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1. Summary 

It is suggested that plants, herbivore insects and pathogens will be affected by rising 

atmospheric CO2. The working hypothesis of this study was that elevated CO2 will affect 

plant composition and will thus exert influence on plant-insect interactions by changing the 

nutritive value for insects feeding on phloem sap. 

To test this hypothesis, experiments were carried out on wheat and oilseed rape in two 

different systems: controlled environment chambers (climate chamber system) and an open 

field exposure system with natural climatic and soil conditions (Mini FACE system). 

The abundance of detrimental insects from different feeding guilds and plant damage by 

parasitic organisms were examined in a Mini FACE system, while the consequences of 

elevated CO2 on aphid performance and potential correlations to phloem sap composition of 

host plants were observed in controlled environment chambers. The concentrations of amino 

acids and carbohydrates in the phloem of host plants were analysed by high–performance 

liquid chromatography (HPLC), using a fluorescence detector for amino acids and the 

evaporative light scattering detector for carbohydrates. 

In a Mini-FACE system, phenological development of spring wheat and OSR was not 

significantly changed due to CO2 enrichment. However, elevated CO2 induced changes in 

plant chemistry (increased carbon:nitrogen ratio and defensive compounds), which resulted in 

changes in population densities of some pest species. In order to monitor alterations in insect 

population density, two different methods were applied: direct counts (method 1) and using of 

yellow sticky traps (method 2). These methods showed both increases and decreases of insect 

numbers due to elevated CO2, depending on species and on the period of observation. In 

spring wheat, high levels of CO2 significantly increased the abundances of Oulema melanopus 

(method 1) and Phyllotreta vittula (method 2) during the booting stage and thrips species at 

the stage of fruit development (method 1), while decreases were observed for Delia coarctata 

at tillering, Chaetocnema aridula at stem elongation and Haplodiplosis marginata at the stage 
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of fruit development (method 2). In OSR, elevated CO2 significantly increased the abundance 

of thrips species at inflorescence emergence (2009) and flowering stages (2007), Meligethes 

aeneus at the fruit stage (2007), Athalia rosae and Aleyrodes proletella at flowering and Delia 

radicum during the whole vegetation period (2009) using method 2, while significant 

decreases were established in the abundances of M. aeneus at the inflorescence emergence 

and flowering stages (2009) using method 1 and cicadas (2007) and M. aeneus (2009) at the 

fruit stage and Dasyneura brassicae during the whole vegetation period (2009) using method 

2. 

Concerning plant pathogens, leaves of spring wheat were only slightly and not significantly 

damaged by Erysiphe graminis, Puccinia striiformis, Puccinia recondita and Septoria tritici 

during the 2006/2008 years in all treatments. Also the OSR was not significantly damaged by 

Peronospora parasitica. The frequency and severity of disease infestation on spring wheat 

and OSR was not significantly impacted by elevated CO2. 

In controlled-environment chambers, the phenology, above ground biomass and RGR of OSR 

were not significantly impacted due to elevated CO2. And although the phenology of spring 

wheat was not influenced by raised CO2, significant increases were observed for plant above 

ground biomass and RGR. The aphid presence significantly reduced the aboveground biomass 

and RGR of spring wheat, while no effects due to aphids were observed in OSR. 

High-CO2 treatment differently impacted the performance of aphids. Slight and non-

significant increases due to elevated atmospheric CO2 conditions were observed for the aphid 

relative developmental stages and intrinsic rates of increase, while the weight and RGR were 

significantly increased for Rhopalosiphum padi and decreased for Myzus persicae. 

In order to clear CO2-impacts on the insect performance, phloem sap from host plants was 

analysed for the composition and concentration of amino acids and carbohydrates. Significant 

increases under elevated CO2 were observed for fructose (BBCH 12, BBCH 30) and glucose 

(BBCH 30) in spring wheat, while no CO2 effects were found for carbohydrates in the phloem 
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sap of OSR. The concentration of fructose in spring wheat was not significantly related to 

RGR of R. padi under ambient (BBCH 30) and elevated CO2 (BBCH 12). 

Although the concentrations of total amino acids in the phloem sap of both host plants were 

not significantly changed due to elevated CO2, the RGR of R. padi was significantly related to 

their concentration (BBCH 12). In the phloem of spring wheat, significant increases due to 

elevated CO2 were observed for the concentrations of Lys, Leu, Ile, Phe, Val, Tyr, Ala, Thr, 

Ser, Asn and Glu (BBCH 12) and for Ala, Arg, GABA and Leu (BBCH 30), while the 

concentration of Orn was significantly decreased in the phloem sap of both plants. At ambient 

conditions, the RGR of R. padi was significantly related to the concentrations of Gly (BBCH 

12), Gln and Phe (BBCH 30) in spring wheat, whereas the RGR of M. persicae showed 

significant relation to Tyr and Lys (BBCH 14) in OSR. Additionally, significant relationships 

were observed between RGR of M. persicae and the concentrations of αAA, Tyr, Trp, Phe 

and Leu (BBCH 30) in the phloem sap of OSR under elevated CO2. 

In summary, although the phenological development of spring wheat and OSR was not 

affected due to elevated CO2, significant changes were found for the concentration of 

carbohydrates in the phloem sap of spring wheat and individual amino acids in both host 

plants. These alterations in plant chemistry affected the performance and abundance of 

herbivore insects. 
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2. Zusammenfassung 

Es muss vermutet werden, dass die Erhöhung der CO2-Konzentration in der Atmosphäre 

einen wesentlichen Einfluss auf Nutzpflanzen, pflanzenfressende Insekten und das Auftreten 

von pflanzlichen Pathogenen hat. Die Arbeitshypothesen der vorliegenden Arbeit besagen, 

dass erhöhte CO2-Konzentrationen die Zusammensetzung der pflanzlichen Gewebe 

beeinflusst und sich dadurch Veränderungen in den Interaktionen zwischen Pflanzen und 

herbivoren Insekten ergeben, welche durch veränderte Nährwerte des Phloemsaftes für die 

Insekten hervorgerufen werden. Um diese Hypothese zu testen, wurden Versuche mit 

Sommerweizen und Raps in zwei unterschiedlichen Systemen durchgeführt: in einem 

Klimakammersystem unter kontrollierten Klimabedingungen und in einem 

Freilandexpositionssystem unter natürlichen klimatischen Bedingungen (Mini-FACE-

System). 

In den Freilandexperimenten wurden die Abundanz von Schädlingen aus verschiedenen 

Nahrungsgruppen und die daraus resultierenden Schädigungen an den Pflanzen durch die 

parasitischen Organismen untersucht. In den Klimakammerexperimenten wurden die 

Auswirkungen erhöhter atmosphärischer CO2-Konzentrationen auf die Vitalität gezielt 

angesetzter Blattlausarten sowie potenzielle Korrelationen zwischen Blattlausvitalität und 

Phloemsaftzusammensetzung der Wirtpflanzen untersucht. Die Messungen der 

Phloemsaftzusammensetzung in Hinblick auf Aminosäuren- und Kohlenhydrat-Konzentration 

erfolgte mittels Hochleistungsflüssigchromatographie, die mit einem Fluoreszenzdetektor für 

die Erfassung der Aminosäuren bzw. einem Verdampfer/Streuungsdetektor für die 

Kohlenhydratanalytik. 

Die phänologische Entwicklung von Weizen und Raps im Freilandsystem wurde durch die 

CO2-Erhöhung nicht wesentlich verändert. Der CO2-Anstieg bewirkte jedoch Änderungen in 

der chemischen Struktur der Pflanzen (ein gestiegenes Kohlenstoff-Stickstoffverhältnis und 

eine Anreicherung von Abwehrkomponenten), was zu Änderungen in der Populationsdichte 
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einiger Schädlingsarten führte. Um die Änderungen in der Populationsdichte zu beobachten, 

wurden zwei verschiedene Methoden benutzt: Zählung der Schädlinge direkt auf den Pflanzen 

(Methode 1) und Fang von Schädlingen auf sogenannten Gelbtafeln (Methode 2). Mit diesen 

beiden Methoden konnten sowohl Steigerung als auch Verringerungen der Insektenanzahl 

durch erhöhtes CO2 nachgewiesen werden, abhängig von den betreffenden Insektenarten und 

dem Beobachtungszeitraum. In Beständen von Sommerweizen stieg die Anzahl von Oulema 

melanopus (Methode 1) und Phyllotreta vittula (Methode 2) während des Zeitraums des 

Ährenschiebens deutlich und die Anzahl von Individuen aus der Gruppe der Thripsarten im 

Stadium der Fruchtentwicklung (Methode 2). Gleichzeitig wurde eine Abnahme von Delia 

coarctata während der Bestockung, von Chaetocnema aridula im Stadium des Schossens und 

von Haplodiplosis marginata während der Fruchtentwicklung (Methode 2) beobachtet. 

Bei Raps stieg die Anzahl von Individuen der Thripsarten im Stadium der 

Blütenstandausbildung (2009) und während der Blüte (2007), außerdem stieg die Anzahl von 

Meligethes aeneus in der Fruchtentwicklung (2007), von Athalia rosae und Aleyrodes 

proletella in der Blütezeit und von Delia radicum während der ganzen Vegetationsperiode an 

(2009, Methode 2). Es wurde ein deutlicher Abfall der Anzahl von M. aeneus im Stadium der 

Blütenstandausbildung und der Blüte (2009, Methode 1) registriert sowie von Zikaden (2007) 

und M. aeneus (2009) während der Fruchtentwicklung und von Dasyneura brassicae während 

der ganzen Vegetationsperiode (2009, Methode 2). 

Hinsichtlich der Schadbilder durch Krankheitserreger waren Weizenblätter durch Erysiphe 

graminis, Puccinia striiformis, Puccinia recondita und Septoria tritici in den 

Untersuchungsjahren 2006 und 2008 auf allen Untersuchungsflächen leicht geschädigt. 

Erhöhtes CO2 hatte keinen besonderen Einfluss auf Häufigkeit und Stärke von 

Pflanzenkrankheiten bei Weizen und Raps. 

Unter kontrollierten Klimabedingungen wurden weder die oberirdische Biomasse, die relative 

Wachstumsrate (RGR) noch die Phänologie von Raps durch CO2 signifikant beeinflusst. Bei 
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Sommerweizen trat kein CO2-Effekt auf die Phänologie auf, wohl aber eine deutliche 

Zunahme von Biomasse und RGR. Der Besatz mit Blattläusen reduzierte sowohl die 

oberirdische Biomasse als auch die relative Wachstumsrate des Sommerweizens signifikant. 

Im Gegenteil dazu wurde kein Einfluss von Blattläusen auf den Raps festgestellt. 

Die CO2-Erhöhung beeinflusste auf unterschiedliche Art und Weise die Vitalität von 

Blattläusen. Eine leichte Zunahme wurde in den relativen Entwicklungsstadien und in der 

intrinsischen Entwicklungsrate der Blattläuse beobachtet. Das Gewicht und die 

Wachstumsrate von Rhopalosiphum padi nahmen bedeutend zu, die von Myzus persicae 

jedoch ab. 

Um mögliche Wirkungsmechanismen der CO2-Auswirkungen auf die Vitalität der Insekten zu 

klären, wurde der Phloemsaft der Wirtpflanzen auf Zusammensetzung und Konzentration von 

Aminosäuren und Kohlenhydraten analysiert. Dabei konnte ein deutlicher Anstieg der 

Fruktose- (BBCH 12, BBCH 30) und der Glukose-Konzentrationen (BBCH 30) in 

Sommerweizen festgestellt werden. Während es keine signifikanten Veränderungen von 

Kohlenhydraten im Phloemsaft von Raps gab. Die Fruktose-Konzentration in Sommerweizen 

korrelierte nicht signifikant mit der relativen Wachstumsrate von R. padi unter normalen CO2 

(BBCH 30) und unter erhöhtem CO2 (BBCH 12). 

Obwohl die Gesamtkonzentration an Aminosäuren im Phloemsaft von beiden Wirtpflanzen 

durch erhöhtes CO2 nicht stark verändert wurde, korrelierte die relative Wachstumsrate von R. 

padi signifikant mit der Gesamtkonzentration (BBCH 12). Im Phloemsaft von Sommerweizen 

wurde unter CO2-Erhöhung ein starker Anstieg von Lys, Leu, Ile, Phe, Val, Tyr, Ala, Thr, 

Ser, Asn und Glu (BBCH 12) und Ala, Arg, GABA und Leu (BBCH 30) beobachtet. 

Allerdings nahm die Konzentration von Orn im Phloemsaft von beiden Wirtpflanzen stark ab. 

Unter normalen CO2-Konzentrationen war die relative Wachstumsrate von R. padi mit den 

Konzentrationen von Gly (BBCH 12) bzw. Gln, Phe (BBCH 30) in Sommerweizen korreliert, 

während in Raps die relative Wachstumsrate von M persicae eine starke Verbindung mit Tyr 
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und Lys (BBCH 14) zeigte. Ergänzend wurde signifikante Zusammenhänge zwischen der 

relativen Wachstumsrate von M. persicae und den Konzentrationen von αAA, Tyr, Trp, Phe 

and Leu (BBCH 30) im Phloemsaft des Rapses unter erhöhten CO2-Konzentrationen 

beobachtet. 

Zusammengefasst fanden keine wesentlichen Veränderungen der phänologischen 

Entwicklung von Sommerweizen und Raps durch erhöhtes Kohlendioxid statt. Es gab aber 

deutliche Effekte auf die Konzentration von Kohlenhydraten im Phloemsaft von 

Sommerweizen und von individuellen Aminosäuren in beiden Wirtpflanzen. Diese 

Änderungen im Chemismus der Pflanzen beeinflussten die Vitalität und das Vorkommen von 

herbivoren Insekten. 
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3. General Introduction 

Carbon dioxide (CO2) concentrations in the atmosphere have increased yearly by 1.8 µl l
-1

 on 

average (Kingsolver 1996). The concentration of CO2 has increased by 36% since 1750 and is 

continuing to rise due to human activity (EPA 2007; IPCC 2007). The current atmospheric 

CO2 concentration is at an average of approximately 385 µl l
-1

 (Keeling et al. 2009). 

According to Prather et al. (2001), CO2 concentration is predicted to rise to 550 µl l
-1

 by 2050. 

Inevitably, such striking changes will influence agricultural crops, causing effects such as 

increasing photosynthesis and photosynthate production (Groninger et al. 1996; Makino & 

Mae 1999; Ainsworth & Rogers 2007) and reducing transpiration and stomatal conductivity 

(Cure & Acock 1986; Ainsworth & Rogers 2007). Wand et al. (1999) analysed existing 

experimental data and found that the photosynthesis of C3 and C4 plants in the high-CO2 

conditions was increased on average by 33% and 25%, respectively. Contrary to this, a 

reduction was observed for transpiration (23%, Cure & Acock 1986) and stomatal 

conductivity (22%, Ainsworth & Rogers 2007). In addition, doubled CO2 levels decreased 

photorespiration and led to acclimation of the photosynthetic apparatus with lower ribulose-

1,5-bisphosphate carboxylase-oxygenase (RuBisCO) concentrations, still leading to an 

increase in net photosynthesis between 25 and 75% (Stitt 1991). 

The alterations in the plants due to elevated CO2 were also observed in the physiological 

structure of the photosynthetic apparatus (Alfermann 2001) and in the morphology of leaves, 

changing the size and the number of stomata per square millimetre of the leaf area (Beerling 

& Chaloner 1994; Morison 1998). According to Franks & Beerling (2009), stomata density 

was negatively impacted by elevated CO2, while a positive correlation was found between the 

stomata size and elevated CO2. Thus, the size of stomata showed an increase of 16.8% in 

maize (Zea mays L. ssp. mays), 10.5% in rice (Oryza sativa cv. Pusa Basmati) and 14.1% in 

silver birch (Betula pubescens). Contrary to Franks & Beerling (2009), Radoglou & Jarvis 
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(1993) observed a significant increase of stomata density in broad bean (Vicia faba) under 

high-CO2 concentrations. 

Elevated CO2 may change the physiological metabolism of plants by increasing the carbon 

(C) concentration in the tissue of leaves. In turn, increased C accelerates the growth of plants 

and results in greater biomass accumulation (Amthor 1995). According to Billes et al. (1993), 

the total plant production increased by 34% due to elevated CO2, resulting in an increase of 

dry mass production by 41% for shoots and 23% for roots. Supporting this, rising CO2 

increased the aboveground biomass (17%, Ainsworth & Rogers 2007) and belowground 

biomass (30%, de Graaff et al. 2006) in a FACE experiment. A literature survey on data from 

156 plant species showed an increase on average by 37% in the vegetative growth under 

elevated CO2, of which an increase for wheat varied between 7 and 97% (Poorter 1993). In 

addition, the vegetative growth of C3 plants from 250 species rose with an average of 47% in 

enriched CO2 environment (Poorter et al. 1996). 

Many studies proved that the increases in the size and canopy density and also the alteration 

in the physiology and morphology of agricultural crops may lead to the progression of various 

diseases (Manning & Tiedemann 1995; Chakraborty et al. 1998; Kobayashi et al. 2006). The 

low light levels and reduced air circulation in dense plant canopies result in higher relative 

humidity, which promote the growth and sporulation of many plant pathogens (Eastburn et al. 

2010). According to Lake & Wade (2009), elevated CO2 increased the aggressiveness of 

powdery mildew (Erysiphe cichoracearum) on the mouse-ear cress (Arabidopsis thaliana L.), 

leading to an enhancement in stomata density and guard cell length. Many other studies 

showed accelerated disease development due to elevated CO2, increasing sheath blight 

(Rhizoctonia solani Kunh) on rice (Kobayashi et al. 2006), anthracnose pathogen 

(Colletotrichum gloeosporioides (Penz.) Penz. and Sacc.) on shrubby stylo (Chakraborty & 

Datta 2003) and stem rust (Puccinia graminis f. sp. tritici Eriks. & Henn) on wheat plants 

(Mitchell 1979). 
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Elevated CO2 concentrations may significantly influence herbivorous insects by changing the 

quality or quantity of host plants. Changes take place in the concentrations of nitrogen (N), 

water, carbohydrates and secondary compounds in the plant tissues (Bezemer & Jones 1998; 

Coviella & Truble 1999; Awmack & Leather 2002; Pritchard et al. 2007). In general, the 

concentration of N decreases under elevated CO2, while the carbohydrate concentration 

increases. Changes in N and carbohydrate levels correlate with the performance of insects, 

altering their fecundity, population size, food consumption and development time (Evans 

1938; Iheagwam 1974; Manning & Tiedemann 1995; Bezemer & Jones 1998; Newman et al. 

2003; Chen et al. 2004). According to Ainsworth (2008) and Ainsworth & Long (2005), 

elevated CO2 decreased N content per unit leaf mass by 13%, while the concentration of non-

structural carbohydrates (sugar and starches) per unit leaf area was increased on average by 

30-40%. This caused different responses in herbivorous insects depending on their feeding 

guilds, such as an increased population size (phloem-feeders), increased food consumption by 

30% (leaf-chewers), decreased pupal weights (leaf-miners) and reduced development time by 

17% (phloem-feeders, Bezemer & Jones 1998). 

Pimentel (2009) estimated the existence of 50.000 plant pathogens and 70.000 pest species, of 

which 10% were considered major pests. Another review from Price (2002), estimated the 

existence of 360.000 insect species, mainly herbivorous ones. Both insects and plant 

pathogens pose a high risk for agriculture, causing losses in crop yield. Among crops, the total 

global potential loss due to pests varied from about 50% in wheat to more than 80% in cotton 

production (Oerke 2006). More specifically, the responses are estimated at losses of 26-29% 

for wheat, soybean and cotton, 31% for maize, 37% for rice and 40% for potatoes. The 

worldwide potential loss due to fungal and bacterial pathogens is estimated at 16% in wheat 

(Oerke & Dehne 2004), while Tiedemann et al. (2008) reported the loss in wheat from 20 to 

50%, depending on the kind of the pathogen. In oilseed rape (OSR), the possible potential 
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losses are estimated as up to 50% by deleterious effect of single pathogens (Tiedemann et al. 

2008). 

Previous studies showed very different effects of elevated CO2 on pests and parasitic 

organisms, impacting them either positively or negatively, depending on weather conditions 

or the kind of pest species. 

The focal point of the present study was to observe the infestation with pests and parasitic 

organisms under elevated CO2 in two crop species, being spring wheat (Triticum aestivum L. 

cv. Triso) and OSR (Brassica napus cv. Campino), which have great agricultural importance. 

Spring wheat is grown on all continents and is the most important cereal crop in France, the 

USA, China, India and Russia (Oerke 2006). The world harvested area of wheat and OSR in 

2009 was estimated at 225.4 million hectare (ha) and 31 million ha, respectively (FAO, 2010). 

Of this about 3.2 million ha of spring wheat and 1.47 million ha of OSR were planted in 

Germany. The worldwide production of wheat and OSR in 2009 was 682 million tonnes and 

61.6 million tonnes, respectively. Of this total, the estimate for Germany was about of 25.2 

million tonnes for spring wheat and 6.3 million tonnes for OSR. 

We hypothesized that: 

 Elevated CO2 concentrations would affect plants, increasing their biomass and density, 

which would alter the microclimate and development of plant pathogens. 

 Elevated CO2 would alter the chemical composition of plant tissue and phloem sap 

constituents, reducing feed quality for herbivores insects and causing changes in their 

population dynamics. 

 Elevated CO2 would impact the performance (developmental time, weight, relative 

growth rate, etc.) of phloem-feeding insects due to changes in plant biochemical 

composition, due to the causal relationship existing between the composition of 

phloem constituents and the performance of insects. 
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In order to prove these hypotheses, two basic approaches were employed: a Mini FACE (free-

air CO2 enrichment) system (Research Station for Plant Breeding, Stuttgart, Germany) with 

“natural conditions” and a climate chamber system (Institute for Landscape and Plant Ecology 

of Hohenheim University, Germany) with “standardised” conditions. 

The Mini FACE system allowed natural or agricultural ecosystems to be fumigated with 

elevated CO2 in field conditions, which helped to indicate plant responses to elevated CO2 

under future real-world conditions. The experiment was focused on the consequences of CO2 

elevation on disease abundance, monitoring of detrimental species of pests from different 

feeding guilds and the resulting pressure they may exert on plants. 

The artificial infestation of the plants with diseases was not planned in this field experiment 

and the observations made were purely on the spreading of the pathogens as they occurred 

naturally. Preference was given to obligatory biotrophic pathogens, which came into narrow 

connection with the living cells of host plants, extracting the nutrients from them and 

producing externally or internally their own microscopic spores. This concerns the classes of 

Ascomycetes (powdery mildew, Erysiphe graminis f. sp. tritici; septoria leaf blotch, 

Mycosphaerella graminicola (Fuckel) J. Schröt in Cohn (anamorph: Septoria tritici Roberge 

ex Desmaz)), Basidiomycetes (yellow rust, Puccinia striiformis Westend f. sp. tritici; brown 

rust, Puccinia recondita f. sp. tritici) and Oomycetes (downy mildew, Peronospora parasitica 

Pers. ex Fr.). The effects of elevated CO2 on the plant phenology, abundance and plant 

damage by parasitic organisms are found in chapter 2. 

From an ecological and physiological standpoint, the examination of plant-insect-interaction 

may help predict future alterations in behaviour due to globally elevated CO2. For this 

purpose, the impact of elevated CO2 concentrations on the performance of phloem-feeding 

insects (i.e. aphids) was observed in controlled-environment chambers (chapter 3). This 

experiment was conducted with bird cherry-oat aphid (Rhopalosiphum padi L.) on spring 

wheat and green peach aphid (Myzus persicae Sulz.) on OSR. The development of the aphids 
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on host plants was observed from the nymph to the adult stage under elevated CO2, making 

record of the relative developmental stage, population growth rate and relative growth rate of 

insects. All these growth parameters have causal connections to the biochemical composition 

of plant phloem sap, which is susceptible to changes due to elevated CO2. In order to prove 

the existing connection and the resulting consequences on R. padi and M. persicae, the 

composition of phloem nutrients such as carbohydrates (sucrose, glucose and fructose) and 

amino acids were analysed in the phloem sap of host plants (chapter 4). 
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which, in turn, is assumed to mediate the performance of herbivorous insects indirectly as well as the abundance and
epidemiology of plant diseases. In a 4-yearfield experiment, springwheat (TriticumaestivumL. cv.Triso) and spring oilseed
rape (Brassica napusL. cv.Campino)were grownusing amini- free-air CO2 enrichment (FACE) system,which consisted of
a control (CON), an ambient treatment (AMB) and FACE treatments. The CON and AMB treatments did not receive
additional CO2, whereas the FACE plots were moderately elevated by 150mLL–1 CO2. The impact of elevated CO2 was
examined with regard to plant phenology, biomass, leaf nitrogen and carbon, abundance of insect pest species and their
relative population growth by either direct counts or yellow sticky traps. Occurrence and damage of plants by pathogens on
springwheat and oilseed rape were directly assessed. Disease infestations on plants were not significantly different between
ambient and elevated CO2 in any of the years. Plant phenology, aboveground biomass, foliar nitrogen and carbon
concentrations were also not significantly affected by CO2 enrichment. In contrast, the abundance of some species of
insects was significantly influenced by elevated CO2, showing either an increase or a decrease in infestation intensity.

Additional keywords: Brassica spp., CO2 enrichment, plant–insect interactions.
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Introduction
Atmospheric CO2 concentration is predicted to reach 550mLL–1

at the middle of this century (Intergovernmental Panel on
Climate Change 2007). This increase has been shown to
affect plant physiology, morphology, development, growth
and reproduction (Bazzaz 1990; Poorter and Navas 2003;
Högy et al. 2009). According to Franzaring et al. (2008) and
Högy et al. (2010), spring oilseed rape (OSR, Brassica napus
L. cv. Campino) grown under elevated CO2 showed an increase
in biomass, dry weight, stem and shoot length, and leaf area.
Aboveground biomass increased by 11.8% in spring wheat
(Triticum aestivum L. cv. Triso) under CO2 enrichment, the
latter resulting from a higher number of tillers per plant (Högy
et al. 2009). An increase in atmospheric CO2 levels alters the
chemical composition of the plant tissue and phloem sap
constituents, potentially causing a reduction in food quality for
herbivores as determined by the contents of fibre, starch, water,
sugars, allelochemicals and nitrogen in host plant leaves (Curtis
et al. 1989; Johnson and Lincoln 1991; Brown 1995). Food
consumption of leaf-chewing larvae increased by 20–80%
under elevated CO2, which was interpreted as a mechanism to
compensate for a decreased N concentration (Bezemer and
Jones 1998). Consequently, increased consumption resulted in
boosted feeding damage by herbivores and detritus conversion

by detritivores (Lincoln et al. 1993; Hughes and Bazzaz 1997;
Stadler 1999). According to Stiling et al. (2009), elevated CO2

resulted in prolonged preimaginal development time, decreased
adult weight (5%) and relative growth rate (8.3%) as well as
increased mortality rate of leafminers on oak species (Quercus
myrtifoliaWilld, Q. chapmanii Sargent andQ. geminata Samll).

Phloem feeders, feeding on live cell contents, can be
considered as true plant parasites reacting rapidly to changes
in nutritive quality such as a reduction in biochemical compounds
(e.g. proteins) or an increase in the carbohydrates in the phloem.
Alterations in the concentrations or composition of N-containing
substances in the phloem, such as amino acids, may affect
phloem-feeding insects in their development, growth rate and
population growth (Newman et al. 2003). According to Awmack
et al. (1997), the performance of potato aphid (Aulacorthum
solani Kalt.) was enhanced on broad bean (Vicia faba L.) and
tansy (Tanacetum vulgare L.) by elevated CO2. Moreover, the
nature of the response was different on each plant species. Thus,
on tansy, preimaginal development of aphids was 10% shorter
but there was no difference in the rate of nymph reproduction,
whereas onbroadbeans, thedurationof preimaginal development
was not affected by elevated CO2 but the rate of nymph
reproduction was increased by 16%. Chen and Parajulee
(2005) observed some positive effects of elevated CO2 on
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Aphis gossypiiGlover, i.e. an increase in fecundity, mean relative
growth and consumption rate. Chen et al. (2004) reported that
theoffspringof thegrain aphid (SitobionavenaeF.)was increased
by 13% at 550mLL–1 CO2 and by 19% in the 750mLL–1 CO2

treatment. Elevated CO2 affects the population dynamics of most
insect species (Newman et al. 2003; Dermody et al. 2008). Also,
Chen et al. (2004) reported a significant increase in the population
size ofSitobionavenaeF.of~15%and22%under 550mLL–1 and
750mLL–1 CO2, respectively.

According toDahlman et al. (1991), elevatedCO2 affected the
host–pathogen interactions by changing the physiology of the
host plants (ryegrass, Lolium perenne L.). In particular, the
increase in foliar carbohydrate concentrations under elevated
CO2 promotes the development of biotrophic plant pathogens
such as rust diseases (Drandarevski 1969). Moreover, the
reduction of leucine-rich protein in the vegetative organs,
which directly affects the defence reaction of plants against
pathogens, as well as a reduction in salicylic acid and soluble
phenolic substances due to elevated CO2 increases pathogen
aggressiveness, leading to greater pathogenic damage
(Goicoechea et al. 2004).

The increase in the biomass and density of host plants
associated with elevated CO2 is assumed to modify the
microclimate and development of plant diseases such as a
powdery mildew (Erysiphe graminis DC) and brown rust
(Puccinia recondita Roberge ex Desmaz) in wheat; and white
stem disease (Sclerotinia sclerotiorum (Lib.) de Bary), beet
rhizomania (Polymyxa betae Keskin), black spot (Alternaria
brassicae (Berk.) Sacc.), and stem or root rot (Phoma lingam
(Tode ex Fr.) Desm.; teleomorph: Leptosphaeria maculans
(Desm.) Ces. and de Not) in OSR (Drandarevski 1969;
Manning and Tiedemann 1995; Patterson et al. 1999; Keller
2002). As information on the effects of elevated CO2

concentrations on both the spread of fungal diseases and pests,
representing the most important biotic stressor categories in crop
production, is still fragmentary, more detailed studies are
necessary.

Monitoring of pests and diseases under elevated CO2 is a
relatively modern approach. Only a few studies have been done
utilising free-air CO2 enrichment (FACE) facilities for the
observation of diseases on spring wheat (pathogens Fusarium
pseudograminearum, Melloy et al. 2010 and Puccinia triticina
Erikss. and Henn; Chakraborty et al. 2011), on rice (Oryza sativa
L.) (pathogen: Rhizoctonia solaniKunh; Kobayashi et al. 2006),
on soybean (Glycine max L.) (pathogens: Peronospora
manshurica L. and Septoria brown spot; Eastburn et al. 2010)
and on red maple (Acer rubrum L.) (pathogen: Phyllosticta
minima; McElrone et al. 2005). The consequences of CO2

elevation on pest and disease abundance and the resulting
pressure they may exert on spring wheat and OSR under
FACE field conditions were the focus of this study. The
objectives were to (i) assess and describe the effects of
elevated CO2 on the phenology, abundance and plant damage
by parasitic organisms like powdery mildew (Erysiphe graminis
f. sp. tritici), yellow rust (Puccinia striiformis Westend f. sp.
tritici), brown rust (Puccinia recondita f. sp. tritici), septoria leaf
blotch (Mycosphaerella graminicola (Fuckel) J. Schröt in Cohn
(anamorph:Septoria triticiRoberge etDesmaz)) on springwheat,
and downy mildew (Peronospora parasitica (Pers. ex Fr.)) on

OSR; and (ii) monitor the abundance of insect pests and their
population dynamics under elevated CO2.

Materials and methods
CO2 exposure
The experiments were performed over a 4-year period from 2006
to 2009 on the Research Station for Plant Breeding Heidfeldhof,
situated in the south of Stuttgart, Germany (9!1102800E,
48!4205100N; 395m above sea leavel). The mini-FACE system
used consisted of 15 circular plots, 2m in diameter, and three
different CO2 treatments. Elevated CO2 (ELE) was supplied in
five FACE plots (plus 150 mLL–1). Five ambient plots (AMB)
were supplied with the same technical infrastructure as the ELE
plots but with no additional CO2 fumigation. Additionally, five
control plots (CON) with neither CO2 fumigation nor racks were
set up to identify effects caused by the technical equipment. In
the high-CO2 treatment, pure CO2 (Westfalen Gas, Münster,
Germany) was added continuously during the entire vegetation
period. Variation coefficients between seasonal CO2

concentrations determined in the five plots were small and
amounted to 1.9–5.1% in the years 2006–09 (representing real
differences in CO2 concentrations between the plots from
10mLL–1 to 31mLL–1). Nevertheless, the average seasonal
CO2 concentrations in the FACE treatments differed between
years due to the different crop species and related canopy
structures so that the set concentration value of 550mLL–1

was not reached exactly at all times. Seasonal (from sowing to
harvest) 24 h CO2 concentrations were 529, 494, 558 and
613mLL–1 in the years 2006–09, respectively. The overall
4-year mean CO2 concentration of 549 mLL–1, however, was
comparable to the set concentration. A more detailed description
of the operational principles and the performance of the FACE
system are given in Erbs and Fangmeier (2006).

Cultivation and phenological development of plants
Spring wheat (Triticum aestivum L. cv. Triso; 200 plantsm–2 in
2006 and 360 plantsm–2 in 2008; 13 rows with 15-cm row
spacing) and OSR (Brassica napus L. cv. Campino;
70 plantsm–2; 13 rows with 15-cm row spacing in 2007 and
2009) were cultivated on clay-loam soil.

Phenological development of plants was determined using
the Biologische Bundesanstalt and Chemische Industrie scale
(BBCH scale; Tottman and Broad 1987; Weber and Bleiholder
1990). All development stages were based on observations on
the main stem. Examination was carried out from leaf
development (BBCH 10) until senescence (BBCH 90).

Plots with OSR were fertilised annually with 130 kgNha–1

(NH4NO3), 60kgPha
–1, 60kgKha–1, 18kgMgha–1 and4kgSha–1

at leaf development stage (BBCH 14). Potassium (60 kg ha–1)
was applied at the stage of tiller formation (BBCH 25) and
shortly before flowering (BBCH 57) (Högy et al. 2010). Plots
with spring wheat were fertilised annually with 140 kgN ha–1

(NH4NO3), 30 kg P ha–1and 60 kgKha–1 in total at tillering
(BBCH 25), stem elongation (BBCH 36) and inflorescence
emergence (BBCH 43). Additionally, 0.45 kgMg ha–1,
0.36 kg S ha–1, 0.03 kgB ha–1 and 0.03 kgMn ha–1 were
applied at tillering (Högy et al. 2009, 2012).
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Environmental conditions and soil characteristics
Meteorological data (air temperature, relative humidity,
precipitation and global radiation) of the years 2006–09 was
recordedby the Institute of Physics andMeteorology and Institute
for Landscape and Plant Ecology (University of Hohenheim;
Table 1). The mean air temperatures from April to August were
15.3!C (2006), 15.6!C (2007), 15.4!C (2008) and 16.0!C (2009).
Soil moisture and temperature were measured at a 15 cm depth
during the growing season using reflectometry (TDR, IMKO
GmbH Karlsruhe, Germany) and thermocouples (UP,
Deckenpfronn, Germany). The N and C contents in the soil
were determined in the autumn before the experiment was
performed, using an elemental analyser (Vario EL, Elementar
Analysensysteme, Hanau, Germany). Average C contents were
1.6%with a C : N ratio of 8.8, which did not significantly change
over time (Franzaring et al. 2010).

Biomass production and determination of nitrogen
and carbon concentrations in leaves
In order to determine the foliage biomass at ambient and elevated
CO2, leaves of spring wheat and OSR were harvested at the
central area (1m2) of each plot at the flowering stage (BBCH
65–69), dried at 60!C (3 days) to constant weight in a drying oven

andweighed on a balance (A 120 S, Triad Scientific,Manasquan,
NJ, USA). According to ISO 10694 (International Standards
Organisation 1995), the concentrations of foliage C and N
were analysed using an isotope-ratio mass spectrometer
(IRMS, Thermo Finnigan MAT, Bremen, Germany) in 2006
and 2007 and a Vario EL, elemental analyser (Elementar
Analysensysteme) in 2008 and 2009 (Högy et al. 2010). The
concentrations of foliage C andNweremeasured at the flowering
stage (BBCH65–69) because consumption of plant tissues at this
stage is usually higher than in other stages.

Monitoring of pests and diseases
Insect pest anddisease abundancewasmonitored on springwheat
and OSR, at weekly intervals from leaf emergence until plant
maturity. As the focus of this study was on the insect pests and
diseases associated with of aboveground plant biomass, root
feeding organisms, soilborne diseases and root diseases were
not considered. Pest abundancewas assessed directly by counting
numbers per plant (M1) and indirectly by counting the total
number of individuals on yellow sticky traps (Bayer Crop
Science GmbH, Monheim am Rhein, Germany, 7.3" 19.8 cm;
M2). For the M1 method and determination of the abundance of
plant diseases, 10 plants were marked in the central area (1m2) of
each plot. For the M2 method, one yellow trap was used per plot,
hung 10 cm above the canopies in the middle of each plot and
replacedweekly. In 2006,methodM2wasnot used.Commencing
in 2007, bothM1 andM2methodswere applied. This alteration in
observation methods took place as the sticky traps enabled a
wider variety of crawling and flying pest species to be caught.
Taxonomical identification of insect species was made by
morphological characteristics (Garbe et al. 1999; Dunford and
Long 2002), using a stereomicroscope (Stemi DV4, Carl Zeiss,
Jena, Germany) with high resolution (32" detail magnification,
8"–32"–18 eyepiece micrometer).

Visual monitoring of the whole plant from the upper to the
lower leaves was made to assess plant pathogen incidence and
disease levels. Preference was given to obligate biotrophic
pathogens, which deprive the live plant cells of nutrients and
may be easily detected on the surface of green leaves. For the
determination of plant pathogens, leaves of wheat and OSR
(2 cm2) were cut from the main stem and microscopically
observed for the presence of spores. Visual monitoring of
plant diseases was done weekly during the whole vegetation
period. The calculated damage of leaf surface is given as a
percentage.

In order to determine plant damage, the disease frequency of
infestation (FI) and the disease severity of infestation (SI) were
examined. According to Verreet (1985), plants were rated for FI
on a four-point scale (0 = no disease; 1 = 1–30%; 2 = 30–60%;
3 = 60–90%; 4 >90%) and for SI on a seven-point scale
(1 = 0–0.9%; 2 = 0.91–1.9%; 3 = 1.91–2.9%; 4 = 2.91–3.9%;
5 = 3.91–4.9%; 6 = 4.91–5.9%; 7 = 5.91–6.9%).

Statistical analyses
Data from AMB and ELE treatments with five replicates were
subjected to statistical analyses for plant parameters
(development, biomass, nitrogen and carbon concentrations),
frequency and intensity of disease infestation on plants and the

Table 1. Environmental conditions in the years 2006–09
(April–August)

Data were recorded by the Institute of Physics and Meteorology (†)
and Institute for Landscape and Plant Ecology (z) of the University of

Hohenheim

Parameters Month Years
2006 2008 2007 2009

Temperature, !C† April 8.7 8.2 13.6 12.1
May 13.6 15.4 15.1 14.8
June 17.3 17.4 14.7 16.0
July 22.3 18.3 17.6 18.2

August 15.3 17.7 17.0 19.0

Seasonal mean air
temperatures, !C†

April–August 15.3 15.4 15.6 16.0

Relative humidity, %† April 71.6 75.5 55.1 67.0
May 66.9 65.3 66.8 73.9
June 66.6 74.4 62.8 72.7
July 63.3 70.4 72.4 73.6

August 78.0 74.7 75.3 72.2

Global radiation, Wm–2† April 155.2 153.9 269.8 190.5
May 208.5 250.9 218.6 233.7
June 278.8 241.6 236.8 248.0
July 282.4 237.0 229.1 233.2

August 167.4 199.9 191.7 230.1

Sum of precipitation, mmz April 57.2 52.5 50.2 35.3
May 101.0 102.8 162.8 128.4
June 31.0 126.2 167.2 93.3
July 99.8 69.0 81.14 126.0

Water content across
all plots, % volz

April 29.6 26.1 27.0 13.5
May 30.2 21.0 29.0 21.0
June 24.0 20.1 24.1 11.7
July 16.0 10.7 16.6 18.5
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abundance of different pest species using PASW Statistics ver.
18 (SPSS, Chicago, IL, USA). Because the data were normally
distributed no transformation was applied. The data from the
CON treatment were excluded as their differences compared
with the AMB treatment were not statistically significant.
Effects of CO2 treatments were identified by ANOVA. The
relationships between the concentrations of foliage C and N,
and the abundance of insects were calculated by using linear
regression analysis.

Results
Effects of elevated CO2 on plant phenology, leaf biomass,
and carbon and nitrogen concentrations

The phenology of spring wheat and OSR was examined from
leaf development (BBCH 10) until ripening (BBCH 80). In
spring wheat, the phenological development under elevated

CO2 was retarded (BBCH 10, 40), delayed (BBCH 20) and
postponed by 7 days (BBCH 30) in 2006, and delayed (BBCH
40) and retarded (BBCH 80) in 2008 (Table 2). In OSR,
phenological development was retarded (BBCH 20, 30) and
delayed (BBCH 60, 80) under elevated CO2 in 2007 and
delayed (BBCH 20) in 2009. The effects of elevated CO2 on
crop phenology were generally small and not statistically
significant. Leaf biomass and foliar C and N concentrations
were not significantly affected by elevated CO2 concentration
(Table 3).

Pests on spring wheat

In 2006, only the abundance of bird cherry-oat aphids
(Rhopalosiphum padi L. (Homoptera: Aphididae)) was
monitored on spring wheat using method M1; however, no
CO2 effects were found (data not shown). In 2008, the

Table 2. Duration of phenological phases after sowing of spring wheat in 2006–08 and oilseed rape in 2007–09
All development stages are based on observations on the main stem. Biologische Bundesanstalt, Bundessortenamt
und Chemische Industrie (BBCH) codes used to quantify the growth stages in cereals are as follows: BBCH 10, leaf
development; BBCH 20, tillering; BBCH 30, stem elongation; BBCH 40, booting; BBCH 50, inflorescence emergence
or heading; BBCH 60, flowering; BBCH 70, dough development; BBCH 80, ripening. For oilseed rape the codes are:
BBCH 10, leaf development; BBCH 20, formation of side shoots; BBCH 30, stem elongation; BBCH 50, inflorescence
emergence;BBCH60,flowering;BBCH70, development of fruit; BBCH80, ripening.AMB, ambientCO2 concentration;

ELE, elevated CO2 concentration

Crop Year Growth stage BBCH code Duration of phenological
phase (days)

AMB ELE

Leaf development 10 49 25
Tillering 20 77 70

Stem elongation 30 28 14
Spring wheat 2006 Booting 40 7 1

Inflorescence emergence 50 1 1
Flowering 60 1 7

Dough development fruit 70 14 14
Ripening 80 1 1

Leaf development 10 21 21
Tillering 20 28 28

Stem elongation 30 28 28
Spring wheat 2008 Booting 40 7 14

Inflorescence emergence 50 7 7
Flowering 60 1 1

Dough development fruit 70 14 14
Ripening 80 21 14

Leaf development 10 24 24
Formation of side shoots 20 13 6

Stem elongation 30 6 1
Oilseed rape 2007 Inflorescence emergence 50 6 6

Flowering 60 6 14
Development of fruit 70 27 27

Ripening 80 28 35

Leaf development 10 36 36
Formation of side shoots 20 42 50

Stem elongation 30 22 22
Oilseed rape 2009 Inflorescence emergence 50 15 15

Flowering 60 20 20
Development of fruit 70 7 7

Ripening 80 35 35
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abundance of thrips species (Thysanoptera: Thripidae), cereal
leaf beetles (Chaetocnema aridula (Gyll.), Oulema melanopus
(L.) (Coleoptera: Chrysomelidae)), click beetle (Agriotes
sputator L. (Coleoptera: Elateridae)), cereal ground beetle
(Zabrus tenebrioides Goeze (Coleoptera: Carabidae)), shield
bug (Aelia acuminata L. (Hemiptera: Pentatomidae)) and
R. padi were observed using method M1. Under elevated CO2,
the abundance of O. melanopus and thrips species was
significantly increased at BBCH 59 and BBCH 71,
respectively (Table 4). The abundance of C. aridula,
A. sputator, A. acuminata, R. padi and Z. tenebrioides was not
significantly affected by elevated CO2.

On spring wheat, using the M2 method, orange wheat
blossom midge (Sitodiplosis mosellana Géhin (Diptera:
Cecidomyiidae)), saddle gall midge (Haplodiplosis marginata
(von Roser) (Diptera: Cecidomyiidae)), barley leaf beetle
(Phyllotreta vittula (Redt.) (Coleoptera: Chrysomelidae)),
green cicada (Cicadella viridis (L.) Müller (Hemiptera:
Cicadellidae)) and wheat bulb fly (Delia coarcata (Fallén)
(Diptera: Anthomyidae)) were observed. Significant reductions
in population density under elevated CO2 were observed
for D. coarcata at BBCH 22 and BBCH 23, for C. aridula at
BBCH 31 and H. marginata at BBCH 83, and the abundance
of P. vittula was significantly increased at BBCH 41 (Table 5).

Pests on oilseed rape

In 2007 and 2009, thrips species (Thysanoptera: Thripidae),
turnip sawfly (Athalia rosae (L.) (Hymenoptera:
Tenthredinidae)), green cicada (Cicadella viridis (L.) Müller
(Hemiptera: Cicadellidae)), pollen beetle (Meligethes aeneus
F. (Coleoptera: Nutidulidae)), spring cabbage fly (Delia
radicum L. (Diptera: Anthomyidae)), cabbage whitefly
(Aleyrodes proletella L. (Hemiptera: Aleyrodidae)), green
peach aphid (Myzus persicae (Sulz.) (Hemiptera: Aphididae))
andbrassica podmidge (DasyneurabrassicaeWinnertz (Diptera:
Cecidomyidae)) were observed in OSR.

In 2007, a significant increase in the abundance of thrips
species (BBCH 71, M2) was observed under elevated CO2,
whereas the abundance of M. aeneus (BBCH 77, M1) and
cicadas (BBCH 81, M2) decreased (Table 5).

In 2009, a significant decreases in the abundance ofM. aeneus
were again observed under elevated CO2 at BBCH 55 and
BBCH 67 using method M1 and at BBCH 80 using M2

(Table 6). The results of method M2 show that elevated CO2

resulted in a significant increase in the abundance of thrips species
(A. rosae, D. radicum, M. aeneus and A. proletella). Significant
increases due to elevated CO2 were observed in the abundance of
A. rosae and thrips species at BBCH55,A. proletella at BBCH67
and D. radicum during the whole cultivation period, with
maximum numbers of insects being 5.6# 0.5 (AMB) and
10.4# 1.1 (ELE) at BBCH 67. Elevated CO2 significantly
decreased the infestation by D. brassicae during the whole
cultivation period, with maximum numbers of insects reaching
11.2# 1.3 at ambient CO2 and 3.2# 0.8 at elevated CO2 (BBCH
80).

Linear regression analysis between the concentrations
of foliar C and N, and the abundance of insects

Nosignificant relationshipswere foundbetween the abundanceof
insects and the concentration of foliar C of spring wheat
(2006–008) and OSR (2007–09) in either of the CO2

treatments (data not shown). However, relationships were
observed between the concentrations of N and the abundance
of A. proletella (M2), M. aeneus (M1) and D. radicum (M2) in
OSR in 2009 (74 days after sowing, DAS) under elevated CO2

(Table 7).

Pathogens

Under elevatedCO2, the leaves of springwheatwere only slightly
damaged by powdery mildew (E. graminis), yellow rust
(P. striiformis) and brown rust (P. recondita) in 2006, and by
septoria leaf blotch (S. tritici), E. graminis and P. recondita in

Table 3. Biomass (gDWperplant), carbonandnitrogen concentration (%DW) in leaves of springwheat (2006–08) and
oilseed rape (2007–09) at Biologische Bundesanstalt, Bundessortenamt und Chemische Industrie (BBCH) 65–69 at

ambient (AMB) and elevated (ELE) CO2 concentrations
n.s., not significant (P> 0.05)

Years BBCH code Crop traits CO2 treatmentA P-values
AMB ELE (ANOVA)

2006 BBCH 69 Leaf biomass 0.29 ± 0.04 0.29 ± 0.01 n.s.
Leaf nitrogen 3.00 ± 0.47 2.95 ± 0.28 n.s.
Leaf carbon 43.22 ± 0.30 43.56 ± 0.23 n.s.

2007 BBCH 65–69 Leaf biomass 1.00 ± 0.39 1.65 ± 0.68 n.s.
Leaf nitrogen 2.88 ± 0.35 2.76 ± 0.46 n.s.
Leaf carbon 39.7 ± 1.06 40.13 ± 1.81 n.s.

2008 BBCH 65–69 Leaf biomass 0.68 ± 0.19 0.58 ± 0.13 n.s.
Leaf nitrogen 3.20 ± 0.15 3.03 ± 0.27 n.s.
Leaf carbon 42.13 ± 0.22 42.08 ± 0.42 n.s.

2009 BBCH 69 Leaf biomass 2.19 ± 0.77 2.60 ± 0.46 n.s.
Leaf nitrogen 3.05 ± 0.34 2.47 ± 0.28 n.s.
Leaf carbon 39.42 ± 0.43 39.18 ± 0.50 n.s.

AValues represent means and s.e. across replicates, the level of statistical significance according to one-way ANOVA; n = 5.
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Table 4. Abundance of insect species per plant (methodM1) and per trap (methodM2) in spring wheat during the whole
vegetation period under ambient (AMB) and elevated (ELE) CO2 treatments in 2008

MethodM1 uses direct counts on plants;methodM2 captures insects on adhesive traps.Results of the statistical analysis (ANOVA)
are presented as P-values (n.s., not significant; P$ 0.05, significant); n = 5. BBCH, Biologische Bundesanstalt, Bundessortenamt

und Chemische Industrie

Species of insect Days after Growth stages AMB ELE CO2 effect P-values
sowing BBCH code Average numbers of

individuals with s.e.
(ANOVA)

Method M1

Oulema melanopus 52 31 0.2 ± 0.1 0.2 ± 0.0 n.s.
59 41 0.3 ± 0.1 0.4 ± 0.2 n.s.
66 53 0.1 ± 0.1 0.2 ± 0.1 n.s.
73 59 0.1 ± 0.1 0.4 ± 0.2 0.05

Rhopalosiphum padi 59 41 0.3 ± 0.1 0.8 ± 0.9 n.s.
66 53 1.3 ± 0.5 1.1 ± 0.3 n.s.
73 59 0.4 ± 0.3 0.6 ± 0.4 n.s.
80 71 0.4 ± 0.1 0.6 ± 0.6 n.s.
87 83 0.2 ± 0.1 0.7 ± 0.8 n.s.

Thrips species 80 71 1.0 ± 0.1 1.6 ± 0.2 0.05
87 83 1.5 ± 0.1 2.0 ± 0.6 n.s.
94 83 2.7 ± 1.9 4.4 ± 0.6 n.s.
101 84 0.7 ± 0.8 0.2 ± 0.2 n.s.

Zabrus tenebrioides 73 59 0.2 ± 0.2 0.2 ± 0.2 n.s.

Chaetocnema aridula 79 71 0.1 ± 0.1 0.0 ± 0.0 n.s.

Agriotes sputator 87 83 0.0 ± 0.1 0.2 ± 0.1 n.s.
87 83 0.1 ± 0.1 0.1 ± 0.1 n.s.

Method M2

Delia coarcata 36 22 36.4 ± 4.3 2.8 ± 0.8 0.05
44 23 12.8 ± 1.3 4.6 ± 0.5 0.05
51 31 7.8 ± 3.5 5.2 ± 4.5 n.s.
58 41 6.6 ± 3.5 5.6 ± 2.8 n.s.
65 53 14.4 ± 4.1 9.6 ± 5.5 n.s.

C. aridula 51 31 7.6 ± 0.8 1.4 ± 0.5 0.01
58 41 9.0 ± 6.6 4.2 ± 1.7 n.s.
65 53 12.0 ± 7.3 7.4 ± 5.3 n.s.
72 59 35.6 ± 7.5 27.6 ± 23.9 n.s.

Phyllotreta vittula 58 41 1.4 ± 0.5 4.6 ± 1.1 0.05
65 53 8.0 ± 4.5 8.8 ± 6.9 n.s.
72 59 9.6 ± 4.3 7.6 ± 5.5 n.s.
79 71 20.0 ± 10.5 17.6 ± 6.3 n.s.
86 83 6.0 ± 3.3 3.8 ± 3.7 n.s.

Haplodiplosis marginata 93 83 3.2 ± 0.4 1.2 ± 0.4 0.05

Sitodiplosis mosellana 93 83 2.4 ± 0.5 0.4 ± 0.5 n.s.

100 84 0.6 ± 0.5 0.4 ± 0.5 n.s.

Table 5. Average numbers of Meligethes aeneus in oilseed rape using method M1 and Cicadella viridis and thrips species using M2

under ambient (AMB) and elevated (ELE) CO2 treatments in 2007
The Biologische Bundesanstalt, Bundessortenamt und Chemische Industrie (BBCH) code represents the growth stages of oilseed rape. Results
of statistical analysis (ANOVA) are presented as P-values (P$ 0.05 = significant); n= 5. For an explanation of M1 and M2, refer to Table 4

Species of insect Method Days after BBCH AMB ELE CO2 effect P-values
sowing code Average numbers of pests with s.e. (ANOVA)

M. aeneus M1 78 77 0.6 ± 0.1 0.3 ± 0.1 0.01
Thrips species M2 63 71 133.6 ± 10.1 190.6 ± 27.6 0.01
C. viridis M2 91 81 2.0 ± 0.7 0.4 ± 0.1 0.05
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2008. The FI and SI of these diseases were not significantly
affected under CO2 enrichment (Table 8).

In 2007, no disease symptomswere observed inOSR in any of
the treatments. Although, in 2009, downymildew (P. parasitica)
appeared onOSR from89DASuntil 94DASat the ripening stage
(BBCH 80), the SI and FI of this disease were not significantly
affected by elevated CO2 (Table 8).

Discussion
In our study, the phenological development and aboveground
biomass of spring wheat and OSRwere not significantly affected
underCO2enrichment,whichwasnot expected, as crops are often
advanced in their life cycle. In contrast, Atwell et al. (1999)
showed that CO2 enrichment (700mLL–1) enhanced the

development of wheat (Triticum aestivum L.) and rice (Oryza
sativa L.), significantly accelerating the visual appearance of
successive leaves and shortening the flowering time. A slight
enhancement of phenological development under elevated CO2

(494mmolmol–1) was also observed in OSR (Franzaring et al.
2008) and maize (Zea mays L.) (Leakey 2009). According to
Garbutt et al. (1990), Amaranthus retroflexus L. flowered
significantly earlier under elevated CO2 (700mLL–1 vs 350),
whereas Setaria faberi Herrm flourished significantly later. A
positive relationship was found between the appearance of wheat
leaves and the concentration of elevated CO2 (700mLL–1) in the
study of McMaster et al. (1999), where accelerated leaf and tiller
appearance rates resulted in faster canopy development and
higher plant biomass (shoot, root and spike production).
Significant increases in aboveground biomass due to elevated

Table 6. Occurrence of individuals of insect species per plant (method M1) and per trap (method M2) in oilseed rape
during the whole vegetation period under ambient (AMB) and elevated (ELE) CO2 treatments in 2009

For an explanation ofM1 andM2, refer to Table 4. Results of the statistical analysis (ANOVA) are presented as P-values (n.s., not
significant; P$ 0.05, significant); n = 5. BBCH, Biologische Bundesanstalt, Bundessortenamt und Chemische Industrie

Species of insect Days after Growth stages AMB ELE CO2 effect P-values
sowing BBCH code Average numbers of

individuals with s.e.
(ANOVA)

Method M1

Meligethes aeneus 46 50 0.6 ± 1.2 1.0 ± 1.2 n.s.
52 55 3.6 ± 0.7 1.8 ± 0.5 0.01
60 62 4.3 ± 3.3 3.7 ± 3.4 n.s.
66 66 4.1 ± 3.4 3.2 ± 3.2 n.s.
74 67 10.1 ± 1.9 7.5 ± 1.3 0.05
80 71 2.5 ± 1.2 4.3 ± 3.0 n.s.
88 77 1.2 ± 1.1 2.2 ± 1.6 n.s.

Method M2

Athalia rosae 52 55 2.2 ± 0.4 5.0 ± 0.7 0.05
60 62 2.2 ± 0.4 4.2 ± 1.3 0.05
67 66 4.6 ± 0.5 6.0 ± 1.4 n.s.

Delia radicum 52 55 3.4 ± 0.5 7.8 ± 1.7 0.001
60 62 4.2 ± 0.4 8.6 ± 1.1 0.001
67 66 4.8 ± 0.8 9.8 ± 0.8 0.01
74 67 5.6 ± 0.5 10.4 ± 1.1 0.01
95 80 3.2 ± 0.4 6.2 ± 0.8 0.05
102 81 2.2 ± 1.7 3.8 ± 1.3 n.s.

Dasyneura brassicae 52 55 1.8 ± 0.8 0.2 ± 0.4 0.01
60 62 1.6 ± 0.5 0.2 ± 0.4 0.05
67 66 1.0 ± 0.7 1.6 ± 1.1 n.s.
74 67 0.4 ± 0.5 0.2 ± 0.4 0.05
95 80 5.2 ± 0.8 1.4 ± 0.8 0.01
108 81 11.2 ± 1.3 3.2 ± 0.8 0.05

Thrips species 52 55 41.4 ± 1.7 69.2 ± 1.3 0.001
60 62 71.2 ± 28.2 89.4 ± 20.1 n.s.
67 66 15.6 ± 4.2 18.8 ± 11.2 n.s.
74 67 30.6 ± 10.9 20.4 ± 8.7 n.s.
95 80 48.2 ± 29.5 30.4 ± 16.6 n.s.

Aleyrodes proletella 74 67 1.2 ± 0.4 4.6 ± 0.5 0.001
95 80 2.4 ± 2.0 1.0 ± 1.4 n.s.

M. aeneus 74 67 16.4 ± 8.1 17.0 ± 6.0 n.s.
95 80 47.4 ± 27.7 18.4 ± 5.7 n.s.
102 80 7.0 ± 1.2 3.1 ± 0.7 0.05
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CO2 were observed on wheat (19%, Dijkstra et al. 1999), broad
beans (14%, Awmack and Harrington 2000) and silver birch
(Betula pendula Roth), black alder (Alnus glutinosa L.) and
common beech (Fagus sylvatica L.) (17%, Hoosbeek et al.
2011), but the aboveground stem biomass of potato (Solanum
tuberosum L. cv. Bintje) was negatively influenced by CO2

enrichment (680mLL–1) at canopy maturity (Högy and
Fangmeier 2009). Furthermore, the concentrations of foliar C
and N were not significantly changed under elevated CO2 in our
study. In part, the lack of significant responses in the present
study may be explained by differences in annual climatic

conditions. Plants were supplied with sufficient water and all
essential nutrients, which may explain why no effects of the CO2

fertilisation were found on foliar C and N. In contrast, Cotrufo
et al. (1998) reviewed that elevated CO2 significantly altered C
and N metabolism, resulting in increased concentration of C and
reduced concentration of N in the leaves of C3 plants.

Changes in plantmetabolismunder elevatedCO2may have an
impact on pathogen–host relationships. According to
Chakraborty and Datta (2003), elevated CO2 significantly
increased the concentration of foliar carbohydrates of
Stylosanthes scabra Vogel, which, in turn, increased the
fecundity of the fungal anthracnose pathogen (Colletotrichum
gloeosporioides (Penz.) Penz. and Sacc). Those authors
suggested that the results could also differ under different
climatic conditions. In our study, however, differences in the
disease infestation levels on wheat in 2006 and 2008 were not
statistically significant for all treatments. The reason for delayed
development and spread of powdery mildew infection, and
probably also for the absence of CO2 effects in 2006, may be
due to a mild, rainy spring and a hot, dry and sunny summer
(Stadtklima Stuttgart 2006). However, the incidence level of
various fungal pathogens was higher in 2006 than 2008. In
2008, the development of powdery mildew was accelerated by
10 days in comparison to 2006. In contrast to our results, Hibberd
et al. (1996) observed that elevated CO2 (700mLL–1)
significantly inhibited the infestation of powdery mildew on
barley (Hordeum vulgare L.). In 2007, OSR was not infested
by anypathogens during thewhole vegetation period; in 2009, the
development of downymildewwas especially observed on plants
under elevated CO2. Eastburn et al. (2010) reported the opposite
effect, namely a significant reduction of disease severity by
39–66% on soybean plants. These contrasting results can be
explained by differences in crop species and the crop-specific
microclimate. Furthermore, higher precipitation was observed
during the growing season in present study, whereas Eastburn
et al. (2010) associated the reduction in the severity of the disease
with drought conditions.

Published literature concerning the effects of CO2 on
plant–pathogen interactions reveals contrasting results.
Different pathogens may respond differently under the same
climatic conditions, whereas the same pathogen may respond
differently to different agronomical growing conditions. Some
pathogens, like powdery mildew, are more likely to infest host
plants with lower moisture, whereas other diseases tend to thrive
in conditions where moisture is increased and temperatures are
lower. It was not clear in our study which combination of
environmental factors ultimately favoured the pathogens.
Therefore, the physiology of host plants and pathogens under
both FACE and controlled chamber environments should be
observed more detail in future studies in order to better
determine the nature of plant–pathogen interactions and CO2-
induced impacts on it.

In the present study, the monitoring of the recorded pests was
conducted using two different methods, which helped was to
observe both crawling and flying insects. M2 was more effective
thanM1, as it resulted in awider variety of pest species. Due to the
exclusivity of the individual methods of assessment and the
incompatibility of the data obtained, with M2 being suited to
monitoring flying insects and M1 being better suited to crawling

Table 7. Linear regression analysis between abundance of insects and
concentrations of nitrogen in leaves of spring wheat (2006–08) and

oilseed rape (2007–09)
For an explanation of M1 and M2, refer to Table 4. DAS, days after sowing;
BBCH, Biologische Bundesanstalt, Bundessortenamt und Chemische
Industrie; r2, regression coefficient; P, level of probability for linearity.

Significant regressions (P$ 0.05) with r2 >0.30 are shown in bold

Insect and crop DAS BBCH N concentration
code* r2 P

2006
Spring wheat
Rhopalosiphum padi (M1) 62 32 0.327 0.084

2007
Oilseed rape
Meligethes aeneus (M2) 63 71 0.044 0.560
Athalia rosae (M2) 63 71 0.101 0.371
Aleyrodes proletella (M2) 63 71 0.367 0.064
Thrips species (M2) 63 71 0.038 0.591
M. aeneus (M1) 63 71 0.079 0.432
Cicadella viridis (M2) 63 71 0.006 0.825
Dasyneura brassicae (M2) 63 71 0.059 0.500
Delia radicum (M2) 63 71 0.069 0.463

2008
Spring wheat
Oulema melanopus (M1) 70 71 0.084 0.416
R. padi (M1) 70 71 0.153 0.264
Zabrus tenebrioides (M1) 70 71 0.190 0.208
Thrips species (M1) 70 71 0.380 0.058
Delia coarcata (M2) 70 71 0.241 0.015
Chaetocnema aridula (M2) 70 71 0.000 0.989
Sitodiplosis mosellana (M2) 70 71 0.092 0.394
Thrips species (M2) 70 71 0.205 0.189
C. viridis (M2) 70 71 0.152 0.265
Cephus pigmaeus (M2) 70 71 0.028 0.643
Phyllotreta vittula (M2) 70 71 0.011 0.772
Agriotes sputator (M2) 70 71 0.168 0.239
Haplodiplosis marginata (M2) 70 71 0.001 0.948

2009
Oilseed rape
M. aeneus (M2) 74 67 0.000 0.963
A. rosae (M2) 74 67 0.143 0.281
A. proletella (M2) 74 67 0.441 0.036
Thrips species (M2) 74 67 0.136 0.294
M. aeneus (M1) 74 67 0.518 0.019
C. viridis (M2) 74 67 0.058 0.501
D. brassicae (M2) 74 67 0.000 0.996
D. radicum (M2) 74 67 0.429 0.040
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insects, no direct comparison could be made between the two
datasets.

Insect species on both crops responded differently to elevated
CO2. Species prevalent on spring wheat in 2008 were beetles,
such asC. aridula,O.melanopus,A. sputator,Z. tenebrioides and
P. vittula. These are chewing insects, damaging the plants by
causing skeletonisation and mining of leaves, causing an
unsightly appearance and a stressed plant, leaving it
susceptible to other insects and diseases. In 2007 and 2009,
dominant species on the OSR were Diptera like A. rosae,
D. brassica and D. radicum, and Hemiptera A. proletella.

The Hymenoptera A. rosae, the larvae of which skeletonise
leaves with their chewing mouthparts, and the Delia species as
miners are considered serious specialists on cruciferous plants.
Aleyrodes proletella, a specialist feeding on the phloem of
cruciferous plants only, may reach high population densities,
dependent on the nutritional quality of the phloem.

In our study, the abundance of some insects was significantly
decreased on spring wheat and OSR due to elevated CO2. The
studies of Butler (1985) on the flea beetle (Chaetocnema ectype
Stephens (Coleoptera: Chrysomelidae)) feeding on Gossypium

hirsutum L. and of Brooks and Whittaker (1998) on the green
dock beetle (Gastrophysa viridula De Geer (Coleoptera:
Chrysomelidae)) feeding on Rumex obtusifolius L. showed
significant reductions in populations under elevated CO2. Vu
et al. (1989) and Stiling and Cornelissen (2007) showed that
myrtle oak (Quercus myrtifolia Willd), sand live oak
(Q. geminata Small), Chapman oak (Q. chapmanii Sargent)
and Elliott’s milk pea (Galactia elliottii Nuthall) grown under
elevated CO2 contained higher levels of carbohydrates and
decreased amounts of N, reducing the nutritive value for
several herbivorous insects. However, the reduction in insect
abundance in our study was not significantly correlated with the
concentration of foliar C and N under elevated CO2.

In contrast in some instances, our study revealed significant
increases in the abundance of insects on spring wheat and OSR
under elevated CO2. Moreover, the abundance of A. proletella
and D. radicum in 2009 were significantly increased due to
elevated CO2 and related to the concentration of leaf
N. According to Long et al. (2006), increases in atmospheric
CO2 by the middle of this century are predicted to increase the
susceptibility of crops to invasive coleopterans. In agreement,

Table 8. Frequency of infestation (FI) and severity of infestation (SI) due to plant pathogens on spring wheat (2006–08) and oilseed rape (2009)
in ambient (AMB) and high CO2 (ELE) treatments

Parameters Days after Plant disease
sowing Erysiphe graminis Puccinia striiformis Puccinia recondita Septoria tritici Peronospora parasitica

AMB ELE AMB ELE AMB ELE AMB ELE AMB ELE

2006
Spring wheat
FI (%) 69 0 1 0 2 0 2 – – – –

76 0 1 2 6 9 7 – – – –

83 4 5 8 13 8 7 – – – –

90 17 15 33 25 62 56 – – – –

97 3 0 96 93 100 98 – – – –

SI (%) 69 0 0 0 0 0.01 0.02 – – – –

76 0 0.01 0.02 0.09 0.11 0.09 – – – –

83 0.05 0.12 0.11 0.14 0.12 0.09 – – – –

90 0.21 0.31 0.46 0.32 0.99 0.94 – – – –

97 0.04 0 2.42 2.59 4.05 3.95 – – – –

2008
Spring wheat
FI (%) 72 14 2 – – – – – – – –

79 0 6 – – 6 2 14 12 – –

87 0 12 – – 10 4 16 12 – –

93 – – – – 18 10 36 46 – –

103 – – – – 12 2 32 26 – –

SI (%) 72 0.17 0.02 – – – – – – – –

79 0 0.07 – – 0.17 0.17 0.05 0 – –

87 0 0.15 – – 0.2 0.2 1.12 0.02 – –

93 – – – – 0.65 0.67 0.25 0.15 – –

103 – – – – 0.65 0.32 0.15 0.02 – –

2009
Oilseed rape
FI (%) 89 – – – – – – – – 1 2

94 – – – – – – – – 0 6

SI (%) 89 – – – – – – – – 0.01 0.02
94 – – – – – – – – 0 0.07
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Hamilton et al. (2005) reported increases in the populations of
the Japanese beetle, Popillia japonica Newman (Coleoptera:
Scarabaeidae), on soybean under elevated CO2.

The chemical composition of plant materials greatly
influences the host plant specialisation characteristics of
insects, but in our study, it was not clear whether the decreases
or increases in the abundance of insects were affected by changes
in the nutritional suitability or quality of the host plant. It is
possible due to the limited effects of CO2 concentrations on the
C and N content in the leaves, few differences were observed in
the abundance of some insects. However, relationships can be
seen in the abundancesofD.coarcata (70DAS,M2),A.proletella
(74 DAS, M2), M. aeneus (74 DAS, M1) and D. radicum
(74 DAS, M2), which were significantly related to the N
concentration. It was also suggested that the increases and
decreases in the population of insects were a result of
microclimatic factors, which, in turn, can be affected by CO2

enrichment (Franzaring et al. 2010). Changes in the canopy
climate may affect the development and geographical
distribution of insects by overwintering, species-specific
reactions, crop–pest synchronisation of phenology and the risk
of invasion by migrant pests (Memmott et al. 2007). The major
variable factors of microclimate are temperature and relative
humidity, which influence insect activity. Temperature
positively influences the oviposition of some insects (tephritid
fly, Sphenella marginata (Diptera: Tephritidae)), whereas
relative humidity has a negative impact on it (Raghu et al.
2004). Nevertheless, the combined effects of CO2 enrichment
and climatic conditions (humidity and temperature) could
influence plant–insect interactions. In our study, higher
precipitation and soil water content in May and June 2007 in
comparison to 2009 resulted in the greater infestation of thrips
species (63 DAS, M2) on OSR, demonstrating that climatic
conditions and their interactive effects with CO2 enrichment
deserve further attention. In addition, each individual species
of insect may respond differently under different conditions
(i.e. the responses are species-specific).

This study showed that elevated CO2 concentration may
have an impact on plants and insect;, however, the connection
of climate change to other climate factors should not be neglected
in the future.

Conclusions
Our study showed that the effects of elevated CO2 on
plant–disease–insect interactions can be studied under field
conditions using Mini-FACE technology using several
replicated plots. Plant characteristics (phenological
development, aboveground biomass, foliar C and N) and the
damage onOSR and springwheat induced by pathogenswere not
significantly changed under CO2 enrichment. In contrast, insect
species on both crop species responded to elevated CO2, a
significant reduction (Delia coarcata, Chaetocnema aridula,
Haplodiplosis marginata, Meligethes aeneus, Dasyneura
brassicae) as well as a significant increase (Phyllotreta vittula,
Athalia rosae, Aleyrodes proletella, Delia radicum, thrips
species) in their abundance. The strong differences in
responses in different years are explained by changes in CO2

concentration, and microclimatic effects (temperature, humidity,

drought)may have been involved aswell. Some species of insects
were favoured bythe elevated CO2 concentrations and high
humidity, whereas other insects were positively affected by
drier conditions. Moreover, different species may respond
differently under the same environmental conditions,
indicating that the responses to climatic change and CO2

fertilisation will be species-specific. It is therefore highly
advisable to perform further experimentation on this topic in
order to elucidate the differences in the effects in among and on
different plant species, pathogens and insects under elevated CO2

by setting up a long-term monitoring and modelling of insect
behaviour and their population levels.

Acknowledgements
Thefield experiments and chemical analysis in 2008 and 2009were funded by
the German Research Foundation as part of the integrated project ‘Structure
and Functions of Agricultural Landscapes under Global Climate Change –
Processes and Projections on a Regional Scale’ (PAK346).We are grateful to
our colleagues Dr Walter Damsohn and Gina Gensheimer for their excellent
practical support of the experiment and numerous technical improvements.
The authors also acknowledge help from the student research assistants
involved in the Mini-FACE experiment. We thank Dieter Oehme for his
helpful comments on this manuscript.

References
Atwell BJ, Kriedemann PE, Turnbull CGN (1999) ‘Plants in action:

adaptation in nature, performance in cultivation.’ (Macmillan
Education Australia: South Yarra

Awmack CS, Harrington R (2000) Elevated CO2 affects the interactions
between aphid pests and host plant flowering. Agricultural and Forest
Entomology 2, 57–61. doi:10.1046/j.1461-9563.2000.00050.x

Awmack CS, Harrington R, Leather SR (1997) Host plant effects on the
performance of the aphid Aulacorthum solani (Kalt.) at ambient and
elevated CO2. Global Change Biology 3, 545–549. doi:10.1046/j.1365-
2486.1997.t01-1-00087.x

Bazzaz FA (1990) The response of natural ecosystems to the rising global
CO2 levels. Annual Review of Ecology and Systematics 21, 167–196.
doi:10.1146/annurev.es.21.110190.001123

BezemerTM, JonesTH (1998) Plant–insect herbivore interactions in elevated
atmospheric CO2: quantitative analyses and guild effects. Oikos 82,
212–222. doi:10.2307/3546961

Brooks GL, Whittaker JB (1998) Responses of multiple generations of
Gastrophysa viridula feeding on Rumex obtusifolius, to elevated CO2.
Global Change Biology 4, 63–75. doi:10.1046/j.1365-2486.1998.
00111.x

Brown VC (1995) Insect herbivores and gaseous air pollutants – current
knowledge and predictions. In ‘Insects in a Changing Environment. 17th
Symposium of the Royal Entomological Society of London, 7–10
September 1993, Rothamsted Experimental Station, Harpenden,
England’. (Ed. R Harrington and NE Stork) pp. 219–249.

Butler GD (1985) Populations of several insects on cotton in open-top carbon
dioxide enrichment chambers. The Southwestern Entomologist 10,
264–267.

Chakraborty S, Datta S (2003) How will plant pathogens adapt to host plant
resistance at elevated CO2 under a changing climate? New Phytologist
159, 733–742. doi:10.1046/j.1469-8137.2003.00842.x

Chakraborty S, Luck J, Hollaway G, Fitzgerald G, White N (2011) Rust-
proofingwheat for changing climate.Euphytica 179, 19–32. doi:10.1007/
s10681-010-0324-7

Chen FJ, Parajulee MN (2005) Impact of elevated CO2 on tri-trophic
interaction of Gossypium hirsutum, Aphis gossypii and Leis axyridis.
Environmental Entomology 34, 37–46. doi:10.1603/0046-225X-34.1.37

J Functional Plant Biology V. Oehme et al.



Chen FJ, Wu G, Ge F (2004) Impacts of elevated CO2 on the population
abundance and reproductive activity of aphid Sitobion avenae Fabricius
feeding on spring wheat. Journal of Applied Entomology 128, 723–730.
doi:10.1111/j.1439-0418.2004.00921.x

Cotrufo MF, Ineson P, Scott A (1998) Elevated CO2 reduces the nitrogen
concentration of plant tissues. Global Change Biology 4, 43–54.
doi:10.1046/j.1365-2486.1998.00101.x

Curtis PS, Drake BG,WhighamDF (1989) Nitrogen and carbon dynamics in
C3 and C4 estuarine marsh plants grown under elevated CO2 in situ.
Oecologia 78, 297–301. doi:10.1007/BF00379101

Dahlman DL, Eichenseer H, Siegel MR (1991) Chemical perspectives
of endophyte–grass interactions and their implications to insect
herbivore. In ‘Microbial mediation of plant–herbivore interactions’.
(Eds P Barbosa, VA Krischnik, CG Jones) pp. 227–252. (Wiley:
New York)

DermodyO,O’NeillB,ZangerlA,BerenbaumM,DeLuciaEH(2008)Effects
of elevatedCO2 andO3 on leaf damage and insect abundance in a soybean
agroecosystem. Arthropod-Plant Interactions 2, 125–135. doi:10.1007/
s11829-008-9045-4

Dijkstra P, Schapendonk AHMC, Groenwold K, JansenM, Van de Geijn SC
(1999) Seasonal changes in the response of winter wheat to elevated
atmospheric CO2 concentration grown in open-top chambers and field
tracking enclosures. Global Change Biology 5, 563–576. doi:10.1046/
j.1365-2486.1999.00249.x

Drandarevski CA (1969) Untersuchungen über den echten Rübenmehltau
Erysiphe betae (Vanha) Weltzien II. Biologie und Klimaabhängigkeit
des Pilzes. Phytopathologische Zeitschrift 65, 124–154. doi:10.1111/
j.1439-0434.1969.tb03054.x

Dunford JC, Long LS (2002) Photographic atlas of entomology and guide to
insect identification. Florida Entomologist 85, 298–299. doi:10.1653/
0015-4040(2002)085[0298:PAOEAG]2.0.CO;2

Eastburn DM, Degennaro MM, DeLucia EH, Dermody O, McElrone AJ
(2010) Elevated atmospheric carbon dioxide and ozone alter soybean
diseases at SoyFACE.GlobalChangeBiology 16, 320–330. doi:10.1111/
j.1365-2486.2009.01978.x

Erbs M, Fangmeier A (2006) Atmospheric CO2 enrichment effects on
ecosystems – experiments and real world. Progress in Botany 67,
441–459. doi:10.1007/3-540-27998-9_19

Franzaring J, Högy P, Fangmeier A (2008) Effects of free-air CO2 enrichment
on the growth of summer oilseed rape (Brassica napus cv. Campino).
Agriculture Ecosystems & Environment 128, 127–134. doi:10.1016/
j.agee.2008.05.011

Franzaring J, Högy P, ErbsM, Fangmeier A (2010) Responses of canopy and
soil climate in a six year free-air CO2 enrichment study with spring crops.
Agricultural and Forest Meteorology 150, 354–360. doi:10.1016/
j.agrformet.2009.11.018

GarbeV,BartelsG,ArtelsG (1999) ‘FarbatlasKrankheitenundSchädlingean
Landwirtschaftlichen Kulturpflanzen.‘ (Verlag Eugen Ulmer: Stuttgart)

Garbutt K, Williams WE, Bazzaz FA (1990) Analysis of the differential
response of five annuals to elevated CO2 during growth. Ecology 71,
1185–1194. doi:10.2307/1937386

Goicoechea N, Aguirreolea J, Garcia-Mina JM (2004) Alleviation of
verticillium wilt in pepper (Capsicum annuum L.) by using the organic
amendment COAH of natural origin. Scientia Horticulturae 101, 23–37.
doi:10.1016/j.scienta.2003.09.015

Hamilton JG, Dermody OC, Aldea M, Zangerl AR, Rogers A, Berenbaum
MR, Delucia EH (2005) Anthropogenic changes in tropospheric
composition increase susceptibility of soybean to insect herbivory.
Environmental Entomology 34, 479–485. doi:10.1603/0046-225X-
34.2.479

Hibberd JM,Whitbread R, Farrar JF (1996) Effect of elevated concentrations
of CO2 on infection of barley by Erysiphe graminis. Physiological and
Molecular Plant Pathology 48, 37–53. doi:10.1006/pmpp.1996.0004

Högy P, Fangmeier A (2009) Atmospheric CO2 enrichment affects potatoes:
aboveground biomass production and tuber yield. European Journal of
Agronomy 30, 78–84. doi:10.1016/j.eja.2008.07.007

HögyP,Wieser H,Köhler P, ScwadorfK, Breuer J, Franzaring J,Muntifering
R, Fangmeier A (2009) Effects of elevated CO2 on grain yield and quality
of wheat: results from a three-year FACE experiment. Plant Biology 11,
60–69. doi:10.1111/j.1438-8677.2009.00230.x

HögyP,FranzaringJ, SchwadorfK,Breuer J, SchützeW,FangmeierA (2010)
Effects of free-air CO2 enrichment on energy traits and seed quality of
oilseed rape. Agriculture Ecosystems & Environment 139, 239–244.
doi:10.1016/j.agee.2010.08.009

Högy P, Brunnbauer M, Koehler P, Schwadorf K, Breuer J, Franzaring J,
Zhunusbayeva D, Fangmeier A (2012) Grain quality traits of spring
wheat (Triticum aestivum) as affected by free-air CO2 enrichment.
Environmental and Experimental Botany, in press. doi:10.1016/
j.envexpbot.2011.12.007

Hoosbeek MR, Lukas M, Velthorst E, Smith AR, Godbold DL (2011) Free
atmospheric CO2 enrichment increased above ground biomass but did not
affect symbiotic N2-fixation and soil carbon dynamics in a mixed
deciduous stand in Wales. Biogeosciences 8, 353–364. doi:10.5194/bg-
8-353-2011

Hughes L, Bazzaz FA (1997) Effect of elevated CO2 on interactions between
the western flower thrips, Frankliniella occidentalis (Thysanoptera,
Thripidae) and the common milkweed, Asclepias syriaca. Oecologia
109, 286–290. doi:10.1007/s004420050085

Intergovernmental Panel on Climate Change (2007) ‘Climate change 2007 –
the physical science basis. Contribution of Working Group I to the fourth
assessment report of the Intergovernmental Panel on Climate Change.’
(Cambridge University Press: Cambridge, UK)

International Standards Organisation (1995) ISO 10694.
Bodenbeschaffenheit–Bestimmung von Organischem Kohlenstoff und
Gesamtkohlenstoff nach Trockener Verbrennung (Elementaranalyse).
(Beuth-Verlag: Berlin)

Johnson RH, Lincoln DE (1991) Sagebrush carbon allocation patterns
and grasshopper nutrition: the influence of carbon dioxide enrichment
and soil mineral limitation. Oecologia 87, 127–134. doi:10.1007/
BF00323790

Keller F (2002) Kohlenstoffexport bei Erhöhter CO2-Konzentration: Einfluss
von Ammonium-Nitratkonzentration und Wurzelraum auf Wachstum
und Stoffwechsel bei Ricinus communis L. PhD thesis, Universität
Bayreuth.

Kobayashi T, Ishiguro K, Nakajima T, Kim HY, Okada M, Kobayashi K
(2006)Effectsof elevatedatmosphericCO2concentrationon the infection
of rice blast and sheath blight.Phytopathology 96, 425–431. doi:10.1094/
PHYTO-96-0425

Leakey ADB (2009) Rising atmospheric carbon dioxide concentration
and the future of C4 crops for food and fuel. Proceedings of the Royal
Society B, Biological Sciences 276, 2333–2343. doi:10.1098/rspb.2008.
1517

LincolnDE, Fajer ED, JohnsonRH (1993) Plant insect herbivore interactions
in elevated CO2 environments. Trends in Ecology & Evolution 8, 64–68.
doi:10.1016/0169-5347(93)90161-H

LongSP,AinsworthEA,LeakeyADB,Noesberger J,OrtDR (2006)Food for
thought: lower-than-expected crop yield stimulation with rising CO2

concentration. Science 312, 1918–1921. doi:10.1126/science.1114722
Manning WJ, Tiedemann AV (1995) Climate change: potential effects

of increased atmospheric carbon dioxide (CO2), ozone (O3), and
ultraviolet-B (UVB) radiation on plant diseases. Environmental
Pollution 88, 219–245. doi:10.1016/0269-7491(95)91446-R

McElrone AJ, Reid CD, Hoye KA, Hart E, Jackson RB (2005) Elevated CO2

reduces disease incidence and severity of a red maple fungal pathogen via
changes in host physiology and leaf chemistry. Global Change Biology
11, 1828–1836. doi:10.1111/j.1365-2486.2005.001015.x

Pest and disease abundance under elevated CO2 Functional Plant Biology K



McMasterGS, LeCainDR,Morgan JA,Aiguo I,HendrixDL (1999)Elevated
CO2 increaseswheat CER, leaf and tiller development, and shoot and root
growth. Journal Agronomy & Crop Science 183, 119–128. doi:10.1046/
j.1439-037x.1999.00325.x

Melloy P, Hollaway G, Luck J, Norton R, Aitken E, Chakraborty S (2010)
Production and fitness of Fusarium pseudograminearum inoculums at
elevated CO2 in FACE. Global Change Biology 16, 3363–3373.
doi:10.1111/j.1365-2486.2010.02178.x

Memmott J, Craze PG,Waser NM, PriceMV (2007) Global warming and the
disruption of plant–pollinator interactions. Ecology Letters 10, 710–717.
doi:10.1111/j.1461-0248.2007.01061.x

Newman JA, GibsonDJ, Parsons AJ, Thornley JHM (2003) How predictable
are aphid population responses to elevated CO2? Journal of Animal
Ecology 72, 556–566. doi:10.1046/j.1365-2656.2003.00725.x

Patterson DT, Westbrook JK, Joyce RJV, Lingren PD, Rogasik J (1999)
Weeds, insects and diseases.Climatic Change 43, 711–727. doi:10.1023/
A:1005549400875

Poorter H, Navas ML (2003) Plant growth and competition at elevated CO2:
on winners, losers and functional groups.New Phytologist 157, 175–198.
doi:10.1046/j.1469-8137.2003.00680.x

Raghu S, Drew RA, Clarke AR (2004) Influence of host plant structure
and microclimate on the abundance and behavior of a tephritid fly.
Journal of Insect Behavior 17, 179–190. doi:10.1023/B:JOIR.00000285
68.90719.2a

Stadler F (1999) Plant–herbivore interactions in a CO2-rich world: a study of
two plants (Glycine max and Pisum stivum) and a lepidopteran herbivore
(Helicoverpa armigera). Unpublished BSc (Hons) thesis. Department of
Biological Sciences, Macquarie University, Sydney.

Stadtklima Stuttgart (2006) ‘Meteorologische Jahresberichte Stuttgart
Hohenheim. ’ (Landeshauptstadt Stuttgart – Amt für Umweltschutz:
Stuttgart)

Stiling P, Cornelissen T (2007) How does elevated carbon dioxide (CO2)
affect plant–herbivore interactions? A field experiment andmeta-analysis
of CO2-mediated changes on plant chemistry and herbivore performance.
Global Change Biology 13, 1823–1842. doi:10.1111/j.1365-2486.2007.
01392.x

StilingP,MoonD,RossiA,HungateBA,DrakeB (2009)Seeing the forest for
the trees: long-term exposure to elevated CO2 increases some herbivore
densities. Global Change Biology 15, 1895–1902. doi:10.1111/j.1365-
2486.2009.01902.x

Tottman DR, Broad H (1987) The decimal code for the growth stages of
cereals with illustrations. The Annals of Applied Biology 110, 441–454.
doi:10.1111/j.1744-7348.1987.tb03275.x

Verreet JA (1985) Grundlagen der Schadenwirkung des Blatt- und
Ährenbefalles durch Septoria nodorum (Berk.) bei Weizen. PhD
thesis, Technische Universität München.

Vu JCV, Allen LH, Bowes G (1989) Leaf ultrastructure, carbohydrates, and
protein of soybeans grown under CO2 enrichment. Environmental and
Experimental Botany 29, 141–147. doi:10.1016/0098-8472(89)90046-4

Weber E, Bleiholder H (1990) Erläuterungen zu den BBCH –Dezimal Codes
für die Entwicklungsstadien vonMais, Raps, Faba-Bohne, Sonnenblume
und Erbse – mit Abbildungen. Gesunde Pflanzen 42, 308–321.

L Functional Plant Biology V. Oehme et al.

www.publish.csiro.au/journals/fpb



 

 - 29 - 

5. Response of spring crops and associated aphids to elevated atmospheric 

CO2 concentrations 

 

V. Oehme 
1
, P. Högy 

1
, J. Franzaring 

1
, C.P.W. Zebitz 

2
 and A. Fangmeier 

1 

 

1
Institute for Landscape and Plant Ecology, Plant Ecology and Ecotoxicology, University of 

Hohenheim, Stuttgart, Germany 

2
Institute of Phytomedicine, Applied Entomology, University of Hohenheim, Stuttgart, Germany 

 

Summary 

Having evolved a parasitic relation to their host plants, aphids may serve as indicators of plant 

responses to environmental changes. The present rise in atmospheric CO2 concentrations is 

expected to alter plant leaf chemistry and may thus alter host plant – aphid relations. We 

involved a climate chamber system and used bird cherry-oat aphid (Rhopalosiphum padi L.) 

and green peach aphid (Myzus persicae S.) and their respective host plants, spring wheat 

(Triticum aestivum L. cv. “Triso”) and oilseed rape (Brassica napus cv. “Campino”), to 

elucidate the effects of atmospheric CO2 enrichment on such bitrophic systems. Spring wheat 

grown at elevated CO2 (600 ppm) generally had greater above ground biomass than plants 

grown at ambient CO2 (400 ppm). Bird cherry-oat aphid infestation resulted in reduced spring 

wheat above ground biomass compared to the non-infested control. Relative crop growth rate 

(RGR) was increased by elevated CO2. In our study, the relative developmental stage (rDS) 

and intrinsic rate of increase (rm) of the aphids was only slightly and non-significantly 

increased under elevated atmospheric CO2 conditions. The response of aphid weight and RGR 

to elevated CO2 differed, increasing by 24% and 18.2% for bird cherry-oat aphid and 

decreasing by 12% and 12.5% for green peach aphid, respectively. Aphids reared on spring 

wheat at elevated CO2 had a shorter lifespan, whereas the opposite effect was found for 

aphids reared on oilseed rape. The average number of nymphs of the two pest species showed 

both an increase under elevated CO2. No consistent picture emerges from these findings, and 

further investigation on host – aphid relations under changing atmospheric conditions such as 

CO2 enrichment appear necessary. 
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Introduction 

Atmospheric carbon dioxide (CO2) concentration has increased from 290 ppm (parts per 

million) in 1850 to 375 ppm in 2007 (IPCC, 2007) and will continue to rise in the coming 

decades due to anthropogenic activities. According to current climate scenarios CO2 

concentration will increase up to 450-550 ppm at the middle of this century. Besides indirect 

impacts due to climate change CO2 enrichment will directly affect both plants and insects 

(MASTERS et al., 1998; HUGHES, 2000). 

Several effects of CO2 enrichment on plants have been observed such as an increase in 

photosynthesis rates, leaf area, dry weight and other growth characteristics (OWENSBY et al., 

1999). Many studies have shown an increase in plant growth in elevated compared to ambient 

CO2 (NORBY et al., 1999; LONG et al., 2004; AINSWORTH and LONG, 2005). In earlier work 

when a doubling of atmospheric CO2 was considered, CURE and ACOCK (1986) reported an 

increase in yield by 41% on average after assembling yield data for 10 major crops (leaf, 

grain, tuber and fiber). Corresponding results were obtained by AMTHOR (2001) who 

estimated an increase in wheat grain mass by 31% on average based on wheat yield data from 

50 publications. In more recent work involving FACE technology (Free Air Carbon dioxide 

Enrichment) at only ca. 200 ppm above ambient instead of doubling, elevated CO2 increased 

aboveground biomass by 12% and grain yield by 10-15% in wheat (KIMBALL et al., 2002a). 

For oilseed rape, only few data are available on yield and growth response to CO2 enrichment. 

According to FRANZARING et al. (2008b), shoot biomass of summer oilseed rape tended to be 

20% greater and seed output increased by approximately 17% under elevated CO2. In this 

study, plant height and the dry weight of reproductive organs was also significantly increased 

under elevated CO2, indicating a speeding up of plant development. The significant increase 

in the dry weights of senescent leaves in plant specimens from the elevated CO2 treatment 

strongly suggests that plant phenology is also affected. 

It was also revealed that elevated CO2 influences the primary and secondary metabolism of 

plants (PENUELAS and ESTIARTE, 1998). Many studies have shown changes in foliar sugars, 

starch and increases in concentrations of carbon based secondary structural compounds due to 

elevated CO2 (PENUELAS and ESTIARTE, 1998; STILING et al., 1999). The foliar nitrogen 

content in plants grown under increased CO2 was often reported to be reduced by up to 15% 

(COTRUFO, 1998; HEAGLE et al., 2002). 

The rise in CO2 can thus indirectly affect herbivores by biochemically altering the nutritive 

value of the host plants. The increase in the carbon:nitrogen ratio in host plants generally 

decreases the nutritive quality for some feeding guilds of pests (e.g. phloem-feeders, leaf 
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miners, xylem-feeders, seed-eaters, whole-cell-feeders and leaf-chewers), leading to an 

increase in their food consumption rates in order to compensate for the reduced quality (SALT 

et al., 1995; MARKS and LINCOLN, 1996; BEZEMER and JONES, 1998). The increased 

siphoning from phloem-feeders in turn causes a massive reduction in host plant assimilates 

(WATT et al., 1995). The change in the allocation patterns of compounds and the chemical 

composition of plant tissues indirectly affects the food ecology of phytophagous insects 

(HUNTER, 2001). 

RHODES et al. (1996) have shown that phloem-feeding aphids use amino acids for their 

protein metabolism, and carbohydrates for energy. The phloem of plants contains high 

amounts of carbohydrates (0.8-1.8 M), small amounts of amino acids (60-200 mM) and very 

few lipids (KLINGAUF, 1987; DILLWITH et al., 1993; SANDSTÖM and MORAN, 2001; 

WILKINSON and DOUGLAS, 2003; DOUGLAS, 2006). In order to obtain the necessary amounts 

of amino acids required for growth, aphids thus consume considerable amounts of 

carbohydrates from the phloem. Improved food quality of a host plant with respect to aphids 

expresses itself in a higher amino acid to carbohydrate ratio within the phloem (MITTLER and 

MEIKLE, 1991). Elevated CO2 may change the concentrations of some individual amino acids 

in the phloem sap, thereby affecting the performance of aphids. A study of DOCHERTY et al. 

(1997) proved that reduction of total amino acid concentration in phloem sap was 31% at 

elevated CO2. 

The reduction in food quality due to elevated CO2 also impacts the behaviour and physiology 

of leaf miner insects (STILING and CORNELISSEN, 2007). Many species of herbivorous insects 

tend to show altered behaviour and characteristics under CO2 enrichment. The consequences 

differ between species and include retarded growth rates, increased nymphal development 

times and higher mortality rates (LINDROTH et al., 1993; SMITH and JONES 1998; COVIELLA 

and TRUBLE, 1999; GOVERDE and ERHARDT, 2003). In contrast, some studies concluded that 

the development time of phloem-feeding insects may be reduced by 17%, and that adult 

weight, relative growth rate (RGR) and population size may actually increase due to elevated 

CO2 (BEZEMER and JONES, 1998; NEWMAN et al., 2003). 

In this paper, we investigated the responses of host plants to elevated CO2 in order to observe 

the indirect effects on phloem feeding insects. The experiment was carried out with bird 

cherry-oat aphids (Rhopalosiphum padi L.) on spring wheat (Triticum aestivum L. cv. 

“Triso”) and with green peach aphid (Myzus persicae S.) on oilseed rape (Brassica napus cv. 

“Campino”). Determining the effects on these sap-feeding insects is very important for 

agriculture. Myzus persicae causes both direct (leaf curling) and indirect damage of plants 
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(transmission of plant viruses such as lettuce mosaic virus (LMV) and cucumber virus I) 

(NAMBA and SYLVESTER, 1981). Myzus persicae can achieve very high population densities 

on plant tissue, retarding plant growth rate and thereby causing a perceptible reduction in 

yield of root and foliage crops (PETITT and SMILOWITZ, 1982). Rhopalosiphum padi in turn 

causes a significant decrease in yield on cereal crops via feeding damage, resulting in a 

reduction of kernel amount and mass. Kernel amount was reduced by 36-50% in winter 

wheat, 24-48% in rye, 41-60% in barley and 41-63% in winter oats. The reduction of 

thousand kernel weight was 33-65% in winter wheat, 13-26% in rye, 25-47% in winter barley 

and 43-75% in winter oats (KUROLI, 2009). 

Other researchers have conducted experiments on the indirect effects of elevated CO2 on 

Myzus persicae feeding on Brassica napus (HIMANEN et al., 2008) and on Solanum 

dulcamara (HUGHES and BAZZAZ, 2001), but the growth parameters of aphids were not taken 

into account. Review of literature showed that the relative growth rate of aphids may be 

increased under elevated CO2. However, these observations were carried out with other 

species of aphid as Aulacorthum solani (AWMACK et al., 1997) and Sitobion avenae (CHEN 

and WU, 2006) on host plants such as Vicia faba, where the relative growth rate of Sitobion 

avenae was increased by 33% at 550 ppm CO2 and by 74% at 750 ppm CO2. 

Unfortunately insect response to elevated CO2 differs between host plants and aphid species 

(BEZEMER et al., 1998). It is thus necessary to observe specific species of aphids on specific 

host plants. For the first time, in this study the development of R. padi on spring wheat and 

development of M. persicae on oilseed rape from the nymph to the adult stage under elevated 

CO2 was observed, making record of the relative developmental stage, population growth rate 

and relative growth rate of the aphids. 

 

Materials and methods 

Cultivation of plants and experimental conditions 

The experiment was carried out on spring wheat (T. aestivum L. cv. “Triso”) from 16 June to 

13 August 2008 and on oilseed rape (Brassica napus cv. “Campino”) from 27 May to 17 

August 2009 at the Institute for Landscape and Plant Ecology of Hohenheim University, 

Germany. A pot experiment was conducted in six controlled-environment chambers (Vötsch 

Bioline ®) with two levels of CO2 (ambient, 400 ppm and elevated, 600 ppm). Seeds of 

spring wheat and oilseed rape were sown in pots (Ø 18 cm) with a mixture of substrate 

(Fruhstorfer Erde Typ LD 80, Industrie-Erdenwerk Archut, Lauterbach, Germany) and sand 

(9:1). Germination took place at 22 ± 2
o
C, 80% relative humidity and 18:6 hour L: D 
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photoperiod. Out of the sixteen host plants in each chamber, ten were chosen for aphid 

infestation and six for plant analysis. Plants were grown having a photoperiod of 18 h, 

photosynthetic photon flux density (PPFD) of approximately 520 µmol m
-1

s
-1

, a day/night 

temperature of 22/12
o
C, irrigated daily with 50 ml water and fertilized weekly using 50 ml of 

0.3% nutrient solution (Wuxal ®, Aglukon GmbH). Host plants and climate profiles were 

rotated weekly between chambers in order to ensure results were not chamber specific. 

Further chamber characteristics are given in details in FRANZARING et al. (2008a). 

Biomass production and plant phenology 

In order to determine the aboveground biomass of plants at ambient and elevated CO2, spring 

wheat and oilseed rape were harvested at growth stages 12 and 30 (BBCH code) according to 

ZADOKS et al. (1974) and WEBER and BLEIHOLDER (1990), respectively, dried at 105
o
C to 

constant weight and then weighed on a balance (Sartorius analytics A 120 S). Subsequently, 

relative growth rate (RGR, HUNT, 1982) of the plants was calculated using equation (1). Since 

in any experiment start weight was similar, we did not refer to start weight as required by 

HUNT (1982). 

(1) RGR = (1n W2 – 1n W1) / t2-t1 

where W1 is the dry weight (DW) at start of the experiment (t1), W2 is the final DW at the end 

of the experiment (t2), and t2- t1 is the time (days) elapsed between the weighing. 

Cultivation of aphids 

In order to infest the experimental plants with similar aged aphids, synchronized colonies of 

R. padi and M. persicae were established. A synchronised long-term cultivation was carried 

out in greenhouse at 20 ± 1°C, relative humidity 60-70%, a lighting duration of 16 h and 

PPFD of approximately 22.5 µmol m
-2

 s
-1

. Then the synchronised adult, female apterous 

aphids were placed on plants, grown in climate chambers under two levels of CO2 to produce 

progeny. Petri dishes that had been converted into small plexiglass cages (Ø 3.5 cm) and 

attached with clip on the second leaf of each plant (BBCH code 12) were used for aphid 

rearing. After five hours, female aphids were removed and five newly born nymphs (L1) were 

allowed to develop until they reach late-nymphal instars in order to determine the relative 

developmental stages (rDS), developmental time and preimaginal mortality. The cages 

nymphs were observed daily. To assess longevity of adults and reproduction, one of the five 

aphids per cage after adult moult was put separately in a cage on a young leaf and observed 

until death. Nymphs deposited per female were counted and removed with a paintbrush daily. 

Excess freshly born nymphs and adult pre-reproductive aphids were weighed to determine 

body size and relative growth rate (RGR). 
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Determination of aphids’ growth parameters 

The development of R. padi and M. persicae was observed and counted daily from start of the 

experiments until entering the adult stage. To depict any indirect effect of elevated CO2 into 

aphid development, the relative developmental stage (rDS), implemented to show the effects 

if insect growth regulators (ZEBITZ, 1984), was calculated after daily counting and 

subsequential removal of exuviates of nymphs using equation (2): 

(2) rDS = ∑ (nt Sp•Fp) / NtS 

where nt Sp is the number of individuals per development stage at time t, Fp the multiplication 

factor of relevant development stage (nymphal stages 1-4, adult stage 5) and NtS the total 

number of individuals per cage. 

The intrinsic rate of increase (rm, WYATT and WHITE, 1977) of R. padi and M. persicae were 

calculated from the number of offspring per female after one generation time using the 

following equation: 

(3) rm = (0.754 (ln Md)) / d 

where Md is the number of offspring per generation time and d is the generation time (days). 

In order to determine the relative growth rate (RGR, HOWARD and DIXON, 1995) of R. padi 

and M. persicae, weights of single adults were measured using a precision balance (Sartorius 

analytic 4504 MP8) and calculated following equation (1). 

Statistical analyses 

The effects of elevated CO2 concentration on growth parameters of R. padi and M. persicae 

(e.g. nymphs and adult weight as well as the relative growth rate of aphids) were tested using 

analysis of variance (ANOVA, Visual-XSel® 9.0/ DoE & Weibull). The combined effect of 

CO2 elevation and aphids on plant above ground biomass and relative growth rate were 

analysed by ANOVA with CO2 treatment and aphid infestation as independent variables. 

Treatment means were compared by means of LSD-test. Comparison of relative development 

stages of aphids was done applicating the Kruskal-Wallis-Test. As the fecundity was not 

normally distributed, treatments were analysed using the non-parametric Mann-Whitney U-

test. The suitable statistical test methods were chosen according to KÖHLER et al. (2002). 

 

Results 

Plant biomass and phenology 

In 2008, the phenology of spring wheat was determined from leaf development (9 DAS, days 

after sowing) until stem elongation (57 DAS). The results suggest that plant development was 
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not significantly altered due to elevated CO2 during these developmental stages (data not 

shown). 

Spring wheat grown under elevated CO2 significantly increased above ground biomass by 

41% as biomass was 7.25 ± 0.24 g DW at 400 ppm and 10.19 ± 0.058 g DW at 600 ppm 

when the plants were not infested with aphids (Tab. 1). This CO2-induced increase was even 

higher (+ 48%) in spring wheat infested with R. padi, above ground biomass being 6.25 ± 

0.071 g DW at 400 ppm and 9.27 ± 0.259 g DW at 600 ppm. As expected, the infestation by 

R. padi impacted plant above ground biomass negatively, reducing it by 14% at 400 ppm CO2 

and by 9.1% at 600 ppm CO2. However, no statistically significant interactions between CO2 

enrichment and aphid infestation on wheat above ground biomass were detected. The relative 

growth rate (RGR) of T. aestivum was significantly increased due to elevated CO2 (on 

average by 19%) and significantly reduced when the plants were infested with aphids (on 

average by 6.1%). There was a slightly higher depression of wheat RGR due to aphid 

infestation at ambient compared to elevated CO2 (7.9 vs. 4.6%), however, these CO2 by aphid 

interactions were below statistical significance. 

In 2009, the phenology of oilseed rape under CO2 enrichments was determined during leaf 

development (from 12 until 78 DAS). Plant development was not significantly altered due to 

elevated CO2 (data not shown). 

Effects of CO2 enrichment and presence of aphids on oilseed rape above ground biomass and 

RGR were consistently below statistical significance because of large variation between 

replicates. Correspondingly, no significant interactions between CO2 enrichment and aphid 

treatment could be detected. Nevertheless, elevated CO2 tended to increase rape RGR (on 

average by 34% across both aphid treatments) (Tab. 1). 

Effect of elevated CO2 on aphid performance 

Elevated CO2 concentrations resulted in several changes of growth parameters of bird cherry-

oat and green peach aphids. However, the relative developmental stage (rDS) of the aphids 

remained almost unaffected in enhanced CO2 environments (Tab. 2). 

The comparison of average imaginal weight of R. padi and M. persicae before the nymph 

reproduction and RGR of aphids clearly revealed a CO2 effect (Tab. 3). Average weight of R. 

padi imago was 570.6 ± 15.8 µg FW at ambient CO2 and 707.2 ± 34.0 µg FW at elevated CO2 

treatment which means a significant increase by 24%. On the other hand, average weight of 

M. persicae imago decreased significantly from 416.5 ± 17.2 µg at ambient CO2 to 366.5 ± 

1.1 µg at elevated CO2 which corresponds to a decrease by 12% due to elevated CO2. The 

RGR of R. padi feeding on wheat achieved 0.11 ± 0.003 at ambient CO2 and 0.13 ± 0.01 at 
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600 ppm CO2. RGR of R. padi was higher than RGR of M. persicae on oilseed rape, the latter 

which achieved 0.08 ± 0.00 at 400 ppm CO2 and 0.07 ± 0.00 at 600 ppm CO2. Thus, CO2 

enrichment increased the RGR of R. padi by 18.2%, while it decreased the RGR of M. 

persicae by 12.5%. 

R. padi lifespan was slightly shorted under elevated CO2 concentration, although this effect 

was not significant. The lifespan was 39.0 days (ambient) and 39.3 days (elevated CO2). In 

contrast, lifespan of M. persicae was slightly prolonged by 2.1 days. 

Elevated CO2 not also affected growth but also reproductive characteristics of aphids. The 

intrinsic rate of increase (rm) of both aphids was slightly but not significantly higher under 

elevated CO2. The average number of R. padi nymphs per female in plants grown under 

elevated CO2 was increased by 6.0%, although this was not significant. The respective values 

were 69.2 ± 8.7 nymphs in ambient and 73.3 ± 12.4 nymphs under elevated CO2. The average 

number of M. persicae nymphs per female in plants grown under elevated CO2 was increased 

by 3.5%. The respective values were 59.3 ± 7.8 nymphs in ambient and 61.4 ± 9.5 nymphs 

under elevated CO2. In order to establish the frequency with which the female aphids 

reproduced under normal and CO2 enriched conditions, the daily appearance of nymphs was 

recorded. During reproduction, the number of R. padi nymphs increased, peaking on day nine. 

Afterwards, it tapered off, the last nymph produced on day 20 (Fig. 1). Significant CO2 effects 

were found on days 5 to 7 and on days 13 and 14. 

Regarding M. persicae, the number of nymphs increased during the first sixteen days, after 

which it declined, the last nymph produced on day 32 (Fig. 2). A significant CO2 effect was 

found on day 21. 

 

Discussion 

According to the current predictions, plants and insects will be influenced due to increasing 

atmospheric CO2. The responses of plants and aphids to these changes in our research 

corresponded partially with predictions. The experiment in controlled-environment chambers 

was established in order to understand the positive or negative impacts of CO2 enrichment on 

agricultural crops and phloem feeding aphids such as R. padi and M. persicae. 

Our observations showed that the phenology of spring wheat and oilseed rape was not 

significantly altered due to elevated CO2. SLAFER and RAWSON (1997) have argued that 

elevated CO2 has no effect on growth and leaf development in wheat. However, FRANZARING 

et al. (2008b) suggested that phenological development of oilseed rape was significantly 

enhanced under elevated CO2. Slight phenology acceleration under rising CO2 was also found 
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by KIMBALL et al., (2002b) on spring wheat. In our experiment, above ground biomass of 

spring wheat was increased by 41% due to elevated CO2. This supports earlier findings on the 

fertilizing effects of CO2 enrichment on C3 plants (e.g. KÖRNER, 1991; TAYLOR et al., 1994) 

and is well in agreement with POORTER (1993) who surveyed literature (156 plant species) 

and found that with a doubling in atmospheric CO2 plant biomass during vegetative growth 

was increased on average by 37% for C3 crops. Correspondingly, the RGR of spring wheat 

was increased by 17% under elevated CO2 in our study. Similarly, FLYNN et al. (2006) 

investigated potted plants (Solanum dulcamara) in glass-topped chambers under two 

conditions of atmospheric CO2 concentration (350/ 750 ppm) and confirmed enhancement of 

RGR due to elevated CO2. 

Increase of CO2 led to significant gain in plant above ground biomass, while the presence of 

aphids reduced the above ground biomass of spring wheat in both ambient and enriched CO2 

environments. Our results showed that infestation with R. padi caused significant reductions 

in wheat biomass of 14% and 9.1% at 400 ppm and 600 ppm, respectively. However, no 

significant effects were found when oilseed rape was infested with M. persicae. HUGHES and 

BAZZAZ (2001) proved that out of five aphid species (Acyrthosiphon pisum, Aphis nerii, Aphis 

oenotherae, Aulacorthum solani and Myzus persicae) grown on five host plants (Vicia faba, 

Asclepias syriaca, Oenothera biennis, Nicotiana sylvestris and Solanum dulcamara) only 

Aphis nerii had significantly negative effects on the biomass of Asclepias syriaca at both 

ambient and elevated CO2. The interaction between CO2 and aphid presence on above ground 

biomass and RGR was insignificant for spring wheat and oilseed rape in our study. However, 

HUGHES and BAZZAZ (2001) suggested that there was highly significant interaction between 

CO2 and presence of two species of aphid (Myzus persicae and Aphis nerii) on above ground 

biomass of Asclepias syriaca and Solanum dulcamara. 

Regarding our findings on CO2 effects on aphids, R. padi showed an increase in weight of 

24% and RGR of 18.2% in the high-CO2 treatment. Similar results were obtained by 

BEZEMER and JONES (1998), supporting the theory that insects perform better when feeding on 

plants grown under CO2 enrichment. According to AWMACK et al. (1997), the aphid 

Aulacorthum solani (Homoptera: Aphididae) reared on bean (Vicia faba) and tansy 

(Tanacetum vulgare) also responded to elevated CO2 conditions with increased growth. 

However, FLYNN et al. (2006) adduced evidence that CO2 did not significantly affect the 

weight of aphids (Macrosiphum euphorbiae Thomas). Other studies concluded that CO2 

enrichment can negatively affect insect weight (JOHNS and HUGHES, 2002; ROTH and 

LINDROTH, 1995) and RGR of leaf-miner pests, reducing RGR by 8.3% (STILING and 
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CORNELISSEN, 2007). In agreement, M. persicae showed decreased aphid weights by 12% and 

RGR by 12.5% under CO2 enrichment in our study. In accordance with BALE et al. (2002) the 

decrease in weights reflect accelerated plant development due to global climate changes 

(increase of CO2 or temperature), which decrease the amount of feeding time available to the 

aphids. 

We observed that the rDS and rm of aphids was only slightly and non-significantly increased 

under rising atmospheric CO2 conditions. Our study showed that the fecundities of R. padi 

and M. persicae feeding on plants grown at elevated CO2 increased by 6.0% and 3.5%, 

respectively. In contrast, TRAW et al. (1996) reported reduced fecundity of insects. 

Additionally, WILLIAMS et al. (2003) concluded that elevated CO2 has no impact on fecundity 

of phloem feeding insects. According to LINCOLN et al. (1993), CO2-induced alterations in 

phytochemical constituents important to insects can potentially alter their behaviours. 

In our study, the duration of aphids’ life was prolonged by an average of 2.2 days for R. padi 

and shortened by an average of 0.3 days for M. persicae under elevated CO2 concentration. 

COVIELLA and TRUBLE (1999) concluded that aphid’s lifespan is likely to be extended under 

elevated CO2. 

Overall, climate change will impact plants and insects. CO2 enrichment can have dramatic 

consequences for plants due to acceleration of phenological development, changes in 

phytochemical, biochemical and biosynthetic processes, which in turn may alter future 

phytophagous insect populations, behaviour, performance and feeding habits. However, from 

the work published so far, no clear systematic rules on the mode of action and the direction of 

responses can be derived; rather, experimental results appear to depend on the particular 

organisms investigated and the experimental conditions applied in the respective studies. 

Thus, further studies in this area are highly recommended. 
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Tab. 1 Above ground biomass [g pot
-1

] and relative growth rate (RGR) of spring wheat and oilseed rape under ambient or elevated CO2 

concentration and with or without aphid colonization shortly before stem elongation stage. Values represent treatment average ± standard error from 

three replicate climate chambers, respectively. 

Plant species / plant 

trait 

ambient CO2, 

without aphids 

elevated CO2, 

without aphids 

ambient CO2, 

with aphids 

elevated CO2, 

with aphids 

Significance of treatment effects (F-test) 

 CO2 aphids CO2*aphids 

Wheat biomass 7.25 ± 0.24 
A 

10.19 ± 0.058 
B 

6.25 ± 0.071 
C 

9.27 ± 0.259 
D 

< 0.001 0.001 ns 

Wheat RGR  1.99 ± 0.033 
A 

2.34 ± 0.008 
B 

1.84 ± 0.011 
C 

2.23 ± 0.024 
D 

< 0.001 < 0.001 ns 

Rape biomass 4.66 ± 2.10 
A 

6.72 ± 1.35 
A 

5.19 ± 0.642 
A 

6.07 ± 0.660 
A 

ns ns ns 

Rape RGR 1.32 ± 0.435 
A 

1.94 ± 0.136 
A 

1.51 ± 0.003 
A 

1.85 ± 0.001 
A 

ns ns ns 

 

Different letters in superscript within one row indicate significantly different treatment means at P < 0.05 (LSD-test), ns is not significant 
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Tab. 2 Relative development stages of R. padi and M. persicae from first nymphal instar to 

apterous virgo. Columns 1-9 (R. padi) or 1-10 (M. persicae) refer to days after leaving five 

instar nymphs in the cages.  

 

CO2 

treatment 

rDS of Rhopalosiphum padi (from L1 to apterous virgo) [days] 

1 2 3 4 5 6 7 8 9 

400 ppm 
1.0 1.7 2.2 2.7 3.1 3.7 4.3 4.7 5.0 

600 ppm 
1.0 1.8 2.1 2.6 3.1 3.7 4.4 4.8 5.0 

                   rDS of Myzus persicae (from L1 to apterous virgo) [days] 

 

400 ppm 
1 2 3 4 5 6 7 8 9 10 

1.0 1.1 1.7 2.1 2.5 2.9 3.2 3.9 4.3 5.0 

600 ppm 
1.0 1.2 1.8 2.1 2.5 3.0 3.4 4.0 4.4 5.0 

 

 



 

 - 46 - 

Tab. 3 Mean imaginal weight (IW), relative growth rate (RGR), increase rate (rm-values) and 

mean adult longevity of R. padi and M. persicae under ambient and enhanced CO2 conditions. 

Parameters  Ambient CO2 Elevated CO2 P values 

(ANOVA) 

Rhopalosiphum padi  

Imaginal weight (IW) [µg] 
1 

570.6 ± 15.8 707.2 ± 34.0 0.01 

Relative growth rate (RGR) 

[µg/µg/day] 
1 

0.11 ± 0.003 0.13 ± 0.01 0.01 

Increase rate rm [d
-1

] 
2 

0.354 ± 0.01 0.358 ± 0.015 ns 

Duration of life [days] 
2 

39.3 ± 3.2 39.0 ± 3.5 ns 

Myzus persicae  

Imaginal weight (IW) [µg] 
1 

416.5 ± 17.2 366.5 ± 1.1 0.001 

Relative growth rate (RGR) 

[µg/µg/day] 
1 

0.08 ± 0.00 0.07 ± 0.00 0.001 

Increase rate rm [d
-1

] 
2 

0.30 ± 0.01 0.31 ± 0.01 ns 

Duration of life [days] 
2 

39.0 ± 6.5 41.1 ± 9.2 ns 

 

1
 n = 50, 

2
 n = 30, ns, not significant 
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Fig. 1 Daily average number of Rhopalosiphum padi nymphs per treatment (n = 30). 

Asterisks indicate significant CO2 effects according to the Mann-Whitney U-test (* p < 0.05, 

** p < 0.01, *** p < 0.001). 
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Fig. 2 Daily average number of Myzus persicae nymphs per treatment (n = 30). Asterisks 

indicate significant CO2 effects according to the Mann-Whitney U-test (** p < 0.01).  
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Abstract 

 

The concentration and composition of free amino acids and carbohydrates in the phloem sap 

of wheat and oilseed rape (OSR) and the effects on the performance of aphids 

(Rhopalosiphum padi and Myzus persicae) were determined under atmospheric carbon 

dioxide (CO2) enrichment. In spring wheat, CO2-induced significant increases were observed 

for the concentrations of lysine, leucine, isoleucine, phenylalanine, valine, tyrosineserine, 

alanine, threonine, glutamic acid and asparagine at leaf development stage (LDS) and for 

arginine, γ-aminobutyric acid, leucine and alanine at stem elongation stage (SES). The 

concentration of ornithine was significantly decreased in wheat (LDS) and in OSR (SES). 

Among concentrations of carbohydrates in the phloem sap, significant increases were 

observed for fructose and glucose in spring wheat under CO2 enrichment, while no changes 

were observed in OSR. The concentrations of individual amino acids and carbohydrates in the 

phloem sap affected the relative growth rate (RGR) of aphids. 

 

Keywords: CO2 enrichment, aphid, spring crops, amino acid, sugar 
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Introduction 

Atmospheric carbon dioxide (CO2) concentration is currently 387 µl l
-1

 and predicted to reach 

550 µl l
-1

 by 2050 (Meehl et al. 2007). In accordance, the physiological and growth 

characteristics of plant species will also be affected (Poorter and Navas 2003). CO2 

enrichment has been shown to promote aboveground biomass by 12% in spring wheat (Högy 

et al. 2009) and by 21% in summer oilseed rape (OSR; Högy et al. 2010). Canopy height and 

the production of reproductive organs of OSR were significantly increased under elevated 

CO2, indicating an acceleration of the plant development (Franzaring et al. 2008a). 

Accordingly, the plant metabolism is also altered in wheat and OSR, leading to changes in the 

composition of generative plant parts (Högy and Fangmeier 2008; Högy et al. 2009; Högy et 

al. 2011) and most likely alterations to the feeding behavior of herbivorous insects. As, under 

natural conditions, phloem-feeders are feeding on live cells, they are true parasites of their 

host-plants. In such a way, they are highly sensitive indicators of any changes of plant 

performance whenever phloem constituents are involved (Bezemer and Jones 1998). Phloem 

feeding aphids are reported to respond differently to changes in the nutritional quality 

characteristics of plants under elevated CO2 (Newman et al. 2003; Wang et al. 2006; Prichard 

et al. 2007; Sun and Ge 2010). 

In general, the phloem sap of plants contains high concentrations of carbohydrates (800-1,800 

mM) and relatively low concentrations of minerals and amino acids (60-200 mM) (Klingauf 

1987; Sandström and Moran 2001; Douglas 2006). Host plants of high food quality are 

characterised by a rise in the ratio of amino acids to carbohydrates (Mittler and Meikle 1991). 

Consistently, the carbon to nitrogen ratio is increased in the phloem sap due to elevated CO2, 

resulting in a diminished nutritional value of host plants and in negative impacts on phloem-

feeding insects due to limitations in nitrogen supply (Awmack and Leather 2002; Stiling and 

Cornelissen 2007; Sudderth et al. 2005). Therefore, in order to meet the amino acid 
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requirement, aphids increase ingestion of assimilates from the phloem, leading to an increase 

in crop damage (Marks and Lincoln 1996; Sun et al. 2009). 

The development and growth rate of aphids can be influenced by the availability of amino 

acids in the phloem sap of host plants (Wilkinson and Douglas 2003), which determines their 

reproductive capability and abundance (Mittler and McNeill 1967). According to Dadd 

(1985), essential amino acids for aphids are histidine (His), threonine (Thr), tryptophan (Trp), 

methionine (Met), valine (Val), phenylalanine (Phe), isoleucine (Ile) and lysine (Lys). 

However, the demand of individual amino acids differs with the aphid species (Emden and 

Bashford 1971; Sandström and Moran 1999, 2001). While Myzus persicae needs Met and γ-

amino butyric acid (GABA), the amino acids Thr, His and alanine (Ala) are important for 

Rhopalosiphum padi (Kazemi and Emden 1992). 

In general, concentrations of amino acids in the phloem sap of host plants were found to be 

highly variable and they slightly tended to decrease under elevated CO2 (Docherty et al. 

1997). Sicher (2008) observed that the concentration of the total soluble amino acids in barley 

leaves was reduced by 59% under CO2 treatment. Some aphid species have been shown to 

respond differently to elevated CO2 on different host plants (Bezemer et al. 1999). According 

to Awmack et al. (1997), elevated CO2 affected the performance of aphids (Aulacorthum 

solani (Kaltenbach)) by increasing the production of nymphs by 16% on bean (Vicia faba L.) 

and accelerating the development time by 10% on tansy (Tanacetum vulgare L.). 

Additionally, Awmack et al. (1996) found that elevated CO2 increased the fecundity of 

Sitobion avenae F. on winter wheat. 

In the life cycle of aphids, numerous roles are also played by carbohydrates, which store and 

transport the structural components and provide the chemical energy for longevity, fecundity 

and mobility (Rhodes et al. 1996). According to Avigad and Dey (1997), sucrose makes up 

80-85% of the organic components of the phloem sap. It is the most important transportable 

sugar in most plant species and the most effective phagostimulant for herbivorous insects 



__________________________________________6 CO2 effects on aphids and spring crops 

 - 52 - 

(Hawker 1985). Cabrera et al. (1995) argued that the development of aphid nymphs may be 

also affected by sucrose. However, compared to the major necessary nutrients, the amino 

acids, sucrose is not a limiting factor. 

Overall, elevated CO2 changes the concentration of carbohydrates in crops. Bezemer and 

Jones (1998) observed that the concentration of individual carbohydrates in wheat leaves was 

increased by 47% due to elevated CO2. Another study on soybeans (Glycine max L. Merr. cv. 

“Bragg”) showed that the foliar concentrations of sucrose and reducing sugars were 

significantly increased by 108% and 33% at 800 µl l
-1

 CO2, respectively (Vu et al. 1989). 

Such increases in the concentrations of carbohydrates cause changes in aphid performance. 

According to Zhang et al. (2003), high-CO2 treatment (550 µl l
-1

) increased the concentration 

of soluble carbohydrates in the leaves of wheat, leading to an increase in the population 

growth of R. padi. However, these authors did not assess the absolute or relative 

concentrations of amino acids, the interpretation thus still leaves some open questions. 

Newman et al. (1999) reported that R. padi responded to higher concentration of 

carbohydrates in the leaves of tall fescue (Festuca arundinacea) with a decrease in population 

density under elevated CO2 (700 µl l
-1

). In both cases, it revealed a close relationship between 

aphid population size and nutrient availability. 

The aim of this study was to analyse the effects of elevated atmospheric CO2 concentrations 

on the composition of phloem nutrients in spring wheat (Triticum aestivum L. cv. “Triso”) 

and OSR (Brassica napus cv. “Campino”) and the resulting consequences for herbivores such 

as green peach aphid (Myzus persicae Sulz.) and bird cherry-oat aphid (Rhopalosiphum padi 

L.). CO2-induced changes of phloem sap nutrients such as carbohydrates (sucrose, glucose 

and fructose) and free amino acids were analysed in order to identify the effects on host plant 

suitability and performance of phloem-feeding insects. Research on alterations in the 

nutritional quality of phloem sap in spring wheat and OSR and related growth characteristics 

of R. padi and M. persicae under CO2 enrichment has not yet been performed. 
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Materials and methods  

Cultivation of plants and experimental conditions 

The experiments were performed from 16 June to 13 August 2008 with spring wheat and from 

27 May to 17 August 2009 with OSR at the Universität Hohenheim, Germany. Controlled-

environment chambers (Vötsch Bioline ®) operated either at 400 µl l
-1

 CO2 (ambient) or 600 

µl l
-1

 CO2 (elevated) with three replicates each were used. Seeds were sown in pots (Ø 18 cm, 

1.5 l) filled with a mixture of substrate (Fruhstorfer Erde Typ LD 80, Industrie-Erdenwerk 

Archut, Lauterbach, Germany) and sand (9:1). Germination took place under 18 hours light 

and 6 hours dark at 22
o
C and 80% relative humidity. Mean irradiation levels during the 18 

hours light were 1,100 µmol m
-2

s
-1

 as photosynthetically active radiation. Out of the sixteen 

host plants in each chamber, ten were chosen for aphid infestation and six for phloem sap 

analysis on sugar concentration and amino acid composition. Plants were fertilized weekly 

with 50 ml of 0.3% nutrient solution (Wuxal ®, Aglukon GmbH) and irrigated daily using 50 

ml water. In order to ensure results were not chamber specific, climate profiles and host plants 

were rotated weekly between chambers. Supplementary information about chamber 

characteristics is given in Franzaring et al. (2008b). 

 

Aphid rearing and growth parameters 

In order to introduce aphids in a synchronised long-term cultivation, Petri dishes were used as 

small plexiglass cages (Ø 3.5 cm). Aphid cultivation was performed in controlled conditions 

at 20°C, 60-70% relative humidity and long day terms with a lighting duration of 16 hours to 

approximately 1.600 lux. After the synchronisation aphids were placed for five hours on 

spring wheat (BBCH stage 12, Zadoks et al. 1974) and OSR (BBCH stage 14, Weber and 

Bleiholder 1990) to produce larvae. Afterwards, adult aphids were removed and only five 

newly born larvae (L1) remained in the cages. In order to calculate the relative growth rate 

(RGR) of aphids, the youngest excess larvae and subsequently adult pre-reproductive aphids 
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were weighed on a precision balance (Sartorius analytic 4504 MP8). RGR of aphids was 

calculated according to Howard and Dixon (1995). 

 

Sampling of phloem sap 

According to King and Zeewart (1974), samples of phloem sap from spring wheat and OSR 

were collected both at leaf development stage before aphid infestation (BBCH12, 14) and 44 

and 48 days after infestation (BBCH 30), respectively. Plants were cut, transferred to vials 

containing a solution of 20 mM ethylenediaminetetraacetic acid (EDTA, adjusted to pH 7.0 

with NaOH) and incubated in darkness at 20°C to reduce water loss due to transpiration. After 

three hours, plants were removed from the vials and the phloem sap fraction was frozen at -

25
o
C until chemical analyses (Hellwald 1989).  

 

Carbohydrate analysis 

In the phloem sap, the concentrations of sucrose, glucose and fructose were analysed by high–

performance liquid chromatography (HPLC) using a Perkin Elmer Pump on a Shodex 

Asahipak NH2 P-50 column (5 μm, 250 x 4.6 mm) at 30
o
C. Gradient elution buffers were 

acetonitrile (elution A) and twice-distilled water with 2% acetonitrile (elution B). The flow 

rate was constant at 1.0 ml min
-1

. Carbohydrates were detected by using an evaporative light 

scattering detector (ELSD, Sedere) at 40
o
C. 

 

Amino acid analysis 

In order to define the composition of amino acids, exudates were analysed by HPLC using a 

fluorescence detector (Jasco FP-1520.S). The lyophilised phloem sap (1 ml) was dissolved in 

0.3 ml water and transferred into microtubes to centrifuge for 4 min (12,000 rpm). The 

supernatant was diluted with 25% methanol. Pre-column derivatisation took place with o-

phthalaldehyde reagent (OPA reagent; 1.6 μl OPA, 1 μl methanol and 0.4 μl 2-
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mercaptoethanol made up to 7 μl with borate buffer (boric acid solution 0.1 M, pH 10.4)) by 

using an autosampler (Varian Model 410). 

Reversed phase HPLC analysis was performed at 28
o
C using a Varian Pro Star Pump and a 

Varian Pursuit XRS C-18 column (3 μm, 150 x 4.6 mm). Elution buffers were phosphate 

buffer (pH 6.8, 1 mM) with 10% MeOH (elution A) and MeOH (elution B). The flow rate 

was constant at 0.7 ml min
-1

. The fluorescence excitation and emission wavelength were set at 

330 and 440 nm, respectively. Peak identification of amino acids was confirmed by standard 

addition and quantified by an eternal standard with 17 amino acids (Ala, Arg, aspartic acid 

(Asp), cysteine, glutamine (Gln), glycine (Gly), His, tyrosine (Tyr), Ile, Leu, Lys, Met, Phe, 

proline, serine (Ser), Thr, Val) each at a concentration of 250 μmol ml
-1

. 

 

Statistical analyses 

The CO2 effects on phloem sap regarding carbohydrates and amino acid composition of 

spring wheat and OSR and the performance of R. padi and M. persicae were tested using 

PASW Statistics 18 (version 18, SPSS). The CO2 effects were analysed by analysis of 

variance (ANOVA). The results were expressed as percentage changes (%, elevated versus 

ambient CO2) and significant CO2 effects were presented as level of probability (p). The 

relationships between concentrations of carbohydrates and total or individual amino acids and 

the performance of aphids were calculated by using linear regression analysis. 

 

Results 

Concentrations of carbohydrates in the phloem sap 

The concentrations of sucrose, glucose and fructose were examined in the phloem sap of 

spring wheat and OSR. In wheat, significant increases were found for fructose (50.5%, BBCH 

12; 86%, BBCH 30) and glucose (62%, BBCH 30) in the high-CO2 treatment (Figure 1). The 

concentration of sucrose was increased at BBCH 12 and decreased at BBCH 30, however, 
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these CO2 effects were not statistically significant. In OSR, the concentration of sucrose was 

not significantly increased due to elevated CO2, while glucose and fructose were below the 

detection limit. 

 

Concentrations of amino acids in the phloem sap 

The phloem sap of OSR grown at elevated CO2 showed non-significant decreases in the total 

amino acids. In contrast, the phloem sap of spring wheat showed an increase in the total 

amino acid concentration at elevated CO2, however, it was not statistically significant (Figure 

2). 

In total, 22 individual amino acids were detected in the phloem sap of spring wheat and OSR, 

respectively. Acidic amino acids like glutamic acid (Glu) and Asp, together with their amides 

asparagine (Asn) and Gln, constituted the largest fraction of the total amino acids. In wheat, 

all concentrations of individual amino acids were increased due to elevated CO2 except for 

Trp and ornithine (Orn) at BBCH 12 and Thr, citrulline (Cit) and Glu at BBCH 30 (Figure 3). 

Significant increases due to elevated CO2 were observed for the concentrations of Lys 

(90.3%), Leu (63.3%), Ile (110.1%), Phe (31.0%), Val (60.0%), Tyr (104.7%), Ala (46.0%), 

Thr (107.8%), Ser (40.7%), Asn (57.8%) and Glu (35.6%) at BBCH 12 and for Arg (112.2%), 

Ala (70.5%), Leu (50.4%) and GABA (91.1%) at BBCH 30. In contrast, elevated CO2 

significantly decreased the concentration of Orn (40.4%) in the phloem sap of spring wheat. 

Both α-aminoadipic acid (αAA) and Cit could not be determined at BBCH 12 in spring wheat. 

In OSR, almost all amino acids showed a decrease, with the exception of Orn, Trp, Tyr, Thr 

(BBCH 14) and GABA and Ala (BBCH 30), whose concentrations were non-significantly 

increased under elevated CO2 (data not shown). There were no significant CO2 effects on the 

concentrations of individual amino acids in the phloem sap of OSR, except for a significant 

decrease of Orn (56.8%) at BBCH 30. 
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Correlation between RGR of aphids and carbohydrates and total amino acids 

The RGR of R. padi was significantly increased by 18.2% under elevated CO2, while it was 

decreased by 12.5% for M. persicae (data not shown). The correlations between RGR of R. 

padi and concentrations of fructose and total amino acids in the phloem sap of spring wheat 

were not statistically significant under ambient CO2 (BBCH 12) and in the high-CO2 

treatment (BBCH 30; Table 1). However, a significant CO2 effect was found for the 

correlation between RGR of R. padi and the concentration of total amino acids (BBCH 12). 

RGR of R. padi was significantly correlated with the concentration of fructose in spring wheat 

under ambient (BBCH 30) and elevated CO2 (BBCH 12). Unfortunately, it was impossible to 

detect glucose and fructose in the samples of OSR. The relationships between RGR of M. 

persicae and sucrose or total amino acids in the phloem sap of OSR were not statistically 

significant. 

 

Correlation of aphid RGR with individual amino acids 

In wheat, significant correlations were limited to the RGR of R. padi and the concentration of 

Gly (BBCH 12) and Gln and essential Phe (BBCH 30) under ambient CO2 (Table 2). In OSR, 

significant correlations were found for the RGR of M. persicae and Tyr and essential Lys 

under ambient CO2 (BBCH 14). In the high-CO2 treatment, significant correlations were 

observed between RGR of M. persicae and αAA, Tyr and essential amino acids such as Trp, 

Phe and Leu at BBCH 30 (Table 3). 

 

Discussion 

Concentrations of carbohydrates in the phloem sap and relationships to RGR of aphids 

In general, carbohydrates in the phloem sap of host plants were increased under elevated CO2, 

except for sucrose in spring wheat at BBCH 30. Significant increases were observed for 

concentrations of fructose (BBCH 12, BBCH 30) and glucose (BBCH 30) in the phloem sap 
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of spring wheat. Knowledge of CO2-induced impacts on the chemical composition of phloem 

sap in plants, except for carbohydrate and amino acids concentrations, is limited. Ainsworth et 

al. (2007) and Krumbein et al. (2010) reported that the concentration of sucrose under CO2 

enrichment was significantly increased in leaves of soybean (Glycine max L. Merr.) and 

broccoli (Brassica oleracea var. “Italica”) by 8.4% and about 60%, respectively. Moreover, a 

significant increase in the foliar concentration of glucose by 60% was observed under 

elevated CO2 in broccoli (Krumbein et al. 2010). Some studies observed that spring wheat 

grown in elevated CO2 conditions contained significantly more water soluble carbohydrates, 

fructans, starch and non-structural carbohydrates (TNC) in the leaves (Conroy et al. 1993). 

However, Högy (1994) observed that elevated CO2 had no significant impact on the 

concentration of sucrose in leaves of spring wheat and potato (Solanum tuberosum L.). In 

addition, Leakey et al. (2006) observed that the concentrations of sucrose, fructose and 

glucose in maize leaves remained unchanged under elevated CO2. 

Both an increased CO2 concentration and the feeding habits of insects on host plants may 

affect the concentration of carbohydrates in crops. Supporting this, Cabrera et al. (1995) 

argued that barley (Hordeum vulgare cv. Aramir) infested with the greenbug (Schizaphis 

graminum) showed a total decrease in soluble carbohydrates by 52%, of which a proportion of 

49% derived from sucrose. 

CO2 enrichment indirectly affects the performance of aphids (development time, RGR, 

survival, fecundity) through direct effects on chemical composition of host plants. In the 

present study, high-CO2 treatment significantly decreased the RGR of M. persicae. 

Nevertheless, no relationship was found between the aphid RGR and the concentration of 

sucrose in the phloem sap of OSR under elevated CO2. On the contrary, Douglas et al. (2006) 

observed that the RGR of pea aphid (Acyrthosiphon pisum) was significantly related to 

sucrose concentration in the diet. 
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In spring wheat, the RGR of R. padi was significantly increased under elevated CO2. A 

significant relationship was also found between the aphid RGR and the fructose concentration 

(BBCH 12) under elevated CO2. On the contrary, Watt et al. (1995) argued that the 

herbivorous insect responded to increased levels of CO2 by reducing their growth rates. 

 

The content of amino acids in the phloem sap of plants under elevated CO2 and relation to 

RGR of aphids 

In phloem sap of spring wheat, the concentrations of nearly all individual amino acids were 

increased under elevated CO2. In accordance, Sicher (2010) observed a significant increase by 

20% in the concentration of Asp in the leaflets of soybean (Glycine max L. Merr. cv. Clark) 

under CO2 enrichment. According to Saijo et al. (1989) and Ke et al. (1993), significant 

increases in the concentration of GABA were observed in the tissues of tomatoes and 

crisphead lettuce in air enriched with 5% to 20% CO2. In our study, Glu and Gln were the 

predominant free amino acids in the phloem of wheat, which parallels the results of Sicher 

(2010) with spring wheat. In OSR, elevated CO2 had no impact on the concentrations of 

individual and total amino acids except for Orn. In agreement, studies on maize and soybean 

showed that the total free amino acids in the leaves were unchanged under high-CO2 

treatment (Leakey et al. 2006; Rogers et al. 2006). In contrast, Sun et al. (2009) found that 

amino acid concentrations were lower in phloem of cotton plants grown at elevated CO2. 

Similar results were obtained by Bertrand and Bigras (2006), who mentioned that the 

concentration of amino acids in needles of black spruce (Picea mariana (Mill.) B.S.P) was 

decreased under 710 µl l
-1

 CO2. 

In our study, concentrations of Gly and Met were very low in the phloem sap of both crop 

species. Supporting this, Sicher (2010) argued that the concentration of Gly was lowered 

under elevated CO2 in the leaves of wheat and soybean. Additionally, Weibull and Melin 
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(1990) observed low concentrations of Gly and Met in Brassica plants, moreover, the amino 

acid pattern closely resembled that of cereals. 

There is factual evidence of an existing relationship between amino acid composition and 

performance of phloem-feeding herbivores (Weibull 1988; Sandström and Pettersson 1994). 

According to Karley et al. (2002), the correlation between RGR of two aphid species (Myzus 

persicae and Macrosiphum euphorbiae) and amino acid composition in potato plants was 

robust. Furthermore, the insects responded differently to alterations in amino acid 

concentrations in the phloem sap of host plants under elevated CO2 (Prichard et al. 2007). In 

our study, RGR of M. persicae was significantly related to the concentrations of αAA, Tyr 

and essential amino acids like Trp, Phe and Leu (BBCH 30) under elevated CO2. In the study 

of Emden and Bashford (1971) with leaves of Brussels sprout (Brassica oleracea Gemmifera 

Group), the RGR of M. persicae was significantly related to the concentrations of Met and 

GABA. In detail, the increase of Met had a positive impact on the RGR of M. persicae, while 

the increase of non-protein GABA indicated a negative effect (Emden and Bashford 1971). 

However, our results showed no significant relationship between the RGR of M. persicae and 

concentrations of Met and GABA in the phloem sap of OSR as stated above. 

In spring wheat, RGR of R. padi was significantly related positively to the total amino acids 

under elevated CO2 (BBCH 12). Moreover, the RGR of R. padi was significantly increased 

with an increase of amino acids under elevated CO2. In agreement, Weibull (1987) observed 

that RGR of R. padi was significantly increased as total amino acids were raised and vice 

versa. According to Kidd et al. (1990), the CO2-induced increase in the concentration of 

amino acids by 47% in pine trees resulted in an increase in growth rate of conifer aphids 

(Schizolachnus pineti F., Cinara pini L.) by 31%. Contrary to this, Docherty et al. (1997) 

observed that RGR of aphids (Drepanosiphum platanoidis Schrank and Periphyllus 

testudinaceus Ferni) were not related to the concentration of total amino acids in A. 

pseudoplantanus under elevated CO2 as the RGR of aphids remained unaffected although the 
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total amino acids were significantly decreased. Other observations by Sandström and 

Pettersson (1994) confirmed no significant correlations between the performance of pea aphid 

(Acyrthosiphon pisum) and the concentration of total free amino acids in the phloem of pea 

(Pisum sativum L.), broad bean (Vicia faba cv. Major), alfalfa (Medicago sativa cv. Sverre) 

and red clover (Trifolium pratense cv. Hermes II). Additionally, Sandström (2000) argued that 

the RGR of R. padi was not related to the concentration of total amino acids in the leaves of 

bird cherry (Prunus padus L.) and barley (Hordeum vulgare L.). 

In conclusion it was confirmed that elevated CO2 may alter the concentration of carbohydrates 

and amino acids in the phloem sap of spring wheat and OSR. In general, the concentration of 

carbohydrates (sucrose), as well as the concentrations of total and the individual amino acids, 

except for Orn, in OSR, were not significantly changed under high-CO2 conditions. In spring 

wheat, however, carbohydrates (glucose, fructose) and several individual amino acids showed 

significant increases. The changes in the phloem of host plants affected the nutritional quality 

for phloem-feeding herbivores, resulting in an increase in the RGR of R. padi and a decrease 

in the RGR of M. persicae. 
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Table 1 Relationships (r with p) between relative growth rate (RGR) of aphids 

(Rhopalosiphum padi, Myzus persicae) and concentrations of individual carbohydrates 

and total amino acids of spring wheat (BBCH 12 and 30) and oilseed rape (BBCH 14 

and 30) in ambient and high-CO2 treatments. 

 

CO2 

treatment 

Development 

stage of 

plants 

 Carbohydrates   Total amino 

acids 
Sucrose Fructose Glucose 

Spring Wheat 

400 µl l
-1 

BBCH 12 0.812 (0.397) 0.771 (0.439) 0.956 (0.191) 0.734 (0.475) 

BBCH 30 0.450 (0.703) 0.998 (0.027) 0.989 (0.097) 0.925 (0.248) 

600 µl l
-1 

BBCH 12 0.985 (0.112) 0.996 (0.041) 0.991 (0.084) 0. 998 (0.024) 

BBCH 30 0.153 (0.902) 0.495(0.670) 0.048 (0.969) 0.681 (0.523) 

Oilseed Rape 

400 µl l
-1 

BBCH 14 0.832 (0.374) nd nd 0.579 (0.607) 

BBCH 30 0.991 (0.086) nd nd 0.013 (0.992) 

600 µl l
-1 

BBCH 14 0.889 (0.303) nd nd 0.639 (0.559) 

BBCH 30 0.903 (0.283) nd nd 0.791 (0.419) 

 

Notes: r = correlation coefficient; p = level of probability; p > 0.05 = not significant; nd = not 

detectable. 



__________________________________________6 CO2 effects on aphids and spring crops 

 - 68 - 

Table 2 Correlations of RGR (R. padi) and individual amino acid concentrations in spring 

wheat (essential amino acids (Dadd, 1985) are given in bold characters). 

 

 
Amino acids 

Ambient CO2 Elevated CO2 

BBCH 12 BBCH 30 BBCH 12 BBCH 30 

r p r p r p r p 

Aspartic acid 0.955 0.078 0.820 0.388 0.790 0.420 0.981 0.123 

Glutamic acid 0.853 0.350 0.994 0.070 0.955 0.192 0.740 0.469 

α-amino-adipic 
acid 

nd nd 0.946 0.210 nd nd 0.447 0.705 

Asparagine 0.107 0.932 0.942 0.217 0.687 0.517 0.990 0.092 

Serine 0.440 0.710 0.984 0.114 0.701 0.506 0.876 0.332 

Glutamine 0.604 0.587 0.998 0.031 0.992 0.080 0.182 0.883 

Histidine 0.075 0.953 0.874 0.323 0.949 0.205 0.916 0.263 

Citrulline 0.826 0.382 0.946 0.210 nd nd 0.666 0.536 

Glycine 0.997 0.034 0.996 0.054 0.305 0.802 0.947 0.208 

Threonine 0.014 0.991 0.169 0.892 0.476 0.684 0.857 0.345 

Arginine 0.734 0.475 0.775 0.436 0.182 0.883 0.030 0.981 

Alanine 0.330 0.786 0.173 0.889 0.694 0.512 0.371 0.758 

γ-amino butyric 
acid 

0.510 0.659 0.897 0.292 0.329 0.787 0.577 0.609 

Tyrosine 0.597 0.592 0.907 0.277 0.582 0.604 0.873 0.324 

Tryptophan 0.449 0.704 0.828 0.379 0.655 0.545 0.829 0.378 

Methionine 0.593 0.596 0.961 0.178 0.544 0.634 0.807 0.402 

Valine 0.822 0.386 0.766 0.445 0.906 0.279 0.810 0.399 

Phenylalanine 0.417 0.726 0.999 0.011 0.908 0.276 0.810 0.399 

Isoleucine 0.276 0.822 0.911 0.270 0.915 0.264 0.879 0.316 

Leucine 0.670 0.533 0.385 0.308 0.908 0.275 0.857 0.344 

Ornithine 0.268 0.827 0.871 0.327 0.009 0.994 0.840 0.365 

Lysine 0.002 0.999 0.803 0.407 0.49 0.682 0.990 0.089 

Notes: r = correlation coefficient; p = level of probability for linearity; p > 0.05 = not significant; nd = 

not detectable. 
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Table 3 Correlations of RGR of M. persicae and individual amino acid concentrations in oilseed 

rape (essential amino acids (Dadd, 1985) are given in bold characters). 

 

 
Amino acids 

Ambient CO2 Elevated CO2 

BBCH 14 BBCH 30 BBCH 14 BBCH 30 

r p r p r p r p 

Aspartic acid 0.965 0.170 0.359 0.766 0.667 0.536 0.828 0.379 

Glutamic acid 0.984 0.116 0.160 0.897 0.853 0.349 0.716 0.492 

α-amino-adipic 
acid 

nd nd 0.341 0.778 nd nd 0.999 0.014 

Asparagine 0.256 0.835 0.193 0.877 0.769 0.442 0.817 0.391 

Serine 0.228 0.854 0.212 0.864 0.278 0.820 0.170 0.891 

Glutamine 0.570 0.614 0.232 0.851 0.369 0.760 0.748 0.462 

Histidine 0.174 0.888 0.648 0.551 0.589 0.599 0.442 0.709 

Citrulline nd nd 0.341 0.778 nd nd 0.878 0.317 

Glycine 0.838 0.368 0.474 0.686 0.089 0.943 0.776 0.435 

Threonine 0.250 0.839 0.314 0.797 0.158 0.899 0.741 0.469 

Arginine 0.067 0.957 0.065 0.958 0.803 0.406 0.627 0.568 

Alanine 0.258 0.834 0.324 0.790 0.784 0.427 0.841 0.364 

γ-amino butyric 
acid 

0.561 0.621 0.245 0.843 0.924 0.250 0.631 0.565 

Tyrosine 0.998 0.024 0.110 0.930 0.824 0.384 0.995 0.043 

Tryptophan 0.282 0.818 0.550 0.629 0.750 0.460 0.994 0.048 

Methionine 0.985 0.112 0.547 0.632 nd nd 0.213 0.863 

Valine 0.380 0.752 0.415 0.727 0.373 0.757 0.969 0.158 

Phenylalanine 0.178 0.886 0.075 0.952 0.572 0.612 0.994 0.047 

Isoleucine 0.914 0.266 0.223 0.857 0.557 0.624 0.981 0.127 

Leucine 0.980 0.128 0.065 0.959 0.566 0.617 0.996 0.040 

Ornithine 0.088 0.944 0.612 0.581 0.925 0.248 0.825 0.383 

Lysine 0.999 0.010 0.140 0.910 0.659 0.542 0.951 0.201 

Notes: r = correlation coefficient; p = level of probability for linearity; p > 0.05 =  not 

significant; nd = not detectable. 
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Figure 1 CO2-induced changes (ambient = 100) of sucrose, glucose and fructose 

concentrations in phloem sap of spring wheat at leaf development (BBCH 12) and stem 

elongation (BBCH 30) stages in 2008. The results of the ANOVA are denoted by 

asterisks (
ns

 p > 0.05, * p < 0.05, ** p < 0.01). 
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Figure 2 Relative CO2 effects (%; elevated versus ambient; ambient = 100) on the 

concentration of total amino acids in the phloem sap of spring wheat and oilseed rape at 

leaf development and stem elongation stages. 
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Figure 3 Changes in amino acid concentrations of phloem sap of spring wheat at leaf 

development (BBCH 12) and stem elongation (BBCH 30) stages under elevated CO2 

(ambient = 100). Given are the mean value and the standard deviation of three 

replicates. The results of the ANOVA are denoted by asterisks (* p < 0.05, ** p < 0.01, 

*** p < 0.001). 
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7. General Discussion 

Current predictions say that plants, herbivore insects and pathogens will be affected by rising 

atmospheric CO2, causing drastic changes in the biosphere (Mitchell et al. 1993; Caulfield & 

Bunce 1994). Such increases in CO2 concentrations are likely to affect plants directly, due to 

alterations in growth, allocation and composition of chemicals within tissues, and indirectly 

by the altered climate (Penuelas & Estiarte 1998). Insofar herbivores will also be affected by 

rising CO2, altering their physiology and behaviour (Stiling & Cornelissen 2007), caused by 

changes in the leaf chemistry and nutritional quality of host plants (Masters et al. 1998). Thus 

it is imperative to explore the effects of elevated CO2 exposure on plants and the resultant 

effects on insects in order to establish what potential risks exist with regard to future 

agriculture (Coviella & Truble 1999). 

 

7.1 Changes in the phenology of plants induced by elevated CO2. 

In our study, development of spring wheat and OSR was observed under elevated CO2 in 

controlled-environment chambers and in a Mini-FACE system. The results suggested that the 

phenological development of spring wheat and OSR in controlled-environment chambers was 

not significantly altered due to elevated CO2. In the Mini-FACE system, the phenology of 

spring wheat in 2008 was prolonged by seven days at booting stage and shortened by seven 

days at dough development stage with CO2 enrichment, while in OSR, the ripening stage was 

prolonged by six days (2007), however, both these cases were not statistically significant. In 

contrast, Atwell et al. (1999) proved that CO2 enrichment (700 µl l
-1

) hastened the 

development of wheat (Triticum aestivum L.) and rice (Oryza sativa L.), significantly 

accelerating the appearance of successive leaves and shortening the flowering time. 

Significant enhancement of phenological development under elevated CO2 was also observed 

for OSR (Franzaring et al. 2008) and maize (Leakey 2009). According to Garbutt et al. 

(1990), Amaranthus retroflexus flowered significantly earlier under elevated CO2 (700 µl l
-1
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vs. 350), while Setaria faberii significantly later. A positive relationship was found between 

the appearance of wheat leaves and the concentration of elevated CO2 (700 µl l
-1

) in the study 

of McMaster et al. (1999), where accelerated leaf and tiller appearance rates resulted in 

quicker canopy development and greater plant biomass (shoot, root and spike production). 

Significant increases in above ground biomass due to elevated CO2 were observed on wheat 

(30%, Atwell et al. 1999), broad beans (14%, Awmack & Harrington 2000), upland cotton 

(85%, Derner et al. 2003) and silver birch, black alder and common beech (17%, Hoosbeek et 

al. 2011), while aboveground stem biomass of potato (Solanum tuberosum L. cv. Bintje) was 

negatively impacted by CO2 enrichment (680 µmol mol
-1

) at canopy maturity (Högy & 

Fangmeier 2009). The above ground biomass of sorghum plants (Sorghum bicolor L.) also 

showed a significant decrease by 2% (Derner et al. 2003). 

In controlled-environment chambers, above ground biomass of non-infested spring wheat was 

significantly increased due to elevated CO2, while the above the ground biomass of aphid 

infested plants showed significant reduction. In accordance, Poorter (1993) observed 

significant increase (37%) in the biomass of non-infested C3 plants in the high-CO2 treatment. 

In our study, the relative growth rate (RGR) of non-infested spring wheat was significantly 

increased due to elevated CO2, while the RGR of aphid infested spring wheat showed 

significant reduction. Under elevated CO2 (720 µl l
-1

 vs. 360), the RGR of C3 plants was 

between 11.2 and 24.2 mg g-
1
 day

-1
 (Poorter 1993). Although elevated CO2 led to increase 

(34%) the RGR of OSR in our experiment, both the effects of CO2 enrichment and the 

presence of aphids were consistently below statistical significance. Correspondingly, the 

interaction between CO2 and aphid presence on above ground biomass and RGR was 

insignificant for both spring wheat and OSR. The opposite results were found by Awmack & 

Harrington (2000), where significant effects by aphids were shown on beans. The pea aphid 

(Acyrthosiphon pisum Harris) decreased the shoot weight of broad beans (Vicia faba L.) by 

27% under elevated CO2 (700 µl l
-1

) and by 20% under ambient CO2 (350 µl l
-1

). The potato 
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aphid (Aulacorthum solani Kaltenbach) decreased the shoot biomass of V. faba by 20% under 

elevated CO2, while no effect was found on plant growth in ambient conditions. 

 

7.2 The consequences of elevated CO2 on phloem-feeding insects in controlled-chamber 

system. 

Biomass production of major plants responded to elevated CO2 concentrations with an 

increase, whereas the food quality for most herbivorous insects was reduced due to decreased 

protein concentrations (Neumeister 2010). This reduction in the nutritional quality naturally 

influences the behaviour, performance and feeding habits of insects (Fajer 1989; Asshoff 

2005; Zvereva & Koslov 2006). These changes in the leaf chemistry as well as related 

changes in insect behaviour due to elevated CO2 occur by degrees (Asshoff 2005). In our 

study, high-CO2 treatment significantly increased the weight and RGR of R. padi, whereas 

significant decreases in weight and RGR were established for M. persicae. Supporting our 

results, Lincoln et al. (1986) and Fajer (1989) have shown that insect herbivores consistently 

respond to changes in plant nutritional quality induced by elevated CO2 with reduced growth, 

while Goverde & Erhardt (2003) proved increased development of Coenonympha pamphilus 

(Lepidoptera, Satyridae) on four native grassland grass species (Agrostis stolonifera, 

Anthoxanthum odoratum, Festuca rubra, Poa pratensis). Contrary to these results, several 

researchers established no CO2 effects on aphid performance (Salt et al. 1996; Diaz et al. 

1998). Mondor et al. (2010) showed that the RGRs of green and pink pea aphids were not 

impacted due to elevated CO2. The impact on the average weight of aphids (Macrosiphum 

euphorbiae) per plant (Solanum dulcamara) under elevated CO2 (750 µl l
-1

 vs. 350, Flynn et 

al. 2006) was also non-significant. No clear explanations exist for the differing responses of 

the same insect RGR on different host plants. Insomuch, Haettenschwiler & Schafellner 

(2004) proved that RGR of gypsy moth (Lymantria dispar) was reduced (30%) on Quercus 
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petraea, while significant increase (29%) on Carpinus betulus and non-significant trend on 

Fagus sylvatica were observed under elevated CO2 (530 µl l
-1

 vs. 370). 

Non-significant to slight increases due to elevated atmospheric CO2 conditions were observed 

for the relative developmental stage (rDS) of R. padi and M. persicae in our experiment. 

Accordingly, Mondor et al. (2010) argued that elevated CO2 had no impact on development 

times of green and pink pea aphids. However, Coviella & Truble (1999) and Asshoff (2005) 

suggested that lowered nutritional quality induced by elevated CO2 lengthened the larval 

developmental times for many species of herbivorous insects. 

Changes in nutritional quality of host plants affected the survival and population dynamics of 

insects (Coviella & Truble 1999). In our study, intrinsic rates of increase of R. padi and M. 

persicae were not significantly increased due to elevated CO2. These results being in 

concurrence with Flynn et al. (2006), who suggested that elevated CO2 did not significantly 

change the population of aphid (Macrosiphum euphorbiae) on Solanum dulcamara, however, 

were in contrast to Dermody et al. (2008), who observed significant increases in aphid 

numbers (Aphis glycines) on soybean plants (Glycine max L.). 

 

7.3 CO2-induced changes in plant chemistry, grown within controlled environment 

conditions. 

The phloem sap from spring wheat and OSR grown within controlled environmental 

conditions was analysed in order to clarify CO2-impacts on the insect performance. 

The reduction in food quality induced by elevated CO2 concentrations has clearly been 

revealed by an increase in the carbon:nitrogen ratio within host plants (Bezemer & Jones 

1998). In our study, analysis of phloem sap showed significant increases in fructose (BBCH 

12, BBCH 30) and glucose (BBCH 30) within spring wheat under elevated CO2. Similarly, 

significant increases in the concentration of glucose were found in the foliage of rice 

(Shimono et al. 2010) and broccoli (Krumbein et al. 2010) in high-CO2 treatments, although 
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the concentration remained unchanged in the leaves of maize (Leakey et al. 2006). In our 

study, the concentration of fructose in spring wheat was not statistically significant related to 

RGR of R. padi under ambient (BBCH 30) and elevated CO2 (BBCH 12). On the contrary, 

Douglas et al. (2006) argued a significant relationship between the concentration of sucrose 

and the RGR of pea aphid (Acyrthosiphon pisum) via their diet. 

Concerning amino acids in our study, the concentrations of total amino acids in the phloem 

sap of both host plants were not significantly changed due to elevated CO2. Interestingly 

enough, although the relationship between RGR of M. persicae and total amino acids in the 

phloem sap of OSR in the high-CO2 treatment was not statistically significant, the RGR of R. 

padi was significantly related to their concentration (BBCH 12). Sicher (2008) suggested that 

total soluble amino acids in the barley leaves (Hordeum vulgare L. cv. Brant) were 59% lower 

under elevated CO2 (17 DAS, 100 Pa vs. 36 Pa). Supporting our results with M. persicae, 

several studies proved non-significant relationships between the aphid RGRs and the 

concentrations of total amino acids in the leaves of A. pseudoplantanus (Docherty et al. 

1997), Prunus padus and Hordeum vulgare (Sandström 2000). 

In the phloem of spring wheat, significant increases due to elevated CO2 were observed for 

the concentrations of Lys, Leu, Ile, Phe, Val, Tyr, Thr, Ala, Ser, Glu and Asn (BBCH 12) and 

for Ala, Arg, Leu and GABA (BBCH 30), while the concentration of Orn was significantly 

decreased in the phloem sap of both plants. Weibull & Melin (1990) established a significant 

decrease in the concentrations of such individual amino acids as Gly and Met in Brassica 

plants. 

In wheat, significant regressions were limited to the RGR of R. padi and the concentration of 

Gly (BBCH 12) and Gln and Phe (BBCH 30) under ambient CO2, while in OSR, significant 

relations were found for the RGR of M. persicae and Tyr and Lys (BBCH 14). In the high-

CO2 treatment, significant relationships were observed between RGR of M. persicae and 

αAA, Tyr, Trp, Phe and Leu (BBCH 30). Only a few studies exist, in which the relationship 
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between the RGR of insects and the concentration of free amino acids in the plants have been 

observed. According to Emden & Bashford (1971), RGR of M. persicae was significantly 

related only to the concentrations of Met and GABA. 

 

7.4 The consequences of elevated CO2 on the abundance of insects in a Mini FACE system. 

In a Mini FACE system, the effects of elevated CO2 concentration were observed on the 

population dynamics of detrimental insects from different feeding guilds. Results showed that 

in 2008, an abundance of thrips species, cereal leaf and ground beetles, click beetles, shield 

bugs and bird cherry-oat aphids were observed by examination of insect numbers using direct 

counts (method M1) and barley leaf beetles, green cicadas, wheat bulb flies, orange wheat 

blossom and saddle gall midges by examination of insect numbers using yellow sticky traps 

(method M2) on spring wheat. Significant increases due to elevated CO2 were observed for the 

abundance of O. melanopus (BBCH 59) and thrips species (BBCH 83) using method 1 and 

for P. vittula (BBCH 41) using method 2, while significant decreases were shown in D. 

coarctata (BBCH 22, BBCH 23), C. aridula (BBCH 31) and H. marginata (BBCH 83) using 

method 2. Supporting our results with O. melanopus, P. vittula and thrips species, Hunter 

(2001) suggested that herbivore insects respond to elevated CO2 with increases in population 

size. In support, Hughes & Bazzaz (2001) observed a significant increase of 120% in the 

population of M. persicae on Solanum dulcamara under elevated CO2 (700 µl l
-1

 vs. 350). 

Whittaker (1999), although revealing an increase in the population densities of phloem 

feeders under elevated CO2, also showed a decrease in chewers. Changes in the population 

dynamics of affected insect species may influence their interactions with other insects as well 

as plants. Thus, insect species that may not directly be affected by the elevated CO2 may be 

affected by the changes in other insect species (Coviella & Truble 1999). Although the 

populations of shoot aphid (Aphis fabae) and root-feeding aphid (Pemphigus 

populitransversus) on Cardamine pratensis were higher at elevated CO2 (600 µl l
-1

) than in 
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ambient conditions (350 µl l
-1

), this increase was statistically insignificant (Salt et al. 1996). 

Again, no significant effects from elevated CO2 (700 µl l
-1

) were observed on the populations 

of Aphis nerii on Asclepias syriaca, Aphis oenotherae on Oenothera biennis and Aulacorthum 

solani on Nicotiana sylvestris (Hughes & Bazzaz 2001). 

In 2007/2009, the abundance of thrips species, turnip sawflies, green cicadas, pollen beetles, 

spring cabbage flies, cabbage whiteflies, green peach aphids and brassica pod midges were 

observed on OSR. In 2007, significant increases were found for the abundances of thrips 

species (BBCH 71) and M. aeneus (BBCH 77) in the high-CO2 treatment, while significant 

decrease was revealed in the population of cicada (BBCH 81). 

In 2009, significant decreases under elevated CO2 were observed in the abundance of M. 

aeneus (BBCH 55, BBCH 67) using method 1 and D. brassicae (BBCH 55, BBCH 61, 

BBCH 67, BBCH 80, BBCH 81) and M. aeneus (BBCH 80) using method 2, while 

significant increases were shown in the abundance of A. rosae (BBCH 55, BBCH 62), D. 

radicum (BBCH 55, BBCH 62, BBCH 66, BBCH 67, BBCH 80), A. proletella (BBCH 67) 

and thrips species (BBCH 55) using method 2. Supporting the M. aeneus and D. brassicae 

decrease, Hughes & Bazzaz (2001) argued that the population of Acyrthosiphon pisum on 

Vicia faba was reduced by 60% due to elevated CO2 (700 µl l
-1

 vs. 350). 

 

7.5 The consequences of elevated CO2 on parasitic organisms in a Mini FACE system. 

Barley powdery mildew, yellow and brown rust, septoria leaf blotch were observed on spring 

wheat (2006/2008 years), while OSR (2009 year) was damaged by downy mildew. Plant 

leaves were only slightly and not significantly damaged by these diseases in all treatments. 

Supporting our results, no CO2 effects on P. striiformis (Luck et al. 2010) and P. recondita 

(Oijen & Ewert 1999) on spring wheat were observed in a FACE experiment and open-top 

chamber system, respectively. On the contrary, Manning & von Tiedemann (1995) argued 

that elevated CO2 inhibited growth of fungi pathogens such as rust and mildew. 
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In our study, the frequency (FI) and severity (SI) of disease infestation on OSR and wheat 

were not significantly impacted by elevated CO2. Opposing this, Eastburn et al. (2010) proved 

that SI of downy mildew (Peronospora manshurica) on soybeans was significantly decreased 

(39%) under elevated CO2, while a significant, though small in magnitude, increase was 

observed for brown spot disease (Septoria glycines). After summarising information from 

different literature sources, Kobayashi et al. (2006) established differing responses of blast SI 

(Magnaporthe oryzae, anamorph: Pyricularia oryzae) to elevated CO2 (≈ 590 to 670 µl l
-1

). 

More specifically, SI of P. oryzae on rice plants was significantly enhanced on leaves and 

unaltered on panicles in a FACE experiment. 
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8. Conclusions 

This thesis describes the effects of elevated CO2 concentrations on plant-pathogen-insect 

interactions in a four year field experiment and on host plant-aphid relations in a climate 

chamber system in 2007 and 2009. 

The field experiment aimed to show the effects of CO2-elevation on the population dynamics 

of herbivorous insects and the abundance and epidemiology of plant diseases as well as the 

pressure they may exert on spring wheat and oilseed rape. A Mini-FACE system was involved 

to perform the CO2 enrichment experiments without disturbing the natural climatic 

conditions. 

The results showed that there were no effects on the frequency and severity of infestation of 

diseases due to elevated CO2. However, insect species responded differently to the elevated 

CO2 on both crops, showing significant reductions as well as significant increases in their 

abundance density dependent on species and host plants. These different responses are 

explained by changes in plant metabolism. More specifically, the decrease in nitrogen 

concentration in the leaves of host plants due to elevated CO2 impacted the nutritional quality 

for insects. In order to meet their nitrogen requirements, insects increase the ingestion of 

assimilates from the plants, corresponding in greater crop damage and in some cases leading 

to more extensive insect outbreaks. 

The experiment in the climate chamber system was directed towards the effects of elevated 

CO2 on the composition of phloem sap of plants, which thus caused the changes in the 

behaviour, performance (i.e. the weight, relative growth rate, relative developmental stage, 

intrinsic rates) and feeding habits of insects (i.e. aphids). Two model biotrophic system, one 

consisting of bird cherry-oat aphid (Rhopalosiphum padi L.) feeding on wheat, the other one 

of green peach aphid (Myzus persicae S.) feeding on oilseed rape, were involved in the 

experiment to test whether general response patterns to atmospheric CO2 enrichment could be 

detected. 
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The results showed that elevated CO2 significantly impacted the weight and RGR of aphids 

on both host plants, whereas the relative developmental stage and intrinsic rates of increase 

were not significantly changed. However, CO2 effects on weight and RGR were opposite 

between the two biotrophic systems, with an increase for R. padi and a decrease for M. 

persicae. The analysis of phloem sap showed that carbohydrate and amino acid levels of the 

host plants were significantly affected due to elevated CO2, resulting in performance changes 

of the aphids. However, from the experiments with the two biotrophic systems under 

controlled conditions no general conclusions can be derived since the two systems responded 

in a different direction to CO2 enrichment. Rather, much more information on a variety of 

different biotrophic systems appears necessary to be able to gain a mechanistic understanding 

of the underlying processes. 

The FACE experiment has proven to be useful in determining the effects of elevated CO2 on 

plant development and may assist future research in establishing the effects on other crops in 

order to curb the risks of pest and disease outbreaks in a CO2–rich world. However, in spite of 

this sophisticated technology, even in a Mini FACE system, no perfect simulation of real 

world outside conditions is possible. Therefore it is also recommended to expand the 

conduction of experiments to other crops, and also to direct researches to include other abiotic 

factors in their studies such as light, temperature and moisture. 

There is little knowledge on how readily plants and insects adapt to quick changes in 

atmospheric CO2 concentrations, and the answer to this question is not fully experimentally 

accessible as yet. It is clear however that elevated CO2 will affect any biological system. It is 

therefore highly advisable to perform further experimentation in this area in order to elucidate 

the differences in the effects in between and on different plant species, pathogens and insects 

under elevated CO2. 
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