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(i) Index of abbreviations 

 

*  Significant, p ≤ 0.05 

%  Per cent 

®  
Registered trademark 

$  US Dollar 

α  Statistical error, 1
st
 order 

AA  Genome of Brassica campestris 

ACCase Acetyl-CoA-carboxylase 

AHAS  Acetohydroxyacid-synthase 

AHAS1 Acetohydroxyacid-synthase 1, originating from the C genome (Brassica 

oleracea) 

AHAS3 Acetohydroxyacid-synthase 3, originating from the A genome (Brassica 

campestris) 

a.i.  Active ingredient/s 

ALS  Aceto-lactate-synthase 

ANOVA Analysis of variance 

BASF SE Badische Anilin- und Soda-Fabrik Societas Europaea 

BBCH  Biologische Bundesanstalt, Bundessortenamt and Chemical Industry  

B.C.  Before Christ 

°C  Degree Celsius 

CC  Genome of Brassica oleracea 

cm  Centimetre 

CPC  Crude protein content 

dt  Deci tonne  

E  East 

E.C.  Emulsion concentrate  

EDx  Specific herbicide dose at which the fresh weight is reduced by x % 

e.g.  Example given 

EIQ  Environmental impact factor 

EPSPS  5-enolpyruvyl-shikimate-3-phosphate synthase 

EU  European Union 

F1  Filial generation 1 

FAO  Food and Agriculture Organisation of the United Nations 
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g  Gramme   

ha  Hectare 

HET-IT Heterozygous imidazolinone-tolerant 

HOM-IT Homozygous imidazolinone-tolerant 

HRAC B Herbicide Resistance Action Committee, mode of action group B  

HT  Herbicide-tolerant 

HW  Hectolitre weight 

IMIs  Imidazolinones 

IS  Imidazolinone-susceptible 

IT  Imidazolinone-tolerant 

JKI  Julius-Kühn Institut 

Kg  Kilogramme 

km/h  Kilometres per hour 

kPa  Kilo pascal 

L.  Linné 

l  Litre 

LSD  Least significant difference 

m  Metre 

m
2
  Square metre 

mm  Millimetre 

n  Number 

N  North/Nitrogen 

OSR  Oilseed rape 

p  Probabillity of error 

P1/PM1 Point mutation 1 

P2/PM2 Point mutation 2 

pH  Potentia hydrogenii 

POST-E Post-emergence crop 

PRE-E  Pre-emergence crop 

qPCR  quantitative PCR 

SB  Sugar beet 

SCTs  Sulfonylaminocarbonyltriazolinones 

SOSR  Spring oilseed rape 

spp.  Species 
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ssp.  Subspecies 

SUs  Sulfonylureas 

SW  Spring wheat  

t  Tonnes 

TKW  Thousand-kernel weight 

TPs  Triazolopyrimidines 

US  United States 

var.  Variety 

vs.  Versus 

WOSR  Winter oilseed rape 

WW  Winter wheat 
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(ii) Index of tables 

 

PAPER No. 1 

 

Table 1 Trial location with altitude, annual average temperature, annual precipitation and 

sowing times of WOSR. [PAGE 18] 

 

Table 2 Herbicide treatments (trade name and a.i.) used to control monocotyledonous and 

dicotyledonous weeds in IT WOSR. [PAGE 18] 

 

Table 3 Weed density in plots of IT WOSR depending on the applied herbicide treatment. 

Mean values are shown. [PAGE 23] 

 

Table 4 Yield of IT WOSR depending on the applied herbicide treatment. Yield loss was 

estimated using the model of Munzel et al. (1992). Multiple mean comparisons of yield data 

were performed using Fisher’s LSD. Significant differences at p ≤ 0.05 are indicated using 

small letters (+ = with plough, - = without plough; means are shown). [PAGE 24] 
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(iii) Index of figures 

 

PAPER No. 1 

 

Figure 1 Percentage weed density in plots of IT WOSR depending on the herbicide treatment. 

Combined data 2009-2011 (n = 7). 100 % equals weed density in the untreated control. 

Significant differences at p ≤ 0.05 are indicated using small letters. [PAGE 19] 

 

Figure 2 Percentage IT WOSR yield depending on the applied herbicide treatment. Combined 

data 2009-2011 (n = 7). 100 % equals yield in the untreated control. Significant differences at 

p ≤ 0.05 are indicated using small letters. [PAGE 20]  

 

Figure 3 Relationship between the measured yield loss and the estimated yield loss in IT 

WOSR (model of Munzel et al., 1992). Data was plotted from field trials in Bingen and 

Bubach 2009-2011 (n = 28, * = statistically significant correlation). [PAGE 25] 
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1 General Introduction 

 

Oilseed rape (OSR) (Brassica napus L. var. napus) is a very important arable crop in modern 

agriculture and is globally grown as spring (canola) and winter oilseed rape (SOSR/WOSR) 

varieties. Its high value as a preceding crop in rotations with a high proportion of cereals and 

the high yield potential and economic benefits for farmers, have contributed to it’s 

importance.  

The harvested seeds are widely used in human nutrition, animal feeding and in the recent past, 

as a renewable resource for the production of environmental-friendly paints, varnishes and 

biodiesel. 

The crop is well established in plant breeding and more recently, the use of genetic 

engineering and transformation has become very important. Generally, the aims of OSR 

breeding were modification of the oil content and composition (low content of erucic acid and 

glucosinolates), the increase of yield, resistance to insect pests and different pathogens and the 

tolerance to pesticides, with herbicide tolerance being the most important trait. 

Genetically modified glyphosate- and glufosinate-tolerant OSR varieties are commonly used 

in Northern America and Australia, but are unsuitable for European agriculture due to legal 

restrictions. A third group of herbicide-tolerant (HT) OSR has a tolerance to the chemical 

class imidazolinones (IMIs) and was developed with conventional breeding approaches. The 

patent is held by BASF SE and imidazolinone-tolerant (IT) SOSR is sold globally under the 

Clearfield
®
-label. 

The introduction of IT spring and winter varieties has already started in Eastern Europe and 

will continue comprehensively in 21 out of the 27 member states of the EU, with a focus on 

winter-grown varieties. The implementation may lead to new possibilities for weed control in 

OSR, but has to be evaluated precisely for future recommendations in agricultural practice. 

Correspondingly, studies have been carried out to highlight specific issues associated with HT 

crops. Presented in this thesis is an evaluation of the advantages, namely post-emergence 

(POST-E) weed control in OSR by using the Clearfield
®
 production system, and 

disadvantages, namely consequences for volunteer OSR management in crop rotations which 

contain IT OSR.   
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1.1 Origin and relevance of oilseed rape (Brassica napus L. var. napus) as a crop 

 

The Brassicaceae family contains nearly 3200 species, of which mainly Brassica ssp., 

especially Brassica napus L. var napus (synonymously OSR, rapeseed, canola), gain 

economic importance as crops. The botanical relationship between Brassica species was first 

investigated by U (1935) who showed that Brassica napus is an amphidiploid (AA x CC, n = 

19) from an intraspecific crossing of Brassica campestris (AA, n = 10) and Brassica oleracea 

(CC, n = 9). Brassica species were firstly domesticated by ancient civilisations in Asia and the 

Mediterranean region and cultivation of oilseed Brassicas have been recorded as early as 4000 

B.C. in India (Friedt & Snowdon, 2009). During archaeological extractions, Brassica seeds 

were found in a 16
th

-century house in Germany and were identified as Brassica napus (Kroll, 

1994). At this time, rapeseed was exclusively used for lamp oil and significant cultivation 

areas were not found until the 18
th

-century. 

A large-scale worldwide OSR production was not realised until the second half of the 20
th

-

century, as breeding approaches led to the development of double-low varieties (low content 

of erucic acid and glucosinolates) suitable for human consumption and animal feed (Booth & 

Gunstone, 2004). Today, OSR is grown on all continents, as spring and winter varieties, 

according to climatic conditions, with a harvested area of 31,680,945 ha and a production 

quantity of 59,071,197 t (FAO Statistics, 2012). OSR production has gained a great 

importance across Europe, with a consistent increase in production area and harvest. While 

production centres are clearly located in Germany and France, with a harvested area of 

roughly 1,500,000 ha in each country in 2010, significant OSR production can also be found 

in the United Kingdom and Eastern Europe. 

In Germany, approximately 12 % of the arable land is grown with OSR. In the early nineties, 

the cultivated area remained fairly constant at around 900,000 ha, but increased rapidly to the 

above mentioned 1,500,000 ha due to OSR production for non-food uses. In recent years the 

harvest amount averaged 3.5 t ha
-1

, with a peak of nearly 4.3 t ha
-1

 observed in 2009 (FAO 

Statistics, 2012).     

Generally, OSR is grown in cereal rotations and is considered a valuable preceding crop for 

wheat due to a positive influence on the soil structure (Scheller, 1987). OSR plants leave 

behind a highly degradable straw with a high nitrogen content, which can be used by the 

subsequent crop (Amberger, 1995). Accordingly, OSR is widely grown previous to winter 

wheat (WW) due to the possibility of a shared use of machinery (Cramer, 1990). 
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1.2 Weed management in oilseed rape 

 

Generally, plant protection in OSR is necessary to guarantee high yields, without depending 

on processing the crop for human consumption, livestock or renewable raw material. 

However, OSR can be considered a quite competitive crop (Radermacher, 1939). Field 

experiments of Wahmhoff (1990) showed an increased yield of OSR due to weed control for 

only 56 % of herbicide treatments. According to Schröder et al. (2008), 25 % of herbicide 

applications would have been unnecessary in retrospect of 5-year trials. Nonetheless weed 

control is widespread and applied to approximately 97 % of OSR areas in Germany to 

decrease a negative impact on the crop. Overall, rationales for herbicide use are: (i) pre-

emergence (PRE-E) treatments without estimation of weed pressure; (ii) the avoidance of 

infestation with Galium aparine, Matricaria spp. and Sisymbrium spp. (Werner & Heitefuss, 

1996); (iii) the avoidance of increased moisture and dockage in the harvested grain due to 

weed infestation; (iv) the necessity to control volunteer cereals due to phytosanitary reasons; 

and (v) the need to decrease the weed seedbank in the soil. A total of 36 important weed 

species in OSR were identified with Galium aparine, Matricaria spp., Stellaria media, 

Capsella bursa-pastoris and Viola arvensis being the most abundant in Germany (Petersen & 

Hurle, 1998; Goerke, 2007).  

With row spacing of 30-40 cm, OSR was a typical root crop before the development of 

chemical weed control. Weeds were often controlled by using a hoe or harrow (Wahmhoff, 

1994). At the beginning of the 1960s, mechanical weed control became unnecessary as it was 

possible to apply and incorporate herbicides, such as trifluralin (Probst et al., 1967), into the 

soil to control the weed flora. This was done until the beginning of the 1990s as a common 

weed control treatment, but a shift to PRE-E herbicides, such as clomazone, has been 

noticeable since then. More recently, weed control measures against dicotyledonous species 

(including metazachlor, picloram, bifenox, propazamid and pendimethalin) were increasingly 

used at time of OSR emergence until the rosette stage in autumn. Unfortunately, however, 

widely used active ingredients (a.i.) can be associated with negative side effects, like 

volatilisation, crop- and drift damage (clomazone) (Locke et al., 1996), as well as water 

pollution (metazachlor) (Ballanger, 1999). In the future, new products containing 

dimethachlor and dimethenamid-P may become significant for weed control in OSR 

(Schröder et al., 2008). POST-E herbicides targeting the Acetyl-CoA-carboxylase (ACCase) 

are applied mostly against volunteer cereals and grass weeds. 
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1.3 Development of herbicide-tolerant oilseed rape varieties 

 

Both non-transgenic and transgenic breeding programs were followed during the development 

of HT OSR varieties. In the 1980s, a triazine-resistant biotype of birdsrape mustard (Brassica 

campestris L.) was found in Canada and was used for the breeding of triazine-tolerant canola 

varieties. The cytoplasm of the weed was transferred into the crop by introgression and 

backcrossing (Beversdorf et al., 1980; Beversdorf & Hume, 1984; Beversdorf & Kott, 1987). 

A tolerance of OSR to sulfonylureas (SUs) was achieved by Kenyon et al. (1987) by using 

microspore cultures, which were subjected to a range of chlorsulfuron concentrations after 

embryogenesis. Another non-transgenic approach was realised by Swanson et al. (1989). In 

this study in-vitro microspore mutagenesis and selection was used to gain several fertile 

double-haploid IT SOSR plants. 

The development of HT transgenic OSR varieties occurred with the introduction of genetic 

methods in plant biotechnology. The development of glyphosate-tolerant crops has been 

attempted since the early 1980s and was achieved by different approaches, such as 

overexpression of the target site 5-enolpyruvyl-shikimate-3-phosphate synthase (EPSPS), 

decreased affinity of EPSPS to glyphosate and herbicide degradation (Padgette et al., 1996). 

The most promising technique was the introduction of glyphosate-tolerance by inserting and 

expressing EPSPS which is less susceptible to inhibition by glyphosate (Kishore et al., 1992.) 

Metabolic detoxification of herbicides in crops, as a mechanism of herbicide tolerance, has 

been successfully realised in the case of glufosinate (Cole & Rodgers, 2000). The genes bar 

and pat of the Streptomyces species, which were found responsible for enzymatic inactivation 

of glufosinate, were isolated (Murakami et al., 1986; Strauch et al., 1988) and transferred to 

crops to endow tolerance. Glufosinate-tolerant OSR was first planted in Canada in 1995. 

Brassica napus canola cultivars were transformed with Arabidopsis thaliana 

acetohydroxyacid synthase (AHAS) genes and afterwards screened for herbicide-tolerance 

(Miki et al., 1990). Transgenic lines of Brassica napus varieties ‘Westar’ and ‘Profit’ were 

found to express the mutant gene crs1-1 which was essential for tolerance to the sulfonylurea 

herbicide chlorsulfuron.  

Herbicide tolerance to bromoxynil in OSR was conferred by a single transgene (oxy gene) 

(Cuthbert et al., 2001). The gene was taken from a soil bacterium and showed the ability to 

metabolise hydroxybenzonitrile herbicides such as bromoxynil.    
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1.4 Clearfield
®
-technology – imidazolinone-tolerant oilseed rape varieties 

 

The imidazolinone herbicides were discovered at the American Cyanamid Company in the 

1970s (Novdkov, 1994). Currently, the six a.i. imazapic, imazamethabenz-methyl, imazamox, 

imazapyr, imazaquin and imazethapyr are registered (HRAC 2012). These herbicides target 

the acetolactate-synthase (ALS) synonymously with the AHAS gene in chloroplasts of higher 

plants and are used because of low application rates, reduced environmental impact and good 

selectivity, as PRE-E or POST-E treatments, to control both monocotyledonous and 

dicotyledonous weeds (Ramezani, 2007). 

IT OSR was discovered in the late 1980s by a research group at Allelix Crop Technologies in 

Canada (Swanson et al., 1989). Microspores of the Brassica napus SOSR cultivar ‘Topas’ 

were isolated, mutagenised with ethyl nitrosourea and subsequently cultured. Double haploid 

plantlets were then sprayed with imidazolinone herbicides in the greenhouse. Two semi-

dominant mutants (P1 or PM1 and P2 or PM2) were found to be most tolerant to IMIs and 

were bred to a homozygous F1-hybrid, which was superior in imidazolinone-tolerance (Shaner 

et al., 1996). All commercially available IT OSR varieties originated from these two lines 

(Tan et al., 2005). The genes PM1 and PM2 are unlinked and additive and therefore 

Ruthledge et al. (1991) suggested that PM1 and PM2 equate to the AHAS1 and AHAS3 genes 

of Brassica napus. The tolerance to IMIs is linked to two point mutations at codon 653, with 

serine substituted by asparagine (AHAS1) and codon 574, with tryptophan substituted by 

leucine (AHAS3). PM1 confers tolerance to IMIs only, while PM2 results in an explicitly 

higher imidazolinone-tolerance in combination with a cross-tolerance to SUs as described by 

Hattori et al. (1995). The highest level of tolerance is achieved by having both mutations 

combined in the crop (Tan et al., 2005) as realised in commercial plant breeding.  

Besides OSR, the Clearfield
®
 production system is also available for the commercial crops 

maize (Zea mays), wheat (Triticum aestivum), rice (Oryza sativa), sunflower (Helianthus 

annuus) and lentils (Lens culinaris) (Pfenning et al., 2008). IT crops are globally grown with 

production centres in North America, South America, Europe and Australia. In IT OSR, 

combinations of imazamox + imazethapyr (North America) and imazapyr + imazapic 

(Australia) are used for weed control. In Europe, the a.i. imazamox is intended to be used in a 

mixture with metazachlor and quinmerac.   
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1.5 Problem statement and aim of the thesis  

 

Weed management in OSR was done without HT varieties in Europe in the past. By 

integrating IT SOSR and WOSR varieties into cropping systems, two novel herbicide-

tolerance genes will appear in agricultural ecosystems, potentially causing unwanted changes 

by spreading HT plants in space and time (Raybold & Gray, 1993). This could lead to 

essential changes in volunteer OSR management. Therefore, similarly to transgenic 

glyphosate- and glufosinate-tolerant OSR varieties, which were extensively field-tested by 

regulatory authorities for a long time (Kleter et al., 2008) but never authorised for growing in 

Europe, the introduction of OSR with tolerance to IMIs creates concern, although these plants 

are not genetically modified. Consequently, there is a need for collecting data on the use and 

behavior of IT OSR in crop rotations in reference to agronomic recommendations, which 

could be integrated into a Stewardship program for OSR growers. 

 

The hypothesis of the present study was to address and investigate the following aspects, 

which are likely to arise with a large-scale cultivation of IT OSR: 

 

(i) Does the Clearfield
®

 production system imply the possibility of POST-E weed control, 

with regard to the use of damage thresholds in OSR? Is it possible to identify benefits 

compared to common weed management practices? 

(PAPER No. 1) 

(ii) Does gene transfer between adjacent IT and imidazolinone-susceptible (IS) OSR varieties 

lead to an IT F1-generation? What is the genetic outcome of such outcrossing events? 

(PAPER No. 2) 

(iii) How do IT OSR plants respond to ALS-inhibiting herbicides? Is there a need to adjust 

herbicide strategies for the control of IT volunteers in subsequent crops in the future? 

(PAPERS No. 2, 3 and 4) 

(iv) Is there a measurable negative effect of volunteer OSR on yield and quality parameters of 

wheat, if weedy OSR is not controlled accurately? 

(PAPER No. 5)     
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2 KRATO C & PETERSEN J (2012) Post-emergence weed control in winter oilseed rape 

(Brassica napus L.) using imidazolinone-tolerant varieties. The manuscript is currently in 

preparation. 

 

ABSTRACT 

 

Weed control in OSR is dominated by prophylactic PRE-E or early POST-E treatments 

without specific knowledge of the occurring weed species and density. However, models for 

the analysis of economic damage thresholds require this information. A two-year field 

experiment was conducted at two different locations in Germany in order to evaluate the use 

of IT WOSR varieties and a corresponding herbicide (metazachlor+quinmerac+imazamox) 

for POST-E weed control. Randomised blocks were established using both minimum tillage 

and ploughing as soil management methods. Herbicides were applied in the fall, and the 

efficacy was determined by weed density and yield. The overall efficacy of 

metazachlor+quinmerac+imazamox was approximately 90 %, with good results against the 

volunteer cereals, Thlaspi arvense, Chenopodium album, Matricaria inodora, Papaver 

rhoeas, Capsella bursa-pastoris and Apera spica-venti, but a lack of efficacy regarding 

Agropyron repens and Viola arvensis. OSR yield was increased significantly in treated plots 

compared to untreated ones and was between 29.9 dt ha
-1

 and 63.7 dt ha
-1

 according to trial 

year and location, with an overall yield increase of 50 %. The opportunity for the use of 

economic damage thresholds in WOSR is shown by growing IT varieties. Herbicide 

treatments can be applied POST-E with detailed knowledge of the weed spectrum. The higher 

dose rate of 35 g ha
-1

 a.i. imazamox provides superior weed control.    

 

Keywords: Clearfield
®
, damage thresholds, herbicide-tolerant crops, herbicide selectivity, 

imidazolinone herbicides  
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Introduction  

 

OSR is one of the most important arable crops with a global-scale production volume of 

59,071,197 t (FAO, 2012). Weed control is crucial for the maintenance of high yields. 

Formerly, OSR was planted with a row spacing of 30-40 cm and, although mechanical weed 

control was common, it was replaced almost completely by chemical weed control 

(Wahmhoff, 1994). Sufficiently early sown and well-developed OSR is able to tolerate a 

certain weed density without harmful effects (Gräpel & Schiller, 1988). In order to apply the 

best management practice in farming, approaches for the use of damage thresholds for weed 

control in OSR have been developed since the late eighties. Weed thresholds for wild oats 

were developed for atrazin-tolerant and -susceptible OSR varieties (Forcella, 1987). Küst et 

al. (1988) investigated the economic thresholds for volunteer barley in WOSR. The crop 

density of OSR played an essential role in the competitive ability of the crop towards the 

weed. Gräpel and Schiller (1988) found the crop cover in autumn and early spring to be an 

important factor for the determination of economic damage thresholds. Dingebauer (1990) 

developed a simple model to evaluate the necessity of herbicide application based on the 

crop-to-weed coverage parameter. Weed competition depended strongly on the climatic 

conditions during drilling and only approximately 30 % of herbicide treatments were found to 

be effective. In the field trials of Wahmhoff (1990), the effect of different weather conditions, 

crop coverage and weed flora at trial sites were important factors impacting on OSR yield, as 

well as the actual weed density. A preliminary decision model for the application of damage 

threshold was described by Küst et al. (1990). This model used competition indices based on 

the relationship between the percentage of grain yield loss and the density of several 

important weed species together with factors such as crop vigour, relative time of weed 

emergence and expected yield, in order to predict a possible yield loss. The model was 

evaluated in field trials and was further improved by correcting the competitive indices of 

some weeds as well as by including the relative leaf area of weeds in the late autumn to 

consider crop competition as a factor (Munzel et al., 1992). Based on available data, 

Bodendörfer et al. (1994) developed the computer-based decision support system RAPUS, 

and all efforts were combined to result in the development of an internet-based decision 

support system called CEBRUS. 

To date, herbicide applications have been dominated by PRE-E and early POST-E treatments 

as routine treatments (Schröder et al., 2008). The choice of herbicides is mainly based on the 

expected weed pressure. Models for the use of damage thresholds are rarely accepted in 
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agricultural practice. One of the main reasons is the missing availability of POST-E 

herbicides, which control a broad weed spectrum in WOSR.   

The tolerance to non-selective herbicides has been developed in many crops, including OSR. 

Approaches were mainly based on the tolerance to glyphosate, glufosinate and IMIs and are 

commercially used all over the globe (Beckie et al., 2006). Glyphosate- and glufosinate-

tolerant OSR varieties were field-tested for use in Europe (Sauermann, 2000) but were not 

adopted due to their genetically modified characteristics and legal restrictions. In contrast, IT 

OSR varieties were developed using classical breeding methods (Tan et al., 2005) and will be 

widely introduced into European agriculture in the near future. A benefit of HT crops and 

non-selective herbicides is the ability to control a wide range of weeds and the substitution of 

PRE-E herbicide treatments by POST-E treatments (Petersen & Hurle, 1998). 

The aims of this study were the assessment of the possibility of POST-E weed control in 

WOSR and the evaluation of the use of economic damage thresholds by growing IT WOSR 

varieties and their corresponding herbicides. Furthermore, the effect of application timing and 

dose rate of imazamox on weed control was investigated. 

 

Material and methods 

 

Field trials were conducted in 2009 and 2010 at two different locations in Rhineland-

Palatinate (Tab. 1). IT WOSR varieties (experimental hybrids, homozygous for PM1 and 

PM2), provided by BASF SE, were sown in commercial field sites using a plot-in-plot 

technique. OSR was planted with 60 seeds m
-2

 while sowing was performed with an Amazone 

Drillstar RP AD302 using a two-disc coulter and a sowing depth of 2 cm. The row spacing 

was 12.5 cm. Preceding crops were WW in Bubach and winter barley in Bingen. The trial was 

carried out in duplicate at each location and for each year using either minimum tillage or 

ploughing as soil treatments. All trials were set up as randomised blocks with four replications 

per herbicide treatment (Tab. 2). Herbicides were applied using a one-wheel plot sprayer 

‘AgroTop’ with an Airmix 110-025 flat fan nozzle, a pressure of 210 kPa and a speed of 4.5 

km h
-1

. The water volume for herbicide application was 200 l ha
-1

. Fertiliser and other 

pesticide applications were conducted consistently over the entire field according to ‘good 

farming practice’. 
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Table 1 Trial location with altitude, annual average temperature, annual precipitation and 

sowing times of WOSR. 

Location Bingen (49°58‘ N, 7°54‘ E) Bubach (50°4‘ N, 7°33‘ E) 

Altitude 89 m 450 m 

Annual average temperature 9.9°C 7.8°C 

Annual precipitation 548.1 mm 664.6 mm 

Sowing date 2009 25/08 01/09 

Sowing date 2010 25/08 06/09 

 

Table 2 Herbicide treatments (trade name and a.i.) used to control monocotyledonous and 

dicotyledonous weeds in IT WOSR.  

No. Herbicide A.i. [g l
-1

] 
Product 

rate [l ha
-1

] 
Timing 

1 Untreated    

2 Nimbus CS Metazachlor [250] + Clomazone [33.3] 2.5 l/ha PRE-E [BBCH 09] 

3 Nimbus CS Metazachlor [250] + Clomazone [33.3] 2.5 l/ha PRE-E [BBCH 09] 

 Focus Ultra* Cycloxidim [100] 1 l/ha POST-E [BBCH 13-14] 

4 ButisanTop Metazachlor [375] + Quinmerac [125] 2.0 l/ha PRE-E [BBCH 09-10] 

5 ButisanTop Metazachlor [375] + Quinmerac [125] 2.0 l/ha PRE-E [BBCH 09-10] 

 Focus Ultra* Cycloxidim [100] 1 l/ha POST-E [BBCH 13-14] 

6 BAS 79801* Imazamox [6.25] + Metazachlor [375] + Quinmerac [125] 2.0 l/ha POST-E [BBCH 10-11] 

7 BAS 79801* Imazamox [6.25] + Metazachlor [375] + Quinmerac [125] 2.0 l/ha POST-E [BBCH 12-14] 

8 BAS 79800* Imazamox [17.5] + Metazachlor [375] + Quinmerac [125] 1.5 l/ha POST-E [BBCH 12-14] 

9 BAS 79800* Imazamox [17.5] + Metazachlor [375] + Quinmerac [125] 2.0 l/ha POST-E [BBCH 12-14] 

*applied with aduvant Dash E.C. [1.0 l ha-1] 

 

The weed density was counted with three pseudoreplications per plot [0.25 m
2
] after weed 

emergence and herbicide treatment in the fall and again in the spring of the following season. 

The plots were harvested on July 15
th

 2010 and July 5
th

 2011 in Bingen and on August 4
th

 

2010 and  August 11
th

 2011 in Bubach, using a plot harvester (Type: Hege 140).  

Yield loss of OSR was calculated using the prediction model of Munzel et al. (1992) as 

follows: Weed density [plants m
-2

] x competitive indices [depending on weed species; 0.03-4] 

x crop vigour [0.5 = very good; 1.0 = good; 1.5 = medium; 2.0 = bad] x relative time of weed 

emergence [1.0 = simultaneously with the crop; 0.6 = 10 days delay; 0.3 = 20 days delay] x 

yield expectation x product price = estimated yield loss. 

SigmaPlot 11.0 (Sysstat Software, Inc) was used for statistical analysis. All data was tested 

for normality (Shapiro-Wilks) and homogeneity of variances. Data on weed density was 

tested by employing a one-way analysis of variance (ANOVA) on the ranks (Kruskal-Wallis). 



- 19 - 

 

A non-parametric test was used because data were not normally distributed. The least 

significant difference was addressed using the Student-Newman-Keuls Method (α = 0.05). 

Yield data was subjected to ANOVA, and multiple mean pair-wise comparisons were 

performed using Fishers’ least significant difference (LSD) at α = 0.05.  

 

Results 

 

Herbicide efficacy data was combined for the trial years (2009/2010; 2010/2011), the two trial 

locations (Bingen; Bubach) and different tillages (+/- ploughing). Each herbicide treatment 

achieved a significant decrease of weed density compared to the untreated control (Fig. 1). 

Furthermore, the highest efficacy was shown when volunteer cereals were controlled 

successfully. The Clearfield
®
 herbicide showed an overall efficacy between 85 (BAS 79801 

H) and 93 % (BAS 79800 H). 

 

Herbicide treatment

Untreated

Nimbus C
S

Nimbus C
S + Focus U

ltra

Butisa
n Top

Butisa
n Top + Focus U

ltra

BAS 79801 H [1
0-11]

BAS 79801 H [1
2-14]

BAS 79800 H [1
.5 l/h

a]

BAS 79800 H [2
.0 l/h

a]

W
ee

d
 d

en
si

ty
 [

%
]

0

20

40

60

80

100

120

140

160

180

Untreated

PRE-E

PRE-E + POST-E

POST-E

a

b

c

d
d

d
d

d

d

 

Figure 1 Percentage weed density in plots of IT WOSR depending on the herbicide treatment. 

Combined data 2009-2011 (n = 7). 100 % equals weed density in the untreated control. 

Significant differences at p ≤ 0.05 are indicated using small letters. 
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Yield in untreated plots ranged between 13 dt ha
-1

 and 52 dt ha
-1

 with respect to the trial year, 

location and weed flora. The average yield of the combined data from weedy plots was 31 dt 

ha
-1

. Generally, each herbicide treatment resulted in a significantly higher yield compared to 

the untreated control (Fig. 2). Regarding the single herbicide treatments, lower yields were 

measured in plots treated either with Nimbus or Butisan Top compared to the other 

treatments. An average maximum yield surplus of 53 % was achieved by applying BAS 

78900 H with 2.0 l ha
-1

. 
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Figure 2 Percentage IT WOSR yield depending on the applied herbicide treatment. Combined 

data 2009-2011 (n = 7). 100 % equals yield in the untreated control. Significant differences at 

p ≤ 0.05 are indicated using small letters. 

 

A more specific view is necessary to evaluate the data with regards to the use of damage 

thresholds for weed control in IT WOSR. The weed flora was quite diverse at the different 

trial sites and volunteer barley, volunteer wheat, Thlaspi arvense, Chenopodium album, 

Matricaria inodora, Viola arvensis, Agropyron repens, Papaver rhoeas, Capsella bursa-

pastoris and Apera spica-venti were identified as the major weeds.  
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The emergence was most often observed simultaneously with OSR plants with a maximum 

delay of 10 days in few cases. The weed density differed intelligibly between 3 plants m
-2

 and 

150 plants m
-2

, while the major weed infestations were observed in plots in Bingen 2009 with 

an overall density of 203 plants m
-2

 and in plots in Bubach 2010 with 144 plants m
-2

 (Tab. 3).  
 

The crop vigour was rated ‘good’ (factor 1) in Bingen 2009 for both soil preparations and for 

the non-ploughed experiment in 2010, but only ‘moderate’ for the ploughed experiment of the 

same year. Heavy rainfall shortly after sowing caused aggradations of the soil.  

Only one experiment was performed in Bubach in 2009. Here, agronomic measures led to an 

optimal seedbed. Environmental conditions during drilling and early crop development 

resulted in well established and quite vigorous OSR plants. The prior conditions in the second 

year were different. The preceding crop WW was harvested late, at the end of August, and 

stubble tillage and seedbed preparation unfortunately led to poor starting conditions for the 

crop. Consequently, the crop vigour was ranked ‘poor’ (factor 2). Soil conditions in the 

ploughed experiment site were ‘moderate’ and rated with a factor of 1.2. 

Herbicide treatments showed a wide range of efficacy in weed control. The PRE-E treatments 

2 and 3 controlled Matricaria inodora, Capsella bursa-pastoris and Apera spica-venti but 

showed incomplete efficacy against the other weeds. PRE-E treatments 4 and 5 showed 

sufficient control against Matricaria inodora, Papaver rhoeas and Apera spica-venti but 

almost no efficacy was observed on Thlaspi arvense. The efficacy against volunteer cereals 

and Agropyron repens was covered by a subsequent application of the graminicide 

cycloxidim.  

Even the highest density of 150 volunteer cereals was covered by a treatment with 

metazchlor+quinmerac+imazamox, independent of the application timing (BBCH 10-11 

respectively BBCH 12-14). However, a higher dose rate of 35 g ha
-1

 a.i. imazamox increased 

the efficacy in some cases (Tab. 3). Nevertheless, single plants of volunteer cereals survived 

the treatment, but most died off during winter. The POST-E herbicide treatment 6 was weak 

on Thlaspi arvense, but the efficacy was significantly increased by an application at BBCH 

12-14 of the crop (Treatments 7-9). The response of Chenopodium album was also stronger 

when treated later. The overall efficacy against Matricaria inodora was adequate, but the 

highest level of control was achieved by early application timing (BBCH 10-11) in this case 

compared to the POST-E treatment at growth stage 12-14. Papaver rhoeas, Capsella bursa-

pastoris and Apera spica-venti were included in the range of efficacy but a decrease was 

detected for Agropyron repens and Viola arvensis. However, a higher dose rate of imazamox 

with 35 g ha
-1

 a.i. achieved higher levels of herbicide efficacy in some cases. 
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Yield data was quite diverse and depended strongly on the year and the location. In 2010, 

OSR plants showed growth depression and leaf yellowing after the PRE-E treatment with 

metazachlor+clomazone on the ploughed site in Bingen. However, the plants recovered and 

yields were still determined to range from 33.2 dt ha
-1

 to 34.2 dt ha
-1

 (Tab. 4). There was no 

statistically significant difference between the other herbicide treatments.  

No significant differences were found for the two 2010 Bingen datasets, which were 

ploughing and non-ploughing. The differences in the mean values of the treatment groups 

were not great enough to exclude the possibility that the differences were due to random 

sampling variability. However, yield of the untreated OSR plants was lower compared to 

yield of plants which received herbicide treatments. 

The other four datasets showed a clear distinction between untreated and treated plots, as well 

as between different herbicide treatments. Generally, the best results were achieved with a 

treatment of the herbicide metazachlor+quinmerac+imazamox. 

Single-plot data from the seven experimental sites were plotted as estimated yield loss vs. 

measured yield loss (Fig. 3). The data followed a linear relationship with a significant 

correlation coefficient of 0.48 (p = 0.01). However, some variation was observed between the 

estimated and measured values, for example, a yield loss of 4 % was calculated to be caused 

by weed infestation for the ploughed experimental site in Bingen 2010 but an actual loss of 1 

% was detected. Conversely, a marginal yield loss of 8 % was calculated for the ploughed 

experimental site in Bubach in 2010 by the model, but a high yield loss of 66 % was observed 

de facto.    
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Table 3 Weed density in plots of IT WOSR depending on the applied herbicide treatment. Mean values are shown. 

   Herbicide treatments 

Tillage Weed species 
Weed density m

-2
 in 

untreated plots 
Nimbus CS 

Nimbus + 

Focus Ultra 
Butisan Top 

Butisan Top + 

Focus Ultra 

BAS 79801 H 

(BBCH 10-11) 

BAS 79801 H 

(BBCH 12-14) 

BAS 79800 H 

(1.5 l ha
-1

) 

BAS 79800 H 

(2.0 l ha
-1

) 

 + Hordeum vulgare 13.5 11.0 0.0 10.8 0.0 0.5 1.0 0.0 0.0 

 Thlaspi arvense 17.8 5.0 4.0 18.3 15.3 11.0 0.5 0.3 0.0 

 Chenopodium album 20.5 2.0 1.0 9.5 6.5 4.5 0.3 0.0 0.0 

 - Hordeum vulgare 150.3 164.0 0.3 146.8 0.0 1.0 1.8 1.5 0.0 

 Thlaspi arvense 14.5 5.3 10.3 13.0 12.3 10.3 0.0 0.0 0.0 

 Chenopodium album 32.0 2.8 4.0 7.0 12.5 2.0 0.0 0.0 0.0 

 Matricaria inodora 6.3 0.0 0.3 0.0 0.8 0.3 0.8 0.0 0.0 

 + Hordeum vulgare 2.8 2.4 0.8 3.2 0.3 0.5 1.0 1.0 0.8 

 Viola arvensis 11.8 2.8 1.8 5.8 3.3 1.0 4.0 2.0 5.3 

 Agropyron repens 25.0 21.2 0.3 14.4 2.3 5.0 6.5 4.3 4.8 

 + Papaver rhoeas 111.3 58.3 45.7 0.7 2.0 0.0 5.7 1.7 0.7 

 Matricaria inodora 4.0 0.0 0.0 0.0 0.0 0.0 2.0 0.7 0.7 

 - 
Capsella bursa-

pastoris 5.7 0.0 0.0 2.3 0.0 0.0 0.0 0.0 0.0 

 Matricaria inodora 5.3 0.0 0.0 0.3 0.0 1.0 3.7 1.0 0.3 

 Papaver rhoeas 19.0 5.0 1.7 4.0 0.3 0.7 0.7 1.0 1.7 

 Viola arvensis 38.3 56.3 68.0 68.0 49.7 30.7 19.7 24.0 38.7 

 Others 7.7 3.0 2.0 4.0 1.7 1.0 0.0 0.3 0.3 

 +  
Capsella bursa-

pastoris 67.0 0.7 0.0 4.7 2.7 0.0 0.0 0.3 0.0 

 Matricaria inodora 13.3 0.0 0.0 0.0 0.0 0.0 1.3 0.7 2.0 

 Apera spica-venti 47.6 1.0 0.6 1.0 0.6 0.4 0.6 0.0 0.5 

 Others 16.0 5.0 1.0 2.7 0.0 1.3 1.0 0.0 0.3 

 - Triticum aestivum 23.3 18.3 0.0 16.0 0.0 1.7 2.3 0.0 0.0 

 Matricaria inodora 19.7 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 

 Others 9.7 0.7 0.7 1.3 1.0 0.7 1.3 0.3 1.0 
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Table 4 Yield of IT WOSR depending on the applied herbicide treatment. Yield loss was estimated using the model of Munzel et al. (1992). 

Multiple mean comparisons of yield data were performed using Fisher’s LSD. Significant differences at p ≤ 0.05 are indicated using small letters (+ 

= with plough, - = without plough; means are shown). 

   Herbicide treatments 

Trial Tillage Untreated Nimbus CS Nimbus + Focus Ultra Butisan Top 
Butisan Top + 

Focus Ultra 

BAS 79801 H 

(BBCH 09-11) 

BAS 79801 H 

(BBCH 12-14) 

BAS 79800 H 

(1,5 l ha
-1

) 

BAS 79800 H 

(2,0 l ha
-1

) 

Bingen Season 

2009/2010 
 +  34.0

a
 39.7

a
 41.8

a
 40.3

a
 45.9

a
 42.9

a
 42.4

a
 43.3

a
 44.4

a
 

  Predicted yield loss 3.1 % / measured yield loss 23 %      

  -  27.5
a
  29.1

a
 46.3

b
 25.1

a
 50.1

b
 48.0

b
 49.3

b
 49.3

b
 47.1

b
 

  Predicted yield loss 24.3 % / measured yield loss 41 %      

Bubach Season 

2009/2010 
 +  52.4

d
  58.0

abc
 55.7

bc
 56.3

bc
 54.5

c
 63.7

a
 61.2

ab
 61.0

ab
 60.0

abc
 

  Predicted yield loss 2 % / measured yield loss 13 %      

Bingen Season 

2010/2011 
 +  33.9

a
  34.2

a
 33.2

a
 34.9

a
 32.6

a
 37.8

a
 35.3

a
 34.9

a
 34.8

a
 

  Predicted yield loss 7 % / measured yield loss 3 %      

  -  31.6
a
  32.3

a
 28.5

a
 34.0

a
 30.7

a
 32.2

a
 32.0

a
 29.9

a
 31.7

a
 

  Predicted yield loss 4 % / measured yield loss 1 %      

Bubach Season 

2010/2011 
 +  13.2

c
  36.1

ab
 32.6

ab
 30.6

b
 34.6

ab
 35.9

ab
 34.3

ab
 36.6

ab
 38.4

a
 

  Predicted yield loss 8 % / measured yield loss 66 %      

  - 24.3
d
  32.0

c
 39.7

a
 34.4

bc
 40.2

a
 38.4

ab
 38.5

ab
 38.7

ab
 38.6

ab
 

  Predicted yield loss 10 % / measured yield loss 38 %      
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Figure 3 Relationship between the measured yield loss and the estimated yield loss in IT 

WOSR (model of Munzel et al., 1992). Data was plotted from field trials in Bingen and 

Bubach 2009-2011 (n = 28, * = statistically significant correlation). 

 

Discussion 

 

Metazachlor, quinmerac and clomazone are used with a relative frequency of 63 % to control 

weeds in OSR crops (Roßberg et al., 2002). This emphasises the magnitude of herbicide 

treatments performed at a time were the actual weed flora cannot be determined exactly. The 

intention of the Clearfield
®
 production system is to provide a POST-E weed control at growth 

stage 12-14 of OSR plants. The a.i. imazamox was added to the herbicide Butisan Top 

(metazachlor+quinmerac) in order to target a wider range of weeds, including volunteer 

cereals (Blackshaw et al., 1998) and weeds from the Brassicaceae family. Generally, the field 

experiments confirmed the possibility of broad spectrum weed control in OSR with POST-E 

treatments when the combination of IT varieties and the herbicide mixture 

metazachlor+quinmerac+imazamox was applied.  

Damage thresholds for volunteer cereals are found with 50-150 plants m
-2

 (Lutman, 1984; 

Küst et al., 1988). The control of such weeds is currently achieved by a second herbicide 

application in the fall or spring, mostly with ACCase-inhibiting herbicides. A density of 150 
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volunteer barley plants m
-2

 resulted in a significant yield loss when left untreated at the 

Bingen experimental site. The density was significantly decreased by the application of 12.5 g 

ha
-1

 imazamox. The combination of IT OSR varieties and the corresponding herbicides can be 

considered a ‘single herbicide treatment’ solution. Dicotyledonous and monocotyledonous 

weeds, especially volunteer cereals, can be controlled together in one POST-E treatment even 

when minimum tillage is applied. This fact could be of benefit to farmers in terms of working 

management. 

Matricaria spp. has become a major weed in WOSR production, with a frequency of 73 % in 

Germany in 2005 (Goerke et al., 2007). Efficacy is best if herbicides are applied until the first 

true leaf stage (Faber, 2002), which was confirmed by these trials. However, the efficacy was 

significant when metazachlor+quinmerac+imazamox was applied at growth stage 12-14, but 

was even higher at growth stage 09-11. Viola arvensis was not successfully controlled with 

imazamox and imazethapyr in field trials in Canada (Degenhardt et al., 2005). This 

corresponds with the results of the field trials in Bingen and Bubach, where Viola spp. could 

not be controlled to an acceptable level when treated with BAS 79801 H or other herbicide 

treatments, regardless of the application timing. However, for some weeds, a treatment at 

BBCH 12-14 with the lower dose rate of imazamox can result in lower efficacies. If such 

weeds occur, the application timing has to be adjusted to BBCH 09-11. Consequently, an 

early treatment may conflict with the application of damage thresholds. 

The most important factor for the use of damage thresholds is the exact knowledge of the 

weed species which have emerged on a farmers’ field. This knowledge can be provided when 

using HT cropping systems and can be used for the estimation of yield losses. The weed 

density of two experiments has led to the estimation of yield losses, which were confirmed by 

the measured yield. In one case, a high yield loss was calculated and subsequently occurred in 

the field. But for the other four experiments, some discrepancies were found between 

calculated yield losses and measured yield losses. Yield loss was strongly underestimated 

between 11 % and 58 %. However, other factors besides weed species and density affected 

growth and yield of OSR significantly.    

According to the environmental impact of plant protection agents, the use of IT OSR varieties 

can result in a lower quantity of herbicide use. Brimner et al. (2005) showed that the 

Environmental Impact Factor (EIQ) per hectare of grown OSR in Canada, which evaluates 

pesticides according to their potential to harm non-target organisms and environments, was 

about three times lower for HT canola, including imidazolinone-, glyphosate- and glufosinate-

tolerance, compared to conventional canola. This can be seen as a positive side-effect of HT 
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cropping systems and matches the context of the National Action Plan on the sustainable use 

of plant protection products forced by the JKI (Julius-Kühn Institut). The use of a lower dose 

of 12.5 g ha
-1

 imazamox, compared to 35 g ha
-1

 imazamox in most European countries, and 

the avoidance of unnecessary herbicide applications can contribute to a truly integrated weed 

management system for OSR.  

IT OSR varieties will be bred by the vast majority of OSR breeding companies (Bremer et al., 

2011). Generally, the yield of WOSR in this study is comparable to the mean yields of 

currently grown IT-free OSR hybrids, and a tolerance to herbicides may not be associated 

with negative changes in maturity, seed yield, weight or oil content, as shown by Blackshaw 

et al. (1994) for chlorsulfuron-tolerant canola. 

Possible disadvantages arising with the introduction of IT OSR varieties into European 

cropping systems include outcrossing between tolerant and non-tolerant OSR (Krato & 

Petersen, 2012), the distribution of IT OSR seeds during and after harvest (data not shown) 

and the occurrence of IT volunteers within the crop rotation. However, by forcing the 

communication with both growers using IT crops and growers using IS crops during the 

stewardship program for HT crops, it should be possible to minimise these disadvantages to a 

tolerable level. According to Graef et al. (2007) the introduction of HT OSR can also result in 

the selection of herbicide-resistant weeds after several years of cultivating HT OSR. With an 

adequate rotation length and application of herbicides with different modes of action, it is 

thought that herbicide-resistant weeds could be avoided. 

The present study only provides a first impression on the use of IT OSR, but results indicate 

that IT OSR can be a tool for the use of economic damage thresholds in integrated weed 

management in OSR. However, after the introduction of IT varieties together with the 

knowledge of the actual charge for corresponding herbicides per hectare, large-scale data has 

to be collected in order to validate the application of a decision-support system for weed 

control in OSR. 
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3 KRATO C & PETERSEN J (2012) Gene flow between imidazolinone-tolerant and -

susceptible winter oilseed rape varieties. Weed Research 52 (2), 187-196. 

(http://onlinelibrary.wiley.com/doi/10.1111/wre.2012.52.issue-2/issuetoc) 

 

ABSTRACT 

 

IT spring oilseed rape was developed in 1987 using conventional breeding methods and first 

marketed in Canada in 1996. Over the coming years, IT WOSR will be introduced into the 

European market. On the one hand, the IT cropping system provides the possibility of POST-

E weed control in OSR. On the other hand, the introduction of a new herbicide-tolerance trait 

into the European cropping systems may lead to new challenges for weed control in crop 

rotations containing WOSR. In this study, a two-year field and greenhouse experiment was 

carried out to determine the transfer frequency of the HT trait from IT WOSR plants to 

adjacently grown susceptible WOSR plants. Furthermore, cross-resistance to SUs and 

differences in herbicide response of heterozygous (HET-) and homozygous (HOM-) IT 

WOSR varieties to triflusulfuron-methyl was examined. The transfer frequency of the 

resistance trait and zygosity of the F1-generation was investigated using a real-time 

quantitative polymerase chain reaction (qPCR). Outcrossing ranged from 2.05 % in a westerly 

direction and 0.57 % in an easterly direction at the closest distance of 2 m between pollen 

donor (IT OSR plants) and pollen acceptor (IS plants). Outcrossing decreased significantly 

with increasing distance from the pollen donor, but IT F1-plants were still found at a distance 

of 45 m. 84 % of the analysed F1-oilseed rape plants showed both independent tolerance 

genes for imidazolinone-tolerance (PM1 and PM2) and were heterozygous for both genes. IT 

WOSR plants showed a cross-tolerance against triflusulfuron-methyl and the corresponding 

resistance factors were much higher for homozygous biotypes compared to heterozygous 

ones. Consequently, outcrossing can result in IT volunteers with cross-tolerance to 

triflusulfuron-methyl. 

 

Keywords: Clearfield
®

 production system, herbicide tolerance, imidazolinones, intraspecific 

gene flow, winter oilseed rape 
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4 KRATO C, HARTUNG K & PETERSEN J (2012) Response of imidazolinone-tolerant and                

-susceptible volunteer oilseed rape (Brassica napus L.) to ALS-inhibitors and alternative 

herbicides. Pest Management Science 68 (10), 1385-1392. 

(http://onlinelibrary.wiley.com/doi/10.1002/ps.v68.10/issuetoc) 

 

ABSTRACT 

 

IT OSR (Brassica napus L.) varieties are currently grown in Canada, Northern America, 

Chile and Australi. A Europe-wide introduction has started and will be pushed further for 

both spring and winter varieties. The primary aim of this study was to evaluate the impact of 

imidazolinone-tolerance for future volunteer OSR control in subsequent crops, particularly 

WW. A greenhouse bioassay showed cross-tolerance of IT OSR towards SUs, 

triazolopyrimidines (TPs) and sulfonylaminocarbonyltriazolinones (SCTs) (resistance factors 

between 5 and 775), with a homozygous variety expressing a higher tolerance level compared 

to a heterozygous variety. Calculated ED90-values suitable to control tolerant plants were 

always higher than the recommended herbicide dose. Generally, results were confirmed under 

field conditions, but with higher herbicide efficacies than expected in some cases (e.g. 

florasulam). Herbicides with an alternative mode of action were found to be effective to 

control IT volunteers in subsequent WW crops. Herbicide strategies have to be adjusted for 

volunteer control in subsequent crops if IT OSR varieties will be grown in the future. 

However, agronomic tools (harvest date, harvest technique, tillage) should to be used 

conscientiously in the first place to keep volunteer OSR densities at the lowest possible level.    

 

Keywords: acetolactate synthase, CLEARFIELD
®

, imidazolinone-tolerance, volunteer crops, 

weed management, weed persistence 
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5 KRATO C & PETERSEN J (2012) Response of imidazolinone-tolerant volunteer oilseed 

rape to herbicides and herbicide mixtures used for broad-leaved weed control in sugar 

beet. Proceedings 25
th

 German Conference on Weed Biology and Weed Control, Julius-

Kühn-Archiv 434, 353-359. 

(http://pub.jki.bund.de/index.php/JKA/issue/view/786) 

 

ABSTRACT 

 

Due to a higher proportion of OSR (Brassica napus) in sugar beet (SB) rotations, volunteer 

OSR can occur as a competitive weed in SB. The sulfonylurea triflusulfuron is widely used 

for broad-leaved weed control in SB, but may no longer be effective to control IT volunteers 

when IT OSR is grown, which is due to a cross-tolerance to ALS-inhibiting herbicides. Aim 

of the study was to evaluate 6 different herbicide strategies for the control of tolerant 

volunteers in the field. As a result, IT OSR showed a distinctive cross-resistance to 

triflusulfuron. Mean herbicide efficacy was 14 % and was only slightly increased by 

combination with metamitron. IS and IT OSR varieties showed different response to the 

herbicide treatments. A significantly higher reduction of plant fresh mass (shoot) > 90 % was 

caused by herbicide treatments that included the a.i. desmedipham, phenmedipham, 

ethofumesate, chloridazon and quinmerac. The results showed that triflusulfuron is no longer 

suitable to control volunteers if they are derived from imidazolinone-tolerance expressing 

varieties. However, alternative herbicides are available. Generally, increased attention has to 

be paid to volunteer management within the whole crop rotation if IT OSR is grown. 

Appropriate tillage strategies after OSR harvest have to be followed by effective herbicide 

treatments in the subsequent SB, for example a mixture of metamitron, phenmedipham, 

desmedipham, ethofumesat and lenaciel. 

Keywords: Clearfield
®
, crop rotation, herbicide tolerance, imidazolinones, oilseed rape, 

triflusulfuron, volunteer management 

 

 

 

 

 

 



- 34 - 

 

6 KRATO C & PETERSEN J (2012) Competitiveness and yield impact of volunteer oilseed 

rape (Brassica napus L.) in winter and spring wheat (Triticum aestivum). Journal of Plant 

Diseases and Protection 119 (2), 74-82. 

(http://www.ulmer.de/51795.html?UID=521784D8300F94522FC90B3CB66028F9770E17B

BBFAA6143D5) 

 

ABSTRACT 

 

With the introduction of IT OSR varieties in Europe, herbicide-based control strategies of 

volunteers in cereals may become ineffective in the future. Experiments were conducted on 

commercial fields and in outdoor pots in Bingen (Germany) to quantify the effect of OSR 

volunteers on yield and quality parameters of wheat. To simulate competition, OSR was sown 

into wheat plots at a range of different densities. Both spring and winter varieties of OSR and 

wheat were used in the experiments. Crop yield was expressed as the number of heads per m
-2

 

and net yield as kg per ha and hectolitre weight (HW). Wheat moisture content, percentage of 

dockage, wheat thousand-kernel weight (TKW), and crude protein content (CPC) were 

determined. Significant negative correlations were detected between the yield parameters 

heads m
-2

, HW and yield on the one hand, and OSR density on the other hand. Moisture 

content of wheat and percentage of dockage were positively correlated with the volunteer 

density. No clear correlation was found between volunteer OSR density and TKW or CPC of 

wheat. The highest volunteer density of 261 plants m
-2

 caused a maximum yield loss of 68 % 

in WW. Based on a non-linear regression analysis, a single volunteer OSR plant per m
2
 

causes a yield loss of between 0.74 and 1.61 % in the field, which corresponds to 26.3 kg ha
-1

 

(SOSR x spring wheat (SW)) and 147.3 kg ha
-1

 (WOSR x WW), respectively. Growing of IT 

OSR varieties will challenge farmers in terms of volunteer management. Accurate, delayed 

tillage after OSR harvest and control of IT volunteers with alternative modes of action except 

HRAC B will contribute to the successful avoidance and removal of IT volunteers from 

subsequent crops.  

 

Keywords: crop-weed competition, imidazolinone-tolerance, volunteer management, yield 

loss 
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7 General Conclusions 

 

The consequences of introducing IT OSR varieties and the imidazolinone herbicide 

imazamox for weed control in OSR production were evaluated by the present thesis. The 

application of the complementary herbicide imazamox/metazachlor/quinmerac is intended at 

growth stage 12 to 16 of the tolerant crop to make prophylactic treatments unnecessary and to 

target the weed flora in a more specific way. The foundation for the decision of potentially 

avoiding herbicide use and adjusting dose rates is given in IT OSR due to exact knowledge of 

the occurring weed species, their density and establishment of the crop.  

Shifts in the weed flora in OSR were detected in the past due to high cropping intensity and a 

limited number of herbicides (Hanzlik et al., 2012) resulting in the selection of competitive 

weeds in OSR. Increased abundance of cruciferous weeds, such as Capsella bursa-pastoris, 

Thlaspi arvense and Sisymbrium officinale as well as species from other families like 

Geranium spp., Anchusa spp. and Papaver rhoeas, was observed (Klaasen, 1995; Schröder et 

al., 2008; Lutman et al., 2009). Cruciferous weeds are commonly controlled by the soil 

herbicide clomazone but imazamox can target these weeds as well and shows efficacy against 

several other major weed species in OSR as confirmed by our data (Paper No. 1: POST-E 

weed control in WOSR using IT varieties), Grey et al. (2006) and data from BASF SE 

(Bremer et al., 2011; Pfenning et al., 2012 as well as unpublished data). Even high densities 

of volunteer cereals, as a result of minimum tillage, can be controlled with efficacies of > 95 

% by imazamox. This indicates that the use of HT OSR and POST-E herbicides can lead to 

successful weed control with a single treatment. The combination of 

imazamox/metazachlor/quinmerac is therefore more effective than currently available 

herbicide solutions. Progress in weed management can consequently lead to other work 

management benefits in the production process. In particular, in years with late harvest of 

WW and/or unfavourable environmental conditions prior to sowing of OSR, the use of IT 

OSR associated with a later use of herbicides can dampen work peaks and bring work relief 

for growers.    

Also, economic-related benefits were identified for OSR production with HT varieties. IT 

canola was grown in different eco-regions in Canada and yield was higher in two out of three 

cases compared to two conventional non-tolerant varieties when seeded in one of three or four 

years (Cathart et al., 2006).  

Gianessi (2005) stated that, for example, the adoption of glyphosate-tolerant crops saved 

roughly US$ 1.2 billion and 17 million kg of herbicides compared to non-tolerant cropping 
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systems. Data from field experiments in Alberta, Canada were evaluated with regard to the 

economics of weed management in HT OSR (Upadhyay et al., 2006). Major factors 

influencing the profitability of HT systems were costs for herbicides, variety performance, 

OSR price and location. The IT production system was profitable at the location Lethridge; at 

the location Lacombe, however, net returns were almost unaffected when comparing IT and 

conventional production systems. Moreover, the possibility of minimum tillage before 

seeding or direct-seeding of IT OSR and reduced or no herbicide applications instead of two 

can minimise costs for OSR production.  

Furthermore, currently grown OSR varieties are highly susceptible to ALS-inhibitors and can 

be negatively affected by soil residues of ALS-inhibitors that had been applied on preceding 

crops or by residues in tanks of application technique. In the case of IT OSR, crop tolerance is 

given. In contrast, the a.i. imazamox used in OSR should not cause harm to other rotational 

crops. The persistence of polar and loaded molecules such as imazamox strongly depends on 

the soil pH-value (Koskinen & Harper, 1990). Low pH-values can lead to an adsorption of 

IMIs to soil particles and a decreased and delayed degradation. SB, which was planted after 

soybeans with an in-crop treatment of 35 g ha
-1

 imazamox showed no yield effect at a high 

soil pH-value but did at a low pH (Bresnahan et al., 2002). The same amount of herbicide 

showed no effect on several vegetables, e.g. cabbage, potatoes, tomatoes and cucumbers that 

were planted in the following year in Ontario (O’Sullivan et al., 1998). The retention time for 

planting rice, maize and Sorghum bicolor after beans treated with 40 g ha
-1

 imazamox was 

significantly lower on Brazilian soils with a pH of 6.6 compared to 5.4 (Cobucci et al., 1998). 

Imazamox did not lead to replanting problems in soils in central Italy with pH-values between 

7.1 and 8.2 (Panucci et al., 2006).   

 

Recently, the introduction of genetically-modified OSR varieties in Europe was extensively 

assessed and critically discussed. Studies confirmed the possibility of spreading (e.g. Ramsay 

et al., 2003; Funk et al., 2006; Deveaux et al., 2007) and persistence (Gruber et al., 2004; 

Beckie & Warwick, 2010) of the herbicide-tolerance genes in the soil seed bank and volunteer 

populations. Clearly, IT OSR is not genetically engineered but results are highly transferable. 

The persistence of IT volunteers will be due to a high frequency of OSR in crop rotations and 

inevitable seed losses at harvest. Consequently, IT volunteers will occur, having an impact on 

the selection and choice of herbicides for in-crop weed control in subsequent crops. Another 

possible negative effect of IT OSR is associated with the use of an ALS-inhibiting herbicide 

in an as-yet sulfonylurea-free crop  
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The use of IT varieties and the ALS-inhibitor imazamox in OSR may cause shifts in the weed 

flora. Weeds have a high plasticity and are able to adapt to herbicide regimes and to find 

niches for their development (Burnside, 1996). The use of HT crops and complementary 

herbicides can improve herbicide efficacy and decrease the weed diversity (Burnside, 1992; 

Giaquinta, 1992). The weed flora is likely to change due to the use of imazamox. Cruciferous 

weeds, Papaver rhoeas and Geranium spp. will decrease in density. In contrast, the density of 

Matricaria spp., Lamium spp., Viola spp., Lolium spp. and Veronica spp. will increase due to 

limited efficacy of imazamox against these weeds (Grey et al., 2006; Pfenning et al., 2008).  

ALS-inhibition as a mode of action to target weeds in OSR has not been used before and will 

have an impact on the evolution of herbicide resistance in weeds in several rotational crops. 

Close to 400 weed biotypes evolved resistance against several modes of action (Heap, 2012). 

In OSR, the selection pressure on Stellaria media, Matricaria spp., Papaver rhoeas, 

cruciferous species and grass weeds Apera spica-venti and Alopecurus myosuroides for the 

development of ALS-resistance (target-site and enhanced metabolism) will consequently 

increase by the application of the ALS-inhibitor imazamox. A second ALS-inhibitor, 

ethametsulfuron, will be registered by the company DuPont for the POST-E weed control in 

OSR (Drobny & Schlang, 2012) and will intensify the problem.    

Recently, volunteer cereals have been commonly controlled by a POST-E application of 

ACCase-inhibiting herbicides, such as aryloxyphenoxypropionates and cyclohexanediones. 

The evolution of resistance of grass weeds towards ACCase-inhibitors is likely to decrease if 

weed control in OSR is achieved with the ALS-inhibitor imazamox instead.  

Farmers growing IT OSR have to adapt their herbicide strategies in cereals that follow OSR. 

In conclusion, the potentially increasing avoidance of ALS-inhibitors for weed control in 

cereals, which have to be substituted by other modes of action to secure efficacy against IT 

volunteers, can contribute to a decreased selection for ALS-resistance in weeds.   

Gene transfer of the tolerance traits PM1 and PM2 to non-tolerant OSR plants and the 

occurrence of IT volunteers were confirmed (Paper No. 2: Gene flow between IT and IS 

WOSR varieties). Based on the detected outcrossing frequencies, seed clusters of 1.6 to 82 IT 

volunteers m
-2

 can appear on adjacent fields when considering an OSR yield of 4 t ha
-1

, 

harvest losses of 5 % and a TKW of 5 g, but with high variation between fields and years. 

Generally, outcrossing was highest at low distances and many studies on genetically-modified 

OSR have shown gene dispersal to be confined by isolation distances and buffer zones 

(Morris et al., 1994; Scheffler et al., 1995; Ingram, 2000; Staniland et al., 2000; Reboud, 

2003; Damgaard & Kjellsson, 2005).  
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Generally, genetically-modified crops are embargoed with legal restrictions concerning gene 

flow but these restrictions would not apply to growing non genetically-modified plants. 

Another concern regards the vertical gene transfer from OSR to related species. The sexual 

compatibility of OSR and related weed species was investigated in several crossing 

experiments (Raybould & Gray, 1993; Fitzjohn et al. 2007). The results lead to the conclusion 

that the likelihood of transferring the imidazolinone-tolerance from OSR to related species in 

combination with a stable introgression of the gene into weed populations is present; 

however, the relevance of outcrossing events relating to the appearance of IT weed species is 

estimated to be low for agricultural practice.  

Seed dispersion of IT rapeseeds between different fields during harvest was confirmed by our 

own studies, which were not incorporated in the present thesis. The highest dispersion rates 

were counted with 787 volunteer plants m
-2

. Thus, seed dispersion by technical equipment  -

mainly combine harvesters - and the well-reported seed losses before and during OSR harvest 

(Gruber et al. 2004; Lutman et al., 2005) are the most relevant sources of IT volunteers in 

crop rotations. The cross-tolerance to ALS-inhibitors will cause consequences for the 

chemical control of IT volunteers in subsequent crops, namely significantly decreased 

efficiency of ALS-inhibitors against volunteers with tolerance to IMIs. Herbicide regimes in 

WW and SB have to change to ensure high efficacies against IT volunteer OSR (Paper No. 3 

& 4: Control of IT volunteer OSR in subsequent crops). With non-observance, significant 

yield losses have to be expected at high volunteer densities (Paper No. 5: Competitiveness 

and yield impact of volunteer OSR (Brassica napus L.) in WW and SW (Triticum aestivum). 

IT volunteer OSR should be categorised as a herbicide-resistant weed in consequence. A 

model to describe the impact of herbicide-tolerance for the characteristics of volunteer OSR 

was designed using physiological parameters including emergence pattern, volunteer density, 

seed longevity, death rates, flowering and seeding as well as control parameters such as 

harvest efficiency, herbicide treatment, soil tillage and crop rotation (Squire et al., 1997). In 

conclusion, seed bank levels of IT volunteers will be considerably more difficult to reduce if 

the efficacy of ALS-inhibiting herbicides in subsequent crops is compromised. Hence, 

guidelines for management of herbicide-resistant weeds should be used, e.g. for volunteer 

control in WW that is grown rotationally after IT OSR. A combination of cultural and 

herbicidal control measures can lead to successful containment of volunteer populations. 

According to Moss (2002) and Beckie (2006), an integrated weed management is required to 

reduce selection pressure. First of all, soil cultivation is a key step in reducing IT volunteers. 

Tillage should be delayed after OSR harvest to avoid induced dormancy in rapeseeds and to 
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promote emergence of volunteers. A second step is based on stubble hygiene, which can be 

achieved by destroying the volunteers with effective seedbed preparation and/or application of 

a non-selective herbicide. A slightly delayed drilling of WW is favourable to widen the time 

frame for weed-seedling emergence before the crop is sown and to decrease the winter 

hardness of OSR volunteers.  

During the whole crop rotation, it is important to control IT volunteers effectively with 

alternative herbicides if volunteers occur in the crop stand from the soil seed bank. The major 

aim has to be the avoidance of maturing IT OSR volunteers in order to prevent the 

distribution and increased persistence of IT volunteers on arable fields independent of the 

currently grown crop.     

Rationales for using IT OSR varieties depend on various factors including weed spectrum in 

OSR, tillage regimes and crop rotations. The herbicide clomazone has been an important tool 

for controlling cruciferous and some other important weeds in OSR since 1997 (Schröder et 

al., 2008). However, the use of clomazone is linked to regulatory requirements in terms of 

application due to a high potential of volatilization and observed damage on non-target areas 

(BVL, 2012). The combination of IT varieties and corresponding herbicides is useful to 

substitute clomazone in future OSR production and to facilitate the control of cruciferous 

weeds and some invasive weed species like Sinapis arvensis, Barbarea vulgaris, Bunias 

orientalis and Cardaria draba.  

When applying an isolated view of the rotational crop OSR, the use of minimal tillage (high 

density of volunteer cereals) and/or stressful working conditions due to unpredictable 

environmental conditions prior to sowing or shortly after sowing, are reasons for choosing IT 

OSR. The herbicide combination metazachlor/quinmerac/imazamox is not necessarily 

dependent on an optimal seedbed and soil moisture to facilitate high levels of weed control. 

An exception has to be made for e.g. Alopecurus myosuroides. Dry conditions in combination 

with an application at the two-true-leaf stage or later may significantly decrease the efficacy 

of the soil herbicide metazachlor. 

 

If integrated in crop rotations, the volunteer management in subsequent crops becomes the 

centre of attention. OSR is mainly grown in one out of three or four years in rotations 

containing a high amount of winter-sown cereals. If the above mentioned problematic weed 

species - e.g. cruciferous weeds - occur with high distribution and density in OSR, benefits of 

using IT OSR will overlap the increased effort of volunteer control.  
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In contrast, these rotations can be associated with a high proportion of grass weeds that may 

require a second herbicide application at later time of the growing season and may lead to 

increased costs. If the weed flora in OSR corresponds with the efficacy range of 

imazamox/metazachlor/quinmerac, a decision pro IT OSR is expedient. It can be suggested 

that IT OSR can be integrated in diverse rotations with winter cereals, spring cereals and 

maize because IT volunteer OSR can be controlled with herbicides for dicotyledonous weed 

control. However, the main volunteer management will appear in the direct following crop. 

Nonetheless, growers have to be aware of the fact that volunteer OSR can emerge over the 

whole growing season and that WOSR is quite competitive in spring crops due to its growing 

habit.  

In crop rotations containing both SB and OSR, the volunteer management is generally 

problematic and a restriction has to be made. The use of IT varieties cannot be recommended 

due to complicated volunteer management. OSR as a weed is highly competitive in SB and 

can cause significant yield losses. An additional risk would be an increasing density of soil 

pathogens such as Heterodera schachtii and Plasmodiophora brassicae in SB crop rotations. 

 

There has been, and will be, a lack of innovation regarding new herbicidal solutions for weed 

control in general. When assessing advantages and disadvantages of the Clearfield
®

 

production system, benefits for farmers in terms of working flexibility and broad-spectrum 

weed control are given and the IT volunteer management can be successfully accomplished 

with agronomic tools. Ultimately, innovative technologies can only be provided, but choice 

for adoption has to be made by every single farmer according to the operating conditions.  

However, a stewardship for Europe has to be implemented by BASF SE to re-allocate 

information to breeders, users as well as non-users on critical aspects of IT OSR production 

such as minimising gene flow, avoiding IT weeds, preventing seed dispersion and managing 

IT volunteers. 

 

 

 

 

 

 

 

 



- 41 - 

 

8 Summary 

 

OSR (Brassica napus L.) is one of the most important arable oil crops globally and is grown 

on an area of 31,680,945 ha as winter- and spring-sown varieties. The harvest is mainly used 

in human nutrition, animal feeding and as a renewable resource for the production of paints, 

varnishes and biodiesel. 

OSR can be considered a quite competitive crop but nonetheless weed control is carried out 

on the vast majority of the grown area. The most common treatments are done PRE-E or early 

POST-E, mainly as prophylactic treatments without exact knowledge of the weed species or 

their densities. In order to facilitate a more targeted weed control in OSR, IT varieties 

combined with the corresponding imidazolinone herbicide imazamox (target-site is ALS) + 

metazachlor/quinmerac (Clearfield
®

 production system) were developed for the European 

market by BASF SE and several breeding companies.  

By integrating IT plants into cropping systems, herbicide-tolerance genes will appear in 

agricultural ecosystems. Unless the tolerance is achieved by non-transgenic breeding 

methods, the introduction creates concerns regarding spreading the herbicide-tolerance in 

space and time causing unwanted changes for volunteer OSR management.  

The hypothesis of the present study was to investigate important aspects, which are likely to 

arise with a commercial introduction and cultivation of IT OSR in Europe:  

(i) Does the Clearfield
®
 production system imply the possibility of POST-E weed control, 

with regard to the use of damage thresholds in OSR? Is it possible to identify benefits 

compared to common weed management practices?  

POST-E weed control was successful using IT varieties. The total herbicide efficacy of 

imazamox/metazachlor/quinmerac was about 90 % in the field trials. Good results were 

achieved against volunteer cereals, Thlaspi arvense, Chenopodium album, Matricaria 

inodora, Papaver rhoeas, Capsella bursa-pastoris and Apera spica-venti but a lack of 

efficacy was observed regarding control of Agropyron repens and Viola arvensis. Yield was 

increased significantly in treated plots compared to untreated ones by up to 50 %. IT OSR can 

be a tool for the use of damage thresholds in integrated weed management in OSR. 

(ii) Does gene transfer between adjacent IT and imidazolinone-susceptible (IS) OSR 

varieties lead to an IT F1-generation? What is the genetic outcome of such outcrossing 

events? 

Outcrossing between IT and IS OSR varieties was confirmed with outcrossing frequencies 

between 0.57 and 2.05 % between pollen donors and acceptors that were directly adjacent.  
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Outcrossing declined significantly with increasing distance but was still found 45 m from IT 

plants. The transfer of both tolerance genes and heterozygosity was shown by 84 % of 

analysed F1-plants.  

(iii) How do IT OSR plants respond to ALS-inhibiting herbicides? Is there a need to 

adjust herbicide strategies for the control of IT volunteers in subsequent crops in the 

future? 

A cross-tolerance of IT OSR to SUs, TPs and SCTs was shown in greenhouse bioassays and 

field trials with calculated resistance factors between 5 and 775. Furthermore, homozygous IT 

plants expressed a much higher tolerance level compared to heterozygous ones.  

Herbicides with alternative modes of action other than HRAC B (ALS-inhibition) were found 

to be effective to control IT volunteers in subsequent crops. Pendimethalin, picolinafen, 

isoproturon, diflufenican, florasulam, flufenacet and flurtamone controlled IT volunteers in 

WW. In sugar beet, herbicide combinations with metamitron, desmedipham, phenmedipham, 

ethofumesate, chloridazon and lenacil were able to control IT volunteers but single active 

ingredients were not. 

(iv) Is there a measurable negative effect of volunteer OSR on yield and quality 

parameters of wheat, if weedy OSR is not controlled accurately? 

Significant negative correlations were detected for the independent variable volunteer OSR 

density and the wheat yield parameters heads m
-2

, HW and yield. In contrast, moisture content 

of wheat and percentage of dockage increased with increasing volunteer density. The highest 

volunteer density of 261 plants m
-2

 caused a maximum yield loss of 68 % in WW. Based on a 

non-linear regression analysis, a single volunteer OSR plant per m
2
 causes a yield loss of 

between 0.74 and 1.61 %.  

In conclusion, the use of IT OSR varieties can substitute the herbicide clomazone in the future 

and provide POST-E weed control with detailed knowledge of the weed spectrum. This can 

promote integrated weed management, the use of damage thresholds in weed control and 

working management benefits for growers. 

Clearly, difficulties in volunteer management are a drawback of IT OSR, but with conducting 

an accurate, delayed tillage after OSR harvest and adjusting herbicide regimes in subsequent 

crops, IT volunteers should not cause more harm compared to IS OSR volunteers.  

Based on the assumption that innovations in development of new active ingredients for weed 

control cannot be expected, the use of HT crops has to be seen as a major tool to solve issues 

in weed management. 
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9 Zusammenfassung 

 

Raps (Brassica napus L.) ist eine der weltweit wichtigsten Ölpflanzen und wird auf einer 

Fläche von 31.680.945 ha als Winter- und Sommerform angebaut. Die geernteten Rapssamen 

werden vornehmlich in der menschlichen Ernährung, als Futtermittel für Nutztiere oder als 

Grundlage für die Produktion von Farben, Lacken und Biodiesel verwendet. 

Raps ist eine sehr konkurrenzstarke Kultur, aber trotzdem werden auf einem Großteil der 

Rapsanbaufläche Herbizide zur Unkrautbekämpfung angewendet. Im Wesentlichen werden 

prophylaktische Maßnahmen im Vorlauf oder sehr frühen Nachauflauf durchgeführt, ohne die 

genaue Verunkrautungssituation zu kennen. Um eine gezieltere Unkrautkontrolle zu 

ermöglichen, wurde eine Kombination aus IT Rapssorten und dem korrespondierenden 

Imidazolinonherbizid Imazamox (Zielort ist ALS) in Mischung mit Metazachlor und 

Quinmerac von BASF SE und Pflanzenzüchtungsfirmen entwickelt. Dieses System soll unter 

dem Namen Clearfield
®
 europaweit angewendet werden.   

Durch die Integration von IT Rapssorten in Fruchtfolgen werden Herbizidtoleranzgene in 

Agrarökosystemen auftreten. Die Herbizidtoleranz wurde zwar durch Methoden der 

konventionellen Pflanzenzüchtung erreicht, nichtsdestotrotz ruft die räumliche und zeitliche 

Verbreitung dieser Gene Bedenken hervor und könnte wesentliche Veränderungen in der 

Ausfallrapskontrolle bedingen. 

Ziel der vorliegenden Untersuchung was es, wichtige agronomische Askekte zu beleuchten, 

die mit einer kommerziellen Einführung und dem großflächigen Anbau von IT OSR 

einhergehen. 

(i) Bietet das Clearfield
®

 Produktionssystem die Möglichkeit der Herbizidanwendung im 

Nachauflauf und die damit verbundenene Verwendung von Schadensschwellen im 

Rapsanbau? Lassen sich Vorteile im Vergleich zu herkömmlichen 

Unkrautbekämpfungsverfahren ableiten? 

Die Unkrautkontrolle im Nachauflauf in IT Winterraps konnte mit einem 

Gesamtwirkungsgrad von 90 % erfolgreich durchgeführt werden. Eine sehr gute Wirksamkeit 

gegen Ausfallgetreide, Thlaspi arvense, Chenopodium album, Matricaria inodora, Papaver 

rhoeas, Capsella bursa-pastoris and Apera spica-venti und Wirlungslücken gegen Agropyron 

repens und Viola arvensis wurden beobachtet. Der Ertrag konnte durch die 

Herbizidmaßnahme im Vergleich zur unbehandelten Kontrolle um bis zu 50 % gesteigert 

werden. Die Verwendung herbizidtoleranter Rapssorten kann ein Werkzeug zur Anwendung 

von Schadensschwellen im Rahmen einer integrierten Rapsproduktion sein. 
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(ii) Führt Gentransfer zwischen IT und nicht-toleranten Rapspflanzen zu einer 

herbizidtoleranten F1-Generation? Welches Zygotielevel weisen die Nachkommen auf? 

Intaspezifischer Gentransfer zwischen IT und empfindlichen Rapssorten wurde bestätigt, 

wobei die Auskreuzungsraten zwischen 0,57 und 2,05 % in unmittelbarer Nachbarschaft 

beider Rapsgenotypen lagen. Die Auskreuzungsraten verringerten sich signifikant mit 

steigender Entfernung, aber auch in 45 m Entfernung zum Pollenspender wurde 

Genübertragung phänotypisch nachgewiesen. Die Übertragung beider Toleranzgene und 

Heterozygotie bestätigte sich auf genetischer Ebene für 84 % der F1-Pflanzen. 

(iii) Wie reagieren IT Rapspflanzen auf verschiedene ALS-Inhibitoren? Muss die 

chemische Ausfallrapskontrolle verändert werden, um zukünftig IT Ausfallraps effektiv 

zu kontrollieren? 

Eine Kreuztoleranz der IT Rapspflanzen gegenüber den chemischen Klassen 

Sulfonylharstoffe, Triazolopyrimidine and Sulfonylamino-Carbonyltriazolinone wurde 

sowohl in Gewächshausstudien als auch im Feld deutlich. Errechnete Resistenzfaktoren lagen 

zwischen 5 und 775. Außerdem exprimierten homozygot IT Rapspflanzen höhere 

Toleranzlevel im Vergleich zu heterozygoten Pflanzen. 

Herbizide, die nicht die ALS als Zielenzym angreifen, zeigten eine gute Wirksamkeit zur 

Bekämpfung von IT Ausfallraps in Winterweizen (Pendimethalin, Picolinafen, Isoproturon, 

Diflufenican, Florasulam, Flufenacet und Flurtamone) und Zuckerrüben (Metamitron, 

Desmedipham, Phenmedipham, Ethofumesat, Chloridazon, und Lenacil). Wobei in 

Zuckerrüben ausschließlich Herbizidmischungen hohe Wirkungsgrade erreichten.  

(iv) Gibt es einen negativen Effekt von Ausfallraps auf die Ertrags- und 

Qualitätsparameter von Weizen, wenn der Ausfallraps nicht erfolgreich bekämpft 

wurde? 

Signifikant negative Korrelationen zeigten sich zwischen der Einflussvariable 

Ausfallrapsdichte und den Parametern Weizenertrag, Ährendichte m
-2

 und Hektolitergewicht. 

Die Feuchte und der Besatz des Erntegutes stiegen demgegenüber bei ansteigender 

Ausfallrapsdichte. Die höchste Ausfallrapsdichte von 261 Pflanzen m
-2

 in Winterweizen 

führte zu einem Ertragsverlust von 68 %. Basierend auf einer nicht-linearen 

Regressionsanalyse kann eine Ausfallrapspflanze pro m
2
 zu einem Ertragsverlust zwischen 

0,74 und 1,61 % führen. 

Als Schlussfolgerung lässt sich festhalten, das die Anwendung von IT Rapssorten den 

umstrittenen Wirkstoff Clomazone ersetzten und zu einer zielgerichteten Unkrautkontrolle im 

Nachauflauf im Raps führen kann. Verfahren der integrierten Unkrautbekämpfung und die 
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Anwendung von wirtschaftlichen Schadensschwellen werden unterstützt und Verbesserungen 

im Arbeitsmanagement der Landwirte sind möglich. 

Jedoch ist das Auftreten von IT Ausfallraps ein deutlicher Nachteil des Anbausystems. Wird 

aber eine effektive und verzögerte Bodenbearbeitung nach der Rapsernte mit der Anpassung 

von Herbizidstrategien in Folgekulturen verknüpft, sollten IT Ausfallrapspflanzen nicht 

problematischer sein als momentan auftretende, nicht IT Ausfallrapspflanzen. 

Innovationen in der Entwicklung neuer herbizider Wirkstoffe sind nicht zu erwarten. 

Dementsprechend ist die Verwendung herbizidtoleranter Kulturpflanzen ein bedeutendes 

Werkzeug zur Lösung wichtiger Probleme in der Unkrautbekämpfung. 
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