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1  1 Summary 

1 Summary 

The deposition of nitrogen has increased many-fold due to anthropogenic activities. Since 

forest ecosystems are often limited by N availability, elevated N inputs from the atmosphere 

can have a fertilization effect but in the long-term, excess N can influence above- and below-

ground production. One of the consequences of N deposition and increased N inputs is a shift 

in microbial community structure and function as ecosystems move towards N saturation. 

Soil microorganisms through the action of enzymes play an important role in N dynamics. 

Thus, the availability and turnover of N depends strongly on microbial abundance, diversity 

and activity which are in turn influenced by soil properties. Studies on the effects of high 

nitrogen inputs and the response of forest ecosystems to nitrogen saturation are many and 

well understood. However, the reversibility of N-induced shifts in forest ecosystem processes 

is largely unknown. This thesis was therefore designed to study the response of soil 

microorganisms to reduced N deposition. A biphasic approach was employed to look into (i) 

the general microbial functional status of the Solling forest site as well as (ii) the microbial 

community structure which may be a key regulator of two important processes of N 

transformation: denitrification and proteolysis. 

The goal of the present thesis was addressed in three studies. Denitrification is considered 

sensitive to environmental changes and the response of nitrate-reducers and denitrifiers to 

reduced N deposition was determined in the first study. The goal of the second study was to 

investigate the overall microbial activity of the Solling forest profiles especially focussing on 

enzymes involved in the N cycle. This revealed a pronounced activity of peptidases whereby 

a set of novel pepN primers encoding alanine aminopeptidase enzyme was designed in the 

third study to determine the group of bacteria involved in proteolysis in forest as well as 

agricultural and grassland soils. 

The Solling experimental station was established more than two decades ago and it gave the 

opportunity to study the N cycle in a natural forest ecosystem at different sampling dates and 

depths. A combination of classical biological methods and modern molecular techniques 

were used in the studies. Soil physico-chemical parameters (OC, Nt, NO3
-
, NH4

+
, pH, % 

Water content) were analysed to gain more information on mineralization and immobilization 

of N in the soil profiles. The analysis of microbial biomass, ergosterol content and the 

activity of several enzymes of the N, C and P cycles as well as enzyme activity of nitrate 



 

 

2  1 Summary 

reducers was determined in order to interpret microbial functions. The abundance of nitrate 

reducers and denitrifiers were determined by quantitative PCR of 16S rRNA, nitrate 

reductase (narG and napA) and denitrification (nirK, nirS and nosZ) genes. The diversity of 

peptide degrading bacteria was analysed by PCR, cloning and sequencing and the 

construction of pepN gene libraries.   

The results of the first study indicated that time and space were the main drivers influencing 

the abundance and activity of the nitrate reducers and denitrifier communities in the forest 

soil profiles. Reduced N deposition had a of minimal effect. Interestingly, the ratios of nosZ 

to16S rRNA gene and nosZ to nirK increased with soil depth thereby tempting to conclude 

that the size of denitrifiers capable of reducing N2O into N2 might be bigger in the mineral 

horizons. In the second study, a stronger response of N cycling enzymes to reduced N 

deposition could be seen. However, these responses especially that of specific peptidases 

differed in magnitude which could be indicative of a modification of the reaction rates of the 

different N cycling enzymes. Correlation of nutrients (N, C, P) with microbial biomass and 

enzyme activities in the soil profiles revealed that substrate availability was the main factor 

influencing microbial activity. In the third study, analyses of gene libraries from extracted 

DNA from forest, agricultural and glacier soil samples revealed a high diversity of pepN 

sequences related to mainly α-Proteobacteria. A majority of the sequences showed similarity 

to published data revealing that the amplified region of pepN might be conserved. Linking 

diversity and enzymatic data, lowest diversity was observed in the agricultural soil where 

activity levels of alanine aminopeptidase were lowest indicating the importance of diversity 

studies for ecosystem functioning. 

In conclusion, this thesis offers valuable contributions to understanding the impact of N 

deposition. The approach used was suitable to assess the response of the different microbial 

communities to reduced N deposition. The magnitude of the response depended strongly on 

space, time and substrate availability in soils as well as their interactions.   
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2  Zusammenfassung 
 

Anthropogene Aktivitäten haben die Deposition von Stickstoff (N) um ein Vielfaches erhöht. 

Da Waldböden häufig N-limitiert sind, können erhöhte N-Einträge aus der Atmosphäre einen 

Düngungseffekt haben. Dies kann langfristig die oberirdische und unterirdische 

Pflanzenproduktion beeinflussen. Eine Folge von erhöhtem N-Eintrag ist die Veränderung 

der mikrobiellen Gemeinschaft sowie deren Funktion sobald das Ökosystem in Richtung N-

Sättigung strebt. Aufgrund ihrer Enzymaktivitäten spielen Bodenmikroorganismen eine 

wichtige Rolle in N-Dynamiken. Die Verfügbarkeit und Umsetzung von N hängt daher stark 

von der mikrobiellen Abundanz, Diversität und Aktivität ab, die wiederum durch 

Bodeneigenschaften beeinflusst wird. Studien, die den Effekt von hohem N Eintrag und die 

Folgen von N-Sättigung in Waldökosystemen untersuchen, sind zahlreich und die Effekte 

und Folgen gut verstanden. Hingegen ist wenig bekannt inwieweit sich diese Veränderungen 

bei reduzierter N-Deposition umkehren. Daher wurden in dieser Doktorarbeit die Folgen 

einer reduzierten N-Deposition auf Bodenmikroorganismen untersucht. Ein biphasischer 

Ansatz wurde verwendet um 1) den generellen funktionellen mikrobiellen Status des 

Waldstandortes Solling und 2) die mikrobielle Gemeinschaftsstruktur, die ein wichtiger 

Regulator für zwei wichtige N-Transformationsprozesse, die Denitrifikation und die 

Proteolyse, sein könnte, zu untersuchen. 

Zur Erreichung des Ziels dieser Arbeit wurden drei Studien durchgeführt. Denitrifikation 

reagiert sensitiv auf Veränderungen der Umweltbedingungen und die Reaktion von 

nitratreduzierenden und denitrifizierenden Mikroorganismen auf reduzierte N Bedingungen 

wurde in der ersten Studie untersucht. Das Ziel der zweiten Studie war es, mit dem Fokus auf 

die Enzyme, die in den N-Kreislauf involviert sind, die mikrobielle Aktivität der Solling 

Waldprofile zu untersuchen. Eine ausgeprägte Aktivität von Peptidasen wurde festgestellt 

woraufhin in der dritten Studie ein neuer Satz pepN primer entwickelt wurden, die Alanin 

Aminopeptidasen kodieren, um die Gruppen der Bakterien zu bestimmen, die an der 

Proteolyse in Waldböden sowie in landwirtschaftlich genutzten und Grünland Böden beteiligt 

sind. 

Die Solling Forschungsstation wurde vor mehr als 20 Jahren aufgebaut und gab uns die 

Möglichkeit den N-Kreislauf in einem natürlichen Waldökosystem zu unterschiedlichen 

Zeitpunkten und Bodentiefen zu untersuchen. Eine Kombination klassischer und moderner 

molekularer Methoden wurde in den Studien verwendet. Wir analysierten 
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bodenphysikochemische Parameter (OC, Nt, NO3
-
, NH4

+
, pH, % Wassergehalt), um mehr 

Informationen über Mineralisation und Immobilisation von N in den Bodenprofilen zu 

erhalten. Die Bestimmung der mikrobiellen Biomasse, des Ergosterol Gehalts und die 

Aktivität von mehreren Enzymen des N, C und P-Kreislaufs wie auch Enzymaktivitäten 

nitratreduzierender Organismen wurde genutzt, um die mikrobiellen Funktionen 

interpretieren zu können. Die Abundanz von nitratreduzierenden und denitrifizierenden 

Bakterien wurde mit quantitativer PCR der 16S rRNA, Nitratreduktase (narG und napA) und 

denitrifizierenden (nirK, nirS und nosZ) Funktionsgenen bestimmt. Die Diversität der 

peptidabbauenden Bakterien wurde mittels PCR, Klonierung und Sequenzierung sowie des 

Aufbaus von pepN Genbibliotheken untersucht. 

Die Ergebnisse der ersten Studie deuten darauf hin, dass Zeitpunkt und Bodentiefe die 

Haupteinflussfaktoren für die Abundanz und die Aktivität der nitratreduzierenden und 

denitrifizierenden Gemeinschaften im Waldprofil darstellen. Reduzierte N Deposition war 

von geringer Bedeutung. Interessanterweise erhöhten sich die Verhältnisse von nosZ zu 16S 

rRNA Genen und nosZ zu nirK in der Tiefe, was darauf schließen lässt, dass denitrifizierende 

Organismen, die fähig sind N2O zu N2 zu reduzieren, im Mineralbodenhorizont in größerer 

Zahl vorkommen könnten als in den oberen Horizonten. In der zweiten Studie wurde eine 

stärkere Reaktion der am N-Kreislauf beteiligten Enzyme bei reduzierter N Deposition 

festgestellt. Diese Reaktionen, insbesondere die der spezifischen Peptidasen, veränderten 

sich, was darauf hindeuten könnte, dass sich die Effizienz der unterschiedlichen am N-

Kreislauf beteiligten Enzyme anpassen. Korrelationen von Nährstoffen (N, C, P) mit der 

mikrobiellen Biomasse and den Enzymaktivitäten im Bodenprofil verdeutlichen, dass die 

Substratverfügbarkeit der Hauptfaktor für die mikrobielle Aktivität war. In der dritten Studie, 

in der Gen-Bibliotheken von aus Wald-, landwirtschaftlichen und Gletscher Böden 

extrahierter DNA analysiert wurden, zeigte sich eine hohe Diversität der pepN Sequenzen, 

die hauptsächlich α-Proteobakterien zugeordnet werden konnten. Ein Großteil der Sequenz 

zeigte Ähnlichkeit mit bereits publizierten Daten, was darauf hindeuten könnte, dass die 

amplifizierte Region pepN konserviert ist. Bei der Betrachtung der Diversitäts- und 

Enzymdaten wurde die geringste Diversität in dem landwirtschaftlich genutzten Boden 

gefunden, der auch die geringsten Aktivitäten der Alanin-Aminopeptidase aufwies, was auf 

die Bedeutung von Diversitätsstudien für das Funktionieren von Ökosystemen hindeutet. 

Zusammenfassend leistet diese Doktorarbeit wertvolle Beiträge, um den Einfluss von N 

Deposition zu verstehen. Der verwendete Ansatz war geeignet, um die Reaktion der 
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unterschiedlichen mikrobiellen Gemeinschaften auf reduzierte N Deposition einzuschätzen. 

Die Höhe der Reaktion hing stark von der Bodentiefe, des Zeitpunktes und der 

Substratverfügbarkeit sowie deren Interaktion ab. 
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3 General introduction 

3.1 The N cycle 

Nitrogen (N) is the very stuff of life (Galloway and Cowling, 2002) and makes up about 80% 

of the total mass of the atmosphere. This abundant amount of N is, however, in a form not 

available to plants, animals and most microorganisms. The global nitrogen cycle is strongly 

influenced by anthropogenic activities such as industrial combustion processes and fertilizer 

application (Vitousek et al., 1997; Gruber and Galloway, 2008). Galloway et al. (2003) 

estimated the global nitrogen at 165 Tg N yr
-1

, which is tenfold more than in pre-industrial 

times. This nitrogen is mostly derived from biological nitrogen fixation (BNF) (≈ 100 – 140 

Tg N yr
-1

) with about 55% being emitted back to the atmosphere as NOx and NH3. Most of 

the emitted N (≈ 70 – 80%) is returned as N deposition on land, with about one-third being 

deposited on forest ecosystems (Hudson et al., 1994). Other pathways or processes 

contributing to nitrogen losses are leaching of nitrates, run-off to surface water, nitrification 

and denitrification. 

The N cycle in undisturbed forests ecosystem is relatively closed; most of the nitrogen being 

recycled within the soil-microbe-plant system (Nômmik, 1982). However, with increasing N 

deposition, soils rather than plants become an important long-term sink for the added N 

(Nadelhoffer et al., 1999; Providoli et al., 2006). Soil N availability largely regulates both 

biomass production and species composition in forest ecosystems. Total N stocks in forest 

soils and biomass could be as high as 500 g N m
-2

 (Galloway et al., 2003) of which over 80% 

is present in organic form (Schulten and Schnitzer, 1998). Organic N is primarily derived 

from plant materials and enters the soil as litter in addition to dead animals and 

microorganisms. The dynamics of organic N in forest soils as influenced by N deposition is 

governed by many factors and processes as well as their interaction, most of which are not 

well understood (Magill and Aber, 1998; Neff et al., 2002; Sinsabaugh et al., 2005). 

Microorganisms through the coordinated action of several enzymes are an important factor in 

N dynamics and as such, their activities can be used as indicator of nutrient cycling (Tan et 

al., 2008). They are involved in the decomposition of plant biomass and the mineralization 

and immobilization of organic N. Thus, organic N dynamics depends strongly on microbial 

abundance, diversity and activity which are in turn influenced by soil properties.  
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3.2 N deposition 

The production of forest ecosystems and their responses to environmental factors are highly 

dependent on the sustainable functioning of soils on which they grow, especially the 

responses to organic matter decomposition and nutrient cycling. Over the past centuries, 

industrialisation and agricultural intensification have increased the flux of biologically 

available nitrogen into natural ecosystems (Vitousek et al., 2003; Sinsabough et al., 2004; 

Galloway et al., 2003; Gruber and Galloway, 2008). Though there is increased political 

awareness and concern, the rate of N emissions is still on the rise. For example, in regions of 

Central Europe, where intensive agriculture and forestry areas are interspersed N deposition 

into forest ecosystems has been reported to be in the range of 10–20 kg
-1

 N ha
-1

 year
-1

 

(Gauger et al., 2008). Even higher rates of atmospheric N deposition well above 20–30 kg
-1 

N 

ha
-1

 year
-1

 have been reported in other regions, such as the Benelux countries, north Germany 

and parts of south Germany (Pilegaard et al., 2006; Simpson et al., 2006; Gauger et al., 

2008). Following a long-term intensive monitoring of 89 forests stands in Germany, the mean 

annual nitrogen (NH4
+
 and NO3

-
) input to forest soils by through fall was 21.3 kg N ha

-1
y

-1
 

and the critical load was by far (84%) exceeded in all cases (BFH, 2003). Projecting into the 

future, Denterer et al. (2006) reported increased rates of N deposition at a global scale by 

2030. Since forest ecosystems are often limited by N availability, elevated N inputs from the 

atmosphere can influence above- and below-ground production (Knutte et al., 2000). On the 

one hand, increased N deposition has had a positive effect by increasing N cycling rates, 

above-ground biomass accumulation and soil mineralization rates (Chapin et al., 1995; 

Venterea et al., 2003; Magill et al., 2004; Kreutzer et al., 2009). The environmental impacts 

of N deposition are equally grave and include: N saturation (Aber et al., 1989), nitrate 

leaching to groundwater (Gundersen et al., 2006), emission of greenhouse gasses 

(Butterbach-Bahl et al., 2002), shifts in microbial and community composition and loss of 

biological diversity (Suding et al., 2005) and forest decline (Schulte, 1989). 
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3.3 Reduction of N deposition 

The above mentioned adverse effects of N deposition triggered the signing of many clean rain 

protocols during the last decades to reduce the emissions of SO2, and nitrogen (NOx and NH3) 

in Europe and North America (Van Egmond et al., 2002; EEA, 1999). Many studies have 

been carried out in Europe, for example, under the NITREX (NITRogen saturation 

EXperiment) and EXMAN (EXperimental MANipulation of forest ecosystem) programs and 

in the USA (Peterjohn et el. 1996; Fenn et al., 1998; Magill et al., 2000) in order to identify a 

solution to soil acidification and nitrogen fertilization. Policies to reduce atmospheric 

pollutants in Germany have resulted in a slight decrease in nitrogen depositions in the 1990s 

compared to the period between 1970-1980 (Matzner and Meiwes, 1994; Meesenburg et al., 

1995). 

Studies on the effects of high nitrogen loads and the response of forest ecosystems to nitrogen 

saturation are many and well understood (Aber et al., 1998). However, the reversibility of N-

induced shifts in forest ecosystem processes is largely unknown (Clark et al., 2009). Some 

studies have also been done to determine the effects of reduced nitrogen on forest 

ecosystems. For example, in an experiment to determine the effect of reduced nitrogen 

(“clean rain”) on the growth of fine roots and soil respiration, Lamersdorf et al. (2004) 

reduced acid and nitrogen input of spruce forest at the Solling experimental site by 50-80% 

by way of a roof construction below the canopy of the forest. They observed an increase in 

the growth and biomass of fine roots under reduced nitrogen inputs also accompanied by a 

24% increase in soil respiration rate in the “clean rain” plots. In addition to the increase in 

fine roots growth, gross nitrogen mineralization of soil organic nitrogen increased in the 

“clean rain” plot (Corre and Lamersdorf, 2004) indicating that the enhanced internal nitrogen 

turnover could have compensated in part for the decreased nitrogen input. 

3.4 Soil microbial diversity 

Soil microorganisms are critical for the sustainable cycling of nutrients and for driving 

ecosystem functions (Øvreås, 2000). They take part in many fundamental processes including 

decomposition of organic matter and nutrient cycling (Frey et al., 2004). Soils contain 1–2 

and 2–5 t ha
-1

 of bacterial and fungal biomass, respectively, that inhabit less than 5% of the 

available biological space. Microbial diversity in soil ecosystems exceeds, by far, that of 

eukaryotic organisms (Rosello-Mora and Amann, 2001). Based on DNA–DNA reassociation, 

Torsvik et al. (1990a, b) estimated that in 1 g of soil there are approximately 4000 different 
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bacterial genomic units and about 5000 bacterial species have been described (Pace, 1997, 

1999). The ability of an ecosystem to withstand serious disturbances is dependent in part on 

the biological diversity of the system. Any adverse change in the environment impacting soil 

microbial communities can considerably affect ecosystem performance. While just a few 

number of species are necessary for certain functions, a large number of species, however, 

might be required to maintain ecosystem functions from major environmental changes like N 

deposition (Nannipirei et al., 2003). One anticipated consequence of N deposition and 

elevated N inputs is a change in microbial community structure and function as ecosystems 

move towards N saturation. For example, Nemergut et al. (2003) and Frey et al. (2004) 

observed a shift in the bacterial, fungal and archaea communities following N amendments in 

tundra and temperate forest ecosystems respectively. N deposition-induced shifts in soil 

microbial community have resulted in an increase in ammonium and nitrate both of which 

affect N loss to the environment (Paul and Clark, 1997). The application of molecular 

techniques (especially the application of functional gene makers) has greatly improved the 

study of microbial communities. For example, using molecular phylogenetic tools, changes in 

community structure of specific types of N cycling microorganisms as affected by increased 

N availability have been studied (He et al., 2007; Enwall et al., 2005; Tan et al., 2003).   

3.5 Soil enzymes 

In terrestrial ecosystems, the functioning of microorganisms depends primarily on the 

activities of extracellular enzymes. These enzymes are involved in the decomposition of plant 

litter, microbial cell walls and reduce complex macromolecules to soluble substrates for 

microbial assimilation (Burns and Dick, 2002). Extracellular enzymes therefore have a direct 

link to substrate quality and availability (Sinsabaugh et al., 2002), microbial status (Aon and 

Colaneri, 2001) as well as soil physical and chemical properties (Sinsabaugh, 1994). This 

makes soil enzymes excellent indicators of the soil microbial decomposition ability and 

functional diversity (Aon and Colaneri, 2001; Cadwell, 2005). Soil extracellular enzymes 

have been studied in relation to ecosystem responses to global change and other disturbances 

(Lipson et al., 2005; Sinsabaugh et al., 2005; Finzi et al., 2006). Anthropogenic nitrogen 

deposition and its effects on nutrient cycles and their enzyme catalyzed processes have 

sparked up a lot of research whose results are often contradictory. Studying different forest 

ecosystems, Grandy et al. (2008) observed that changes in enzyme activities which were 

related to changes in soil organic carbon chemistry were caused by elevated N deposition. 

According to resource allocation models, N enrichment should enhance the potential activity 

http://onlinelibrary.wiley.com/doi/10.1111/j.1461-0248.2008.01245.x/full#b6
http://www.sciencedirect.com/science/article/pii/S0038071705000817#bib1
http://www.sciencedirect.com/science/article/pii/S0038071705000817#bib1
http://www.sciencedirect.com/science/article/pii/S0038071705000817#bib27
http://www.sciencedirect.com/science/article/pii/S0038071705000817#bib1
http://onlinelibrary.wiley.com/doi/10.1111/j.1461-0248.2008.01245.x/full#b20
http://onlinelibrary.wiley.com/doi/10.1111/j.1461-0248.2008.01245.x/full#b42
http://onlinelibrary.wiley.com/doi/10.1111/j.1461-0248.2008.01245.x/full#b14
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of enzymes involved in P and C acquisition (e.g., cellulolysis) (Allison et al., 2007) but 

inhibit the degradation of lignin and its derivatives due to lowered oxidative enzyme activity 

(Sinsabaugh et al., 2005). Likewise N deposition decreased the activities of enzymes 

involved in the decomposition of organic N compounds (e.g., protein, chitin, peptidoglycan) 

(Allison et al., 2007). 

Extracellular enzyme activities have often been linked to microbial biomass since important 

organic matter transformations are carried out by microorganisms (Garcia and Rice, 1994; 

Zaman et al., 1999). Therefore microbial biomass represents a sensitive indicator of soil 

quality (Schloter et al., 2003) and ecological stability (Ajwal et al., 1999). Some research 

have shown that both soil extracellular enzyme activity and microbial biomass were 

influenced by N deposition (Carreiro et al., 2000; Michel and Matzner, 2003; DeForest et al., 

2004; Allison et al., 2008; Wang et al., 2008; Guo et al., 2011). However, in addition to N 

deposition, other factors such as soil texture (Carreiro et al., 2000) and soil profile (Markonjic 

Fuka et al., 2008) may influence microbial biomass and enzyme activities.  

3.6 Denitrification 

Denitrification is one of the most sensitive soil processes as it is regulated by a complex web 

of biotic and abiotic factors (Tiedje, 1988). It is a major biological process in the nitrogen 

cycle in that it recycles between 50 and 110% of total N inputs, returning fixed nitrogen to 

the atmosphere and thus completing the N cycle. Denitrification is a microbial respiratory 

process whereby nitrate (NO3
-
) or nitrite (NO2

-
) is reduced to nitric oxide (NO), nitrous oxide 

(N2O) or nitrogen gas. The nitrogenous oxides are used as alternative electron acceptors for 

the generation of energy when oxygen is limited (Phillipot, 2002). There exist arrays of 

enzymes (nitrate and nitrite reductases) that catalyze the four steps of the denitrification 

pathway. There are two enzymes, a membrane-bound (Nar) and a periplasmic (Nap) nitrate 

reductase, involved in the first step of the pathway, whereby NO3
-
 is reduced to NO2

-
. The 

next step, termed dissimilatory denitrification, is the main step in the denitrification cascade. 

Here, a copper- and a cytochrome cd1-nitrite reductase catalyze reduction of nitrite to nitric 

oxide. The last step in the denitrification pathway, the reduction of nitrous oxide (N2O) to 

nitrogen gas (N2), is carried out by the multicopper homodimeric N2O reductase (NosZ). All 

these catalytic processes are usually induced sequentially under anaerobic conditions mainly 

by the actions of bacteria and archaea which have the metabolic capability of converting 

organic nitrogen into inorganic nitrogen (Phillipot and Hallin, 2005). These microorganisms 
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are often isolated from natural environments such as soil, sediments, sewage and marine and 

fresh waters (Zumft, 1997). The ability to denitrify is performed by a polyphyletic diverse 

group of bacteria and not confined to a specific of taxonomic group. Consequently, to study 

and understand the diversity of the denitrifier communities, molecular techniques are based 

on the use of functional genes that encode key enzymes in the denitrification cascade or their 

transcript as molecular markers. narG and napA genes encoding the membrane-bound and 

the periplasmic nitrate reductase, respectively, as molecular markers of the nitrate reducer 

community (Bru et al., 2007). In addition, the nirK, nirS and nosZ genes encoding the copper 

and cytochrome cd1 nitrite reductases and the nitrous oxide reductase, respectively, were 

used as molecular markers of the denitrifier community (Philippot, 2005). 

3.7 Peptide degradation 

Proteins make up an integral part of soil organic nitrogen which makes them ecologically 

important (Lipson and Näsholm, 2001). In agricultural soils, peptides and proteins contribute 

35–57% to soil organic N and up to 25% in forest soils (Paul and Williams, 2005; 

Kranabetter et al., 2007). The decomposition of proteins by microbial peptidases is 

fundamentally important since N is made available for plants and soil organisms (Bach and 

Munch, 2000) with a proportion being returned to the global N cycle. Through proteolysis, 

proteins are degraded into smaller membrane permeable substances (peptides and amino 

acids) that are easily assimilated and metabolized by soil organisms. The sources of soil 

peptidases have been directed mainly towards bacterial origin, although plant roots have been 

shown to exude peptidases (Adamczyk et al., 2009). Asmar (1992) indicated a high 

correlation between proteolytic activities and total bacteria counts in glucose-amended soils. 

By selective inhibition of fungal populations, Hayano and Watanabe (1990) revealed that 

peptidases are mainly of bacterial origin in paddy soils.  

The indigenous bacterial community that harbour genes encoding extracellular peptidases are 

pivotal in the regulation of proteolysis and organic N mineralization in soils. Therefore, for 

ecosystem sustainability, the genetic diversity of proteolytic bacterial communities plays an 

important role. Several studies on proteolytic activity have shown differences in activity due 

to soil physicochemical properties, climatic conditions and management practices of 

agricultural systems (Schloter et al., 2003; Watanabe et al., 2003; Marx et al., 2005). 

Although a few studies have looked into proteolytic activity in other ecosystems (e.g., the 

Baltic sea; Nausch and Nausch, 2000), little is known about the activity and diversity of 
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peptide degrading bacterial communities and even less, the influence of environmental or 

anthropogenic factors.  
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4 Objectives 

N deposition being one of several environmental problems, different ecosystems would 

respond differently. More detailedly, different groups of microorganisms would differ in their 

response to N deposition. These responses might show high spatial and temporal variability 

due to differences in nutrient status of the different soil profiles as well as environmental and 

climatic changes that occur at the study sites. The aim of this thesis was to assess the effects 

of reduced N deposition on the activities, abundance and diversity of two bacterial 

communities. The specific objectives were to (i) localize and quantify the activities of 

enzymes involved in nutrient (N, C, P) decomposition, (ii) use functional genes coding for 

enzymes as biomarkers to characterize the bacterial communities involved in nitrate 

reduction and denitrification, (iii) evaluate the applicability of a new set of pepN primers to 

quantify genes involved in peptide degradation and (iv) improve understanding of the link 

between microbial diversity and function.  

To realise these objectives, three studies were carried out. The first study aimed to evaluate 

the response of nitrate-reducing microorganisms towards environmental changes under 

reduced N deposition at the level of community abundance and enzyme activities. The 

hypothesis was that reduced N deposition in forest soils modifies the density, activity and 

function of microbial communities involved in denitrification in the different soil horizons. 

Using substrate-induced respiration (SIR), the active fraction of soil microbial biomass was 

characterized and potential nitrate reduction was used to quantify the activity of nitrate 

reducers. The abundance of total bacteria, nitrate reducers and denitrifiers in the different soil 

layers was analysed by quantitative PCR of 16S rRNA gene, nitrate reduction and 

denitrification genes. 

The goal of the second study was to investigate the effects of reduced N deposition on several 

enzyme activities mediating soil organic matter decomposition with a special focus on the 

decay of different peptides. Given that the organic horizons of forest soils are nutrient-rich, 

the hypotheses were that (i) the reduction of N deposition might decrease the activity of 

enzymes involved in the decay of easily decomposable compounds within the soil profile and 

enhance the activity of enzymes involved in the decomposition of more recalcitrant 

compounds, (ii) enzymes involved in N cycling would show stronger response to N reduction 

than enzymes involved in C cycling and (iii) reduction of N deposition would have a more 
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pronounced effect in the upper soil layer than in lower soil horizons. Flourogenic substrates 

and standard colorimetric methods were selected to quantify the activities of these enzymes. 

Proteins and peptides make up an integral fraction of dissolved organic N compounds. A 

focus on the decay of peptides in the second study revealed a significantly high activity of 

alanine aminopeptidase enzyme. Therefore the third study aimed to extend these findings to 

other ecosystems, namely, agricultural and grasslands affected by environmental/climate 

change. The main focus was to design a new set of primers targeting the functional gene, 

pepN, coding for alanine aminopeptidase and use it to investiggate in detail the function 

(enzyme activity) and diversity of those bacterial communities capable of peptide 

degradation. The diversity was analysed by sequencing and construction of clone libraries. 
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Abstract  

A field-scale manipulation experiment conducted for 16 years in a Norway spruce forest at 

Solling, Central Germany, was used to follow the long-term response of total soil bacteria, 

nitrate reducers and denitrifiers under conditions of reduced N deposition. N was 

experimentally removed from throughfall by a roof construction (‘clean rain plot’). We used 

substrate-induced respiration (SIR) to characterize the active fraction of soil microbial 

biomass and potential nitrate reduction to quantify the activity of nitrate reducers. The 

abundance of total bacteria, nitrate reducers and denitrifiers in different soil layers was 

analysed by quantitative PCR of 16S rRNA gene, nitrate reduction and denitrification genes. 

Reduced N deposition temporarily affected the active fraction of the total microbial 

community (SIR) as well as nitrate reductase activity. However, the size of the total, nitrate 

reducer and denitrifier communities did not respond to reduced N deposition. Soil depth and 

sampling date had a greater influence on the density and activity of soil microorganisms than 

reduced deposition. An increase in the nosZ/16S rRNA gene and nosZ/nirK ratios with soil 

depth suggests that the proportion of denitrifiers capable of reducing N2O into N2 is larger in 

the mineral soil layer than in the organic layer.  
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Introduction  

Nitrogen emissions and atmospheric deposition are globally significant in their potential to 

alter the nutrient balance in soils, triggering changes in the composition of plants and soil 

organisms (Gidman et al., 2006; McLauchlan et al., 2007). The current hypothesis suggests 

that increased N deposition promotes the rate of soil organic matter accumulation by either 

increasing leaf/needle biomass and litter production or by reducing the decomposition of 

organic matter (de Vries et al., 2006). Based on data collected at the monitoring plots of 

different European forest sites, the contribution of N deposition to net sequestration of C in 

trees and soil in the period 1960–2000 is c. 5.1 Mton year
-1

 in tree wood and 6.7 Mton year
-1

 

soil – about 10% of the total C sequestration during that period (de Vries et al., 2006). 

Several N-addition experiments (partly including 
15

N) in temperate forests revealed that soils, 

rather than plants, are a main long-term sink for the added nitrate and ammonium 

(Nadelhoffer et al., 1999; Providoli et al., 2006). Specific groups of soil microorganisms 

differed in their response to N deposition or N addition (Gundersen, 1998; Butterbach-Bahl et 

al., 2002; Hungate et al., 2007). For example, the composition of the ammonia-oxidizing 

community in acidic forest soil was not affected by nitrogen deposition (Jordan et al., 2005; 

Schmidt et al., 2007). In contrast, growth of ectomycorrhizal fungi in a Norway spruce forest 

soil was reduced under N deposition (Nilsson et al., 2007). In addition, the functioning of 

microorganisms was affected by N fertilization with a stimulation of the initial decomposition 

of cellulose and solubles and a suppression of the decomposition of older humus fractions 

(Hagedorn et al., 2003).  

Whereas the mean chronic annual nitrogen deposition in Europe is still 17 kg N ha
-1

 year
-1

 

(Stevens et al., 2004), a reduction in emissions of nitrogenous pollutants under the 

Gothenburg Protocol is presupposed (Power et al., 2006). As one of seven NITREX sites 

across Europe (see Tietema et al., 1998), the ‘Solling roof project’ was established in 1989 in 

a Norway spruce forest at Solling, Central Germany, to simulate preindustrial N deposition. 

Partial deionization of rainfall was established in this field-scale roof experiment in 1991 to 

investigate whether the effects of N saturation on ecosystem functioning are reversible by 

decreasing N input (Bredemeier et al., 1995a, b, 1998). Three years after the start of the 

experiment, microbial biomass (Cmic) within the soil profile was not affected (Raubuch et al., 

1999); after 10 years, the mean annual soil respiration rate was 24% higher in the clean rain 

vs. control plot (Lamersdorf & Borken, 2004). The long-term reduction of nitrogen and 
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proton inputs did not affect nitrous oxide emission, which ranged from 0.25 to 0.41 kg N2O-

N ha
-1 

year
-1 

in the spruce forest after 10 years of the experiment (Borken et al., 2002). There 

are reasons to expect that lengthier reduction of N deposition alters the community 

composition of soil microorganisms in the acid forest ecosystem.  

Thus, changes in the amount and composition of needles and fine roots might indirectly affect 

the density and activity of soil microorganisms, whereas altered N availability and pH might 

directly affect soil microorganisms under reduced atmospheric nitrogen loads and reduced 

proton input.  

The present study evaluates the possible responses of the total microbial and the nitrate 

reducer communities within profiles of a spruce forest soil to reduction of chronic N 

deposition after an experimental duration of 16 years. Nitrate-reducing prokaryotes constitute 

a wide taxonomic group sharing the ability to produce energy from dissimilatory reduction of 

nitrate into nitrite, the first step of two different processes: denitrification and dissimilatory 

reduction of nitrate to ammonium. We used substrate-induced respiration (SIR) to 

characterize the active fraction of soil microbial biomass and potential nitrate reduction to 

quantify the activity of nitrate reducers. The densities of total bacteria, nitrate reducers and 

denitrifiers in different soil layers were analysed by quantitative PCR (qPCR) of the 16S 

rRNA genes, the nitrate reduction genes, and denitrification genes (Henry et al., 2004, 2006; 

López-Gutiérrez et al., 2004; Kandeler et al., 2006; Bru et al., 2007). We used the narG and 

napA genes encoding the membrane-bound and the periplasmic nitrate reductase, 

respectively, as molecular markers of the nitrate reducer community (Bru et al., 2007). In 

addition, the nirK, nirS and nosZ genes encoding the copper and cytochrome cd1 nitrite 

reductase and the nitrous oxide reductase, respectively, were used as molecular markers of 

the denitrifier community (Philippot, 2005). We hypothesized that reduced N deposition into 

different horizons of the acid forest soil would modify the densities and activities of the total 

soil microbial community as well as those of functional microbial communities involved in N 

cycling.  

Materials and methods  

Experimental site and soil sampling  

The Solling roof project was established in 1989 in a 57-yearold Norway spruce plantation 

growing on strongly acidic and weakly podzolized loam-silt at the Solling plateau in Central 
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Germany (51
o
13’N, 9

o
34’E, elevation c. 500 m above sea level). The climate is dominated by 

Atlantic streams with evenly distributed precipitation (mean annual precipitation = 1090 mm) 

and a moderate variation in temperature (mean annual temperature = 6.4
o
C) throughout the 

year (Lamersdorf & Borken, 2004). The control plot is covered by a translucent roof (300 

m
2

). Throughfall water is permanently collected and immediately re-sprinkled without any 

chemical treatment in the control plot. The clean rain plot is also covered with an identical 

roof. There, throughfall water is partly deionized and re-sprinkled immediately on the plot 

since the start of the experiment. Controlling the efficiency of the deionization, Corre & 

Lamersdorf (2004) reported a reduction of the major elements in the clean rain plot compared 

with the control plot of 78% for protons, 53% for sulphate, 86% for ammonium and 49% for 

nitrate. The pH of the throughfall solution at the clean rain plot (pH = 5.0) was also higher 

than that at the control plot (pH = 4.4). The Ca and Mg input in the clean rain plot was twice 

as much as in the control plot during the first 4 years of the roof experiment (1992–1995), but 

thereafter, the levels were similar between plots (Corre & Lamersdorf, 2004). Soils of the 

roofed plots are separated from the surrounding area by a vertical plastic foil (Xu et al., 

1998).  

Four replicate soil samples (‘subplots’) were collected from the clean rain plot as well as 

from the control plot in late April and late October 2006. Because of the lack of roof 

replications, the results are based on pseudo-replications. Up to five soil cores (8 cm in 

diameter) per subplot were taken and mixed according to the horizons Oe, Oa, Ah and Bw. 

Samples were sieved through a 2-mm sieve (Oe: 5 mm) and stored at -20
o
C before analysis.  

The Corg and Nt contents of soil were characterized for soil sampled in April, nitrate, 

ammonium and water contents were analysed for April and October samples (Tables 5.1 and 

5.2). In spring, the moisture content of soils was much higher (organic layers: +22%, mineral 

layers: +12%) than for soils sampled in October (Table 5.2), mainly due to wet periods in 

March and April 2006 as well as due to a drought period in September and low precipitation 

in October 2006 (data not shown). The water contents of the clean rain and control plot did 

not differ significantly in April and October. 
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Table 5.1: Chemical soil properties of the acid forest site at Solling, Central Germany, in 

April 2006 in the control and clean rain plots at different soil depths.   

 OC (g 100 g
-1

)  NT (g 100 g
-1

)  C/N  pH (CaCl2) 

Soil depth Control Clean rain  Control Clean rain  Control Clean rain  Control Clean rain 

Oe 
0-2 cm 

43.5 

(  1.1) 

43.6 

(  1.2) 

 

 

1.68 

(  0.02) 

1.61 

(  0.07) 

 

 

25.9  

(  0.7) 

27.4  

(  2.0) 

 

 

2.97 

(  0.06) 

3.19 

(  0.12) 

Oa 
2-5 cm 

35.0 

(  3.2) 

32.7 

(  1.2) 

 

 

1.39 

(  0.12) 

1.36 

(  0.06) 

 

 

25.3  

(  0.7) 

24.0  

(  0.6) 

 

 

2.63 

(  0.07) 

2.77 

(  0.03) 

Ah 
5-12 cm 

4.6 

(  0.4) 

4.0 

(  0.3) 

 

 

0.21 

(  0.02) 

0.20 

(  0.02) 

 

 

21.7 

(  0.5) 

20.1 

(  0.6) 

 

 

2.94 

(  0.06) 

3.19 

(  0.04) 

Bw 
12- cm 

1.7 

(  0.1) 

1.6 

(  0.2) 

 

 

0.09 

(  0.01) 

0.09 

(  0.01) 

 

 

19.1 

(  0.4) 

17.5 

(  0.9) 

 

 

3.80  

(  0.02) 

4.05 

(  0.05) 

Results are given as means ± SE. OC, organic carbon; NT, total nitrogen.  

Soil chemical analyses, microbial biomass and nitrate reductase activity  

Organic carbon (OC) and total nitrogen (NT) were measured with a CNS analyzer (Vario 

MAX, Elementar GmbH, Hanau, Germany) using 250 mg of the organic soils and 800 mg of 

the mineral soils. Soil pH was measured in a 0.01 M CaCl2 solution (soil to solution ratio 1: 

10 for the organic layers and 1: 2.5 for the mineral soils). After extraction of inorganic N with 

1 M KCl (soil to solution ratio of 1: 10 for the organic layers and 1: 5 for the mineral soils), 

nitrate and ammonium were measured at the SPINMAS [automated sample preparation unit  

for inorganic nitrogen (SPIN) species coupled to a quadruple Mass Spectrometer (MAS)] 

according to Stange et al. (2007).  

For the SIR measurement (determination in duplicate), substrate saturation and the maximum 

initial respiration response were obtained at an amendment rate of 8.0 mg glucose g
-1

. CO2 

evolved was trapped in 50 mM NaOH for a 4-h incubation at 25
o
C and measured by titration 

(Anderson & Domsch, 1978). The release of CO2 was linear over a period of 4 h and the SD 

of the analytical replicates was < 15%.  

The potential activity of the nitrate reductase was determined by anaerobic incubation of soil 

following a modified protocol of Kandeler (1996). The method was based on the 

determination of the NO2
-
-N production after adding nitrate as a substrate and 2,4-

dinitrophenol as an uncoupler of oxidative phosphorylation that interfered with electron 

transfer, but allowed nitrate reduction to continue. Substrate as well as inhibitor 

concentrations were optimized in pre-experiments. In detail, 0.2 g soil was weighed in five 

replicates into 2.0-mL reaction tubes. Two hundred micrograms of 2,4-dinitrophenol per 

gram soil (fresh weight) was added to inhibit the nitrite reductases. After a 24-h incubation in 

1 mM KNO3 in a total volume of 1 mL at 25
o
C in the dark, the soil mixture was extracted 
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with 4 M KCl and centrifuged for 1 min at 1400 g. The accumulated nitrite in the supernatant 

was determined by a colorimetric reaction. All analytical results were calculated on the basis 

of the oven-dry (105
o
C) weight of soil.  
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Table 5.2: NH4+, NO3
-
 and percentage water content of the acid forest site at Solling, Central Germany, in April and October 2006 in the control 

and clean rain plots at different soil depths 

 

 

 

 

 

 

 

 

 

 

Results are given as mean ± SE. 

 

 

  

 

NH4
+ (µg N g-1)  NO3

- (µg N g-1)  % water content 

 April October  April October  April October 

Soil depth Control Clean rain Control Clean rain  Control Clean rain Control Clean rain  Control Clean rain Control Clean rain 

Oe 

0-2 cm 

213.99 

(± 30.46) 

220.10 

(± 29.93) 

169.06 

(±1.81 ) 

263.59 

(± 35.74) 

 

 

9.20 

(± 5.25) 

5.83 

(± 0.74) 

46.35 

(± 0.79) 

8.25 

(± 0.13) 

 

 

68.2 

(± 0.9) 

68.7 

(± 1.2) 

41.50 

(± 1.0) 

48.93 

(±3.3 ) 

Oa 

2-5 cm 

85.30 

(± 14.95) 

131.93 

(± 26.93) 

163.73 

(± 15.52) 

202.64 

(± 37.51) 

 

 

9.03 

(± 3.61) 

2.78 

(± 0.38) 

21.54 

(± 5.36) 

8.05 

(± 1.56) 

 

 

65.0 

(± 1.4) 

66.5 

(± 0.7) 

43.95 

(± 2.0) 

47.32 

(± 4.9) 

Ah 

5-12 cm 

6.95 

(± 0.30) 

9.25 

(± 1.38) 

16.29 

(± 1.15) 

27.73 

(± 7.42) 

 

 

0.75 

(± 0.34) 

0.54 

(± 0.19) 

6.21 

(± 1.87) 

1.55 

(± 0.55) 

 

 

30.9 

(± 0.9) 

34.4 

(± 1.3) 

17.02 

(± 0.8) 

18.05 

(± 1.2) 

Bv 

12- cm 

3.46 

(± 0.23) 

4.04 

(± 0.13) 

9.22 

(± 0.68) 

10.68 

(± 1.27) 

 

 

0.70 

(± 0.20) 

0.64 

(± 0.19) 

8.38 

(± 2.49) 

4.68 

(± 2.51) 

 

 

25.9 

(± 0.2) 

26.5 

(± 0.6) 

15.76 

(± 1.2) 

17.54 

(± 0.8) 
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Quantification of 16S rRNA gene, nitrate reductase genes (narG and napA) and 

denitrification genes (nirK, nirS and nosZ)  

DNA was extracted from 0.3 g of soil using the FastDNA Spin Kit for soil (BIO 101, 

Qbiogene, France), according to the protocol of the manufacturer. Because of the large 

amounts of PCR-inhibiting substances such as humid acids, an additional purification step 

with polyvinylpolypyrrolidone-loaded columns (Sigma Aldrich) was performed according to 

Martin-Laurent et al. (2001). DNA quantity was checked using a BioPhotometer (Eppendorf) 

at 260 nm. qPCR products were amplified with an ABI Prism 7900 (Applied Biosystems) 

using SYBR green as the detection system in a 25-μL reaction mixture containing 0.5 μM 

(each) primer, 12.5 μL of SYBR green PCR master mix (QuantiTect SYBR green PCR Kit; 

Qiagen, France), 1.25 μL of DNA-diluted template corresponding to 12.5 ng of total DNA 

and 500 ng of T4gp32 (Qbiogene). The thermal cycling conditions for the 16S rRNA gene 

and the nirS, nirK and nosZ genes were as described previously (Henry et al., 2004, 2006; 

López-Gutiérrez et al., 2004; Kandeler et al., 2006). The narG and napA qPCR was 

performed as described in Bru et al. (2007). Thermal cycling, fluorescent data collection and 

data analysis were carried out using the ABI Prism 7900 sequence detection system 

according to the manufacturer’s instructions. 

Standard curves were obtained with serial plasmid dilutions of a known amount of plasmid 

DNA containing a fragment of the 16S rRNA gene or the narG, napA, nirK, nirS or nosZ 

gene. Sequences of the primers and the thermal conditions used for the real-time PCR are 

given in Supporting Information. Purified soil DNAs were tested for inhibitory effects of 

coextracted substances by diluting soil DNA extracts and by quantifying by qPCR of a 

known amount of plasmid DNA mixed to soil DNA extracts. In all cases, no inhibition was 

detected. 

Statistical analysis 

If necessary, data were Box-Cox, log or sin transformed before analysis. The influence of 

reduced N deposition on the chemical and physical soil properties and on SIR for each soil 

depth was determined using the paired t-test. Two- and three-way univariate ANOVA was 

applied to test differences of the means of respiration, nitrate reductase activity and gene 

copy numbers of 16S rRNA gene, narG, napA, nirK and nosZ between depths, treatments and 

sampling dates. Homogeneity of variances was proved by a Levene test.  

Multiple regression analysis was applied to evaluate the relationship between soil 
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environmental factors (water content, OC, NT, NH4
+
, NO3

-
 and pH) and respiration, nitrate 

reductase activity, the density of total bacteria and the nitrate-reducing/denitrifying 

community. Significance was accepted at the P < 0.05 level of probability. 

Results 

Soil chemical properties  

The results clearly showed that 16 years of reduced N deposition did not affect the organic C 

and N pools (Tables 5.1 and 5.3). Organic layers (Oe and Oa) were characterized by much 

higher OC and NT contents than both of the deeper layers (Ah and Bw). Because of high 

spatial heterogeneity, NO3
-
 contents were not significantly different between the treatments. 

Long-term reduced N deposition showed a tendency towards higher NH4
+
 contents in all 

layers of the clean rain plots compared with the control plots (Table 5.2). As expected, the 

contents of inorganic N (NH4
+
, NO3

-
 depended on the soil depth (Table 5.3). Although the 

roof construction removed the nitrogen and proton input into the ecosystem, the higher pH 

values in the clean rain treatment were statistically significant only for the Oa horizon. The 

pH values varied within the soil profile, showing the highest values in the Bw horizon. The 

soil water content was not affected by N deposition at either sampling date (April and 

October, Table 5.2).   

Table 5.3: Influence of reduction of N deposition on chemical soil properties 

 

Univariate ANOVA      P 

   †NH4
+  †NO3

- 

* OC * NT pH April October  April October 

Nitrogen 0.202 0.626 0.003 0.000 0.001  0.919 0.700 

Depth 0. 000 0.000 0.000 0.000 0.000  0.000 0.000 

Nitrogen X Depth 0.820 0.974 0.902 0.418 0.058  0.520 0.260 

*
 
Data log transformed.  †Data Box-Cox transformed. Effects of treatment and depths were estimated 

by univariate ANOVA. P-values ≤ 0.05 are indicated in bold.  

Activity of microorganisms and nitrate reducers  

Measurement of SIR yielded estimates of the CO2 released by the soil microbial community 

under optimal substrate availability. At both sampling dates, reduced N deposition did not 

significantly affect SIR in the organic layers. In the mineral layers, a significant interaction 

between treatment and sampling date was observed in the Ah horizon, but not in the Bw 

horizon (Fig. 5.1). Sampling date had a significant influence on SIR in the Oe and Bw 

horizons. The active microbial community strongly decreased with depth (Fig. 5.1).  



 

 

5 Response of nitrate-dissiminating bacteria to reduced N 32 

 

 

Fig. 5.1: Response of SIR to reduced N deposition within the soil profile (means ±SE of four 

replicates). P-values (< 0.05) of two-way ANOVA including N deposition and sampling date 

are given. 

 Nitrate reductase activity provided an insight into the potential activity of the nitrate 

reducers. Activity ranged from 0.1 to 1.2 µg N g
-1

 day
-1

 and was modified by N deposition, 

soil depth and sampling time. Whereas reduced N deposition did not influence nitrate 

reductase in April, significant treatment effects – lower activity of the clean rain treatment – 

were detected in October (Fig. 5.2). Generally, organic layers were characterized by a higher 

activity than the mineral soil layers.   
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Fig. 5.2: Response of nitrate activity to reduced N deposition within the soil profile (means 

±SE of four replicates). P-values (< 0.05) of two-way ANOVA including N deposition and 

sampling date are given.  

 

Densities of total bacteria, nitrate reducers and denitrifiers  

Samples from the forest site collected at four different soil depths and at two different dates 

contained amounts of 16S rRNA gene target molecules ranging from 3.8 x10
4

 

to 1.9 x10
5

 

copies ng
-1

 

DNA (Fig. 5.3). The narG, napA, nirK and nosZ gene copy numbers were two to 

three logs lower than the 16S rRNA gene. The gene copy number of narG was higher than 

the other functional genes, with densities ranging from 79 to 1.4 x10
3

 

copies ng
-1

 

DNA, while 

napA ranged from 23 to 3.3 x10
2
, nirK from 25 to 9.0 x10

2
 

and nosZ from 18 to 1.9 x10
2

 

copies ng
-1

 

DNA (Figs 5.4 and 5.5). The copy numbers of nirS gene fragments were below 

the detection limit of the nirS qPCR assay (10
2

 

copies ng
-1

 

DNA).  

Reduction of N deposition did not affect the abundance of 16S rRNA gene copy numbers in 

the soil profile at any time (Fig. 5.3). The densities of 16S rRNA genes decreased within the 

soil profiles, but this effect was less obvious than that for overall soil microbial activity (Figs 

5.1 and 5.3).  
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Fig. 5.3: Size of the total bacterial community estimated by quantifying the 16S rRNA gene 

copy numbers in relation to reduced N deposition and to soil depth (means ± SE of four 

replicates). Effect of reduced nitrogen deposition is significant neither for soil samples of 

April nor for October. P-values (< 0.05) of two-way ANOVA including N deposition and 

sampling date are given. 

Similar to the 16S rRNA gene, the densities of the nitrate reduction genes (narG and napA) 

or of the nirK denitrification gene were not affected by reduced N deposition (Figs 5.4 and 

5.5, Table 5.4). In contrast, a slight effect was observed for the nosZ gene (Table 5.4). All 

functional genes showed a significant depth effect (Table 5.4). Thus, the narG, napA and 

nirK gene copy numbers decreased within the soil profile, whereas nosZ showed the highest 

abundance in the Bw horizon (Figs 5.4 and 5.5). A significant sampling date effect was also 

observed for all genes, except for nosZ (Table 5.4).  

The ratios of the functional genes to 16S rRNA gene from total eubacteria revealed maximum 

proportions of 0.91% for narG, 0.28% for napA, 0.42% for nirK and 0.05% for nosZ (data 

not shown). The relative abundance of napA and nirK genes was constant within the soil 

profile, whereas narG was mainly enriched in the upper horizons and nosZ in deeper soil 

layers. Therefore, the ratio of nosZ/16S rRNA gene and nosZ/nirK copy numbers increased 

from about 0.02 and 0.15 in the organic horizons to about 0.16 and 0.51 in the mineral soils, 

respectively.  

Multiple regression analysis including microbiological data as independent factors (Table 

5.5a) revealed no significant correlation between SIR and 16S rRNA gene but between nitrate 
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reductase activity and the copy number of narG (P < 0.05).  

 
Fig. 5.4: Size of the nitrate reducer community estimated based on narG and napA gene copy 

numbers in relation to reduced N deposition and to soil depth (means ±SE of four replicates). 

P-values (< 0.05) of two-way ANOVA including N deposition and sampling date are given.  
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Fig. 5.5: Size of the denitrifier community estimated based on nirK and nosZ gene copy 

numbers in relation to reduced N deposition and to soil depth (means ± SE of four replicates). 

P-values (< 0.05) of two-way ANOVA including N deposition and sampling date are given
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Table 5.4: Influence of reduced N deposit , soil depth and sampling date on nitrate reductase 

activity (NRA), SIR and on the density of total bacterial community, nitrate reducers and 

denitrifiers 

 Univariate ANOVA       P 

 16S rRNA * narG * napA nirK †nosZ * NRA ‡ SIR 

Nitrogen 0.500 0.604 0.998 0.236 0.049 0.005 0.613 

Depth 0.000 0.000 0.000 0.000 0.025 0.000 0.000 

Date 0.036 0.002 0.000 0.001 0.601 0.007 0.062 

Nitrogen × Depth 0.734 0.742 0.087 0.966 0.751 0.732 0.836 

Nitrogen × Date 0.694 0.132 0.779 0.112 0.076 0.003 0.035 

Depth × Date 0.007 0.176 0.016 0.001 0.574 0.623 0.000 

Nitrogen × Depth × Date 0.215 0.392 0.112 0.258 0.629 0.835 0.644 

Levene test 0.241 0.543 0.084 0.139 0.844 0.097 0.059 

*Data Box-Cox transformed. 
†
Data sin transformed. 

‡
Data log transformed. P-values for the density 

and activity of microorganisms analysed by ANOVA are shown. P-values ≤ 0.05 are indicated in 

bold.  

Table 5.5a: Multiple regression analysis of size of total and nitrate-dissimilating bacteria 

using the microbial parameters SIR and nitrate reductase activity (NRA) as independent 

factors 

 

Parameter 

Standardized coefficient (β) Model 

P-value 16S rRNA 

copies 

narG copies napA copies nirK 

copies 

nosZ copies 

SIR 0.241 -0.030 0.262 0.259 -0.367 0.000 

NRA 0.167 0.428 0.144 0.004 -0.170 0.000 

Significant correlations with P-values ≤ 0.05 are indicated in bold. 

Linking soil microbiological to environmental properties  

Multiple regression analysis, including soil water content, OC, NT, NH4
+
, NO3

-
 and pH as 

independent factors and copy numbers per nanogram DNA, respiration rates and activity 

rates as dependent factors, was used to relate changes in enzyme activities and gene densities 

to soil properties in April (Table 5.5b): SIR was positively related to OC content and 

negatively related to NT. Nitrate reductase activity depended on the soil water content. None 

of the soil properties analysed could explain the abundance of 16S rRNA gene, narG or nosZ 

genes, while the abundance of the napA gene was significantly influenced by the OC content. 

Multiple regressions also revealed that NT, NH4
+
 and pH could explain the copy numbers of 

nirK (Table 5.5b).  
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Table5.5b: Multiple regression analysis of the size and activity of total* and nitrate-

dissimilating bacteria using soil water content, NT, OC, NH4
+
 ,NO3

-
 pH as independent 

factors 

 Standardized coefficient (β) Model 

P value 

Parameter Soil water content NT OC NH4
+ NO3

- pH 

16S rRNA level 0.423 -0.799 0.758 0.521 0.048 0.235 0.000 

narG copies 0.740 -1.917 1.831 0.076 0.116 0.009 0.000 

napA copies -0.865 -0.901 2.457 0.209 -0.205 0.025 0.000 

nirK copies 0.654 -1.729 1.080 0.879 0.084 0.347 0.000 

nosZ copies 1.727 0.433 -1.890 -0.229 0.130 0.461 0.520 

SIR 0.015 -2.280 3.243 0.043 -0.179 0.283 0.000 

NRA 1.598 -1.294 0.801 -0.164 -0.100 0.088 0.000 

*Activity of all microorganisms. Data from the April sampling date were used for the analysis. 
Significant correlations with P-values ≤ 0.05 are indicated in bold. NRA, nitrate reductase activity. 

 

Discussion  

N deposition and soil acidification affect N cycling in many forest ecosystems (Lamersdorf & 

Borken, 2004). The Solling roof experiment, one of the rare long-term field experiments, was 

designed to provide an insight into future developments of acidified and nitrogen-saturated 

forest ecosystems in an envisaged environment of reduced N emissions. Our study, 

performed 16 years after the start of the experiment, investigated the effects of reduced N 

deposition on both the total microbial community and on the functional microbial guilds 

involved in N-cycling.  

The total microbial community response to reduced N deposition and soil depth  

The impact of reduced deposition was investigated by quantifying the activity and the size of 

the total microbial community using SIR and qPCR of 16S rRNA gene target N deposition 

and proton input can also be explained by molecules. Whereas community size did not 

respond, SIR temporarily increased in the Ah horizon of the clean rain plot. Because the Ah 

horizon was characterized by increased growth of fine roots (Lamersdorf & Borken, 2004), 

we suggest that rhizodeposition stimulated the heterotrophic soil microbial community here. 

The weak effect of reduced N deposition and proton input can also be explained by enhanced 

internal nitrogen turnover of soil microorganisms: because long-term reduction of N had a 

minor effect on the inorganic N contents (NH4
+
, NO3

-
) and on the active fraction of the soil 
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microbial community, enhanced internal nitrogen turnover might have partly compensated 

the lower N input by throughfall in the clean rain plot during recent years. This hypothesis is 

also supported by higher gross mineralization of soil organic nitrogen in that plot (Corre & 

Lamersdorf, 2004). 

SIR showed values up to 40 mg CO2 100 g
-1

 h
-1

 in the Oe horizon, in the range of previous 

results for spruce forests (Kandeler et al., 1999), while the values were 2–4 mg CO2 100 g
-1

 h
-

1
 in the Bw horizon in the mineral layer. 16S rRNA gene target molecules of the forest site 

ranged from 3.8 x10
4

 

to 1.9 x10
5

 

copies ng
-1

 

DNA and are in agreement with previous reports 

(López-Gutiérrez et al., 2004; Kandeler et al., 2006). A significant decrease with soil depth 

was also observed for the 16S rRNA gene copy numbers (Table 5.4). However, comparison 

of SIR and 16S rRNA gene depth profiles revealed a stronger depth effect for the former than 

for soil microorganism density, suggesting that soil microorganisms were less active in 

deeper soil layers. Alternatively, this could be due to a higher fungal biomass in Oe because 

SIR covers the active fraction of both bacterial and fungal biomass while only bacteria are 

targeted using the 16S rRNA gene. 

Multiple regression analyses were used to test whether the results of SIR and 16S rRNA 

genes depended on specific chemical and physical soil properties (Table 5.5b). Whereas the 

active fraction of the soil microbial community (SIR) was significantly related to OC, there 

was no relationship between 16S rRNA gene copy numbers and substrate pools (NT, OC and 

Nmin), pH or water content. This suggests that other factors such as temperature, redox 

potential or distribution of roots might be important.  

Activity and size of the nitrate-reducing community within the soil profile  

Quantification of potential nitrate reductase activity as well as genes encoding enzymes 

involved in nitrate reduction was used to assess the response of this specific functional 

community involved in nitrogen cycling to reduced N deposition. Nitrate reductase in the 

Solling spruce forest did not exceed 1.5 μg NO2
-
-N g

-1
 day

-1
. These values were about two to 

20 times lower than the activities of alpine grasslands (Deiglmayr et al., 2004) and even more 

than one thousand times lower than the activities of agricultural soils (Philippot et al., 2006).  

Lower N deposition significantly affected nitrate reductase activity in October. Thus, lower 

rates were observed in the clean rain vs. control plot at all depths, but this difference was only 

significant for the Oa layer (Fig. 5.2). Because nitrate reductase is an enzyme that is generally 
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induced by nitrate and oxygen limitation, we expected that nitrate in the soil solution as well 

as moisture content would be important regulating factors. Accordingly, multiple regression 

analysis revealed that soil water content was related to nitrate reductase activity (Table 5.5b). 

However, the soil water content can only explain differences in nitrate reductase activity 

within the soil profile and not between the two treatments. Reduced N deposition induced a 

trend towards a lower nitrate concentration that was not significant between the treatments. 

Therefore, reduced nitrate reductase activity in the clean rain treatment cannot be attributed 

solely to differences in the nitrate contents of the soil solution, but also to other 

environmental factors.  

The reduction of nitrate to nitrite is catalysed by two different types: a membrane-bound 

reductase (Nar) encoded by the narG gene and a periplasmic nitrate reductase (Nap) encoded 

by the napA gene. Nitrate reducers can carry either one or both nitrate reductase enzymes 

(Philippot & Hojberg, 1999). Whereas Nar has been purified from a large variety of 

microorganisms including Archaea, the periplasmic enzyme Nap is present only in Gram-

negative bacteria. The narG and napA gene copy numbers estimated by qPCR were similar to 

those described for other ecosystems (López Gutiérrez et al., 2004; Kandeler et al., 2006; Bru 

et al., 2007). Reduced N deposition did not modify the size of the nitrate reducer community, 

whatever the gene targeted (Figs 5.4 and 5.5). Therefore, the densities of both nitrate reducers 

and total bacteria seemed to be buffered against environmental changes resulting from the 

lower N deposition. This stability of the soil microbial community is also evident in the 

percentage of nitrate reducers to total bacteria, which was affected neither by N deposition 

nor by soil depth (data not shown). An alternative explanation is that the between-treatment 

variability in the chemical compositions of the soil solution was too high to yield differences 

in the relative abundance or size of the nitrate reducer community. Surprisingly, important 

regulating factors for the nitrate reducer community – such as organic and inorganic N pools, 

pH and soil water content – did not correlate with the density of nitrate reducers (Table 5.5b). 

On the other hand, univariate ANOVA clearly showed that the densities of nitrate reducers 

were controlled by spatial and seasonal variation. Our plot-scale study did not account for 

small-scale heterogeneity of nitrate reducers and its physico-chemical controls. Further 

studies should clarify whether the size of the nitrate reducer community is driven by the 

micro-topography of the acid forest soil as described by Mohn et al. (2000) and Hafner & 

Groffman (2005) for the spatial variation of denitrifying activity and N transformation, 

respectively. 
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Quantification of the genes encoding the nitrate reductase and of the nitrate reductase activity 

in relation to N deposition, soil depth and season allows us to study the possible linkage 

between the abundance and the activity of the nitrate reducer community in the acid forest 

soil. We hypothesized that the potential nitrate reductase activity is controlled by the 

abundance of nitrate reducers under suboptimal environmental conditions. Indeed, Pearson 

correlation analysis indicated that the density of the narG-carrying community – the more 

abundant group of nitrate reducers in this forest soil – is positively correlated to nitrate 

reductase activity (r
2
 = 0.487, P < 0.001). Linkages between the size and the activity of 

functional communities involved in the N cycle have been reported previously for nitrifiers or 

denitrifiers (Patra et al., 2005).  

Size of the denitrifier community within the soil profile  

Quantification of nirK, nirS and nosZ genes should yield information on the effect of N 

deposition on the density of denitrifiers capable of reducing the nitrite produced by nitrate 

reducers into gaseous nitrogen in the acid forest soil. Nitrite is reduced to nitric oxide by 

microorganisms having either a Cu-containing nitrite reductase enzyme encoded by the nirK 

gene or a cd1 nitrite reductase encoded by the nirS gene (Zumft, 1997). Nitrous oxide is 

reduced to N2 by the nitrous oxide reductase encoded by nosZ. We were unable to detect any 

nirS gene encoding the cytochrome cd1 nitrite reductase, due to the lower sensitivity of the 

nirS assay compared with the assays of other denitrification genes. Lower N deposition did 

not affect the copy numbers of nirK and only weakly impacted the copy numbers of nosZ 

(Fig. 5.5, Table 5.4). This is probably due to the relatively constant conditions of soil solution 

chemistry since more than a decade (e.g. almost no detectable nitrate in the above-ground soil 

solution since 1995; see Lamersdorf & Borken, 2004). Similarly, no significant intertreatment 

differences were recorded in the relative abundance of denitrifiers to total bacteria. Mergel et 

al. (2001b) reported that nitrogen fertilization in an acid forest soil also had no impact on the 

relative abundance of denitrifiers.  

The densities of nirK and nosZ genes were differently influenced by soil depth: whereas copy 

numbers of the nirK gene decreased within the soil profile, values of nosZ in the Bw layer 

were higher than those in the organic layers (Fig. 5.5). Applying the most probable number 

(MPN) method and colony hybridization using denitrification genes as probes, Mergel et al. 

(2001a) also showed a depth effect on denitrifier density with decreasing bacterial and 

denitrifier numbers with soil depth. Although the amount of organic substances is the most 
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important factor determining the size of the denitrifier community in other ecosystems 

(Tiedje, 1988; Kandeler et al., 2006), we detected no correlation between OC and the number 

of nirK and nosZ functional genes (Table 5.5b). The higher nosZ/16S rRNA gene and 

nosZ/nirK ratios in the Ah and Bw horizons suggest that the proportion of denitrifiers capable 

of reducing the greenhouse gas N2O into N2 is higher in the mineral soil layer than that in the 

organic layer.  

In conclusion, our study showed that reducing the N deposition had a smaller effect on the 

abundance and function of soil microorganisms, nitrate reducers and denitrifiers than soil 

depth and sampling date. The negligible effects of lower N deposition on nitrate reducers and 

denitrifiers in this acid forest ecosystem are likely due to the low level of nitrogen oxides 

respiration and the dominance of microbial NH4
+
 turnover in the internal N cycling. 

Variations of the nosZ/16S rRNA gene and nosZ/nirK ratios in the different soil horizons 

suggest that the relative abundance of microorganisms capable of performing complete 

denitrification is unequally distributed within the acid soil profile. This study provides first 

evidence that denitrifiers that can reduce nitrous oxide might be enriched in deeper soil 

layers. Studies on expression of denitrification genes and on N2O fluxes in relation to soil 

depth are necessary to confirm whether the risk of N2O release from mineral soil layers can 

be neglected.  
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Abstract  

High N availability resulting from anthropogenic emissions can alter the activities of 

enzymes involved in the breakdown of organic compounds in ecosystems. In a spruce forest 

stand in Solling, central Germany, the nitrogen contained in throughfall water was adjusted to 

pre-industrial concentrations and resprinkled as ‘‘clean rain’’ onto the forest floor. Soil was 

sampled from the clean rain and control plot at three different dates and four horizons. We 

investigated the response of active microbial biomass (SIR) and fungal biomass (ergosterol 

content) and 15 enzymes to the reduction of N deposition. Some N-cycling enzymes (urease, 

arginine deaminase, alanyl aminopeptidase, lysyl-alanyl aminopeptidase) showed increased 

activities whereas others (N-acetyl-glucosaminidase, protease, leucyl aminopeptidase, alanyl-

alanyl-phenyl aminopeptidase) decreased under reduced N treatment indicating a 

modification of the reaction rates of different enzymes involved in N cycling. For the C-and 

P-cycling enzymes, α-and β-glucosidase as well as phosphatase activities increased in the 

clean rain treatment in spring 2006 in Oe and Oa horizons, respectively, but did not affect the 

pattern of substrate decomposition. Spatial variability of microbial biomass and enzyme 

activities within the soil profile indicated that the decrease in microbial activity with depth 

was driven by resource allocation.  
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Introduction  

In recent decades nitrogen emissions into the atmosphere have promoted increased 

mobilization and deposition of reactive forms of N into ecosystems   (Galloway et al., 2003) 

resulting in increased acidification and N saturation of soils (Aber et al., 1989; Matson et al., 

2000; Puhe and Ulrich, 2001). In this way natural ecosystems have received atmospheric N 

inputs in an order greater than those presumed for pre-industrial conditions (Carreiro et al., 

2000). Since nitrogen is generally a limiting nutrient for plant growth, Spieker et al. (1996) 

suggested that high nitrogen depositions have substantially increased tree growth in European 

forests. However, forest ecosystems have been severely affected by high N inputs. For 

example, increased N deposition can have dramatic impacts on ecosystem processes and 

microbial communities. N deposition increases N leaching and trace gas losses, alters soil 

carbon (C) stocks, and changes plant community composition (Mack et al., 2004; Waldrop et 

al., 2004a, b; Suding et al., 2005). When N availability exceeds biological demand in forested 

ecosystems, N saturation may occur, leading to changes in soil pH, forest decline, and 

massive N losses (Allison et al., 2007).  

Tree needle litter is the main raw material for humus formation in the organic horizons of 

spruce forest ecosystems and may represent a major source of nutrients and substrates for 

microbial decomposition. Decomposition processes that control nutrient (carbon and 

nitrogen) fluxes in soil are liable to changes due to anthropogenic nitrogen enrichment of 

ecosystems (Sinsabaugh et al., 2005) and enzymes play a pivotal role in the catalysis of these 

soil nutrient transformations (Burns and Dick, 2002). High N availability has been observed 

to alter the activities of enzymes involved in the breakdown of organic compounds. Studies 

on the interrelationship between organic carbon and nitrogen in soils utilizing manipulation 

experiments showed that in nitrogen saturated soils, a decreased decomposition of recalcitrant 

organic matter occurs due to inhibitory effects of high nitrogen levels on extracellular 

enzyme activities (Sinsabaugh et al., 2002). Additionally, Sinsabaugh et al. (2002) reported 

that high nitrogen concentrations reduced the activity of microorganisms involved in the 

degradation of nitrogenous organic matter. Measurement of soil enzyme activities has, 

therefore, been recommended as a suitable method for measuring changes in soil quality 

(Dick, 1992), soil recovery from disturbance or stress (Decker et al., 1999), and as the most 

appropriate indicator of microbial function (Cadwell, 2005).  

Most of the studies about N deposition have concentrated on the effects of high nitrogen 
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loads and the response of forest ecosystems to nitrogen saturation, but little is known on the 

response of microbial function and enzyme activities to the reduction of N deposition on 

forest soils. However, at Solling, Central Germany, as one of the former EXMAN NITRIX 

networks of European ecosystem manipulation studies long-term reduction of atmospheric N 

input is still applied. Here throughfall is permanently collected by a roof construction below 

the canopy, partially deionised and resprinkled on the experimental plots since 1991. 

Substantial information from previous studies carried out in the Solling roof project is 

available on soil water chemistry (Bredemeier et al., 1995a,b), hydrochemical input–output 

budgets (Xu et al., 1998), root growth and aboveground-stand response (Bredemeier et al., 

1998), soil microbial parameters (microbial biomass and respiration) (Raubuch et al., 1999), 

gross microbial N cycling rates (Corre and Lamersdorf, 2004), and fine root growth and soil 

respiration (Lamersdorf and Borken, 2004).  

After 16 years of manipulations to reduce N deposition to preindustrial levels, the goal of this 

study was to investigate the effects of reduced N deposition on several enzyme activities 

mediating soil organic matter turnover of cellulose, hemicellulose, organic phosphorus 

compounds, proteins and chitin in the Solling spruce forest soil profile. In addition, we 

focused on decay of different peptides, an important fraction of dissolved organic N 

compounds. We hypothesize that (1) the reduction of N deposition might decrease the 

activity of enzymes involved in the decay of easily decomposable compounds within the soil 

profile and enhance the activity of enzymes involved in the decomposition of more 

recalcitrant compounds, (2) the enzymes involved in N cycling would show stronger response 

to N manipulation than enzymes involved in C cycling and (3) the reduction of N deposition 

would have a more pronounced effect in the upper soil layer than in lower soil horizons.  

Material and methods  

Study site and soil sampling  

The study site was a 75-year-old Norway spruce (Picea abies) plantation at the Solling 

plateau in Central Germany (51
o
31’N, 9

o
34’E, elevation ≈500 m above sea level). The soil is 

classified as strongly acidic Dystric Cambisol (FAO, 1987) with a base saturation of about 5–

10% in the whole profile down to 1 m depth (Raubuch et al., 1999). Considerable amount of 

nutrients and organic matter are accumulated in the humus layer (moder humus form). The 

bedrock material is sandstone, overlaid by a loess layer. More detailed information on 

chemical and physical soil properties of the individual plots and soil profiles are given by 
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Bredemeier et al. (1995a, b), Raubuch et al. (1999), Theuerl et al. (2009) and Kandeler et al. 

(2009). The climate is dominated by Atlantic streams with evenly distributed precipitation 

(MAP = 1090 mm) and moderate variation in temperature (MAT = 6.4
o
C) throughout the 

year (Lamersdorf and Borken, 2004).  

The Solling roof project was established in 1989 with translucent roofs (each 300 m
2
), 

constructed below canopy in 1991. Two roofed plots were used in this study. One plot acts as 

the so called ‘‘clean rain’’ plot, where throughfall water is permanently collected, partly 

deionised to adjust to pre-industrial ion concentrations, and resprinkled immediately to the 

plot. The second plot is used as the roof control plot, i.e. throughfall water is also collected 

but immediately resprinkled without any prior chemical treatment. Compared to the control 

plot the clean rain plot receives about 65% less N (2.1 kg NH4
+
-N ha

-1
 year

-1
; 7.6 kg NO3

-
-N 

ha
-1

 

year
-1

; 1.8 kg DON ha
-1

 

year
-1

) in the throughfall water (Lamersdorf and Borken, 2004). 

The content of soil inorganic N species (NH4
+
, NO3

-
) was not significantly affected by 

treatment within the soil profile. Reduction of N deposition did not change organic carbon 

(OC) and total nitrogen (NT) contents of soil profiles. OC and NT in the different horizons 

(Oe–Bw) were 43.5, 33.9, 4.6, 1.7 g 100 g
-1

 soil and 1.7, 1.4, 0.2, 0.09 g 100 g
-1

 

soil, 

respectively. These values were similar for both the clean rain and the control plots and at 

both sampling dates in 2006. Although the roof construction removed nitrogen and proton 

input into the ecosystem, the pH (CaCl2) values in the clean rain treatment were still low, 

ranging from 2.6 in the Oa horizon to 4.1 in the Bw horizon and were not different from the 

control.  

Soil samples were collected in April and October 2006 and April 2007 by driving a 10 cm 

diameter core borer into the ground from the soil surface to 40 cm soil depth. Because of the 

lack of roof replications, the plots were separated into four subplots. Four soil cores were 

sampled per subplot and the different horizons (Oe, Oa, Ah and Bw) were separated in order 

to investigate the response to reduced N deposition in both the upper and lower soil layers 

since nutrient fluxes are dynamic. After sieving with a 2 mm sieve, the soil samples were 

homogenised and stored at -20
o
C until analysis.  

Microbial biomass  

Microbial biomass was measured by the substrate-induced respiration (SIR) method (in 

duplicate). Substrate saturation and maximum initial respiratory response were obtained with 

glucose amendment (10 mg glucose g
-1

 

soil). CO2 evolved was trapped in 50 ml 0.1 M NaOH 
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during 4 h incubation at 25
o
C and measured by titration with 0.1 M HCl (Anderson and 

Domsch, 1978).  

Fungal biomass  

Soil fungal biomass was determined by extraction and quantification of ergosterol content 

using the method of Djajakirana et al. (1996) with slight modifications. One gram of soil was 

suspended in 50 ml ethanol (HPLC-grade) in 100 ml wide-mouth brown bottles and extracted 

in a shaker for 30 min at 250 rev. min
-1

 

followed by centrifugation in 50 ml tube at 4560 rev. 

min
-1

 

for 30 min. An aliquot of 20 ml was transferred into a test tube and evaporated in a 

rotary evaporator at 50
o
C under vacuum. The dry extract was then dissolved in 2 ml methanol 

and percolated through a syringe filter (cellulose– acetate, 0.45 mm pore size) into brown 

glass HPLC-vial. Extracts were measured by injection of 20 ml into a HPLC autosampler 

(Beckmann Coulter, System Gold 125 Solvent Module). Extracts were passed through a 

column (250 mm x 4.6 mm, 5 mm diameter = solid phase, Spherisorb octadecyl silan, ODS 

II). Pure methanol was used as mobile phase at a flow rate of 1 ml min
-1

. The column was 

conditioned with methanol eluent at a flow rate of 1 ml for 30 min before measurement 

started. The detection was carried out with an UV-detector (Beckmann Coulter, System Gold 

166) at a wavelength of 282 nm. Identification of ergosterol was performed by retention time 

and quantification by peak area.  

Enzymatic activity using fluorogenic substrates  

The activities of the following 10 enzymes involved in pathways of N-, C-, and P-cycling 

were determined using fluorogenic substrates according to Marx et al. (2001); leucyl 

aminopeptidase, alanyl aminopeptidase, lysyl-alanyl aminopeptidase, alanyl-alanyl-phenyl 

aminopeptidase, α-glucosidase, β-glucosidase, Nacetyl-glucosaminidase, β-xylosidase, 

cellobiohydrolase and phosphatase. All substrates, standards and buffers were obtained from 

Sigma–Aldrich (St. Louis, USA). The substrates contained the fluorescent compounds 4-

methylumbelliferone (4-MUF) and 7-amido-4-methylcoumarin (7-AMC). Buffers and 

substrates were prepared according to Poll et al. (2006).  

Soil suspensions were prepared by adding 0.5 g fresh soil into 50 ml of autoclaved water and 

dispersed by ultrasonication for 2 min with 50 J s
-1

 

sonication energy. The suspensions were 

continuously stirred using a magnetic stir plate while 50 ml aliquots (with four analytical 

replicates per sample per assay) were dispensed into 96-well microplate (PPF black 96 well; 

Greiner Bioone GmbH, Frickenhausen, Germany), followed by 50 ml of the appropriate 
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autoclaved buffer (MES or TRIZMA buffer) and 100 ml of substrate solution. Standard wells 

received 50 ml of soil suspension, standard solution (MUF or AMC) and appropriate amount 

of buffer. Controls were buffer and MUF-or AMC-substrates. All microplate wells had a final 

volume of 200 ml as reaction medium. The plates were incubated at 30
o
C. Fluorescence was 

measured at 360/460 nm wavelength in a microplate fluorescence reader (Bio-Tek 

Instruments Inc., FLX 800, Germany) after 0, 30, 60, 120 and 180 min. The enzyme activity 

corresponded to an increase in fluorescence and was calculated in nmol g
-1

 

soil h
-1

.  

 

Enzymatic activity by standard colorimetric method  

The following enzymes involved in C and N cycling were measured by colorimetric methods: 

invertase, xylanase, protease, urease and arginine deaminase according to Kandeler (1996) 

with some modifications. All measurements were done with four analytical replicates.  

For the determination of invertase activity, 0.3 g of fresh soil was incubated with 5 ml of 5 

mM sucrose substrate solution and 5 ml of 2 M acetate buffer (pH 5.5) in 50 ml test tubes 

while shaking for 3 h at 50
o
C. The controls received acetate buffer only. At the end of 

incubation reducing sugars released during incubation were measured photometrically (UV-

1601, Shimadzu) at 690 nm by the ferric-ferrocyanide reaction (Schinner et al., 1996).  

Due to insufficient amount of sample material, xylanase activity was not determined for the 

October 2006 sampling date. Xylanase activity was determined by incubating 0.3 g of soil 

with5ml substrate solution (1.2% (w/v) xylan from oat speltss suspended in 2 M acetate 

buffer, pH 5.5) and 5 ml of 2 M acetate buffer (pH 5.5) for 24 h at 50
o
C. The reducing sugars 

released during the incubation period were determined by the ferric-ferrocyanide reaction 

(Schinner et al., 1996).  

Protease activity was measured as follows: 0.3 g of fresh soil was incubated with 5 ml of 2% 

sodium caseinate as substrate and 0.05 M Tris buffer (pH 8.1) at 50
o
C for 2 h. The aromatic 

amino acids released were extracted and the remaining substrate precipitated with 0.92 M 

tricholoroacetic acid (TCA). The amino acids reacted with 5 ml of Folin-Ciocalteu’s phenol 

reagent and were measured colorimetrically. Protease activity was expressed as tyrosine 

equivalents per gram dry soil per 2 h.  

Urease activity was determined by incubating 0.3 g of fresh soil with 1.5 ml of 0.08 M 

substrate (urea) solution at 37
o
C for 2 h. Released ammonium was extracted with 12 ml 1 M 

potassium chloride/0.01 M hydrochloric solution and determined by a modified Berthelot 
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reaction.  Urease activity was expressed as N equivalents per gram dry soil per 2 h.  

The determination of arginine deaminase activity was performed with 5 g of fresh soil, 2 ml 

of aqueous arginine–substrate solution and incubated at 37
o
C for 3 h. Two molar KCl 

solution was added after incubation to extract the ammonium released and was determined 

colorimetrically by the indophenol reaction.  

Statistical analyses  

After data were separated into the organic and mineral horizons, independent t-tests were 

used to test the effect of reduced N deposition at different sampling dates on microbial 

parameters (SIR and ergosterol content) and soil enzyme activities. Three-way univariate 

analysis of variance (ANOVA) was applied to test for differences of the means of substrate-

induced respiration, ergosterol content and enzyme activities among treatments, depths and 

sampling dates. Levene test was used to test for homogeneity of variances. Where necessary, 

data sets were log (SIR, urease, alanyl aminopeptidase, leucyl aminopeptidase, lysylalanyl 

aminopeptidase, β-xylosidase, phosphatase) or sin (xylanase, cellobiohydrolase) transformed. 

The data for some of the enzymes (even after application of several transformations) could 

not be normalized to give a satisfactory homogeneity test. Multiple regression analysis was 

applied to evaluate the relationship between microbial biomass, enzyme activity and nutrient 

pools and between microbial biomass and enzyme activities. Significant differences were 

accepted at the P < 0.05 level of probability.  

Results  

Microbial and fungal biomass  

SIR was used to determine the active component of soil microbial community while the 

content of ergosterol in soil was used as an estimate of fungal biomass. There was a 

significant increase of both SIR and ergosterol content in the reduced N treatment in spring 

2006 (Table 6.1); however, this treatment effect was restricted to the Oa horizon. Sampling 

time and treatment significantly (P = 0.035) interacted to have an influence on SIR (Table 

6.2). SIR and ergosterol content declined substantially with depth, from Oe to Bw horizons 

(Fig. 6.1).  
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Table 6.1: t-Test results testing the effect of reduced N deposition on microbial biomass (SIR), ergosterol (Ergl) content, and enzyme act ivities at 

different soil depths and sampling dates. Significance (in bold) is considered at P < 0.05.  

Soil 

depth 

Sampling date SIR Ergl Urease Argn Prot N-ac Ala Leu LA-aP Ala-Ala α-Glu β-Glu β-Xyl  CBH Invt 

 

Xylan Phos 

 

Oe 

April 06 0.588 0.052 0.143 0.597 0.596 0.043 0.741 0.334 0.671 0.334 0.110 0.048 0.162 0.640 0.826 0.470 0.212 

Oct. 06 0.565 0.681 0.180 0.493 0.882 0.538 0.676 0.366 0.914 0.897 0.560 0.512 0.950 0.235 
0.922 

0.119 ND 0.270 
April 07 0.371 0.529 0.180 0.016 0.399 0.890 0.985 0.524 0.607 0.540 0.711 0.712 0.630 0.918 0.278 0.114 

                   

 

Oa 

April 06 0.013 0.014 0.018 0.015 0.346 0.082 0.251 0.733 0.356 0.193 0.036 0.010 0.184 0.485 0.259 0.601 0.027 

Oct. 06 0.698 0.325 0.600 0.159 0.728 0.913 0.585 0.682 0.881 0.820 0.396 0.527 0.860 0.753 0.869 ND 0.857 

April 07 0.068 0.175 0.035 0.530 0.077 0.406 0.204 0.906 0.879 0.660 0.933 0.967 0.482 0.971 0.577 0.424 0.809 

                   

 

Ah 

April 06 0.154 0.215 0.071 0.491 0.592 0.244 0.167 0.781 0.083 0.419 0.727 0.237 0.171 0.463 0.216 0.615 0.759 

Oct. 06 0.144 0.241 0.017 0.389 0.829 0.220 0.701 0.744 0.550 0.255 0.664 0.136 0.081 0.353 0.291 ND 0.251 

April 07 0.918 0.784 0.083 0.974 0.113 0.720 0.758 0.514 0.710 0.968 0.825 0.300 0.293 0.153 0.316 0.464 0.959 

                   

 
Bw 

April 06 

Oct. 06 

April 07 

0.606 

0.577 

0.499 

0.252 

0.221 

0.222 

0.366 

0.027 

0.224 

0.918 

0.250 

0.875 

0.840 

0.544 

0.010 

0.542 

0.167 

0.650 

0.482 

0.668 

0.926 

0.356 

0.442 

0.852 

0.066 

0.043 

0.735 

0.239 

0.197 

0.111 

0.336 

0.067 

0.020 

0.648 

0.081 

0.877 

0.083 

0.111 

0.487 

0.086 

0.617 

0.537 

0.681 

0.733 

0.310 

0.128 

ND 

0.475 

0.542 

0.192 

0.479 

Argn, arginine deaminase; Prot, protease; N-ac, N-acetyl-glucosaminidase; Ala, alanyl aminopeptidase; Leu, leucyl aminopeptidase; LA-aP, lysyl-alanyl 

aminopeptidase; Ala-Ala, alanyl-alanyl-phenyl aminopeptidase; α-Glu, α-glucosidase; β-Glu, β-glucosidase; β-Xyl, β-xylosidase; CBH, cellobiohydrolase; 

Invt, invertase; Xylan, xylanase; Phos, phosphatase.  
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Table 6.2: Three-way ANOVA results testing the response of microbial biomass (SIR) and 

some enzyme activities investigated to reduced N deposition, soil depth and sampling date. 

Significance (in bold) is considered at P < 0.05. 

 Univariate ANOVA 

 
aSIR aUrease aAla aLeu aLA-aP aβ -Xyl bCBH bXylan aPhos 

 

Nitrogen 
 

0.354 
 

0.000 
 

0.062 
 

0.831 
 

0.022 
 

0.260 
 

0.115 
 

0.353 
 

0.268 
 

Depth 
 

0.000 
 

0.000 

 

0.000 
 

0.000 
 

0.000 
 

0.000 
 

0.020 
 

0.000 
 

0.000 
 

Date 
 

0.005 
 

0.008 
 

0.000 
 

0.000 
 

0.000 
 

0.067 
 

0.694 
 

0.072 
 

0.000 
 

Nitrogen × Depth 
 

0.850 
 

0.747 
 

0.993 
 

0.865 
 

0.276 
 

0.500 
 

0.298 
 

0.066 
 

0.664 
 

Nitrogen × Date 
 

0.034 
 

0.271 
 

0.782 
 

0.623 
 

0.137 
 

0.985 
 

0.756 
 

0.082 
 

0.681 
 

Depth × Date 
 

0.000 
 

0.000 

 

 

0.000 
 

0.000 

 

0.027 
 

0.011 
 

0.451 
 

0.010 
 

0.012 
 

Nitrogen × Depth × Date 
 

0.973 
 

0.802 
 

0.836 
 

0.803 
 

0.943 
 

0.349 
 

0.148 
 

0.334 
 

0.121 

Ala, alanyl aminopeptidase; Leu, leucyl aminopeptidase; LA-aP, Lysyl-alanyl aminopeptidase; β-Xyl, 
β-xylosidase; CBH, cellobiohydrolase; Xylan, Xylanase; Phos, phosphatase. 

a
 Data log transformed. 

b
 

Data sin transformed. 

 

 

 

Fig. 6.1: Response of substrate-induced respiration and ergosterol content to reduced N 

deposition at four horizons. Error bars indicate standard error (SE).  
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Enzyme activities involved in N cycling  

Key processes in N cycling responded differently to the reduction of N deposition. In general, 

some enzymes involved in N cycling (urease, arginine deaminase and lysyl-alanyl-amino-

peptidase) showed a tendency towards higher activity under the clean rain treatment, whereas 

others showed little or no treatment effects (Figs. 6.2 and 6.3).  

Reduction of N deposition increased urease activity in the soil profile (Fig. 6.2). However, 

increase in urease activity were significant only in the Oa horizon (P = 0.018 and 0.035) at 

the spring sampling dates of 2006 and 2007, respectively, and in the Ah (P = 0.017) and Bw 

(P = 0.027) horizons at the autumn 2006 sampling date (Table 6.1). There were significant 

treatments, sampling date and depth effects, shown by three-way ANOVA (Table 6.2). 

Arginine deaminase also showed a tendency towards higher activity at the reduced N plot 

compared to the control at all horizons and sampling dates (Fig. 6.2). Treatment effect was 

significant only for Oe horizon (Table 6.1).  

In contrast, protease and N-acetyl-aminoglucosaminidase activities decreased in the reduced 

N treatment plots. Protease activity decreased in the first two sampling dates and increased at 

the last sampling date in the Oe, Oa and Bw horizons (Fig. 6.2). Distinct (P = 0.010) reduced 

N treatment effect was detected in the Bw horizon in April 2007 (Table 6.1). N-acetyl-

aminoglucosaminidase activity was lower in the reduced N plot than the control at all 

sampling dates in the organic layers, except for spring 2006 in the Oa horizon (Fig. 6.2). 

There was a significant (P = 0.043) treatment effect observed in Oe in spring 2006 (Table 

6.1). The activity in the deeper layers was more or less constant irrespective of treatment or 

sampling date (Fig. 6.2). 
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Fig. 6.2: Response of urease, arginine deaminase, protease and N-acetyl-glucosaminidase 

activities to reduced N deposition at four horizons. Error bars indicate standard error (SE). 
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In general, alanyl aminopeptidase and lysyl-alanyl aminopeptidase showed a similar pattern 

to urease activity, whereas leucyl aminopeptidase and alanyl-alanyl-phenyl aminopeptidase 

showed a similar pattern to protease activity (Fig. 6.3). We found one exception for the Bw 

horizon where lysyl-alanyl aminopeptidase showed a significantly higher activity (P = 0.043) 

in autumn 2006 (Table 6.1).  

In all treatments, enzymes involved in N cycling showed higher activities in the organic (Oe 

and Oa) than in the mineral layers (Ah and Bw) (Figs. 6.2 and 6.3).  
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Fig. 6.3: Response of alanyl aminopeptidase, leucyl aminopeptidase, lysyl-alanyl 

aminopeptidase and alanyl-alanyl-phenyl aminopeptidase activities to reduced N deposition 

at four horizons. Error bars indicate standard error (SE).  
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Enzymes activities involved in C cycling  

Univariate statistical analyses revealed that reduction of N deposition did not affect different 

key processes in C cycling (β-xylosidase, cellobiohydrolase and xylanase) (Table 6.2). 

Nevertheless, pair-wise comparison of each horizon at each sampling time showed some 

exceptions for α-glucosidase and β-glucosidase where activities increased significantly in the 

reduced N treatment (Table 6.1 and Fig. 6.4). In all treatments, enzymes involved in C 

cycling showed higher activities in the organic (Oe and Oa) than in the mineral layers (Ah 

and Bw) (Figs. 6.4 and 6.5).  
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Fig. 6.4: Response of α-glucosidase, β-glucosidase, β-xylosidase and cellobiohydrolase 

activities to reduced N deposition at four horizons. Error bars indicate standard error (SE).  
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Fig. 6.5: Response of invertase, xylanase and phosphatase activities to reduced N deposition 

at four horizons. Error bars indicate standard error (SE).  

Enzyme activity involved in P cycling  

Depending on the sampling time, we detected either an increase or decrease of phosphatase 

activity of specific soil layers due to reduced N deposition (Fig. 6.5). For example, 

phosphatase activity showed a significant (P = 0.027) increase under reduced treatment at the 

Oa horizon in spring 2006 (Table 6.1), but showed a decrease, although not significant, in 

autumn 2006 and spring 2007. The three-way ANOVA analysis of the data showed only 

effects of depth and sampling date.  
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Relation between soil properties, microbial biomass and enzyme activity  

Multiple regression analysis was used to examine relationships between soil microbial 

properties (SIR, ergosterol content and enzyme activities) and soil chemical properties (OC, 

NT, NH4
+

 

and NO3
-
) (Table 6.3). OC, NT and NH4

+
 

were closely related to the abundance and 

function of soil microorganisms in the forest site, whereas nitrate content showed significant 

P-values only for arginine deaminase and alanyl-alanyl-phenyl aminopeptidase. SIR, 

ergosterol content as well as enzymes involved in N cycling (urease, arginine and leucyl 

aminopeptidase) were positively correlated to OC and negatively to NT. Ammonium was 

closely linked to five out of seven enzymes involved in N cycling (protease, alanyl 

aminopeptidase, leucyl aminopeptidase, lysyl-alanyl aminopeptidase and alanyl-alanyl-

phenyl aminopeptidase). We could not detect a general pattern for enzymes involved in C 

cycling. There was a positive linear relationship for three enzymes involved in N cycling 

(protease, urease and alanyl-alanyl-phenyl aminopeptidase) with SIR, while ergosterol 

content was positively correlated with α-glucosidase, alanyl aminopeptidase, alanyl-alanyl-

phenyl aminopeptidase, invertase and negatively with β-xylosidase (Table 6.4). 
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Table 6.3: Multiple regression analysis of microbial biomass (SIR), ergosterol content and enzyme activities using soil OC, NT, NH4
+ 

and NO3
-
 

as independent factors. Significant correlations with P-values equal ≤ 0.05 are indicated in bold.  

 

Parameter 

Standardized coefficient (β) Model 
P 

value 
SIR Ergosterol 

content 

Urease Argn Prot N-ac Ala Leu LA-

aP 

Ala-

Ala 
-Glu -Glu -Xyl 

 

CBH Invt Xylan Phos 

OC 3.575 3.298 4.873 3.127 1.512 -1.714 -1.325 2.458 1.354 0.731 -3.600 -1.104 -4.475 -3.388 3.198 1.022 -4.688 0.000 

NT -2.731 -2.897 -4.939 -2.996 0.235 3.253 -1.561 -3.347 -1.915 0.748 3.928 2.138 2.956 3.610 -2.186 -2.532 3.348 0.000 

NH4
+ 0.649 4.739 1.765 1.614 2.696 1.954 2.272 2.342 3.027 1.979 2.149 2.088 -0.028 4.730 -2.730 2.960 -0.510 0.000 

NO3
- -1.222 0.748 -0.838 -2.147 0.958 0.624 0.952 1.196 1.189 2.648 -0.810 0.817 0.208 0.987 0.748 0.089 -0.976 0.000 

OC, organic carbon; NT, total nitrogen; Argn, arginine deaminase; Prot, protease; N-ac, N-acetyl-glucosaminidase; Ala, alanyl aminopeptidase; Leu, leucyl 

aminopeptidase; LA-aP, lysyl-alanyl aminopeptidase; Ala-Ala, alanyl-alanyl-phenyl aminopeptidase; α-Glu,α-glucosidase; β-Glu, β-glucosidase; β-Xyl, β-
xylosidase; CBH, cellobiohydrolase; Invt, invertase; Xylan, xylanase; Phos, phosphatase.  

 

 

Table 6.4: Multiple regression analysis of the activities of C-, N-, and P-enzymes using SIR and ergosterol content as independent factors. 

Significant correlations with P-values equal ≤ 0.05 are indicated in bold. 

 

Parameter 
Standardized coefficient (β) Model 

P  

value Urease Argn Prot N-ac Ala Leu LYs-

Ala 

Ala-

Ala 

Invt Xylan α-Glu β-Glu -Xyl  CBH Phos 

Ergosterol 0.247 0.004 -0.143 -0.160 0.370 -0.073 -0.035 0.307 0.335 -0.302 0.349 0.318 -0.571 0.128 0.253 0.000 

SIR 0.576 -0.011 0.474 -0.354 -0.213 -0.321 -0.064 0.342 -0.104 0.288 0.057 0.448 -0.568 -0.257 0.591 0.000 

SIR, substrate-induced respiration; Argn, arginine deaminase; Prot, protease; N-a-ac, N-acetyl-glucosaminidase; Ala, alanyl aminopeptidase; Leu, leucyl 
aminopeptidase; LA-aP, lysyl-alanyl aminopeptidase; Ala-Ala, alanyl-alanyl-phenyl aminopeptidase; α-Glu, α-glucosidase; β-Glu, β-glucosidase; β-Xyl, β-

xylosidase; CBH, cellobiohydrolase; Inv, invertase; Xylan; xylanase; Phos, phosphatise.
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Discussion  

The deterioration of the soil environment with respect to high N depositions and acid stress 

has impacted not only the above but also below ground ecosystem processes. In the Solling N 

deposition manipulation experiment running since 1989, the reduced N plot receives about 

65% less nitrogen than the control plots (Lamersdorf and Borken, 2004). Nitrogen loading on 

forest soils and the reversal of N saturation would produce different microbial functional 

responses. This study gives an insight into the utility of microbial biomass and microbial 

enzyme activities in monitoring directly the functional responses of microbial communities to 

the reversal of N deposition in this forest ecosystem.  

 

Microbial and fungal biomass  

The SIR method utilizes the respiration response of soil microorganisms to substrate 

enrichments to provide an estimate of soil microbial biomass (Anderson and Domsch, 1978), 

while ergosterol content has been recommended as a good index for fungal biomass (Eash et 

al., 1996). Microbial biomass parameters (SIR and ergosterol content) in the organic layer 

(Oa, spring 2006) were significantly higher in the reduced N plot. The high microbial 

biomass was probably due to enhanced microbial activity since there was significant 

microbial NH4
+

 

immobilization rate and a faster turnover rate of NH4
+

 

and microbial N pools 

in the organic layer of the clean rain plot (Corre and Lamersdorf, 2004). However, the overall 

response of microbial biomass to reduced N deposition was marginal (Tables 6.1 and 6.2). 

Since the long-term reduction of N had a minor effect on inorganic N contents (NH4
+
, NO3

-
) 

of soils (Kandeler et al., 2009), enhanced internal nitrogen turnover by soil microorganisms 

might have partly compensated the lower throughfall N input in the clean rain plot and might 

consequently have caused the negligible treatment effect (Corre and Lamersdorf, 2004). Our 

results of the fungus-specific compound ergosterol gave evidence that free-living as well as 

ectomycorrhizal fungi were not affected by the reduction of nitrogen. These results were also 

supported by more specific studies on the decomposition of recalcitrant litter compounds (e.g. 

phenolic compounds and lignin) and fungal abundance and diversity (e.g. basidiomycete 

genes and fungal derived lignolytic enzymes) at the same site (Theuerl et al., 2009).  

Microbial biomass parameters decreased with depth in our soil profile and this is in 

accordance with Fierer et al. (2003) where decreased microbial biomass was observed 

through two soil depth profiles. A possible reason for the observed trend could be the decline 

in substrate availability through the soil profile which could be primarily driven by changes in 
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soil carbon content and reduced quality of soil organic matter with depth (Ajwa et al., 1998; 

Trumbore, 2000; Fierer et al., 2003). This finding is also supported by Agnelli et al. (2004) 

stating that the composition and structure of organic matter which represents the energy 

source for prevailing heterotrophic microorganisms, is liable to change throughout the profile 

of a forest soil (Taylor et al., 2002; Fierer et al., 2003).  

Enzyme activities involved in N cycling  

The N-cycling enzymes showed mixed responses to reduced N treatment. This is not 

unexpected since these enzymes attack substrates of different origins and classes. For 

example, the activity of urease depends on the release of nucleic acids from dead cells. In our 

experiment, urease activity increased significantly in the reduced N plot at some sampling 

dates and horizons (Fig. 6.2 and Table 6.1). This might indicate a higher turnover of 

microorganisms and roots. Given that annual soil respiration increased by 24% in the clean 

rain plot (Lamersdorf and Borken, 2004), these authors suggested that the reduced N 

treatment enhanced respiration of roots and proliferation of heterotrophic microorganisms 

within the rhizosphere. Another explanation could be attributed to high gross N 

mineralization rate in the reduced N treatment plot (Lamersdorf and Borken, 2004) and a 

high microbial N mineralization rate 14 years after suspension of N input to a boreal forest 

(Chen and Högberg, 2006). This hypothesis is supported by Saiya-Cork et al. (2002) 

reporting that increased gross N mineralization rates were accompanied by increased urease 

activity in a forest ecosystem. The stimulation of internal N cycling under reduced N 

deposition was also obvious from our results of alanyl aminopeptidase, lysyl-alanyl 

aminopeptidase and arginine deaminase showing higher activities under the clean rain 

treatment. Bach and Munch (2000) described also a stronger expression of several peptidases 

in a beech forest topsoil under N deficiency. Likewise Chróst (1991) found out that the 

activities of aminopeptidases were induced at limited N availability.  

Some other enzymes involved in the degradation of chitin (N-acetyl-aminoglucosaminidase) 

and proteins and peptides (protease, leucyl aminopeptidase and alanyl-alanyl-phenyl 

aminopeptidase, see Figs. 6.2 and 6.3) showed either a trend for lower activity or no 

significant reaction under clean rain treatment. The activity of N-acetyl-

aminoglucosaminidase was lower in the clean rain treatment. This enzyme is involved in the 

breakdown of chitin, which is a relevant source of N in soils. Sinsabaugh et al. (1993) 

assumed N-acetyl-aminoglucosaminidase activity to be induced by low N conditions whereas 
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at high N concentrations a non-competitive inhibition could occur. The present study did not 

support this assumption since N-acetyl-aminoglucosaminidase was reduced under the clean 

rain treatment in Oe and mineral soil layers. N-acetyl-aminoglucosaminidase was proposed as 

an adequate indicator of active fungal biomass (Miller et al., 1998). The missing correlation 

between ergosterol content and N-acetylaminoglucosaminidase revealed that abundance and 

function of active fungi are regulated by different factors in our study site (Table 6.4).  

The activities of N-cycling enzymes showed higher activities in the upper soil horizons and 

varied with depth and sampling date and were probably dependent especially on substrate 

availability. The importance of substrate availability for the expression of different peptidases 

comes also from studies of Weintraub et al. (2007). For example, reducing rhizodeposition by 

girdling, Weintraub et al. (2007) observed a decrease in leucyl aminopeptidase activity in a 

subalpine forest ecosystem. Since data on the quality of root exudates and other 

rhizodeposition are not available for our experiment, we cannot decide whether the trend for 

lower values of some peptidases were caused by substrate limitation or by preferred 

decomposition of alternative substrates.  

Enzyme activities involved in C cycling  

Glucosidases are associated with degradation of cellulose and storage of carbohydrates 

(Saiya-Cork et al., 2002). α-and β-glucosidase activities showed significant treatment effects 

in the Oe and Oa horizons at some sampling dates (Table 6.1). Whereas activities decreased 

under reduced N deposition in the Oe horizon, these activities increased in the Oa horizon in 

spring 2006. This could possibly be associated with a different nutrient or substrate allocation 

pattern according to the N deposition. Moreover, the Oa horizon which accounts for >90% of 

forest floor material is primarily made of humus and fine roots supporting a high microbial 

biomass (Fisk and Fahey, 2001; Lamersdorf and Borken, 2004; Jansson et al., 1982). Similar 

patterns of α-and β-glucosidase, β-xylosidase and cellobiohydrolase activities as well as 

xylanase and peroxidase activities (Theuerl et al., 2009) did not support our hypothesis that 

reduction of N deposition decreases the decay of easily decomposable compounds and 

accelerates the decomposition of more recalcitrant compounds.  

Enzyme activity involved in P cycling  

Phosphatase plays a critical role in catalysing the hydrolysis of organic P compounds in soil. 

Since phosphatase activity under the clean rain treatment showed only temporally higher 

values than the control (Table 6.1 and Fig. 6.5), we suggest that phosphate limitation due to 
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increased microbial turnover in the organic layer (Oa horizon especially) induced 

phosphatase synthesis. As typical for forest soils (Turner et al., 2002), spatial distribution of 

phosphatase activity within the soil profile followed similar pattern like the other enzymes in 

this study, showing more than 50% higher values in the organic than in the mineral layers.  

Relation between soil properties, microbial biomass and enzyme activity  

Different microbial responses (stimulation, suppression and no effect) have been reported for 

different ecosystems following N deposition (Waldrop et al., 2004a, b). These responses 

might be in part a result of differences in microbial community composition (Agnelli et al., 

2004). Nitrogen deposition could lead to ecosystem-specific alteration in enzyme activities 

which is related to the pattern of microbial biomass and soil carbon flow. After 16 years of 

experimental manipulation, reduced N deposition had little or no effect on the microbial 

biomass (SIR and ergosterol content) and activities of 15 different enzymes. The effects of 

depth and sampling date were more obvious, showing that in the Solling soil profile, spatial 

variability was more important than reduced N deposition. Microbial biomass and enzyme 

activities declined with soil depth and correlated with the nutrient pools (organic carbon and 

total nitrogen) which decreased with depth. These results gave a strong indication that 

decrease in microbial activity through the soil profile was a consequence of resource quantity, 

quality and allocation. The correlations between enzyme activities and microbial biomass 

(SIR and ergosterol content) on the other hand were not consistent for all the enzymes 

assayed. Ergosterol content correlated either positively or negatively with the C cycling 

enzymes (α-glucosidase, β-xylosidase and invertase) while microbial biomass (SIR) 

correlated positively with the N cycling enzymes (protease, urease and alanyl-alanyl-phenyl 

aminopeptidase). Enzyme activities might not always correlate with the biomass of 

microorganisms that produce them (Šnajdr et al., 2008). The reason is that soils might differ 

in their turnover time of microorganisms as well as extracellular enzymes (Bonmatti et al., 

1991).  

Conclusion 

The Solling roof experiment gave us the opportunity to follow the response of microbial 

biomass and enzyme activities to long-term reduction of the N deposition within the soil 

profile of a spruce forest. Since cleaning throughfall water reduced external N input but did 

not reduce the total N pool within the ecosystem, we expected a change in internal element 

cycling within the ecosystem. Our study clarified that microbial processes involved in N 
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cycling are more affected than processes involved in C cycling. Specifically, we revealed that 

reduction of N deposition modified the reaction rates of different enzymes involved in N 

cycling. The stimulation or repression of specific peptidases under the clean rain treatment 

might be caused either by different turnover times of peptides or by different microbial 

acquisition of organic N compounds. Since reduction of N deposition did not change 

activities of enzymes hydrolysing low and high molecular weight C compounds, the current 

N status of the soil did not switch the preferred decomposition from easily available 

substrates to decomposition of recalcitrant compounds. Microbial biomass and enzyme 

activities were higher in the upper soil layer and decreased within the soil profile and 

correlated with the nutrient pools indicating that resource allocation and spatial availability of 

substrates are important factors regulating enzyme synthesis and activity.  
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Abstract 

A new set of primers was developed allowing the specific detection of the pepN gene (coding 

for alanine aminopeptidase) from Gram-negative bacteria. The primers were designed in 

silico by sequence alignments based on available DNA sequence data. The PCR assay was 

validated using DNA from selected pure cultures. The analysis of gene libraries from 

extracted DNA from different soil samples revealed a high diversity of pepN related 

sequences mainly related to α-Proteobacteria. Most sequences obtained from clone libraries 

were closely related to already published sequences (<80 % homology on amino acid level), 

which may be related to the conserved character of the amplified region of pepN. By linking 

the diversity data obtained by the clone library studies to potential enzymatic activities of 

alanine aminopeptidase, lowest diversity of pepN was found in those soil samples which 

displayed lowest activity levels, which confirms the importance of diversity for ecosystem 

function mainly when transformation processes of complex molecules are studied.  
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Introduction 

Up to 90 % of the total nitrogen (N) in soils is stored in the organic N fraction (Miltner and 

Zech, 1999). Compared to the turnover of inorganic N forms, like ammonia or nitrate, the 

cycling of organic N occurs often slowly over many years and thus it’s steady mineralization 

which provides a sustainable source of N for above and below-ground processes that 

contribute to plant nutrition (Kirk et al., 2004) mainly in non-fertilized soils. The most 

abundant organic N-containing compounds in soils are proteins, peptides, amino acids and 

amino sugars (Stevenson, 1994; Schulten and Schnitzer, 1998). Whereas organisms of 

different trophic levels including several plant species, animals and microbes are able to 

uptake amino acids (Senwo and Tabatabai, 1998), which are either utilized as energy source 

or as matrix for biomass formation, proteins and peptidases are exclusively transformed by 

microbes (Kaye and Hart, 1997). Such microbes harbour the genetic potential to express of 

extracellular hydrolytic enzymes, including proteases and peptidases.  

Only very few studies in the past investigated factors that drive the abundance and the 

diversity of microbes being able to catalyse protein and peptide degradation. These rare 

examples include several studies, where the influence of the soil type and the agricultural 

management on abundance, diversity and activity of microbes carrying the genes for neutral 

proteases and subtilisin was proven (Watanabe and Hayano, 1993a, b, 1994; Mrkonjic Fuka 

et al., 2008). However, data on drivers for peptide degrading microbes in nature is still 

missing.  

In the present study, we describe a new set of primers to amplify the gene encoding alanine 

aminopeptidase (EC 3.4.11.12; pepN) from soils of different ecosystems to investigate 

abundance and diversity of the corresponding functional groups of microbes. PepN was first 

described as the major membrane bound aminopeptidase for E.coli in the 70s of the last 

century (Lazdunski et al., 1975a, b), but turned out to be well distributed among a wide range 

of Gram- positive and Gram-negative bacteria. Therefore not surprisingly enzymatic essays 

focussing on the detection of potential activities of pepN in soil revealed higher activities 

compared to other peptidases (e.g. leucine aminopeptidase) mainly in forest soils (Enowashu 

et al., 2009). The primers were constructed in silico and their suitability was tested using 

selected bacterial strains. Finally, gene libraries from three different soil samples were 

constructed and a diversity pattern for the alanine aminopeptidase was described to prove the 

suitability of the developed primer systems. 



 

 

7 Development of a primer system for pepN gene 78 

Materials and methods 

Bacterial strains and culture conditions 

Strains carrying the pepN gene covering different sub-groups of Proteobacteria (Labrenza 

aggregate (DMSZ 13394), Pseudomonas putida (DMSZ 3226), Shinella zoogloeoides 

(DMSZ 287) and Rhizobium radiobacter (DSMZ 5172)) as well as Gram-positive bacteria 

(Corynebacterium glutamicum (DSM 20300)) were purchased from the German collection of 

microorganisms and cell cultures (DSMZ, Germany). The strains were grown over night at 

30
o
C in peptone-glucose broth (per l distilled water: 10 g peptone, 5 g glucose, 10 g of NaCl, 

5 g yeast extract; pH 7.5) and cells were harvested by centrifugation at 5000 x g for ten 

minutes. 

Soils  

We selected three different sites differing in their physico-chemical properties as well as in 

their vegetation cover for this study.  

Two forest soil (FS) samples were taken in October 2007 from the “clean rain” (reduced N) 

experiment in Solling, central Germany (51
o
31´N, 9

o
34´E, elevation ~500 m above sea level 

(a.s.l.)). The soils were sampled from the Oa horizon (2 to 5 cm) with one sample being 

derived from the treatment “clean rain” (FS-RN) and the other from the control (FS-C) plot. 

The “clean rain” treatment is characterized by a 65% lower N input than the control plot due 

to prior deionization of throughfall water. The mean annual precipitation and variation in 

temperature were approximately 1090 mm and 6.4°C, respectively. The soil has been 

characterized as a strongly acidic dystric cambisol. (pH 2.6-2.8; organic carbon 32.8-35 g 100 

g
-1 

soil; total N 1.4 g 100 g
-1

soil). A detailed description of the experimental site is given by 

Enowashu et al. (2009). 

Soil under agricultural use (AS) was obtained from the Hohenheim Climate Change 

experimental field located at the Heidfeldhof experimental field station (48°42´50´N, 

9°11´26´E, 395 m a.s.l.) of the University of Hohenheim. Samples were collected in June 

2009 from both the elevated temperature treatment (AS-ET) where the surface soil was 

heated (2.5°C) by means of heating cables to a depth of 4 cm, and the control treatment (AS-

C) (ambient temperature) from the upper 20 cm (Ap horizont).  In 2009, the mean annual 

temperature and precipitation was 9.9°C and 707.2 mm respectively. The soil has been 
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characterized as a loess derived stagnic Luvisol with silt-loam soil texture (pH 6.8, organic 

carbon content 15 g kg
-1

).  

Soils from a glacier forefield (GS) of three successional ages (1953 (GS-1953); 1900 (GS-

1900) and 1850 (GS-1850)) were sampled in September 2006 from the glacial foreland of the 

Oedenwinkelkees (47°07′N, 12°38′E) in the Austrian Alps, at an altitude of 2068 – 2150 m 

above sea level. The soil (0 - 10 cm depth) was primarily leptic Regosols (pH 5.71-6.55; 

organic carbon 3.8-30.4 mg g
-1

soil; inorganic nitrogen 1.98-12.10 mg kg
-1

soil). For details of 

the site description and the soil sampling, see Philippot et al. (2011). 

Soils were stored at –20
o
C immediately after sampling for molecular analysis or at 4

o
C for 

not longer than 2 weeks for enzymatic measurements.   

Enzyme actvities  

Potential activities of the alanine aminopeptidase enzyme (EC 3.4.11.2) were determined 

using flourogenic substrates according to Marx et al (2001). The substrate an L–alanine 

amino methyl coumarine (AMC) derivative, as well as standards and buffer were obtained 

from Sigma-Aldrich (Germany). Briefly, soil suspensions were prepared by adding 0.5 g soil 

into 50 ml of autoclaved water and dispersed by ultrasonication for 2 min with 50 J s
-1

 

sonication energy. The suspensions were continuously stirred using a magnetic stir plate 

while 50 µl aliquots were dispensed into 96-well microplate (PP F black 96 well; Greiner 

Bio-one GmbH, Germany), followed by 50 μl of the buffer and 100 μl of the substrate 

solution. Standard wells received 50 μl of soil suspension, standard solution buffer. All 

microplate wells had a final volume of 200 μl as reaction medium. The plates were incubated 

at 30°C. Fluorescence was measured at 360/460 nm wavelength in a microplate fluorescence 

reader (Bio-Tek Instruments Inc., FLX 800, Germany) after 0, 30, 60, 120 and 180 minutes. 

The enzyme activity corresponded to an increase in fluorescence and was calculated in nmol 

AMC g
-1

 soil h
-1

. 

DNA extraction 

Genomic DNA of pure cultures was obtained using the DNeasy
®
 Blood & Tissue Kit 

(Qiagen, Hilden, Germany) as specified by the manufacturer. Total DNA of soils (300 mg) 

was extracted using the FastDNA
®
 Spin Kit for soil (Qbiogene, Germany) as specified by the 

manufacturer. Isolated DNA was stored at -20
o
C. 

 



 

 

7 Development of a primer system for pepN gene 80 

In silico design of a PCR primer system for pepN 

As the set of primers should be useful for qPCR as well as for diversity analysis of pepN an 

amplicon length of 400–450 bp has been considered as optimal, to obtain enough 

phylogenetic information for the diversity analysis, as well as to reach satisfactory 

efficiencies for qPCR. For the design of the primers, nucleotide sequences of known bacterial 

alanine aminopeptidases were extracted from NCBI data base and aligned using the clustalW 

based alignment tool implemented in biology workbench (http://workbench.sdsc.edu/). The 

specificity of the obtained forward and reversed primer was tested using the Genomatix 

software package (http://genomatix.gsf.de) against the Bacteria Data set (GenBank release 

154) in siilco. The deduced sequences of the degenerated primers was as follows: pepN F 5’-

CARTGYGARBCISARG-3’ and pepN R 5’-CYYTTRTTYTCCATIGC-3’.  

PCR reaction  

PCR reactions were done in 25 µl volume and contained 5 ng (pure strains) respectively 10 

ng (soils)  of template DNA, 100 pmol of forward and reverse primer and 12.5 μl of a ready-

to-use PCR mix (BioMix, Bioline, Germany). To improve efficiency of the PCR for soil 

DNA dimethylsulfoxide (DMSO) was used in a final concentration of 5%. The PCR started 

with a 5 min initial denaturation at 94°C, followed by 35 (pure cultures) respectively 37 

cycles (soil) of 94°C for 50 s, 52°C for 30 s, 72°C for 60 s and a final elongation step for 10 

min at 72°C. Purity of PCR products was checked using agarose gel electrophoresis and 

ethidiumbromide staining.  

Cloning and sequence analysis of pepN amplicons 

pepN PCR products were cloned into a pCR®2.1 vector (TA Cloning Kit; Invitrogen, 

Germany) according to the handbook of the manufacturer. Briefly 1.6 μl pepN PCR product; 

1 μl 10X ligation buffer; 5.4 μl sterile water, 1 μl pCR®2.1 vector (25ng/μl) and 1 µl T4 

DNA ligase were incubated at 14°C overnight. 2 μl of the ligation mixture was transformed 

into competent cells and grown on LB agar plates containing 50 μg ml
-1 

of kanamycin and 40 

μl of 40 mg/ml stock of X gal solution (Qbiogene, Germany). Blue colonies were picked after 

48 h of incubation at 37
o
C. Plasmids were isolated using the NucleoSpin Plasmid Mini Kit 

(Qiagen, Germany). Purified plasmids were tested for inserts by EcoRI digestion (MBI 

Fermentas, Heidelberg, Germany). Inserts were sequenced on a ABI PRISM® 3730 DNA 

Sequencer (Applied Biosystems, USA) using the BigDye Terminator v3.1 Cycle Sequencing 

Kit (Applied Biosystems).  
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Sequence analyses were performed using the software package ARB (Ludwig et al., 2004; 

http://www.arb-home.de). Nucleotide sequences of amplicons and of reference genes 

retrieved from nucleotide collection of NCBI (http://blast.ncbi.nlm.nih.gov/Blast.cgi) were 

translated into amino acid sequences according to the correct reading frame and then aligned 

applying clustalW protein alignment implemented in ARB. Phylogenetic analyses on amino 

acid level of the sequences were performed using Maximum Likelihood (proML) algorithms. 

Collectors’ curves analysis was performed using MOTHUR software (Schloss et al., 2009) 

based on a distance matrix calculated using ARB Neighbour Joining.  

Results and discussion 
 

Specificity of the pair of primers targeting pepN 

The designed degenerate primer set was tested for specificity in silico by comparison with 

known GenBank DNA sequences using the Genomatix Matinspector program 

(http://genomatix.gsf.de/cgi-bin/matinspector/matinspector.pl), revealing that the detection 

system is specific for bacterial alanine aminopeptidases but discriminates fungal alanine 

aminopeptidase genes. Genomatix Modellinspector (http://genomatix.gsf.de/cgi-

bin/gems/launch.pl) identified 137 perfect matches, mostly Gram-negative bacteria, if both 

primers were used together with a minimum length of the amplicons of 431 nt and a 

maximum length of 449 nt (supplemental material). The specificity of the pepN primer was 

tested empirically by PCR with genomic DNA of pure strains of Proteobacteria. Agarose gel 

of PCR products revealed one single band of the expected size for Labrenza aggregate, 

Pseudomonas putida, Shinella zoogloeoides and Rhizobium radiobacter respectively (Figure 

7.1A). No PCR product was obtained when DNA from Corynebacterium glutamicum (high 

GC Gram-positive bacterium) was used as template. 

According to the gene map published by Foglino et al. (1986), the amplicon is located close 

to the catalytic part of the enzyme with a rather conserved nucleic acid structure. This 

position of the amplicon is also confirmed on the basis of deletion mutants by Foglino and 

Lazdunski (1987). However as the gene sequence of this region differs in Gram-positive 

bacteria. e.g. Streptococcus spp. or Lactobacillus spp.  (Rul et al., 1994; Varmanen et al., 

1994), the constructed set of primers does not amplify DNA from those organisms despite the 

presence of pepN genes. Interestingly Chandu et al. (2003) found a close similarity of pepN 

related proteins in some Archaea and Eucaryotes. However, the in silico analysis using 

Genomatrix Modellinspector revealed no binding of the primer to any organisms other than 
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Gram-negative bacteria. As so far most complete genome sequences indicate only the 

presence of one pepN operon, primers are well suited to measure also the abundance of pepN 

harboring Gram-negative bacteria in different environments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1: PCR amplicons of pure strain (A) and environmental soil DNA (B) using the 

newly developed primer set. A: Lanes 1+8: DNA ladder; lane 2: Labrenza aggregate, lane 3: 

Pseudomonas putida, lane 4: Shinella Zoogloeoides, lane 5: Rhizobium radiobacter, lane 6: 

Corynebacterium glutamicum (negative control), lane 7: no DNA. B: lane 9: Pseudomonas 

putida (positive control), lanes 10+11: arable soil, lanes 12+13: forest soil, lane 14: glacier 

soil.   

Phylogenetic analysis 

The designed primer set was further tested using community DNA extracts from three 

distinct environmental samples (forest, agricultural and glacier soils) to investigate the 

diversity and phylogenetic distribution of Gram-negative bacteria involved in peptide 

degradation carrying the pepN gene (Figure 7.3a,b,c). Electrophoretic separation of the PCR 

products revealed a single band which confirms the specificity of the primer set (Fig. 7.1B). 

After cloning of the PCR products and sequencing in total, 274 sequences were obtained 

from the different soil types of which 37 were most probably chimeres and were excluded 
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from subsequent analyses. The remaining 237 sequences (possibly encoding for pepN) were 

translated into amino acid sequences and subjected to phylogenetic analysis using the 

neighbour-joining and maximum-likelihood methods. Collector’s curves were plotted at a 

10% sequence difference level with the number of clones sampled against the number of 

OTUs observed. A plateau, as expected for full coverage of the libraries, was obtained only 

for extracted DNA from one soil sample obtained from grassland (AS-C) and two soil 

samples that were obtained from the glacier fore field (GS-1953 and GS-1850) after 

screening about 30 clones per sample (Fig. 7.2). 

 

Figure 7.2: Collectors’ curve constructed from observed OTUs at 10 % sequence difference 

for the three soil types.  

A total of 63 PepN like sequences was obtained for the clone library constructed from the 

amplicons obtained from DNA of the two forest soil samples (FS; 35 for (FS-RN) and 28 

(FS-C)). The majority of the translated amino acid sequences were closely related to 

sequences deposited in the NCBI database (80 – 95% identity to PepN). Only 5 of the 

obtained sequences showed lower homology levels on the amino acid level to so far 

described PepN sequences (70 – 79%). The abundance of clones affiliated to the different 

Gram-negative bacterial groups was the same for both treatments under investigation 

(reduced N and control). 96% of the clones were affiliated to PepN sequences of α-

Proteobacteria. Here, two major clusters were observed; one closely related to PepN of 

Acidiphilium cryptum [148261095], which belongs to the class of metallopeptidases. The 

second cluster was closely related to PepN from Methylobacterium extorquens [254265931]. 

A third major cluster contained PepN sequences that were closely related to 
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Phenylobacterium zucineum [197106141].  The high contribution of sequences related to α-

Proteobacteria might reflect the overall dominance of this group of bacteria in forest 

ecosystems which has been shown in previous studies by 16S rRNA gene barcoding, e.g. for 

pine forest soils in British Columbia (Axelrood et al. 2002; Chow et al. 2002) or Austria 

(Hackl et al., 2004), or soils from sub-tropical evergreen forests (Chan et al., 2006). 
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Figure 7.3a: Tree reconstructed using Maximum likelihood (ProML) based on ARB aligned 

amino acid sequences of PepN translated from nucleotide sequences derived from amplicon 

libraries of pepN from forest soil. Sequences of Microscilla marina and Chitinophaga pinensi 

were used as outgroups to root the tree. Bar indicates 10% estimated sequence divergence 
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Figure 7.3b: Tree reconstructed using Maximum likelihood (ProML) based on ARB aligned 

amino acid sequences of PepN translated from nucleotide sequences derived from amplicon 

libraries of pepN from agricultural soils. Sequences of Microscilla marina and Chitinophaga 

pinensi were used as outgroups to root the tree. Bar indicates 10% estimated sequence 

divergence 
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Figure 7.3c: Tree reconstructed using Maximum likelihood (ProML) based on ARB aligned 

amino acid sequences of PepN translated from nucleotide sequences derived from amplicon 

libraries of pepN from glacier grassland soil. Sequences of Microscilla marina and 

Chitinophaga pinensi were used as outgroups to root the tree. Bar indicates 10% estimated 

sequence divergence.  
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A total of 63 sequences were obtained for the clone library constructed from the amplicons 

obtained from the DNA of the two grassland soil samples, 30 from AS-C and 33 from AS-ET 

with 80 – 90% homology to published PepN sequences. Most of the obtained sequences 

(57%) were affiliated to pepN genes from α-Proteobacteria with close homology to 

Hyphomicrobium denitrificans [255334885] and Sphingomonas sp. SKA58 [94496509]. 

Thirty-eight percent of the obtained clones were closely related to PepN sequences from β-

Proteobacteria and they clustered mostly to Candidatus accumulibacter phos [257095186], 

Bukholderia pseudomallei [237502667] and Oxalobacter formigensis [2377466249. PepN 

sequences of γ- Proteobacterial origin were only represented by 1.5% of the sequences. A 

significant influence of the shift in temperature was not visible. Again the high abundance of 

pepN sequences related to α- and β-Proteobacteria might be explained by the overall high 

abundance of these groups in the corresponding soils (Borneman et al. 1996; Zhou et al 

2003). 

To reveal the diversity of pepN along a glacial chronosequence, 111 sequences were analyzed 

from the respective clone libraries. The number of clones analyzed for each part of the 

chronosequence was comparable (38 for 1953; 37 for 1900 and 36 for 1850). Sequences of 

almost all clones showed 84 – 95% similarity to known PepN sequences deposited in the 

NCBI database. Overall, the majority of the clones were affiliated to PepN of α-

Proteobacteria (73%). Here, one major cluster was observed being closely related to 

Labrenzia aggregata [118587627]. Other smaller clusters showed sequence homology to 

Phenylobacterium zucineum [197106141], Brucella melitensis [225639911] and 

Sphingomons sp. SKA58 [94496509]. PepN sequences related to β-Proteobacteria were the 

second most abundant group of clones (19%) with clusters that were closely related to 

Thiobacillus denitrificans [74316018], Methylibium petroleiphilum [124267959] and 

Bordetella petrii [163857055]. PepN from γ- and δ-Proteobacteria were represented by 5% 

and 2% of the sequences respectively. The sequences from the site which has been ice free 

for the longest period showed more diversity compared to the other successional stages of the 

chronosequence. For glacier chronosequences often the dominance of Actinobacteria and 

Bacteriodetes has been reported (Nemergut et al., 2007). Therefore in this case also pepN 

sequences of Gram-positive bacteria should be taken into account to get an overall picture on 

alanine amonipeptidase harboring bacteria. 
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Potential enzymatic activities 

Lowest alanin amonipeptidase activities were detected in the soil samples from the 

agricultural site (mean: 72.7 ± 0.64 nmol AMC h
-1

 g
-1

 soil), whereas the soil samples from 

the grassland sites of the glacier fore field ranged from 189 to 851 nmol AMC h
-1

 g
-1

 soil and 

forest sites from 522 to 985 nmol AMC h
-1

 g
-1

 soil (Table 7.1). These levels are comparable 

to activities previously reported for agricultural soils (Rasche et al. 2006; Lagomarsino et al. 

2012), grassland (Koch et al. 2007, Berner et al. 2011) and forest sites (Enowashu et al. 2009, 

Schütz et al. 2010). Interestingly those sites where the lowest enzymatic activities were 

measured, the diversity of pepN was lowest according to the collector`s curves. This confirms 

several ecological theories which state the importance of functional diversity for the 

corresponding enzymatic activity (Prosser et al., 2007).  

Table 7.1:  Potential pepN activity measured in samples from different sites. 

Soil type Treatment Enzyme activity 

(nmol AMC h-1 g-1 soil) 

Forest FS-RN 985.21 (62.50) 

Forest FS-C 522.29 (±18.81) 

Agricultural AS-ET 259.83 (±14.94) 

Agricultural AS-C 72.73 (±0.64) 

Glacier GS-1953 189.71(±5.76) 

Glacier GS-1900 295.27 (18.68) 

Glacier GS-1850 851.53 (±22.38) 

FS-RN = forest soil-reduced N deposition; FS-C = forest soil-control; AS-ET = agicultural soil-

elevated temperature; AS-C = agriculutral-ambient temperature; GS-1953 = glacial soil ice free since 

1953; GS-1900 = glacial soil ice free since 1900; GS-1850 = glacial soil ice free since 1850. Values in 
brackets indicate standard errors (n=5). 

Environmental changes modified aminopeptidase activity to a great extend: Soils differing in 

their successional stage after deglaciation (ice-free since 1953, 1900 and 1850) showed 

increasing potential to degrade aminopeptides (190, 295 and 851 nmol AMC h
-1

 g
-1

 soil), 

which might be related to increased plant cover at the sites being ice free for a longer period 

or by different microclimatic conditions at the sites under investigation (Tscherko et al. 2003, 

2004 and 2005; Philippot et al. 2011). Excluding the input of atmospheric nitrogen for 16 

years reduced aminopeptidase activity in the organic layer of a forest site by 47 % which 

could be explained mainly by the lower availability of organic substrates after sixteen years 

of clean rain (Enowashu et al. 2009). The elevation of soil temperature (2.5°C in the soil 
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depth of 4 cm) in an agricultural site increased the aminopeptidase activity from 73 to 260 

nmol AMC h
-1

 g
-1

 soil. This increased potential alanine aminopeptidase activity under 

elevation of temperature might be related to a higher plant biomass production at the 

respective sites or a general increase of microbial activity in response to the increased soil 

temperature. However, it has to be taken into account, that reduced moisture content of 

surface soils under increased temperature regimes might counteract this effect during periods 

of low water availability. 

Conclusion 

A set of degenerate primers specific for alanine aminopeptidase genes (pepN) of Gram-

negative bacteria was designed in silico, validated with selected pure cultures and used to 

detect the corresponding gene by PCR in DNA extracted from different soil samples. 

Sequence analysis based on deposited sequences in NCBI indicated a high sequence diversity 

of pepN genes of bacterial origin. Major differences were visible between Gram-positive and 

Gram-negative bacteria, which made it impossible to find a consensus sequence which allows 

primer development. In Gram-negative bacteria sequence heterogeneity and also variations in 

length of pepN genes were less pronounced, which made an identification of a consensus 

sequence possible. However to cover all tested bacteria in silico, there was the need to 

degenerate mainly the reversed primer. The applicability of the designed primer set was 

confirmed for DNA extracted from all selected pure strains as well as community DNA 

extracted from different soil samples (no false positive clones obtained). Surprisingly most of 

the obtained sequences from the gene libraries were closely related to already published 

sequences (<75 % homology on amino acid level) indicating either that the amplified region 

is rather conserved, the set of primers is restricted to only selected phyla or the horizontal 

gene transfer played a major role in pepN distribution among Gram-negative bacteria.  
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8 Final conclusions and perspectives 

Understanding the impact of anthropogenic activities on microbial communities and how this 

relates to soil functioning poses an important challenge in current investigations in soil 

microbiology. N deposition resulting mainly from anthropogenic sources posses a threat to 

forest ecosystems and the processes therein. Over time, forest ecosystems receiving high N 

deposition are no longer N-limiting but N-saturated. Since ecosystem processes are slow, the 

recovery of forest following the reduction of N application will equally a slow and long term 

process. The present thesis used a biphasic approach that provided information on both the 

level of enzyme activity and the community abundance and diversity to address the impact of 

reduced N deposition in forest soil profiles. Changes in N availability, soil C quality and 

supply, and other soil environmental conditions (e.g. pH, soil moisture) in soil horizons affect 

the activity, size and composition of soil microbial communities. The results obtained in 

chapters 5 and 6 showed that the overall microbial function (enzyme activity) as well as the 

size, structure and activity of denitrifier/denitrification community in the forest soil is highly 

dynamic; remarkable spatial, vertical and seasonal variability were observed due to the 

variation of the environmental conditions that also greatly affect the level of nitrogen 

turnover in soil. 

In the first study, analysis of functional genes provided new insights into the relationship 

between structure and function of the nitrate reducers and denitrification communities as 

influenced by reduction in N deposition. One of the outstanding findings of this study was the 

evidence that denitrifiers capable of nitrous oxide reduction might be enriched in deeper soil 

layers based on increases in the nosZ/16S rRNA gene and nosZ/nirK ratios with soil depth. 

This was probably as a consequence of the differences in water content and pH within studied 

horizons which were low and only a slight increase in pH in the mineral layer could be seen 

in comparison to the upper layers. Reducing N deposition only had a minor effect on the 

abundance and activity of the nitrate reducers and denitrifier communities in the different soil 

profiles. The decline in the size of 16S rRNA and bacterial denitrifier/denitrification gene 

pool observed through the soil profile was predominantly a function of both, decreasing 

amount and quality of organic matter contentThe variables depth and sampling dates had a 

stronger impact than reduced N deposition which could be explained by low level of nitrogen 

oxides respiration and the dominance of microbial NH4
+
 turnover in the internal N cycle.  
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The functioning of microorganisms in forest ecosystems in particular depends primarily on 

the activities of extracellular enzymes. Enzymatic assays were used in the second study to 

evaluate the overall microbial functional response to reduced N deposition within the Solling 

forest soil profiles. There was stronger though differential (stimulation, suppression) response 

of N cycling enzymes under reduced N deposition compared to C cycling enzymes. This was 

probably due to the stimulation of internal N cycling under the reduction of N. However, the 

pattern of substrate decomposition was not affected, that is, the decomposition of easily 

available substrates (e.g. cellulose) versus recalcitrant substrates (e.g. lignin). This seemed to 

be associated with a different nutrient distribution pattern according to reduced N deposition. 

Again, resource allocation and spatial and temporal availability of substrates were the main 

drivers regulating the decrease in microbial activity with soil depth. 

Microbial communities respond rapidly to changes in their habitat. There are many abiotic 

and biotic environmental factors that induce shifts in microbial communities. These shifts 

appear to be due to interaction of different factors at the same time making our understanding 

of regulatory mechanisms of microbial communities more difficult. N cycling enzymes in the 

second study were more affected by reduced N deposition and more obvious was the 

influence on peptidases with alanine aminopeptidase showing the highest activities. This was 

then the bases for the third study where a new set of pepN primers was designed encoding the 

alanine aminopeptidase enzyme. Using enzymatic assays, PCR-based analyses and cloning, 

the function and diversity of alanine aminopeptidase gene communities of three different 

soils undergoing environmental and climate changes were shown. Gene library constructions 

revealed a high diversity of pepN sequences affiliated to α–Proteobacteria. Diversity data 

could be linked to potential enzymatic activities of alanine aminopeptidase, revealing lowest 

diversity of pepN in soil samples that displayed lowest activity levels. This confirms the 

importance of diversity studies for ecosystem function especially involving the 

decomposition of complex molecules. 

Great advances in microbiological and molecular research on diverse microbial communities 

in complex ecosystems have been made and provide new opportunities to link community 

structure and ecosystem processes. The measurement of potential enzyme activities and 

functional gene based approach presented in this thesis was valuable and well suited to study 

the specific soil processes of denitrification and proteolysis. The knowledge of these two 

aspects put together will be needed to address future challenges of N deposition and to 

develop appropriate guidelines to improve forest ecosystem management. 
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 From the study site, the level of nitrate concentration is being controlled by the forest 

management practices (reduction in N deposition) which present a partial solution. However, 

for the future, studies in this thesis could be extended to (1) assess the regulatory factors that 

contribute to the expression of denitrification genes and especially N2O fluxes in relation to 

soil depth. This would be necessary to confirm whether the risk of N2O release from mineral 

soil layers can be neglected and therefore important for the mitigation of N2O emissions in 

view of green house gases; (2) real-time-PCR could be used to evaluate the abundance of 

pepN and peptide degrading bacteria. This therefore emphasizes the importance of 

organismal biology to improve our understanding of regulation of proteolytic activity.  

In addition, the biases and drawbacks of PCR and specificity and sensitivity primers designed 

could be minimized with the application more diligent methods employing bacterial artificial 

chromosomes (BAC) and evaluating enzymes by immunological approaches will greatly 

afford our understanding of microbial processes which will greatly improve future studies on 

specific N transformation pathways that contribute to N emissions to the environment. 
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