness of countries.  

In the European Union, this political rethinking started with the Lisbon strategy in 2000, 

where the EU member countries agreed to the strategy “to become the most competitive 

and dynamic knowledge-based economy in the world capable of sustainable economic 

growth with more and better jobs and greater social cohesion” (Lisbon European Council 23 

and 24 March 2000, Presidency conclusions1)). One primary goal of the Lisbon strategy was 

to overcome the so called “European paradox”. The “European paradox” describes the 

paradox that the EU has excellent researchers who produce valuable scientific work, while 

the commercialization of the research outputs lags behind considerably compared to other 

developed countries, i.e. the US (e.g. Dosi et al. 2006, European Commission 2011). As a 

consequence, the production of technological and scientific knowledge has moved in the 

focus of EU politics.  

The launch of the 6th and 7th EU framework programmes aimed at implementing the Lisbon 

strategy and overcoming the “European paradox” by introducing new research programmes 

                                                      

 

1
 The whole speech can be assessed at http://www.europarl.europa.eu/summits/lis1_en.htm , last date of 

assessment: July 26
th

, 2012) 
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and bundling together existing research programmes that had the goal to promote the 

production and commercialization of new technological knowledge (European Communities 

2007). With the implementation of the 7th Framework Program, the EU member countries 

agreed to contribute more than 53 billion Euros to research for the years 2007-2013 

(European Communities 2007). 

The production of knowledge is however different from the production of tangible assets. 

First, knowledge is produced by the recombination of already existing knowledge (Kogut and 

Zander 1992) and has therefore a cumulative and path dependent character (Dosi 1982). 

There are two types of knowledge, explicit knowledge that can be codified and easily 

transferred between actors and implicit/tacit knowledge that is not codified and therefore 

not easily transferrable (Polanyi 1966, Grant 1996, Liebeskind 1996). It has been shown that 

the generation of new technological knowledge is mostly achieved by the interaction of 

both, explicit and implicit knowledge (Nonaka et al. 2000).  

In order to be able to successfully combine these different sources of explicit and implicit 

knowledge that are needed for the development of new knowledge, actors in an economic 

system are permanently forced to acquire additional external knowledge, which is especially 

true in those industries where the technological development is rapid and science based 

(e.g. Gambardella 1995, Niosi 2003). Moreover, Gerybadze and Reger (1999) have shown 

that the globalization of R&D and the resulting increasing number of transnational 

collaborations require a change in the management of innovation. In the end, the degree to 

which the actors are able to acquire external knowledge depends mainly on their absorptive 

capacities (Cohen and Levinthal 1990) and the “tacit dimension” (Polanyi 1983) of the 

external knowledge.  

To put an emphasis on the meaning of knowledge acquisition and knowledge production in 

the innovation process, Chesbrough (2003) has introduced the concept of the “open 

innovation”. The concept moves away from the strategy of closed innovation to an 

innovation strategy where the innovation process is characterized by “the use of purposive 

inflows and outflows of knowledge to accelerate internal innovation, and to expand the 

markets for external use of innovation, respectively” (Chesbrough et al. 2006, p. 1).  
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Different theoretical approaches have been developed within the last couple of decades to 

more formally capture this interactive nature of the knowledge production process. Maybe 

the most popular approach is thereby the Innovation System (IS) approach that can be 

applied to describe the dynamic interplay of several institutional actors on a national, 

regional, local, industrial, or technology level in the process of knowledge generation and 

transfer (e.g. Edquist 2005, Fagerberg 2005, Lundvall 2010). Another approach, closely 

related to the innovation systems approach is the innovation network approach that uses 

social network based methods to describe the structural dynamics of knowledge transfer 

and generation between actors in an innovation network (e.g. Powell and Grodal 2005, 

Giuliani 2011). 

In practice, one commonly used way for firms to access and transfer external knowledge 

that is tacit to a certain degree and to create new knowledge is to engage in research 

collaborations. The rationale behind cooperative research is rather simple: By linking 

together different actors with different knowledge bases, it is likely that cross-stimulation 

effects for the exchange and generation of knowledge are achieved.  

Depending on the scope of the research, those collaborations can link together firms in a 

vertical way (e.g. Arora and Gambardella 1990, Pisano 1990, Baum et al. 2000) or in a 

horizontal way (e.g. Gulati 1998, Khanna et al. 1989, Silverman and Baum 2002). Frequently 

research collaborations are found between firms and scientific institutions such as 

universities or research institutes (Hagedoorn et al. 2000). The main purpose of these 

industry-science collaborations for firms is usually to acquire scientific knowledge, to 

integrate this knowledge in the knowledge base of the firm and to generate potentially 

marketable output.  

In order to foster this knowledge exchange and knowledge creation process that is 

characteristic for R&D collaborations, the EU government and national governments have 

started to dedicate more and more money of the overall research funds to collaborative 

research projects (European Communities 2007).  

The benefits of those vertical, horizontal or industry-science funded and not-funded 

research collaborations for the development of a competitive knowledge base and for a 
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research productivity increase of the collaborating firms have been widely discussed in 

numerous empirical studies (e.g. Kogut and Zander 1992, Powell et al. 1996, Powell 1998, 

Ahuja 2000, Tödtling et al. 2009, Aschhoff and Schmidt 2008). Besides studies regarding the 

firm level, the positive effect of collaboration for the productivity of scientists has also been 

stressed by several works (e.g. Lee and Bozeman 2005, Defazio et al. 2009). 

The vast majority of these empirical studies that analyze the formation motives and evaluate 

the benefits of R&D collaborations base their analyses thereby on formal research 

collaborations. Formal research collaborations are those research collaborations that are 

build on some kind of formalized agreements (e.g. contracts). Data on formalized R&D 

agreements have the advantage that they usually contain comprehensive information on the 

duration of cooperative projects, on the type of partners involved, and are widely available. 

In contrast to this, the existing empirical literature that contributes empirical evidence on 

the formation incentives and benefits of informal R&D collaborations (R&D collaborations 

that are not formalized by e.g. a contract) is rather scarce. 

This fact is puzzling however for several reasons: 

First, several large scale innovation surveys on the cooperative behaviour of firms have 

revealed that firms which engage in R&D, usually show a wide and deep network of informal 

R&D collaborations (i.e. collaborations that are not formalized by legal agreements) besides 

formal R&D cooperation agreements (e.g. Link and Bauer 1989, Kleinknecht 1989, Santarelli 

and Sterlacchini 1990, Bönte and Keilbach 2005). Especially for science based industries, like 

the biotechnological industry, these informal R&D ties of firms with other firms and/or 

scientists are supposed to play a crucial role for the competitiveness of firms and the overall 

development of the industry (e.g. Kreiner and Schultz 1993, Audretsch and Stephan 1996, 

Zucker et al. 1999, Prevezer 2001, Owen-Smith and Powell 2004, Salavisa et al. 2012). In 

addition to that, several studies have outlined that informal transfer mechanisms seem to 

generally play also an important role for the exchange of knowledge between scientific 

institutions and firms (Meyer-Kramer and Schmoch 1998, Thursby and Thursby 2000, Cohen 

et al. 2002, Murray 2004). 
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Second, informal knowledge exchange activities of scientists have been widely discussed in 

developed as well as in emerging countries in the context of a brain drain due to mobility of 

scientists (Adams 1968, Mountford 1997, Nguyen 2006, Regets 2007, OECD 2007), and in the 

context of changes in the legislation for the intellectual property rights of inventions that 

have been funded with public money (Link et al. 2007).   

Third, there are contradicting works regarding the consequences of informal knowledge 

transfer of firms. While the resource based view literature suggests that knowledge which is 

informally leaking out of firm boundaries could lower the competitive advantage of the firms 

(Wernerfelt 1984, Liebeskind 1996, Brown and Duguid 2001), other works have suggested 

that firms in turn could also benefit from informal knowledge that flows in their boundaries 

(von Hippel 1987, Schrader 1991). 

The empirical assessment of the preconditions that favour the initiation, the handling, and 

the consequences of these informal R&D collaborations however is extremely difficult, since 

informal R&D ties are difficult to measure (Bönte and Keilbach 2005). The existing empirical 

evidence on these topics is mostly limited to studies on firm level (e.g. Schrader 1991, 

Kreiner and Schultz 1993, Owen-Smith and Powell 2004, Bönte and Keilbach 2005, Salavisa 

et al. 2012). Only very few empirical studies provide empirical evidence on informal 

knowledge transfer based on micro-level data (e.g. Link et al. 2007, Markman et al. 2008). In 

order to understand the rationales and motives of actors that underlie informal knowledge 

transfer however, more micro level evidence is required. 

Within recent years and as a consequence of changes of the intellectual property rights on 

inventions that were financed with federal money in some countries (e.g. Bayh-Dole Act of 

1980 in the US, modification of the Arbeitnehmer-Erfindungsgesetz 2002 in Germany), some 

empirical evidence on the motives of scientists to engage in informal knowledge transfer has 

been provided by Link et al. (2007) and Markman et al. (2008). The empirical findings by Link 

et al. (2007) and Markman et al. (2008) however are both based on samples of US scientists, 

so that a generalization of their findings to European countries remains a challenge.  

While the motives of scientists to engage in informal technology transfer have at least found 

some attention in the empirical literature, less micro-level evidence exists on the 
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characteristics of knowledge that is informally transferred within industry or between 

science and industry or on the consequences of informal knowledge transfer.  

In this thesis, we provide four empirical studies, in which two empirical studies analyze the 

factors that initiate informal knowledge transfer from science to industry on the basis of a 

dataset that stems from a comprehensive survey of German scientists. The other two 

empirical parts of this thesis are based on biotechnology patent data from the European 

Patent Office (EPO) and deal with two phenomena that mostly arise from informal 

knowledge transfer: The flow from knowledge from industry to science and shared 

intellectual property rights on patents. The patent data analyses is restricted to the 

biotechnology industry, because several studies have highlighted the importance of patents 

for this industry and thus patents are a good proxy for information for knowledge generation 

and knowledge flows for this industry (e.g. Mazzoleni and Nelson 1998, Schankerman 1998, 

Arora et al. 2008). Besides, by accessing the additional information that lies in patent data 

(e.g. information about patent applicants, citation information), important knowledge 

related characteristics of the patented invention can be investigated. 

The thesis is structured as follows: 

The third chapter briefly describes and summarizes some existing theoretical and empirical 

evidence on knowledge dynamics in the innovation process. First, it is shown how the 

acquisition, utilization, and production of knowledge differ from that of tangible goods, 

whereby a put a focus on the tacit dimension of knowledge, since the degree of tacitness of 

knowledge has an important impact on its transferability (chapter 3.1). Next, two theoretical 

concepts that are widely used to display the knowledge interactions between institutional 

actors in an innovation process are described: The notion of innovation systems and the 

theoretical framework of innovation networks (chapter 3.2). Chapter 3.3 outlines basic 

theoretical and empirical evidence on knowledge flows in innovation networks that mostly 

stem from social network methodology. Chapter 3.4 summarizes the main theoretical 

concepts and existing empirical evidence, why actors in the innovation process engage in 

informal R&D linkages. 
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The fourth chapter provides short summaries and information on the publication status of 

the following four empirical sections, which represent the centrepiece of the work. 

The fifth chapter is the first empirical chapter and analyzes technology transfer2 from 

universities to industry. While there is a vast amount of literature that empirically assesses 

university-industry transfer via the analysis of patents and/or publications, comparatively 

little is known on the mechanisms that support these science-industry interactions on the 

individual level. Based on a sample of more than 800 German university scientists we 

determine individual and faculty based factors that support informal knowledge transfer 

activities of scientists and compare our results to existing empirical evidence from a US 

study. 

The sixth chapter provides further empirical insights into informal and formal science-

industry knowledge transfer activities of scientists. While the fourth chapter examines 

career related and faculty related factors that are critical for the engagement of scientists in 

informal knowledge transfer, we focus in the fifth chapter on the question how international 

mobility of scientists (both from university and public scientific institutes) is related to their 

knowledge and technology transfer activities to industry in both, their host and their home 

countries. The chapter thus provides an important contribution to the highly debated 

question whether the international mobility of scientists leads to an economically 

undesirable brain drain for the home countries of the scientists, or to a beneficial brain 

circulation for both countries. 

In the seventh chapter, we empirically derive factors that influence the probability of 

industry to science knowledge flows in the biotechnological industry. While most empirical 

studies that analyze knowledge flows between science and industry concentrate on those 

knowledge flows with the direction from science to industry, knowledge transfer from 

industry to science has widely been neglected. From the sparse, existing empirical evidence 

however it is known, that industry to science knowledge transfer happens mostly in an 

                                                      

 

2
 In the following we will use the terms knowledge transfer and technology transfer synonymously. 
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informal way. We proxy knowledge flows and knowledge flow directions on the basis of 

patent citations and estimate weighted, bivariate probit models on the factors that influence 

the citation probabilities of industry applied patents by other industry applied patents and 

by patents that have been applied for by scientific institutions.  

The eighth chapter empirically examines industry patent applications with shared 

intellectual property rights in the biotechnology industry. The existing literature on this topic 

has shown that shared intellectual property rights on patents mostly result from informal 

R&D collaborations, since informal R&D collaborations are not bound to any legal contracts 

and thus cause not clarified ownership on inventions. This not settled ownership of 

inventions can have the consequence that the participated collaborators either find an 

informal agreement on the ownership on the invention or the ownership of the invention is 

shared, as it is the case of patent applications with multiple patent applicants. Shared 

ownerships on patents however are associated with complex legal issues so that firms have 

an incentive to avoid these shared intellectual property rights. Following this argumentation 

line, we hypothesize that joint patent applications are associated with a higher economic 

potential compared to patents with a single ownership. We empirically test this hypothesis 

by applying a nonparametric matching procedure.  

The ninth chapter contains the main conclusion in which the findings of the empirical parts 

are summarized and the gain of knowledge of this thesis is outlined. Further, implications for 

policy and further research are provided. 

The remaining chapters provide supplementary material of the thesis.  
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3 Theory: Knowledge dynamics in the innovation process  

3.1 Acquisition and utilization vs. production of technological knowledge  

Although all of the empirical chapters contain theoretical subchapters, this chapter will 

outline and summarize the broader economic theories that are the basis for this work.  

The ability of firms to acquire and utilize external technological knowledge3 has long been 

recognized to be crucial for their success and for the overall economic development of a 

nation. The theoretical foundations for this assumption can be traced back to the beginnings 

of the endogenous growth theory. Arrow (1962a) developed a ‘learning by doing’ model in 

which the firms operate with constant returns of scale and knowledge itself is a productive 

factor but is assumed to be constant by the firms. If a single firm raises its capital stock 

however, this investment increases the knowledge level of the whole economy. Therefore 

the whole economy shows increasing returns (Levhari 1966)4. Romer (1986, 1989) presented 

a modified model of the learning by doing model of Arrow. In the Romer model, new 

knowledge is regarded to be the key factor of long term growth and is produced by an 

investment in research and technology (R&D). Thereby it is important to note, that 

investments in R&D show diminishing returns, and that the firms which invest in R&D cannot 

fully appropriate the returns since the newly generated knowledge leaks out of the firms and 

increases the knowledge base and production possibilities of other firms. And whilst 

investments in R&D show increasing returns, the use of new knowledge leads to increasing 

returns in production. In a later work Romer (1990) separated knowledge into a rival and 

non-rival technological component. Thus the technological component of knowledge shows 

a public good character, i.e. the use by one firm does not exclude the use by other firms. 

Since Romer’s models implies that newly generated knowledge cannot be fully appropriated 

                                                      

 

3
 Sahal (1981) and Bozeman (2000) emphasise that there is no clear distinction between knowledge transfer 

and technology transfer, since technology is always based on knowledge and this knowledge is always 
transferred in the moment when a technology is transferred between two organisations, such as a public 
research organisation and a firm. We will use the terms technology and knowledge synonymously 
throughout the whole thesis 

4
 For an overview on endogenous growth models see Shaw (1992). 
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by the knowledge producer, but leaks out of the firm boundaries and is at the same time a 

valuable asset for other firms, the models provide a theoretical fundament for the existence 

of knowledge spillovers in an economy5. These knowledge spillovers can be absorbed or 

appropriated by other firms, depending on their absorptive capacities (Cohen and Levinthal 

1990), and the nature of knowledge itself. There are several dimensions how the nature of 

knowledge can be characterized. Knowledge can be created by basic or applied research, can 

be scientifically or/and technically complex or simple, and can be created by disciplinary or 

interdisciplinary research (for an overview see Brennenraedts et al. 2006). Moreover, 

technological knowledge is characterized by a cumulative and path dependent nature (Dosi 

1988) and the production of new technological knowledge is characterized by a high degree 

of uncertainty (Nelson and Winter 1977, 1982).  

Although the mentioned dimensions of the nature of knowledge might facilitate or 

complicate the exchange of knowledge between organizations, the “tacit dimension” 

(Polanyi 1966) of knowledge is regarded to play the most important role when it comes to 

the question how knowledge can be transferred between actors. Tacit knowledge refers to 

knowledge that is not codified and thus implicit to the owner, and is thus regarded to be a 

key factor for the comparative and strategic advantages of organizations (e.g. Winter 1987, 

Cowan and Foray 1997, Balconi 2002). The strict binary division of knowledge into tacit and 

non-tacit knowledge has been challenged by several works however (Johnson et al. 2002, 

Nightingale 2003, Garcia-Muina et al. 2009). Johnson et al. (2002) point out that knowledge 

can seldom be fully codified without losing important information of the knowledge and 

thus conclude that most of the codified knowledge has a underlying, but not codified share 

of tacit knowledge. At the same time, Nonaka and Takeuchi (1995) show on the basis of their 

proposed SECI (Socialization, Externalization, Combination, Internalization) model how 

codified knowledge can be turned into tacit knowledge and vice versa due to interactive 

social dynamics. Thus the tacit character of knowledge is not fixed but is likely to change 

over time. 

                                                      

 

5
 Another theoretical model of the endogenous growth theory that is often cited concerning theoretical 

explanations of knowledge spillovers is presented by Grossman and Helpman (1991). 
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There are several ways how both, tacit and codified knowledge can be transferred by 

organizations. Strait forward ways for organizations to broaden their knowledge base 

include e.g. the reading of scientific articles, the hiring of external professionals, and the 

further qualification of the own employees. Besides, R&D collaborations between 

organizations are considered to be one of the most important and effective transfer 

mechanisms of external knowledge that is tacit to some degree (e.g. Cassiman and Veugelers 

2002). The meaning of R&D collaborations as a knowledge transfer mechanism has gained in 

importance due to the fact that the technological knowledge base of most industries 

changes rapidly and knowledge is widely and diversely distributed among organizations (von 

Hayek 1945). Thus organizations are forced to exchange knowledge to create valuable new 

combinations of existing and new technological knowledge (Nahapiet & Ghoshal 1998). As a 

consequence R&D cannot be seen as a static process that takes place isolated from outside 

surroundings, but instead rather as an interactive process of learning of various actors 

(Lundvall 1988, Chesbrough et al. 2006). The innovation system approach and the innovation 

network approach are two popular theoretical concepts, which have been introduced in 

innovation economics with the aim to capture the interactive nature of the innovation 

process. 

3.2 On innovation systems and innovation networks  

Within the last years the innovation systems approach that puts an emphasis on this 

“systemic nature of innovation” (Fagerberg 2005, p. 4) has been the dominant institution 

based theory to describe the innovation process. The innovation systems approach basically 

builds on two main assumptions: First, knowledge is considered to be the most important 

resource in modern economy and second, knowledge can only be gained through interactive 

learning that takes place in a socially embedded process which is shaped by various actors 

(Lundvall 2010). Edquist (2005) defines an innovation system as “all important economic, 

social, political, organizational, institutional, and other factors that influence the 

development, diffusion, and use of innovation” (Edquist 2005, p. 182).  
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Because of the broad theoretical concept that underlies the innovation system approach, 

extensive work has been undertaken by various scholars to develop more specific concepts 

of innovation systems. 

Analyses of innovation systems on the national level (National innovation systems) take into 

account the existence of national states and the resulting differences regarding socio-

cultural issues and national policy measures (i.e. Lundvall 1992, Carlsson 1995, Edquist 1997, 

Lundvall 2010). Although it is evident that the growing internationalization of organizations 

and the rise of supranational organizations like the EU soften the meaning of national 

borders, several studies have emphasized the persistent importance of national institutional 

settings and politics for the process of innovation (Archibugi and Michie 1997, Carlsson 2006, 

Lundvall 2010).  

The examination of innovation systems at the regional sector (Regional innovation systems) 

accounts for clustered structures, regional governance and regional institutional settings, as 

well as influences from the overlying national innovation system(s) (i.e. Cooke et al. 1997, 

Swan et al. 1998, Cooke 2002). Some even finer definitions of the regional character of IS are 

provided by Fischer et al. (2001) referring to urban innovation systems or Breschi and Lissoni 

(2001) who introduced the term of local innovation systems.  

Sectoral innovation and production systems touch theoretically upon the innovation systems 

literature, introducing important contributions that have been made by the industry life 

cycles literature (i.e. Utterback 1994, Audretsch 1995, Klepper 1996), and propose that 

sectoral boundaries are linked to other related industries via a dynamic process. Malerba 

(2002) defines a sectoral system of innovation and production as “the set of new and 

established products for specific uses and the set of agents carrying out market and non-

market interactions for the creation, production and sale of those products” (Malerba 2002, 

p. 249).  

The technological innovation systems approach (i.e. Carlsson and Stankiewicz 1995, Carlsson 

and Jacobsson 1997, Carlsson et al. 2002) applies a system approach to innovation. Systems 

consist of components, relationships and attributes and considers technology as a 

knowledge field, a product/an artifact or a group of related products (Carlsson 2002). An 
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important difference of the technological systems approach compared to the other 

innovation systems approaches is that it focuses on generic technologies, wich are not 

bound to a single industry or sector but can have applications in various industries.  

It becomes obvious, that all innovation systems approaches overlap and are interrelated to 

some degree. As Cantner and Meder (2008) put it: 

“Looking […] on actors engaged in cooperative invention and innovation it is obvious that 

they at the same time belong to several of the innovation systems mentioned. [In example a] 

[...] firm takes part in the national innovation systems, as it belongs to a technological 

innovation systems comprising several [...]firms, to a sectoral system [...], to a regional 

system related to the location of the firm including some surroundings, and finally also to 

the urban system of the city of location.” (Cantner and Meder 2008, pp. 2-3). 

More recently, the innovation network approach has attracted the attention of the scientists 

in the field of innovation economics. Innovation networks can be seen as a result of the 

interactive processes of learning in an IS and describe the sum of shorter and more 

persistent R&D collaborations that surround an organization in the innovation process 

(Ahuja 2000, Powell and Grodal 2005, Tödling et al. 2009).  

The advantages of innovation networks in contrast to institutional co-operation 

arrangements are thereby, that “they permit the informal exchange of unique and 

idiosyncratic assets such as knowledge and know-how [...] Second, they are a relatively loose 

and rapid way to put individuals or organizations in contact, even when they are not formally 

connected to each other.” (Giuliani 2011, p. 156). Innovation networks can thus be seen as a 

commonly used way, how institutional actors or individuals establish informal R&D linkages 

with other institutions. 

3.3 Basic theoretical concepts and empirical evidence on knowledge flows in 

innovation networks 

The theory on innovation networks has most of its origins from the social network theory. 

Freeman (2004, p.2) defines social network analysis as “[…] the structural approach that is 

based on the study of interaction among social actors […] “.  
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Several sociological works have analyzed determinants that shape the social networks of 

individuals. Examples include the influence of childrearing (Munch et al. 1997), the influence 

of the marital status (Hurlbert and Acock 1990) or gender specific differences (Moore 1990) 

that effect the composition and dynamics of personal social networks.  

Within the last couple of decades the field of economic sociology has shaped two theories 

that are especially important for the application of social network theory in economics: The 

concept of embeddedness and the theory on social capital.  

Granovetter (1985) has argued in his seminal work that most economic behaviour is shaped 

(so called “embedded”) by social networks. Coleman (1988) picks up Granovetters idea of 

embeddedness and states: 

“Granovetter's idea of embeddedness may be seen as an attempt to introduce into the 

analysis of economic systems social organization and social relations not merely as a 

structure that springs into place to fulfill an economic function, but as a structure with 

history and continuity that give it an independent effect on the functioning of economic 

systems” (Coleman 1988, p. 97). 

This notion of Coleman is particularly important since it works out that the embeddedness in 

networks can be understood as a perpetual influence that affects the behaviour of actors in 

an economic system.  

Regarding the concept on social capital, Coleman (1988), Burt (1992) as well as Tsai and 

Ghoshal (1998) have pointed out that not only the existence and structure of interpersonal 

relationships is crucial for the social development of individuals, but that individuals are 

likely to benefit from the underlying resources of their social relationships. 

The theoretical concepts of embeddedness and social capital have subsequently been 

applied to the phenomena of inter organizational interaction in the innovation  

Powell and Grodal (2005) point out that in industries where the scientific progress advances 

rapidly in different technological fields, innovation networks play the most central role. This 

is due to the fact that under those circumstances usually no single institution is able to 

gather all necessary knowledge from all technological fields to create an innovation at the 
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edge of the scientific progress. Pyka et al. (2007) along with Powell et al. (2005) show that 

especially in knowledge based industries, the existence of innovation networks is a 

persistent phenomenon and in most cases the innovation networks themselves become the 

locus of innovation. 

Empirical studies have confirmed a positive relationship between the degree of 

embeddedness in an innovation network and innovation performance mostly in knowledge 

based industries like the biotechnology industry (e.g. Powell et al. 1999, Baum et al. 2000, 

Pyka et al. 2007) and the semi-conducter industry (Stuart 2000).   

The positive impact of firms being embedded in an innovation network and the innovative 

performance of the firms has also been revealed in a couple of more diverse industries like 

the banking sector (Zaheer and Bell 2005) or the chemical industry (Ahuja  2000).  

Furthermore, several works have started to detangle the concepts of embeddedness and 

social capital and have provided important empirical evidence on single aspects like, i.e. the 

composition of innovation networks, the position of single actors in innovation networks6 

and the density of innovation networks. While there are many other works that have 

produced empirical evidence on the topic of innovation networks, we will concentrate on 

the mentioned three topics to provide a basic understanding of the innovation network 

theory. 

The composition of innovation networks and the position in an innovation network/centrality 

Reagens and Zuckerman (2001) have empirically analyzed the network composition of 224 

R&D teams and find that high network heterogeneity is associated with an enlarged learning 

opportunity and increases the productivity of the R&D networks. Becker and Dietz (2004) 

follow the line and show empirically for a set of German firms, that the involvement in more 

heterogeneous innovation networks enhances the research productivity of the firms. Phene 

et al. (2006) and Quinrana-Garcia and Benavides-Velasco (2008) show empirically for the 
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 Refer i.e. to Borgatti et al. (2009) for an overview on the basic concepts on direct ties, indirect ties and 

redundant ties.  
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biotechnology industry on the basis of patent data the importance of combination of 

diversified knowledge for the creation of innovations. Phelps (2010) shows for the 

telecommunications industry, that technological complementarily of a firm’s research 

network partners is significantly positive related to the firms’ explorative innovation.  

Powell and Smith-Doerr (1994), Powell et al. (1999), Tsai (2001), and Powell et al. (2005) 

among others have empirically shown that there is a positive impact of central innovation 

network position on the innovative performance of economic actors. Tsai (2001) points out 

that a central position of an actor in an innovation network enhances its possibility to draw 

the desired knowledge out of the network. Gnyawali and Madhavan (2001) argue in line that 

central firms better informed and are more likely to create new beneficial collaborations. 

Gnyawali and Madhavan (2001) argue however at the same time that there is a possible 

trade off associated with central positions, due to the fact that a central position in a 

network demands to cope with more information. Noteboom et al. (2006) use firm level 

panel data on alliance formation and patenting activities and show empirically the existence 

of an inverse U-shaped relationship between centrality and exploration activities of the 

firms.  

Strong ties vs. Weak ties and the density of an innovation network 

An ongoing debate in the literature of innovation networks is the meaning of the presence of 

strong and weak ties of an actor for its innovative output. The density of an innovation 

network is thereby determined by the relative strength of the ties that belong to the 

network.  

Granovetter defines the strength of a tie as “a (probably linear) combination of the amount 

of time, the emotional intensity, the intimacy (mutual confiding), and the reciprocal services 

which characterize the tie” (Granovetter 1973, p. 1361). In his work Granovetter (1973) has 

proposed the “strength of weak ties” thesis which states that weak ties are often more 

useful for sourcing new knowledge since weak ties can build a bridge between otherwise 

disconnected groups. A network that exists only of strong ties on the contrary is regarded to 

be less efficient for the acquisition of new knowledge since all members of the network have 
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a close relationship and thus a similar knowledge base and as a consequence a large part of 

the exchanged knowledge will be redundant. 

The empirical evidence regarding the strength of ties and the consequences for knowledge 

diffusion and new knowledge acquisition is contradicting. A number of empirical studies 

have shown that strong ties tend to build trust among the actors in a network and can 

facilitate the transfer of more complex and tacit new knowledge (e.g. Uzzi 1997, Hansen 

1999) while weak ties are supposed to play an important role for the transfer of non-tacit 

new knowledge (Hansen 1999)7. 

3.4 Why do firms and scientists engage in informal R&D linkages? Theoretical 

concepts and empirical evidence on informal R&D ties and knowledge transfer 

In this work, an informal R&D linkage of an organization/individual is defined as any kind of 

knowledge exchange with another organization and/or individual that is not bound to any 

kind of formal and/or legal agreement (see i.e. von Hippel 1987, Schrader 1991, Van Aken 

and Weggeman 2000). 

From industry specific studies, case studies, and interviews (e.g. von Hippel 1987, Schrader 

1991, Freeman 1991, Kreiner and Schultz 1993, Powell et al. 1996) it is known that 

innovating organizations tend to have a large network of informal ties, which they use for 

knowledge transfer and knowledge acquisition. This is simply explainable by the fact that the 

individual informal networks of the employees sum up and interact at the organization level. 

Thus “behind every formal network, giving it the breath of life, are usually various informal 

networks” (Freeman 2001, p. 503) and Powell et al. (1996) argue in line: “beneath most 

formal ties, then lies a sea of informal relations” (Powell et al. 1996, p. 120). 

While there are various studies that examine the characteristics of formal R&D agreements 

(e.g. Kogut 1988, Kamien et al., 1992, Cassiman and Veugelers 2002, Goyal 2007), the 

theoretical and empirical evidence on the characteristics of informal R&D agreements and 
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 For an overview see i.e. McFadyen et al. (2009).  
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the resulting knowledge transfer is rare.  Bönte and Keilbach (2005) state that the relative 

lack of empirical and theoretical evidence on informal R&D ties can be explained by the 

difficulties to define and measure informal R&D agreements.  

However, although the overall share of works on informal R&D collaborations is comparably 

small, those empirical and theoretical works that exist date back to the late 1960s. 

In an early work, Allen and Cohen (1969) have analyzed the information gathering behaviour 

of US engineers and show that the engineers in their sample prefer to rely on their informal 

network for information gathering instead of the use of codified information sources (such 

as literature). In a later study – based on the analysis of SMEs in eight different industries 

and three different countries – Allen et al. (1983) have worked out that technological 

knowledge in all considered industries and countries flows mainly via informal networks 

between SMEs and that only a small share of technological knowledge is transferred via 

“formal mechanisms” (Allen et al. 1983, p.199).  

At the same time a different “Allen”, Robert C. Allen (1983) points out that many inventions 

are not solely discovered by single institutional actors like firms, individuals or public 

research institutions – or consortia of them. Instead he suggests that networks of 

institutions create inventions – so called “collective inventions” (Allen 1983, p.1). Thereby 

Allen (1983) states that the “essential precondition for collective invention is the free 

exchange of information about new techniques and plant designs among firms in an 

industry” (Allen 1983, p.2).  

Von Hippel (1987) has examined the flows of knowledge in informal networks in the US steel 

mini-mill industry. Contrary to Allen’s (1983) idea of “collective invention”, von Hippel (1987) 

proposes that knowledge is not freely exchanged between firms in informal networks but 

instead technological knowledge is traded between employees of competing and non-

competing firms. Von Hippel (1987) shows thereby on the theoretical basis of a prisoner’s 

dilemma model, that this information trading is likely to be beneficial for the firms. Schrader 

(1991) has provided more evidence to this hypothesis by analyzing a sample of nearly 300 

managers from the US steel and mini-mill industry. He finds strong evidence from the data 

that the employees indeed trade information, that the managers are aware of it, and that 
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this “informal know-how trading” (von Hippel 1987, p.291) among the employees indeed 

results in a better economic performance of the firms. 

Around the same time, a few large scale studies on the R&D cooperative behaviour of firms 

provided evidence that informal R&D linkages among firms are not necessarily specific to 

single industries or technologies, but rather a more widely spread phenomena. Link and 

Bauer (1989) have examined the collaborative R&D activities of a large sample of U.S. 

manufacturing firms and have shown that about 90% of the reported R&D partnerships of 

the firms were of an informal nature. Moreover, the works of Kleinknecht (1989) and 

Santarelli and Sterlacchini (1990), both based on surveys among manufacturing firms in 

Europe, find evidence that informal R&D partnerships are especially characteristic for small 

and medium sized enterprises (SMEs).  

Bönte and Keilbach (2005) examined innovating firms in Germany and show that the 

informal cooperations of these firms occur more frequently and are more valuable for the 

knowledge acquisition process of the firms. 

In addition to these more general findings, several empirical studies show that informal R&D 

co-operations play a key role for the acquisition of external knowledge especially in 

knowledge-based industries and for the exchange of knowledge between scientific 

institutions and firms. 

Kreiner and Schultz (1993) show that informal R&D collaborations have driven the network 

evolution of Danish biotech firms. Prevezer (2001) emphasizes the importance of the 

existence of informal networks of biotech firms for the early development of the US 

biotechnology industry. In line, Owen-Smith and Powell (2004) show that the size and depth 

of informal networks of biotechnology firms in the Boston biotechnology cluster has eased 

their access to external knowledge. Salavisa et al. (2012) have investigated innovation 

networks of Portuguese biotechnology firms and show that the informal knowledge 

networks of the biotechnology firms are denser and show more strong ties compared to the 

formal knowledge networks of the firms. The authors argue that knowledge networks with 

strong ties are characterized with a higher level of trust and can thus enhance the access to 

complementary assets which are needed for innovation (Salavisa et al. 2012). 
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Regarding the role of informal R&D agreements for the knowledge exchange between firms 

and scientific institutions, Meyer-Kramer and Schmoch (1998) have surveyed professors at 

German universities and find that the Professors rate informal contacts with firms as 

important as formal R&D collaboration agreements with firms. Thursby and Thursby (2000) 

have investigated industry licensing executives and come to the result that informal contacts 

between firm employees and university employees are the most important mechanism for 

firms to acquire university knowledge, next to publications and conferences. Cohen et al. 

(2002) conducted a survey among firm R&D laboratories and show in line with Thursby and 

Thursby (2001) that for many industries, informal interaction with scientific institutions is an 

as important way to acquire university knowledge as the screening of papers/patents or the 

visit of conferences. Thereby, Cohen et al. (2002) confirm that informal interaction between 

universities and firms are most important for knowledge intensive sectors. Murray (2004) 

has analyzed the interplay of biotechnology firms and academic inventors and demonstrates 

how valuable the underlying social scientific network of these academic inventors is for the 

competitiveness of the firms. Salavisa et al. (2012) show for high tech industries that the 

presence of universities in informal innovation networks of firms plays a central role in 

bridging knowledge between the firms. 

Moreover, the topic of informal knowledge transfer from science to industry has gained 

special interest, since the US and subsequently other countries have granted universities the 

ownership of inventions that were developed with federal research funds, in order to foster 

the knowledge transfer between science and industry (Thursby and Thursby 2003). Ever 

since, works have started to analyze the knowledge transfer behaviour of university 

scientists and the efficiency of these technology transfer-mechanisms that were introduced 

at universities as a consequence of the changes in legislation (e.g. Bozeman 2000, van Looy 

et al. 2011). In this context, some interview based studies have shown that university 

scientists often share their knowledge and inventions with industry via informal knowledge 

transfer mechanisms next to the existing formal transfer mechanisms (e.g. Siegel et al. 2003, 

Siegel et al. 2004, Markman et al. 2008). Yet, little is known on the individual and faculty 

related factors that provoke scientists to engage in informal knowledge transfer. Link et al. 

(2007) have analyzed a sample of US scientists and have shown that the propensity of 
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scientists to engage in informal knowledge transfer is affected by the incentive structures 

(share of royalty, tenure) of the faculty for technology transfer activities of the scientists.  

In sum, we have outlined that several empirical studies suggest that informal R&D 

partnerships play an important role for the collaborative activities of individuals and/or firms 

for the innovation process. Although existing empirical findings thereby suggest that 

informal knowledge exchange is generally not restricted to certain industries or 

technologies, it seems to be an especially important tool to absorb knowledge in science 

based industries.  

The following four empirical sessions provide micro level evidence on both, formation 

factors and consequences of informal R&D collaborations.  
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4 Short abstracts and publication status of the empirical parts 

 

Chapter 4: Informal University Technology Transfer: A comparison between the United 

States and Germany  

Published with slight changes as:  

Grimpe, C. and H. Fier (2010), Informal university technology transfer: a comparison 

between the United States and Germany, The Journal of Technology Transfer 35(6), 637-650. 

DOI 10.1007/s10961-009-9140-4 (with kind permission to reuse article from Springer 

Science+Business Media B.V.) 

Existing literature has confined university technology transfer almost exclusively to formal 

mechanisms, like patents, licenses or royalty agreements. Relatively little is known about 

informal technology transfer that is based upon interactions between university scientists 

and industry personnel. Moreover, most studies are limited to the United States, where the 

Bay-Dole-Act has shaped the institutional environment since 1980. In this paper, we provide 

a comparative study between the United States and Germany where the equivalent of the 

Bay-Dole-Act has come into force only in 2002. Based on a sample of more than 800 

university scientists, our results show similar relationships for the United States and 

Germany. Faculty quality which is however based on patent applications rather than 

publications serves as a major predictor for informal technology transfer activities. Hence, 

unless universities change their incentives (e.g., patenting as one criterion for promotion and 

tenure) knowledge will continue to flow out the backdoor. 

Chapter 5: International Scientist Mobility and the Locus of Knowledge and Technology 

Transfer 

Published with slight changes as:  

Edler, J., Fier, H. and C. Grimpe (2011), International scientist mobility and the locus of 

knowledge and technology transfer, Research Policy 40(6), 791-805. 
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http://dx.doi.org/10.1016/j.respol.2011.03.003 (with kind permission to reuse article from 

Elsevier Limited) 

Despite the growing interest of scholars and policymakers to better understand the 

determinants for researchers in public science to transfer knowledge and technology to 

firms, little is known how temporary international mobility of scientists affects both their 

propensity to engage in formal and informal knowledge and technology transfer (KTT) as 

well as the locus of such transfer. Based on a sample of more than 950 German academics 

from science and engineering faculties, we investigate how the duration and the frequency 

of scientists’ visits at research institutions outside their home country affect KTT activities. 

We find that most mobile scientists engage in KTT to firms both in the host and in their 

home country, suggesting that KTT activities to firms abroad do not substitute or crowd out, 

but complement KTT to firms in the home country. We further find that the longer research 

visits abroad are, the higher the likelihood that scientists engage in KTT to firms, again both 

in the host and the home country. However, the more frequently scientists visit institutions 

abroad, the more likely they are to engage in KTT to firms only in their home country. Our 

results therefore provide evidence for the benefits of “brain circulation”. The article 

contributes to the growing strand of literature on scientist mobility and on the determinants 

of industry-science linkages at the individual level.  

Chapter 6: Against the one-way-street: Analyzing knowledge transfer from industry to 

science 

Published with slight changes as:  

Fier, H. and A. Pyka (2011), Against the one-way-street: Analyzing knowledge transfer from 

industry to science, The Journal of Technology Transfer (Online First).  

DOI 10.1007/s10961-011-9226-7 (with kind permission to reuse article from Springer 

Science+Business Media B.V.) 

Knowledge transfer from industry to science happens mainly informally and has so far been 

neglected by empirical studies. This work aims at contributing to this issue by analyzing 

differences in the factors that influence the probability of knowledge transfer within industry 

and from industry to science in the biotechnology sector. In order to model these knowledge 
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flows we conduct a citation analysis on the basis of patent data. We then estimate a 

weighted bivariate probit model on the citation probability of industry and science on the 

basis of a combined sample of citing and cited patent pairs and an equal number of control 

patent pairs. The empirical results suggest that there are considerable differences in the 

citation probability. Cultural closeness for instance has a positive effect on the citation 

probability from industry to industry while the citation probability of scientific institutions is 

not affected by cultural distance.  

 

Chapter 7: Is it worth all the trouble? An assessment of the economic value of firm patent 

applications with shared intellectual property rights in the biotechnology industry 

Published with slight changes as: 

Fier, H. and A. Pyka (2012), Is it worth all the trouble? An assessment of the economic value 

of firm patent applications with shared intellectual property rights in the biotechnology 

industry, in Audretsch, D.B., Lehman, E.E., Link, A.N. and A. Starnecker (Eds.), Technology 

Transfer in a Global Economy 28, 123-142, Springer.  

DOI 10.1007/978-1-4614-6102-9_8 (with kind permission to reuse article from Springer 

Science+Business Media B.V.) 

Shared intellectual property rights on patents are often the result of informal collaboration 

and are connected with complex legal issues and therefore organizations (e.g. firms) that 

apply for patents have a strong incentive to avoid co-ownership on their patents. In contrast 

to this the share of EPO firm patent applications with a joint ownership has increased in the 

biotechnology industry during the last two decades as it has been observed in other 

industries. From this the question has to be forced, whether joint patent applications are 

associated with a higher economic potential compared to the patents with no joint 

ownership so that firms are willing to cope with the legal issues that are associated with 

shared intellectual property rights on patents. We measure the economic value of a patent 

by the number of subsequent citations it has received and empirically address this question 

by the application of a nonparametric matching approach on patent level. We show that 

there indeed exists a positive causal relationship between the decision of a firm to jointly 
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apply for a patent and the future economic value that is associated with the regarded 

patent. 
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5 Informal University Technology Transfer: A Comparison Between the 

United States and Germany  

5.1 Introduction 

Knowledge produced in the public sector has frequently been shown to be an important 

ingredient of economic growth and technological change (Jaffe 1989, Adams 1990, Link and 

Siegel 2007). In this respect, patterns of evidence for university technology transfer focus on 

the institutions (e.g. technology transfer offices), the agents involved in technology 

commercialization, academic spin-offs, university-industry cooperative research centers or 

science parks and incubators (Bozeman 2000, Aerts et al. 2007, Rothaermel et al. 2007). 

Most of the existing research puts emphasis on formal university technology transfer 

mechanisms (i.e. those that embody or directly lead to a legal instrument like a patent, 

license or royalty agreement (Bozeman 2000, Feldman et al. 2002, Thursby and Thursby 

2002, Siegel and Phan 2005). Few authors have investigated informal university technology 

transfer mechanisms (e.g. Link et al. 2007). Informal technology transfer focuses primarily on 

interactions of the agents involved (i.e. on university scientists and industry personnel) 

where property rights are of secondary importance.8 Link et al. (2007) conceive informal 

technology transfer as a mechanism through which technology knowledge flows between 

the agents, for example by technical assistance or consulting. While formal technology 

transfer mechanisms frequently aim at transferring a research result like a patent or a 

license to use a technology, informal mechanisms do not, and there is usually no expectation 

that they will. In this sense, formal technology transfer is seen as a mechanism to allocate 

property rights whereas informal technology transfer is much more about informal 

communication processes. Examples could be contacts between academics and industry 

personnel at conferences, joint publications, academic consulting, or other informal 

contacts, talks and meetings. 

                                                      

 

8
  In the following, we will use the term ‘university scientist’ as shorthand for scientists employed at 

universities or other public research institutes. 
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However, Siegel et al. (2003) and Thursby et al. (2007) find that many university scientists in 

the United States do not disclose their inventions to their university although prescribed by 

law. And even if university inventions are publicly disclosed some firms will try to approach 

scientists and arrange to work with them directly (Hall et al. 2003). Hence, informal 

technology transfer seems to be a dominant mode of collaboration. Link et al. (2007) find 

that 52 percent of the scientists they addressed through the Research Value Mapping 

Program Survey of Academic Researchers had some kind of working relationship with 

industry personnel. Formal and informal technology transfer cannot always be easily isolated 

from each other as collaborative research or consulting could comprise patents being 

transferred from university to industry. In fact, existing literature suggests that formal and 

informal technology transfer may go well together (Siegel et al. 2003, Link et al., 2007) in 

that informal contacts improve the quality of a formal relationship or that formal contracts 

are accompanied by an informal relation of mutual exchange on technology-related aspects. 

Grimpe and Hussinger (2008) find that both channels are complementary (i.e. using one 

channel of collaboration if the other one is in place has a higher incremental impact on the 

innovation performance of firms than using one of the two channels more intense in 

isolation). It is therefore not surprising that formal and informal technology transfer may 

occur simultaneously (Perkmann and Walsh 2007) and that firms have an interest to make 

use of both. 

Taking these findings together suggests that university administrators will have an interest 

to better understand the determinants of informal technology transfer given their objective 

to create revenues for the university. In the United States, the commercialization of 

technology developed by university scientists had been spurred by the enactment of the 

Bayh-Dole Act in 1980. In other countries like Germany, an equivalent to the Bayh-Dole Act 

only came into force 20 years later in 2002. The scientists’ right to commercialize inventions 

privately before 2002 is still reflected by a rather low number of German university patents 

(Czarnitzki et al. 2007, Czarnitzki et al. 2008) and few licensing agreements (Grimpe and 

Hussinger 2008) compared to the United States. Hence, the purpose of this paper is to shed 

light on the effects that institutional differences might have on the choice of scientists to 

transfer technology informally. We present comparative findings for Germany by using the 
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approach of Link et al. (2007). Moreover, we extend their previous findings by focusing on 

two neglected factors more explicitly: the scientist’s individual productivity as well as the 

research environment in which the informal technology transfer takes place. Using a 

comprehensive sample of more than 800 German university scientists, we explore the 

determinants of informal technology transfer and derive implications for university 

administrators and policy makers. 

The remainder of the paper is organized as follows: The next section first provides a brief 

review of the literature on university technology transfer. We then describe the results of 

the pioneering study on informal technology transfer in the United States (Link et al. 2007) 

and outline what might be expected in the German context. Section 3 explains our empirical 

methods before the subsequent section will show the results. We conclude the paper with a 

brief summary statement. 

5.2 Literature background and theoretical considerations 

Literature has identified two major sources of motivation for university scientists: The first 

has been described as recognition within the academic community. Recognition can most 

prominently be achieved through publications, patent applications, presentations and the 

awarding of research grants. As tenure decisions and promotions are primarily a function of 

recognition in its various forms, untenured faculty members will have strong incentives to 

pursue these objectives. Second, faculty members may also be motivated by the opportunity 

to acquire additional resources, resulting either in personal financial gain or in funding 

available for a build-up of physical and human capital at the scientist’s institution (Link et al. 

2007). Analyzing the effectiveness of university technology transfer offices (TTOs) which 

were created mainly as a consequence of the Bayh-Dole Act assigning the rights on faculty 

inventions to the university, Siegel et al. (2003) and Siegel et al. (2004) find, however, that 

these TTOs provide little incentives for faculty involvement. In other words, university TTOs 

loose opportunities for technology commercialization due to a perceived unfavorable royalty 

distribution to the scientist. In fact, simply increasing the returns to faculty members seems 

to make the commercialization process more effective (Friedman and Silberman 2003, Lach 

and Schankerman 2004, Link and Siegel 2005). However, significant difficulties in negotiating 
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and transacting with the TTO remain (Link and Siegel 2005) which suggests that university 

scientists may have strong incentives to informally transfer their research results instead of 

choosing the route through the TTO. 

Link et al. (2007) have been the first to shed further light on the decision of academics to 

engage in informal technology transfer. Their results for the United States are based on the 

Research Value Mapping Program Survey of Academic Researchers for which a sample of 

university scientists and engineers with a Ph.D. at the 150 Carnegie Extensive 

Doctoral/Research Universities during the time period spring 2004 to spring 2005 was 

collected. Link et al. (2007) distinguish between three mechanism through which informal 

technology transfer may occur: commercializing technology through direct collaboration 

with industry personnel, joint publication with industry personnel, and serving as a formally 

paid consultant to an industrial firm. They link these choices to a number of variables 

depicting faculty characteristics, including gender, tenure/years with tenure, age, and the 

percent of time spent on grants-related research. While gender serves as a control variable, 

the tenure variables are intended to measure faculty quality in terms of received recognition 

and research success. These measures are based on the argument that tenure serves as a 

signal and that more credentialed faculty will also be in higher demand by industry (Murray 

2004). Age is included to disentangle the effects from tenure as a signal of faculty quality 

and the time necessary to build up relationships with industry. The percent of time allocated 

to grants-related research serves as another proxy for human capital as the awarding of 

grants involves a review process by an external organization, and only the most promising 

grant applications will presumably be likely to pass this hurdle. Finally, academic disciplines 

control for different technological and hence transfer opportunities. 

Their results show that 52 percent of the scientists had some kind of working relationship 

with industry personnel, including most prominently consulting (18 percent), joint 

commercialization of technology (15.8 percent) and joint publication activities (14.6 

percent). Regarding their faculty quality indicators they show that tenured academics are 

more likely than untenured academics to engage in all three informal technology transfer 

activities. Consistent with this finding, the number of years with tenure as an alternative 

measure increases the propensity for informal technology transfer. Moreover, they observe 
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the same effect for the percentage of time spent on grants-related research. Regarding the 

gender, male faculty members are found to be more likely to transfer technology informally 

than female faculty members. Although Link et al. (2007) control for disciplinary effects, they 

argue that gender effects might also be explained by disciplinary selection in that women are 

typically less represented in disciplines most active in technology transfer. Regarding the 

scientist’s age, they find that younger academics are more likely to engage in joint 

commercialization of technology. There is no effect on the other two forms of informal 

technology transfer. In sum, the results by Link et al. (2007) provide first insights into the 

decision of academics to engage in informal technology transfer. There are, however, a 

number of reasons which suggest that results on the propensity to engage in informal 

technology transfer could be different in different institutional contexts. In the following, we 

will thus provide arguments that point to the differences between the United States and 

Germany with a possible influence on the academic’s choice for engaging in informal 

technology transfer. 

Differences can, first of all, be attributed to the existence of the Bayh-Dole-Act in the United 

States since 1980. In Germany, the ‘professor’s privilege’ (‘Hochschullehrer-Privileg’) was in 

place until 2002. Based on Article 5 of the German constitution, which focuses on the 

freedom of science and research, the professor’s privilege entitled academics in Germany to 

use their scientific results for private commercialization even if the underlying research was 

carried out at and financed by the university or other public sources (Kilger and Bartenbach 

2002). In fact, the professors’ right to commercialize inventions privately before that year is 

reflected by a low number of German university patents (Czarnitzki et al. 2007, Czarnitzki et 

al. 2008). Moreover, university licensing which is receiving much attention in the literature 

on industry-science links is used by relatively few German firms (Grimpe and Hussinger 

2008). Instead, consulting and informal collaboration have been shown to be substantial. 

Although several years have passed since the abolishment of the professor’s privilege in 

Germany, we can expect these patterns to persist, particularly because most German 

universities are still in the process to set up an effective technology transfer infrastructure. 

As a consequence, university scientists in Germany, and especially highly credentialed faculty 
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members, should be more likely to engage in informal technology transfer than their U.S. 

counterparts. 

Second, differences between the United States and Germany could arise from different work 

contracts. While U.S. faculty members receive their pay typically only for nine months of the 

year, German academics are paid for twelve months. The missing three months could in turn 

motivate U.S. faculty to seek other income opportunities and to engage in informal 

technology transfer. Moreover, U.S. faculty might be under higher pressure than their 

German colleagues to acquire research money to support ongoing projects and junior staff. 

Third, we may assume that the specific German orientation towards excellence in 

engineering plays a role for the informal technology transfer behavior. Several German 

universities have a long-standing tradition and reputation in the field of engineering. 

Engineering research is organized in large research groups, with multi-million research 

funding and close collaboration with industry. Moreover, engineers in Germany are typically 

member of the German engineers association (‘VDI – Verein Deutscher Ingenieure’). Both 

the bonds through their alma mater and the network provided by the engineering 

association should therefore facilitate informal technology transfer activities. As a result, we 

should be able to observe strong positive effects particularly from scientists in engineering 

disciplines. 

Besides the alleged differences between the United States and Germany, our research also 

aims at extending the findings of Link et al. (2007) by focusing more in detail on the faculty 

quality dimension as well as on the scientist’s research environment. While the faculty 

quality indicators used by Link et al. (2007) are presumably correlated with individual 

productivity, they do not account for the different facets of productivity upon which tenure 

and grant award decisions are typically based. We have outlined above that academic 

prestige serves as a signal to potential commercialization partners in industry. Prestige can in 

turn be built up through publications or patents. Recent studies for the United States and 

Germany show that publications and university patenting are positively linked (e.g., Agrawal 

and Henderson 2002, Stephan et al. 2006, Czarnitzki et al. 2009). As a consequence, we will 

include direct measures of the publication and patenting activities of scientists and relate 
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them to their informal technology transfer behavior. More specifically, we expect positive 

effects from publications on the decision to jointly publish with industry personnel and from 

patents on the informal commercialization of technology. Regarding consulting, we expect 

positive effects from both publications and patenting. 

Besides research productivity, tenure and the awarding of grants, there is another aspect of 

faculty quality that has been neglected so far (i.e. whether the scientist is a research group 

leader). Obviously, leading a research group should be associated with some academic 

prestige developed through publications or patents. Moreover, being a research group 

leader should lead to a multitude of contacts with industry personnel at various occasions. 

Assuming that the group leader’s recognition increases with group size, there should be an 

incentive to engage in informal technology transfer and acquire research money to support 

the group. Effects should be particularly pronounced for the decision to commercialize 

technology and to serve as a paid consultant as these forms of technology transfer could 

serve as a mechanism to raise funding. 

As a final extension to the model by Link et al. (2007) we suggest that the scientist’s research 

environment matters for the decision to transfer technology informally. In this context, 

Etzkowitz (2003) has put forward the notion of research groups as ‘quasi-firms’ in 

entrepreneurial universities. Provided that research funding is awarded on a competitive 

basis, research groups will presumably exhibit firm-like qualities. In the following, we will 

focus on one aspect of the research environment which is the size of the peer group at the 

scientist’s institution. On the one hand, the more people are working on similar topics the 

more internal opportunities for collaboration arise. On the other hand, competitive pressure 

for research money will also be higher which is why we expect academics to be more likely 

to engage in informal technology transfer. 

5.3 Data and econometric model 

The data used in our empirical analysis stem from a survey among German scientists which 

was carried out on behalf of the German Federal Ministry of Education and Research. The 

aim of the survey, which was part of an evaluation project of the 6th European Union 

Research Framework Program, was to get an overview of university scientists’ efforts to 
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acquire research grants from various sources. Data were collected in 2008 using an online 

survey instrument. On the one hand, contacting respondents via e-mail involves the risk of 

not reaching a considerable number of persons due to outdated or misspelled e-mail 

addresses. On the other hand, e-mails have the advantage to be independent from space 

(i.e. the e-mail will reach the scientist although she or he might be away from the home 

office). Two major data sources were used for the sampling procedure. In a first step, the 

population of scientists employed at German universities was derived from the 

‘Hochschullehrerverzeichnis’ from the year 2006. The ‘Hochschullehrerverzeichnis’ is a 

database containing the names, degrees and contact information of the academic personnel 

holding a PhD and being employed at German universities.9 In a second step, scientists at 

government-funded public research institutes were identified via an internet search of the 

institutes’ websites. These research institutes belong to one of the four large German 

science organizations: Max Planck Society, Fraunhofer Society, Leibniz Association and 

Helmholtz Association. In total, 20,519 scientists with available e-mail addresses were 

identified. For 4,250 scientists, delivery of the message failed because of a wrong e-mail 

address. We obtained 2,797 responses, a response rate on the net sample of 17.2 percent 

which can be regarded as satisfactory for such a large-scale online survey. Due to missing 

values for some variables the actual number of observations available for analysis is, 

however, lower.  

The measures of informal technology transfer and the explanatory variables are based on 

faculty responses. To achieve comparability, we used exactly the same questions as in the 

Research Value Mapping Program Survey of Academic Researchers (Link et al. 2007). For our 

dependent variables relating to alternative mechanisms of informal technology transfer, 

scientists were asked to respond to these statements in the survey: 

During the past 12 months:  

                                                      

 

9
  This excludes the so-called ‘universities of applied sciences’ whose major task is teaching and not research. 
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• I worked directly with industry personnel in an effort to transfer or commercialize 

technology or applied research. 

• I co-authored a paper with industry personnel that has been published in a journal 

or refereed proceedings. 

• I served as a formal paid consultant to an industrial firm. 

We estimate several probit models and regress the three choices to transfer technology 

informally on different sets of explanatory variables. The first set is intended to exactly 

replicate the analysis by Link et al. (2007) for Germany, thus including faculty characteristics 

like gender (males=1, 0 otherwise), tenure (tenured=1, 0 otherwise), age (in logs)10, pre-

eminence of the faculty member, as measured by the percent of time spent on grants-

related research, and dummies for the scientific disciplines (social sciences and humanities, 

life sciences, other natural sciences, engineering sciences, with social sciences and 

humanities being the reference case). As an alternative specification, we include a scientist’s 

number of years with tenure (in logs), leaving tenure and age out of the model due to high 

correlation. 

The second set of variables is our extension to the model used by Link et al. (2007). The 

survey of German scientists provides more in-depth information about the scientist’s 

productivity and the institutional environment in which the research activities are carried 

out. Scientists were asked whether they are leading a research group (leader=1, 0 otherwise) 

and how many publications in refereed journals and patent applications they were able to 

achieve in the period from 2002 to 2006 (each entered in logs). To control for the research 

environment and, more specifically for the size of the peer group, scientists were asked how 

many colleagues they have at their institution working on similar research topics (in logs). 

                                                      

 

10
  For all variables which enter the regression in logs, a value of 0 was replaced by 0.1 to prevent missing 

values due to the log transformation. 
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5.4 Results 

Descriptive statistics 

The descriptive statistics (Fehler! Verweisquelle konnte nicht gefunden werden.) show that 

almost half of the surveyed scientists worked together with industry personnel in an effort 

to commercialize technology. Slightly more than 20 percent of the scientists exhibit at least 

one joint publication with industry personnel. Around 17 percent of the scientists served as a 

formally paid consultant to a firm. Regarding the faculty characteristics we find that the 

majority of the surveyed scientists are male (86 percent) with an average age 49 years. A 

high share of the scientists in our sample is tenured (83 percent) and on average the 

scientists have been tenured since 12 years. Further, the surveyed researchers spent about 

one third of the time on grants-related research. Regarding the scientific disciplines, our 

sample is rather evenly split between the four categories. 
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Table 1: Descriptive statistics (Chapter 4) 

Variable Obs. Mean Std. 

Dev. 

Min. Max. 

Commercialize technology 945 0.438 0.496 0 1 

Joint publication 938 0.230 0.421 0 1 

Consulting 925 0.172 0.377 0 1 

Gender  943 0.856 0.351 0 1 

Tenure  926 0.828 0.377 0 1 

Percent time spent on grants-related research 880 32.378 22.867 0 100 

Age 948 49.283 8.371 28 70 

Years with tenure 745 11.913 8.391 1 43 

Social sciences and humanities 929 0.212 0.409 0 1 

Life sciences  929 0.284 0.451 0 1 

Other natural sciences  929 0.302 0.460 0 1 

Engineering sciences  929 0.201 0.401 0 1 

Research group leader  928 0.706 0.456 0 1 

No of publications 948 20.638 26.440 0 200 

No of patent applications 948 0.714 1.927 0 24 

Size of the peer group at the scientist’s 

institution 948 30.324 76.077 0 1000 

Sample restricted to scientists with non-missing values for at least one informal technology 

transfer channel. 
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If we compare the descriptive statistics for the sample of German scientists with the 

descriptive statistics of the sample used by Link et al. (2007) we can observe considerable 

differences. Apparently, German scientists are more active in commercializing technology 

than their U.S. colleagues but somewhat less active in joint publication and consulting 

activities. At the same time the U.S. sample is more balanced regarding the gender of the 

scientists compared to the sample of the German scientists which results from gender 

stratification. The descriptive statistics for the additional variables which were not available 

in the U.S. sample show that about 70 percent of the scientists in our sample stated that 

they were research group leaders at the time when the survey was conducted. The 

productivity variables reveal that the surveyed scientists published around 20 articles in 

refereed journals within a five year period and on average applied for 0.7 patents during the 

years 2002 to 2006. Finally the variable that controls for the size of the peer group shows 

that on average the size of the peer group at the scientist’s institution is about 30 scientists. 

Probit regressions 

 

Table 2 presents the results of probit regression models. For each of the three dependent 

variables four different model specifications are estimated. Models (1) and (2) for each 

dependent variable show the results of the basic model following the empirical approach of 

Link et al. (2007). In Model (1) we include the tenure dummy and age while the years with 

tenure are omitted due to high correlation with age. Model (2) substitutes age by years with 

tenure. Models (3) and (4) show the same specification as (1) and (2) but they are extended 

by the additional variables on productivity and research environment discussed before.  

Regarding gender, Link et al. (2007) find that male academics are more likely to engage in 

informal technology transfer, specifically in the commercialization of technology and 

consulting activities. We are able to confirm this finding for the German data. It is 

particularly pronounced for consulting activities where the coefficient is highly significant. 

Moreover, we can largely confirm the positive effects from tenure on the likelihood to 

engage in technology commercialization and joint publication. Model (2) however shows 

that the number of years with tenure does not have any effect on informal technology 
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transfer which is in stark contrast to the findings by Link et al. (2007). Similarly, age turns out 

to have no effect at all which is in concordance with the findings from the United States. We 

can again confirm the U.S. findings regarding the share of time spent on grants-related 

research. In both datasets, the effect is positive and significant for all three forms of informal 

technology transfer. To sum up, our findings for the German scientists largely confirm the 

results obtained by Link et al. (2007). Apart from differences in the descriptive statistics 

regarding the actual engagement in the three forms of informal technology transfer, the 

relationships between the assumed driving factors are similar, despite the institutional 

differences between the United States and Germany. 

While in the U.S. study discipline effects were held constant and results weighted by 

discipline sampling proportions, the models using the German dataset include dummy 

variables to capture discipline effects.11 This enables us to consider disciplinary effects more 

explicitly. Generally speaking, all three included disciplines are more likely to engage in 

informal technology transfer compared to the reference group of social sciences and 

humanities which is anything but surprising. Particularly engineering scientists are very likely 

to engage in all three forms of informal technology transfer, suggesting that there are 

indeed strong informal ties between academics and industry personnel, for example through 

the German engineers association. There is no effect on consulting for other natural 

scientists. 

Turning to the extension of the baseline models, we find several interesting effects. 

Apparently, being a research group leader matters considerably for technology 

commercialization and consulting but not for joint publication. This finding confirms our 

theoretical reasoning that research group leaders have a higher incentive to acquire 

research money in order to finance their group. In this light, joint publication activities seem 

                                                      

 

11
  The reason for this is that sampling proportions by field could not be taken into account as – due to the 

inclusion of government-funded research institutes – the population of scientists in Germany with regard to 

the field is not fully transparent. In Germany, a significant share of the engineering related research activities 

are performed by the Fraunhofer institutes in comparison to universities. The same applies to life sciences 

research which is to a significant extent performed at Max Planck institutes. 
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inappropriate. Moreover, research group leaders are often caught in administrative business 

and therefore often do not find the time to conduct research and publish the results. Our 

measure for the research environment (i.e. the size of the peer group) turns out to be 

marginally positively related to technology commercialization and negatively to consulting. 

We expected a positive sign throughout due to the argument that research funding is 

awarded on a competitive basis and the size of the peer group should positively influence 

the level of competition for funds. We may speculate that the negative sign for consulting 

hints at a different kind of peer pressure not to engage too intensively in activities that do 

not primarily benefit the university or research institute but rather the private 

remuneration.  

Finally, focusing on the research productivity indicators publications and patent applications 

we find that the number of publications is not important at all for the decision to engage in 

any form of informal technology transfer. Instead, patent applications have a consistently 

positive and significant effect. Obviously, scientists succeed in signalling their quality to 

industry not by publications which would rather contribute to academic merits but by 

patents. Firms seem to acknowledge the practice-oriented work of the scientists that may be 

immediately integrated into the firm’s knowledge base. In this respect, our results are in 

contrast to previous findings for the biotechnology industry showing that university “star” 

scientists, measured in terms of publication activity, are attractive partners for firm scientists 

to collaborate with (e.g., Zucker and Darby 1996, Zucker et al. 2002). Hence, this argument 

seems to hold true only in the specific disciplinary setting of biotechnology while it 

disappears when scientists from various disciplines are considered. 

Comparing the baseline models (1) and (2) with our extended models (3) and (4) shows that 

the positive tenure effect as a proxy for faculty quality observed both in the U.S. and 

German data is partly taken over by the patent and research group leader variables. Faculty 

quality hence seems to be a multifaceted construct on which the added variables were able 

to shed some more light. 



54 

 

 

Table 2: Probit results (Chapter 4) 

 Commercialize technology Joint publication Consulting 

 (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) 

Gender  0.231* 0.203 0.155 0.146 0.298* 0.222 0.213 0.135 0.632*** 0.782*** 0.647*** 0.819*** 

 (0.137) (0.162) (0.144) (0.171) (0.170) (0.195) (0.177) (0.203) (0.194) (0.245) (0.200) (0.254) 

Tenure  0.349**  0.214  0.394**  0.299*  0.087  -0.027  

 (0.144)  (0.155)  (0.168)  (0.177)  (0.171)  (0.179)  

Years with tenure (in logs)  -0.02  -0.013  0.001  0.021  0.047  0.076 

  (0.065)  (0.068)  (0.071)  (0.074)  (0.077)  (0.080) 

Percent time grants-related  0.005** 0.005* 0.005** 0.004 0.005** 0.006** 0.005* 0.006* 0.004 0.005 0.004* 0.006* 

research (0.002) (0.003) (0.002) (0.003) (0.002) (0.003) (0.002) (0.003) (0.003) (0.003) (0.003) (0.003) 

Age (in logs) 0.038  -0.018  0.217  0.098  0.379  0.266  

 (0.310)  (0.332)  (0.337)  (0.353)  (0.358)  (0.367)  

Life sciences  0.472*** 0.474*** 0.211 0.211 0.389** 0.483** 0.128 0.227 0.469*** 0.558*** 0.406** 0.499** 



55 

 

 (0.135) (0.153) (0.152) (0.171) (0.169) (0.195) (0.187) (0.215) (0.162) (0.187) (0.178) (0.207) 

Other natural sciences  0.287** 0.233 0.147 0.074 0.514*** 0.597*** 0.360** 0.451** -0.13 -0.131 -0.143 -0.134 

 (0.133) (0.148) (0.146) (0.162) (0.163) (0.186) (0.177) (0.202) (0.172) (0.193) (0.183) (0.210) 

Engineering sciences  1.365*** 1.372*** 1.007*** 1.009*** 1.123*** 1.253*** 0.897*** 1.060*** 0.585*** 0.611*** 0.478*** 0.549*** 

 (0.155) (0.169) (0.164) (0.179) (0.172) (0.193) (0.184) (0.205) (0.171) (0.191) (0.182) (0.204) 

Research group leader    0.415*** 0.378***   0.138 0.203   0.403*** 0.440*** 

   (0.118) (0.133)   (0.131) (0.149)   (0.145) (0.170) 

Size of the peer group at the   0.048 0.066*   -0.045 -0.049   -0.093** -0.134*** 

scientist’s institution (in logs)   (0.036) (0.040)   (0.040) (0.044)   (0.043) (0.048) 

No of publications (in logs)   -0.096** -0.069   0.069 0.076   -0.036 0.004 

   (0.043) (0.047)   (0.047) (0.050)   (0.049) (0.054) 

No of patent applications    0.795*** 0.733***   0.521*** 0.488***   0.304*** 0.274*** 

(in logs)   (0.101) (0.108)   (0.084) (0.090)   (0.087) (0.094) 

Constant  -1.443 -0.863*** -1.239 -1.091*** -2.903** -1.719*** -2.454* -1.926*** -3.428** -2.168*** -2.975** -2.400*** 

 (1.162) (0.235) (1.250) (0.271) (1.269) (0.291) (1.333) (0.323) (1.357) (0.341) (1.397) (0.381) 
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Pseudo R2  0.115 0.114 0.195 0.188 0.095 0.095 0.149 0.153 0.069 0.077 0.104 0.118 

N  835 668 821 657 828 661 814 650 821 655 808 645 

LR Chi2  131.399 104.918 219.089 170.786 84.423 70.369 129.368 110.718 52.072 47.992 77.657 72.903 

P-value  0 0 0 0 0 0 0 0 0 0 0 0 

* p<0.10, ** p<0.05, *** p<0.01; Social sciences and humanities serve as reference group. Robust standard errors in parentheses. 
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5.5 Conclusion 

The purpose of this paper was to shed light on the effects that institutional differences have 

on the choice of scientists to transfer technology informally. Our comparison of results for 

the United States and for Germany reveals similar behavior of faculty. Focusing in more 

detail on the research productivity of faculty in terms of publications and patents our results 

show that particularly university scientists with a track record of patent applications are an 

attractive partner for firm scientists in joint informal technology transfer activities. 

The lesson learned from our research is simple; faculty, like all economic agents, respond to 

incentives and until universities change their incentives (e.g., patenting as one criterion for 

promotion and tenure) knowledge will continue to flow out the backdoor.  
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6 International Scientist Mobility and the Locus of Knowledge and 

Technology Transfer 

6.1 Introduction  

It has almost become conventional wisdom that knowledge originating from universities and 

public research centres is a crucial constituent of technological change and economic growth 

(e.g. Jaffe 1989, Adams 1990, Mansfield 1991, Salter and Martin 2001). In fact, knowledge 

and technology transfer (KTT) from academia to industry has attracted considerable 

attention in the literature with a focus on the scientists involved, the research institutions, 

the agents in technology commercialisation (e.g. transfer offices), or on the modes of 

transfer, such as formal and informal KTT (e.g. Schmoch et al. 2000, Siegel and Phan 2005, 

Link et al. 2007, Rothaermel et al. 2007). Yet, despite the growing interest of scholars and 

policymakers in science, technology and innovation (STI) policy to better understand the 

factors motivating scientists12 to transfer knowledge and technology to firms, little is known 

how temporary international mobility13 of these scientists affects both the propensity to 

engage in KTT as well as the locus of such transfer.  

This question is important for at least two reasons. First, international mobility of 

researchers in public science has increasingly become an integral part of academic careers 

(Edler 2007, Ackers and Gill 2008, Cox and Verbeek 2008), and understanding the effects 

that mobility has on collaboration with industry can be assumed to yield insights for policy 

making. Second, international scientist mobility is implicitly associated with a discourse on 

“brain drain”, affecting the technological capabilities through an absence of skilled workers 

                                                      

 

12
  In the following, we will use the term “scientist” as short-hand for scientists employed at universities and 

other public research institutes and centres in the field of science and engineering. 

13
  Mobility, obviously, is a complex term. In this paper, we focus on inter-national yet intra-sectoral mobility, 

i.e. mobility within academia. Thus, we are not concerned with moves from public research into firms, but 

with cross-border moves of university scientists. 
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and thus eventually the competitiveness of the home countries of mobile scientists in 

academia (Adams 1968, Mountford 1997). Moreover, temporary mobility might lead to 

permanent migration of scientists. In this respect, policy makers in all countries – not only in 

developing or emerging economies – are concerned that research activities of mobile 

scientists result in KTT to firms predominantly in the host country, although the scientist’s 

research was substantially funded by the home country (OECD 2002, Nguyen 2006, OECD 

2007). Despite the vivid discussion of potential negative effects of international scientist 

mobility on the scientist’s home country, however, a more recent approach has coined the 

term “brain circulation” to put emphasis on the benefits for both home and host country 

from scientists’ international mobility (Regets 2007). 

Hence, in this paper we aim at shedding light on the relationship between international 

scientist mobility and scientists’ KTT activities by analysing the role of both the duration of a 

research visit outside the scientist’s home country and the frequency of such visits. In a first 

step, we identify the factors that motivate scientists in academia to become internationally 

mobile. We define scientist mobility14 as research visits at a host institution outside the 

scientist’s home country that take longer than one month. Shorter activities, which for 

example would also include the attendance of international conferences, can be assumed to 

impact KTT activities differently than being embedded as a visiting researcher at a host 

institution. Moreover, we do not consider permanent moves to another country which imply 

that the scientist does not have an immediate intention to return to the home country. In a 

second step, we focus on the scientist’s decision to engage in KTT and on the locus of such 

activities. 

Our theoretical reasoning is guided by the scientific and technical human capital approach 

(e.g. Bozeman et al. 2001, Bozeman and Corley 2004, Boardman 2009, Ponomariov and 

Boardman 2010). Scientific and technical human capital has been described as “the sum of 

an individual researcher’s professional network ties, technical knowledge and skills, and 

                                                      

 

14
  We use the more general term mobility in contrast to other authors like Ackers and Gill (2008) who use the 

terms mobility and migration synonymously.  
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resources broadly defined” (Bozeman et al. 2001, 636). Consequently, international mobility 

can be characterised as a way to augment the scientist’s professional network and the 

resources available, thus increasing the scientist’s scientific and technical human capital. We 

suggest in this paper that scientific and technical human capital plays a key role in the 

transmission of scientific knowledge from academia to industry as it influences the ability 

and inclination of individual scientists to engage in KTT activities. 

The empirical part of our paper is based on a random sample of more than 950 public 

scientists in Germany. We estimate Heckman selection models to account for the fact that 

not all scientists have international research experience. The paper further explores how KTT 

activities to home and host country firms relate to each other, i.e. we investigate whether 

KTT to host country firms substitutes or crowds out KTT to firms in the home country, or 

whether the two are complementary and mutually reinforcing. In this respect, we contribute 

to the literature in a number of ways. For the first time, we provide a direct link between 

international mobility and the KTT activities of scientists. While the effects of permanent 

migration have been studied in more detail, little is known about temporary mobility. 

Insights on this can be assumed to sharpen our understanding of the determinants of 

scientists’ engagement in KTT activities and to inform STI policy making. Moreover, our data 

on mobile and non-mobile scientists allow for an investigation of the factors that encourage 

or discourage scientists to become internationally mobile. From a theoretical perspective, 

we conceptualise mobility as a driver of scientific and technical human capital which has 

been frequently shown to impact on scientific productivity. 

The paper is organised as follows. The next section gives a brief review of the literature on 

scientist mobility and KTT activities and links the two in order to specify our hypotheses. 

Section 3 provides an overview of our empirical methods, before section 4 will show the 

empirical results. The paper concludes by outlining the implications of our findings for 

science and technology policy and by identifying further research opportunities at the 

intersection of scientist mobility and KTT activities. 

6.2 Literature background 

Mobility of scientists 
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The discourse on the causes and effects of mobility of academics and highly skilled workers 

has frequently been associated with concerns about a potential brain drain. As a 

consequence, mobility has been framed in a context of loss and possible negative effects. 

This discussion goes back at least to Adams (1968) and has been coined in the context of 

development policy, analysing the scale, scope and consequences of the movement of 

scientific and economic elites from developing and emerging countries to a richer nation 

(Adams 1968, Mountford 1997, for an overview see Nguyen 2006). However, while the 

discourse has long been focused on developing countries, initially the brain drain discussion 

was led in the United Kingdom in the 1950s and 1960s, when a loss of highly skilled workers 

and scientists to the United States had become apparent (Cervantes and Guellec 2002). In 

the 1990s, the economic consequences of scientist and highly skilled worker mobility came 

back on the agenda of OECD countries (Salt 1997, OECD 2002, Schiff 2005, Hunter et al. 

2009). Recognising the importance of a sufficient pool of scientists and highly skilled 

workers, even in advanced countries worries about brain drain have re-emerged and been 

counteracted by policy schemes to retain the scientific elites. Indeed, the phenomenon of 

scientist mobility has been discussed in most OECD countries as a potential risk to the 

economy of the sending country.15 For example, the United Kingdom and the United States 

have intensified their efforts to re-attract or retain scientific elites at the end of the 1990s 

and beginning of the 2000s (Cervantes and Guellec 2002). 

However, the risk discourse around international mobility of scientists has not prevented a 

strong increase of international scientist mobility (Casey et al. 2001, OECD 2002). Part of this 

mobility is migration, i.e. the move to another country in order to stay there for an indefinite 

time, and part is temporary. Although European governments in particular have been 

worried about a potential brain drain to the United States, existing data show that actual 

migration, i.e. the emigration of scientists, is rather limited (Cervantes and Guellec 2002, 

Robinson et al. 2007). In contrast, temporary mobility has become more important in recent 

                                                      

 

15
  For the developing countries – which are not within the scope of our paper – this is obvious, although some 

views in the 1990s have claimed that the benefit for the sending country might be higher than the costs, 

which is – at least – a highly contested conclusion (Fiani 2003). 
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years, as scientists – and particularly PhD students and Post-Docs – gain experience abroad 

to come back and exploit the knowledge gained in their home country. Thus, the term brain 

circulation was coined in order to signal the potential gain stemming from temporary 

mobility, as such circulation implies linkages between national science and innovation 

systems (Saxenian 2002).  

The overall allocation of benefits from scientist mobility is, however, not entirely clear. 

Several authors find that higher mobility in terms of brain circulation not only leads to a 

better career development of individual scientists,16 but also contributes to the overall 

production and exchange of knowledge and subsequently potentially increases welfare (e.g., 

Thorn and Holm-Nielsen 2006, Edler 2007, Cox and Verbeek 2008). Freeman (2010) presents 

data on the mobility of scientists, highly skilled workers, students and graduates (see also de 

Grip et al. 2010), together with shifts in global talent production towards Asia. He argues 

that mobility creates benefits with respect to the speed and breadth of knowledge 

production as well as regarding the global transfer of knowledge. At the same time, these 

benefits are accompanied by challenges for advanced Western countries in their 

competition with emerging economies like China or India (Freeman 2010).  

Scientist mobility is therefore said to enrich careers, create networks, support a better 

international flow of knowledge, better job matches through global job search and greater 

ability of employers to find rare or unique skill sets (Regets 2007). All this allegedly leads to 

some form of cognitive integration in scientific fields across borders, facilitating 

complementarities in knowledge production. Regets (2007), in compiling international 

country-level data on mobile scientists with a focus on the US, claims not only an overall net 

benefit for the global economy and the receiving (host) countries, but also for the sending 

country. For the host country, Regets (2007) suggests increased incentives for natives to 

seek higher skills leading to an increase in domestic economic returns to human capital 

investments, increased knowledge flows and collaboration as well as increased ties to 

foreign research institutions, export opportunities for technology, remittances, and other 

                                                      

 

16
  Cox and Verbeek (2008) have shown that the impact on scientists is not always and automatically positive. 
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support from “diaspora networks”. Interestingly, and most important for our concern in this 

paper, Regets (2007) envisions very similar effects for the sending countries, thus making a 

strong argument for circulation and bi-directional benefits. However, these largely positive 

net effects of mobility for the receiving countries are not unambiguously supported in the 

literature. Both Bekhradnia and Sastry (2005) and Ackers and Gill (2008) argue that a high 

level of inward mobility may lead to dependencies on foreign in-flow that is unstable and 

hard to sustain – combined with the risk of mobile researchers returning to their home 

countries, “taking their skills with them” (HEFCE 2006, 44).  

While brain drain remains an issue on the political agenda of some countries, the recent 

discourse has been about circulation and the requirement to enable and foster short and 

medium term stays. A major rationale behind those circulation programmes has been the 

insight that becoming part of global networks and collaborating with other scientists abroad 

enhances the capabilities and productivity of mobile scientists (Edler 2007, Defazio et al. 

2009). Scientists realise a whole range of positive individual benefits, and by doing so they 

create positive net effects in the country in which they are originally based and to which 

they return or keep up linkages. Therefore, European countries have intensified efforts to 

govern brain circulation in order to increase their benefits from scientist mobility (e.g., Thorn 

and Holm-Nielsen 2006). Moreover, the insights on the benefits of scientist mobility have led 

to a “mobility strategy for the European Research Area (ERA)” in which mobility – with a 

focus on circulation – is seen as a major pillar for the creation of a single European market in 

science.17 

In sum, apparently the fear of brain drain in some OECD countries has made way for more 

hope for brain circulation and related economic benefits. One increasingly recognised issue 

is the potential benefit for home countries of temporarily mobile scientists through an 

increased “knowledge flow across borders” (Regets 2007). There is however a severe 

shortage of empirical knowledge about the modes, scale and scope of effects of circulation 

of public scientists for the innovation system of both receiving and sending countries. We do 

                                                      

 

17
 For a summary see COM (2005). 
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not know to what extent mobile scientists do engage in KTT and where they mainly do it, 

either in the receiving or the sending country. Moreover, we know little about the factors 

that determine why scientists engage in KTT and, equally important, what drives them to 

become internationally mobile in the first place. Our paper is intended to fill this specific 

gap. It does not claim to discuss the broader consequences of migration or mobility, but 

instead focuses on one specific aspect in-depth using a novel dataset. In the following 

section we will review the existing evidence on causes and effects of KTT activities from 

academia to industry, which subsequently will be linked with the discussion of scientist 

mobility in order to derive our hypotheses.  

Knowledge and technology transfer from academia to industry 

There is wide agreement today that collaboration between science and industry plays a 

crucial role for the innovative capabilities of firms as well as for the overall economic 

development of a country (e.g. Hall et al. 2003, Link and Scott 2005). With the rise of the 

“mode 2 concept” (Gibbons et al. 1994) which posits a close interaction between scientific 

and industrial actors in the production of knowledge, KTT activities between academia and 

industry have gained further importance. Minbaeva et al. (2003) define knowledge transfer 

as a multi-stage process which involves the identification of relevant knowledge, the actual 

transfer of knowledge, as well as its final use by the receiving organisational unit. However, 

since the subject of knowledge transfer cuts across a variety of academic fields and 

application contexts, there is no common definition of the term across the disciplines, and 

the definition depends on how knowledge itself is defined (Bozeman 2000, Cummings and 

Teng 2003). Moreover, Sahal (1981) and Bozeman (2000) emphasise that there is no clear 

distinction between knowledge transfer and technology transfer, since technology is always 

based on knowledge and this knowledge is always transferred in the moment when a 

technology is transferred between two organisations, such as a public research organisation 

and a firm.  

There are numerous modes of KTT, both formal and informal. Formal KTT usually involves a 

legal instrument like a patent, license, or royalty agreement (Bozeman 2000, Feldman et al. 

2002, Thursby and Thursby 2002). In contrast to this, informal KTT refers either to the 
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absorption of knowledge codified in specific research outputs or to interactions between 

public scientists and industry personnel. In this sense, knowledge could flow for example by 

technical assistance or consulting (Grimpe and Fier 2010), within collaborative research (Link 

et al. 2007) or through a temporary or permanent move from public research to industry 

(COM 2006). We use the term KTT in a broad understanding that refers to knowledge 

embodied in technological artefacts, codified and non-codified knowledge, as well as 

knowledge that is co-produced in various forms, e.g. in collaborative projects.  

From the perspective of an industrial firm, interaction with public science is attractive for 

several reasons. Firms tend to “underinvest” in the production of new knowledge and 

technology through research and development (R&D) as the results achieved may be 

relevant for other companies and may thus spill over to competitors (Arrow 1962b). Further, 

knowledge production incurs high costs, as knowledge often involves complex and dynamic 

processes which firms cannot cope with internally (Dasgupta and David 1994, Crespi et al. 

2006). Firms therefore strive to get access to complementary resources in universities and 

public research organisations and to explore new technological opportunities (Jacobsson 

2002, Santor and Chakrabarti 2002, Adams 2006, Broström 2010). Firms also need access to 

the public scientists themselves in order to hire scientific personnel and thus to keep up 

their absorptive capacity for future KTT activities (Hall et al. 2003), as knowledge sought 

through external experts is often complementary to firms’ technological core (Song et al. 

2003). Within the last few years, several studies have evaluated the links between science 

and industry with a view to firm success, typically finding that firms’ ability to innovate is 

positively influenced by industry-science interaction (Arvanitis et al. 2008, Broström 2010). 

Further exemplary evidence includes Belderbos et al. (2004) who examine industry-science 

interactions on the basis of a large scale innovation survey, concluding that interactions 

between firms and universities or research institutes significantly increase the firm’s sales 

with innovative products. A study of German companies found that firms sourcing 

knowledge from universities are more likely to innovate (Edler 2003). 

While the generally positive effects of KTT on firm performance provide an explanation for 

why firms seek to collaborate with academics, existing literature has also shed light on what 

drives individual scientists to collaborate with firms and engage in KTT activities. This 
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literature has developed within connected but slightly different conceptual lenses. A first 

lens is the resource-based view (e.g. van Rijnsover et al. 2007), which – in line with the 

original concept developed for firms (e.g. Barney 1991) – posits that individuals are enabled 

to collaborate by the resources at their disposal. They seek collaboration to enhance these 

resources and thus improve their personal competitive advantage vis-à-vis other 

researchers. A second approach to look at individual determinants of KTT is to understand 

the organisational context, i.e. the characteristics of organisations that encourage, enable or 

constraint scientists in their KTT efforts (e.g., Meyer-Krahmer and Schmoch 1998, Siegel et 

al. 2003, Siegel et al. 2004, Ponomariov and Boardman 2010). A third and related approach is 

the scientific and technical human capital approach, which refers to scientific and technical 

human capital as “individual endowments”, tacit and craft knowledge as well as social 

contacts and networks (e.g., Bozeman et al. 2001, Bozeman and Corley 2004, Boardman 

2009, Ponomariov and Boardman 2010). All approaches have in common that they focus on 

how various characteristics of individuals and their organisational environment influence 

their ability and inclination to engage with firms and transfer knowledge.  

With respect to resource-driven considerations, scientists seek access to complementary 

knowledge, expertise and resources just like firms do (Katz and Martin 1997, Melin 2000, 

Thorsteinsdottir 2000, Beaver 2001). Link et al. (2007) examined knowledge transfer 

between academia and industry on the basis of a survey among university scientists. Their 

results suggest that university researchers rank collaboration with industry as very important 

because it allows them to benefit from the transferred knowledge and the use of 

equipment. Siegel et al. (2004) find that many researchers benefit from collaboration and 

knowledge transfer to industry due to the use of advanced equipment and laboratories at 

the firms’ premises. Meyer-Krahmer and Schmoch (1998) investigated the importance of 

different types of interaction with industry. The interviewed scientists rated those 

interaction types with industry as more important that involved a bidirectional exchange of 

knowledge with industry, thus pointing towards the importance of both receiving and 

transferring knowledge. Moreover, scientists seek to collaborate with industry in order to 

get access to research grants as they have become a major source of university research 

funding (Beaver 2001, Hall et al. 2003, Bozeman and Corley 2004). 
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A second approach focuses on the meaning of the organisational environment. It has been 

shown that KTT differs depending on the mission and institutional context of public 

scientists. Broadly speaking, there is a substantial difference between university-affiliated 

scientists and those affiliated with institutionally funded basic research institutes on the one 

hand and scientists at public research institutes that are mission-oriented or that are set up 

to link science with industry on the other hand. For Germany, Schmoch et al. (2000) and 

Heinze and Kuhlmann (2008) have demonstrated that researchers at universities and Max 

Planck institutes, which are – by and large – more oriented towards basic research and 

publications as major indicator of excellence, tend to be less active in collaboration with 

firms than scientists from Fraunhofer institutes whose mission is application oriented and 

that need to acquire industry funding. This result has been confirmed by Ponomariov (2008) 

for universities, finding a negative correlation between scientific quality of university units 

and their propensity to collaborate with firms. Moreover, Ponomariov (2008) finds that the 

presence of industry near or on campus increases KTT activities.  

Similarly, Siegel et al. (2004) show that a considerable number of scientists rate the reward 

systems for KTT at the research institutions as insufficient, thus obstructing a higher level of 

transfer activities. In fact, several papers have highlighted the importance of an 

appropriately designed reward system at the research institutions to stimulate the scientists’ 

engagement in KTT. In this context, Friedman and Silberman (2003), Lach and Schankerman 

(2004) and Link and Scott (2005) find a positive relationship between royalty payments and 

the scientists’ propensity to engage in KTT activities. Jensen et al. (2001), Owen-Smith and 

Powell (2001), and Thursby and Kemp (2002) highlight the critical role of intellectual 

property rights, such as patents, for KTT. They find that the faculty’s awareness of 

commercialisation opportunities and an active involvement in the process of 

commercialisation of scientific discoveries positively influence the patenting behaviour of 

scientists. Patents, in turn, create opportunities to enter the “market for technology” and 

facilitate the exchange of knowledge assets (Arora et al. 2001). Finally, there is also clear 

evidence that scientists in different scientific fields have different collaboration behaviours 

(Meyer-Krahmer and Schmoch 1998, Schmoch et al. 2000, Heinze and Kuhlmann 2008). 
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Finally, the third approach, the scientific and technical human capital approach, puts 

emphasis on individual-level research capacity. It combines the first two lenses, but is 

slightly broader in discussing determinants of individual research capacity. Belkhodja and 

Landry (2007) show that a number of factors driving the scientist’s scientific and technical 

human capital like the career age, productivity, hierarchical position as well as previous 

successful collaboration relate positively to the scale of collaboration with firms. 

Furthermore, scientists who are well connected, i.e. who occupy a central position in 

professional networks, collaborate significantly more. Boardman (2009) as well as 

Ponomariov and Boardman (2010) suggest that scientists affiliated with a university research 

centre may augment their scientific and technical human capital and, in this respect, their 

ability to conduct research together with industry and to publish the results. The underlying 

mechanism for this is the notion that social capital creates human capital. Joining a research 

centre implies interaction with other centre participants as well as access to centre 

resources. As a result, a scientist’s centre-enhanced research capacity will facilitate industry-

science interaction and KTT activities. 

This review has demonstrated that scientists may engage in KTT for a variety of reasons. 

Although the three theoretical lenses presented – and particularly the resource-based view 

and the scientific and technical human capital approach – are interconnected, the following 

section will primarily draw from the scientific and technical human capital approach. This 

approach combines important perspectives of the other two approaches. However, it 

focuses on the influence that the broader environment and a whole range of factors related 

to the individual – such as career pathways, social position in networks (social capital) – have 

on the actor’s resources and their application and hence on their behaviour. In short, a 

change in the broader environment or in those key factors can trigger a change in behaviour. 

For our study, this perspective best helps us to delineate the effects that international 

mobility of scientists – a feature of scientists’ career paths that has become increasingly 

important – will likely have on engaging in KTT activities with firms both in the home and the 

host country. 

Linking KTT with international mobility of scientists 
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Both KTT activities and scientist mobility have been characterised as increasingly important 

phenomena, and both promise benefits at the individual and systemic level. In this respect, 

it becomes imperative to explain the mechanism through which international mobility might 

have an impact on scientists’ KTT activities. As indicated before, our theoretical reasoning 

will be guided by the scientific and technical human capital approach which has been applied 

in a number of recent studies investigating industry-science collaboration (e.g., Bozeman 

and Corley 2004, Boardman 2009, Ponomariov and Boardman 2010). The scientific and 

technical human capital approach is particularly appropriate because of its emphasis on 

individual-level research capacity which can be affected – inter alia – by professional 

relationships and network ties. Our starting assumption is that international mobility might 

serve as a prominent way to increase an individual’s embeddedness in professional – 

academic and non-academic – networks which translates into higher scientific and technical 

human capital. Our overarching research hypothesis is therefore that international mobility 

of scientists increases the propensity that these scientists will engage in KTT activities to 

firms. 

As our starting point, we identify two major dimensions of mobility that may have an 

influence on KTT activities of mobile scientists: the duration of a focal research visit to a host 

country institution, as well as the scientist’s more general international orientation in her or 

his academic career, which we define as the frequency of research visits relative to the 

scientist’s career age. Proponents of the scientific and technical human capital approach 

have argued that “social capital begets human capital” (Ponomariov and Boardman 2010, 

616). Mobile scientists are exposed to collaborators and probably resources they did not 

have access to before. In this respect, scientists increase their research capacity, i.e. their 

human capital, some of which might be the result of further training and development. 

Moreover, by making formal and informal connections, scientists also expand their social 

capital that eventually might increase their ability to facilitate the transfer of knowledge and 

technology to firms (Ponomariov and Boardman 2010).  

The duration of a research visit outside the scientist’s home country may thus impact the 

scientific and technical human capital because longer research visits abroad result in more 

intensive experiences and stronger embeddedness in the foreign context. Such visits create 
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opportunities for more intensive interaction and knowledge exchange or co-production of 

knowledge. While these arguments suggest that longer research visits abroad predominantly 

benefit KTT activities to firms in the host country, we might also expect positive effects of a 

longer visit for KTT activities to firms in the home country. The reason is that industry in the 

home country will typically have a higher interest in collaborating with a scientist with a 

higher scientific and technical human capital gained through international exposure. This 

opens the opportunity for firms to acquire more distant knowledge and technology with a 

high degree of novelty and uniqueness from the firm’s point of view. Hence, our first 

hypothesis can be stated as: 

Hypothesis 1a (H1a): The longer the research visit to an institution outside the scientist’s 

home country takes, the higher the likelihood that the scientist will engage in KTT activities to 

firms in the home country. 

Hypothesis 1b (H1b): The longer the research visit to an institution outside the scientist’s 

home country takes, the higher the likelihood that the scientist will engage in KTT activities to 

firms in the host country. 

Second, the frequency of research visits abroad might have an important role to play as it 

reflects a form of the scientist’s international orientation. Frequent research activities 

abroad may, for example, lead to a higher number of contacts, the build up of reputation 

and, therefore, also to a more diverse and broad potential for interactions. As before, a high 

frequency of visits also suggests that the scientist may become well embedded into the 

scientific context of the host country. This should particularly be true due to the cumulative 

effects of repeat visits as these are likely to better facilitate building up social capital. 

Moreover, we can assume that scientists with a high international orientation are generally 

more open-minded, which might also help in terms of establishing contacts with industry. As 

a consequence, a higher frequency of research visits abroad should facilitate KTT activities to 

firms both in the host and the home country. 

Hypothesis 2a (H2a): The higher the frequency of research visits to institutions outside the 

scientist’s home country, the higher the likelihood that the scientist will engage in KTT 

activities to firms in the home country. 
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Hypothesis 2b (H2b): The higher the frequency of research visits to institutions outside the 

scientist’s home country, the higher the likelihood that the scientist will engage in KTT 

activities to firms in the host country. 

Finally, it is of particular interest for policy makers to explore the relationship between KTT 

activities to firms in the host and the home country. If there was a positive correlation 

between KTT of a mobile scientist to firms in the host country and the home country, then 

international scientist mobility would have direct positive effects for firms in the home 

country, as well. Mobile and transfer-active scientists would constitute a natural transfer 

mechanism of relevant knowledge and technology to industry, regardless of national 

borders. In turn, the more mobile and transfer-active scientists a country had, the more 

attractive it would become as a location for international firms. In addition, a higher number 

of transfer active and mobile scientists would contribute to a more efficient and effective 

linking of complementary knowledge globally. Reflecting the brain drain discourse, there is 

an obvious imbalance between the growing need to foster mobility and KTT on the one 

hand, and concerns about a sufficient return of knowledge to the home country on the other 

hand. Both the scientific and technical human capital approach and the resource-based view 

would suggest that scientists prefer those transfer activities that promise a gain in 

knowledge for them as well, i.e. they seek reciprocal partnerships with firms, in order to 

expand their research capacities and human capital. If that is true, international KTT 

activities promise to yield positive effects on the scientists and thus will also benefit the 

innovation system of the scientist’s home country. Moreover, scientists with collaborative 

experience can be assumed to be both more open to and more attractive for industrial 

partners as they understand the application-oriented interest of firms and know how to 

manage relationships with firms (Grimpe and Fier 2010). If there are no confidentiality 

agreements between a scientist and a particular firm in place, scientists are therefore likely 

to seek further collaboration opportunities in order to acquire funding and to commercialise 

their knowledge and technology. As a result, our third hypothesis reads: 

Hypothesis 3 (H3): There is a positive correlation between KTT activities to firms in the host 

and the home country. 
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In the following section we will outline our research methods used to test our hypotheses 

before we present the results.  

6.3 Research methods 

Data 

The data used in our empirical analysis originate from a survey among German scientists 

carried out on behalf of the German Federal Ministry of Education and Research (Edler 

2007). The aim of the survey, which was part of a large-scale project on the 

internationalisation of German publicly financed research and science, was to depict the 

willingness, the motives and the actual extent of international mobility of scientists in 

Germany. Data were collected in 2006 using an online survey instrument. 

An online survey is a particularly useful instrument in our case because it allowed us to reach 

those scientists who were temporarily absent from their home office, i.e. who were on a 

visit, in a quick and efficient way. In this respect, it can be regarded as superior compared to 

a survey administered via mail. Moreover, it enabled us to reach a large number of scientists 

who provided detailed information about their mobility pattern. While in-depth case studies 

with a selected group of scientists could have generated even more detailed information, 

they would have precluded further statistical analyses which allow us to draw conclusions 

based on a large number of observations and controlling for several individual and 

institutional factors. In any case, the information is self-reported, which could raise concerns 

with respect to response accuracy. However, we believe that the advantages of such an 

online survey outweigh the drawbacks (for a discussion see Bertrand and Mullainathan 

2001). 

Two major data sources were used for the sampling procedure. In a first step, the population 

of scientists holding a PhD and employed at German universities was derived from the 

“Hochschullehrerverzeichnis” of the year 2005. The “Hochschullehrerverzeichnis” is a 

database containing the names, degrees and contact information of the academic personnel 
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employed at German universities.18 In a second step, scientists at (partly) government-

funded public research institutes were identified via an internet search of the institutes’ 

websites. These research institutes belong to the four large German science organisations: 

Max Planck Society, Fraunhofer Society, Leibniz Association and Helmholtz Association. In 

total, around 20,000 scientists from 113 German universities and 231 research institutes 

were identified with their e-mail addresses and invited to participate in our survey. 

Questionnaires of 1,509 respondents were retained; the overall response rate was 15.8 

percent, which can be regarded as satisfactory for such a large-scale online survey.19 For the 

analysis, we limited the sample to those scientific disciplines where a transfer of 

technological knowledge to firms is potentially relevant – i.e. in agricultural and 

environmental sciences; biology and chemistry; physics, mathematics and computer 

sciences; engineering sciences; medicine, psychology – thus excluding social sciences and 

humanities. Excluding cases with missing values leaves 958 observations available for 

analysis.  

Variables and measures 

Dependent variable 

To qualify the KTT activities of scientists, the respondents were asked to indicate whether 

their most recent research activity outside of Germany resulted in a transfer of technological 

knowledge or expertise to a firm in Germany and/or in the host country. We chose the most 

recent visit as the focal visit of our analysis for several reasons. First of all, it could be argued 

that the most recent visit was actually not relevant at all. However, letting a scientist choose 

which visit to report from would probably heavily bias the results as scientists might only 

choose those visits where KTT occurred. Defining the most relevant visit creates additional 

problems as scientists might have a different understanding of what they consider as 

relevant. Second, we can assume that scientists are better able to recall their experiences 

                                                      

 

18
  This excludes the so-called “universities of applied sciences” whose major task is teaching and not research. 

19
  The response rate reflects the fact that many scientists could not be reached due to an outdated or misspelled 

e-mail address. 
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when reporting from the most recent visit compared to a visit that had taken place been a 

longer time ago. We hence obtain two dummy variables. However, only 54 percent of all 

scientists in our sample have international research experience. Whether KTT as a result of 

such activities occurred or not is therefore not observable for scientists lacking this 

experience. We will address this issue methodologically by estimating selection models (see 

the model section for details).  

Explanatory variables  

In order to capture the international mobility of scientists, we use two survey variables: the 

duration of the focal research visit, i.e. the scientist’s most recent visit abroad, and the 

scientist’s more general international orientation which we associate with the frequency of 

international visits. 

International research activities can be limited in duration or indeterminate. The latter case 

might for example apply to German scientists with a regular working contract at an 

institution abroad. We therefore use four dummy variables for visits lasting between 1 to 3 

months (short-term), 4 to 12 months (medium-term), longer than 12 months (long-term) 

and for research activities of indeterminate duration but at least for 12 months. The dummy 

for short-term activities is used as the reference category in all regressions. It could be 

argued that the choice for the length of each category is somewhat arbitrary. However, we 

believe that a distinction between short-term, medium-term, long-term and research 

activities of indeterminate length abroad makes sense as they are also associated with 

different levels of effort for the scientist and corresponding administrative requirements. In 

this sense, short-term stays of up to 3 months are relatively easy to realise as temporary 

accommodation and office space would be rather easy to find. Moreover, it may not be 

necessary to apply for a visa and deal with other bureaucratic issues. The U.S. Visa Waiver 

Program, for example, allows German citizens to stay for up to three months in the United 

States without a visa, as long as they do not take up employment. All these efforts can be 

assumed to increase with medium-term stays that take up to one year. If a research activity 

is planned that takes even longer, scientists will probably seek some form of permanent 

residency with consequences for private and administrative aspects of their lives. Hence, 
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although such a four-level conceptualisation of duration is necessarily somewhat arbitrary, 

we believe that it represents a pragmatic approach to capture the scientist’s mobility choice. 

Our measure for the general international orientation of the scientist is defined as the 

number of research visits abroad that took longer than 1 month, divided by the scientist’s 

career age. The career age is defined as the number of years that have passed since the 

scientist received her or his PhD. For obvious reasons, the career age is closely connected to 

the scientist’s opportunities to engage in research activities abroad. Hence, we use the 

career age to control for these age effects. The international orientation therefore shows the 

importance of research visits abroad during the scientist’s career. 

Besides duration and frequency, we control for the destination of the scientist’s research 

visit. In the questionnaire, scientists were asked to indicate the host country of their 

international research activities. These were grouped into three groups and we include 

dummy variables for Western Europe and North America. The rest of the world serves as the 

reference category.20  

We have argued that the scientist’s propensity to engage in KTT activities not only depends 

on mobility but also on other personal characteristics of the scientist. Therefore, we include 

several variables to control for the individual level effects. We measure the scientist’s 

productivity by including dummy variables for her or his publication activities (i.e. 0 to 3, 4 to 

6, and more than 6 articles in refereed journals) and for having applied for a patent. These 

variables refer to the three years prior to the survey. We account for the age of the scientist 

by including the career age in linear and squared form to control for potential non-linearity. 

Moreover, we include dummy variables for the gender, whether the scientist is employed at 

a university or at one of the institutes belonging to the large German science organisations 

(i.e., Fraunhofer Society, Max Planck Society, Helmholtz Association, and Leibniz Association 

                                                      

 

20
  As the descriptive statistics will show, 85 percent of the scientists indicated North America and Western 

Europe as their destination. Despite a strong (politically motivated) interest in mobility to Asia and 

particularly China, it would thus not make sense to include separate dummy variables due to the low number 

of observations. 
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and other institutes, with the Leibniz and other institutes serving as reference group), and 

whether the scientist received a grant for the international research visit.  

Further, we measure the enabling and pull factors of international research activities with 

two dummy variables. The first variable indicates enabling conditions. We asked whether the 

scientist perceived the available funding opportunities for international research activities to 

be sufficient. The second variable is the perceived importance of the research environment 

abroad relative to the home environment. We use two variables on the number of research 

groups or research institutions within Germany and outside of Germany which the scientist 

indicated to be important for her or his research (none, 1 to 4, 5 to 10, more than 10). When 

the number of important research groups abroad is higher than the number of domestic 

research groups, then the new variable takes on the value of 1, if it is lower or the same, the 

value is 0. Finally, we include discipline dummies (environmental sciences; biology, 

chemistry, pharmacy; engineering sciences; medicine, psychology), with physics, 

mathematics, computer sciences serving as a reference category in all estimations. 

6.4 Estimation model 

Our dependent variables, the transfer of knowledge and technology to firms in Germany or 

in the scientist’s host country as a result of an international research visit, are only 

observable if scientists have international research experiences. All other scientists would 

consequently not be able to engage in such KTT. The sample is therefore censored, which 

implies that we have to use a two-stage selection model. Estimating a simple regression 

model using only data on scientists with international research experience (i.e. whether the 

scientist had been abroad for at least a month in her or his career at all) would generate 

inconsistent estimates (Heckman 1979). Including international experience as an exogenous 

variable would ignore the endogeneity between the KTT behaviour and international 

experience. We address this issue by estimating probit models with selection correction. The 

models consist of estimating two equations. In the first stage, the selection equation stage, 

the probability for having international research experience at all is estimated. In the second 

stage, the regression of interest, the determinants of the KTT activities to firms in the host 

and the home country are investigated. The two stage selection model assumes that there is 
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a potential correlation between the error terms of the two equations (see Greene 1993 for a 

discussion). If that correlation is nonzero, estimates will be inconsistent unless accounted for 

through the selection model.  

The Heckman selection model requires that at least one factor be identified that influences 

the selection (i.e. international experience), but not the dependent variable of the second 

stage regression model (i.e. KTT). We argue that the two variables portrayed as enabling and 

pull factors for international research activities fulfil this criterion. International research 

activities require funding, which will typically not be provided by the host institution. 

Therefore, scientists may apply for specific international grants or other grants. Moreover, 

research abroad only makes sense if there are opportunities to learn from and to collaborate 

with partners who work in similar fields and who provide an added value over domestic 

partners (pull). This does not imply that scientists will not go abroad if there are more 

potential domestic collaboration partners even though there are some research groups 

abroad which are highly important. However, we argue that a higher relative importance of 

international partners should at least result in a preference for international over domestic 

partners and thus increase the likelihood that international research activities occur. At the 

same time, both enabling and pull factors should not have any effect on the knowledge 

transfer behaviour of scientists. We test this assumption empirically by including the 

enabling and pull factors in both the first and second stage regression of a probit model with 

selection. As predicted, both variables have a positive and significant effect on the 

international experience and no significant effect on the KTT activities. Our estimation model 

can therefore be considered as valid.  

In the second step of our estimation we employ a seemingly unrelated bivariate probit 

model. The model reflects our choice of two dummy variables as dependent variables: KTT 

to firms in the host and the home country. As outlined above, we are not only interested in 

the relation between the independent and the dependent variables, but also in the relation 

between the two dependent variables. We have argued that the two variables have a 

complementary relationship, i.e. KTT to firms in the host country does not substitute for 

knowledge transfer to firms in the home country and vice-versa. Instead, a complementary 

relationship would indicate that both directions of knowledge transfer occur at the same 
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time. The bivariate probit model provides an indirect test for complementarity. The idea is to 

test for a positive correlation between the two practices conditional on a vector of 

covariates X (Athey and Stern 1998, Cassiman and Veugelers 2006). If the resulting 

correlation coefficient rho is positive and significant we can assume that both practices are 

complements rather than substitutes. 

6.5 Results 

Basic characteristics of scientist mobility and KTT 

Fehler! Verweisquelle konnte nicht gefunden werden. shows the descriptive statistics of 

the dependent as well as our main explanatory and control variables. Correlation tables for 

the variables in the first and second stage of the selection models can be found in the 

appendix (Tables A2,A3). There is no indication for collinearity in our data as evidenced by 

the low values of the variance inflation factors (VIF) and condition numbers (Belsley et al. 

1980).  
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Table 3: Descriptive statistics (Chapter 5) 

Variable Obs. Mean Std. Dev. Min. Max. 

Transfer to firms in Germany (d) 514 0.163 0.370 0 1 

Transfer to firms in the host country (d) 509 0.169 0.375 0 1 

Short-term stay (1 to 3 months) (d) 514 0.461 0.499 0 1 

Medium-term stay (4 to 12 months) (d) 514 0.138 0.345 0 1 

Long-term stay (> 12 months) (d) 514 0.171 0.377 0 1 

Stay of indeterminate length (d) 514 0.230 0.421 0 1 

International orientation (ratio) 514 0.290 0.246 0 1.111 

Grant received for the focal research visit (d) 514 0.796 0.404 0 1 

Host country in Western Europe (d) 514 0.259 0.438 0 1 

Host country in North America (d) 514 0.591 0.492 0 1 

International experience of at least one month 

(d) 958 0.537 0.499 0 1 

Career age (years) 958 15.437 10.283 0 41 

Gender (d, 1=female) 958 0.148 0.356 0 1 

Employed at a university (d) 958 0.467 0.499 0 1 

Employed at Fraunhofer institute (d) 958 0.068 0.252 0 1 

Employed at Max Planck institute (d)  958 0.134 0.340 0 1 

Employed at Helmholtz institute (d) 958 0.244 0.430 0 1 

Employed at Leibniz or other institute (d) 958 0.129 0.336 0 1 
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Patent application in last 3 years (d) 958 0.310 0.463 0 1 

No. of publications in last 3 years 0-3 (d) 958 0.267 0.443 0 1 

No. of publications in last 3 years 4-6 (d) 958 0.237 0.425 0 1 

No. of publications in last 3 years >6 (d) 958 0.486 0.500 0 1 

Environmental sciences (d) 958 0.144 0.351 0 1 

Biology, chemistry, pharmacy (d) 958 0.290 0.454 0 1 

Physics, mathematics, computer science (d) 958 0.310 0.463 0 1 

Engineering sciences (d) 958 0.119 0.324 0 1 

Medicine, psychology (d) 958 0.137 0.344 0 1 

Satisfied with availability of funding for intern. 

mobility (d) 958 0.211 0.408 0 1 

Rel. imp. of research groups abroad higher than 

at home (d) 958 0.693 0.461 0 1 

(d): dummy variable 

The descriptive statistics show that slightly more than half of the scientists in our sample do 

have international experience and can be used in the second stage of the selection model. 

The statistics further show that two dependent variables on the KTT behaviour are almost 

equally distributed. About one out of five scientists transferred knowledge and technology 

to firms in Germany during the focal research visit abroad. Slightly more scientists have 

engaged in KTT to firms abroad, i.e. in their (former) host countries.  

Regarding the explanatory variables, our main focus is on the mobility variables. It turns out 

that, based on the information about their last research visit abroad, the majority of German 

academics go abroad for a rather short period of 1 to 3 months. Medium-term stays are 

somewhat less common (14 percent) than long-term stays (17 percent). Moreover, 23 

percent of the scientists indicated their research activity abroad to be of indeterminate 
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length. The international orientation, expressed by the ratio of the number of research visits 

and the career age, shows that on average scientists go abroad for at least one month about 

every fourth year. Most of the scientists chose North America as the destination for their 

international research activities and the vast majority received a grant for these activities. 

The second group of explanatory variables reflects personal and professional characteristics 

of the scientists in our sample. On average, the scientists have been active after their PhD 

for 15 years (career age), and 15 percent of the scientists in the sample are female. 

Moreover, the descriptive statistics show that the sample is almost equally balanced 

regarding the locus of employment of the scientists (universities vs. non-universitary, i.e. 

public research institutes). Regarding the scientific productivity during the three years prior 

to the survey, it turns out that around 30 percent of the scientists had applied for at least 

one patent and most of the scientists had published more than 6 papers in refereed journals. 

With respect to the scientific discipline, about every third scientist in our sample is working 

in the fields of physics, mathematics or computer science. These disciplines are followed by 

biology, chemistry, pharmacy (29 percent), environmental sciences (14 percent), medicine, 

psychology (14 percent), and engineering sciences (12 percent).  

The last two explanatory variables work as exclusion restrictions in the selection models, i.e. 

they are expected to determine the decision to be internationally mobile at all but they 

should be irrelevant for the decision to transfer knowledge and technology. Only 21 percent 

of the academics stated to be satisfied with the available funding opportunities for 

international research activities. The second exclusion restriction reflects the scientists’ 

assessment of the importance of research groups abroad. Almost 70 percent of the scientists 

indicated the importance of foreign research groups to be higher than domestic research 

groups for their own research activities.  

International mobility as the determinant of KTT activities 

Fehler! Verweisquelle konnte nicht gefunden werden. shows the results from our probit 

selection models for the scientists’ decision to move abroad (first stage of the model) and to 

engage in KTT activities either to firms in Germany or in the host country (second stage of 

the model). In the following, we will first discuss the results from the first stage before we 
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move on to the second stage. We can see from the rho coefficient in the lower part of 

Fehler! Verweisquelle konnte nicht gefunden werden. that there is a significant correlation 

between the error terms of the two equations for the second model (KTT to firms in the host 

country). This indicates that a selection model is in fact required to yield consistent 

estimates results. 

The enabling and pull factors – availability of funding and relative importance of scientists 

abroad – which serve as exclusion restrictions turn out to be significant in the two first stage 

equations and they have the expected sign. The propensity to move abroad for a period of at 

least one month increases when scientists are satisfied with the availability of funding for 

such activities and when they realise that research groups or institutions abroad are 

relatively more important than in the home country.  

Concerning the other explanatory variables of the decision to go abroad, our findings 

indicate that neither the career age nor the gender have an effect. The organisational 

context however, matters.. University scientists appear to be much more likely to go abroad 

compared to scientists at Fraunhofer or Helmholtz institutes. A reason for this is that many 

scientists at Fraunhofer and Helmholtz institutes are more likely to have permanent 

contracts, and they focus more on application-driven research, often in close collaboration 

with industry. Thus, they have lower pressure (or incentives) and less opportunities to 

become a visiting researcher abroad.  

Moreover, our results reveal a link between going abroad and being highly productive in 

terms of publication output. Scientists with more than 6 publications achieved during a 

three-year period prior to the survey (the reference group) are significantly more likely to go 

abroad than those with lower publication output. There are indications for a virtuous circle: 

highly credentialed scientists are more attractive as collaboration partners and thus more 

likely to be invited to or engaged in international research activities. At the same time, these 

excellence-driven research visits increase the likelihood for subsequent high level 

publications with international colleagues. In contrast, and in line with our observations of 

non-university staff, application-oriented research productivity (indicated in our survey by 

having previously applied for a patent) is not linked to mobility.  
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Regarding the scientific disciplines, scientists in environmental sciences, engineering 

sciences and medicine or psychology have a lower propensity to move abroad than the 

reference group which are scientists in physics, mathematics and computer science. 

Table 4: Probit models with selection – determinants of the decision to go abroad (first stage) and 

to engage in KTT to firms (second stage) (Chapter 5) 

 

Decision to 

go abroad 

KTT to firms 

in Germany 

Decision to 

go abroad 

KTT to firms 

in host 

country 

Medium-term stay (4 to 12 months) 

(d)  -0.306  -0.207 

  (0.247)  (0.197) 

Long-term stay (>12 months) (d)  0.620***  0.497** 

  (0.228)  (0.214) 

Stay of indeterminate length (d)  0.214  0.542** 

  (0.254)  (0.234) 

International orientation (ratio)  0.547*  0.156 

  (0.325)  (0.235) 

Grant received (d)  0.081  -0.09 

  (0.185)  (0.131) 

Host country in Western Europe (d)  -0.202  -0.434** 

  (0.235)  (0.212) 

Host country in North America (d)  -0.298  -0.403** 

  (0.220)  (0.186) 
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Decision to 

go abroad 

KTT to firms 

in Germany 

Decision to 

go abroad 

KTT to firms 

in host 

country 

Career age (years) -0.004 -0.027 -0.005 0.031 

 (0.017) (0.033) (0.017) (0.026) 

Career age (years, squared) 0.000 0.001 0.000 -0.001 

 (0.000) (0.001) (0.000) (0.001) 

Gender (d, 1=female) -0.024 0.016 -0.003 -0.01 

 (0.127) (0.227) (0.126) (0.174) 

Employed at university (d) 0.512*** 0.034 0.470*** -0.344** 

 (0.120) (0.274) (0.119) (0.163) 

Employed at Fraunhofer institute 

(d) -0.582*** 1.050*** -0.650*** 0.917*** 

 (0.206) (0.356) (0.207) (0.298) 

Employed at Max Planck institute 

(d) -0.121 -0.312 -0.178 -0.035 

 (0.158) (0.295) (0.160) (0.224) 

Employed at Helmholtz institute (d) -0.440*** 0.059 -0.461*** 0.295 

 (0.134) (0.286) (0.133) (0.202) 

Patent application (d) -0.057 0.587*** -0.071 0.310** 

 (0.103) (0.164) (0.103) (0.144) 

No. of publications in last 3 years 0-
-0.639*** 0.332 -0.661*** 0.437** 
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Decision to 

go abroad 

KTT to firms 

in Germany 

Decision to 

go abroad 

KTT to firms 

in host 

country 

3 (d) 

 (0.112) (0.294) (0.112) (0.198) 

No. of publications in last 3 years 4-

6 (d) -0.257** 0.148 -0.257** 0.168 

 (0.112) (0.197) (0.112) (0.149) 

Environmental sciences (d) -0.361** -0.218 -0.389*** 0.168 

 (0.144) (0.281) (0.144) (0.203) 

Biology, chemistry, pharmacy (d) -0.190 -0.263 -0.216* 0.025 

 (0.118) (0.217) (0.119) (0.166) 

Engineering sciences (d) -0.781*** 0.716** -0.767*** 0.796*** 

 (0.158) (0.353) (0.157) (0.220) 

Medicine, psychology (d) -0.768*** 0.307 -0.779*** 0.374 

 (0.145) (0.336) (0.145) (0.252) 

Availability of funding (d) 0.203*  0.176*  

 (0.109)  (0.102)  

Relative importance of scientists 

abroad (d) 0.259***  0.265***  

 (0.100)  (0.090)  

Constant 0.384* -1.260** 0.440** -0.646 
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Decision to 

go abroad 

KTT to firms 

in Germany 

Decision to 

go abroad 

KTT to firms 

in host 

country 

 (0.223) (0.610) (0.220) (0.446) 

Rho -0.254  -0.804*  

 (0.541)  (0.204)  

N (uncensored observations) 958 (514)  953 (509)  

Wald Chi2 67.186  88.099  

P-value 0.000  0.000  

(d): dummy variable; standard errors in parentheses. 

*,**,*** indicate statistical significance at the 10%, 5% and 1% level 

Short-term stays (1 to 3 months) and physics, mathematics, computer sciences serve as 

reference groups. 

 

In the second stage, which explains the determinants of KTT activities, we find differentiated 

results for KTT to firms in the home and the host country. First of all, long-term visits beyond 

12 months increase the likelihood that scientists engage in KTT activities to firms in general, 

both in the home and the host country, in comparison to short-term visits, our reference 

category. In contrast to this, medium-term stays do not show a significant effect. With 

respect to stays of indeterminate length, our results indicate a positive effect only for KTT 

activities to firms in the host country. By and large, these findings provide support for 

hypothesis 1a and hypothesis 1b. Apparently, scientists need to be embedded into the host 

country’s research environment for a year or more to fully realise the benefits from higher 

social capital and to generate the opportunities that result in a transfer of knowledge and 

technology. What is more striking, however, is that this not only holds true for the transfer 

to firms in the host country but also relates back to firms in the home country. A longer visit 
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abroad is therefore beneficial to the innovation system of the scientist’s home country and 

not detrimental as the discourse on brain drain might suggest. There is an additional benefit 

for the host country if the scientist’s stay is indeterminate in length but this does not imply 

that there is a negative effect on KTT activities to firms in the home country. Hence, longer 

research visits apparently lead to the creation of additional scientific and technical human 

capital that facilitates collaboration with firms both in the host and the home country. 

This finding is further supported when we look at the general international orientation of the 

scientists (defined as the number of visits abroad divided by the scientist’s career age). Here 

we find a positive and significant effect for KTT to firms in Germany, while there is no 

significant effect for a transfer to firms in the host country. This finding supports hypothesis 

2a but rejects hypothesis 2b. Higher international orientation apparently leads to an 

increased attractiveness of the scientist for firms back in the home country (reputation, 

relevance), and it can be interpreted as an instrument for the creation of an international 

network that facilitates KTT opportunities. In short, frequent international mobility is 

conducive to KTT only in the home country. In contrast, for KTT to firms abroad it is not 

frequent international mobility but only the duration of the visits abroad which makes a 

difference. This confirms the need for embedding and building up trust as a precondition for 

KTT abroad. 

We find no effect of the scientist’s host country in the decision for KTT to firms in the home 

country. However, our results show strong negative effects in the decision for KTT to firms in 

the host country if the host country was in Western Europe or North America compared to 

the rest of the world. It seems that there is a split between the knowledge and excellence 

driven mobility to the U.S. and some advanced European countries that implies less 

proximity to application and industry on the one hand and more pull from other countries 

with a greater need for input to industrial R&D from outside the country on the other hand. 

For those countries and the firms within them, mobility of scientists is one means to increase 

knowledge inflow into the country.  

With respect to the other explanatory variables for the decision to engage in KTT, we find 

that grants supporting the international research activity do not have an effect, nor do the 
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career age or gender play a role. Being employed at a university and having a high 

publication activity actually decrease the likelihood of KTT to firms in the host country, while 

there is no significant effect for KTT to firms in Germany. In other words, highly credentialed 

scientists with high academic output are less likely to transfer knowledge and technology to 

foreign firms. For those scientists, mobility is not linked to transfer activities abroad. In 

contrast, patents have a strong positive influence on the KTT activity in both models. The 

decisive connection between patent applications of scientists and their KTT activity, as 

pointed out by Schmoch et al. (2000) and Owen-Smith and Powell (2001), can thus be 

confirmed. This finding also indicates that scientific and technical human capital is 

characterised by a build up of skills and knowledge amenable to industrial application. 

Correspondingly, scientists at Fraunhofer institutes, which are by mission application and 

transfer oriented, are more likely to transfer knowledge and technology as opposed to their 

colleagues at universities (Heinze and Kuhlmann 2008). Strikingly, the effect on KTT is 

highest for scientists at Fraunhofer institutes despite their low mobility. This combination of 

low mobility and high KTT activity contrasts sharply with university scientists who exhibit 

high mobility but low propensity for KTT and with scientists at Helmholtz institutes who 

exhibit both low mobility and a low propensity for KTT. Again, the organisational context 

appears to moderate the extent to which scientific and technical human capital can be 

developed. Differences also emerge with respect to the scientific disciplines. We find that 

engineers are much more likely to transfer knowledge and technology than scientists from 

any other field to firms in the home and host country. In fact, there is a strong tradition of 

industry-science collaboration in engineering sciences in Germany (Grimpe and Fier 2010). 

Finally, Fehler! Verweisquelle konnte nicht gefunden werden. shows the results from the 

bivariate probit model for the relationship between KTT activities to firms in Germany and, 

at the same time, to firms in the host country, i.e. between our two dependent variables. In 

this model we can only use the data on scientists who actually reported international 

experience, which explains the smaller sample size. It turns out that the rho correlation 

coefficient – conditional on the vector of covariates X – is highly significant with a value of 

0.858. Apparently, there is no trade-off between both transfer directions, but rather a 

mutually reinforcing, i.e. complementary, relationship. Scientists who transfer technology to 
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firms in Germany do so also to firms in the host country. Transfer effects are thus distributed 

broadly and there is no clear home or host country advantage. Consequently, hypothesis 3 

receives full support. As a caveat, our data do not allow us to investigate scientist behaviour 

over time, i.e. whether scientists started engaging in KTT activities in the host country and 

continued in the home country. 
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Table 5: Bivariate probit model – determinants of the decision to engage in KTT to firms (Chapter 5) 

 KTT to firms in Germany 

KTT to firms in host 

country 

Medium-term stay (4 to 12 months) 

(d) -0.232 -0.245 

 (0.258) (0.270) 

Long-term stay (>12 months) (d) 0.692*** 0.725*** 

 (0.228) (0.220) 

Stay of indeterminate length (d) 0.347 0.674*** 

 (0.266) (0.255) 

International orientation (ratio) 0.690* 0.162 

 (0.355) (0.343) 

Grant received (d) 0.039 -0.117 

 (0.195) (0.184) 

Host country in Western Europe (d) -0.073 -0.594** 

 (0.252) (0.235) 

Host country in North America (d) -0.124 -0.578*** 

 (0.235) (0.216) 

Career age (years) -0.003 0.055 

 (0.034) (0.034) 

Career age (years, squared) 0.001 -0.001 

 (0.001) (0.001) 
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Gender (d, 1=female) 0.032 -0.071 

 (0.241) (0.238) 

Employed at university (d) 0.121 -0.069 

 (0.209) (0.198) 

Employed at Fraunhofer institute (d) 1.149*** 0.895** 

 (0.372) (0.353) 

Employed at Max Planck institute (d) -0.309 -0.081 

 (0.311) (0.278) 

Employed at Helmholtz institute (d) 0.038 0.033 

 (0.252) (0.243) 

Patent application (d) 0.537*** 0.403** 

 (0.170) (0.167) 

No. of publications in last 3 years 0-3 

(d) 0.175 0.094 

 (0.208) (0.204) 

No. of publications in last 3 years 4-6 

(d) 0.081 0.053 

 (0.189) (0.185) 

Environmental sciences (d) -0.195 0.031 

 (0.254) (0.239) 

Biology, chemistry, pharmacy (d) -0.366* -0.098 
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 (0.206) (0.191) 

Engineering sciences (d) 0.694*** 0.477* 

 (0.269) (0.273) 

Medicine, psychology (d) 0.223 -0.236 

 (0.251) (0.277) 

Constant -1.824*** -1.386*** 

 (0.542) (0.513) 

rho 0.858***  

N 488  

Wald Chi2 688.49  

P-value 0.000  

(d): dummy variable; standard errors in parentheses. 

*,**,*** indicate statistical significance at the 10%, 5% and 1% level 

Short-term stays (1 to 3 months) and physics, mathematics, computer sciences serve as 

reference groups. 

6.6 Conclusion 

Using a survey of more than 950 German scientists from universities and public research 

centres, this paper for the first time links the determinants and patterns of international 

mobility of scientists with their engagement in KTT activities. The findings confirm most of 

our hypotheses, qualify others, and bring to the fore a set of results that need deeper and 

more comparative research.  

A first set of findings concerns the mobility patterns and conditions for mobility in general as 

a pre-condition for international KTT. More than 50 percent of the scientists have been 
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abroad for at least a month during their career. We have found that mobile researchers are 

more productive in terms of publications. In this respect, mobility can be characterised as a 

consequence of as well as a catalyst for excellence. Moreover, in order to be mobile, 80 

percent of the scientists indicated that their focal research visit had been funded at least 

partially through grants. At the same time, only one fifth of all scientists are satisfied with 

the support they can get for international mobility. The results further show that the 

existence of strong and important research groups abroad is an important pull factor for 

mobility. Given that excellence and relevance in scientific knowledge production are 

spreading across the globe with the emergence of new scientific strongholds, the 

opportunities and needs for international mobility can be assumed to increase accordingly.  

Our analysis has produced a set of new insights as to the relationship between mobility and 

KTT. First of all, scientists who transfer knowledge and technology do so, generally speaking, 

both at home and abroad. In other words, there is a complementary relationship between 

both activities (confirming H3). This is important as knowledge accumulates continuously 

through KTT and subsequent KTT encompasses the knowledge of earlier transfers. 

Transferring knowledge abroad while being mobile thus does not diminish the activities and 

effects of subsequent transfers but rather increases them.  

Second, the duration of research visits has a positive impact on the propensity to transfer 

knowledge and technology in the host country and in the home country (confirming H1a and 

H1b). While the simple transfer of artefacts or licenses can be achieved through short 

contacts, transferring complex and maybe even tacit technological knowledge requires more 

intensive contact over time. Third, and potentially more important, the more frequently 

scientists are internationally mobile during their career, the more they engage in KTT 

activities to firms in their home country (confirming H2a), while frequency does not have 

implications for the likelihood to engage in KTT in the host country (rejecting H2b). Hence, it 

apparently pays off for a country if its scientists are frequently abroad. Generally speaking, 

mobility can thus be characterised as a driver for the scientific and technical human capital 

that facilitates collaboration with industry. Fourth, the direction of mobility makes a 

difference for KTT abroad but not at home. Mobile German scientists are more inclined to 



94 

 

engage in KTT to firms outside North America and Western Europe, while for KTT back home 

it is not important in which country the scientists had been.  

Finally, the institutional context matters considerably in that it appears to interact with the 

creation of scientific and technical human capital. University scientists are much more likely 

to be mobile but less inclined to transfer knowledge and technology internationally than 

scientists from public research institutes. In this regard, we find that scientists at Fraunhofer 

institutes typically engage in KTT despite their low mobility which is in sharp contrast to 

university scientists who have a higher likelihood to go abroad but are less inclined to 

engage in KTT. Scientists at Helmholtz institutes also contrast sharply with Fraunhofer and 

university scientists as they exhibit a low likelihood both to go abroad and to engage in KTT. 

Our findings contribute to the literature in several ways. We provide for the first time 

empirical evidence for the effects that international mobility has on KTT activities of 

academics. In this respect, we extend existing literature that has so far predominantly 

focused on permanent migration (e.g., Regets, 2007). Moreover, based on empirical 

evidence our research provides insights into the factors that, on the one hand, drive 

scientists to go abroad and, on the other hand, determine whether and where scientists 

engage in KTT. Form a theoretical perspective, we extend the application of the scientific 

and technical human capital approach by identifying mobility as a means to increase both 

the scientist’s human and social capital that result from being embedded in an international 

network.  

While these findings provide interesting insights, it is important to acknowledge the 

limitations of our research. Mobility is a multi-faceted construct while our approach only 

considers the most recent research visit that a scientist reports. In this regard, we do not 

account for the individual “history” of a scientist’s research visits, for example repeat visits 

to the same host country institution. Moreover, we know little about the specific 

circumstances of the focal visit like the scientist’s motivation and objectives. Our findings are 

also limited to the extent that KTT activities are measured using a dummy variable that does 

not account for the different modes or types of knowledge to be transferred. Consequently, 

these limitations have to be considered when it comes to the implications for STI policy. 
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As for policy and framework conditions, the main – and simplest – message is that 

international mobility needs to be enabled and actively supported as it is positively linked to 

excellence and KTT; it is beneficial in terms of enhancing scientific and technical human 

capital of scientists and their propensity to transfer knowledge. From the perspective of the 

home country, support mechanisms for outward mobility particularly pay off if they allow 

scientists to gain experience abroad, to broaden networks and to frequently establish ties 

internationally. This would call for enabling frequent research visits with the opportunity to 

return to the home country, for example through secondments that allow scientists to stay 

linked to their home organisation. Moreover, the findings indicate that the potential threats 

from a brain drain are limited, even if the scientists opt for a long-term research activity 

abroad. In this respect, supporting scientists at public non-university research institutes, who 

tend to be less mobile than university scientists, would be most effective. This is obviously 

most beneficial in systems with a large non-university public research sector. In Germany, 

for example, there has long been a discussion as to how sensible it is to support mobility of 

such non-university scientists that are often more application and industry oriented (Edler 

2007). The findings in this study provide evidence for the benefits of outward mobility also 

for this particular group of scientists. 

In order to benefit from inward mobility, it is most beneficial for the host country if scientists 

stay for a considerable time period. Embedding into the host country system takes time. KTT 

within a foreign innovation system typically does not take place on a short-term basis but 

requires the build-up of trust, networks and mutual recognition. From the perspective of the 

host countries of foreign scientists, this has important implications. Attracting foreign 

scientists should be linked to specific collaborative projects, as this increases the likelihood 

that firms in the host country benefit from KTT. In other words, brain gain in public science 

should be turned into brain embedding through direct and close collaboration if the local 

industry is intended to benefit. Further, policies should encourage “shuttle” mobility. Rather 

than supporting a one-off part time attraction, they should enable (repeated) circulation as 

this tends to increase the likelihood of mutual transfer (Ackers and Gill 2008). In fact, in 
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Europe STI policy at all levels has already been quite eager to provide framework conditions 

that allow public scientists to engage in international research activities and in KTT.21 The 

motivation to promote KTT and scientist mobility is similar: while the individual and social 

benefit of both is high, transaction costs impede a full realisation of the benefits. A re-

examination of the effectiveness of these policy instruments and their interplay in the light 

of our findings seems therefore warranted. 

Our findings indicate that international mobility is part of an opening process of public 

science that benefits the home economy in many ways and thus does not pose a threat but 

an opportunity. Mobility can be supported for the benefit of the scientist, her or his scientific 

and organisational environment and the national innovation system. However, to develop 

more appropriate framework conditions and support mechanism, future research should 

particularly try to develop a more nuanced understanding of both the scientists’ mobility 

patterns and the different ways knowledge and technology transfer could occur. Moreover, 

we restricted our understanding of mobility to intra-sectoral mobility and neglected inter-

sectoral mobility. The latter refers to mobility from public research to industry-funded 

research and has been shown to be an effective mechanism to transfer both codified and 

tacit knowledge (OECD 2002). It is obvious that these two types of mobility could be better 

linked, e.g. by analysing the scale and scope of cross-border mobility from the public 

research system into firms. If we want to understand the contribution of public research to 

the globalisation of KTT activities, this gap needs to be closed. 

                                                      

 

21
  European science and technology policy is characterised by an abundance of measures and initiatives to 

promote KTT, cooperation and mobility. Two European sources may suffice to illustrate this claim: first, the 

European Trendchart Database (www.proinno-europe.eu) that gives an overview of all science and 

technology policy initiatives within the EU countries; second, the ERAWATCH database that collects and 

analyses science and technology policy across Europe (http://cordis.europa.eu/erawatch/). 
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7 Against the one-way-street: Analyzing knowledge transfer from 

industry to science 

7.1 Introduction 

The expansion of higher education has led not only to the fact that many people nowadays 

have acquired substantial knowledge about recent scientific discoveries and research topics 

but has also resulted in a continuously increasing number of jobs with scientific orientation 

and methods (Gibbons 1994). In science based industries like the biotechnology industry, 

Science and Knowledge have even become the most important production inputs. However, 

knowledge differs from scarce production factors as it can be “sticky” (von Hippel 1994) 

which means that knowledge is sometimes so specialized that it can not be easily transferred 

from one actor to another. In order to capture these preconditions different economic 

concepts have been introduced within the last two decades which seem to be more suitable 

for explaining technological changes in science based industries when compared to 

neoclassical concepts of scarce resourse allocation. Almost all new economic concepts place 

knowledge in the middle of their analysis and describe innovative processes as a result of 

interactions between organizations that permanently produce and absorb knowledge. The 

concept of innovation systems focuses on the flow of technology between various actors like 

firms, universities and the government and analyses these technology flows on a regional, 

national or supranational level (Lundvall 1992, Nelson 1993). Etzkowitz and Leydesdorff 

(1997) describe a triple helix of university-industry-government relations – in contrast to the 

national innovation systems approach - which is a reorganizational component across 

institutions and national boundaries. One of the most recent concepts in the theory of firm 

puts its main focus on the participation in external networks of organization. The idea of 

“open innovation” was first introduced by Henry Chesbrough (2003), who conducted a 

number of company based case studies and came to the conclusion that organizations (i.e. 

firms) have to open themselves up to external networks in order to gain new knowledge. 
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This external knowledge can then be combined with already existing firm knowledge and 

capacities to successfully contest innovative activities22. 

On the basis of the introduced economic concepts it becomes obvious that knowledge 

should not only flow from universities or other public research institutions to firms but also 

vice versa. However the empirical literature on technology transfer in science based 

industries has mostly dealt with the question, how firms can profit from research results of 

scientific institutions. Narin et al. (1997) investigated the citation linkages between U.S. 

patents and scientific papers and showed that over 70% of the industrial patents cite papers 

originating in public science. McMillan et al. (2000) confirmed these results again on the 

basis of citation patterns and revealed that especially the carrying out of basic research by 

public research institutions is critical for the successful development of the biotechnology 

industry in the US. Firms in the biotechnological industry are not solely transferring 

knowledge from research institutions but are actively conducting their own research. 

Gittelman and Kogut (2003) have analyzed a sample of 116 US biotech firms in the time 

period between 1988 and 1995 and showed that the total publication rate of the firms 

almost doubled in that time span.  

Given the fact that biotechnology firms themselves are valuable knowledge producers the 

question has to be asked whether this generated knowledge is also of value for scientific 

research institutions. With our paper we aim to contribute empirical evidence to this 

research gap in the literature by analyzing differences in the factors that influence the 

occurrence of knowledge flows within industry as well as from industry to science in the 

biotechnology sector.  

The knowledge flows are thereby modeled via a backward patent citation analysis on the 

basis of EPO patent data. As a result we are able to identify cited and citing patent pairs. We 

then use a quasi-experimental design which has been first introduced by Jaffe et al. (1993). 

This quasi-experimental framework compares the identified citing and cited patents with a 

                                                      

 

22
 A brief overview of economic concepts that put knowledge central to their perspective can be found in Dogson 

et al. (2006), pp. 334-335. 
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matched sample of control patents. On the basis of this combined sample we estimate a 

weighted bivariate probit model on the citation probability of science and industry.  

The structure of the paper is as follows. In the second section we provide a short overview 

on the characteristics of the biotech industry and of the importance of patent protection in 

this industry. The third section discusses whether there is a rationale for technology transfer 

from industry to science. The fourth section reviews the empirical literature on patent based 

studies of knowledge flows. The subsequent three sections contain the empirical part of the 

paper. First the data and methodology are presented (fifth section) and then the variables 

and descriptive statistics are shown (sixth section). The estimation strategy and the results 

are presented in the seventh section. Section eight closes with a conclusion. 

7.2 Characteristics of the biotech industry and patent protection 

Like other science based industries the biotechnology industry differs from existing non-

science based industries in its pattern and dynamics of technological change. Pavitt (1984) 

analyses sectoral patterns of technical change by classifying firms according to three 

dimensions. According to this taxonomy supplier dominated firms are characterized by weak 

R&D and engineering capabilities and their main technology lies in cutting costs through 

embodied technical change. Thus supplier dominated firms apply rarely for patents. 

Production intensive firms instead exploit scale economies of production and therefore aim 

at realizing performance increasing product and process innovations. Product innovations 

are often protected by patents while process innovations are kept secret. In contrast to the 

first two groups science based firms depend on the progress of the relevant sciences and 

their main technology stems from R&D activities of the firms in the sector. Innovations are 

protected through patents, lead-time advantage and secrecy. However science based 

industries are not a homogeneous group but include mature industries as well as young 

industries, and also the R&D intensity varies widely within the science based industries.  

Within the science based industries the biotech industry is considered to be a rather young 

industry which is characterized by an extraordinary high R&D intensity (Niosi 2000). The 

invention of the recombinant DNA technique by Cohen, Boyer and Berg at beginning of the 

1970’s is often considered to be the starting point for the so called modern biotechnology. 
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Zucker and Darby (1996) were among the first who analyzed the success factors for the 

formation of the biotechnology industry. In their work they emphasized the role of individual 

star scientists as a knowledge source for biotech firms. Today the biotechnology industry in 

developed countries is characterized by a considerable high fraction of small and medium 

sized firms which are highly R&D intensive and attract a large amount of money from public 

subsidiary programs and venture capital agencies (Fuchs 2003). Furthermore biotechnology 

firms are increasingly engaged in scientific publications. Gittelman and Kogut (2003) have 

analyzed a sample of 116 US biotech firms in the time period between 1988 and 1995. They 

show that the total publication rate of the firms almost doubled in this period. 

With the rise of the modern biotechnological industry and the growing awareness of the 

broad potentials of this industry the question of how to protect intellectual property of 

biotechnological inventions moves in the centre of interest. At the beginning of the 1980s 

the existing patent protection laws in the US and other countries were not designed for the 

protection of biotechnological inventions. With a broadened definition of patentable subject 

matters due to a change of the patent protection law in the US in 1992 and subsequent 

changes of patent protection laws in other countries it becomes possible to protect 

biological active substances including single molecules and proteins (Ko 1992). With these 

institutional modifications, today patents create a basis for trading inventions. Consequently 

patents are of major importance in biotechnology not only in the protection of marketable 

inventions and thus as a positive signal for venture capital firms but also for discoveries that 

are not marketable at the first glance but feature great value for future research (Mazzoleni 

and Nelson 1998). 

7.3 Knowledge interactions in the biotechnology industry – is there a rationale for 

knowledge transfer from industry to science? 

Today, knowledge is considered to be an indispensable factor for economic growth.  Arrow 

was the first who stressed the importance of knowledge for economic growth. In his 

learning-by-doing model, Arrow assumes that new knowledge is created depending of the 

level of new investments. In turn the technologies accessible for firms depend on the 

economy wide knowledge stock. This Arrowian view suggests that technological knowledge 
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has the non-excludable and non-rival character of a public good and can be transferred and 

appropriated with rather low efforts and costs (Arrow 1962b, Arrow 1969).  

This rather traditional approach to the nature of technological knowledge has been 

challenged by the Neo-Schumpeterian approach in recent years. In the view of Neo-

Schumpeterians technological knowledge is considered to be a quasi-public good, which 

means that the character of technological knowledge bears higher levels of appropriability 

and excludability compared to the Arrowian view (Rosenberg 1994, Antonelli 1999). 

Moreover the production of technological knowledge is considered to be path-dependent 

and cumulative and can have a local character. This Neo-Schumpeterian view of 

technological knowledge implies that “knowledge is the result of complex processes of 

creation of new information building upon the mix of competences acquired by means of 

learning processes, the socialisation of experience, the recombination of available 

information and formal R&D activities” (Antonelli 1999, p. 245). The innovation system 

approach confirms this view and emphasizes the importance of interactions between 

industry and science for a successful innovation process due to its increasing complexity 

(Lundvall 1992, Nelson 1993, Nelson and Rosenberg 1993). Moreover, a number of studies 

have examined the relationship between the technological complexity (measured by the 

R&D intensity) of industries and the number of R&D alliances and they have found a positive 

correlation between these two factors (e.g. Freeman 1991, Hagedoorn 1995). 

Related to their science based nature, problems of appropriability and excludability of 

technological knowledge are even more severe in the modern biotechnological industry 

(Arora and Gambardella 1990). In order to succeed in the biotechnology industry firms must 

permanently keep close contact to the moving technological frontier and must create 

valuable technological knowledge on their own (Gambardella 1995, Niosi 2003). Thus, the 

ability of firms to draw knowledge from scientific institutions or other firms is regarded to be 

an important factor for their success (Kenney 1986, Prevezer 2001, Niosi 2003, Powell et al. 

1996). Several studies have shown that geographical closeness between firms and research 

institutions in biotechnology can facilitate this knowledge transfer from science to industry 

(Zucker et al. 1994, Audretsch and Stephan 1996, Zucker and Darby 1998, Powell et al. 
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1999). Also the role of individual scientists for the prosperity of firms in biotechnology has 

been highlighted (Zucker and Darby 1996).  

Besides the critical role of knowledge flows from science to industry also knowledge 

interactions between firms in biotechnology have been recognized to be crucial for the 

industrial development. Pyka and Saviotti (2005) analyze research networks in the 

biotechnology industry and conclude that a coexistence of large diversified firms and small 

dedicated biotech firms is crucial for industrial development. For small firms a co-operation 

with large pharmaceutical or chemical firms can result in the gain of more market relevant 

knowledge in the form of the use of advanced production capabilities, better market access 

due to a better distribution infrastructure and experience in conducting clinical trials (Pisano 

1990, Baum et al. 2000). In turn large firms in the biotech sector seek to co-operate with 

small/medium sized research intensive firms in order to acquire marketable knowledge and 

to spread risks (Arora and Gambardella 1990).  

Whilst these two directions of knowledge flows namely from science to industry and within 

industry have been fairly well analyzed, there is a lack of evidence regarding knowledge 

flows from industry to science. The main reason for the negligence of research on 

knowledge transfer from industry to science is the threat of a negative influence of 

technology transfer upon the norms of open science (Merton 1973). In traditional sectors 

like manufacturing, universities and public research institutes are still considered to be the 

most important producers of valuable scientific research (Gibbons et al. 1994). 

In the biotechnology industry however, things look different. Due to the mentioned science 

base of the industry, firms themselves next to public research organizations have 

accumulated a large stock of technological knowledge. This creation of technological 

knowledge within firms has been accelerated by venture capital firms with the aim of 

realizing returns due to groundbreaking inventions as well as public subsidy programs with 

the objective of not falling behind the industrial development compared to other countries. 

As a result, there is a considerable amount of valuable technological knowledge in the 

biotechnology industry that has not been transferred by research institutions in the first 

place but has been created within the firms. Pisano (1990) conducted an empirical analysis 
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among US firms and found that firms in biotechnology rely more often only on technological 

knowledge which has been created in-house especially in those areas where the firms have 

accumulated in-house R&D. 

Thus the question arises whether public research organizations in the field of biotechnology 

are willing and able to participate in the knowledge that has been produced by firms. The 

existing literature on this topic is rare and there are no specific studies for the biotechnology 

industry. Meyer-Krahmer and Schmoch (1998) have conducted a survey among professors 

from universities or public research institutions in science based fields and asked them to 

rate the importance of different interaction types with industry. As a result the interviewed 

professors rated those interaction types with industry higher where a bidirectional exchange 

of knowledge with industry occurs. Link et al. (2007) have examined knowledge transfer 

between industry and science on the basis of a survey among individual scientists. Their 

results suggest that university researchers rank collaboration with industry as very important 

and state that they benefit from the transferred knowledge and the use of improved 

equipment. Kaufman and Tödtling (2001) emphasize the importance of a bidirectional 

knowledge exchange between industry and science in innovation co-operations. It becomes 

obvious that knowledge transfer from industry to science has not been completely neglected 

in previous studies but it is mostly mentioned as a by-product from science to industry 

knowledge flows. This study aims at contributing more empirical evidence to the topic of 

industry to science knowledge flows in the biotechnology industry.  

7.4 Review on patent based studies of knowledge flows 

Patent data have been extensively used to shed light on the innovation process. Patent 

documents provide information about the technology of an invention as well as detailed 

information about the inventor and assignee of the invention. For example patent counts 

have been frequently used as an indicator of innovation activity. However, patent data 

should be handled with some caution. Griliches has surveyed in his seminal work the pitfalls 

that may arise when using patent statistics as innovation indicators but concludes that 

“Nothing else even comes close in the quantity of available data, accessibility, and the 

potential industrial, organizational, and technological detail” (Griliches 1990, p. 1702).  
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The idea to use patent data as an indicator for knowledge flows can be traced back to 

Schmookler (1966) and Scherer (1982). Schmookler among others brought up the discussion, 

that the economic benefits of firms due to R&D could not be solely reduced to their own 

R&D activities, but also to the embodiment of technological knowledge through 

intermediate products produced by other sectors. Scherer (1982) took up Schmooklers idea 

and developed a complex “interindustry technology flows” matrix which traces back the 

knowledge of R&D performing industries to industries that purchased the products of the 

R&D performing industries. In subsequent work Scherer relied on a data set that contains 

over 15.000 US patents that were individually examined to determine the original industry of 

the patent and the industries for which the use of the patent was anticipated and linked 

them to the R&D outlay of corporations. The linked R&D outlays were then distributed 

through a “technology flows” matrix. The estimation results indeed revealed the critical role 

of embodied technological knowledge for firms’ productivity growth (Scherer 1982, Griliches 

and Lichtenberg 1984). 

More recent work that use patent citations to trace knowledge flows mostly deal with the 

question whether knowledge flows are technologically bounded, geographically 

concentrated and what industry specific differences exist (e.g. Jaffe et al. 1993, Jaffe and 

Trajtenberg 1996, Porter 2000a, Maurseth and Verspagen 2002). 

Stolpe (2002) modeled the citation probability among patents in the liquid crystal display 

technology and revealed that technological closeness has a significant positive influence on 

the citation probability. However Stolpe (2002) did not make a distinction between the 

institutional types of the assignees of the citing patents. Hu and Jaffe (2003) have worked 

out the positive effect of technological closeness for the citation probability in a cross 

country comparison. Besides the technological closeness also the technological generality of 

the cited patent may have an influence on the citation probability. Trajtenberg et al. (1992) 

have shown that university research outcomes are more basic and harder to appropriate 

than research outcomes of industry. 

The hypothesis that knowledge flows might be geographically bounded has been heavily 

analyzed and discussed within the last years. Firms that have the same cultural background 
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are more likely to exchange knowledge than firms with different cultural backgrounds. 

Mowery et al. (1996) have shown that more knowledge exchange takes place in alliances 

with partners in the same country. Empirical evidence is less clear regarding geographical 

closeness. Jaffe et al. (1993) were the first who found direct evidence that knowledge 

spillovers as measured by patent citations are indeed locally concentrated. Although the 

quasi-experimental design that was used by Jaffe et al. (1993) was challenged afterwards 

(Thompson and Fox-Kean 2005, Thompson 2006), the empirical evidence could not be 

disproved. Although doubts remain from the theoretical perspective (Breschi and Lissoni 

2001) it is supposed that geographical closeness has a positive impact on the citation 

probability. 

A few recent studies have analyzed knowledge flows in the biotechnological sector on the 

basis of patent data. McMillan et al. (2000) have worked out the importance of public 

science for the development of the US biotechnology industry on the basis of patent data. 

The authors conclude that especially small biotech firms depend on the basic knowledge 

that is created by public research organizations. Gittelman (2006) has examined the 

differences in the public-private knowledge flows between the US and France on the basis of 

patent citations. In line Zucker and Darby (1998) emphasize the importance of individual 

scientific careers for interactions between firms and public research organizations. Moreover 

they point out that technological performance, as measured by the number of granted 

patents, depends on a heterogeneous setting of organizations and interactions. 

7.5 Data and methodology 

Patent citation analysis and data 

The study is based on patent application data from the European Patent office (EPO)23 which 

cover the years between 1978 and 2003. The patent data include information about the 

name(s) and country(ies) of origin of the inventor(s) as well as the assignee(s), the declared 

                                                      

 

23
 For a comprehensive overview on the application and examination process at the EPO see Michel and Bettels 

(2001).  
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IPC classes as well as application and grant dates. Moreover a patent document contains 

references to other patents, so called citations. In EPO patent data, these citations have 

mainly the legal function to specify the knowledge that justifies a claim for novelty and are 

mostly added by the patent examiners instead of the inventors. Alcácar and Gittelman 

(2006) find that examiners played a significant role in identifying prior art, adding 63% of 

citations on the average patent, and all citations on 40% of patents granted. This might be 

due to two reasons. Either the inventors are not aware of the patents that have been added 

by the examiners (Criscuolo and Verspagen 2008) or the inventors have strategically omitted 

citations (Alcácar and Gittelman 2006). Nevertheless, since we focus on a rather small 

technological field the actors should not have problems identifying prior art (Maurseth and 

Verspagen 2002). Regarding strategic omission of prior art the patent examiners and the 

application process of the EPO plays an important role. In the patent application process, the 

applicant receives a detailed search report, conducted by the patent examiners, which 

discloses essential prior art on which the examiner would mainly base his grant decision. 

After obtaining the search report, the applicant must decide whether he wants to pursue the 

application process or not. Thus the risk that prior art remains undetected is minimized by 

the work of the patent examiner. 

In a first step we identify on the basis of the OECD compendium of patent statistics (OECD 

2008) all relevant international patent classification (IPC) classes concerning biotechnology. 

Following this classification scheme all records where at least one of the relevant IPC classes 

was listed in the application are kept for further analysis. Subsequently all applicants in the 

data files are assigned by hand to the following categories: firms, universities, public 

research institutions, individuals, others. Our data cover 72427 patents that have been 

applied for in the mentioned time period. We use the application date of the patent 

application as the relevant time point for our analysis as it is common in most scientific 

works that deal with patent analysis. 

The aim of the study is to analyze the differences in the factors that influence the probability 

of knowledge transfer within industry and from industry to science in the biotechnology 

sector. In order to model these knowledge flows we conduct a backward patent citation 

analysis: for each patent in the sample all citations which have been made by timely 
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subsequent patents in the sample are identified. For the whole sample we identify 10184 

patents that have received a citation and we identified 24662 cited and citing patent pairs 

since one patent can receive multiple citations. In a next step all patent pairs where the cited 

patent and citing patent showed the same application name, so called self citations were 

excluded from the sample since they solely reflect in-house knowledge flows. 19753 patent 

pairs remain for further analysis. 

Restriction of the sample and truncation 

Since the analysis concentrates on a comparison of the knowledge flows from industry to 

science and within industry only those patent pairs were kept, where at least one firm was 

among the applicants of the cited patent and at least one firm and/or one research 

institution was among the applicants of the citing patent. We find 15100 patent pairs where 

the cited patent shows an industrial applicant and the citing patent shows an applicant from 

industry and/or science. However due to the fact that in many countries scientists had or still 

have the privilege to assign patents under their own name, the share of scientific applicants 

of the citing patents is likely to be underrepresented.  

The application of a patent citation approach necessitates considering one difficulty, 

because the patent that has been filed first in the sample has a much larger time frame to be 

cited compared to the patent that has been filed more recently in the sample. This problem 

of truncation has been heavily analyzed in empirical studies. Caballero and Jaffe (1993) and 

Jaffe and Trajtenberg (1999) estimated the shape of the citation lag distribution via a 

parametric function and Hall et al. (2001a) used non-linear functions to approximate the 

shape via estimation. Stolpe (2002) states in his work that in the ideal case citation studies 

should be based on patents that have been filed at exactly the same point in time so that the 

problem of temporal influences on the citation frequency can be neglected. However in the 

same breath he accounts for the fact that patent data are flow data and that they are thus 

only measurable over time. In his study he sets a time limit of three years for the selection of 

the patents that are later referred to via citation analysis. Almeida (1996) deals with the 

problem of truncation by including the citation lag in his latter estimation. Gittelman (2006) 

includes not only the citation lag but also the square of the citation lag in her regression and 
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moreover limits the time span where the cited patents are identified. Figure 1 shows the 

distribution of the citation lag by means of a Kernel density estimation. The cited patents 

receive most of their citations in the second and third year after their publication date. 10 

percent of the citations have been made more than 9 years after the EPO publication date of 

the cited patent. We drop all citations that show a citation gap of more than 9 years and 

keep 13796 patent pairs for further analysis. The distribution of the citation lag for these 

13796 patent pairs is also shown in Figure 1. The percentiles of the citation lag distribution 

for the unrestricted and restricted sample is shown in appendix table A4. By following the 

approach of Gittelman (2006) and including not only the citation lag but also the squared 

citation lag in the following estimation we consider that there are rather few patents with a 

very short or very long citation lag.  

Figure 1: Distribution of the citation lag (Chapter 6) 

Distribution of the citation lag for the whole 

sample (15100 observations) 

Distribution of the citation lag after 

excluding observations with a citation lag of 

more than 9 years (13796 observations) 

 

x-axis: density, y-axis: citation lag in years 

 

x-axis: density, y-axis: citation lag in years 

The exclusion of citations with a citation lag of more than 9 years however does not 

adequately adjust for the possible bias of our estimation results due to truncation at the 

right tail of our sample, since more recent application years of the cited patents still have a 

greater chance of being cited. 
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Since we have a long panel from 1978-2003 we are able to control for this possible 

truncation bias by comparing the estimation results for a number of different time spans 

from which we select the cited patents. Therefore we look at the distribution of the citation 

lag in our sample and run the estimations for the following time spans for which we select 

the cited patents: 1978-2002 (10% percentile), 1978-2000 (50% percentile), and 1978-1996 

(90% percentile).  

Construction of a control sample 

Because we want to analyze differences in the factors that influence the citation probability 

we need to include reference values to the sample of identified cited and citing patent pairs 

in order to maintain interpretable results. For this purpose we follow an experimental design 

which was first introduced by Jaffe et al. (1993) and later used by several other studies (e.g. 

Almeida and Kogut 1999, Stolpe 2002). Within this experimental framework, a non-cited 

patent that shows the same first three digit international patent classification (IPC) class and 

the same EPO application date as the cited patent is randomly searched for each citing 

patent within the original sample. However it is important to note that the fact that a patent 

is chosen to be a control patent for a specific citing patent does not mean that it can not 

have received citations in an earlier or later point of time. Due to the construction of the 

control sample our sample size doubles and we have a total of 27592 observations in our 

sample. 

Due to the construction of the control sample we are able to model an unconditional 

probability for the factors influencing the citation probability. The conditional probability for 

the influencing factors is given when an actual citation has occurred. Thus the hypothesis 

that can be tested is whether a statistically significant difference between the conditional 

and unconditional probabilities exists when examining the citation probability24. 

                                                      

 

24
 The two probabilities are related. Bayes rule states that P(Citation | Influencing 

factor)/P(Citation)=P(Influencing factor/Citation)/P(Influencing factor). 
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7.6 Variables and descriptive statistics 

The dependent variables in our estimation INDIND and INDSCI are binary variables indicating 

whether a patent that has been applied for by industry has received a citation by a patent 

that was applied for by either industry (INDIND) and/or scientific institution(s) (INDSCI).  

Building upon the previous discussion a set of independent variables is included in the 

estimation that is likely to have an influence on the citation probability.  

To begin with we include a variable to proxy the technological closeness of the patent pair. 

TECHCL is a dummy variable indicating whether the two patents in a patent pair show the 

same 6-digit IPC class. Since we look at industry research outcomes as possible appropriable 

targets we assume that their technological character might be less basic. Nevertheless things 

might turn out to be different for two reasons. On the one hand, we look at a science 

intensive industry where a large part of industrial actors are involved in basic research.  On 

the other hand, we only consider knowledge flows from industry to industry and industry to 

science. However, we assume that a high technological generality25 implies a more basic 

technological character of the invention of the cited patent. Therefore, we expect that it is 

positively related with the citation probability from industry to science. Furthermore, we 

assume that a more specific technological character of a technological invention is positively 

related with the citation probability within industry. While previous works that measured 

the technological specialization of patents on the basis of IPC-classes often used the 

Herfindahl-index, van Zeebroeck et al. (2006) have compared different technological 

concentration measures on the basis of EPO patents. They come to the result, that the Gini-

Coefficient26 in line with the C20-measure is the most reliable measures for technological 

concentration. Moreover they recommend at least a 4-digit aggregation level of the IPC-

classes used. Consequently, our study relies on the Gini-Coefficient for the identified 

                                                      

 

25
 Generality is also referred to as basicness. See i.e. Stolpe (2002). 

26
 The Gini Coefficient is a statistical measure for relative concentration. It relies on the concept of the Lorenz 

Curve. The Gini Coefficient takes on values between zero and one, whereas the value one corresponds to 

perfect inequality.  
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biotechnology related IPC classes of the citing patents aggregated to the 6-digit level as a 

measure for technological specialization. We specify  

generality =1- Gini coefficient 

as a proxy for the technological generality of the cited invention. In those cases where the 

Gini-Coefficient is calculated on the basis of only one IPC-class the measure for generality is 

replaced with zero. However, since the Gini-Coefficient reduces complex data to one 

parameter, there is the danger that valuable information from the used data is neglected. In 

this case, the Gini-Coefficient does not account for the number of different IPC classes of the 

citing patents, although this is obviously valuable information when approximating the 

technological generality of an invention. In order to account for this shortcoming we include 

an interaction term between the measure of technological generality and the total number 

of different IPC-classes of the citing patents (INTGINI) in the regression instead of the plain 

measure of technological generality.  

The variable CULCL indicates the cultural closeness of the patent pairs. CULCL is a dummy 

variable and measures whether the two patents in the patent pairs have the same assignee 

countries.  

Besides that we include a dummy variable reflecting whether the cited or cited control 

patent has been assigned by both, industry and science (COMMON_CITED). It is important to 

note that the variable COMMON_CITED is a rough indicator for joint research, since firms 

and research institutions can of course conduct joint research without being jointly listed as 

assignees in a particular patent application. However, a joint assignment of the common 

research might signal that the protected invention has a major value for both the scientific 

and the industrial progress. 

Additionally, we include variables that reflect the overall patenting activity in the 

biotechnology field of the assignee(s) of the cited or cited control patent (NOPATS_CITED) 

and the patenting activity of the applicant(s) of the citing patent (NOPATS_CITING). 

NOPATS_CITED and NOPATS_CITING are continuous variables and contain the cumulated 

number of patents that the assigning institution(s) have applied for up to the EPO date of 

the considered patent in the particular patent pair. It is expected that a high patenting 
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activity of the assignee(s) of the citing patent (NOPATS_CITING) is positively related to the 

citation probability, especially regarding scientific institutions as assignees. This assumption 

is owed to the work of Owen-Smith and Powell (2001) who revealed that scientific 

institutions which patent have a higher propensity to engage in technology transfer. More 

precisely they analyzed the propensity of scientific research institutions transferring 

knowledge to other firms or research institutions. However we assume that scientific 

institutions that patent might also show a higher probability to draw knowledge from 

patents that have been applied for by firms. These scientific institutions might be better 

informed about the patented inventions of firms due to a review of existing inventions 

during the application process. 

We also include a proxy for the economic value (ECVALUE) of the cited respectively cited 

control patent. ECVALUE contains the whole number of subsequent citations that a cited 

patent has received on the basis of our original sample. Harhoff et al. (1999) obtained value 

estimates of inventions filed in patents due to a survey of the patent owners. They found a 

significant positive relationship between the private value estimate of the invention of the 

filed patent and the number of subsequent citations of this specific patent. Hall et al. 

(2001b) have confirmed this positive relationship. In their work they compare different 

measures that are likely to influence the market value of firms and conclude that a citation 

weighted patent stock is more highly correlated with the market value than the plain patent 

stock. Since we expect firms to be profit oriented we expect that they transfer knowledge 

from the economically most valuable inventions.  

We also control for the country of residence of the assignees at the time point of their 

patent application. Since we have a large number of applicant countries in our sample we 

decide to include dummies for the countries that account for most of the patent applications 

in our sample27. As a consequence the included country dummies have to be interpreted in 

relation to all other countries that are not captured via the country dummies. For example 

                                                      

 

27
 A table showing the distribution of the assignee’s country of residence is shown in the appendix table A5. See 

also the OECD Biotechnology statistics (OECD 2006) for a more general overview on the patenting 

activities of different countries at the EPO. 
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the variable US_CITED contains the information whether at least one of the assignees of the 

cited or cited control patent was located in the United States during the patent application 

process and US_CITING contains the same information for the assignee of the citing patent. 

Analogous we created dummy variables for Japan (JP_CITED, JP_CITING), Germany 

(GER_CITED, GER_CITING), Switzerland (CH_CITED, CH_CITING), France (FR_CITED, 

FR_CITING), Great Britain (GB_CITED, GB_CITING) and the Netherlands (NL_CITED, 

NL_CITING).  

As already discussed we include two variables to control for the citation lag. YEAR_DIFF and 

YEAR_DIFFSQ are continuous variables which reflect the time lag between the cited or cited 

control patent and citing patents and the controls, measured by years. We further include 

dummies for the application year (YEAR1-YEAR23) of the cited and cited control patent to 

control for intertemporal differences in the patenting activity. 

Descriptive statistics 

Table 6 shows the descriptive statistics of the combined sample. The descriptive statistics for 

the single samples (cited and citing patent pairs and control patent pairs) is shown in 

appendix table A6. Due to the construction of the sample the control patent pairs account 

for exactly half of the data. It can be seen that knowledge flows from industry to science are 

rare but indeed happen. About 10% of the actually cited and citing patent pairs received 

citations by public scientific institutions (INDSCI). Some few patents have received citations 

from patents were both firms and scientific research institutions are among the applicants. 

Table 6: Descriptive statistics (Chapter 6) 

  Mean Std. Dev. Min Max 

INDSCI 0,053 0,225 0 1 

INDIND 0,454 0,498 0 1 

TECHCL 0,413 0,492 0 1 

CULCL 0,286 0,452 0 1 

INTGINI 0,121 0,235 0 2,443 

COMMON_CITED 0,014 0,118 0 1 

ECVALUE 3,831 4,645 1 64 
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NOPATS_CITED 68,933 100,789 1 622 

NOPATS_CITING 59,678 89,857 2 582 

YEAR_DIFF 3,368 2,302 0 9 

DE_CITED 0,112 0,316 0 1 

US_CITED 0,419 0,493 0 1 

JP_CITED 0,204 0,403 0 1 

CH_CITED 0,043 0,203 0 1 

FR_CITED 0,030 0,171 0 1 

GB_CITED 0,063 0,242 0 1 

NL_CITED 0,029 0,167 0 1 

DE_CITING 0,122 0,328 0 1 

US_CITING 0,408 0,492 0 1 

JP_CITING 0,207 0,405 0 1 

CH_CITING 0,046 0,208 0 1 

FR_CITING 0,042 0,200 0 1 

GB_CITING 0,040 0,196 0 1 

NL_CITING 0,040 0,196 0 1 

27592 observations    

With respect to the technological closeness (TECHCL), we find that about 41 % of the 

examined patent pairs show the same 6 digit IPC class. Technological closeness can thus be 

observed more often than cultural closeness (CULCL). Only about 29 % of the patent pairs 

show the same assignee country. 

Only a small number of patents in our sample have been jointly applied for by science and 

industry. The variable COMMON_CITED indicates that only between 1.5 % of the inventions 

in our sample have assignees from both industry and science. The actual number of joint 

patent applications between industry and science in the relevant time span is higher since in 

many countries scientists had and still have the privilege to freely realize the economic 
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benefits of their inventions28. Accordingly, one has to bear in mind that COMMON_CITED 

can only be interpreted as a rough indicator for joint research between science and industry. 

The variable which reflects the economic value of the patented invention shows that on 

average a cited or cited control patent receives citations from almost 4 other subsequent 

patents. Regarding the overall patenting activity in the biotechnology field of the assignee(s) 

of the patent pairs we find that the assignees of the cited patents (NOPATS_CITED) have 

applied for more patents than the assignees of the citing patents (NOPATS_CITING). Finally,  

the descriptive statistics show that most of the patents in our sample have been assigned by 

firms or research institutions from the United States (US_CITED, US_CITING).  

7.7 Estimation Strategy & Results 

The focus of this paper is to investigate differences in the citation probability from industry 

to industry and from industry to science. Thus our two dependent variables in the estimation 

indicate whether a patent that has been assigned to industry has either received a citation 

by a scientific institution (INDSCI) or by a firm (INDIND).  

We report the correlations among the variables in the appendix table A7. 

In order to get a first hint on differences between the citation probability of industry and 

science, we conducted t-tests for continuous variables and for dummy variables in a two 

sample test of proportions. The results can be found in the appendix table A8. However the 

t-tests and tests of proportions just indicate whether there is a significant difference in the 

mean or proportional values of the variables but cannot provide information about the size 

of these effects. Therefore a discrete probability model is applied. 

It is reasonable to assume that a patented invention can receive patents from both, industry 

and science. Thus the citation behavior of industry and science might not be independent of 

each other. In order to capture the citation behavior of industry and science properly we 

estimate a bivariate probit model instead of estimating the two equations separately. The 

                                                      

 

28
 I.e. in Germany this privilege was not changed until 2002.  
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bivariate probit model estimates two equations for binary dependent variables 

simultaneously and allows the error terms to be correlated. Thus by applying a bivariate 

probit model we aim to enhance the usage of the complete underlying information of our 

variables. The econometric specification of our model is as follows: 

 ������∗ = �	
 +		 

������∗ = ��
 +	� 

����	, �	|	
� = � 

where ������∗ is the latent propensity for an industry patent to receive a patent citation 

from science, ������∗ is the latent propensity for an industry patent to receive a patent 

citation from industry, and 
 is the vector containing the outlined independent variables.  

Because we restrict our sample to cited and citing patent pairs and their controls we apply 

sample weights to the regression to avoid bias from a probability based sample. The sample 

weights show the probability that a patent pair was chosen from our initial sample that 

contains the information of all EPO patents between 1978-2003. Thus for patent pairs where 

the citing patent shows a more recent application date, the probability for a cited patent to 

be chosen from all possible prior patents is higher compared to citing patents with an earlier 

application date. Additionally, the probability that a cited and citing patent pair was chosen 

from the sample is lower than the probability that a control patent pair was chosen from the 

sample. In the weighted bivariate regression the sample weights are included as inverts such 

that patent pairs with a lower probability to be chosen are weighted higher for the 

estimation in relation to those patent pairs with a higher sample inclusion probability.  

Table 7 shows the estimation results of the weighted bivariate probit model. In order to 

account for a possible bias of the regression results due to shifts in the citation lags we limit 

the years from which we select the cited patents to 1978-2000 (according to the 50% 

percentile of the citation lag distribution). We will later discuss how differently chosen time 

spans will affect our estimation results. 

For the interpretation of the regression results, it is important to notice that we depict only a 

very small fraction of the real knowledge transfer activities of the firms and research 
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institutions in our sample. We can only interpret the knowledge transfer activities which we 

find on the basis of patent citations in our sample.  

Technological closeness (TECHCL) of the two patents in a patent pair has a significant 

positive effect on the probability to be cited from industry however not from science. Thus 

the findings of Stolpe (2002) and Hu and Jaffe (2003) are confirmed regarding only inter-

industry knowledge flows. Our results show that scientific institutions in contrast tend to 

transfer knowledge from firms that is complementary to their own knowledge. 

Cultural closeness (CULCL) has a positive significant effect on the citation probability of 

industry but does not seem to play a role for the citation probability of scientific institutions. 

A possible explanation is that the knowledge flow is highly related to the persons involved in 

the research process such that spillovers among firms are facilitated from cultural proximity 

(i.e. Porter 2000b, Mowery et al. 1996). In contrast, researchers from scientific institutions 

are forced to conduct a thorough search for prior art and related works when writing for 

academic publications. Therefore they are less likely to be affected by cultural distance.  

The interaction term (INTGINI) that reflects the technological generality of the cited or cited 

control invention suggests that firms are more likely to cite industrial inventions with a less 

broad technological character. While we find a negative relationship between an increasing 

technological generality of the possible cited invention and the citation probability of 

industry we do not find a significant relationship between technological generality and the 

citation probability of scientific institutions.  

The indicator for joint research COMMON_CITED shows a highly significant positive effect on 

the citation probability from industry to science. As pointed out previously the indicator for 

common research is rather blurry since we expect that more firms have conducted common 

research with science on the patented invention with the difference that these scientific 

institutions were not listed as applicants in the patents applications. Still a joint patent 

application between science and industry obviously signals the scientific relevance of the 

invention to other research institutions and thus increases the probability of a scientific 

citation. We observe an opposed effect of the joint research dummy for the citation 

probability of industry. Patent applications that stem from joint research activities between 
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industry and science seem to protect more basic knowledge which is less compatible to the 

research activities of most firms. 

Table 7: Results of the weighted bivariate probit model (Chapter 6) 

 

Industry to science 

(INDSCI) 

Industry to industry 

(INDIND) 

  Coef. Std.Err.   Coef. Std.Err.   

TECHCL -0,148 0,042 *** 0,553 0,034 *** 

INTGINI 0,068 0,077  -0,527 0,059 *** 

CULCL -0,065 0,049  0,310 0,040 *** 

ECVALUE 0,020 0,010 * 0,031 0,009 *** 

ECVALUESQ -0,0004 0,000 ** -0,0002 0,000  

NOPATS_CITED 0,0001 0,000  0,001 0,000 *** 

NOPATS_CITING -0,006 0,000 *** 0,002 0,000 *** 

COMMON_CITED 0,722 0,125 *** -0,568 0,106 *** 

YEAR_DIFF 0,015 0,029  0,004 0,023  

YEAR_DIFFSQ -0,003 0,003 * 0,003 0,003  

DE_CITED
a
 -0,072 0,096  -0,178 0,077  

US_CITED
a
 0,109 0,083  -0,233 0,067 *** 

JP_CITED
a
 -0,017 0,079  -0,090 0,065  

CH_CITED
a
 0,381 0,119 *** -0,268 0,094 *** 

FR_CITED
a
 -0,191 0,129  0,064 0,106  

GB_CITED
a
 -0,114 0,111  0,086 0,093  

NL_CITED
a
 0,088 0,120  0,003 0,099  

DE_CITING
a
 0,157 0,083 * 0,177 0,072 ** 

US_CITING
a
 0,181 0,064 *** -0,122 0,056 ** 

JP_CITING
a
 -0,266 0,076 *** 0,267 0,063 *** 

CH_CITING
a
 -0,457 0,125 *** 0,279 0,084 *** 

FR_CITING
a
 0,313 0,109 *** -0,036 0,102  

GB_CITING
a
 -0,196 0,106 * 0,197 0,083 ** 

NL_CITING
a
 0,112 0,120   -0,022 0,105   
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CONS -0,705 0,145 *** 0,343 0,127 *** 

ATRHO -1,262 0,036 ***    

RHO -0,851 0,010     

Wald test of rho=0:  chi2(1) =  1221,43    Prob > chi2 = 

0,000   

27352 Observations      

Note: *** ,**, * indicate a significance level of 1%, 5%, 10%, cited patens were selected for 

the years 1978-2000 (50% percentile of citation lag distribution), Year dummies are included, 

29508 observations.
a
 interpretation in reference to other countries. 

The economic value (ECVALUE) of the patented invention expressed by the total number of 

received subsequent citations also shows a contrary effect on the citation probability of 

industry and science. We find a strong linear positive effect of the economic value of a 

patented invention and its citation probability from industry. Firms that are active in 

biotechnology are obviously successful in filtering out inventions with a great economic 

potential. We find a rather weak inversed u-shaped relationship between the economic 

value of a patented invention and the citation probability of science. A possible explanation 

for this weak relationship between the economic value of an invention and the citation 

probability of science could be the mentioned fact that many inventions that are protected 

by patents are not marketable at a first glance. Thus, they do not bear a high economic value 

but are characterized by a considerable value for further scientific research (Mazzoleni and 

Nelson 1998). 

We find that the patenting experience of the applicant firm of the cited patent 

(NOPATS_CITED) has only a positive effect on the citation probability of industry. Firms that 

show a high patenting activity seem to conduct more applied research. In contrast to this 

finding an increase in the accumulated number of patents of the citing (NOPATS_CITING) 

research institutions bears a significant negative probability for the research institution to 

cite industry patents. This finding is opposed to our assumption that research institutions 

that have a high number of accumulated patents might show a higher probability to transfer 

knowledge from industry patents. Obviously research institutions in the biotechnology 

sector are screening the knowledge that has been created by firms on a regular basis, 
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especially when they are not frequently patenting. On the contrary assignee firms of the 

citing patents that show a high patenting activity are more likely to cite patents from other 

firms. Thus the mentioned necessity for biotechnology firms to acquire external knowledge 

from other firms to keep up with the technological frontier even when they are actively 

involved in own research is confirmed by this result.  

The included country dummies show opposed effects on the citation probability of industry 

and science. However the following results have to be interpreted with caution due to 

differing privileges in the economic usage of inventions of scientists in different countries. 

Patents that have been assigned by Swiss firms (CH_CITED) show a greater probability of 

being cited by scientific research institutions compared to those patents that are assigned in 

other countries. Since large pharmaceutical firms are located in Switzerland we assume that 

especially knowledge that is related to biotechnological drug development is interesting for 

research institutions. Besides this, we do not find any geographical effects regarding the 

assigne’s country of residence of the cited patent for the citation probability of science. Thus 

the results confirm that cultural proximity obviously plays a minor role for the knowledge 

transfer from industry to science. Further our results show that the citation probability by 

science increases when the research institutions are located in France (FR_CITING), the US 

(US_CITING) and to a smaller extend in Germany (DE_CITING). Thus the results suggest that 

especially French and US research institutions compared to research institutions from other 

countries are more actively involved in screening and transferring knowledge that has been 

produced by industry. Given the strong international competitiveness of the US 

biotechnology industry we speculate that this “reverse knowledge transfer” might play a role 

for its successful development. Some support for this thesis can be found in the historical 

development of the US scientific research system. Feller (1990) states that with the begin of 

the 1970s universities in the US increasingly dedicated themselves to conducting socially 

useful research which was partly due to government induced research programs in nuclear 

and information technology research during the Cold War. And David (1994) points out that 

US policies at the same time realized the importance of new technology and started to view 

universities more under global competitive aspects. Research institutions that are located in 

Japan (JP_CITING), Switzerland (CH_CITING) or Great Britain (GB_CITING) show a lower 
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probability to engage in knowledge transfer from industry. Especially the result for 

Switzerland is interesting. It seems that Swiss companies produce valuable new 

biotechnological related output which is absorbed by various international research 

institutions whereas Swiss research institutions are not able to profit from the knowledge 

that is produced by the companies in their home country in relation to the reference 

countries. Regarding knowledge transfer from industry to industry our results suggest that 

patents that are hold by Swiss firms (CH_CITED) and US firms (US_CITED) in relation to the 

other reference countries show a lower probability to receive a citation by other firms. In 

turn when we look on the nationalities of the citing patent firms we see that firms from 

Germany (DE_CITING), Switzerland (CH_CITING), Japan (JP_CITING) and Great Britain 

(GB_CITING) show a higher probability to cite an industry patent compared to our reference 

countries. Our finding that US firms are less actively involved in inter-industry knowledge 

transfer has to be interpreted with a lot of caution. Given the findings of Narin et al. (1997) 

and McMillan et al. (2000) who emphasize the importance of the strong ties between US 

biotechnology firms and research institutions we carefully assume that either US firms are 

indeed more actively involved in transferring knowledge from research institutions than 

from other firms or that within-knowledge-transfer between US firms is mostly informal.      

 Robustness check for truncation 

We conduct a robustness check on our model with respect to the mentioned possible bias of 

our estimation results due to shifts in the citation lags. Therefore we adjust the years from 

which we select the cited patents by looking at the percentiles of the citation lag 

distribution. We first look at the 10% percentile of the citation lag distribution which 

indicates that the cited patents are collected until the year 2002. The estimation results of 

the model which covers the application years of the cited patent from1978-2002 are 

displayed in the Appendix table A9. Next we run the model for the 90% percentile of the 

citation lag distribution which means that we drop all cited patents that have been issued 

after 1996 (Appendix table A10). Due to the fact that we excluded citations with a citation 

lag of more than 9 years this model mostly adjusts for a possible bias due to truncation, 

however many observations are lost when we ran the model for this limited time span. We 

see that the regression results remain very stable when we compare the three estimated 
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models. We detect slight shifts in the significance levels of ECVALUE which implies that 

patents that are applied for later in the sample seem to receive more citations.  Moreover 

some rather slight changes in the significance levels for some country dummies can be 

observed. From this we conclude that our estimation results are not strongly biased from 

truncation. 

7.8 Conclusion 

Existing theoretical approaches which aim to capture the dynamics of knowledge creation in 

science based industries suggest that knowledge that is created on one organizational level 

flows in all directions. A vast literature exists that describes the potential benefits of 

knowledge flows from scientific research institutions to biotechnology firms. The other 

direction, namely knowledge flows from industry to science has been mostly neglected by 

empirical studies. This paper contributes towards this topic by empirically investigating two 

questions: Are there knowledge flows from industry to science and how can we find them? 

And if there are those knowledge flows how do they differ from inter-industry knowledge 

flows? To answer the first question we conduct a patent citation analysis on the basis of EPO 

patent data. We look at patent applications of firms that have received citations of industry 

and/or science. Knowledge flows from industry to science exist but are rare. Only about 10% 

of the patent pairs in our sample received citations by public scientific institutions.  

In order to investigate differences in the knowledge flows from industry to industry and from 

industry to science we estimate a weighted bivariate probit model on the citation probability 

of industry and science on the basis of a combined sample of citing and cited patent pairs 

and an equal number of control patent pairs. The empirical results show that there are 

considerable differences in the citation probability. The nature of these newly created 

knowledge has an impact on the citation probability of science and industry. Technological 

relatedness has a positive effect on the citation probability of industry while research 

institutions are more likely to transfer knowledge which is complementary to their own 

knowledge. We further find that knowledge with a more specialized technological character 

is more likely absorbed by firms. Cultural closeness has a positive effect on the citation 

probability from industry to industry while the citation probability of scientific institutions is 
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not affected by cultural distance. Since knowledge flows are highly related to the persons 

involved in the research process we assume that cultural proximity might facilitate spillovers 

among firms. Researchers from scientific institutions in contrast are forced to screen prior 

art and related works when they write for academic publications and are thus less likely to 

be affected by cultural distance. The economic value has only a strong positive effect on the 

citation probability of industry but effects the citation probability of science to a smaller 

extent. This might be explained by the fact that many inventions in the biotechnology sector 

that are protected by patents obviously seem to be not profitable at a first glance but 

feature great value for further scientific research. Co-operation between firms and research 

institutions on a patent application seems to have a signal effect for other research 

institutions regarding the potential usefulness for one’s own research and thus results in a 

higher citation rate from science.  

Our results suggest that knowledge transfer in the biotechnology industries indeed is not a 

one-way street between universities and other public research institutions and firms but 

works in both directions. This result qualifies present-day biotechnology industries as 

science-based industries par excellence as the division of labor in research activities between 

firms and public research organizations blurs the ancestral boundaries between applied and 

basic research. The results implicate for politics that also our investigated direction of 

knowledge flow namely from industry to science should be taken into account, i.e. when 

industry science collaboration programs are evaluated.  

Our results show that US research institutions are obviously very active in absorbing new 

knowledge that is created by industry. From the literature it is well described that a strong 

scientific biotechnological knowledge base and resulting strong ties between 

biotechnological firms and research institutions has a positive influence on the economic 

competitiveness of a country’s biotechnological industry (Narin et al. 1997, McMillan et al. 

2000). This finding can be considered to be one piece in the mosaic of explaining the 

economic and innovative strength of the biotechnology industry in the US. Research 

institutions in other countries should be encouraged to participate in this “reverse 

technology transfer”, for instance via an increased number of international conferences 

where both, scientists from industry and academia meet. 



124 

 

It is important to notice that our study has severe limitations. Most important, our study 

captures only a very small part of the knowledge transfer activities within industry and 

between industry and science. We only depict the knowledge transfer that is formalized in 

patent applications. Next scientists in many countries had or still have the privilege to assign 

patents under their own name thus the share of scientific applicants is likely to be 

underrepresented. Additionally, a lot of patent citations are added by the examiners at the 

EPO patent office. These added patent citations do not necessarily reflect knowledge flows 

but often simply reflect the effort of the patent examiner to detect prior art. Our estimation 

results are to some extent biased because of this fact. Finally, some of our dependent 

variables are rather imperfect proxies to capture characteristics of the patents and 

applicants so the interpretation of these dependent variables has to be done with a lot of 

caution.  

Despite these limitations we believe that this paper discloses an important topic. Further 

research has to be done to better understand the mechanisms that stand behind knowledge 

transfer from science to industry. One possible strategy could be to conduct surveys among 

researchers that are actively involved in biotechnological research and are employed at 

public research institutions to better understand the value of industrially produced 

knowledge for public scientific research activities. 
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8 Is it worth all the trouble? An assessment of the economic value of 

firm patent applications with shared intellectual property rights in the 

biotechnology industry 

8.1 Introduction 

The biotechnology industry as other science based industry is characterized by rapid 

advances in scientific research so firms are steadily urged to absorb external knowledge to 

keep pace with the speed of knowledge accumulation in the industry (Arora and 

Gambardella 1990, Henderson et al. 1998). As a result firms in the biotechnology industry 

frequently collaborate on R&D to profit from complementary knowledge and resources of 

their collaboration partners (Gulati 1998).  

Inter-firm collaboration on R&D however always urges the participating firms to find 

agreements on the intellectual property rights of possible jointly generated inventions. 

Usually firms that collaborate on R&D find ex ante or ex post agreements on the intellectual 

property rights of their common generated inventions and try to avoid shared intellectual 

property rights on inventions (Luoma et al. 2010). This is mostly due to the fact that shared 

intellectual property rights on inventions are associated with the need of complex legal 

agreements between the collaborating firms and none of the collaborating firms can fully 

appropriate the monopoly rent on the invention (Haagedorn 2003). 

 Despite this, Narin and Hicks (2001) have shown that the share of joint patent applications 

at the United States Patent and Trademark Office (USPTO) has increased over time and the 

highest shares of jointly owned patents can be observed in knowledge intensive industries 

like the biotechnology industry. We show in line that the share of joint patent applications of 

firms in the field of biotechnology has increased at the European Patent Office (EPO).  

Given these contradicting findings what are the motives and factors associated with joint 

patent applications of firms in the biotechnology industry? The existing empirical evidence 

on this topic is rare.  A few empirical studies have shown that previous joint patenting 

experience increases the likelihood of firms to apply a joint patent application (Haagedorn et 

al. 2003, Kim and Song 2007). Khoury and Pleggenkuhle-Miles (2011) in line with Kim and 
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Song (2007) show that firms in the biotechnology industry which have jointly applied for 

patents with other firms develop broader and more diverse research capabilities compared 

to firms that avoid joint patenting.  

Within this study we aim to contribute new empirical evidence on the causal relationship of 

the decision of firms to jointly apply for a patent on an invention and the economic value 

associated with the invention. Given the uncertainty associated with inventions in the 

biotechnology industry (Mazzoleni and Nelson 1998) we assume that firms which collaborate 

on R&D insist to maintain intellectual property rights on their jointly generated inventions 

since they could assume that these inventions are associated with a high future economic 

value which could not be properly assessed during the invention stage.  

We investigate this research question by applying a nonparametric matching procedure. We 

use patent data and show that the decision of firms to jointly apply a patent is driven by the 

future economic value associated with the patent. 

The remainder of the paper is organized as follows. In section 2 we give an overview on the 

motives of inter-firm R&D collaboration in the biotechnology industry. Section 3 describes 

the importance of patens as an intellectual property rights protection mechanism and 

section 4 addresses some theoretical topics associated with shared intellectual property 

rights on patents. Section 5 is on existing empirical evidence on the motives and factors 

associated with joint patent applications of firms in the biotechnology industry and works 

out our research hypothesis. Section 6 provides a description of the empirical 

implementation of our hypothesis, gives an overview on the used data and variables, and 

shows the descriptive statistics of our sample. Section 7 shows the results of our 

nonparametric matching approach and section 8 closes with a conclusion.  

Theoretical part 

8.2 R&D collaboration motives of firms in the biotechnology industry – A system of 

innovation approach 

It has long been recognized that innovation is not a static process that takes place isolated 

from the outside surroundings. Instead, various economic studies have shown that 
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innovation should rather be seen as an interactive process of learning that is shaped by 

various institutions and afflicted by a high degree of uncertainty (Nelson and Winter 1977, 

1982; Lundvall 1988). In the economic literature, the innovation systems (IS) approach has 

been a dominant theory during the last two decades in order to capture these interactive 

processes of learning that will eventually yield innovations. The IS approach is basically build 

on two main assumptions. First, knowledge is considered to be the most important resource 

in modern economy and second, knowledge can only be gained through interactive learning 

that takes place in a socially embedded process which is shaped by various institutions 

(Lundvall 2010). There are various definitions of IS. One of the broadest definitions defines 

an IS as “all important economic, social, political, organizational, institutional, and other 

factors that influence the development, diffusion, and use of innovation” (Edquist 2005, p. 

182).  

The biotechnology industry like other science based industries is a good example for the 

application of the IS approach.  

First of all, knowledge is the main production factor and characterized by rapid advances and 

moreover a wide dispersion of the sources that produce knowledge can be observed (Powell 

and Owen-Smith 1998). In order to not fall behind competitors and state-of-the art research, 

biotech firms are urged to steadily review and absorb this newly generated knowledge 

(Arora and Gambardella 1990, Henderson et al. 1998). R&D activities in the biotechnology 

sector are often characterized by a high degree of financial uncertainty, R&D and technologic 

uncertainty, regulatory uncertainty and market uncertainty.  

Moreover, biotech R&D activities are often time consuming and expensive29 (Teece et al. 

1997). Because of this, interactive learning plays a crucial role for knowledge acquisition.  

Powell et al. (1996) depict that informal R&D collaboration plays an important role in the 

biotechnology industry since firms heavily rely on their informal networks. Pyka and Saviotti 

(2005) investigate the permanent nature of R&D collaborations in the biopharmaceutical 
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 for example the development of new drugs 
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industry and thus provide evidence that permanent R&D networks contribute to the survival 

of dedicated biotech firms next to large diversified pharmaceutical firms. 

The motives of firms in the biotechnology industry, to engage in inter-firm research 

collaborations are different, depending mainly on their size and background.  

Horizontal alliances between firms in the biotech sector link firms of the same size to each 

other. These alliances have the preliminary goal to achieve explanatory targets by either 

linking together firms with complementary assets or additional similarities (Gulati 1998). 

Thereby horizontal alliances are often more difficult to manage due to overlapping 

competencies even if the participating firms are no direct competitors (Doz et al. 1989, 

Khanna et al. 1998, Silverman and Baum 2002). Vertical alliances of firms in the biotech 

sector are often found among small and medium sized biotech firms and large 

pharmaceutical and chemical firms. Thereby the small and medium sized firms in the biotech 

sector are often former spinoffs from universities or other research institutions or at least 

have academic founders and thus employ some of the brightest scientists (Fisher et al. 

1996). They keep close contact to scientific institutions and often undertake the first step in 

transferring basic research results in marketable products. However, these small and 

medium sized biotech firms have rather week financial resources and a lack of distributional 

infrastructure. Thus for small and medium sized biotech firms such alliances with large firms 

have been identified to be important for their successful product development as well as for 

a faster market access and enhanced marketing and distribution mechanisms (Arora and 

Gambardella 1990, Pisano 1990, Baum et al. 2000). In turn due to large diversity of research 

activities in biotechnology, large pharmaceutical and chemical firms are permanently facing 

the threat to fall behind new research technologies. Thus large firms in the biotech sector 

permanently have an incentive to get access to complementary technological knowledge 

which is produced by small and medium sized biotech firms (Arora and Gambardella 1990, 

Baum et al. 2000).  
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8.3 The meaning of patents for intellectual property rights protection in the 

biotechnology industry 

Prior to the 1980s, international patent protection laws did not allow the protection of living 

organisms or biologically active substances like single molecules or proteins. As the 

biotechnology industry emerged and the economic value of biotechnological inventions 

became more obvious, international patent laws were adjusted and changed to satisfy the 

needs of intellectual property rights protection for biotechnological inventions.  

One breakthrough in the changes of international patent laws was in 1980 when the US 

Supreme Court ruled that the genetic modification of a bacterium was patentable (Willison 

and McLeod 2002). Another major change of the patent protection law in the US was made 

in 1992 when it became possible to protect single molecules and proteins (Ko 1992). In the 

following years patent protection laws in other countries and in the EU were accordingly 

adjusted to allow the protection of biologically active substances (Leskien 1998).  

Several works have shown the importance of patents for the intellectual property rights 

protection in the biotechnological industry. Cohen et al. (2000) have conducted a large scale 

survey on 1,478 R&D laboratories in the US in 1994 and show that patents in the 

biotechnology industry are the most important mechanism to protect intellectual property 

rights. Schankerman (1998) comes to a similar result by outlining that firms in the 

biotechnology industry are more willing to pay renewal fees on their patents compared to 

other industries. Arora et al. (2008) presented a measure, so called “patent premium” that 

relates the return of a patented invention to an unpatented invention and show that the 

patent premium is only positive for a few knowledge intensive industries including the 

biotechnology industry. 

8.4 Shared intellectual property rights on patents 

Shared intellectual property rights on patents occur when two or more assignees are found 

on one single patent application. This implies that the intellectual property rights are indeed 

shared between the applicants listed in the joint patent application and as a consequence 
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the applicants that apply for a joint patent30 have to find several agreements on how i.e. the 

patent rent should be divided or how acquisition offers of the joint patent should be 

handled. Thus joint patent applications have to be viewed differently from cross licensing 

agreements or patent infringement agreements where ex-post or ex-ante agreements 

between patent holders are negotiated to balance the expected license return losses and 

gains of the involved actors (Hagedoorn 2003). 

The consequences of joint patenting are evidently more far-reaching compared to cross 

licensing agreements and infringement agreements and usually organizations that are 

actively conducting research try to avoid a sharing of intellectual property rights on their 

inventions (Marchese 1999, Luoma et al. 2010). 

Shared intellectual property rights on patents usually occur as a result of collaboration and 

can thus be viewed as a special result of collaborative activity. Hagedoorn (2003) has 

interviewed US firms in his work which are actively involved in joint patenting and comes to 

the result that joint patenting mostly results from informal R&D collaboration and small 

sized R&D projects were the contributions of the involved partners to the realized invention 

can’t be properly separated.  Hicks and Narin (2001) who have studied the patterns of joint 

patenting on the basis of USPTO patent data reveal that the share of joint patent 

applications has increased between the early 1980s and 1999 and patents with multiple 

applicants are mostly concentrated in highly knowledge intensive sectors like biotechnology, 

pharmacy and medical equipment. In line Hagedoorn (2003) shows again on the basis of 

USPTO patent data – using slightly different technology classifications – that the highest 

proportion of firm owned patents with shared intellectual property rights can be found in 

knowledge intensive sectors like chemicals and pharmaceuticals (including biotechnology) or 

information technology where patents generally play an important role for knowledge 

protection. 

                                                      

 

30
 We use the term „joint patent“ synonymously with the term “patents with shared intellectual property rights” 

throughout the whole paper. 
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8.5 Empirical evidence on the rationale of joint firm patents in the biotechnology 

industry  

With regard to recent studies and the related literature, a core question occurs in context to 

firm’s patenting strategies: Is there any reason why patents with shared intellectual property 

rights could be more valuable than patents with a single ownership? Patents with shared 

intellectual property rights create a lot of administrative and legal work to the jointly 

assigning firms. So then why do firms assign patents with a shared ownership and why has 

the share of joint patents increased in knowledge intensive industries as it has been outlined 

by Hicks and Narin (2001)? Hagedoorn (2003, p.1044) puts it this way: “Theoretically it is 

rather difficult to understand why, given the legal status of joint patents, companies would 

share their patents with other companies [...]”.  

Recently some few empirical studies have started to investigate motives and factors 

associated with joint patenting of firms. The existing empirical evidence on this topic is rare 

though.  

Hagedoorn et al. (2003) have constructed a sample of firms and have empirically 

investigated the relationship between inter-firm collaboration experience and the number of 

joint patent applications. They show that the number of jointly owned patents of the firms 

does not seem to depend on the general collaboration experience of the firms but rather 

exclusively on the firm’s experience with joint patenting itself. They conclude that firms who 

have experienced joint patenting might have established some inner organizational 

experience and guidelines about how joint patent applications can be handled. 

 Kim and Song (2007) use joint patents as a productivity measure of inter-firm R&D alliances 

in the pharmaceutical industry and show that joint patents that result from inter-firm R&D 

alliances have a non linear (inverted U-shaped) relationship with the developing 

technological base of the collaborating firms. Moreover they find that joint patenting 

between alliance partners seems to occur more often when the alliance partners had 

previous ties with each other. 

Some recent work of Khoury and Pleggenkuhle-Miles (2011) relates the experience of 

biotechnology firms on joint patenting to their evolution of research capabilities. They use a 
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sample based on over 250 biotechnology firms and show that firms which engage in joint 

patenting develop a broader research capability base compared to those firms that tend to 

avoid joint patent activities. 

Besides the positive effects of prior collaboration experience on the likelihood of joint 

patenting of firms and the outlined positive effects of joint patenting of firms on the 

development of their research capabilities however less empirical evidence exists on further 

motives why firms in knowledge intensive sectors like the biotechnological sector 

increasingly engage in joint patents. 

One alternative explanation to the question why firms file patent applications jointly could 

be that inventions that are patented jointly are associated with an assumingly high but at the 

time of the invention unknown expected economic value such that the collaboration 

partners hesitate to allocate the expected patent rents to a single collaboration partner and 

fail to find an a priori agreement on the ownership of the patent. One work that could 

underpin this hypothesis is the paper of Mazzoleni and Nelson (1998) in which the authors 

state that biotechnology patents are often not marketable at the first glance but might have 

great economic potential in the future. Given this uniqueness surrounded with patents from 

knowledge intensive industries like the biotechnology industry  our major hypotheses is:  

firms that have created an invention out of joint research have an incentive to maintain their 

shares on the intellectual property rights of the invention since they regard the joint 

invention as economically valuable but are not able to properly assess its real economic  

value and thus might fear to lose patent rents associated with the jointly created invention. 

We assess this hypothesis via a nonparametric matching approach on the basis of EPO 

patent data.    

Empirical part 

8.6 Empirical implementation, data, variables, and descriptive statistics 

Empirical implementation – Propensity score matching 
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The aim of our study is to investigate whether joint patent applications of firms are 

associated with a higher economical value compared to patent applications of firms with a 

single ownership. 

The fact whether a patent is jointly applied or not is the result of a selection bias, since firms 

that jointly apply for a patent have actively agreed to share intellectual property rights on 

their invention. This selection bias has the consequence that jointly applied patents will 

differ from patents with a single ownership in a set of important characteristics.  

Several econometric approaches have been developed to correct for the presence of a 

possible selection bias including differences in differences methods, selection models, 

instrumental variable estimation, and nonparametric matching procedures (for an overview 

on recent developments see  Imbens and Wooldridge 2009). Nonparametric matching 

procedures have been primarily introduced for the evaluation of active labor market policies 

(e.g. Heckman et al. 1999, Lechner 2002a, Lechner 2002b, Blundell et al. 2004,). In 

innovation economics the nonparametric matching methods have mostly been used for the 

evaluation of public research funding (i.e. Busom 2000, Czarnitzki et al. 2004, Czarnitzki et al. 

2011). In both application fields the participation in a public measure (i.e. the participation in 

a labor market program or the receipt of public funding) is called treatment and is compared 

to a matched group of nonparticipants. In our case the treatment is a jointly applied patent. 

With the nonparametric matching approach the patent value for the group of jointly applied 

patents can be compared to a simulated counterfactual situation that assesses the patent 

value for the group of jointly applied patents if they had not been jointly applied. The 

matching estimator simulates the counterfactual situation on the basis of a constructed 

control group of patents with single ownerships were each jointly applied patent is matched 

to a patent with single ownership that shows the same set of characteristics as the jointly 

applied patent. The matching method thus balances the group of treated observations to the 

group of untreated observations on a set of characteristics and attributes remaining 

differences in the outcome (in our case the patent value) to the treatment effect.  The 

average treatment effect of treatment on the treated (ATT) can be illustrated by the 

following equation: 
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��� = ����|� = 1� − �((��|� = 1� 

�� is the outcome variable (the patent value) and � refers to the treatment with S=1 being 

the group of jointly applied patents and S=0 being the group of patents with a single 

ownership. The patent value for the group of jointly applied patents, �(��|� = 1�, is directly 

observable. ��  reflects the potential patent value that would have been realized if the group 

of jointly applied patents had not been jointly applied.  �((��|� = 1� thus describes the 

outlined counterfactual situation (the patent value for the group of jointly applied patents if 

they had not been jointly applied) which is not directly observable and has to be simulated. 

We apply a modified propensity matching procedure as it has been proposed by Lechner 

(1998). The “plain” propensity matching procedure as it has been suggested by Rosenbaum 

and Rubin (1983) reduces the number of variables that determines the treatment status to a 

single variable in the matching function, namely the propensity scores which are prior 

estimated from a probit model on the binary treatment indicator variable. Lechner (1998) 

suggested a modification which allows the inclusion of several additional variables in the 

matching function. We construct the control sample by applying the nearest neighbor 

approach with replacement based on the Mahalanobis distance which includes several 

variables next to the propensity scores which were prior estimated on the basis of a probit 

model on the treatment indicator variable (joint patent applications vs. patents with a single 

ownership). A comprehensive overview on the single steps in the nonparametric matching 

procedure applied can e.g. be found in Czarnitzki et al. (2004).   

Data 

Our Study is based on EPO patent application data. We have a full coverage of the data for 

the years between 1984 and 200331. The information of the patent data include the name(s) 

and country(ies) of origin of the inventor(s) as well as of the assignee(s), citations to other 

patents and/or citations to other documents (non-patent citations), information about the 

                                                      

 

31
 We like to thank the European Patent Office and the Centre of European Economic Research (ZEW) in 

providing the biotech patent data. 
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declared IPC classes as well as its application and grant dates. We use the IPC classes that 

have been identified to be relevant for biotechnology on the basis of the OECD patent 

compendium (2008) to identify all patent applications that contain at least one IPC class that 

is related to biotechnology. 66,936 patents remain for our further analysis.  

On the basis of the identified patents we conduct a citation analysis and identify all 

subsequent citations that a biotechnology related patent has received by other 

biotechnology related patents in our sample. 

Further we assigned all patent applications to the following classes: firms, research 

institutions, individuals and others. We limit our analysis to all patents that are signed by 

either one or multiple firms and keep 46,083 patents for our further investigation. It is 

important to note that we solely concentrate on all patent applications that have been 

jointly applied for by firms, so we drop for our matching approach all patent applications 

where for e.g. a university is listed as an applicant next to a firm applicant. We drop those 

joint patents with mixed classes of assignees since we would not be able to find proper 

control observations for those patents. 

Next we restrict our analysis to the five countries that have assigned most of the patent 

applications in our sample namely the US, Germany, Japan, Great Britain and France. We 

chose to restrict our data to only those countries with the highest patenting activity to 

ensure that we can find proper control patents for our matching approach. The restriction to 

those five countries implies a loss of 8955 observations.  

For our further analysis we keep 37128 patent applications. 

Variables 

We create a dummy variable (JOINT) which indicates whether a patent application has been 

jointly filed by two or more firms (JOINT=1) or not (JOINT=0). As it has been outlined before 

JOINT is our treatment indicator variable. 

Figure 2 shows the share of joint patent applications of firms in relation to the application 

years. We can see that the share of joint patent applications of firms in our sample has 

increased from about 3% in 1984 to about 4.5% in 2003. Also the linear trend line suggests 
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that there is a positive trend on the occurrence of joint patent applications. Our findings thus 

confirm the outlined findings of Hicks and Narin (2001) and Haagedorn (2003).  

Figure 2: Share of firm joint patent applications for the application years 1984-2003 (Chapter 7) 

    

We aim to relate the treatment effect of joint patent applications to the value of a patented 

invention. We therefore have to measure the value of the patent applications in our sample. 

One popular and straight forward way to proxy the economic value of a patent is the 

number of subsequent citations it has received (Harhoff et al. 1999, Hall et al. 2001b)32. The 

use of patent citations in an economic analysis where patents with different application 

years are jointly analyzed yields the problem of truncation though since a patent that has 

been filed earlier in the sample has a greater probability to receive more patent citations 

compared to a patent that has been filed more recently. This truncation issue has been 

heavily analyzed and several methods have been proposed to ease this bias (Caballero and 

Jaffe 1993, Jaffe and Trajetenberg 1999, Hall et al. 2001a). By applying a nonparametric 

matching approach on the patent data however, we suggest that the truncation bias can be 

                                                      

 

32
 Other methods to proxy the economic value of patents have been suggested, for an overview regarding the 

biotechnological industry see Albino et al. (2009). 
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accounted for by simply including the patent application years in the matching function. 

Given that the number of control patents is large enough the matching method will then 

search for each treated patent a control patent with exactly the same application year. As a 

result the group with joint patent applications should not differ from the group of patents 

with single ownership regarding their patent application year frequency distributions. 

Our outcome variable CITATIONS reflects the number of citations a patent has received from 

the other subsequent patents in our sample. 

Next we describe a set of variables that are likely to influence the decision of a firm to jointly 

apply for a patent or not. Those variables are important to estimate the propensity scores 

that are included in the matching function and can further be included in the matching 

function directly. 

As described before the studies of Hagedoorn et al. (2003) and Kim and Song (2007) suggest 

that there is a positive effect of prior joint patenting experience of firms on the likelihood of 

firms to apply for a joint patent. We consider the application date of the patents in our 

sample and create a dummy variable (PRIOR) that indicates whether the applicant or one of 

the applicants of a patent has filed a joint patent with another firm previously to the 

considered patent application.  

 Next we include a measure that reflects the overall patenting rate of the applicants and to 

some extend at least proxies the firm size of the applicants. Generally one would expect a 

positive relationship between firm size and the number of patent applications on one hand 

because of differing R&D capacities and on the other hand because of differing financial 

assets to enforce patent rights (Schettino and Sterlacchini 2009). The relationship between 

firm size and the number of patent applications in the biotechnological industry is not clear 

though. Rothaermel and Thursby (2007) examine a sample of biotechnology firms for the 

years 1980-2000 and find a positive impact of firm size on the number of generated biotech 

patents for the years 1980-1990 however they do not find that this positive relationship 

holds for the years 1990-2000. LNMEANANZPAT is a continuous variable and contains the 

cumulative number of patent applications that the firm has applied for up to the application 

year of the considered patent application. In the case of joint patents we take the mean 



138 

 

value of the cumulative patent application counts of the firms. Due to the fact that the 

distribution of the mean cumulative number of patent applications is heavily screwed we 

include the logarithmic value in our further analysis.  

Next we include a variable that controls for the scientific complexity surrounded by the 

patented invention. We measure the scientific complexity of a patented invention by the 

total number of non patent references cited in the patent application of the patent 

(NONPATCIT). So called non patent citations have been recently used as proxies for science-

industry linkages at the invention level (e.g. Cassiman et al. 2008, Lo 2010). In addition to 

this van Zeebroeck and van Pottelsberghe (2011) show that the number of non patent 

citations in the search report of a patent can be used to depict the scientific complexity of a 

patented invention. We hypothesize that if a patented invention is scientifically complex the 

firms might be more urged to get access to external knowledge and thus might have a higher 

probability to collaborate with a firm on this invention which as a consequence could lead to 

shared intellectual property rights on this invention. 

Other control variables:  

- Application years: As lined out before we control for the application years 

(YEAR1984-YEAR2003). On the one hand because we aim to control for the 

truncation bias of the citations and on the other hand because we observed a 

positive linear trend on the share of joint patent applications in our sample (Figure 2) 

- First-digit-IPC-classes: We control for the first digit IPC class listed as the first IPC class 

in the patent application of a patent to control for possible differences of the 

likelihood of joint patent applications due to different technological fields (IPC1-

IPC8).  

- Country dummies: We control for the country of origin of the first applicant listed in 

the patent application since historical and cultural differences of countries could 

affect the probability  of a firm to jointly apply for a patent (US, GB, DE, FR, JP).    

Descriptive statistics 

Table 8 shows the descriptive statistics for our full sample.  
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Table 8: Descriptive statistics of the full sample (Chapter 7) 

Jointly applied 

patents (1426 

observations) 

Patents with single 

ownership (35702 

observations) 

Two sided t-test 

on equality of 

means 

Mean SD Mean SD 

PRIOR 0,661 0,474 0,362 0,481 *** 

LNMEANANZPAT 3,613 1,749 2,973 1,795 *** 

NONPATCIT 2,187 4,189 1,869 3,426 *** 

IPC1 0,090 0,286 0,090 0,286 

IPC2 0,013 0,115 0,011 0,103 

IPC3 0,770 0,421 0,771 0,420 

IPC4 0,004 0,065 0,001 0,025 *** 

IPC5 0,000 0,000 0,000 0,009 

IPC6 0,000 0,000 0,000 0,012 

IPC7 0,123 0,328 0,127 0,333 

IPC8 0,000 0,000 0,001 0,023 

US 0,429 0,495 0,559 0,496 *** 

JP 0,227 0,419 0,172 0,377 *** 

FR 0,028 0,165 0,046 0,208 *** 

GB 0,195 0,396 0,079 0,269 *** 

DE 0,121 0,327 0,145 0,352 ** 

YEAR1 0,013 0,115 0,019 0,137 

YEAR2 0,018 0,134 0,022 0,146 

YEAR3 0,016 0,126 0,024 0,155 ** 

YEAR4 0,018 0,134 0,028 0,166 ** 

YEAR5 0,028 0,165 0,032 0,177 

YEAR6 0,028 0,165 0,035 0,185 

YEAR7 0,025 0,157 0,039 0,193 *** 

YEAR8 0,034 0,180 0,038 0,190 

YEAR9 0,020 0,139 0,039 0,193 *** 

YEAR10 0,028 0,165 0,035 0,183 

YEAR11 0,034 0,180 0,039 0,194 

YEAR12 0,035 0,184 0,043 0,203 

YEAR13 0,041 0,198 0,048 0,213 

YEAR14 0,086 0,281 0,055 0,227 *** 

YEAR15 0,118 0,322 0,069 0,253 *** 

YEAR16 0,063 0,243 0,082 0,274 ** 

YEAR17 0,083 0,277 0,089 0,284 

YEAR18 0,114 0,317 0,095 0,293 ** 
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YEAR19 0,116 0,320 0,089 0,285 *** 

YEAR20 0,082 0,275 0,081 0,272 

CITATIONS 0,380 1,112 0,384 1,336  

 

37128 observations 

 

The two sided t-tests on the equality of means for the two groups show that applicants of 

joint patents show a higher previous experience with joint patent applications (PRIOR) and 

show a higher previous patenting rate (LNMEANANZPAT). Moreover inventions that are 

patented jointly are of a more complex scientific nature when compared to patents with no 

shared intellectual property rights (NONPATCIT). Besides also the countries of origin of the 

applicants are significantly different among the two groups. A higher proportion of Japanese 

applicants (JP) and applicants from Great Britain (GB) can be found in the group of jointly 

applied patents compared to the group of patents with a single ownership. It is important to 

notice that the t-test shows no significant difference between the two groups for our 

outcome variable (CITATIONS). In fact, patents with a single ownership receive slightly more 

patent citations compared to patents with a joint ownership. As we described above 

however our data are biased due to selection and we account for this bias in the following 

section by applying a nonparametric matching model 

8.7 Results from the nonparametric matching procedure 

First we estimate a probit model on the application of a joint patent (JOINT).The probit 

model (Table 9)shows that prior joint patenting experience (PRIOR) and the scientific 

complexity of the patented invention has a highly significant impact on the probability of 

firms to jointly apply for a patent. Moreover the country dummies and a Wald test on the 

joint significance of the application years is highly significant. Regarding the IPC classes we 

find three IPC (IPC5, IPC6, IPC8) classes that only occur in the group of patents with a single 

ownership. Those three IPC classes are dropped for the probit estimation and for this reason 

we lose 27 observations. 
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Table 9: Probit estimation on the application of a joint patent (Chapter 7) 

JOINT Coef. Std. Err. 

PRIOR 0.541 0.034 *** 

LNMEANANZPAT 0.004 0.010 
 

NONPATCIT 0.011 0.003 *** 

IPC1a -0.138 0.121 
 

IPC3a -0.209 0.114 
 

IPC4a 1.024 0.292 *** 

IPC7a -0.157 0.119 
 

USb -0.608 0.039 *** 

JPb -0.386 0.043 *** 

FRb -0.538 0.076 *** 

DEb -0.532 0.049 *** 

Constant term -1.307 0.154 *** 

 Test on the joint significance of year 

dummies 

χ(19)=81.01 *** 

Pseudo R2 0.071  

Log Likelihood -5614.977  

# observations 37101  

Note: 19 year dummies included in the regression, Year1 serves as reference 

year; aIPC2 serves as reference class; IPC5, IPC6, IPC8 dropped since they are 

only found in the group of patent applications with single ownership and 27 

observations are dropped; bGreat Britain serves as reference class 

 

Next we use the control sample to find a control patent application from the group of patent 

applications with a single ownership for each treated patent application. We apply the 

nearest neighbor approach with replacement based on the Mahalanobis distance. Next to 

the estimated propensity scores from the described probit estimation we include all 

independent variables of our probit estimation in the Mahalanobis metric restriction. Due to 

the fact that we have more than 35,000 possible control patent applications for just 1,426 

treated patent applications, we believe that we can apply this really stringent approach to 

find proper control observations.  

Table 10 shows the detailed matching results of our approach. It is important to note that 

we do not lose any observation due to the failure of common support.  
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Table 10: Matching results based on 37,101 observations (Chapter 7) 

Variable Mean 

P-value of two 

sided t-test on 

mean equality 

joint patent 

applicaton 

patent with single 

ownership 

PROPENSITY 

SCORE Unmatched 0,069 0,037 0,000 

Matched 0,069 0,067 0,283 

PRIOR Unmatched 0,661 0,362 0,000 

Matched 0,661 0,644 0,346 

LNMEANANZPAT Unmatched 3,613 2,974 0,000 

Matched 3,613 3,538 0,243 

NONPATCIT Unmatched 2,187 1,870 0,001 

Matched 2,187 2,014 0,259 

US Unmatched 0,429 0,559 0,000 

Matched 0,429 0,435 0,734 

JP Unmatched 0,227 0,172 0,000 

Matched 0,227 0,223 0,823 

GB Unmatched 0,195 0,079 0,000 

Matched 0,195 0,194 0,925 

FR Unmatched 0,028 0,045 0,002 

Matched 0,028 0,027 0,909 

DE Unmatched 0,121 0,145 0,013 

Matched 0,121 0,121 0,954 

IPC1 Unmatched 0,090 0,090 0,988 

Matched 0,090 0,088 0,895 

IPC2 Unmatched 0,013 0,011 0,366 

Matched 0,013 0,013 1,000 

IPC3 Unmatched 0,770 0,771 0,894 

Matched 0,770 0,771 0,929 

IPC4 Unmatched 0,004 0,001 0,000 
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Matched 0,004 0,004 1,000 

IPC7 Unmatched 0,123 0,127 0,599 

Matched 0,123 0,123 1,000 

CITATIONS Unmatched 0,380 0,384 0,910 

Matched 0,380 0,292 0,021 

 Note: 20 Year dummies are not reported, they are not significant after the matching 

however. The full matching results are reported in appendix table A1  

The means and corresponding t-tests show that none of the employed covariates differ after 

the matching. Appendix table A11 displays the full matching results including the matching 

results for the single application years. Concerning the correction of the truncation bias of 

our outcome variable CITATIONS due to different application years we observe that the 

truncation bias for the application years is almost completely ruled out by the matching 

procedure. The p-values of the two sided t-test on mean equality for the application years 

show a range of 0.924-1.000. Also the Propensity score (PROPENSITY SCORE) shows no 

significant difference after the matching.  

We do observe however a mean difference in our outcome variable CITATIONS which can be 

attributed to the treatment. Table 11 shows the average treatment effect on the treated 

with bootstrapped standard errors. On average a patent application that has been jointly 

applied would have received significantly less patent citations if it had not been jointly 

applied. We can see that this difference amounts to approximately 0.09 patent citations that 

the jointly applied patent would have received less if it had not been jointly applied.  From 

these findings we assume that there is a causal relationship between the economic value of 

a patented invention and the decision of firms to share intellectual property rights on this 

invention   

Table 11:  Average treatment effect on the treated (ATT) (Chapter 7) 

Variable Sample Treated Controls Difference 

Standard 

errors 

CITATIONS Unmatched 0.3801 0.3841 -0.0041 0.0359 

ATT 0.3801 0.2917 0.0884 0.0431* 
* bootstrapped standard errors  
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8.8 Conclusion 

In this paper we contribute new empirical evidence on the rationale of firms to jointly apply 

for patents. Existing empirical evidence suggests that previous joint patenting experience 

has a positive impact on the likelihood of firms to apply for joint patents. Moreover a 

positive impact of prior joint patenting experience on the development of a firm’s research 

capabilities has been outlined for the biotechnology industry.  

We hypothesize that the decision of a firm to jointly apply for a patent is driven by the future 

economic value of the jointly applied invention. Given the uncertain true economic potential 

associated with inventions from knowledge intensive industries like the biotechnology 

industry, we assume that firms which have jointly generated an invention insist to maintain 

the intellectual property rights on their invention if they suppose that their jointly generated 

invention could feature great economic potential in the future which cannot be properly 

assessed during the invention stage. In this case the collaborating firms will fail to find a 

priori agreement on the allocation of the intellectual property rights on their inventions and 

will thus share the intellectual property rights.  

We test this hypothesis via a nonparametric matching approach on EPO patent data. We 

show that a causal relationship exists on the decision of firms to jointly apply for a patent 

and the economic value of the patented invention for the biotechnology industry. We find 

that patents with shared intellectual property rights would have significantly received fewer 

citations if they had not been jointly applied. 

Our approach has some severe shortcomings though. First of all it is unlikely that we 

included all relevant covariates that determine the decision of a firm to jointly apply for a 

patent in our probit estimates. Although we applied very stringent restrictions to the 

construction of our control sample it is still likely that patents with a joint ownership differ 

from patents with a single ownership in important characteristics. We also totally neglected 

the financing background of the firms in our sample. Kortum and Lerner (2000) show for US 

manufacturing industries that that there is a positive relationship between the venture 

capital activities and the patenting rate in an industry. Assuming that venture capital 

financed firms might have a greater probability to apply for a patent compared to not 
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venture-backed firms it would be important to control for the financing background of the 

firms in our sample.  

Despite these shortcomings however we believe that our paper contributes new evidence 

on the rationale of firms to jointly apply for patents in the biotechnology industry. Moreover 

we show that the nonparametric matching approach can be a powerful method to 

determine causal relationships not only on firm level but also on patent level.  

Further research has to be done however to reveal more factors that are associated with the 

firm’s decision to jointly apply for patents. One attempt could be to control for the financing 

background of the applicant firms.   
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9 Main Conclusion 

In this thesis, we have contributed micro-level empirical evidence on the initiation and 

consequences of informal R&D linkages.  

In the first empirical part of this thesis we have worked out how individual and faculty 

related factors affect the decision of scientists to engage in informal knowledge transfer to 

firms. The decision of a scientist to engage in informal knowledge transfer means at the 

same time that to a certain extend knowledge flows out back door of the universities. We 

have shown that both, individual and faculty related factors of scientists influence their 

probability to engage in informal knowledge transfer and that these factors do not seem to 

differ at a great extend for German scientists compared to US scientists. In contrast to the 

existing empirical literature (e.g. Zucker and Darby 1996, Zucker et al. 2002) that is mostly 

restricted to the field of life sciences, we have shown at least for the German sample that 

the patent record of a scientist seems to be more important in signaling research quality to 

industry than the publication record when a wider spectrum of scientific fields is considered. 

Obviously firms seem to acknowledge the practice-oriented work of the scientists that may 

immediately flow into the firm’s knowledge base.  

Besides incentive and career related factors we have shown in the context of the second 

empirical chapter that international mobility of scientists has not only a positive impact on 

the scientific productivity but also a positive impact on the likelihood to engage in 

knowledge and technology transfer in both, their host and their home countries. We have 

hypothesized that the transfer of knowledge to industry in both, the home and the host 

countries, might be an important way for scientists to become more visible and to build up a 

international reputation. More specifically we have outlined that the duration of a research 

visit has a positive impact on the likelihood of scientists to transfer knowledge and 

technology to both, their home and their host countries, while the frequency of research 

visits abroad seems to only be positively related to the knowledge and technology transfer 

activities of scientists to their home countries. Based on our findings, international mobility 

of scientists can therefore be seen as a driver for the scientific and technical human capital 

that facilitates collaboration with industry and enhances the propensity of scientists to 
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engage in the transfer of knowledge. We have shown on the basis of the German scientists 

sample that – at least for timely limited and repetitive stays of researchers abroad –

international mobility of scientists does not seem to lead to a brain drain but rather to a 

brain gain for home countries of the scientists.  

While the first two empirical parts of this thesis have analyzed factors that are critical for the 

initiation of informal knowledge and technology transfer, the remaining two empirical 

chapters have investigated two phenomena that mainly occur in the context of informal 

R&D collaborations: Knowledge flows from industry to science and shared intellectual 

property rights on inventions. 

Whereas the vast majority of studies that have analyzed knowledge flows in the 

biotechnology industry have focused on knowledge flows within industry or from research 

institutions to firms, the opposite flow direction, namely from industry to science has 

remained mainly unexplored. Using EPO patent data, we have identified knowledge flows 

from industry to science and within industry on the basis of patent citations and have 

compared the retrieved pairs of citing and cited patents to matched control patent pairs to 

depict differences in the citation probabilities. We have shown that not only institution 

related factors like the patent portfolio, the collaboration profile, and the location of the 

citing and cited patent applicants but also invention/patent related characteristics like the 

scientific complexity, the estimated economic value, or the degree of technological 

specialization of a patented invention have an impact on the citation probabilities. While we 

show that technological relatedness of a patented invention with the patent portfolio of a 

firm or research institution for instance has a positive effect on the citation probability of 

industry, research institutions are more likely to transfer knowledge which is complementary 

to their own knowledge.  

The last empirical part of this thesis has analyzed the rationale of firms to jointly apply for 

patents. From the literature it is well described that patents with shared intellectual 

property rights mainly result from informal R&D collaborations and are most characteristic 

for science based industries. Given the legal and organizational effort associated with 

patents with shared intellectual property rights, collaborating firms usually have a strong 
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incentive to avoid joint patent application. Despite this different empirical studies have 

observed that the number of joint patent applications in several industries has increased 

within the last decades. Still, less is known on the factors that drive the decision of firms to 

share intellectual property rights on an invention instead of differently agreeing on 

intellectual property rights. We have tested the hypothesis that the decision of firms to 

jointly apply for patents depends on the expected, future economic value of the jointly 

developed inventions on the basis of EPO biotechnology patent data.  

We have revealed for our data that patents with shared intellectual property rights would 

have received significantly fewer citations if they had not been jointly applied. Besides the 

gain of knowledge with regards to content we have introduced nonparametric matching 

approaches as an adequate tool to address causal inference of research questions related to 

micro level patent data. 

Although every empirical study has severe shortcomings which we described, we 

contributed valuable, new empirical evidence to the topic of informal R&D agreements. 

On the basis of our empirical findings we are able to deduct some policy recommendations. 

First of all – recalling our findings of the empirical sections which are based on the surveys of 

university researchers – we have found strong evidence in our studies that knowledge 

continuously leaks out of university and research institution boundaries via informal 

technology transfer channels, despite changed legislation and the efforts of German 

universities to profit from the knowledge themselves. Obviously, German universities and 

research institutions are still in a learning process to increase the efficiency and usage of 

newly generated technology transfer mechanisms (e.g. technology transfer offices). We have 

shown that the decision of researchers to engage in informal technology transfer is almost 

purely incentive driven. Thus, next to the development and implementation of more 

efficient technology transfer mechanisms at German research institutions, also stronger 

incentives (e.g. enhanced research funds) for scientists to commercialize their findings and 

inventions via research institutions transfer channels should be provided. One rather 

extreme way to tackle this problem – at least in more applied scientific fields – would be to 
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integrate commercialization of knowledge activities in the tenure track programs of 

scientists.  

However there are two sides of the same coin: While research institutions on the one hand 

may lose future turnovers from their generated knowledge due to informal knowledge 

transfer activities of their scientists at least to some degree, we have outlined on the other 

hand, how important these informal science-industry knowledge flows are for the 

competitive advantage of firms, especially for firms in science based industries. Given this 

tradeoff, national policy makers should not have the ultimate incentive to prevent informal 

knowledge flows from science to industry, but rather to ensure, that national industries can 

benefit from these knowledge resources. 

A highly discussed topic in the context of the “European Paradox” has been the assumption 

of EU representatives that the EU might looses valuable scientific knowledge to competing 

nations like the US due to international mobility of European scientists (e.g. Van der Wende 

2007). 

In this context, a rather intuitive, but from our view wrong way would thereby to give more 

incentives to the scientists to remain in their home countries. First of all, international 

research stays of scientists are nowadays an inherent part of the academic career and are 

necessary for the scientists in order to acquire complementary scientific knowledge. In 

addition to that, we have found evidence on the basis of our German sample that 

international mobility of scientists does not seem to lead to a brain drain, but rather to a 

brain circulation where the industries of both, the host and the home countries can profit. In 

fact, we have shown that at least for more short term, repetitive research stays, the firms of 

the home countries of the scientists tend to benefit even more compared to foreign firms, in 

terms of the extend of transferred knowledge.  

The activities of national politics to foster and support international mobility of scientists 

(e.g. providing more funds for research stays abroad), should thus be generally broadened, 

and specifically extended in the way that they allow and foster repetitive stays of scientists. 

In the context of the last two empirical chapters we have outlined, how informal knowledge 

agreements can be identified and analysed on the basis of patent data. Although the caveats 
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of using patent data to depict knowledge flows and knowledge collaborations are well 

described in the economic literature, we believe that we have empirically addressed two 

important phenomena that arise in the context of informal R&D collaborations between 

institutions. As a bottom line, the findings of our last two empirical chapters implicate that 

the R&D activities of firms – at least in the biotechnology industry – seem to be in first line 

an interactive and open process, as it has been described by the open innovation paradigm 

of Chesbrough (2003). Knowledge seems to circulate between the institutional actors in the 

biotechnology industry, and the line between industrial and scientific research is blurry to 

not existing. As a consequence, research institutions are only a provider of scientific 

knowledge for industrial research, but are actively transferring knowledge themselves 

(Gibbons 1994).  We have revealed that US research institutions, compared to research 

institutions of our developed countries are obviously very active in absorbing new 

knowledge that is created by industry. Given the competitive advantage of the US 

biotechnology industry, we have interpreted this finding as yet another building block that 

determines the economic competitiveness of a country’s biotechnology sector. While it is 

generally known that US research institutions interact closer with industry, compared to 

European research institutions (e.g. European Commission 2011), we believe that our 

empirical findings contribute a more detailed understanding on the characteristics of the 

knowledge sourcing process of research institutions and are therefore valuable for the 

“European paradoxon” discussion. 

Given this, we propose that scientists in Europe should be encouraged to consider not only 

the results of local/national industrial research, but also research activities from firms 

abroad as a valuable knowledge asset. In line with our previous findings this could mean that 

scientists should be encouraged to actively get in contact with research active firms, when 

they conduct research stays abroad.  

Besides, we have shown that the participation of firms in an open innovation process 

requires a rethinking of existing managerial routines. In this context, we have analyzed the 

phenomenon of patents with shared intellectual property rights, since they are frequently 

regarded to result from informal research collaborations. Although patents with shared 

intellectual property rights certainly remain an organizational and strategic challenge for 
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firms, we have found empirical evidence that firms seem to develop organizational routines 

to cope with those patents. 

We therefore believe, that firms should be supported and encouraged to build up 

organizational and strategic capabilities in order to cope with the challenges, which arise 

from the increasing openness of the innovation process.  

Several tasks remain for further research. Although we have contributed new empirical 

evidence, the topic of informal technology transfer still needs to be further explored, given 

its assumed importance in the era of the open innovation paradigm (Chesbrough 2003). 

Moreover we have shown that research on informal technology transfer can contribute 

important aspects in the discussion of the “European Paradox”.  

The availability of data that are sufficient for analyzing informal knowledge transfer activities 

of firms or for investigating the role of informal knowledge transfer for single innovation 

projects however remains a problem. Since informal knowledge flows and activities are 

traceable in patent data and other innovation project level data sets to only to a very limited 

extend, large scale micro level innovation surveys are needed to further explore the 

characteristics that surround informal R&D collaboration activities in the innovation process.  
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Table A1: Correlations (Chapter 4) 

 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 

1. Gender  1.000           

2. Tenure  0.167 1.000          

3. Percent time spent on grants-related research -0.021 -0.237 1.000         

4. Age (in logs) 0.121 0.479 -0.171 1.000        

5. Life sciences  -0.116 -0.080 0.075 0.034 1.000       

6. Other natural sciences  0.106 0.009 -0.027 -0.022 -0.424 1.000      

7. Engineering sciences  0.121 0.120 0.090 0.002 -0.310 -0.339 1.000     

8. Research group leader  0.092 0.239 -0.016 0.152 0.073 -0.052 0.015 1.000    

9. No of publications (in logs) 0.131 0.039 0.020 0.057 0.238 0.175 -0.245 0.294 1.000   

10. No of patent applications (in logs) 0.097 0.081 0.064 0.067 0.072 -0.048 0.221 0.147 0.128 1.000  

11. Size of the peer group at the scientist’s institution (in logs) 0.121 -0.034 0.120 -0.091 0.074 0.089 0.047 0.030 0.078 0.155 1.000 

Variance inflation factor (mean=1.42) 1.11 1.45 1.11 1.34 2.00 1.99 1.85 1.19 1.34 1.15 1.10 

Sample restricted to scientists with non-missing values for at least one informal technology transfer channel. 
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Table A2: Correlations - first stage of the selection model (Chapter 5) 

 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 

1. Availability of funding (d) 1.00               

2. Relative importance of scientists abroad 

(d) 0.02 1.00              

3. Career age (years) 0.03 -0.14 1.00             

4. Gender (d) -0.04 0.02 -0.22 1.00            

5. Employed at university (d) 0.03 -0.03 0.08 -0.04 1.00           

6. Employed at Fraunhofer institute (d) 0.01 -0.10 -0.03 -0.09 -0.17 1.00          

7. Employed at Max Planck institute (d) 0.02 0.11 -0.08 0.02 -0.29 -0.11 1.00         

8. Employed at Helmholtz institute (d) -0.03 0.03 -0.04 0.07 -0.44 -0.15 -0.22 1.00        

9. Patent application (d) -0.01 -0.12 0.16 -0.12 -0.07 0.21 -0.10 0.02 1.00       

10. Number of publications 0-3 (d) -0.02 -0.05 -0.10 0.05 -0.13 0.13 -0.04 0.05 -0.03 1.00      

11. Number of publications 4-6 (d) -0.05 0.02 -0.11 0.05 -0.07 0.04 -0.03 0.08 -0.03 -0.34 1.00     

12. Environmental sciences (d) 0.03 -0.07 0.03 0.03 -0.06 -0.08 -0.10 -0.01 -0.13 -0.01 0.05 1.00    



185 

 

13. Biology, chemistry, pharmacy (d) -0.04 0.06 -0.11 0.10 -0.08 -0.06 0.11 -0.02 0.12 -0.07 -0.02 -0.26 1.00   

14. Engineering sciences (d) 0.02 0.01 0.06 -0.08 -0.04 0.06 0.09 0.08 -0.15 0.01 0.00 -0.28 -0.43 1.00  

15. Medicine, psychology (d) -0.03 -0.06 0.04 -0.13 0.03 0.17 -0.12 0.04 0.24 0.11 0.05 -0.15 -0.24 -0.25 1.00 

Variance inflation factor (VIF) 1.01 1.06 1.15 1.10 1.95 1.36 1.57 1.81 1.23 1.26 1.22 1.85 2.33 2.41 1.83 

Condition number 12.56               
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Table A3: Correlations - second stage of the selection model (Chapter 5) 

 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15 16. 17. 18. 19. 20. 

1. Medium-term stay (d) 1.00                    

2. Long-term stay (d) -0.18 1.00                   

3. Stay of indeterminate length (d) -0.22 -0.25 1.00                  

4. International orientation (ratio) -0.04 -0.15 0.11 1.00                 

5. Grant received (d) 0.05 0.00 -0.16 0.09 1.00                

6. Host country in Western Europe (d) 0.07 -0.02 -0.03 0.08 -0.02 1.00               

7. Host country in North America (d) 0.00 0.08 0.15 -0.08 -0.04 -0.71 1.00              

8. Career age (years) 0.08 -0.13 -0.46 -0.30 0.02 -0.04 -0.14 1.00             

9. Gender (d) -0.06 0.02 0.15 0.09 -0.12 0.03 0.04 -0.25 1.00            

10. Employed at university (d) -0.01 -0.11 0.22 0.02 -0.04 -0.09 0.13 -0.05 0.01 1.00           

11. Employed at Fraunhofer institute (d) -0.01 -0.08 -0.08 0.06 0.01 0.06 -0.05 0.05 -0.04 -0.11 1.00          

12. Employed at Max Planck institute (d) -0.03 0.21 -0.15 0.03 -0.06 0.00 0.01 0.01 0.00 -0.37 -0.07 1.00         

13. Employed at Helmholtz institute (d) 0.08 0.02 -0.21 -0.04 0.02 0.01 -0.01 0.12 0.01 -0.39 -0.08 -0.18 1.00        
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14. Patent application (d) 0.00 0.01 -0.07 -0.13 -0.02 -0.08 0.08 0.15 -0.12 -0.03 0.18 -0.07 0.00 1.00       

15. No. of publications 0-3 (d) -0.06 0.04 0.10 -0.02 0.00 0.07 0.00 -0.16 0.13 -0.07 0.03 -0.02 0.00 -0.03 1.00      

16. No. of publications 4-6 (d) 0.02 -0.04 0.06 0.02 0.04 -0.02 0.02 -0.08 0.05 -0.03 0.03 -0.06 0.09 -0.02 -0.24 1.00     

17. Environmental sciences (d) -0.05 -0.02 -0.06 0.10 0.05 0.03 -0.21 0.03 0.00 -0.01 -0.04 -0.11 -0.01 -0.12 -0.02 0.02 1.00    

18. Biology, chemistry, pharmacy (d) -0.07 0.18 0.06 -0.04 0.01 -0.02 0.07 -0.13 0.08 -0.02 -0.08 0.08 -0.10 0.11 -0.03 -0.03 -0.27 1.00   

19. Engineering sciences (d) 0.03 -0.13 -0.04 0.03 -0.04 0.05 0.01 0.11 -0.08 -0.10 0.04 0.15 0.13 -0.16 0.00 0.01 -0.30 -0.51 1.00  

20. Medicine, psychology (d) 0.09 -0.06 -0.13 -0.04 0.00 0.00 -0.04 0.09 -0.09 -0.01 0.12 -0.11 0.13 0.21 0.04 0.04 -0.11 -0.18 -0.20 1.00 

Variance inflation factor (VIF) 1.19 1.44 1.84 1.24 1.08 2.26 2.46 1,75 1.13 1.73 1.17 1.60 1.60 1.18 1.16 1.12 2.11 2.65 2.94 1.63 

Condition number 18.73                    
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Table A4: Percentiles of the citation lag distribution (Chapter 6) 

Percentiles of the citation lag distribution for the 

whole sample (15100 observations) 

Percentiles of the citation lag distribution after 

excluding observations with a citation lag of 

more than 9 years (13796 observations) 

1% 0 1% 0 

5% 0 5% 0 

10% 1 10% 1 

25% 2 25% 2 

50% 3 50% 3 

75% 6 75% 5 

90% 9 90% 7 

95% 12 95% 8 

99% 16 99% 9 
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Table A5: Distribution of the country of residence of the patent assignees incl. control patent pairs 

(Chapter 6) 

Country of residence of 

the applicant of the cited 

patent  Frequency 

Country of residence of the 

applicant of the citing patent  Frequency 

US 11552 US 11268 

JP 5623 JP 5724 

DE 3103 DE 3376 

GB 1731 CH 1256 

CH 1193 IT 444 

FR 827 BE 418 

NL 793 DK 270 

DK 456 AU 228 

SE 403 CA 190 

IT 338 AT 186 

BE 315 SE 168 

CA 223 IL 156 

AU 191 FR 115 

AT 170 GB 111 

IL 146 KR 108 

FI 120 FI 66 

AN 84 ES 64 

HU 56 CU 42 

ES 53 AN 38 

NO 34 TW 38 

KR 32 CN 24 

BB 20 HU 18 

IE 20 IE 14 

LI 18 SG 14 

ZA 13 ZA 12 

PA 12 NL 11 

BR 9 BB 10 

BG 7 BM 8 

LU 7 LI 8 
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BM 6 LU 8 

TW 5 PA 8 

CS 4 BR 6 

HR 4 HR 6 

PL 4 IN 6 

DD 3 NO 6 

NZ 3 NZ 6 

CN 2 BG 4 

VG 2 CS 4 

BS 1 SU 4 

IS 1 TC 4 

MY 1 UY 4 

PT 1 VE 4 

SG 1 VG 4 

SI 1 GR 2 

SU 1 HK 2 

TC 1 LT 2 

UY 1 SI 2 

YU 1 SM 2 

Total 27592 Total 27592 
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Table A6: Descriptive statistics for the control patent pairs (13796 observations) and the cited and citing patent pairs (13796 observations) (Chapter 6) 

 

Mean Std. Dev. Min Max Mean Std. Dev. Min Max

INDSCI 0 0 0 0 0,107 0,309 0 1

INDIND 0 0 0 0 0,909 0,288 0 1

COMMON_CITED 0,018 0,135 0 1 0,010 0,099 0 1

TECHCL 0,251 0,434 0 1 0,575 0,494 0 1

INTGINI 0,132 0,245 0 2,443 0,110 0,225 0 1,644

CULCL 0,228 0,420 0 1 0,343 0,475 0 1

ECVALUE 2,981 2,061 1 12 4,682 6,121 1 64

NOPATS_CITED 57,566 92,432 1 622 80,299 107,311 1 615

NOPATS_CITING 59,678 89,859 2 582 59,678 89,859 2 582

YEAR_DIFF 3,368 2,302 0 9 3,368 2,302 0 9

DE_CITED 0,124 0,329 0 1 0,101 0,302 0 1

US_CITED 0,409 0,492 0 1 0,428 0,495 0 1

JP_CITED 0,189 0,392 0 1 0,219 0,413 0 1

CH_CITED 0,032 0,176 0 1 0,055 0,227 0 1

FR_CITED 0,034 0,181 0 1 0,026 0,159 0 1

GB_CITED 0,067 0,250 0 1 0,058 0,234 0 1

NL_CITED 0,022 0,145 0 1 0,036 0,186 0 1

DE_CITING 0,122 0,328 0 1 0,122 0,328 0 1

US_CITING 0,408 0,492 0 1 0,408 0,492 0 1

JP_CITING 0,207 0,405 0 1 0,207 0,405 0 1

CH_CITING 0,046 0,208 0 1 0,046 0,208 0 1

FR_CITING 0,042 0,200 0 1 0,042 0,200 0 1

GB_CITING 0,040 0,197 0 1 0,040 0,197 0 1

NL_CITING 0,040 0,196 0 1 0,040 0,196 0 1

Control patent pairs Observed citing and cited patent pairs
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Table A7: Correlations (Chapter 6) 
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TECHCL 1

INTGINI -0,130 1

CULCL 0,046 0,001 1

ECVALUE 0,116 0,281 0,052 1

ECVALUESQ 0,071 0,146 0,052 0,838 1

NOPATS_CITED 0,037 -0,036 0,038 0,072 0,052 1

NOPATS_CITING 0,019 -0,041 0,003 0,025 0,068 0,070 1

COMMON_CITED -0,024 -0,015 -0,007 -0,020 -0,011 -0,041 -0,007 1

YEAR_DIFF -0,040 -0,018 -0,039 -0,052 -0,054 -0,016 0,072 -0,015 1

YEAR_DIFFSQ -0,035 -0,020 -0,032 -0,048 -0,041 -0,013 0,070 -0,015 0,955 1

DE_CITED -0,033 -0,006 -0,091 -0,064 -0,039 0,205 0,012 0,042 0,036 0,034 1

US_CITED 0,060 0,022 0,310 0,110 0,080 0,073 0,012 -0,019 -0,026 -0,023 -0,302 1

JP_CITED -0,047 -0,037 0,019 -0,070 -0,045 -0,083 0,002 -0,014 -0,006 -0,010 -0,180 -0,429 1

CH_CITED 0,024 -0,004 -0,106 0,087 0,048 0,133 0,002 -0,017 -0,001 0,001 -0,076 -0,180 -0,108 1

FR_CITED -0,008 -0,004 -0,072 -0,044 -0,021 -0,101 -0,007 0,044 0,011 0,010 -0,063 -0,149 -0,089 -0,037 1

GB_CITED -0,005 -0,001 -0,132 -0,017 -0,021 -0,093 -0,005 -0,020 -0,009 -0,010 -0,092 -0,220 -0,131 -0,055 -0,046 1

NL_CITED 0,011 -0,006 -0,070 -0,026 -0,018 -0,047 -0,025 -0,010 0,011 0,009 -0,061 -0,146 -0,087 -0,037 -0,030 -0,045 1

DE_CITING 0,018 -0,018 -0,106 -0,031 -0,022 0,035 0,282 -0,006 0,044 0,035 0,053 -0,025 -0,004 -0,005 -0,001 -0,005 -0,008 1

US_CITING 0,001 0,035 0,324 0,065 0,045 -0,004 -0,010 0,007 -0,060 -0,051 -0,018 0,074 -0,060 0,007 -0,026 0,009 -0,017 -0,310 1

JP_CITING -0,034 -0,044 0,014 -0,046 -0,028 -0,004 -0,113 -0,009 0,040 0,043 -0,004 -0,053 0,119 -0,023 -0,004 -0,016 -0,022 -0,191 -0,425 1

CH_CITING -0,003 0,002 -0,110 0,007 -0,005 0,002 0,200 0,005 -0,015 -0,011 -0,007 -0,005 -0,010 0,016 0,009 -0,005 0,011 -0,082 -0,181 -0,112 1

FR_CITING 0,023 0,001 -0,098 0,002 -0,005 -0,001 -0,085 0,003 0,022 0,012 0,000 -0,002 -0,017 -0,001 0,053 -0,007 0,014 -0,078 -0,173 -0,107 -0,046 1

GB_CITING 0,010 0,025 -0,090 0,033 0,029 -0,004 -0,070 0,004 -0,037 -0,031 -0,010 0,016 -0,017 -0,001 -0,007 0,021 -0,001 -0,076 -0,170 -0,105 -0,045 -0,043 1

NL_CITING 0,000 -0,001 -0,096 -0,015 -0,012 -0,018 -0,024 0,002 -0,003 -0,007 -0,003 -0,019 -0,022 0,010 0,004 0,011 0,055 -0,076 -0,169 -0,104 -0,045 -0,043 -0,042 1
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Table A8: T-Tests and test of proportions of dependent variables (Chapter 6) 

Variable 

Difference between 

INDIND and INDSCI 

   

TECHCL
b 0.092 *** 

CULCL
b 0.042 *** 

INTGINI
a -0.026 *** 

COMMON_CITED
b -0.019 *** 

ECVALUE
a 0.133  

ECVALUESQ
a 31.135  

NOPATS_CITED
a -5.377 * 

NOPATS_CITING
a 44.281 *** 

YEAR_DIFF
a 0.053  

YEAR_DIFFSQ
a 0.473  

DE_CITED
b 0.013  

US_CITED
b -0.021  

JP_CITED
b 0.032 *** 

CH_CITED
b -0.023 *** 

FR_CITED
b 0.001  

GB_CITED
b 0.005  

NL_CITED
b -0.001  

DE_CITING
b 0.023 * 

US_CITING
b -0.101 *** 

JP_CITING
b 0.107 *** 

CH_CITING
b 0.040 *** 

FR_CITING
b -0.045 *** 

GB_CITING
b 0.011 ** 

NL_CITING
b 0.002  

a t-test on the means, b test of proportions 
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Table A 9: Estimation results for selecting cited patents from 1978-2002 (10% percentile of citation 

lag distribution) (Chapter 6) 

 Industry to science (INDSCI) Industry to industry (INDIND) 

  Coef. Std.Err.   Coef. Std.Err.   

TECHCL -0,157 0,041 *** 0,551 0,034 *** 

INTGINI 0,059 0,077  -0,522 0,059 *** 

CULCL -0,074 0,048  0,309 0,040 *** 

ECVALUE 0,021 0,010 ** 0,031 0,009 *** 

ECVALUESQ 0,000 0,000 ** 0,000 0,000  

NOPATS_CITED 0,000 0,000  0,001 0,000 *** 

NOPATS_CITING -0,006 0,000 *** 0,002 0,000 *** 

COMMON_CITED 0,722 0,123 *** -0,573 0,105 *** 

YEAR_DIFF 0,010 0,029  0,007 0,023  

YEAR_DIFFSQ -0,002 0,003  0,003 0,003  

DE_CITED -0,066 0,094  -0,174 0,076 ** 

US_CITED 0,112 0,081  -0,230 0,066 *** 

JP_CITED -0,011 0,078  -0,091 0,064  

CH_CITED 0,378 0,118 *** -0,266 0,094 *** 

FR_CITED -0,192 0,128  0,066 0,105  

GB_CITED -0,121 0,110  0,091 0,093  

NL_CITED 0,088 0,118  0,005 0,099  

DE_CITING 0,155 0,083 * 0,184 0,071 ** 

US_CITING 0,179 0,064 *** -0,115 0,056 ** 

JP_CITING -0,265 0,075 *** 0,267 0,062 *** 

CH_CITING -0,467 0,124 *** 0,286 0,083 *** 

FR_CITING 0,317 0,108 *** -0,035 0,101  

GB_CITING -0,198 0,106 * 0,201 0,083 ** 

NL_CITING 0,136 0,118  -0,021 0,104   

CONS -0,894 0,256 *** 0,914 0,256 *** 

ATRHO -1,268 0,036 ***    

RHO -0,853 0,010     

Wald test of rho=0:   chi2(1) = 1245,78    Prob > chi2 = 0,000  
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27574 observations      
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Table A10: Estimation results for selecting cited patents from 1978-1996 (90% percentile of citation 

lag distribution) (Chapter 6) 

 Industry to science (INDSCI) Industry to industry (INDIND) 

  Coef. Std.Err.   Coef. Std.Err.   

TECHCL -0,134 0,044 *** 0,564 0,036 *** 

INTGINI 0,056 0,086  -0,537 0,061 *** 

CULCL -0,079 0,053  0,325 0,042 *** 

ECVALUE -0,004 0,014  0,029 0,010 ** 

ECVALUESQ 0,001 0,000 * 0,000 0,000  

NOPATS_CITED 0,000 0,000  0,001 0,000 *** 

NOPATS_CITING -0,006 0,001 *** 0,002 0,000 *** 

COMMON_CITED 0,580 0,139 *** -0,483 0,111 *** 

YEAR_DIFF -0,003 0,031  0,016 0,025  

YEAR_DIFFSQ -0,001 0,004  0,002 0,003  

DE_CITED -0,072 0,100  -0,188 0,080 ** 

US_CITED 0,127 0,087  -0,240 0,069 *** 

JP_CITED -0,036 0,083  -0,106 0,067  

CH_CITED 0,390 0,121 *** -0,278 0,096 *** 

FR_CITED -0,226 0,140  0,059 0,111  

GB_CITED -0,087 0,116  0,072 0,097  

NL_CITED 0,143 0,125  0,007 0,104  

DE_CITING 0,170 0,088 * 0,189 0,075 ** 

US_CITING 0,204 0,068 *** -0,118 0,058 ** 

JP_CITING -0,283 0,082 *** 0,276 0,065 *** 

CH_CITING -0,473 0,135 *** 0,284 0,087 *** 

FR_CITING 0,314 0,113 ** -0,019 0,105  

GB_CITING -0,197 0,112 * 0,208 0,087 ** 

NL_CITING 0,146 0,125  -0,021 0,108  

CONS -1,083 0,159 *** 0,610 0,139 *** 

ATRHO -1,209 0,037 ***    

RHO -0,836 0,011     

Wald test of rho=0:   chi2(1) =1079,71    Prob > chi2 = 0,000   
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25580 observations      
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Table A11: Full matching results (Chapter 7) 

Variable Mean 

P-value of two 

sided t-test on 

mean equality 

joint patent 

applicaton 

patent with 

single 

ownership 

PROPENSITY SCORE Unmatched 0,069 0,037 0,000 

Matched 0,069 0,067 0,283 

PRIOR Unmatched 0,661 0,362 0,000 

Matched 0,661 0,644 0,346 

LNMEANANZPAT Unmatched 3,613 2,974 0,000 

Matched 3,613 3,538 0,243 

NONPATCIT Unmatched 2,187 1,870 0,001 

Matched 2,187 2,014 0,259 

US Unmatched 0,429 0,559 0,000 

Matched 0,429 0,435 0,734 

JP Unmatched 0,227 0,172 0,000 

Matched 0,227 0,223 0,823 

GB Unmatched 0,195 0,079 0,000 

Matched 0,195 0,194 0,925 

FR Unmatched 0,028 0,045 0,002 

Matched 0,028 0,027 0,909 

DE Unmatched 0,121 0,145 0,013 

Matched 0,121 0,121 0,954 

IPC1 Unmatched 0,090 0,090 0,988 

Matched 0,090 0,088 0,895 

IPC2 Unmatched 0,013 0,011 0,366 

Matched 0,013 0,013 1,000 

IPC3 Unmatched 0,770 0,771 0,894 

Matched 0,770 0,771 0,929 

IPC4 Unmatched 0,004 0,001 0,000 

Matched 0,004 0,004 1,000 
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IPC7 Unmatched 0,123 0,127 0,599 

Matched 0,123 0,123 1,000 

Year1984 Unmatched 0,013 0,019 0,112 

Matched 0,013 0,013 1,000 

Year1985 Unmatched 0,018 0,022 0,356 

Matched 0,018 0,018 1,000 

Year1986 Unmatched 0,016 0,024 0,044 

Matched 0,016 0,016 1,000 

Year1987 Unmatched 0,018 0,028 0,024 

Matched 0,018 0,018 1,000 

Year1988 Unmatched 0,028 0,032 0,370 

Matched 0,028 0,028 1,000 

Year1989 Unmatched 0,028 0,035 0,142 

Matched 0,028 0,028 1,000 

Year1990 Unmatched 0,025 0,039 0,009 

Matched 0,025 0,025 1,000 

Year1991 Unmatched 0,034 0,038 0,437 

Matched 0,034 0,034 1,000 

Year1992 Unmatched 0,020 0,039 0,000 

Matched 0,020 0,020 1,000 

Year1993 Unmatched 0,028 0,035 0,174 

Matched 0,028 0,028 1,000 

Year1994 Unmatched 0,034 0,039 0,286 

Matched 0,034 0,034 1,000 

Year1995 Unmatched 0,035 0,043 0,136 

Matched 0,035 0,035 1,000 

Year1996 Unmatched 0,041 0,048 0,214 

Matched 0,041 0,040 0,924 

Year1997 Unmatched 0,086 0,055 0,000 

Matched 0,086 0,086 1,000 
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Year1998 Unmatched 0,118 0,069 0,000 

Matched 0,118 0,119 0,954 

Year1999 Unmatched 0,063 0,082 0,012 

Matched 0,063 0,064 0,939 

Year2000 Unmatched 0,083 0,089 0,501 

Matched 0,083 0,083 1,000 

Year2001 Unmatched 0,114 0,095 0,021 

Matched 0,114 0,114 1,000 

Year2002 Unmatched 0,116 0,089 0,001 

Matched 0,116 0,116 1,000 

Year2003 Unmatched 0,082 0,080 0,831 

Matched 0,082 0,081 0,946 

CITATIONS Unmatched 0,380 0,384 0,910 

Matched 0,380 0,292 0,021 
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