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1. General introduction 

Maize (Zea mays L.) is one of the most important crop species with an annual 

production of about 844,358,253 tonnes (FAO, 2011). It is therefore of great economic 

interest to develop and deploy new techniques that can enhance the efficiency and cost-

effectiveness of maize breeding programs. One such technique, genomic selection (GS), 

also known as genome-wide selection, is a relatively new approach that involves using 

genome-wide molecular marker information to improve plant and animal breeding. 

Recent and continuing advances in molecular marker technology have greatly reduced 

the cost of molecular marker information for plant and animal breeders alike and 

thereby enabled widespread use of genomic selection in breeding programs. The maize 

breeding sector was one of the first plant breeding sectors to implement genomic 

selection in industrial breeding programs. The importance of maize makes the 

improvement and implementation of GS in maize breeding programs of significant 

economic interest and importance worldwide.  

 

Genomic selection was first proposed by Meuwissen et al. (2001) to improve the 

efficiency and cost-effectiveness of plant and animal breeding programs. In contrast to 

the traditional marker-assisted selection (MAS) methods, where only selected subsets of 

markers are used, GS uses all the available marker information to predict breeding 

values. The aim of GS is to predict breeding values instead of detecting single 

quantitative trait loci (QTL). Thus, no significant tests to identify markers linked to 

QTL with large effects on a trait are used (Meuwissen et al., 2001). Traditional marker-

assisted selection methods are best suited for traits controlled by a few QTL with large 

effects (Lande and Thompson, 1990; Holland, 2004; Xu and Crouch, 2008; Bernado, 

2008), and perform poorly when used to estimate effects of QTL with small effect sizes 

(Lande and Thompson, 1990; Xu and Crouch, 2008; Bernado, 2008). However, 

quantitative traits are mainly controlled by many QTL with small effects (Kearsey and 

Farquhar, 1998; Bernardo, 2002). To accurately predict a quantitative trait it is crucial to 

use all the QTL affecting the trait in a marker-assisted selection exercise and not only 

the particular subset of markers which are in high linkage disequilibrium with QTL 

having large effects (Meuwissen et al., 2001). GS therefore achieves high accuracy by 

simultaneously estimating the effects of all the available markers without first 

prescreening the markers using significance tests to identify the most important and 

relevant markers. To ensure that at least one marker is in high linkage with a QTL the 



2                                                                                                    1. General introduction 

markers must cover the entire genome. Recent advances in single nucleotide 

polymorphism (SNP) marker genotyping technologies ensure this requirement 

(Syvänen, 2005; Li et al., 2008). Currently, thousands of SNP markers are available for 

most livestock species while for maize it is common to use 50,000 SNP markers. The 

cost of genotyping of these markers is currently reasonably low and will almost 

certainly continue to decline further as the genotyping technology platforms become 

increasingly more efficient. 

 

Several studies have demonstrated the importance of GS in maize breeding (Lorenzana 

and Bernardo, 2009; Piepho, 2009; Crossa et al., 2010; Albrecht et al., 2011; Heslot et 

al., 2012; Riedelsheimer et al., 2012). GS has also been shown to improve the gain per 

unit time over traditional marker-assisted selection methods (Heffner et al., 2010). 

Moreover, GS is advantageous over the classic approach of using only the pedigree 

information (Crossa et al., 2010; Albrecht et al., 2011). These studies and others have 

proposed various statistical methods for GS. However, interest in increasing the 

predictive accuracy and applicability of the methods used for GS argues for the need to 

develop novel approaches or extensions of existing approaches to enhance their 

accuracy in GS. In this thesis a few commonly used methods are extended and new 

approaches are proposed to improve the accuracy of GS in particular in maize breeding. 
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1.1. Genomic selection for breeding value estimation 

Genomic selection is based on using regression models relating phenotypic data to 

molecular marker information to predict expected genomic breeding values. The 

statistical models are fitted to a training population consisting of individuals with both 

phenotypic and genotypic data to estimate the effects of all the markers. The estimated 

marker effects can then be used to predict genotypic values for target populations with 

individuals that have been genotyped with the same markers as the training population 

but which are lacking phenotypic information (Figure 1). The methods commonly 

assume additive marker effects. Therefore predicted values for the untested genotypes 

are computed as the sum of all the additive marker effects, called genomic estimated 

breeding values (GEBV). These GEBVs are then used to guide selection decisions. The 

GS approach therefore both expedites and increases the cost-effectiveness of the plant 

breeding program because not all genotypes have to be tested in field trials (Bernado 

and Yu, 2007; Mayor and Bernado, 2009; Heffner et al., 2010; Jannink et al., 2010). 

Thus, the gain per unit time is increased (Heffner et al., 2009; 2010). 

 

 

 
 

Figure 1: A schematic diagram illustrating genomic selection, starting from the training 

and target populations through prediction of genomic estimated breeding values 

(GEBV) to select candidates. It is important to note that while only a single instance of 

model training is depicted here, training can be performed continually as new phenotype 

and marker data become available (modified from Heffner et al., 2009). 

 

The phenotypic data used for GS in plant breeding experiments are normally adjusted 

means derived from a statistical model fitted to the raw plot data in a step called 

phenotypic analysis. The whole process of obtaining GEBVs consists of at least two 

stages, namely the phenotypic analysis and the genomic analysis stages. The splitting of 

GS into two or more steps proceeds in the same spirit of stage-wise approaches used in 

Training population: 

phenotyped in fields trials 
and genotyped with 
molecular markers 

Prediction of GEBVs  
of the target population:  

based on their genotypic 
information 

 
Selection of candidates:  
 based on GEBVs 

 
Train the GS model: 

estimation of marker 
effects 

Target population: 

not phenotyped, but 
genotyped with molecular 
markers 
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analysis of a series of plant breeding experiments (Smith et al., 2001; Möhring and 

Piepho, 2009; Welham et al., 2010; Piepho et al., 2011). For a series of plant breeding 

experiments, a single-stage analysis is regarded as the gold standard because it can fully 

account for the entire variance-covariance structure of the observed data (Smith et al., 

2001). Therefore, if the whole GS analysis is split into different steps, the different steps 

should collectively be able to approximately recover a single-stage analysis (Piepho, 

2009). 

 

1.2. Statistical methods for genomic selection  

Using high density markers presents a general problem for GS, because the number of 

markers (p) can far exceed the number of observations (n), thus precluding the use of 

the standard multiple linear regression methods without first performing variable 

selection to appropriately reduce the number of markers. Many different methods have 

been proposed to overcome this limitation and used for GS to simultaneously estimate 

all the marker effects without having to first do significant tests to select a subset of 

markers. The proposed approaches include, but are not restricted to mixed models 

(Meuwissen et al., 2001; Piepho, 2009), Bayesian procedures (Meuwissen et al., 2001; 

Habier et al., 2011), machine learning methods (Long et al., 2007; Ogutu et al., 2011) 

and regularized regression methods (Heslot et al., 2012; Ogutu et al., 2012).  

 

Meuwissen et al. (2001) were the first to propose a mixed model for GS, where the 

marker effects or chromosomal segments are taken as random effects, so that the best 

linear unbiased predictions (BLUP) of the marker effects can be generated. The model 

assumes that the marker effects are independent random draws from a common normal 

distribution. All the marker effects are drawn from the same distribution. Therefore each 

marker has the same variance and all estimated marker effects are shrunken equally 

towards zero. The marker variance can be estimated as a function of the total genetic 

variance and used as fixed variance in the GS analysis (Meuwissen et al., 2001; 

Bernardo and Yu, 2007; Habier et al., 2007). Alternatively, the restrictive assumption of 

a common fixed marker variance can be lifted by directly estimating the marker 

variance by restricted maximum likelihood (REML) in the GS analysis (Piepho, 2009). 

This method is commonly known as ridge regression BLUP (RR-BLUP). 
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A variety of Bayesian approaches have also been proposed to overcome the restrictive 

assumption of a homogenous marker variance, because it can lead to an underestimation 

of QTL with large effects (Meuwissen et al., 2001). In a first approach, called BayesA, 

each marker effect is drawn from its own normal distribution, allowing the variances to 

differ among the markers. The prior distribution of variances of the markers is a scaled, 

inverted chi-square distribution. Thus each marker effect is shrunken toward zero 

differently. In a second Bayesian approach, called BayesB, the possibility that some 

markers can have zero variances is explicitly accounted for (Meuwissen et al., 2001). 

BayesB uses a prior distribution for the marker variance that assumes that the marker 

variance is zero with a known probability ( ) but non-zero otherwise. Similar to 

BayesA each no-zero marker effect is drawn from its own normal distribution. Several 

refinements have been undertaken to address problems related to the impact of prior 

distributions assumed for BayesA and BayesB on genomic predictions, including 

BayesC . In BayesC , the prior probability ( ) that a marker has a zero effect is 

treated as an unknown to be estimated. For all the other markers with a  1  

probability of having a non-zero effect, a single variance is assumed, similarly to RR-

BLUP, instead of a marker-specific variance, as assumed for BayesA and BayesB 

(Habier et al., 2011).  

 

Despite the different assumptions made by the different Bayesian methods, the 

predictive accuracies for quantitative traits are often similar to each other (Habier et al. 

2011) and to RR-BLUP based on real datasets for animal and plant breeding 

populations (e.g. Hayes et al., 2009a; VanRaden et al., 2009; Verbyla et al., 2009; 

Crossa et al., 2010; Heslot et al., 2012). The difference in performance between BayesB 

and RR-BLUP on real datasets is actually much lower than has been suggested by some 

simulation studies (Hayes et al., 2009a; VanRaden et al., 2009). Moreover, no method 

has emerged as clearly the best based on a wide variety of tested traits and species (e.g. 

Heslot et al., 2012). However, at least in theory, the different methods are best suited to 

predict different types of traits. Thus, using a method that shrinks the marker effects 

equally can lead to an underestimation of large effect QTL (Meuwissen et al., 2001; Xu, 

2003; Verbyla et al., 2009), whereas BayesA and BayesB can better fit data with a few 

QTL each with large effects (Hayes et al., 2009b; Verbyla et al., 2009). This can be 

advantageous when estimating some traits, such as the fat percentage of milk in dairy 

cattle, which is controlled primarily by a polymorphism in the DGAT1 gene (Grisart et 
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al., 2002). Models allowing for individual marker variances, such as BayesA, can fit 

such large effects better than models assuming a homogenous marker variance, such as 

BLUP methods (Hayes et al., 2009b; Verbyla et al., 2009). However, for traits 

controlled by many genes with small effects, differences between Bayes and BLUP 

methods are typically negligible (e.g. Hayes et al., 2009b; Verbyla et al., 2009).  

 

The most relevant traits in maize breeding are mostly complex quantitative traits. Thus, 

it is assumed that an infinitesimal genetic model, which assumes a large number of QTL 

with small effects, would be reasonable for most relevant traits in maize breeding 

(Schön et al., 2004; Riedelsheimer et al., 2012). The assumption underling RR-BLUP is 

thus consistent with the infinitesimal genetic model. Thus, the prediction accuracy of 

RR-BLUP can be relatively high for quantitative traits from maize breeding populations 

(Lorenzana and Bernardo, 2009; Albrecht et al., 2011; Heslot et al., 2012; Zhao et al., 

2012). Moreover, it is feasible to extend RR-BLUP to allow for heterogeneous marker 

variances (Meuwissen, 2009: Piepho, 2009) and to exclude markers with estimated zero 

variances in the spirit of BayesB (Piepho, 2009).  

 

The regularized regression methods can be used even if the number of predictors far 

exceeds the number of observations, through the use of appropriate penalty functions. 

The regularized regression methods are intimately related to RR-BLUP (Ruppert et al., 

2003). RR-BLUP is a mixed model which can be viewed as a ridge regression model, in 

which the penalty term is estimated by the quotient of the residual and the marker 

variance components (Ruppert et al., 2003; Piepho, 2009). The penalty term can be 

chosen by different data-driven methods, for example by cross-validation (Ruppert et 

al., 2003). The close connection between regularized regression and mixed models 

implies that both types of methods may be expected to have similar predictive 

accuracies for GS. This was recently demonstrated by simulation and empirical studies 

for several regularized regression methods, including the elastic net, LASSO and ridge 

regression models (Heslot et al., 2012; Ogutu et al., 2012).  

 

Other machine learning methods with demonstrated high performances in many 

application domains have also recently been tried for GS, including random forest, 

boosting, support vector machines and artificial neural networks (González-Recio and 

Forni, 2011; Ogutu et al., 2011; Heslot et al., 2012). These methods efficiently handle 

the problem of far more markers than the number of observations and are not only 
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restricted to regression problems involving quantitative traits alone but can also be used 

for classification problems (Drucker et al., 1997; Bühlmann and Hothorn, 2007; Hastie 

et al., 2009). Random forest is potentially attractive for GS because it can accommodate 

complex interactions between markers, nonlinear effects of markers and makes no 

distributional assumptions about the predictor variables (Breiman, 2001). Nonetheless, 

evidence available so far suggests similar performance of these machine learning 

methods and RR-BLUP (Ougtu et al., 2011; Heslot et al., 2012). 

 

Overall, predictive accuracies of statistical methods tested for GS are broadly 

comparable, even though particular types of methods may be preferable for specific 

traits. Mixed models possess the appealing property that they can readily be extended 

by adding more fixed and random effect terms to account for extra sources of variation, 

such as design and genotype-environment interaction effects, and to accommodate 

heterogeneous variance components (Piepho, 2009). Therefore, mixed models are of 

special interest for GS, because they are flexible and competitive with other methods. 

Consequently, mixed models form the central focus of this thesis.  

 

1.3. Mixed models for genomic selection 

The following mixed model for adjusted means of genotypes is commonly used for GS 

(Piepho, 2009): 

 

eZuy n  1 ,                                                                                                            (1) 

 

where y  is an n -vector of adjusted means per genotype, n1  is an n -vector of ones,   

is a common intercept, Z  is an pn  covariate matrix of p  markers for n  genotypes, 

where biallelic markers with alleles 1A  and 2A  are commonly coded as 1 for 11 AA , as -1 

for 22 AA and coded as 0 for 21 AA , 12 AA  and missing values, u  is a vector of random 

marker effects with 

 

 2,0~ upINu  , 

 

where the variance-covariance matrix of u  is the product of the p-dimensional identity 

matrix ( pI ), and the variance of marker effects ( 2

u ). The residual error associated 

with y , e  is assumed to follow 
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 2,0~ enINe   

 

where nI  is an n -dimensional identity matrix and 2

e  is the residual variance.  

 

Estimates of marker effects can be obtained by 

 

  yZDZZu TT ~ˆ~~~ 1
2



  , 

  

where  ZZ n1
~
 ,  

pID  0  with  denoting the direct sum (Searle et al., 1992), 

222 ˆˆˆ
ue   , and  TT uu ,~  . 

 

This expression is commonly known as the “ridge regression” formulation of BLUP 

(Ruppert et al., 2003), and is called ridge regression BLUP (RR-BLUP). 

 

Model (1) can be re-written to estimate genotypic instead of marker effects by 

specifying the variance-covariance of the genotypes in terms of the marker information 

(Piepho, 2009), which is a useful strategy if the number of markers exceeds the number 

of genotypes (VanRaden, 2008; Piepho et al., 2012). 

 

egy n  1 ,                 (2) 

 

where Zug  , 2)var( uGg   and TZZ , TZ denotes the transpose of Z  and e  

is defined as in (1). BLUPs of u  can be obtained, if   is positive-definite, and hence 

invertible as (Henderson, 1977) 

 

gZu T ˆˆ 1 . 

 

In the case   is not positive-definite random effects of u  can be predicted by  

 

  ˆ1ˆˆˆ 12

n

T

u yVZu   , 

 

because the estimated variance-covariance matrix of y  (V̂ ) is generally positive-

definite even when   is not. 

 



1. General introduction 9 

In model (2) the covariance between two genotypes is modelled as a function of the 

distance between their marker profiles, similarly to the idea of modelling the 

covariances between pairs of observations made at different spatial locations as 

functions of their separation distances in geostatistics (Schabenberger and Gotway, 

2005). The spatial distances are replaced here by genetic distances, calculated as 

multidimensional Euclidean distances between the markers for all possible pairs of 

genotypes (Piepho, 2009). 

 

 )( 'iidf  

 

where 'iid  is the Euclidean distance between genotypes i  and 'i , defined as 

|||| '' iiii zzd  , with iz  equal to the i -th row of Z , and )(df  is some monotonically 

decreasing function of d . It has been shown that the RR-BLUP model is equivalent to a 

quadratic spatial model, where )(df  has a quadratic function (Piepho, 2009). There are 

many other different options available for the )(df  function (Schabenberger and 

Gotway, 2005; Piepho, 2009; Ober et al., 2011). A different but equivalent formulation 

of this geostatistical model for GS in terms of simple and universal kriging was recently 

proposed by Ober et al. (2011). These geostatistical models are closely related to the 

reproducing kernel Hilbert spaces regression model, a regularized regression model that 

uses kernel functions, such as the Gaussian kernel, to compute the distances between 

marker profiles for pairs of genotypes for the function )(df  and that can therefore 

allow for possibly nonlinear marker effects on quantitative traits (Gianola and van 

Kaam, 2008).  

 

1.4. Extensions and refinements of genomic selection methods 

The basic models for GS can be extended or refined in several different ways. For the 

mixed models, the residual variance can be fixed through an independent estimate made 

at the phenotypic analysis stage when adjusted means are calculated. Fixing the residual 

variance can avoid overfitting, because it prevents the markers from capturing the non-

genetic error variance (Piepho, 2009). Moreover, polygenetic effects can be included in 

mixed models to account for genetic variance not captured by the markers. This is 

commonly done in animal breeding studies using a random genotype effect, where the 

variance-covariance structure depends on the pedigree information (e.g. Calus and 
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Veerkamp, 2007). It is also possible to use independent random genotype effects, even 

if pedigree information is unavailable (Piepho, 2009).  

 

Accurate prediction of GEBVs requires numerous markers; if many markers actually 

have zero effects and the effects are estimated by BLUP as non-zero, then their 

cumulative effect adds noise to the estimated marker effects (Goddard and Hayes, 

2007). As a consequence predictive accuracy can be enhanced by excluding subsets of 

markers with no effects that otherwise would compromise the accuracy of prediction of 

genomic breeding values (Hayes et al. 2009a; Macciotta et al., 2009). Alternatively, 

some methods automatically select the most significant and pertinent markers, e.g. 

BayesB, lasso-type models, componentwise and twin boosting algorithms (Meuwissen 

et al., 2001; Bühlmann and Hothorn, 2007, 2010; Ougtu et al., 2012). 

 

In general, the prediction of GEBVs is influenced by both the phenotypic analysis 

preceding the marker-based analysis plus non-marker information included in the 

marker-based methods. Clearly, genomic selection is not necessarily restricted to 

marker-based prediction but rather is a general approach for accurately predicting 

GEBVs based on the raw phenotypic data, marker information and non-marker effects 

using various statistical models applied in several stages.  

 

1.5. Aims and objectives 

The overall goal of this study was to develop and comparatively evaluate different 

approaches for accurately predicting genomic breeding values in GS, with GS viewed as 

a general approach, incorporating all the different stages from phenotypic analysis of 

the raw data to the marker-based prediction of the breeding values. In particular, the 

specific objectives were the following. 

 

(1) Develop different approaches for using information from analyses preceding the 

marker-based prediction of breeding values for GS. Normally, adjusted means obtained 

from an analysis of the raw phenotypic data are used for GS leading to a stage-wise 

analysis. From the phenotypic analysis stage an estimate of the error variance can be 

obtained and used as a fixed residual variance component in the subsequent stage of GS 

(Chapter 2). Since the adjusted means are often correlated, in particular when trial 

designs are unbalanced, it may be crucial to preserve and carry forward the information 

contained in the variance-covariance matrix from the phenotypic analysis stage to the 
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marker-based prediction stage of GS (Chapter 4). Furthermore, excluding markers with 

no effects, or with inconsistent effects among crosses, environments or generations can 

increase predictive accuracy (Chapters 3 and 5). The predictive accuracy of GS may still 

be further improved by conducting residual diagnostics at the phenotypic analysis stage 

of field trials to identify and eliminate outlying observations (Chapter 6). 

 

(2) Extend and/or suggest efficient implementations of statistical methods used at the 

marker-based prediction stage of GS, with a special focus on improving the predictive 

accuracy of GS in maize breeding. The basic RR-BLUP methods were modified in 

several different ways in an attempt to enhance their predictive accuracies and/or 

accommodate non-marker effects. To this end different strategies for modeling 

polygenic effects were explored and tested (Chapter 2). The models were also modified 

to accommodate the main marker effects only, as well as the main plus specific marker 

effects for a variety of environments (Chapters 5). This was achieved by testing if it is 

necessary to account for marker effects in phenotypic analysis across different 

environments or if the marker information can be omitted until the very last stage of the 

stage-wise analysis (Chapter 5). Moreover, GS using multiple populations was 

compared to analysing each population separately and to an analysis, where both the 

main and populations-specific marker effects are simultaneously estimated (Chapter 6). 

Also considered was a modification of the RR-BLUP model allowing different subsets 

of markers to have different variances (Chapter 3). Beside these modifications of the 

RR-BLUP method, different spatial models and machine learning methods, including 

regularized regression methods, namely component-wise boosting, ridge regression, 

LASSO and the elastic net were also used for GS and their performances compared with 

those of RR-BLUP (Chapters 2, 3, 4 and 6). 

 

(3) Compare different approaches to reliably evaluate and compare methods for GS. 

Several cross-validation (CV) schemes were proposed and used to evaluate and 

compare the different GS approaches (Chapters 3 to 6). One of the proposed schemes 

attempted to satisfy the fundamental assumption underlying the proper use of CV, 

namely that the training and validation sets are independent (Chapter 4). Because CV 

can sometimes be computationally too demanding to implement for certain large 

problems, several different alternative model selection criteria are proposed and 

evaluated (Chapter 2 and 5). 
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Abstract  

Genome-wide selection (GS) involves estimating breeding values using molecular 

markers spanning the entire genome. The success of GS approaches will depend 

crucially on the availability of efficient and easy-to-use computational tools. Therefore, 

approaches that can be implemented using mixed models hold particular promise and 

deserve detailed study. A particular class of mixed models suitable for GS is given by 

geostatistical mixed models, when genetic distance is treated analogously to spatial 

distance in geostatistics. 

We consider various geostatistical mixed models for use in GS. The analyses presented 

for the QTL-MAS 2009 dataset pay particular attention to the modelling of residual 

errors as well as of polygenetic effects. 

It is shown that geostatistical models are viable alternatives to ridge regression best 

linear unbiased prediction, one of the common approaches to GS. Correlations between 

genome-wide estimated breeding values and true breeding values were between 0.879 

and 0.889. In the example considered, we did not find a large effect of the residual error 

variance modelling, largely because error variances were very small. A variance 

components model reflecting the pedigree of the crosses did not provide an improved 

fit. Therefore geostatistical models deserve further study as a tool to GS that is easily 

implemented in a mixed model package.
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Abstract  

Accurate prediction of genomic breeding values (GEBVs) requires numerous markers. 

However, predictive accuracy can be enhanced by excluding markers with no effects or 

with inconsistent effects among crosses that can adversely affect the prediction of 

GEBVs. 

Therefore we present three different approaches for pre-selecting markers prior to 

predicting GEBVs and assess the extent to which pre-selection of markers improves 

prediction accuracy. Four different best linear unbiased prediction (BLUP) methods, 

including ridge regression and three geostatistical models were used and the 

performances of the models were evaluated using 5-fold cross-validation. 

Ridge regression BLUP and the geostatistical models gave almost similar fits. Pre-

selecting markers was beneficial. Thus excluding markers with inconsistent effects 

among crosses increased the correlation between GEBVs and true breeding values of 

the non-phenotyped individuals from 0.607 (using all markers) to 0.625 (using pre-

selected markers). Moreover, extension of the ridge regression model to allow for 

heterogeneous variances between the n (n =5, 10, 50, 100, 250) most significant 

markers and the remaining markers only marginally increased the accuracy of 

prediction (from 0.625 to 0.648) for the simulated dataset for the QTL-MAS 2010 

workshop.  
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Abstract 

Genomic selection (GS) is a method for predicting breeding values for plants or animals 

using many molecular markers that is commonly implemented in two stages. In plant 

breeding the first stage usually involves computation of adjusted means for genotypes 

which are then used to predict genomic breeding values (GEBVs) in the second stage. 

Classical stage-wise approaches to GS suffer from either approximating, or ignoring 

correlations among the adjusted means by assuming that the means are independent. We 

comparatively evaluated the performance of a new stage-wise method for GS, which 

uses rotation to ensure the means are approximately independent, and that is fully 

efficient relative to a single-stage approach given known variance components. 

Specifically, we compared two classical stage-wise approaches, which either ignore or 

approximate correlations among the means by a diagonal matrix, and the new method to 

a single-stage analysis for GS. We further evaluated the predictive performance of the 

new method when implemented by ridge regression best linear unbiased prediction 

(RR-BLUP) and componentwise linear least squares boosting using 5-fold cross-

validation. The new stage-wise approach with rotated means was more similar to the 

single-stage analysis than the classical two-stage approaches based on non-rotated 

means for two unbalanced datasets. This suggests that rotation is a worthwhile pre-

processing step in GS for the two-stage approaches for unbalanced datasets. Moreover, 

the predictive accuracy of stage-wise RR-BLUP was higher (5.0 to 6.1%) than that of 

boosting. 
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Abstract 

Genomic selection (GS) is a method used to predict the effects of molecular markers. 

The predicted marker effects are then summed to derive genomic breeding values for 

genotypes. GS has been routinely implemented in plant breeding in two stages. The first 

stage usually omits the marker information and estimates adjusted means of genotypes 

across environments. The second stage then uses the adjusted means to predict genomic 

breeding values. However, if the effects of markers vary substantially between different 

environments, it may important to account for this variation in genomic prediction for 

varieties adapted to different environments. Using two maize datasets, we investigated 

if modelling the marker-by-environment interaction can improve the predictive ability 

of GS relative to modelling genotype-by-environment interaction alone. Modelling the 

marker-by-environment interaction only slightly increased the predictive ability of GS 

relative to modelling only the genotype-by-environment interaction based on two 

different datasets. Moreover, predictive ability did not reduce substantially even when 

the number of markers with consistent effects across environments used for genomic 

prediction was reduced to about 50. Overall, accounting for environment-specific 

marker effects had a relatively minor influence on predictive ability for the tested 

datasets. Thus, GS carried out in a stagewise fashion, as is currently commonly done in 

plant breeding such that the marker information is omitted until the very last stage of the 

process, may suffice for most practical purposes. 
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Abstract  

Genomic selection (GS) is a marker-based method for predicting genomic breeding 

values that involves simultaneous estimation of the effects of many markers or 

chromosomal segments. Using different populations in GS studies raises the possibility 

that the marker effects may vary substantially across populations. Models for analysing 

datasets consisting of multiple populations need to include population-specific marker 

effects to account for such inter-population variation. However, common models for GS 

only account for the main marker effects, assuming that they are consistent across 

populations. Here, we present an approach in which the main plus population-specific 

marker effects are simultaneously estimated in a single mixed model. The predictive 

ability of the model were evaluated using 5-fold cross-validation and compared to that 

of ridge regression best linear unbiased prediction (RR-BLUP) method, involving only 

either the main marker effects or the population-specific marker effects. We used a 

maize breeding dataset with 312 testcross genotypes derived from five different 

biparental populations which were genotyped with a 50k SNP chip. A combined 

analysis incorporating all the populations was better than separate analyses for each 

population. Modelling the main plus the population-specific marker effects 

simultaneously only slightly improved predictive ability compared to modelling only 

the main marker effects, especially when the number of markers was reduced. The 

performance of the RR-BLUP method was comparable to that of two popular 

regularization methods, namely the ridge regression and the elastic net and was more 

accurate than that of the LASSO. Overall, combining information from related 

populations improved predictive ability, but further allowing for population-specific 

marker effects made minor improvement. 
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7. General discussion 

This chapter discusses the key results of this thesis research and anchors them within 

the broad context of the current literature on genomic selection (GS). The chapter is 

organized around the following three major thematic areas. First the analyses preceding 

the marker-based prediction stage of genomic selection are discussed. This is followed 

by the statistical methods for marker-based prediction in GS and the discussion of the 

approaches for reliably evaluating and comparing methods for GS. The chapter ends 

with a summary of the key findings from this research.  

 

Genomic selection is a method that uses molecular markers to predict genomic breeding 

values. Different methods have been proposed and implemented in an effort to get 

accurate predictions for GS. This thesis focuses on the use of mixed models, a popular 

class of models for GS, in particular ridge regression best linear unbiased prediction 

(RR-BLUP) and its various extensions. Comparative evaluations of the performances of 

RR-BLUP and its variants for GS using quantitative traits in maize breeding revealed 

only minor differences in accuracy. Regularized regression and machine learning 

methods, moreover, did not substantially improve predictive accuracy of GS relative to 

RR-BLUP or of its different variants. It is demonstrated, furthermore, that the accuracy 

of genomic prediction using molecular markers is influenced at different stages of the 

prediction process. This emphasizes the fact that, besides optimizing the marker-based 

prediction, the decisions made in the analyses preceding the marker-based prediction 

stage can significantly affect the quality of genomic predictions.  

 

7.1. Analyses preceding the marker-based prediction stage of GS  

The quality and reliability of phenotypic data are important to the accuracy of GS and 

should be enhanced as much as practicable using efficient field trial designs and 

phenotypic data analyses (Chapter 6). Recommended field trial designs should strive to 

test genotypes using replicated genotypes distributed over several representative 

locations and years (Kempton and Fox, 1997). Phenotypic analyses should attempt to 

identify and exclude potential outlying observations from datasets, as is routinely done 

in plant breeding studies (Fox et al., 1997). The analysed empirical datasets were based 

on augmented designs where the genotypes of interest were not replicated within a 

location and the dataset contained observations from one year only. Due to the lack of 
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replicate observations on genotypes within locations, using the genotypes as fixed 

effects makes residual diagnostics for outlier detection impossible. However, the use of 

marker information makes additional diagnostic methods for the phenotypic data 

available for unreplicated field trials (Chapter 6). Alternative ways of improving the 

quality of phenotypic data include using designs with replicated genotypes, such as the 

 -design, or designs where certain proportions of the genotypes are replicated within 

each location (Piepho, 2006; Smith et al., 2006; Cullis et al., 2006; Williams et al., 

2011) or testing in more locations. 

 

The phenotypic analysis can be used to obtain an independent estimate of the residual 

error variance, which can be used as a fixed variance component at the GS stage to 

minimize overfitting (Piepho, 2009). If this is done, the markers do not capture the non-

genetic portion of the error variance. Adopting such a strategy did not, however, 

evidently improve predictive accuracy for a simulated dataset prepared for the 

QTLMAS Workshop 2009 (Chapter 2). This may partly reflect the specific design used 

in the simulation, which did not include replicated genotypes. Hence only the within-

genotype error variance could be estimated and not the between-genotype error 

variance. For most real plant breeding datasets, replicates are available, so that the non-

genetic between-genotype error variance can be estimated and separated from the 

genetic effects. Another strategy to get an independent estimate for the error variance in 

GS is to combine the phenotypic and marker-based prediction stages into one analysis 

(Chapter 4). The error variance can then be estimated simultaneously with the variances 

of the other random effects in the model as part of the full variance-covariance structure 

of the observed data. The single-stage strategy produces an independent estimate of the 

error variance and avoids the need to fix the error variance at the GS stage but is 

computationally inefficient. A novel and computationally more efficient approach is to 

split the analysis into several stages, while minimizing the loss of information relative 

to a single-stage analysis (Chapter 4; Piepho et al., 2011). As expected, this produces 

results that are slightly more similar to those for the single-stage analysis than results 

for several other stage-wise methods that use less efficient weighting schemes to 

transfer the information contained in the variance-covariance matrix of the adjusted 

means between stages (Chapter 4).  

 

High-quality genotypic data, besides high-quality phenotypic data, will also enhance 

predictive accuracy of GS. There are several strategies for improving the quality of 
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genotypic data. Firstly, genotypes and markers with missing marker information and 

markers with too low minor allele frequencies can be identified and excluded from the 

dataset (e.g. Hayes et al., 2009a). Secondly, markers and genotypes with too many 

heterozygous loci can also be identified and deleted when using double haploid 

genotypes which are expected to be completely homozygous in maize breeding 

experiments. Thirdly, subsets of the most important markers that are most likely to be in 

high linkage disequilibrium (LD) with QTL and hence to affect the target quantitative 

trait can be pre-selected and used in GS. Pre-selection of markers can improve 

predictive accuracy (Hayes et al., 2009a), especially if the selected subset of markers 

have consistent effects across different populations (Chapter 3) but not necessarily in all 

circumstances (Weigel et al., 2009; Zhao et al., 2012). Indeed, even when a subset of 

markers with consistent effects across environments is selected, this may not always 

guarantee improved predictive ability, in particular when accuracy is assessed 

separately for individual locations using empirical maize datasets (Chapter 5). 

Therefore, it is always useful to carefully weight whether pre-selection of markers is 

warranted because it may not only improve the prediction accuracy, but may even 

reduce it (Zhao et al., 2012). These studies thus provide evidence that improvements in 

accuracy due to pre-selection of markers may vary with the dataset and analytical 

methods used, besides the particulars of the trait of interest. An important and practical 

limitation of pre-selection of markers is that there is no accepted objective threshold for 

deciding when to stop marker selection, nor is deciding the desirable threshold 

straightforward. A further limitation of strategies that set the effects of some markers to 

zero is the existence of a long-range LD for commercial maize breeding populations 

(Albrecht et al., 2011; Ching et al., 2002; Riedelsheimer et al., 2012). The existence of a 

long-range LD makes almost all markers to be in LD with at least one QTL and many 

markers to be coupled with the same QTL. Thus, it is most likely that each marker has 

an effect on the trait as discussed by Iwata and Jannink (2011). Due to the long-range 

LD even randomly selecting a small subset of markers for GS with maize datasets does 

not necessarily reduce prediction accuracy compared to using many markers (Chapter 6; 

Zhao et al., 2012). Therefore, for most practical applications in maize breeding, a small 

number of markers, often less than 1000, may suffice for GS, especially if biparental 

populations are used (Chapter 4; 5; 6; Lorenzana and Bernardo, 2009; Zhao et al., 

2012). 
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Yet, another important consideration at this stage of GS is to carefully select an 

appropriate model for the variance-covariance matrix of the markers. Geostatistical 

models that are now widely used in plant breeding to analyze spatial trends in field trials 

offer a convenient and flexible means of doing this. Schabenberger and Gotway (2005) 

present several examples of theoretical semivariograms used in geostatistical models. 

These models carry over directly to GS and can be used to summarize the information 

contained in the empirical marker variance-covariance matrix as a function of genomic 

distances between pairs of genotypes (Chapter 2; 3; Piepho, 2009). Several theoretical 

models were first fitted to empirical semivariograms and graphical inspection used to 

select the model with the greatest strength of support in the data (Chapter 3). However, 

no model was selected as being clearly the best for the tested dataset using the 

semivariograms and hence all models produced similar marker-based prediction 

(Chapter 3). 

 

7.2. Statistical methods for marker-based prediction in GS 

7.2.1. Ridge Regression Best Linear Unbiased Prediction (RR-BLUP) 

The basic RR-BLUP model yields the mixed model equations (MME) for the random 

marker effects and thus directly provides predictions for the random marker effects. 

However, if the number of markers is very large, solving the MME can become 

computationally too demanding or even impossible. Therefore, the basic RR-BLUP 

model can be rewritten in terms of random genotype effects and the genomic 

relationship matrix calculated from the markers (e.g. VanRaden, 2008; Hayes et al., 

2009b; Piepho, 2009; Piepho et al., 2012). For the basic RR-BLUP method only a single 

variance component has to be estimated besides the residual error. Fast restricted 

maximum-likelihood (REML) algorithms for fitting the mixed models which replace 

complex matrix computations in REML estimation of variance components with 

arithmetic operations on scalars instead of matrices are now readily available (Kang et 

al., 2008; Endelman, 2011; Piepho et al., 2012).  

 

In plant breeding experiments an independent estimate of the residual variance or the 

variance-covariance of the residual error is often available from the analysis that yielded 

adjusted means. This can be used as a fixed term in the RR-BLUP model (Chapter 2; 4; 

Piepho, 2009; Piepho et al., 2011). The computationally efficient algorithm for fitting 

the mixed model of Kang et al. (2008) can be extended for the case of a known residual 
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variance (Piepho et al., 2012). This approach is restricted to the case of independent 

residual errors. However, the assumption of independent errors can be restrictive, in 

particular for plant breeding experiments. In plant breeding experiments the error 

variances are often heterogeneous or experimental designs are unbalanced and hence the 

variance-covariance matrix of the adjusted genotype means can be complex. The 

restriction of independent residual errors can be lifted by rotating (orthogonalizing) the 

adjusted means to ensure independence of the rotated residual errors (Chapter 4). Thus, 

the mixed model of Kang et al. (2008) can now be generally used with residual errors 

with arbitrary variance-covariance structures (Chapter 4; Piepho et al., 2012). The 

implementation of the rotation approach for the mixed model of Kang et al. (2008), 

extended to apply to the special case with fixed residual error variance, is available as 

an R package rrBlupMethod6 in the Comprehensive R Archive Network (Piepho et al., 

2012; Schulz-Streeck et al., 2012).  

 

Computationally efficient methods for GS are especially important when cross-

validation is used for the evaluation of methods. However, when using a very large 

number of markers the computation of the genomic relationship matrix dominates the 

computing time compared to solving the mixed model equations. The matrix 

multiplications can be optimized for computing time using optimized ‘do’ loops, within 

specific matrix multiplication subroutines and parallel processing (Aguilar et al., 2011). 

Additionally, the matrix multiplications can be accelerated by processing the matrix 

with the marker information in parts (Piepho et al., 2012). Given the efficient 

algorithms available for implementing it and its relatively high predictive accuracy on 

many empirical maize breeding datasets (Chapter 4; 5; Crossa et al., 2010; Albrecht et 

al., 2011; Zhao et al., 2012; Heslot et al., 2012; Riedelsheimer et al., 2012). RR-BLUP 

would seem an attractive and well-known and tested method for GS in maize breeding. 

However, the performance of RR-BLUP may vary considerably between populations 

(Chapter 4; 5; 6; Albrecht et al., 2011; Heslot et al., 2012) and some populations may 

show relatively low prediction accuracies (Chapter 6). It is yet not definitively known 

whether this variation in accuracy across populations reflects intrinsic differences 

between the populations themselves or is an inherent shortcoming of RR-BLUP. 

Comparisons of the performance of RR-BLUP with those of other methods on the same 

populations suggest that the former is the likelier of the two possibilities. 
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7.2.2. Extensions of the RR-BLUP model 

The basic mixed model used for GS assumes homogenous variance for the markers 

(Meuwissen et al., 2001). Different methods have been proposed for GS to relax this 

strong and restrictive assumption, including BayesA and BayesB. However, different 

variance components for the markers can also be fitted in a mixed model framework to 

account for variance heterogeneity (Chapter 3; Meuwissen, 2009, Piepho, 2009). The 

effect of accounting for variance heterogeneity on predictive accuracy of GS has ranged 

from slight (Chapter 3; Pszczola et al., 2011) to substantial improvement in accuracy 

using simulated datasets (Meuwissen et al., 2001; Habier et al., 2007). Using empirical 

data the differences are negligible in maize breeding (Albrecht et al., 2011; Crossa et al., 

2010; Heslot et al., 2012) and animal breeding in the majority of cases (Hayes et al., 

2009c; Verbyla et al., 2009; Habier et al., 2011). If large-effect QTL are known to exist 

for a certain trait, markers linked to these QTL may be modelled with a different 

variance. In animal breeding using traits with known large effect QTL models allowing 

individual marker variances, like BayesA, fit these large effects better than models 

assuming homogenous marker variance, like BLUP methods, where all marker effects 

are shrunk equally (Verbyla et al., 2009). However, doing so will also not guarantee 

improvement in predictive accuracy using other traits (Hayes et al., 2009c; Verbyla et 

al., 2009). Additionally, the markers linked to QTL with known larger effects can be 

modelled as fixed effects using a mixed model in the spirit of association mapping 

methods. Moreover, proposals have been made to use the trait-specific relationship 

matrix in RR-BLUP models based on a small number of simulated QTL to improve 

accuracy of GS, but this improvement typically decreases as the number of simulated 

QTL increases (Zhang et al., 2011). 

 

The estimated marker effects can differ between environments in maize breeding 

(Crossa et al., 2010). However, accounting for environment-specific marker effects had 

a relatively minor influence on predictive ability for the tested datasets in this thesis. 

Thus, GS carried out in a stagewise fashion may suffice for most practical purposes, 

such that the marker information can be omitted until the very last stage of the process. 

In the case where substantial differences between environments are known the focus of 

a breeder may shift to predicting the performance of a genotype in a specific subregion. 

This subregion should be represented by a sample of environments. In this case 

allowing for subregion-specific marker effects in different environments may enhance 

accuracy. Moreover, estimated marker effects can differ between populations in maize 
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breeding (Lui et al., 2011). In contrast, analyzing each population separately can be less 

accurate than a combined analysis that exploits information from related populations 

(Chapter 6; Albrecht et al., 2011; Jannink et al., 2010; Riedelsheimer et al., 2012; Zhao 

et al., 2012). It is feasible to account for the main and population-specific marker effects 

in the same model, but the improvement from using this model compared to modelling 

only main marker effects was negligible (Chapter 6). Using multiple populations and 

evaluating the accuracy of GS separately for each population yielded prediction 

accuracies that differed substantially among the populations, with some populations 

showing notably low predictive accuracies, similarly to findings of Heslot et al. (2012) 

and Albrecht et al. (2011). If only some of the populations have high predictive 

accuracies, this may lead to preferential selection of those populations and loss of 

diversity represented by the other populations as discussed by Heslot et al. (2012). 

Weighting the overall selection over the between and within-population selection may 

remedy this shortcoming (Jannink et al., 2010).  

 

Polygenetic effects can be added to the RR-BLUP model to capture genetic variance not 

captured by the markers (Chapter 2; Calus and Veerkamp, 2007; Piepho, 2009; Albrecht 

et al., 2011). Polygenic effects are often modeled by the relationship matrix but can also 

be estimated using independent effects (Chapter 2; Piepho, 2009). The resulting model 

can be further extended to include simple random effects of the male and female parent 

and the crosses themselves (Chapter 2). Modeling polygenic effects is especially useful 

when using a small number of markers (Calus and Veerkamp, 2007), but merits caution 

as it may decrease accuracy (Legarra et al., 2008). 

 

The RR-BLUP model is equivalent to a quadratic spatial model (Piepho, 2009). 

Different other spatial mixed models have been tested on simulated and real datasets but 

the differences in prediction accuracy among these models and with RR-BLUP have 

been minor (Chapters 2; 3; Piepho, 2009; Ober et al., 2011). Ober et al. (2011) found 

that using the Matérn function to model the covariance as a function of the genomic 

distance between pairs of genotypes can improve accuracy compared to a particular 

variant of RR-BLUP, called G-BLUP. However, RR-BLUP and its different spatial 

variants showed higher accuracies than the spatial Matérn model for empirical maize 

datasets (Appendix A). Thus, the Matérn model does not always perform better than the 

standard RR-BLUP model. Moreover, the Matérn model is a generalization of several 
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special models, including the Gaussian model, which can converge to the quadratic 

spatial model under certain circumstances (Chapter 2; Piepho, 2009). 

 

7.2.3. Machine learning and regularized regression methods 

The tested machine learning and regularized regression methods did not improve the 

prediction accuracy of GS relative to RR-BLUP (Chapters 4 and 6) similar to the 

findings of Iwata and Jannink (2011), Ogutu et al. (2011, 2012) and Heslot et al. (2012). 

But using a rather small number of simulated QTL, González-Recio and Forni (2011) 

reported examples in which machine learning methods outperformed Baysian methods. 

 

Overall, the basic RR-BLUP method gave essentially similar results to all its tested 

extensions and the other alternative methods. These findings imply that RR-BLUP can 

commonly be used for GS in maize breeding programs. Moreover, the good 

performance of RR-BLUP was, surprisingly, not restricted only to datasets with many 

markers and small effects and was similar to that for regularized regression methods or 

Baysian methods even on datasets with only a few simulated QTL (Pszczola et al., 

2011; Ogutu et al., 2012). However, it is still not conclusively established whether the 

prediction accuracy of RR-BLUP depends primarily on the relationship among 

genotypes, or on the LD between markers and QTL. If it depends primarily on the 

relationship among genotypes, then prediction accuracy will decrease fast whereas 

inbreeding will increase over generations (Habier et al., 2007; Dekkers, 2007). Habier et 

al. (2007) suggested that the accuracy of RR-BLUP depends more strongly on the 

relationship among genotypes. Thus, the strength of the relatedness of the genotype 

functions is similar to the pedigree information (Hayes et al., 2009b; Piepho, 2009). In 

contrast, the accuracy of some Bayesian methods (e.g. BayesB) depends more 

sensitively on the LD between markers and QTL, leading to higher long-term gains in 

selection performance when GS is done using BayesB than using RR-BLUP (Habier et 

al., 2007).  

 

While datasets covering only one year are used in this thesis, real datasets covering 

many generations would be needed to empirically confirm if the long-term gains from 

GS suggested by simulation studies really do materialize. Moreover, weighting low-

frequency but favorable alleles so that favorable alleles that are in weak LD with 

markers are not lost could enhance long-term gain from GS (Jannink, 2010).  
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Another assumption made in using RR-BLUP is that the marker effects are random 

draws from a common normal distribution. However, in reality the true distribution is 

unknown and may differ among traits. Accordingly, different distributions have been 

proposed for use with Bayes methods (e.g. the double exponential distribution for the 

Baysian LASSO: Yi and Xu, 2008). Additionally, the distribution of the marker effects 

may be a mixture of different component distributions (Bennewitz and Meuwissen, 

2010; Toro and Varona, 2010). It follows that several methods that do not make 

stringent distributional assumptions about the marker effects (e.g. boosting, random 

forest, support vector machine and reproducing kernel Hilbert spaces regression) may 

therefore be potentially useful for GS (e.g. Gianola et al., 2006; Ogutu et al., 2011).  

 

Since the focus of most GS studies is to evaluate the prediction accuracy of statistical 

methods for estimating genomic breeding values, only additive genetic effects were 

considered in this thesis. However, to predict the hybrid performance in maize, 

dominance and epistatic effects may be important and merit consideration besides the 

additive genetic effects. This would require the testcross genotypes to be genotyped. A 

variety of methods are available for capturing complex epistatic interactions, including 

random forest (Breiman, 2001; Statnikov et al., 2008). Dominance (Xu, 2003; 

Bennewitz and Meuwissen, 2010) or epistatic (Xu and Jia, 2007) marker effects can 

also be estimated within the linear model framework.  

 

7.3. Approaches for reliably evaluating and comparing methods for 

GS 

Cross-validation (CV) is an omnibus method for performing model selection which has 

been widely used to evaluate the prediction accuracy of different methods for GS (e.g. 

Villumsen and Janss, 2009; Crossa et al., 2010; Erbe et al., 2010; Habier et al., 2010; 

Albrecht et al., 2011). One popular CV procedure is the k-fold CV method, in which the 

dataset is split into k subsets, k-1 of which are concatenated and used as the training set 

to select a model and estimate coefficients of the predictor variables, and the kth, called 

the validation set, to validate the selected model. Large simulation studies suggest that 

the optimal number of splits of the dataset k ranges between five and ten (Hastie et al., 

2009). The sizes of the training and validation sets affect prediction accuracy in GS. For 

example, higher accuracies have been obtained for larger training and smaller validation 

sets (Erbe et al., 2010) and higher variances for smaller validation sets (Lee et al., 2008; 
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Erbe et al., 2010). Erbe et al. (2010) therefore recommend using fivefold CV in GS as a 

practical compromise between prediction accuracy and variance.  

 

The degree of relatedness among the genotypes in the training and validation sets also 

influences the prediction accuracy such that the accuracy of genomic estimated breeding 

values decreases the more closely related the genotypes are (Habier et al., 2010). Habier 

et al. (2010) have therefore proposed controlling the additive-genetic relationship 

among the genotypes in the training and the validation sets. For plant breeding 

experiments it is also common to account for the degree of relatedness among 

genotypes in the training and validation sets by using genotypes from the same 

populations in the training and validation sets, or by using genotypes of from a new 

population in the validation set (Chapter 3; Albrecht et al., 2011).  

 

An assumption integral to the proper conduct of the k-fold CV is that the errors are 

indepent and identically normally distributed (i.i.d) and hence that the training and 

validation sets are independent (Arlot and Celisse, 2010). For plant breeding 

experiments adjusted means are often used for GS and thus for CV. When using 

unbalanced trial designs, the adjusted means are not independent and thus the basic 

assumptions of i.i.d. errors are not fulfilled. Rotating the means can satisfy this 

assumption (Chapter 4). Another way to ensure independence of the validation and the 

training dataset is to use the dataset for the year following the one in which the training 

dataset was collected as the validation set. However, for evaluating the long-term gain 

from GS, it is preferable to have a validation dataset from several subsequent 

generations. 

 

The computational burden of CV can be very high for some models and datasets. One 

option to reduce this is to use computationally more efficient procedures for GS (Kang 

et al., 2008; VanRaden, 2008; Piepho et al., 2012). Another option is to replace the 

computationally more demanding CV with model selection criteria for GS (Chapter 2; 

5). One commonly used model selection criterion, the Akaike information criterion 

(AIC), often produces nearly-identical rankings of different models to the rankings 

based on correlations between the observed and the true breeding values, but not always 

(Chapters 2; 4). Therefore, other model selection criteria that have been proposed, in the 

literature, especially in connection with smoothing methods, including the conditional 

AIC (Hastie and Tibshirani, 1990), corrected AIC (Hurvich et al., 1998) and the 
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generalized cross-validation criterion (Craven and Wahba, 1979) and may be explored 

as potential alternatives to AIC for GS (Chapter 2). Using the simulated dataset 

prepared for the QTLMAS 2010 workshop (Chapter 3) results of model selection using 

AIC and the generalized cross-validation were nearly identical with those based on CV, 

implying that both AIC and generalized cross-validation may be used instead of cross-

validation to reduce computing time (Appendix B). However, using an empirical dataset 

in Chapter 4 showed that the AIC-selected best model did not translate into clearly 

better prediction ability based on cross-validation. Further tests would be needed to 

conclusively determine whether the computationally more demanding CV may be 

replaced with the more efficient model selection criteria without loss of accuracy. 

 

7.4. Conclusions  

Genomic selection is a recent, robust and promising approach for integrating 

information from many molecular markers spanning the whole genome through 

statistical models for high-dimensional data to predict genotypic values of untested 

genotypes in plant and animal breeding programs. It is of vast economic interest and 

great practical appeal because it uses computationally efficient and readily available 

statistical methods and hence holds great promise of establishing itself as a routine 

feature of cost-effective breeding programs. For plant breeding it is perhaps most 

efficient to implement GS in a stagewise fashion, if the loss of information in a 

stagewise relative to a single-stage approach can be minimized. For most practical 

purposes, when using stagewise approaches, it may suffice to omit the marker 

information until at the very last stage, if the marker-by-environment interaction has a 

only minor influence, as found in the datasets considered in this thesis. Pre-selection of 

markers is not of much practical relevance in the vast majority of cases in maize 

breeding, thus greatly simplifying the steps involved in GS. To achieve high prediction 

accuracy in GS, it is imperative to ensure that both the phenotypic and genotypic data 

are of reasonably high-quality by using appropriate field trial designs and carrying out 

adequate quality controls to detect and eliminate observations deemed to be outlying. 

Further improvement in accuracy may be gained by combining genotypes from different 

populations into one analysis instead of conducting separate analyses for each 

population. The widely used and tested ridge regression best linear unbiased prediction 

method would seem adequate for GS for most practical purposes, thus obviating the 
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need to apply the more complex alternatives, such as the spatial and regularized 

regression, or machine learning methods.  
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8. Summary 

Genomic selection (GS) is a new approach for integrating information from many 

molecular markers spanning the whole genome in the context of plant and animal 

breeding. Its main aim is to predict genotypic or breeding values for non-phenotyped 

genotypes using statistical models for high-dimensional data. This approach both 

expedites and increases the cost-effectiveness of breeding programs because not all 

genotypes have to be empirically tested in field trials. Thus, GS can considerably 

increase the gain per unit time. It is crucial that the genomic predictions are accurate. 

Many approaches have therefore been proposed to enhance predictive accuracy of GS, 

including mixed models, Bayesian, machine learning and regularized regression 

methods. All these methods can handle the problem of using more predictor variables 

than number of observations in the model. This problem is common because by using 

high density markers for GS, the number of markers often far exceeds the number of 

observations. Cross-validation is often used to reliably evaluate the relative predictive 

accuracies of contending approaches. In plant breeding, genotypes are often tested in 

different environments using several replicates per environment and thus yielding 

replicate observations per genotype. As a result, GS is normally undertaken in a 

stagewise fashion. The first stage, called the phenotypic analysis stage, involves 

computing adjusted means for genotypes across environments. These adjusted means 

are then used together with the molecular markers in the second stage to estimate the 

effects of markers, called here the marker-based analysis. The estimated marker effects 

can then be used to predict genomic breeding values for untested genotypes.  

 

In the current thesis the efficacy of several contending approaches for GS were tested 

using different simulation and empirical maize breeding datasets. Here, GS is viewed as 

a general approach, incorporating all the different stages from the phenotypic analysis 

of the raw data to the marker-based prediction of the breeding values. The overall goal 

of this study was to develop and comparatively evaluate different approaches for 

accurately predicting genomic breeding values in GS. In particular, the specific 

objectives were to: 

 

(1) Develop different approaches for using information from analyses preceding the 

marker-based prediction of breeding values for GS.  
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(2) Extend and/or suggest efficient implementations of statistical methods used at the 

marker-based prediction stage of GS, with a special focus on improving the predictive 

accuracy of GS in maize breeding.  

 

(3) Compare different approaches to reliably evaluate and compare methods for GS.  

 

An important step in the analyses preceding the marker-based prediction is the 

phenotypic analysis stage. One way of combining phenotypic analysis and marker-

based prediction into a single stage analysis is presented in Chapter 4. However, a 

stagewise analysis is typically computationally more efficient than a single stage 

analysis. Several different weighting schemes for minimizing information loss in 

stagewise analyses are therefore proposed and explored (Chapter 2 and 4). It is 

demonstrated that orthogonalizing the adjusted means before submitting them to the 

next stage is the most efficient way within the set of weighting schemes considered 

(Chapter 4). Furthermore, when using stagewise approaches, it may suffice to omit the 

marker information until the very last stage, if the marker-by-environment interaction 

has only a minor influence, as was found to be the case for the datasets considered in 

this thesis (Chapter 5). It is also important to ensure that genotypic and phenotypic data 

for GS are of sufficiently high-quality. This can be achieved by using appropriate field 

trial designs and carrying out adequate quality controls to detect and eliminate 

observations deemed to be outlying based on various diagnostic tools (Chapter 6). 

Moreover, it is shown that pre-selection of markers is less likely to be of high practical 

relevance to GS in most cases (Chapter 3 and 5). Furthermore, the use of 

semivariograms to select models with the greatest strength of support in the data for GS 

is proposed and explored. It is shown that several different theoretical semivariogram 

models were all well supported by an example dataset and no single model was selected 

as being clearly the best (Chapter 3). 

 

Several methods and extensions of GS methods have been proposed for marker-based 

prediction in GS. Their predictive accuracies were similar to that of the widely used 

ridge regression best linear unbiased prediction method (RR-BLUP). It is thus 

concluded that RR-BLUP, spatial methods, machine learning methods, such as 

componentwise boosting, and regularized regression methods, such as elastic net and 

ridge regression, have comparable performance and can therefore all be routinely used 

for GS for quantitative traits in maize breeding (Chapter 2, 3, 4 and 6). Accounting for 
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environment-specific or population-specific marker effects had only minor influence on 

predictive accuracy (Chapter 5 and 6) contrary to findings of several other studies. 

However, accuracy varied markedly among populations, with some populations 

showing surprisingly very low levels of accuracy (Chapter 6). Combining different 

populations prior to marker-based prediction improved prediction accuracy compared to 

doing separate population-specific analyses (Chapter 6). Moreover, polygenetic effects 

can be added to the RR-BLUP model to capture genetic variance not captured by the 

markers. However, doing so yielded minor improvements, especially for high marker 

densities (Chapter 2 and 6). To relax the assumption of homogenous variance of 

markers, the RR-BLUP method was extended to accommodate heterogeneous marker 

variances but this had negligible influence on the predictive accuracy of GS for a 

simulated dataset (Chapter 3).  

 

The widely used information-theoretic model selection criterion, namely the Akaike 

information criterion (AIC), ranked models in terms of their predictive accuracies 

similar to cross-validation in the majority of cases (Chapter 2 and 5). But further tests 

would be required to definitively determine whether the computationally more 

demanding cross-validation may be substituted with the more efficient model selection 

criteria, such as AIC, without much loss of accuracy. 

 

Overall, a stagewise analysis, in which the markers are omitted until at the very last 

stage, is recommended for GS for the tested datasets. The particular method used for 

marker-based prediction from the set of those currently in use is of minor importance. 

Hence, the widely used and thoroughly tested RR-BLUP method would seem adequate 

for GS for most practical purposes, because it is easy to implement using widely 

available software packages for mixed models and it is computationally efficient. 
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9. Zusammenfassung 

Die genomweite Selektion stellt einen neuartigen Ansatz dar, um genomweite 

Markerinformationen, für züchterische Zwecke, sowohl in der Pflanzen- als auch in der 

Tierzüchtung, zu verwenden. Das Ziel dabei ist die Vorhersage von genetischen Werten 

oder Zuchtwerten für nicht phänotypisierte Genotypen, wobei statistische Methoden für 

hochdimensionale Daten verwendet werden. Da durch diesen Ansatz nicht alle 

Genotypen empirisch in Feldversuchen getestet werden müssen, können 

Zuchtprogramme somit sowohl beschleunigt als auch kosteneffizienter gestaltet werden, 

und der Gewinn kann pro Zeiteinheit entscheidend gesteigert werden. Eine genaue 

Vorhersage hat dabei höchste Priorität. Für diese genaue genomische Vorhersage 

wurden in der Vergangenheit verschiedene Methoden vorgeschlagen. Dabei spielen 

unter anderem gemischte Modelle, Bayes-Verfahren, „Machine Learning“ und 

„regularized regression” Methoden eine große Rolle. All diese genannten Verfahren 

sind in der Lage mit dem Problem umzugehen, dass mehr Effekte im Modell geschätzt 

werden als Beobachtungen gegeben sind, welches sich dadurch ergibt, dass bei der 

Verwendung genomweiter Markerdaten die Anzahl der Marker die der phänotypischen 

Beobachtungen übersteigen kann. Um die Vorhersagegenauigkeit der verschiedenen 

Verfahren zur genomweiten Vorhersage zu vergleichen, wird in den meisten Fällen die 

sogenannte Kreuzvalidierung verwendet. In der Pflanzenzüchtung werden die 

Genotypen meistens in verschiedenen Umwelten und in jeder Umwelt häufig mit 

mehreren Wiederholungen getestet, so dass für jeden Genotyp mehrere Beobachtungen 

vorliegen. Um diese wiederholten Beobachtungen in der genomweiten Vorhersage zu 

berücksichtigen, wird bei den meisten Methoden schrittweise vorgegangen. Zunächst 

werden hierbei adjustierte Mittelwerte der Genotypen über die verschiedenen Umwelten 

berechnet. Diese Analyse wird auch phänotypische Analyse genannt. Die adjustierten 

Mittelwerte werden im nächsten Schritt verwendet, um Effekte für die Marker zu 

schätzen. Dieser Schritt wird hier als markerbasierende Analyse bezeichnet. Die 

geschätzten Markereffekte können dann weiter verwendet werden, um für nicht 

phänotypisierte Genotypen eine Vorhersage der genomischen Zuchtwerte zu schätzen.  

 

In der vorliegenden Arbeit wurde die Effektivität verschiedener Methoden der 

genomweiten Selektion untersucht. Hierbei wurden sowohl simulierte Datensätze als 

auch mehrere reale Datensätze aus der Maiszüchtung verwendet. Die genomweite 

Selektion wird in dieser Arbeit als ein Verfahren angesehen, welches alle Schritte der 
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genomweiten Selektion, von der Analyse der phänotypischen Rohdaten bis zur 

markerbasierenden Vorhersage der Zuchtwerte, einschließt. Das Ziel der Arbeit ist es, 

verschiedene Verfahren auf ihre Vorhersagegenauigkeit von genomischen Zuchtwerten 

zu bewerten. Die folgenden Zielstellungen wurden im Speziellen behandelt.  

 

(1) Entwicklung verschiedener Verfahren zur Einbindung von Informationen, die vor 

der marker-basierenden Analyse gewonnen werden, in die genomweite Selektion. 

 

(2) Erweiterung und/oder Empfehlung der effizienten Implementierungen von 

statistischen Methoden zur marker-basierenden Analyse, wobei im Speziellen die 

Vorhersagegenauigkeit der genomweiten Selektion in der Maiszüchtung verbessert 

werden soll. 

 

(3) Vergleich verschiedener Ansätzen zur Beurteilung und zum Vergleich der Güte der 

Methoden zur genomweiten Selektion. 

 

Ein wichtiger Schritt in den Analysen, die vor der markerbasierenden Analyse 

stattfinden, ist die Analyse der phänotypischen Daten. Ein Weg um diese Analyse mit 

der marker-basierenden Analyse in einem einstufigen Verfahren zu kombinieren, wurde 

in Kapitel 4 gezeigt. Jedoch ist ein schrittweises Vorgehen weniger rechenintensiv, als 

wenn beide Analysen in einem Schritt kombiniert werden. Deshalb wurden mehrere 

Gewichtungsansätze für die genomweite Selektion vorgeschlagen, um den 

Informationsverlust des schrittweisen Verfahrens zu minimieren (Kapitel 2 und 4). Es 

wurde gezeigt, dass es, im Vergleich mit anderen Gewichtungsansätzen, am 

effizientesten ist, die adjustierten Mittelwerte nach jedem Analyseschritt zu 

orthogonalisieren (Kapitel 4). Des Weiteren kann es ausreichend sein, bei diesen 

schrittweisen Ansätzen die Markerinformation bis zum letzten Schritt zu ignorieren, 

wenn die Marker   Umweltinteraktion gering ist, wie es in den getesteten Datensätzen 

der Fall war (Kapitel 5). Weiterhin konnte herausgestellt werden, dass eine hohe 

Qualität sowohl der genetischen als auch der phänotypischen Daten wichtig ist. Dieses 

kann erreicht werden, wenn entsprechende Feldversuchsdesigns und geeignete 

Diagnosemethoden zur Qualitätskontrolle verwendet werden, um Beobachtungen, die 

außerhalb des erwarten Spektrums liegen, zu entfernen (Kapitel 6). Die Vorselektion 

von Markern hingegen war in den meisten Fällen nicht von Relevanz für die praktische 

Anwendung (Kapitel 3 und 5). Außerdem wurde die Verwendung von 

Semivariogrammen vorgeschlagen und untersucht, um Modelle für die genomweite 
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Selektion zu ermitteln, die an gegebene Daten am Besten angepasst sind. Es wurde 

gezeigt, dass die verschiedenen theoretischen Semivariogrammmodelle an die 

getesteten Daten gut angepasst waren und kein Modell als entscheidend besser zu 

bewerten war (Kapitel 3). 

 

Mehrere Methoden und Erweiterungen von genomweiten Selektionsmethoden wurden 

für die markerbasierende Vorhersage vorgeschlagen. Deren Vorhersagegenauigkeiten 

waren ähnlich zu der häufig verwendeten „ridge regression best linear unbiased 

prediction“ Methode (RR-BLUP). Somit konnte gezeigt werden, dass RR-BLUP, 

räumliche Modelle, „machine learning“ Methoden, wie „componentwise boosting“ und 

„regularized regression“ Methoden, wie „elastic net“ und „ridge regression“ 

gleichwertige Vorhersagegenauigkeiten zeigen und gleichberechtigt für routinemäßig 

Anwendung für die genomweite Selektion für quantitative Merkmale in der 

Maiszüchtung eingesetzt werden können (Kapitel 2, 3, 4 und 6). Im Gegensatz zu 

Ergebnissen anderer Studien zeigten Erweiterungen mit umweltspezifischen oder 

populationsspezifischen Markereffekten nur einen geringen Einfluss (Kapitel 5 und 6). 

Die Genauigkeit der Vorhersage kann sich aber zwischen verschiedenen Populationen 

stark unterscheiden. Einige Populationen zeigten dabei sehr geringe 

Vorhersagegenauigkeiten auf (Kapitel 6). Eine Analyse, in der mehrere Populationen 

simultan verwendet wurden, verbesserte die Vorhersagegenauigkeit gegenüber einer 

Analyse in der jede Population einzeln ausgewertet wurde (Kapitel 6). Außerdem kann 

die Methode RR-BLUP um polygenetische Effekte erweitert werden, um die genetische 

Varianz, die nicht von den Markern erfasst wird, zu berücksichtigen. Dieses zeigte aber 

nur eine geringe Verbesserung insbesondere bei hohen Markerdichten (Kapitel 2 und 6). 

Es wurde weiterhin eine Erweiterung der RR-BLUP Methode vorgeschlagen, um auf 

die Annahme einer homogenen Markervarianz verzichten zu können. Hierbei wurden 

heterogene Markervarianzen im gemischten Modell vorgeschlagen. Für einen 

simulierten Datensatz hatte dieses aber nur geringe Auswirkungen (Kapitel 3). 

 

Das häufig verwendete Modellselektionskriterium „Akaike information criterion“ (AIC) 

zeigte in den meisten Fällen ähnliche Ergebnisse in der Beurteilung der genomweiten 

Selektionsmethoden wie die standardmäßig verwendet Kreuzvalidierung (Kapitel 2 und 

5). Es sind aber weitere Tests notwendig, um grundlegend zu klären, ob die 

rechenintensive Kreuzvalidierung mit den effizienteren Modellselektionskriterien, wie 

zum Beispiel dem AIC, ersetzt werden kann, ohne dass ein Genauigkeitsverlust erfolgt.  
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Auf Grundlage der analysierten Daten kann in den meisten Fällen eine schrittweise 

Analyse empfohlen werden, wobei die Marker erst im letzten Schritt berücksichtigt 

werden müssen. Die zu verwendende Methode für die markerbasierende Vorhersage ist 

von geringerer Bedeutung, weshalb in den meisten Fällen die RR-BLUP Methode für 

die genomweite Vorhersage empfohlen werden kann, da diese einfach mit gängigen 

Software zur Analyse gemischter Modelle zu implementieren ist und rechenzeiteffizient 

ist. 
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10.  Appendix 

Appendix A 

The dataset used here is the same as that used in Chapter 4 and 5. A fivefold cross-

validation with five replicates was used to evaluate the predictive ability of the RR-

BLUP and the four different spatial models. The predictive ability was calculated as the 

Pearson correlation between predicted values and adjusted means of the validation set 

using cross-validation. 

 

Table A1: Predictive ability of different genetic covariance models. The predictive 

ability was calculated as the Pearson correlation between predicted values and adjusted 

means of the validation set using a fivefold cross-validation. 
 

Model  Predictive ability 

 Dataset A Dataset B 

RR-BLUP 0.7164 0.4858 

Exponential spatial model 0.7161 0.4956 

Gaussian spatial model 0.7157 0.4756 

Spherical spatial model 0.7161 0.4949 

Matérn spatial model 0.7157 0.4765 
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Appendix B 

The dataset used here is the same as that used in Chapter 3. A detailed description of the 

dataset can also be found in Szydlowski and Paczyńska (2011). Different genetic 

covariance models were compared using a fivefold cross-validation, an independent 

dataset with known true breeding values but lacking of phenotypic values and different 

model selection criteria. The Prediction ability was calculated as the between predicted 

values and observed values of the validation sets using the CV. The prediction accuracy 

was calculated as the Pearson correlation between predicted values and true genetic 

values for non-phenotyped individuals. 

 

Table B1: Selection of different genetic covariance models using information criteria 

(Akaike Information Criterion (AIC), conditional AIC (cAIC), corrected AIC (AICc) 

and generalized cross-validation criterion (GCV), Pearson correlation between GEBVs 

and observed values in the validation sets (CV), and Pearson correlation between 

genomic estimated breeding values and true breeding values for non-phenotyped 

individuals (TBV). The best three methods for each criterion are printed in boldface. 
 

      Correlation 

Model  AIC cAIC AICc GCV CV TBV 

Ridge Regression BLUP (RR)       

RR  16432 16205 11.91 145871 0.530 0.607 

Pre-selection of SNPs (method 2
$
)       

RR (500 markers)  16312 16184 11.88 143422 0.570 0.599 

RR (1000 markers)  16275 16124 11.86 139965 0.583 0.623 

RR (2000 markers)  16295 16124 11.86 140199 0.579 0.625 

RR (3000 markers)  16312 16130 11.87 140726 0.576 0.617 

Gaussian spatial model (GAU)       

GAU (9570 markers)  16430 16182 11.93 145679 0.530 0.600 

Pre-selection of SNPs (method 2)       

GAU (500 markers)  16303 16154 11.88 142179 0.569 0.596 

GAU (1000 markers)  16271 16102 11.86 139250 0.583 0.614 

GAU (2000 markers)  16292 16100 11.87 139628 0.580 0.614 

GAU (3000 markers)  16310 16111 11.88 140380 0.577 0.608 

Exponential spatial model 
(EXP) 

      

EXP (9570 markers)  16440 15715 12.66 146827 0.530 0.607 

Pre-selection of SNPs (method 2)       

EXP (500 markers)  16302 15986 12.06 141816 0.572 0.599 

EXP (1000 markers)  16275 15888 12.13 139427 0.583 0.620 

EXP (2000 markers)  16297 15829 12.23 140005 0.582 0.621 

EXP (3000 markers)  16317 15807 12.29 140943 0.580 0.615 

Linear spatial model (LIN)       

LIN (9570 markers)  Did not converge 

Pre-selection of SNPs (method 2)       

LIN (500 markers)  16300 15987 12.06 141813 0.572 0.596 

LIN (1000 markers)  16273 15888 12.13 139425 0.584 0.614 

LIN (2000 markers)  16295 15833 12.22 139995 0.582 0.614 

LIN (3000 markers)  16315 15809 12.29 140936 0.580 0.608 
$
 Pre-selection method 2 is explianed in Chapter 3. 
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