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Abstract

The  vertebrate  body  plan  displays  left-right  (LR)  asymmetries  of  organ  placement 

superimposed on an overt bilaterally symmetrical organization. Symmetry is broken during 

embryogenesis,  and  asymmetric  gene  expression  precedes  asymmetric  organ 

morphogenesis.  The  proton/potassium  pump  ATP4  was  shown  to  play  a  role  in  LR-

development of the frog Xenopus laevis as well as in other deuterostomes. Two opposing 

models of symmetry-breakage were proposed, the “ion-flux” and the “leftward flow” model. 

The former proposed that symmetry was broken by LR-asymmetric expression of the  α-

subunit of ATP4 during cleavage stages. The latter claimed a cilia-based leftward flow at 

the gastrocoel roof plate (GRP) to take center stage during neurulation, i.e. a day later in 

development. 

In the present thesis work, the role of ATP4a in symmetry-breakage was re-addressed and 

evidence for symmetrical expression and function of ATP4a was gathered. ATP4a was 

shown to be required for two Wnt-signaling dependent  steps during the setup of cilia-

driven leftward flow at the GRP: (1) Wnt/β-catenin (β-cat) dependent expression of Foxj1 

during gastrulation, and (2) Wnt/planar cell polarity (PCP) dependent posterior localization 

of motile cilia during neurulation. These data challenge the “ion-flux” hypothesis and argue 

for a conserved ATP4- and cilia-dependent symmetry-breakage mechanism throughout the 

vertebrates. Furthermore, the function of Wnt-signaling components was analyzed in the 

context of GRP-formation: The receptor Frizzled 8 (Fz8) and β-cat were required for Foxj1 

expression during gastrulation. Morphogenesis of the GRP, posterior polarization of motile 

cilia  and  expression  of  Xnr1 and  Coco in  somitic  cells  were  all  required  for  LR-

development.  Loss  of  non-canonical  Xwnt11b-signaling  perturbed  these  process, 

suggesting  that  non-canonical  Wnt-signaling  branches,  in  addition  to  Wnt/PCP,  were 

relevant for LR-development.

ATP4-mediated Wnt-signaling was also required for  Foxj1 expression and motile cilia in 

other epithelia during Xenopus development, i.e. the skin, floor plate and the ependymal 

cell  layer.  In  the  floor  plate  β-cat  was  required  for  Foxj1 expression  downstream  of 

Hedgehog-signaling.  In  the  skin  mucociliary  epithelium  ATP4a  and  Wnt/β-cat  were 

required downstream of Notch/Delta-mediated cell-type specification of multiciliated cells. 

This was also true for a new cell type of serotonergic cells described here, which was 
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characterized  morphologically,  by  analysis  of  gene  expression  and  response  to 

manipulations of Wnt- and Notch/Delta-signaling.

In summary, the data presented in this thesis suggest a conserved function of ATP4a and 

Wnt-signaling  in  vertebrate  symmetry-breakage  and  Foxj1-dependent  ciliogenesis  in 

Xenopus.   
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Zusammenfassung

Wirbeltiere  weisen  Links-Rechts-(LR-)Asymmetrien  in  der  Positionierung  ihrer  inneren 

Organe  auf,  welche  von  dem  im  Allgemeinen  bilateral-symmetrischen  Körperbauplan 

überlagert  werden.  Die  bilaterale  Symmetrie  wird  während  der  Embryonalentwicklung 

gebrochen,  dabei  geht  die  asymmetrische  Aktivität  von  Genen  der  asymmetrischen 

Organmorphogenese  voraus.  Der  Protonen/Kalium-Pumpe  ATP4  wurde  eine  Rolle 

während  der  LR-Entwicklung  von  Xenopus  laevis und  weiteren  Deuterostomiern 

zugesprochen.  Zum  Ablauf  des  Symmetriebruchs  wurden  jedoch  zwei  gegensätzliche 

Modelle vorgeschlagen: das „Ionen-Fluss“- und das „Flüssigkeitsstrom“-Modell. Während 

das erste Modell impliziert, dass eine LR-asymmetrische Verteilung der α-Untereinheit von 

ATP4 in Furchungsstadien zum Symmetriebruch führt, schlägt das zweite Modell vor, dass 

ein  cilienabhängiger,  linksgerichteter  Flüssigkeitsstrom  über  Zellen  der  Archenteron-

Dachplatte (GRP) zum Symmetriebruch während Neurulastadien führt. Dies wäre ein Tag 

später in der Entwicklung als vom „Ionen-Fluss“ Modell vorgeschlagen.   

In dieser Arbeit wurde die Funktion von ATP4a während des Symmetriebruchs nochmals 

näher  untersucht.  Die erhaltenen Ergebnisse legten eine symmetrische Verteilung und 

Funktion von ATP4 während der LR-Entwicklung nahe. Es konnte gezeigt werden, dass 

die Funktion von ATP4a in zwei Wnt-abhängigen Signalprozessen für die Entstehung des 

linksgerichteten Flüssigkeitsstroms benötigt wurde: (1.) Für die Wnt/β-Catenin-abhängige 

Expression  von  Foxj1 während  der  Gastrulation,  und  (2.)  für  die  Wnt/PCP-abhängige 

(planare  Zellpolarität)  posteriore  Positionierung  von  motilen  Cilien  während  der 

Neurulation. Diese Daten stellten die „Ionen-Fluss“-Hypothese in Frage und unterstützten 

die  Idee  eines  konservierten  Symmetriebruch-Mechanismus  in  Wirbeltieren,  welcher 

ATP4- und Cilien-abhängig ist. Zudem wurden die Funktionen von weiteren Komponenten 

des Wnt-Signalwegs währen der Entstehung der GRP untersucht: Der Rezeptor Frizzled 8 

(Fz8)  und  β-Catenin  wurden  für  die  Expression  von  Foxj1 während  der  Gastrulation 

benötigt.  Funktionsverlust  des non-kanonischen Liganden Xwnt11b hingegen störte  die 

Morphogenese  der  GRP,  die  posteriore  Ausrichtung  von  motilen  Cilien,  sowie  die 

Expression von  Coco und  Xnr1 in somitischen Zellen der GRP. Dies legte nahe, dass 

neben Wnt/PCP die Aktivität weiterer non-kanonischer Signalzweige des Wnt-Signalweges 

für die LR-Entwicklung notwendig waren.          
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ATP4-abhängige  Wnt-Signalaktivität  war  auch  für  die  Expression  von  Foxj1 und  die 

Entstehung motiler  Cilien in anderen ciliierten Epithelien während der Entwicklung von 

Xenopus notwendig: z.B. in der Haut, der neuralen Bodenplatte und im Ependym. In der  

Bodenplatte des Neuralrohrs wurde β-Catenin dem Hedgehog-Signalweg nachgeschaltet 

für die  Foxj1 Expression benötigt. Im mucociliären Epithel der Haut wurden ATP4a und 

Wnt/β-Catenin gebraucht, nachdem die Zellen über den Notch/Delta-Signalweg spezifiziert 

wurden. Diese Art der Regulation wurde auch in einem neuen Zelltyp serotonerger Zellen 

beobachtet,  welcher  hier  mittels  morphologischer  Analyse,  Analyse der  Genexpression 

und anhand der  Reaktion  auf  Manipulation  des Notch/Delta-Signalwegs  charakterisiert 

wurde.  

Zusammenfassend kann gesagt werden, dass die in dieser Dissertation vorgelegten Daten 

für eine evolutionäre Konservierung der Funktionen von ATP4a und des Wnt-Signalweges 

beim Symmetriebruch der Wirbeltiere sprechen, sowie eine Verbindung zwischen ATP4a 

und Wnt bei der Foxj1-abhängigen Entstehung von Cilien in Xenopus herstellen. 

IV
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Introduction

Developmental Biology – On The Emergence Of Pattern And Structure

The fascinating field of developmental biology approaches one of the most fundamental 

questions in biology: How can a whole organism be formed from a single egg cell, fertilized 

by  a  tiny  sperm  cell?  This  question,  with  all  its  philosophical  as  well  as  biological  

implications,  has challenged minds throughout  human history.  During  the long time of 

theoretical  and  experimental  attempts  towards  understanding  the  processes  that 

eventually  lead to  the  emergence  of  a  viable  hatchling  or  new-born,  insights  into  the 

mechanisms  that  shape  the  embryo  were  dramatically  expanded.  Although  the  sheer 

complexity of the process is still overwhelming and the endless list of unresolved mysteries 

is  becoming  rather  longer  than  shorter  with  time,  some fundamental  principles  in  the 

development of multicellular structures could be extrapolated: The key to understanding 

development is the knowledge of how patterns emerge and how distinct structures are 

shaped. Therefore, it is necessary to break down development into separable processes, 

which  can be tested experimentally,  and add one piece after  the  other  to  the greater 

puzzle. 

This study tries to elucidate the influence of the ion-pump ATP4 (also called the gastric 

H+/K+-ATPase) on the early development of the frog Xenopus laevis, with a special focus 

on symmetry-breakage of  the left-right  (LR) axis.  Therefore,  the following sections will  

introduce the model organism  Xenopus laevis, give an overview of mechanisms of LR-

development and will  describe the structure and function of ATP4. Relevant aspects of 

developmental mechanisms will be described using examples from Xenopus. Furthermore, 

a  brief  introduction  on  general  mechanisms  of  cell-cell  communication  will  be  given, 

including an overview on cilia. Selected signaling pathways, which are of special interest in 

order to understand the results, will be briefly described. 
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The African Clawed Frog – Xenopus laevis

Historical Background Of Xenopus Research

The  African  clawed  frog,  Xenopus  laevis,  belongs  to  the  class  of  amphibians  and 

taxonomic family of Pipidae or “tongueless frogs”. This fully aquatic species lives in muddy 

ponds in central Africa, which often tend to vary in water levels, and is therefore adapted to 

a  broad rage of  salt-concentrations  and  temperatures.  Moreover,  females  of  Xenopus 

species  are  able  to  respond  to  human  pregnancy  hormones  (gonadotropins),  which 

stimulate  egg  maturation  and  deposition  throughout  the  whole  year.  Injection  of  (first 

morning)  urine  of  potentially  pregnant  women  into  the  dorsal  lymph-sac,  also  called 

“Hogben test”, was used until the 1960s for pregnancy tests (Gurdon et al. 2000), hence 

the German common name Apothekerfrosch, “pharmacy-frog”.   

Xenopus As A Model Organism For The Study Of Developmental Events

The ability to deliver batches of several hundreds of eggs in a predictive manner and the 

ease of animal husbandry have made  Xenopus an optimal model organism for modern 

biomedical research, especially in developmental biology. Scientists can get hundreds of 

eggs from one female, which can be kept in culture. These eggs are often used either in  

electrophysiology, or after in vitro fertilization as model organism in developmental biology. 

The size of eggs and early embryos is relatively large (1mm in diameter), due to the high 

amount  of  maternally  deposited  yolk  in  the  egg.  Size  and  robustness  of  eggs  and 

embryos,  as well  as the possibility to  keep them in water-filled petri  dishes, facilitates 

various forms of manipulation ranging from injections (mRNA/DNA, proteins and drugs) to 

incubation (differential media, protein solutions and pharmacological agents) to physical 

manipulations (ex-/transplantation, ablation and disruption) (Sive et al. 2000).

Many of  these  features  are  not  exclusive  to  Xenopus,  but  shared within  the  class  of 

Amphibia:  e.g.  the  famous German embryologists  Hans Spemann and  Hilde  Mangold 

performed their  Nobel  Prize-winning  experiments  on  axis  induction  in  Triturus species 

(Spemann  and  Mangold  1924).  Therefore,  it  is  rather  the  ease  of  animal  husbandry 

alongside historical reasons that made Xenopus laevis become one of the most important 
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organisms  in  modern  developmental  biology.  Experiments  in  Xenopus contributed 

fundamental findings to various fields, e.g. genomic equivalence of the nuclei, cell cycle 

control, existence of mitochondrial DNA and its maternal inheritance, as well as discovery 

of the first eukaryotic transcription factor, to name just a few (Harland et al. 2011). 

The Normal Development Of Xenopus laevis

  

The normal early development of Xenopus can be separated into multiple phases, namely: 

fertilization, cleavage, blastulation, gastrulation and neurulation, followed by a phase of 

organogenesis and growth. At the end of early development the amphibian larva, called 

tadpole, emerges as a free swimming aquatic creature. The larval stage is terminated by 

hormone-induced metamorphosis,  during which the organism is  remodeled in  order  to 

generate the adult frog (e.g. retraction of gills and formation of functional lungs).

The focus of this study is on the early development, after fertilization and up to tadpole 

stages. Therefore I present an introduction into some of the main processes, which take 

place during this time-frame of development: 

Cleavage And Blastula Stages

After fertilization, the maternal and paternal pro-nuclei fuse and the new genome of the 

embryo is assembled. During cleavage, hundreds of cells are generated from the fertilized 

egg by mitotic cell divisions. These cell divisions only take about 40 minutes to one hour 

each and are some of the fastest in the animal  kingdom. This speed is possible only 

because all necessary proteins and factors for genome duplication and cell division are 

maternally deposited in the egg cytoplasm and yolk. The G-phases (1 and 2) are skipped, 

and the cell(s) only cycle from S- to M-phase and back. The absence of G-phases, during 

which protein synthesis takes place, has several consequences which make the very early 

embryo special in comparison to later stages: (a) There is no growth during this phase of  

development, rather the size of the embryo decreases; (b) only cell number increases; (c)  

there is barely any zygotic transcription (although some examples are known; Skirkanich 

et al. 2011; Gilbert 2003a). 
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After the first cleavages, the blastocoel cavity starts to be formed at the animal hemisphere 

of the blastula. This fluid-filled cavity is required for gastrulation to occur (Gilbert 2003a): It  

generates free space into which cells can enter, and spatially separates the most animal 

(“upper”) cells from the vegetal (“bottom”) ones. The latter secrete inductive signals that  

influence adjacent cells to form mesoderm (Heasman 2006). At mid-blastulation stages 

transcription is activated (mid-blastula transition; Newport et al. 1982), thereby facilitating 

differential gene-expression.

In  summary,  the rapid generation of  many cells and the activation of  transcription are 

crucial to “set the stage” for morphogenetic signaling events and concomitant changes in 

subsets of cells – hence, for the generation of diversity among cells.     

Gastrulation

Gastrulation  can  be  seen  as  a  consequence  of  functional  diversity  among  the  cells  

generated by rapid cleavage and signaling events. During this phase of development, the 

embryo starts to get organized into groups of cells committed to a specific germ layer,  

ecto-,  meso-  and  endoderm  (Heasman  1997).  The  three  germ  layers  not  only  get 

organized functionally to form prospective neural  tissue and skin  (ectoderm),  muscles, 

blood and inner organs (mesoderm), and the future gut (endoderm) including derivatives 

(e.g. swim bladder/lungs), they also get organized by gastrulation movements (migration, 

involution and epiboly) in a topological sense: Meso- and endodermal cells get inside of 

the embryo and are covered by ectoderm, placing the endoderm inner-most, the ectoderm 

outer-most and the mesoderm lying in between (Gilbert 2003a).  

Functional diversity among cells of the early gastrula can be best observed in the context  

of  classical  transplantation experiments of  Mangold and Spemann (1924),  which were 

originally  carried  out  in  order  to  understand  how cell-fate  specification  takes  place  in 

different parts of the early embryo. They cut out a piece of tissue, just above the dorsal lip  

(area of dense pigmentation and first “entrance” for cells into the blastocoel cavity), and 

transplanted it into the ventral side of a host blastula. This small piece was able to evoke 

dramatic changes in the host by organizing itself and surrounding cells into a secondary 

anterior-posterior  (AP)  and  dorso-ventral  (DV)  axis,  resulting  in  Siamese  twins.  This 
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experiment demonstrates that cells of the gastrula are not all the same, as cells from other 

parts of the gastrula did not have this ability, but rather developed according to their new 

surrounding. Dorsal most cells communicate with surrounding cells during gastrulation in 

order to generate patterns and structures. 

This group of cells, which was later named Spemann's organizer, is crucial for gastrulation. 

Both edges of the dorsal lip expand towards the ventral marginal-zone (VMZ), eventually 

forming a ring of cells which enter the inside of the embryo, i.e. the blastopore (Keller et al.  

2003). Signal gradients of molecules secreted by the organizer induce differential gene 

expression  along  the  dorso-ventral  (DV)  and  animal-vegetal  axes  (Niehrs  2001).  This 

differential  gene expression results  in  formation  of  different  tissues from formally non-

distinguishable cells (Heasman 2006). Taking the mesoderm as an example, it forms from 

dorsal-most to ventral: prechordal plate/notochord, somites, heart, pronephros and blood 

cells (Gilbert 2003a). 

As  more  and  more  cells  get  inside  and  the  blastopore  is  progressively  closed,  the 

blastocoel  is  reduced  and  replaced  by  another  fluid-filled  cavity  of  importance  during 

development - the archenteron or gastrocoel (Shook et al. 2004). This cavity will remain 

the inner lumen of the developing gut, and the surrounding cells will differentiate along the 

AP-axis to form the gastrointestinal tract, from mouth to anus. 

Neurulation

During neurulation, which overlaps with late stages of gastrulation, the embryo develops 

most prominently the neural tube on the dorsal side. Again, the orchestrated combination 

of  diverse  signaling  events,  cell  movements  and  cell-shape  changes  facilitates  the 

successive emergence of patterns and distinct structures (Gilbert 2003b). 

The notochord is formed during late gastrulation/early neurulation. It is derived from dorsal 

most mesoderm and consists of compacted cells, which are in a tight association with 

each  other.  Therefore,  they  form  a  stable  rod-like  structure  at  the  dorsal  midline, 

underneath the neuroectoderm (Gilbert 2003b). The notochord stabilizes the larva and is 

required for “fish-like” swimming, as it functionally antagonizes the forces generated by 

muscle fibers. 
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Paraxial (left and right adjacent to the notochord), the presomitic mesoderm is transformed 

in  bilateral-symmetric  aggregates  of  cells,  called  the  somites  (Brent  et  al.  2002).  The 

somites  are  precursors  of  dermis,  bones,  muscles  and  tendons.  The  segmented 

arrangement  of  somite  pairs  along  the  AP-axis  illustrates  a  principal  scheme  of 

developmental events: metamerism. During segmentation of the presomitic mesoderm into 

somites  along the  AP-axis,  differential  gene expression  in  distinct  somites  establishes 

groups of cells which acquire distinct fates (Couso 2009). This is demonstrated best by 

comparison of  vertebrae along the AP-axis:  Differently shaped cervical  vertebrae (e.g. 

atlas, axis, etc.), thoracic vertebrae connected to differently shaped ribs, lumbar and the 

(mostly fused) sacral vertebrae are all  formed from different somites along the AP-axis 

(Gilbert 2003c).

Ectoderm overlying the dorsal mesodermal structures forms the neural plate, which gives 

rise to the neural tube. The neural tube is formed by extensive cell-shape changes within  

groups of cells of the neural plate. Lateral cells start to form the neural folds – a thickening 

of the tissue – including the dorsal-lateral hinge points (DLHPs), which fold towards the 

ventral side. The medial-most cells connect to the notochord and change their shape by 

apical constriction, eventually forming the medial hinge point (MHP) and folding paraxial 

neural plate cells upwards. Therefore, the neural folds get into close proximity and can 

fuse with each other, eventually covering the prospective lumen of the neural tube (Gilbert  

2003b).The neural tube gives rise to the central nervous system, but also peripheral neural 

cells and non-neural cells are generated. In  Xenopus,  neural tube closure starts at the 

caudal  end  and  extends  progressively  anterior-wards  (Ueno  et  al.  2003).  The  largest  

diameter of the neural tube is found at the anterior end, which will form the brain. Failure of 

neural tube closure has dramatic consequences for the developing organism, including 

lack of anterior brain structures (anencephaly) (Wallingford 2006; Copp et al. 2010). 

Organogenesis And Growth
             

The  generation  of  organs  and  general  growth  of  the  embryo  is  accomplished  during 

subsequent tailbud and tadpole stages. Although the various organs of a vertebrate differ 

in  size,  placement,  form  and  function,  the  generation  of  this  diversity  follows  similar 

principles: Groups of cells get more and more subdivided into different parts, which start to 
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express  different  genes.  This  way,  organs  get  shaped  step  by  step,  and  each  step 

modulates the reaction potential or competence of cell groups to react to developmental 

signals – the cells get progressively restricted in their developmental potential (or further  

determined) (e.g. Asashima et al. 2009).  

A common variation of this theme is that a group of cells splits into several independent 

populations, which migrate into different locations and acquire different fate. This way the 

differentiation of cell  populations is due to the unique “cocktail”  of  signaling molecules  

which they were exposed to while migrating to their final location. An example for this type 

of development is the neural crest (NC) (Epperlein et al. 1996). The NC develops from the  

lateral-most cells of the neural plate and is induced during gastrulation/neurulation. These 

cells  do  not  integrate  into  the  roof  of  the  neural  tube,  but  undergo  epithelial  to 

mesenchymal transition and migrate in streams to  different locations,  where they form 

such diverse tissues as pigment cells, cartilage, connective tissue and neurons (Mayor et 

al.  2001).  While  their  fate  is  eventually  determined  at  their  final  location,  the  cells 

composing  the  NC  are  already  restricted  in  their  potential  even  before  they  start  to 

migrate. Cranial  (anterior most)  NC cells (NCC) migrate properly and contribute to the 

facial cartilage even when transplanted from one embryo into the corresponding location of 

a host embryo. This is not the case when they are transplanted into a more posterior 

location of the NC (trunk NC), which e.g. can differentiate into pigment cells, in contrast to  

the cranial population. The cranial NCCs fail to migrate and differentiate (neither cartilage, 

nor  pigment)  in  the  wrong  environment,  demonstrating  their  already  restricted 

developmental potential at that stage (Borchers et al. 2000). 

Beside the formation of individual  organs, the embryo starts to change its shape from 

neurulation  onwards  (Lecuit  et  al.  2007).  Two  major  modes  can  be  observed  during 

embryogenesis, i.e. increase in volume and elongation of the AP-axis. While increase in 

volume is mainly a result of active water transport into the increasing number of cells and 

embryonic cavities, elongation of the AP-axis requires complex cell-cell interactions and 

signaling events. The process which contributes most to AP-axis elongation is convergent 

extension (CE) (Wallingford et al. 2002). CE movements are performed by cells of the 

dorsal  meso-  and  ectoderm,  i.e.  notochord  and  neural  plate,  respectively.  While  cells 

converge from lateral towards the midline, the cells in the midline extend along the AP-

axis. Therefore, the embryo gains in length at the expense of a decrease in width. Similar 

to NCC migration, this process also demonstrates that individual cells and cell groups can 
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interpret  signals  from  their  environment,  leading  to  coordinated  behavior  that  shapes 

tissues, which in turn shape the embryo (Keller et al. 2008). 

This holds also true for the morphogenesis of organs, as the shape of organs is generated  

by coordinated behavior in terms of cell shape change and migration as well. Taking the 

developing heart as an example, organogenesis starts with the definition of the heart field  

within the mesoderm. During gastrulation/neurulation, the heart  field is induced as two 

bilateral symmetric groups of cells next to the somitogenic mesoderm. During neurulation, 

these cell groups start to migrate towards the anterior ventral midline, where they fuse and 

form a tube, lying in AP-direction (Abu-Issa et al. 2007). The different parts of the heart,  

like sinus venosus, atrium or ventricle, are patterned along the AP-axis. Then, the heart 

tube is bent by coordinated cell shape changes, e.g. apical constriction, and hinge points 

are formed (Linask et al. 2007), like during neural tube closure. In this way different parts  

of the organ are spatially rearranged in respect to each other to form the functional heart 

(Gilbert 2003d). 
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How Cells Communicate – Signals That Shape The Embryo

General Mechanisms Of Cell-Cell Communication

The  ability  of  cells  to  communicate  with  each  other  is  crucial  for  all  coordinated 

developmental events, and common features of cell-cell communication can be found in all  

signaling pathways. In most cases the first step of communication is represented by a 

signaling molecule. This can be a wide range of proteins, peptides and chemicals – even 

ions can serve this function. The signaling molecule is either released by one cell and can 

diffuse, or gets transported away from the source, represented on the outer surface of the 

cell´s  membrane,  or  can  cross  from  cell  to  cell  via  cytoplasmatic  contacts,  e.g.  gap 

junctions (GJs) (Alberts et al. 2008). 

The production,  shuttling  and modification  of  signaling  molecules  (also  called  ligands)  

represents  an  important  level  of  regulation  and  complexity  in  cell  signaling.  Diffusible 

molecules  often  interact  with  other  molecules  which  modulate  the  signaling  potential.  

Binding  to  different  partners  can  be  required  for  signaling  to  occur,  or  it  can  inhibit 

signaling  by  negatively  influencing  binding  affinity  to  the  receptor,  to  name  just  one 

example. It  can also modulate the diffusion behavior, i.e. facilitating or restricting long-

range signaling across several cell diameters away from the source (Xu et al. 1998; Mii et 

al. 2009; Ruel et al. 2009; Bayramov et al. 2011). 

After the ligand is released from the signaling cell, it travels to another cell and is able to 

evoke a response when this cell is competent to receive the signal. Prerequisite for signal  

detection is  the presence of  a  receptor,  to  which the ligand can bind.  In  most  cases,  

receptors are located in the cell membrane, as most ligands cannot cross the lipid bilayer  

and need to be detected outside of the cell. Binding of the ligand to the receptor leads to  

biochemical  reactions,  often accompanied by conformational  changes and modification 

(e.g. phosphorylation) of the intracellular part of the protein. Therefore, the task of most 

receptors is the interpretation of an extracellular signal and the translation of this signal 

into an intracellular reaction (Alberts et al. 2008). 

In the majority of cases, the signal is amplified within the cell´s cytoplasm by activation of  

second messengers,  e.g.  cAMP, calcium ions (Ca2+)  or  proteins.  Amplification is  often 
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achieved by enzymatic function of the receptor, of a co-receptor or other proteins, which 

were  activated  by  the  receptor.  Therefore,  one  activated  receptor  can  activate  many 

second messenger molecules (Chen et al.  2007; Ilagan et al.  2007; MacDonald et al.  

2007; Semenov et al. 2007; Delmas 2008;  Harder et al. 2008; Dutko et al. 2011). The 

diversity  of  cellular  mechanisms  of  communication  is  the  core  of  the  developmental  

signaling events, which give rise to differential form and function in cells and tissues. 

Structure Of Motile And Non-Motile Cilia       

The cilium is  a membrane-covered organelle,  extending to  the outside.  The core of  a 

cilium is composed of microtubuli, i.e. filaments of acetylated α- and β-tubulin (Figure Int-

1). They are organized in nine outer doublets and can contain either non, two or four inner 

tubules (Feistel et al. 2006). The outer doublets are interconnected by nexins, and radial 

spokes project from each doublet towards the center of the cilium/inner tubules (Satir et al.  

2007). The cilium can be either non-motile (primary cilium) and serves as cellular sensor, 

or motile and able to fulfill coordinated beating. This motion is accomplished by molecular 

motor proteins, namely dyneins, which connect to the tubulin doublets and exert  force 

(Satir 1980). The force slides one doublet against the other, and the sum of sliding results  

in bending of the cilium (Riedel-Kruse et al. 2007) (inset in Figure Int-1). 

Ciliogenesis  starts  at  the  basal  body,  which  also  serves  as  centriole  after  duplication 

(Avasthi et al. 2011). Therefore, cells which undergo mitosis have to retract their cilium, 

and the daughter cells have to form new ones (Jackson 2011). For ciliogenesis to occur,  

the ninefold symmetric basal body is translocated to the apical membrane where it docks 

to the subapical actin-filament meshwork (Gomperts et al. 2004; Satir et al. 2007; Vladar et 

al. 2008). This is thought to stabilize the basal body, promote ciliogenesis and regulate 

ciliary length (Avasthi  et  al.  2011) (Figure Int-1).  At  the same time, a ciliary vesicle  is  

detached from the Golgi apparatus and connects to the basal body. Shuttling of proteins to 

the basal body is highly regulated and can also occur in vesicles. This holds also true for  

proteins located in the ciliary membrane, which facilitates the specific localization of (e.g.)  

receptors to the cilium (Molla-Herman et al. 2010) (Figure Int-1). As the cilium grows, it  

pushes the ciliary vesicle towards the membrane, which fuses with the cell  membrane 

(Avasthi et al. 2011). Growth of the cilium takes place at the tip (plus-end), and cargo that  

is  aimed  to  be  attached  at  the  tip  needs  to  be  actively  transported  along  the  tubulin 
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filaments. All transport along the cilium is dependent on the intraflagellar transport (IFT)  

machinery, which is composed from an A- and B-complex (Cole et al. 2009; Taschner et al.  

2011) (Figure Int-1).

From  base  to  tip,  the  cilium  is  subdivided  into  functional  parts:  The  basal  body  is  

responsible for organized shuttling of factors from and to the ciliary compartment (Satir et  

al. 2007). Transition fibers at the base of the cilium delimit the ciliary compartment and 

mark the transition between cell and ciliary membrane. They attach to the transition zone 

of the ciliary membrane, which forms the ciliary pocket at the base (Molla-Herman et al. 

2010) (Figure Int-1). This is also the place where cilia-related endocytosis happens, as 

well as the area where vesicles from the Golgi apparatus fuse. The longest part of the 

cilium is the shaft, which covers the nine tubulin doublets (Eggenschwiler et al. 2007). The 

length  of  the  shaft  varies  considerably  in  motile  as  well  as  non-motile  cilia  and  is  of 

functional relevance (Riedel-Kruse et al. 2007). The tip of the cilium is the most active  

place, as it is the site of polymerization and depolymerization (Marshall et al. 2001). 

 

Signaling Properties Of The Cilium

The ciliary membrane contains a specific subset of cellular proteins, among which various 

signaling receptors can be found (Eggenschwiler et al. 2007). Another level of signaling 

regulation is added when cell-cell  signaling depends on receptors or processing at the 

cilium (Jackson 2011). Signaling pathways, which are strictly dependent on a cilium (e.g. 

vertebrate  Hedgehog-signaling),  can  only  be  activated  when  the  cell  is  not  dividing, 

because the receptor-containing cilium is retracted during mitosis (Rohatgi et al. 2007). 

Cilia are also able to sense mechanical stress exerted by solid and fluid matter. When 

specialized  mechanosensory  cilia  are  deflected,  a  cellular  response  is  triggered 

(Davenport et al. 2005; Berbari et al. 2009). 

Moreover, cilia play a role in sensory cells: Both types of vertebrate photoreceptors contain 

highly specialized cilia, which harbor light sensitive pigments. In vertebrate cone- and rod-

cells,  the opsin-containing outer  segment is connected to  the inner segment by ciliary 

structures (Fliegauf et al. 2007; Oh et al. 2012). Therefore, the whole outer segment of the 

photoreceptor  can  be  imagined  as  specialized  cilium  with  highly  enlarged  membrane 

surface and inner volume. Smell is also a cilia-dependent sensation in vertebrates, and 
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odorant  receptors are located on cilia,  which project  in bundles from olfactory primary 

sensory neurons into the mucosa of the nasal epithelium (Krieger et al. 1999). 

12

Figure Introduction-1: The Cilium – Structure And Function

Ciliogenesis starts at the basal body where microtubule doublets polymerize. The basal body is 
anchored at  the  membrane by transition  fibers,  which connect  to  the ciliary  pocket  (place of 
endocytosis and vesicle fusion). The basal body is also stabilized at the apical membrane by the 
actin cytoskeleton meshwork. Proteins, which are targeted to the ciliary compartment, enter the 
cilium at the base via the basal body (and associated proteins). Transport along the microtubules 
is accomplished by intraflagellar transport (IFT) complexes. IFT-B, together with kinesins (KIFs), 
are  responsible  for  transport  towards  the  (+)-end,  while  IFT-A,  together  with  dyneins,  are 
responsible for transport towards the (-)-end. The microtubules are stabilized at the (+)-end by the 
distal tip complex of proteins, which also mediate assembly/disassembly of microtubule doublets. 
Moreover, the cilium is involved in signaling events, e.g. the ciliary membrane contains specific 
receptors. Reviewed in: Eggenschwieler et al. 2007.    
Gray inset: (Upper panel) Movement of a motile monocilium at the PNC/GRP. 
Taken from: Blum et al. 2009*.
(Lower panel) Cross section of  a motile  cilium, containing dynein arms, radial  spokes and a 
central pain complex. Reviewed in: Basu et al. 2008.
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Developmental Signaling Pathways 

In  the  following  sections  three  major  developmental  signaling  pathways,  i.e.  Wnt, 

Hedgehog and Notch/Delta, will  be introduced. In contrast to other signaling pathways, 

which  were  implicated  in  LR-development  (e.g.  BMP  and  FGF)  as  well,  basic 

understanding of these three pathways is essential for understanding this work: 

 

(1) Wnt-Signaling

Wnts  are  secreted  glycolipoproteins,  discovered  during  the  1970s  in  Drosophila 

melanogaster and later in mammals (Sharma et al. 1976; Nusse et al. 1982). Over time, 

the  Wnt-signaling  pathway  turned  out  to  be  a  highly  branched  pathway,  causing 

developmental defects, cancer and other diseases when dysregulated (Lucero et al. 2010; 

Wend et al. 2010). 

Activation  of  the  pathway  requires  a  member  of  the  Wnt-ligand  family  to  bind  to  a 

transmembrane receptor of the Frizzled (Fz) family, which in turn recruits other membrane-

bound  and  cytoplasmatic  factors.  In  most  cases  the  cytoplasmatic  phosphoprotein 

Dishevelled (Dsh) is recruited to the complex, but this step is not required for all pathway 

branches (Macdonald et al. 2007; Semenov et al. 2007). The (combinations of) players are 

specific to the different branches, and are a prerequisite for the diversity of this ancient 

pathway, conserved throughout the animal kingdom – from jellyfish to man (Watanabe et 

al.  2009).  Different  branches  can  be  separated  into  the  canonical  (β-catenin  ;β-cat 

dependent) and several non-canonical branches, including the planar cell polarity (PCP) 

pathway, the Wnt/Ca2+ pathway, Wnt/Ror2 pathway and the protein kinase A (PKA) and 

protein kinase C (aPKC) dependent pathways (Macdonald et al.  2007; Semenov et al.  

2007). An in depth introduction covering all pathway branches would exceed the aim and 

scope of this thesis. Therefore, I will focus on the two branches which are most relevant for 

this work, i.e. the canonical Wnt/β-cat and the non-canonical Wnt/PCP pathways (Figure 

Int-2): 
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Figure Introduction-2: The Wnt-Signalosome And Signaling Pathway Activation

Upon binding of  a  Wnt-ligand to  a  Frizzled (Fz)  receptor  at  the  outer  surface of  the  plasma 
membrane,  Dishevelled  (Dvl)  is  recruited  to  the  complex  and  phosphorylated  (P)  by Fz.  Dvl 
polymerizes  with  other  Dvl  molecules,  therefore  recruiting  more  receptors/co-receptors  to  the 
complex, and probably inducing signalosome formation/internalization. The vacuolar H+-ATPase 
(ATP6) is bound to Fz via prorenin receptor (PRR) and acidifies the signalosome. Decrease in 
signalosome pH facilitates  activation of  the canonical  Wnt/β-catenin (β-cat)  or  Wnt/planar  cell 
polarity (PCP) branch of signaling. 
Within the canonical branch, the glycogen synthase kinase 3 β (GSK3β) is ultimately recruited to 
the intracellular  tail  of  low-density lipoprotein  receptor-related protein  6 (LRP6),  which inhibits 
complexation with adenomatous polyposis coli (APC), β-cat binding and degradation. Stabilized β-
cat can enter the nucleus and activate gene expression with Lef/TCF transcription factors. 
Within the PCP branch phosphorylated Dvl activates small Rho A GTPase (RhoA), which in turn 
activates the Rho-associated protein kinase (ROCK) and the c-Jun N-terminal kinase (Jnk). ROCK 
and Jnk both act on the actin cytoskeleton, and Jnk can also enter the nucleus and stimulate gene 
expression via the cJun transcription factor.  
Reviewed in: Macdonald et al. 2007; Semenov et al. 2007 and Niehrs et al. 2010. 
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The molecular mechanism of the canonical pathway is best understood, and activation of 

this branch results in transcriptional regulation of context-dependent target genes. Some 

Wnt ligands can activate this pathway branch, e.g. Wnt3a and Wnt8a, while other Wnts 

seem  to  have  minor,  context-dependent  or  no  influence,  e.g.  Wnt11  and  Wnt5a 

(Wallingford et al. 2001; Kofron et al. 2007; Yamamoto et al. 2008; Bourhis et al. 2010; In  

der Rieden et al. 2010;  Nishita et al. 2010;  Uysal-Onganer et al. 2012). Essentially, the 

same is true for the Fz receptors (Djiane et al. 2000; Wallingford et al. 2001; Hendrickx et  

al.  2008).  Activation  requires  the  recruitment  and activation  of  Dvl  proteins.  Dvl  binds 

directly to the activated intracellular part of Fz via its central PDZ domain, which is pivotal  

for  activation.  Furthermore,  Dvl  has  the  ability  to  polymerize  by  binding  to  other  Dvl 

molecules to the DIX-domain (Gao et al. 2010). The polymerization of Dvl is necessary for 

signalosome  formation,  an  endocytotic  process,  involving  clathrins  (Bilic  et  al.  2007; 

Ohkawara  et  al.  2011)  (Figure  Int-2).  The  internalization  of  the  Wnt-signalosome  is 

necessary for activation of  the low-density lipoprotein  related proteins LRP5 or 6,  that  

serve as co-receptors (Niehrs et al.  2010).  Upon internalization of the signalosome, a 

closed compartment is established, and the lumen is acidified by the proton pump vacuolar 

H+-ATPase (ATP6) (Cruciat et al. 2010). The low pH is a prerequisite for the activation of 

LRP5/6 by two kinases: casein kinase 1γ (CK1γ) and the glycogen synthase kinase 3  β 

(GSK3β), which phosphorylate the intracellular tail of LRPs (Niehrs et al. 2010). Why this 

process requires low pH in the signalosome has remained enigmatic. The phosphorylated 

intracellular  part  of  LRP5/6  is  able  to  recruit  axin  to  the  complex,  which  in  turn  is 

associated with GSK3β and likely promotes further LRP5/6 phosphorylation on the five 

PPPSPxS motives (P, proline; S, serine or threonine; x, variable) of LRPs (Niehrs et al. 

2010). When the pathway is not activated, axin forms a complex with the adenomatous 

polyposis coli (APC) and GSK3β, which are both responsible for binding, phosphorylation 

and subsequent degradation of β-cat (Chen et al. 2000; Aoki et al. 2007). β-cat is involved 

in many cellular processes, e.g. cell-cell adhesion, but within the canonical Wnt-branch it  

serves  as  transcriptional  co-activator  in  the  nucleus.  Upon  pathway  activation  the 

degradation of β-cat is inhibited, it can enter the nucleus and form transcriptional activator 

complexes together with factors from the transcription-factor/lymphoid enhancer-binding 

factor (TCF/LEF) family, which directly bind to regulatory DNA-sequences of target genes 

and promote transcription (MacDonald et al. 2009) (Figure Int-2).        
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For activation of the Wnt/PCP pathway in vertebrates (but not necessarily in Drosophila) 

Wnt  ligands,  e.g.  Wnt11r  or  Wnt5b,  have  to  activate  Fz.  Fz  recruits  Dvl,  like  in  the 

canonical pathway (Cha et al. 2008; Hardy et al. 2008; Vladar et al. 2008; Gao et al. 2011; 

Wallingford et al. 2011). Signalosome formation and ATP6-components are also required, 

implicating that pH-shift in the signalosome is necessary for activation of the PCP-branch 

as well (Buechling et al. 2010; Hermle et al. 2010). The role of LRPs in Wnt/PCP is not  

quite clear, because CK1γ- and GSK3β-dependent phosphorylation does not take place. 

Nevertheless, gain- and loss-of LRP6 function dysregulates Wnt/PCP (Tahinci et al. 2007). 

Upon activation of Dvl, the cytoplasmatic factor Dvl-associated activator of morphogenesis 

(Daam) is bound by the PDZ- as well as by the DEP-domains of Dvl (Cadigan et al. 2006; 

Gao et al.  2010). Binding of Daam to Dvl releases inhibition of Daam, which then can 

associate with the small GTPase Rho A (RhoA). The Dvl/Daam/RhoA-complex is able to 

activate the ROCK kinase and other effectors (Semenov et al. 2007), which modify the 

actin cytoskeleton (Skoglund et  al.  2008) (Figure Int-2).  Actin remodeling is crucial  for 

directed migration, CE movements and ciliogenesis (Wallingford 2006).

Planar polarity is established by asymmetric distribution of Dvl and Van Gogh like (Vangl) 

to the posterior- and anterior-apical membrane, respectively (Vladar et al. 2009). The initial  

asymmetric cue in vertebrates seems to be provided by Wnt-gradients (Gao et al. 2011). In 

Drosophila and within some vertebrate tissues, polarity is also mediated by direct cell-cell  

interactions, e.g. via Fat/Dachsous, which can act in parallel to Wnt/PCP in Drosophila and 

mouse  (Ishiuchi  et  al.  2009;  Donoughe  et  al.  2011).  Another  aspect  of  Wnt/PCP  is 

transcriptional regulation of target genes. This is mediated by Dvl and the small GTPase 

Rac  1  (Rac1).  The  Dvl/Rac1-complex  activates  the  c-jun-N-terminal  kinase  (Jnk).  In 

consequence, this enables the transcriptional co-activator c-Jun to bind to c-Fos and act  

as transcription factor,  like  β-cat in the canonical  Wnt pathway (Semenov et al.  2007; 

Ohkawara 2011) (Figure Int-2). 

(2) Hedgehog-Signaling

Hedgehog (HH) is another example for a secreted signaling molecule with many roles in 

development and disease (Jiang et al. 2008). It was originally discovered in  Drosophila, 

but HH signaling defects are also correlated with cancer and embryonic mispatterning in  

vertebrates (Perrimon et al.  1987; Chang et  al.  1994).  HH (like Wnt) is a morphogen, 
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which acts dose-dependently. An example for HH defects during development is cyclopia: 

DV- and proximal-distal (or medio-lateral) patterning of the neural tube and brain is under  

control of HH. Disruption of the pathway in sensitive stages affects separation of the eye-

fields, causing development of one single eye and holoprosencephaly (fusion of anterior 

brain lobes), the most common structural malformation of the forebrain in humans (Chiang 

et  al.  1996;  Wallis  et  al.  1999).  Sonic  hedgehog  (Shh),  one  of  three  vertebrate  HH 

homologs (Shh, Indian and Desert hh), is released at the midline of the developing brain,  

generating a gradient from medial to lateral.  Thereby, it  controls the expression of two 

paired-box  genes  (Pax),  namely  Pax2 and  Pax6 (Amato  et  al.  2004).  Because  Pax2 

transcription is activated by high levels of Shh, it induces optic stalk development near the 

midline, while the more distal parts of the eye, e.g. the retina, develop under the control of  

Pax6 (which  is  inhibited  by  Pax2 expression).  Lack  of  Shh  leads  to  a  lack  of  Pax2 

expression  and  shifting  of  the  Pax6 expression  domain  towards  the  midline,  hence 

inducing formation of one single eye.

The  HH  ligands  need  to  undergo  profound  post-translational  modification  during 

maturation  in  the  Golgi  apparatus,  i.e.  the  C-terminal  (membrane-bound)  part  of  the 

protein is cleaved off to release the diffusible ligand (Gallet 2011). Cholesterol modification 

of ligands enables interaction with the lipophilic membrane, which might be the reason for  

the requirement of the transmembrane protein Dispatched (Disp; a sterol sensing domain-

containing protein) for long-range signaling, but not for juxtacrine signaling (Cohen 2003; 

Chen  et  al.  2007).  The  cholesterol  is  also  required  for  the  formation  of  micelle-like 

aggregations of HH ligands and long-range signaling. When released, the ligand can bind 

to Patched (Ptc) and releases repression of Smoothened (Smo) within the membrane. In 

absence of ligand, the Ptc/Smo-complex is located at the cell membrane, but when Smo is 

released from Ptc, it is translocated to the primary cilium in vertebrates, where it becomes 

enriched in the ciliary tip (Bisgrove et al. 2006). The intracellular mediators of the pathway 

are the zinc finger proteins of the glioma-associated oncogene (Gli) family. Glis are bound 

by suppressor of fused (Sufu), targeted to the primary cilium and phosphorylated by PKA,  

presumably after exit from the ciliary compartment (Wang et al. 2007; Tuson et al. 2011). 

Gli1  and  2  are  degraded or  recycled  when  the  pathway is  not  activated.  In  contrast,  

unactivated, phosphorylated and Sufu-bound Gli3 is cleaved at the proteasome, which 

turns it into a strong transcriptional repressor of HH target genes (Chen et al. 2007; Wang 

et al. 2007). Interestingly, shuttling to the cilium is not necessary for Sufu to act as inhibitor 

of the pathway, which might explain inhibition of the pathway in absence of primary cilia.  
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Upon pathway activation, Smo associates with Sufu and Gli. This releases Gli from Sufu 

inhibition, prevents phosphorylation by PKA at the basal body and thereby stabilizing Gli 

and activating HH target genes (Chen et al. 2009; Ruel et al. 2009). 

(3) Notch/Delta-Signaling

While Wnt- and HH-signaling act via diffusible ligands (Chen et al. 2007; Macdonald et al. 

2007; Semenov et al. 2007), this is not the case in Notch-signaling (Ilagan et al. 2007).  

Here, not only the receptor is a transmembrane protein, but also the (canonical) Delta-like 

(Dll) and Jagged ligands. This mode of signaling limits the Notch-signaling range to direct 

cell-cell interactions, and therefore contributes a new mode of developmental cell signaling 

to  the  highly  conserved tool-box of  metazoan signaling  pathways  (Wnt-,  HH-,  Notch-, 

JAK/STAT-, BMP/TGFβ- and PI3K/AKT-signaling pathways) (Alberts et al. 2008). The core 

pathway is rather simple in comparison to the Wnt- and HH-pathways: In contrast to other 

pathways, it does not rely on second messengers (Ilagan et al. 2007). 

The  receptor  Notch  is  a  single  pass  type  1  transmembrane  protein,  and  four  family 

members  (Notch1-4)  are  found  in  mammals  (Kopan  et  al.  2009).  During  receptor 

maturation, the protein is glycosylated in the endoplasmic reticulum (ER) (Andersson et al. 

2011). In Fringe-containing cells, further sugars are added to the ligand-binding part of  

Notch while the protein passes the trans-Golgi network (Andersson et al. 2011). These 

modifications affect the binding affinity to different ligands, i.e. Furin glycosylated Notch-

receptors less likely bind to Jagged, but are very affine to Dll ligands. Moreover, the Notch 

receptor is cleaved by Furins at an extracellular domain, near the membrane, which yields 

a heterodimeric receptor protein (only held together by non-covalent binding). The receptor 

is then exposed to the outer membrane of the cell, where it can interact with Dll or Serrate 

ligands,  which  activate  the  pathway.  Upon  ligand  binding,  the  N-terminal  part  of  the 

receptor is endocytosed and degraded (Denef 2010; Niehrs et al. 2010). The dissociation 

of the N-terminal part may release repression via binding to other Notch-receptor proteins  

in  the  membrane  (thereby  preventing  cis-activation),  but  this  is  still  under  debate 

(Andersson et al. 2011). 

In consequence, the Notch extracellular truncated (NEXT) domain in the signal receiving 

cell  is  processed  by  ADAM metalloprotease  and  subsequently  by  γ-secretase.  These 
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cleavage events  may happen,  context-dependent,  directly  at  the  cell  membrane or  in 

endocytosed  vesicles,  eventually  leading  to  the  release  of  Notch-intracellular  domain 

(NICD) into the cytoplasm (Kopan et al. 2009). NICD is the active transducer of signaling 

and translocates to the nucleus, where it regulates gene expression. NICD binds to CSL 

(CBF1/suppressor  of  hairless/LAG-1) /  RBP-J (recombination signal  binding protein  for 

immunoglobulin  kappa J),  which  is  stabilized by mastermind-like  (Maml)  proteins,  and 

binds to target regions of the DNA (Kopan et al. 2009). 

While morphogens induce a graded response along a diffusion gradient, resulting in dose-

dependent  differential  gene  regulation  (i.e.  high  amounts  =  activation  of  gene  A,  low 

amounts = activation of gene B),  Notch-signaling intensity seems to correlate with the 

amount of gene activation (i.e. high amounts = strong activation of gene A, low amounts = 

weak activation  of  gene A).  The Notch/Delta-pathway is  often  utilized  to  define  sharp 

borders between two adjacent cell fields (like in the Drosophila wing), for lateral-inhibition 

of differential cells within one tissue (like in Drosophila sensory neurons of the eye) and for 

cell-cycle exit control in differentiating daughter cells within stem cell niches. Dysregulation 

of  the  pathway  is  implicated  in  cancer  initiation  and  progression  and  other  human 

syndromes as well as developmental defects (Ja et al. 2003; Talora et al. 2008). 

19



                                                                                                                                                        Introduction

Patterning The Early Embryo: Anterior-Posterior And Dorso-Ventral Axis 
Development

In Xenopus, patterning of the embryo starts already in the oocyte. The oocyte is composed 

in an asymmetric manner with differences between the animal and vegetal halves of the 

cell. The animal part is pigmented, while the vegetal part is unpigmented. Within the cell,  

the cytoplasm is situated animally, because dense yolk droplets are accumulated vegetally. 

During fertilization, the sperm can only interact with the oocyte at the animal surface, as 

species-specific  sperm  receptors  are  only  located  within  the  pigmented  area.  This 

restriction is of functional relevance for primary axis induction, i.e. the proper generation of 

the anterior-posterior (AP) and dorso-ventral  (DV) axes (Klein 1987; Tian et al.  1997b, 

1997a; Heasman 2006a, 2006b; Nagai  et  al.  2009):  The DV-axis is initiated by sperm 

entry, and at the opposite of the sperm entry point, the dorsal-most part of the embryo will  

emerge. 

After entering the oocyte, the sperm not only contributes the genetic material, but also a 

centriole. The centriole is used as microtubuli organizing center, and tubulin filaments form 

in coordinated patterns upon fertilization (Elinson et al. 1989; Gilbert 2003a). Polymerized 

tubulin connects the centriole with  the cell  cortex, and after attachment,  it  is  retracted 

towards the centriole. This process pulls the cortex of the zygote, which shifts about 30° 

towards the sperm entry point,  relative to  the cytoplasm and yolk  (Scharf  et  al.  1980; 

Heasman 1997). The vegetal pole contains factors which are bound to the cortex and get 

transported more animally by cortical rotation. The point where these factors accumulate 

defines the dorsal-most point of the embryo, i.e. the tissue which will form the organizer 

and induce gastrulation. These factors belong to the Wnt-signaling pathway and include 

mRNAs encoding the ligand Wnt11 (Xwnt11b), the intracellular component Dvl and β-cat 

stabilizing factor Gbp (or Frat1)  (Elinson et al.  1989;  Heasman 1997; Tao et al.  2005; 

Heasman  2006b;  Kofron  et  al.  2007;  Tadjuidje  et  al.  2011).  The  germ  vesicle  gets 

translocated in the very same way and may also play a role in axis induction (discussed in 

Cuykendall  et  al.  2009).  As  a  consequence  of  cortical  rotation,  β-cat  is  stabilized 

preferentially on the dorsal and not the ventral side, accumulates in the nuclei of dorsal  

cells and activates gene expression after the mid-blastula transition (MBT) (Newport et al.  

1982).
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The animal-vegetal  axis  correlates roughly with  the AP-axis,  but  –  more importantly –  

localized  mRNAs  of  vegetal  factors  define  the  three  germ  layers  (endo-,  meso-  and 

ectoderm).  On  the  one  hand,  the  vegetally  localized  T-box  transcription  factor  Veg  T 

initiates expression of endodermal genes. On the other hand it activates transcription of 

transforming growth factor β (TGFβ) genes from the nodal family (Xenopus nodal related 

proteins;  Xnrs)  (Heasman  2006a,  2006b).  Moreover,  Xnr expression  is  synergistically 

enhanced by β-cat. This leads to the generation of a concentration gradient of Xnr proteins 

along the endodermal DV-axis, which pattern the overlying prospective mesoderm. The 

area  with  the  highest  Xnr  concentration  (dorsal-most)  is  the  Nieuwkoop  center  which 

induces the organizer in adjacent mesodermal cells (Niehrs 2001, 2010). 

The molecular nature of the organizer is defined by a specific set of transcription factors,  

e.g. goosecoid (Gsc), as well as secreted inhibitors (e.g. noggin and chordin) of another 

group of TGFβ signaling molecules from the bone morphogenetic protein (BMP) family. 

The inhibition of BMP signaling in  the organizer  and the creation of  a  DV-gradient  by 

secreted antagonists set up the DV-coordinate system, which influences patterning in all 

three germ layers, e.g. notochord formation and induction of neural fate (Blum et al. 1992;  

Steinbeisser et al. 1995; Knecht et al. 1997; Sasai et al. 1997; Niehrs 2010).      

 

As  mentioned  above,  the  animal-vegetal  polarity  correlates  with  the  AP-axis.  This  is 

accomplished  by  secreted  and  membrane-bound  Wnt-signaling  inhibitors,  e.g.  frizbee 

(Frzb; also called Xenopus secreted Frizzled related protein 3; Xsfrp3) and dickkopf (Dkk), 

respectively. The level of Wnt-signaling inhibition is highest in prospective anterior regions, 

and the release of Wnt inhibition abolishes head induction (Niehrs 2001). 

Taken together, a “Cartesian coordinate system” for the DV- and AP-axes is established by 

signaling  activity  gradients  of  BMP-  and  Wnt-signaling,  respectively.  This  two-gradient 

system is probably conserved and could also apply to non-vertebrate deuterostomes, as 

well as to protostomes (de Robertis et al. 1996; Niehrs 2010).  

21



                                                                                                                                                        Introduction

Left-Right Axis Development 

Generating De Novo Asymmetries

The third axis is the left-right (LR) axis, along which asymmetric organs (e.g. the heart and  

the gastrointestinal tract) are formed. LR-axis asymmetry is a consistent feature of the 

vertebrate body-plan (Basu et al. 2008; Fakhro et al. 2011). The vertebrate embryo starts 

developing  as  a  bilateral-symmetrical  structure  in  respect  to  the  dorsal  midline 

(Schweickert et al. 2011). This symmetry needs to be broken as development proceeds 

and before asymmetric organs are formed. Asymmetry has to be established de novo by a 

process that is biased towards one direction: Within the vast majority of species, only one  

of two possible arrangements of visceral organ placement is dominant (referred to as situs 

solitus), and the “mirror-image” (called situs inversus) is only very rarely seen (Hirokawa et 

al. 2012). 

In the early 1990s the existence of a chiral “F-molecule” was postulated by Wolpert and 

Brown to be the basis for the generation of LR-asymmetry and for the bias towards situs 

solitus  (Brown  et  al.  1990).  The  hypothesis  proposed  that  intrinsic  molecular  chirality 

results  in  asymmetric  function  of  larger-scale  cellular  structures,  e.g.  cytoskeletal 

components. If this kind of molecular asymmetry is of instructive nature in regard to LR-

axis  development,  then  this  would  explain  the  bias  to  situs  solitus (as  chirality  is  an 

important feature of biomolecules, e.g. only the L-form of amino acids is used for proteins). 

This  hypothesis  was  supported  by  earlier  findings,  which  revealed  the  cause  of 

Kartagener's  triad:  This  human  condition  is  correlated  with  LR-axis  defects  and  situs 

inversion, which was linked to immotility of primary cilia (primary cilia dyskinesia) (Afzelius 

1976,  1999;  Berdon  et  al.  2004).  Cilia  are  composed  of  microtubules,  which  fit  the 

postulated “F-molecule” prediction: cytoskeletal  components, which are able to conduct 

asymmetric movements (Bisgrove et al. 2006) .

Direct  evidence  that  cilia  and  the  generation  of  fluid  flow  were  responsible  for  the 

establishment  of  LR-asymmetry  was  provided  by  the  group  of  Hirokawa,  who 

demonstrated the existence of a directed, leftward flow of extra-cellular fluid at the mouse 

posterior notochord (PNC; also referred to as the “node”) (Nonaka et al. 1998). This fluid  

flow was generated by the movement of motile monocilia (Nonaka et al. 1998; Takeda et  
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al.  1999).  Furthermore,  superimposing artificial  flow towards the right side of the PNC 

activated the nodal cascade at the right side, demonstrating the instructive potential of this 

event regarding the LR-axis (Nonaka et al. 2002). 

The directionality of  flow requires Wnt/PCP mediated planar-polarity  cues (Antic  et  al. 

2010;  Borovina  et  al.  2010;  Hashimoto  et  al.  2010;  Song et  al.  2010).  Initially,  motile 

monocilia grow at a central position of the cell´s apical surface, but get posteriorly localized 

by  cytoskeletal  rearrangements,  which  require  the  core-PCP  component  Vangl2.  In 

combination with the posterior tilt of the cilia, their clockwise beating results in an effective 

stroke towards the left  side (while the cilium reaches into the fluid),  and an ineffective 

stroke towards the right side (while the cilium is sliding over the cell membrane) (Hilfinger  

et  al.  2008;  Hashimoto  et  al.  2010).  Therefore,  AP-  and  DV-axis  information  (which 

mediate generation of the ciliated epithelium and cilia polarization) are translated into an 

LR symmetry-breaking cue: the leftward flow.  

The initial symmetry-breaking event needs to be translated and “imprinted” on the tissues, 

which will form asymmetric organs. Thus far, the exact mechanism of flow perception is 

still not understood, but two models were proposed (McGrath et al. 2003; Karcher et al. 

2005;  Hirokawa et  al.  2006,  2009;  Hamada 2008;  Vick et  al.  2009;  Field  et  al.  2011; 

Kamura et al. 2011; Hirokawa et al. 2012): 

Morphogen model

In this model a morphogen, released by the ciliated epithelium at the midline, travels with  

the fluid flow and accumulates on the left side. This morphogen then triggers laterality. Shh 

as well as retinoic acid (RA) were proposed to serve as LR-morphogens in the mouse 

(Norris 2005, Tanaka et al. 2005).

Two cilia model

The two cilia model distinguishes between motile cilia at the center of the ciliated structure 

and non-motile cilia at the edges of the structure. The non-motile cilia sense fluid, which in 

turn triggers Ca2+-influx and downstream events (Pennekamp et al. 2002; McGrath et al. 

2003).

In  any case,  the  results  of  leftward  flow are  a  left-asymmetric  down-regulation  of  the 

cerberus/dan family member Coco (in Xenopus; Cerl2/Dand5 in mouse and charon in fish) 
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and activation of the nodal cascade in the left lateral plate mesoderm (LPM) (Lohr et al.  

1998; Pearce et al. 1999; Zhu et al. 1999; Shiratori et al. 2001; Hashimoto et al. 2004;  

Marques et al. 2004; Toyoizumi et al. 2005; Ohi et al. 2007; Vonica et al. 2007; Belo et al.  

2009; Blum et al. 2009; Schweickert et al. 2010 and 2011) (Figure Int-5 D and E).

In  the LPM, nodal  acts in  a  positive feedback-loop on its  own expression,  but  it  also 

activates the transcription of its inhibitor  Lefty, and the homeodomain transcription-factor 

Pitx2 (paired-like homeodomain 2), which is required for asymmetric organogenesis (Lohr  

et al. 1998; Shiratori et al. 2001; Toyoizumi et al. 2005; Ohi et al. 2007; Blum et al. 2009; 

Schweickert et al. 2011).

Symmetry-Breakage: Different Species, Different Modes?

In  Xenopus  laevis,  an  alternative  mechanism was  proposed:  the  “ion-flux”  hypothesis 

(Levin  2003).  It  is  based  on  asymmetric  expression,  localization  and  function  of  ion 

transporters  during  cleavage  stages (2-  to  64-cell),  mainly  the  gastric  H+/K+ATPase  α 

(ATP4a) and functionally associated potassium and proton channels/pumps (Levin et al.  

2002; Rutenberg et al. 2002) (Figure Int-3). The asymmetric localization was hypothesized 

to generate an asymmetric distribution of ions on the left and the right side of the future 

midline, which eventually drives accumulation of a charged component, i.e. Serotonin (5-
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Figure Introduction-3: Developmental Timing Of Left-Right Relevant Events

Two opposing hypotheses propose different timing of symmetry-breakage in  Xenopus left-right 
axis development. The “ion-flux” (yellow) model proposes symmetry-breakage during cleavage 
and blastulation, while the “leftward flow” (red) model proposes symmetry-breakage to happen 
during neurulation. In both models, the highly conserved nodal cascade (blue) is activated from 
late neurula stages onwards, and before asymmetric organogenesis takes place in late tadpole 
stages. 
Embryo drawings are taken from: www.xenbase.org; after Nieuwkoop and Faber 1994**. 
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hydroxytryptamine; 5-HT) (Fukumoto et al. 2005a; Fukumoto et al. 2005b). This process 

was  further  proposed  to  take  place  via  gap  junctions  (GJs)  (Levin  et  al.  1998).  The 

localization of  5-HT on the right  side mediates epigenetic modification (Carneiro et  al.  

2011) (Figure Int-3 and Int-4). Although the mechanism and timing presented by this model  

differed radically compared to other species, it was tempting and justifiable, because the 

frog embryo also establishes DV- and AP-axis  very early in development (Klein 1987; 

Heasman 2006). Furthermore, a flow event comparable to the one observed in the mouse 

embryo was not yet detected in Xenopus when this model was put forward. 

This situation has changed when leftward flow was found to occur in the archenteron at 

the  beginning  of  neurulation  in  the  frog  (Schweickert  et  al.  2007).  Relevance for  LR-

patterning was demonstrated by physical inhibition of flow through application of highly 

viscose methyl-cellulose at the gastrocoel roof plate (GRP), i.e. the cilia-bearing epithelium 

generating leftward flow in amphibians (Shook et al. 2004; Schweickert et al. 2007; Saenz-

Ponce et al. 2012) (Figure Int-5). When gastrulation starts (st. 10.5), cells of the superficial 

mesoderm  (SM)  are  located  just  above  the  dorsal-lip  as  the  outer  epithelium  of  the 
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Figure Introduction-4: Comparison Of Timing And Sequence Of Events, Between The “Ion-
Flux” And “Leftward Flow” Models 

“ion-flux”:  After  fertilization,  during  early  cleavage  stages,  mRNAs  and  proteins  are 
asymmetrically  distributed,  which  generates  asymmetric  membrane  potentials  and  pH.  Along 
electrochemical gradients, generated by asymmetric ion channels and pumps, serotonin (5-HT) is 
transported via  gap junction  communication  (GJC),  and accumulates  on the right  side of  the 
embryo. Asymmetric 5-HT activates the histon deacetylase (HDAC), which inhibits  nodal / Xnr1 
expression on the right side of the embryo. 
“leftward  flow”:  During  early  development,  the  primary  axes  (anterior-posterior  and  dorso-
ventral)  are formed. When gastrulation starts,  the superficial mesoderm (SM) is patterned and 
Foxj1 expression is induced. After involution of the SM into the archenteron, the gastrocoel roof 
plate (GRP) starts to grow motile cilia, which are posteriorly localized and produce a leftward flow.  
Leftward flow down-regulates Coco on in the left somitic GRP, which releases repression of nodal, 
and laterality cues can be transported via GJC to the left lateral plate mesoderm (LPM). 
Asymmetric  nodal  cascade induction  and  asymmetric  organogenesis are  common to  both 
models. 
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organizer (Shook et al. 2004). During gastrulation (st. 11-12), the cells invaginate into the 

dorsal roof of the archenteron and form an triangle-shaped epithelium (st. 13) (Figure Int-5 

A and B). The epithelium starts to grow motile monocilia, which are initially localized at the  

apical center of the cells, but get localized to posterior parts of the cells during maturation  

of  the  GRP  (st.13-16/17).  A weak  flow  can  be  first  detected  by  st.  15,  which  gets 

increasingly robust until st. 17. From st. 18 on, flow decreases and is completely lost by st.  

20 (the same stage when Xnr1 starts being expressed in the left LPM) (Blum et al. 2007; 

Schweickert et al. 2007). Moreover, molecular loss of cilia or motility in GRP cells caused 

absence of leftward flow and LR-defects, thus confirming the findings of Schweickert et al.  

(2007) at the molecular level (Stubbs et al. 2008; Vick et al. 2009). Taken together, two 

mechanisms seem to break symmetry in Xenopus (Figure Int-3 and Int-4).
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Figure  Introduction-5:  The  Superficial  Mesoderm,  The  Gastrocoel  Roof  Plate  And  LR-
Development In Xenopus laevis 

LR development in Xenopus laevis. (A, A`) The superficial mesoderm (SM; green) constitutes the 
outer cell layer of Spemann’s organizer and is located animally to the dorsal lip (dl). Mesodermal 
cells in the deep marginal zone are colored red. (A) dorsal view of early gastrula,  (A`) sagittal 
section. (B, B`) Following SM invagination, the ciliated gastrocoel roof plate (GRP) differentiates at 
the  posterior  archenteron  (ac)  in  neurula  embryos.  Note  that  the  GRP is  not  covered  with 
endoderm (yellow) and flanked by lateral endodermal cells (LEC). Ciliated GRP cells cover dorsal 
aspects of the circumblastoporal collar (cbc) and blastoporus (bp) as well. Note also that lateral 
somitic GRP cells (blue) are unique for co-expressing the secreted growth factors Xnr1 and Coco 
and project cilia centrally.  (B) st. 17 neurula mid-sagittal section,  (B`) ventral view on GRP.  (C) 
GRP cilia. Immuno-histochemistry using anti-acetylated tubulin antibody; ventral view. (D, E) The 
Nodal inhibitor Coco is the target of leftward flow. Schematic dorsal explants of early  (D;  pre-
flow) and late (E; post-flow) neurulae in ventral view. (D) GRP (green) is flanked by a bilateral 
symmetric  expression  of  Xnr1 (purple)  and  Coco (blue)  in  somitic  GRP  cells.  Lateral  plate 
mesoderm (LPM) is devoid of asymmetric gene activity. → 
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The chicken is a vertebrate which does not seem to rely on cilia-driven fluid flow, whereas 

components of the “ion-flux” model are required for LR-development, e.g. ATP4a, 5-HT 

and GJ (Vandenberg et al. 2009). In contrast to  Xenopus, the chicken does not display 

asymmetries at the mRNA level  for  ATP4a, but ATP4a-dependent asymmetric voltage-

gradients left and right of the primitive streak were reported during gastrulation (Levin et al. 

2002). The first sign of asymmetry is the morphology of Hensen's node, accompanied by 

asymmetric  expression  of  Shh  around  the  node.  The  morphological  asymmetry  is 

generated by movements of cells towards the left side of the node, and because these 

cells express Shh, HH-signaling is activated only on the left side (Levin et al. 1995; Gros et 

al. 2009). 

The  postulation  of  three  very  different  mechanisms  to  initiate  LR-asymmetry  during 

development in vertebrates raised questions which became the subject of controversial  

debates (Tabin 2006; Blum et al. 2009):  

(1) Do the “ion-flux” and “leftward flow” mechanisms cooperate in symmetry-breakage of 

Xenopus? This would suggest that  Xenopus represents an evolutionary bridge between 

early mechanisms (also found in lower deuterostomes) (Shimeld et al. 2006; Hibino et al.  

2006; Hibino, et al. 2006) and leftward flow (also reported for fish and mammals) (Nonaka 

et al. 1998; Essner et al. 2002, 2005; Okeda et al. 2005; Feistel et al. 2006).  

(2)  Is  the  vertebrate  symmetry-breakage  mechanism  evolutionary  conserved,  or  do 

different animal species break symmetry in different ways, indicating multiple evolutionary 

origins of asymmetry (Tabin 2006)?

(3) What is the initial evolutionary base of LR-asymmetry, especially in the light of nodal-

dependent  shell  asymmetry in  snails,  which  is  induced by asymmetric  spiral  cleavage 

(Grande et al. 2009; Kuroda et al. 2009)? 
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(E) Flow dependent left  asymmetric down-regulation of Coco mRNA releases Xnr1 from Coco 
repression.  Transfer  of  left  positional  information  by  the  relieved  Xnr1  protein,  induces  Xnr1 
transcription in the left LPM. 
Taken from: Schweickert et al. 2011***.
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Gastric H+/K+ATPase (ATP4) – Functions In Digestion And Development

Structure And Function Of ATP4

The  gastric  H+/K+ATPase (ATP4)  is  a  member  of  the  P-type  ATPase  superfamily  of 

membrane-spanning ion pumps (Chan et al. 2010). This family of proteins can be found in 

all kingdoms of life and is subdivided into five classes (I-V). The gastric and non-gastric 

H+/K+ATPases, ATP4 and ATP12, respectively, are classified as type IIC ATPases (P-IIC), 

which display high structural similarities with the best characterized Na+/K+ATPase (ATP1) 

(Axelsen et al. 1998). ATP4 transports protons (H+) across membranes in exchange for 

potassium (K+) ions against the electro-chemical gradient (~ 1:1.000.000) by utilizing ATP 

as energy-donor in an electro-neutral manner (2H+:2K+) (Rabon et al. 1990) (Figure Int-6). 

It acts as a tetrameric complex consisting of two catalytic α subunits and two accessory β 

subunits (Shin et al. 2009). The catalytic α subunits (1033 or 1034 amino acids in length) 

contain the ATP-binding pocket and are mainly responsible for selectivity and transport of 

ions. ATP4a consists of ten transmembrane domains (TM1-10), and ATP4b (290 to 299 

amino acids in length) binds to TM7 and TM10. The  β−subunits are necessary for the 

correct folding of the protein (chaperon-like function) and stable insertion into the plasma-

membrane (Beggah et al. 1999; Geering 2001) (Figure Int-6).    

Mechanism Of Ion Transport And The Role Of Accessory Potassium-Channels

Ion exchange in P-IICs follows the E1-E2-mechanism, described here for ATP4 (Rabon et 

al.  1990)  (Figure  Int-6):  The  first  step  takes  place  on  the  intracellular  side,  where  a 

hydronium ion (H3O+)  binds to  the catalytic  subunit´s  ion-binding pocket.  Furthermore, 

ATP is  bound  to  the  cytoplasmatic  surface  of  the  protein  and  phosphorylates  it.  This 

phosphorylation induces a conformational change from the E1 to the E2 form, in which the 

ion-binding site is exposed to the extracellular side. H3O+ is released from the protein, and 

extracellular K+ binds to the ion-binding pocket. The binding of K+ to the protein triggers 

dephosphorylation and conformational change, back to the E1 configuration. Upon new 

ATP-binding, the K+ is released into the cytoplasm, and the cycle starts again. 
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K+-binding to the binding pocket is the rate-limiting step of H+-secretion (DuBose et al. 

1999; Munson et al.  2007; Morth et al.  2011).  Therefore, extracellular K+-concentration 

needs to be high for ATP4 function. This task is fulfilled by K+-channels, which release K+ 

from the cell into the extracellular lumen, and which are found co-expressed with ATP4, 

e.g. KNCQs and multimeric Kir channels (Heitzmann et al. 2008). 

Pharmacological Inhibition Of ATP4 

In general there are two strategies for ATP4 inhibition (Shin et al. 2006, 2009). The first  

one  is  the  “classic”  inhibition  by  proton-pump  inhibitors  (PPIs),  which  are  pyridyl  

methylsulfinyl  benzimidazoles  that  represent  weak  bases.  PPIs  like  Omeprazole  or 

Lansoprazole need to be activated by low pH, which prevents inhibition of inactive ATP4 

molecules. When ATP4 is active and pH is low, the pro-drug is converted into the active 

form and binds covalently via disulfid-bridges to cysteins 813 and 822. Covalent binding of 
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Figure Introduction-6: Schematic Function Of The Gastric H+/K+-ATPase (ATP4)

The transmembrane ATP4 consists of two catalytic α-subunits and two accessory β-subunits. 
Protons (H+) and ATP can interact with the intracellular part of ATP4. ATP-dependent 
phosphorylation alters the conformation of the protein, which releases H+ into the extracellular 
space. Potassium (K+) ions bind to the extracellular part of the protein, and ADP can dissociate 
from ATP4. This again changes the protein conformation, and K+ is released into the intracellular 
space. This cycle is then repeated. 
Mechanism reviewed in: Rabon et al. 1990.
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PPIs to ATP4 inhibits further function of the protein in a non-reversible way.  

The second strategy of ATP4 inhibition is by application of acid-pump antagonists (APAs), 

i.e.  imidazole  pyridine  compounds  (e.g.  SCH28080),  which  compete  with  K+-ions  for 

binding.  This  form  of  inhibition  is  faster,  because  pH-dependent  activation  of  the 

compound does not take place. Moreover, the inhibition is reversible in contrast to PPIs 

(Munson et al. 2007). 

 

ATP4 Function In Vertebrates 

The most prominent function of ATP4 in the vertebrate organism is gastric proton release 

and acid-induced digestion of food in the stomach. More recently, ATP4 has also been 

implicated in epithelial cell differentiation and HH-signaling in gastric tissue (Zavros et al. 

2008).  Moreover,  reports of  ATP4 expression in various tissues, e.g.  brain and kidney,  

indicate a broader function than HCl production in the stomach (Herrmann et al. 2007; 

Rotte et al.  2009; Fohl et al.  2011). In the frog  Xenopus,  ATP4 was also found in the 

stomach, but in addition, early development relied on ATP4-function (Levin et al. 2002;  

Ikuzawa et al. 2004). 
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Aim Of Study

ATP4-function was linked to LR-development in  Xenopus, where asymmetric expression 

was  observed  during  cleavage  stages  (Levin  et  al.  2002).  The  “ion-flux”  hypothesis 

suggested that asymmetric function generates voltage-gradients, which break symmetry 

during early stages, and that the role of cilia-driven leftward flow is limited to reinforcing 

these early cues (Levin et al. 2002; Levin 2003; Aw et al. 2009). This view was challenged 

when experiments demonstrated that asymmetric gene expression in the LPM was lost 

after inhibition of leftward flow (Schweickert et al. 2007; Vick et al. 2009). These findings 

raised the question as to a possible role of ATP4 in the context of leftward flow. 

The general aim of this thesis work therefore was to elucidate the mechanism of ATP4-

dependent developmental signaling events during symmetry-breakage, LR-axis patterning 

and ciliogenesis in Xenopus laevis.  

(1) Specifically this work aimed at uncovering the exact timing and function of ATP4 during 

the early development of  Xenopus and its impact on symmetry-breakage. For this aim, 

distribution of ATP4a mRNA and protein was re-investigated. Molecular gain- and loss-of-

function experiments were performed, and their impact on LR-development was analyzed. 

(2)  Further,  Wnt-signaling  was  addressed  as  an  important  factor  for  early  animal 

development.  Regulated  Wnt-pathway  activity  during  primary-axes  induction  and 

gastrulation were reported to be required for correct LR-axis development in  Xenopus. 

Therefore,  the  role(s)  of  Wnt-signaling  components  in  Xenopus LR-development  were 

analyzed,  with  a special  focus on ligand-driven pathway activation  by Xwnt11b during 

gastrulation and neurulation. 

(3)  Finally,  ATP4-function  was  studied  in  other  ciliated  epithelia  during  Xenopus 

development to gain insight into general mechanisms of ciliogenesis. Experiments were 

performed in  monociliated cells of (a) the GRP, (b) the floor plate of the neural tube, and 

multiciliated cells of (c) mucociliary epithelia, e.g. in the  Xenopus larval skin. In addition, 

the floor plate- and the skin-system were used to investigate interaction of ATP4 and Wnt-

signaling,  with  other  signaling  pathways,  which  are  known  to  influence  ciliation  and 

function of these tissues, i.e. the Notch/Delta- and the Hedgehog-signaling pathways.
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Results 

Sequence And Expression Analysis Of ATP4a

Cloning Of Xenopus laevis ATP4a

A full length sequence of ATP4a from Xenopus laevis was cloned from gastric cDNA using 

primers matching NM_001090874. The sequence was verified by analysis of conserved 

regions and cross-species comparison of  ATP4a protein  sequences (Figure 1).  ATP4a 

protein sequences confirmed the high degree of conservation within the vertebrate group 

and supported divergence of ATP4a and ATP12a at the base of the vertebrate lineage 

(Figure 1C) (Axelsen et al. 1998; Okamura et al. 2003).

ATP4a mRNA Is Expressed Symmetrically During Cleavage Stages

In order to re-investigate the role of ATP4a in left-right (LR) axis specification (Levin et al. 

2002), mRNA expression analysis by whole mount in situ hybridization (WMISH) and semi-

quantitative reverse-transcriptase polymerase chain reaction (RT-PCR) were performed on 

specimens throughout early development. 

RT-PCR revealed high  levels  of  maternal  ATP4a mRNA during  early  cleavage stages 

which continuously declined during blastula (st. 8), gastrula (st. 10-12) and neurula (st. 

13/14-17) stages (Figure 2) (Xenopus stages according to Nieuwkoop and Faber 1994). In 

addition, strong PCR signals from stage 43 onwards were detected (not shown).

WMISH for  ATP4a was performed on embryos ranging from 2-cell  stage up to tadpole 

stages (st. 45), with a large number (n=320) of cleavage stage embryos (from 2- to 64-cell  

stage) (Figure 3 A-D). As signals in different batches may vary considerably (Aw et al. 

2008), embryos were derived from eight different females from our colony at Hohenheim 

and two females from a colony in Heidelberg (courtesy of the Steinbeisser laboratory).  

Equal amounts of maternal mRNA were detected in all blastomeres and no asymmetric 

distribution  along  the  LR-axis  was  observed  (Figure  3  A-C).  Maternal  mRNA  was 
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deposited  throughout  the  animal  hemisphere  (Figure  3  B`,  B``).  In  thin  sections  the 

WMISH signals appeared dotted throughout the animal hemisphere (Figure 4). 
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At  the  onset  of  gastrulation  (st.  9),  weaker  signals  were  detected  in  tissues  from all  

prospective  germ  layers,  which  appeared  strongest  in  prospective  mesodermal  cells 

(Figure 3 E). At stage 10.5, when the dorsal lip is present, WMISH signals decreased in 

comparison to earlier stages, and were strongest in deep dorsal mesoderm (Figure 3 F). 

During late gastrulation and throughout neurulation no signals were detected (not shown). 

Weak signals reappeared by early tailbud stages (st. 28) in the anterior notochord (Figure 

3 G).  Strong signals were detected from stage 43 onwards in  the larval  stomach and 

weaker  signals  in  the  oesophagus/small  intestine  (Figure  3  H,  I  and  Figure  43  A). 

Specificity of the in situ probe was confirmed by signals in stomach epithelial cells (Figure 

3 H) and lack of signal in sense-probe controls (Figure 3 C). 
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Figure 2: ATP4a mRNA Is Present During Xenopus LR-Development

Reverse transcriptase (RT)-PCR analysis of ATP4a transcript levels during early development of 
Xenopus laevis. RT-PCR for  actin served as loading control. Note that mRNA levels decreased, 
but expression persisted through stage 17. Water served as negative control (H2O). Reprinted 
from Walentek et al. 2012#.

Figure 1: Sequence Analysis Of The Xenopus laevis Gastric H+/K+-ATPase (ATP4)

Sequence  analysis  of  NM_001090874:  (A) Conserved  region  analysis  via  BLAST 
(http://blast.ncbi.nlm.nih.gov/)  revealed a cation binding site (orange), E1-E2 ATPase motives 
(red), a hydrolase-like motive (green), a HAD-like hydrolase motive (yellow) and a cation ATPase 
C-type motive (blue). 
(B) Amino acid  (AA)  sequence alignment  (using Multalign,  multalin.toulouse.inra.fr/multalin)  of 
NM_001090874 with annotated ATP4a and ATP12a sequences from Homo sapiens sapiens (Hs), 
Mus musculus (Mm),  Gallus gallus (Gg)  Xenopus laevis (Xl) and  X. tropicalis (Xt),  Sinciperca 
chutasi (Sc), and Dasyatis sabina (Ds). Presence of SCH28080-binding site in ATP4a-sequences 
is indicated by blue box.
(C)  Phylogenetic  analysis  of  ATP4a  and  ATP12a  sequences  revealed  clustering  of 
NM_001090874  with  other  ATP4a  sequences,  while  ATP12a  sequences  formed  a  separate 
cluster, indicating divergence of both molecules at the base of the vertebrate lineage. Please note 
that clustering of the X. tropicalis (Xt) sequence for ATP12a (NM_00103037) clustered with ATP4a 
sequences,  while  the  non-annotated  sequence  CR926442  clustered  with  other  ATP12a 
sequences. Phylogenetic analysis was performed with www.phylogeny.fr,  Dereeper et al. 2008,  
2010.

http://blast.ncbi.nlm.nih.gov/
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In summary, the asymmetrical expression pattern of ATP4a transcripts (Levin et. Al 2002; 

Aw et al. 2008) could not be reproduced and, therefore, protein localization was analyzed 

as well.
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Figure 3: Whole-Mount In Situ Hybridization (WMISH) Analysis Of ATP4a mRNA Expression

WMISH for ATP4a transcripts was performed from early cleavage (2-cell), up to tadpole stage (st. 
45). 
(A, B and D) ATP4a was symmetrically localized in cleavage stages. (B`, B``) In bi-sected 4-cell 
embryos, ATP4a mRNA was restricted to the animal cytoplasm. (C) A sense-probe control did not 
reveal  any  staining.  (E,  F) During  late  blastulation/early  gastrulation  (st.  9  –  10.5),  staining 
intensity decreased and staining was enriched in dorsal mesodermal tissues, as observed in bi-
sections (E`, F`).  (G) In tailbud stages (st. 28), staining was found exclusively within the anterior 
notochord (black arrowhead in G`). (H, I) In late tadpole stages (st. 45) strong staining was found 
in the endoderm, specifically enriched within the gastric epithelium (black arrowhead in H`). (I) In 
prepared gastrointestinal tract specimens, staining was found in the stomach (sto), but weaker 
staining was also evident in the oesophagus (oes) and the proximal part of the small intestine 
(smi).
Planes of section are indicated by dashed lines in (B), (E) and (F-H). a = anterior, an = animal, d = 
dorsal, l = left, p = posterior, r = right, st. = stage, v = ventral and veg = vegetal.
Reprinted and modified from: Walentek et al. 2012#.
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Protein Expression Analysis Of ATP4a Indicates Presence Of Protein Throughout 
Development 

Protein analysis of ATP4a by immuno-histochemistry (IHC) using a specific antibody (Chen 

et  al.  1998;  Levin  et  al.  2002;  Aw  et  al.  2008)  detected  low-level  symmetric  protein 

localization in 4-cell stage embryos (Figure 5 A). Elevated levels of ATP4a protein could be 

detected from blastula stages onwards (Figure 5 C-K). In particular, protein was found in 

the superficial mesoderm (SM) (Figure 5 D) and the GRP (Figure 5 K, L), i.e. tissues which 

are relevant for  leftward flow (Schweickert  et  al.  2011). Specificity of the antibody was 

shown by absence of signals in specimens treated without primary antibody (-ATP4a/+Cy3 

in Figure 4 B, M and N). Moreover, strong signals in st. 45 gastric tissue (Figure 6 H) were 

found.

In  tailbud (st.  25)  and tadpole (st.  40)  stages,  protein  was found in most  cells  of  the 

embryonic skin (Figure 6 A-D). Moreover, a bi-sected specimen at stage 40 revealed an 

increased presence of ATP4a protein in ecto- and mesodermal structures, e.g. skin, neural 

tube, muscles and notochord (Figure 6 E-G), in comparison to the endoderm (Figure 6 E).

 

In  addition,  the  subcellular  distribution  of  ATP4a (Figure  7)  was  analyzed  in  confocal 

sections. Strong signals were detected from blastula stages (st. 8) onwards in animal cells, 

in which the protein was found at the apical membrane (Figure 7 A). In a subset of animal  

cells, the protein accumulated during cytokinesis at the center of the apical membrane 

(Figure 7 A````). In contrast to animal cells (Figure 7 A), vegetal cells (Figure 7 B) were  
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Figure 4: ATP4a mRNA Is Located In A Dotted Pattern Within The Animal Cytoplasm 

After WMISH for ATP4a transcripts, a 4-cell stage embryo was sectioned along the animal-vegetal 
axis (schematically depicted in A). ATP4a mRNA was present in a dotted pattern (black arrowhead 
in inset of A`), and absent from the vegetal halve (A``).

an = animal, d = dorsal, l = left, r = right, v = ventral and veg = vegetal. 
Embryo drawing used in (A) reprinted and modified after: Blum et al. 2009b##.
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filled with yolk droplets (blue auto-fluorescence in Figure 7 B``- also described in Beyer et  

al. 2011) and were much bigger in size than animal cells at the same stage (Figure 7 A). In  

vegetal cells, protein was found in the cytoplasm, but excluded from lipid droplets (Figure 7 

B```). Extensive localization to the apical membrane was not observed (Figure 7 B````). 

During gastrulation (st. 10.5), the signal intensity was slightly elevated in dorsal and animal 

regions (Figure 4 E), thereby recapitulating mRNA localization at this stage (Figure 3 F). In 

some cells of the animal cap, the superficial mesoderm (SM) and the dorsal lip, ATP4a 

protein was not only found at the membrane, but co-localized with the nucleus as well  

(Figure 5 E-H).

During later stages, e.g. during neurulation (st. 17), the protein was localized to the apical  

membrane in ectodermal cells (Figure 7 C````, D````) in much the same way as seen in 

stage 25 skin tissue (Figure 6 A``,  A```).  In  cells displaying high and low signal  levels 

respectively (Figure 7 C and D), protein was found in vesicle-like structures at or beneath  

the apical membrane of cells (Figure 7 C````, D````). In addition, cells displaying high signal 

levels harbored high amounts of protein in the apical membrane (Figure 7 D````). 

Although signal strength varied between GRP cells, protein was found throughout (Figure 

7 E). Frame-by-frame analysis of confocal stacks taken from the boundary between GRP 

and the lateral endodermal crest (LEC) confirmed presence of protein in both lineages 

(Figure 7 F). In terms of localization, the distribution of ATP4a protein was similar to the 

one observed (Figure 6 H) and described for gastric cells (Sawaguchi et al. 2004; Zavros 

et al. 2008; Forte et al. 2010), i.e. at the apical membrane and in vesicle-like structures 

within the cell.

Summary

In conflict with previous reports, symmetric expression of  ATP4a mRNA and protein was 

found during  Xenopus development.  Nevertheless,  the presence of  ATP4a mRNA and 

protein in tissues and stages relevant for flow-dependent symmetry-breakage in the frog 

did not argue against a role in LR-axis specification in general.
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Figure 5: ATP4a Protein Localization During LR-relevant Stages

Immuno-histochemistry (IHC) with an antibody previously used for ATP4a localization in Xenopus 
(Aw et al., 2008). (A, B) ATP4a protein (red) was specifically localized to the plasma membrane in 
4-cell  stage embryos  (A),  as  negative  control  without  ATP4a (-ATP4a/+Cy3)  antibody did  not 
reveal  any fluorescent  signal  (B).  The level of  the plasma membrane was visualized by actin 
staining, using phalloidin-Alexa488 (actin, green in A`, A``, H``, M and N).
(C-H) During gastrulation (st. 10.5), ATP4a was enriched in animal cells (C), and in mesodermal 
cells,  e.g.  at  the dorsal  lip (D,  dorsal lip is  indicated by dashed line).  (E) Bi-section revealed 
presence of  ATP4a protein  throughout  the  embryo,  but  slightly  enriched on the dorsal  halve. 
ATP4a protein was present in the animal cap (F), at the dorsal lip  (G) and within the superficial 
mesoderm (H), where it co-localized with the plasma membrane (actin staining, green, H``) and in 
some cells with the nucleus (Hoechst staining, blue,  H```).  (I-J) During neurula stages (st. 17), 
ATP4a was enriched in the skin ectoderm (se), as compared to the neural folds (nf) (I, I`), or the 
neural plate (np, indicated by dashed outline in J, J`). (K-L) In dorsal explants ATP4a was found at 
the GRP and in LECs (indicated by dashed lines in (K, K`). (L, L`) Higher magnification revealed 
ATP4a localization to the plasma membrane and within vesicle-like structures beneath the apical 
membrane. (M, N) Negative controls in dorsal explants did not reveal staining in the red channel.

Pictures in (C`), (D`), (E`), (I`), (J`) and (K`) are bright field pictures. a = anterior, an = animal, d = 
dorsal, GRP = gastrocoel roof plate, l = left, nf = neural folds, np = neural plate, p = posterior, r = 
right, se = skin ectoderm, st. = stage, v = ventral and veg = vegetal. 

Figure 6: ATP4a Protein Localization During Later Xenopus Development

IHC with an antibody previously used for ATP4a localization in Xenopus (Aw et al., 2008). 
(A-D) ATP4a protein (red) was localized to the plasma membrane (3D lateral projections in  A``, 
A```) of skin ectodermal cells in early (st. 25, A) and late (st. 40, B, C and D) tadpole stages. The 
level of the plasma membrane was visualized by actin staining, using phalloidin-Alexa488 (green), 
and the nucleus was stained by Hoechst (blue) in (A`-A```, B`, C`, D`, E`, F`, G`, and H` and H``, 
respectively).  (E-G) ATP4a  was  enriched  in  mesodermal  and  ectodermal  tissues,  i.e.  skin 
ectoderm (se), neural tube (nt), the notochord (no) and the muscles (m), indicated in  (F`).  (H) 
Gastric tissue from a st. 45 tadpole served as positive control and revealed presence of ATP4a 
protein as previously described by others (please see references in the text).

a = anterior, an = animal, d = dorsal, l = left, m = muscles, no = notochord, nt = neural tube, p =  
posterior, r = right, se = skin ectoderm, st. = stage, v = ventral and veg = vegetal. 
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Functional Analysis Of ATP4a In Left-Right Axis Formation 

Selection Of Loss-Of-Function Approach

In order to analyze the functional relationship between  ATP4a and LR-axis specification 

two  independent  loss-of-function  approaches  were  chosen:  (1)  Inhibition  of  mRNA 

translation by injection of anti-sense morpholino oligonucleotides (MOs) (Eisen et al. 2008; 

Mimoto et al. 2011). These were designed to specifically target the translational start site of 

ATP4a mRNA (ATP4aMO). (2) The second approach made use of commercially available 

inhibitors  of  ATP4  protein  function,  i.e.  the  acid  pump  antagonist  (APA)  SCH28080 

(Munson et al. 2007). The compound was chosen for incubation experiments, because 

APAs are acting fast, very specific, and their inhibition is reversible. 

Both  approaches  complement  each  other,  as  MO  injections  can  be  used  for  lineage 

specific knock-down (Figure 8), while incubation experiments act systemically and have 

the added benefit that they can be applied or terminated at specific time points during 

development. 
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Figure 7: Subcellular ATP4a Protein Localization

IHC with an antibody previously used for ATP4a localization in Xenopus (Aw et al., 2008). 
(A) During cytokinesis, ATP4a protein (red) was localized to the center of the plasma membrane in 
animal cells of the blastula (st. 8) (merged picture in  A```, 3D lateral projections in  A````).  (B) In 
vegetal cells of the blastula (st. 8), weaker signals were detected in the cytoplasm, but excluded 
from yolk droplets (blue auto-fluorescent signal in the blue/Hoechst channel, merged picture in 
B```, 3D lateral projections in  B````).  (C) ATP4a protein in low-signal cells (low-sig. cell) during 
neurula  stages  (st.  17)  was  localized  to  vesicle-like  structures  at  the  apical/lateral  plasma 
membrane (merged picture in C```, 3D lateral projections in  C````).  (D) In high-signal cells (high-
sig. cell) during neurula stages (st. 17), high amounts of ATP4a protein were localized to the apical 
membrane and vesicle-like structures at the apical/lateral plasma membrane (merged picture in 
D```, 3D lateral projections in D````). (E) In dorsal explants during neurula stages (st. 17), ATP4a 
protein was present in GRP cells and lateral endodermal crest cells (LECs), which are marked by 
presence of cilia and mid-bodies, respectively (as revealed by staining of acetylated tubulin; green 
channel in E`), and depicted in left and right inset in (E`). 
(F) Schematic representation of confocal sections:  (F-I - -VI) Series of confocal (optical) single 
sections revealed presence of ATP4a at the apical membrane and within the animal cytoplasm in 
vesicle-like structures. 

ATP4a - red channel,  actin cytoskeleton – green channel in  (A`-D`),  auto-fluorescence – blue 
channel in (A``-B``), nucleus – blue channel in (C``-D``) and acetylated α-tubulin – green channel 
in (E`). a = anterior, l = left, p = posterior, r = right and st. = stage. 
Reprinted and modified from: Walentek et al. 2012#.
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ATP4a Is Required In Dorsal-Medial Cells And Post-MBT For LR-Axis Specification

MO-mediated knock-down of ATP4a was performed in different cell lineages (Figure 8): 

(1) The dorsal marginal-zone (DMZ), from which the organizer and the GRP are derived 

(Blum et al. 2009b). (2) The C2-lineage, which contributes to lateral GRP cells, the lateral  

plate  mesoderm  (LPM)  and  the  intermediate  mesoderm.  (3)  The  C3-lineage  which 

contributes  to  the  lateral  and  intermediate  mesoderm.  (4)  The  ventral  marginal-zone 

(VMZ), which will form blood cells, among others. 

After injection at the 4-cell stage, morphants were grown to tailbud stages (~ st. 30) and 

analyzed for asymmetric gene expression of Pitx2c in the LPM by WMISH (Figure 9 A). In 

contrast to uninjected controls (uninj.) or injections of control MO (CoMO), 1pmol/embryo 

ATP4aMO  injections  into  the  DMZ  induced  Pitx2c misexpression  in  up  to  80%  of 
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Figure 8: Differential Targeting Of Tissues And Lineage Analysis 

Injection of lineage tracer rhodamine-B dextran into the marginal region (prospective C-tier of 32-
cell  embryo)  of  4-cell  embryos  revealed  specific  targeting  of  GRP  tissue  only  when  dorsal 
blastomeres were injected close to the dorsal pole (dorsal marginal zone, DMZ, top). More lateral 
injections  of  dorsal  blastomeres (C2 lineage)  or  injection of  ventral  blastomeres (C3 and C4) 
targeted  the  intermediate  mesoderm  (C2/C3),  lateral  plate  mesoderm  (C2/C3)  and  ventral 
mesoderm (VMZ), respectively.

a = anterior, an = animal, d = dorsal, l = left, p = posterior, r = right, st. = stage, v = ventral and veg  
= vegetal. 
Reprinted from: Walentek et al. 2012#. Injection scheme modified after: Blum et al. 2009b##.
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specimens. In 60% of  ATP4a morphants bilateral expression was found (Figure 9 A, B). 

LR-defects  decreased significantly (p<0.001)  when  ATP4aMO was targeted to  the C2-

lineage (~30%), and only 10% of LR-defects were detected upon ATP4aMO injections to 

C3- or VMZ-lineages (Figure 9 B).  Taken together,  ATP4a was required in the dorsal-

medial lineage for correct LR-development and not in ventral cells as previously proposed 

(Levin et al. 2002).

Specificity  of  MO-induced  effects  was  tested  in  rescue  experiments:  1pmol/embryo 

ATP4aMO was  injected  into  the  DMZ together  with  ATP4a mRNA or  0.2pmol/embryo 

ATP4aMO together with an ATP4a DNA expression construct. In both cases, co-injection 

of ATP4a together with ATP4aMO significantly (p<0.01 and <0.001, respectively) rescued 

Pitx2c expression patterns in morphants (Figure 9 B). These results argued for specificity 

of  MO-effects  and  indicated  that  ATP4a function  was  required  post  MBT  in  LR-

development, as DNA constructs are transcribed only after stage 8/9 (Newport et al. 1982). 

Asymmetric organ placement was also analyzed in stage 45 tadpoles in uninjected, CoMO 

-injected embryos and  ATP4a morphants (Figure 9 C). Assessment of organ placement 

was prevented in a high fraction of embryos by cyst formation (Figure 9 C and Figure 10)  

(Wessely et al. 2011), which indicated malfunction of the pronephros in ATP4a morphants. 

High  lethality  in  morphants  was  observed  as  well  (not  shown).  Non-cystic  survivors 

revealed ~30% of LR-defects when ATP4aMO was targeted to the DMZ, but not when it 

was  delivered to  the  VMZ (Figure  9  D).  Thus,  laterality defects  indicated by aberrant 

marker gene expression were confirmed by analysis of organ situs. Furthermore, bilateral 

expression of asymmetric genes was linked to heterotaxia in ATP4a morphants (Figure 9 

B, D). 

Asymmetric  gene  expression,  asymmetric  organ  placement  and  cyst  formation  were 

analyzed following pharmacological inhibition of ATP4 by SCH28080 as well (Figure 9 and 

10). Control incubation using the vehicle dimethyl sulfoxide (0.4% DMSO) did not affect 

LR-development  (Figure  9  B,  D).  In  contrast,  incubation  of  embryos  in  100-200µM 

SCH28080 did  alter  Pitx2c expression in  50% of  specimens (Figure 9 B,  D).  Bilateral 

expression was found in 30% of SCH28080-treated embryos. Moreover, asymmetric organ 

placement was altered in a dose-dependent manner (Figure 9 D): Increase in SCH28080 

concentration from 100µM to 200µM increased effects on organ placement, from 30 to 

50%, respectively. Dose-dependency was also observed for cyst formation (Figure 10). 
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Figure 9: ATP4a Is Required In The Dorsal-Medial Lineage Post-MBT For LR-Development

(A-B) Pitx2c expression  patterns  encountered  in  ATP4a morphants  and  SCH28080  treated 
specimens (A). (B) Quantification of Pitx2c expression patterns, treatment as indicated. → 
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The previous study implicated that only early exposure to SCH28080 induced LR-defects, 

but not treatment from gastrulation onwards (Levin et al. 2002), thus these experiments 

were recapitulated and extended: Incubation in 100µM SCH28080, indeed, did not alter  

LR-development significantly (p>0.05) when applied from stage 10 onwards (Figure 9 D). 

Nevertheless,  effects  on  LR-development  could  be  evoked  by  application  of  higher 

concentrations (200µM) from stage 10 onwards (Figure 9 D). These experiments provided 

the proof that loss of ATP4 function from gastrulation onwards can be sufficient to alter LR-

development. 

In  summary,  molecular  and  pharmacological  loss-of-function  and  rescue  experiments 

revealed a requirement for ATP4 in LR-development only on the dorsal side of the embryo.  

These effects were restricted to post-MBT stages. Loss of ATP4 function induced bilateral  

expression of asymmetric genes (i.e.  Pitx2c), which could be correlated with heterotaxic 

organ  placement.  In  addition,  loss  of  ATP4-function  induced  cyst  formation,  indicating 

defects in pronephros development. 
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(C-D) Situs defects encountered in  ATP4a morphants and SCH28080 treated specimens: The 
outflow tract  of  the heart  and the position of the gall  bladder are indicated by green and red 
arrowheads, respectively, and the direction of gut looping is marked by yellow arrows. Note that 
morphants occasionally (and dose-dependently) developed cysts, and therefore organ situs could 
not be determined (C). (D) Quantification of situs defects, treatment as indicated.

a = anterior, l = left, p = posterior, r = right and st. = stage. Statistical analysis: Chi²-test; ns = not  
significant, * = p<0.05, ** = p<0.01 and *** = p<0.001. Reprinted from: Walentek et al. 2012#.

Figure 10: Rates Of Cystic Phenotype After Loss Of ATP4-function 

Frequency of cystic phenotype (cystic – please compare with Figure 9 C) after ATP4aMO injection 
or SCH28080 treatment.

Statistical analysis: Chi²-test; ns = not significant, * = p<0.05, ** = p<0.01 and *** = p<0.001.
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Maternal But Not Zygotic ATP4a Is Required For LR-Axis Patterning 

In order to discriminate between maternal and zygotic contribution of ATP4a transcripts in 

LR-development, an ATP4a splice-site-MO (ATP4a-Spl-MO) was designed (Aartsma-Rus 

2012). Injections of up to 2pmol/embryo of ATP4a-Spl-MO into the DMZ at 4-cell stage did 

not have an impact on LR-development (Figure 11 B). This was a dose ten times higher 

than the smallest dose of ATP4aMO (0.2pmol/embryo) that was able to induce LR-defects 

in a highly significant (p<0.001; not shown) manner (Figure 9 B). These results argued 

against the requirement for zygotically expressed ATP4a mRNA in LR-development. 
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Figure 11: Loss Of Zygotic ATP4 Expression Does Not Affect LR-Development

(A) Schematic representation of ATP4a pre-mRNA and splicing of Intron2 (upper line).
Schematic representation of ATP4a-Spl-MO mediated inhibition of pre-mRNA splicing (lower line). 
(B) Quantification of  Pitx2c expression patterns in  ATP4a-Spl morphants. Please note that even 
high amounts (2pmol) of  ATP4a-Spl-MO did not interfere significantly with LR-development.  (C) 
Targeting  of  lineage tracer  to  the  larval  gut  (st.  45)  by vegetal  injections  at  4-cell  stage.  (D) 
Schematic representation of primer positions used in (F), relative to the intron/exon boundary of 
Exon3/Intron2.  (E,  F) RT-PCR on st.  45  cDNAs from uninjected  controls  (uninj.),  CoMO and 
ATP4a-Spl-MO injected specimens - Pst1-digested λ-DNA was used for size control. → 
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Functionality of the  ATP4a-Spl-MO was tested by vegetal injections, which targeted the 

prospective gut (Figure 11 C), i.e. where zygotic ATP4a expression was found (Figure 3 H, 

I).  Embryos  were  cultured until  stage 45,  when the  tadpole  stomach has formed and 

ATP4a expression was strong. cDNAs from uninjected, CoMO-injected and ATP4a-Spl-MO 

injected embryos were generated. Utilization of an ATP4a intron 2 specific reverse primer 

(Figure  11  D)  confirmed presence of  unspliced mRNA only in  ATP4a-Spl-MO injected 

morphants  (Figure  11 F).  The specificity of  primers  was tested on genomic  DNA and 

without  DNA/cDNA  (Figure  11  F),  which  served  as  positive  and  negative  controls, 

respectively. RT-PCR for the house-keeping gene elongation factor 1α (EF1α) was used 

as loading control in these experiments (Figure 11 E) (Beyer et al. 2011). 

In conclusion, this set of  experiments suggested that  ATP4a-Spl-MO was functional, and 

the  lack  of  impact  on  LR-development  implicated  that  maternally  deposited,  but  not  

zygotically transcribed mRNA was required post-MBT for symmetry breakage and correct 

asymmetric gene expression.

ATP4 Gain-Of-Function Alters LR-Axis Development 

Loss  of  ATP4a or  ATP4b affected  LR-development.  In  contrast  to  ATP4aMO 

(1pmol/embryo, ~80%  Pitx2c expression),  ATP4bMO was less effective (2pmol/embryo, 

~20%) (Figure 12). Moreover, Pitx2c expression was lost in ATP4b morphants (Figure 12). 

Cyst formation was also observed (not shown). Gain-of-function experiments for  ATP4a 

and  ATP4b were  performed.  Injections  of  ATP4a  DNA resulted  in  absent  Pitx2c 

expression,  in  contrast  to  bilateral  expression  upon  knock-down  (Figure  12).  Gain-of-

function by means of ATP4b DNA injection also prevented Pitx2c expression. Interestingly, 

in gain-of-function experiments,  ATP4b DNA was more effective (~50% of  manipulated 

embryos had LR-defects) than ATP4a DNA (~25% LR-defects) (Figure 12), although the 
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(E) Elongation factor 1α (EF1α) served as loading control. (F) Intron2-containing sequences were 
present  in  ATP4a-Spl-MO injected  specimens  and  when genomic  DNA was  used,  confirming 
functionality of  ATP4a-Spl-MO. Negative controls for genomic DNA-content were performed on 
-RT extracts and a water sample (H2O). 

an = animal, bp = base pairs, d = dorsal, l = left, r = right, st. = stage, v = ventral and veg = 
vegetal.  Statistical  analysis:  Chi²-test;  ns = not  significant,  *  = p<0.05,  **  = p<0.01 and ***  = 
p<0.001. 
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same concentrations were used (1ng/µl).  Furthermore, specificity was confirmed by co-

injection  of  DNAs  and  MOs,  which  significantly  rescued  LR-development  in  ATP4a 

morphants and embryos over-expressing  ATP4b, respectively. Taken together, gain and 

loss of either ATP4-subunit altered LR-development.

ATP4a Is Required For Cilia-Driven Leftward Flow 

Loss of  ATP4a in the dorsal-medial cell-lineage was correlated with the highest rates of 

LR-defects  (Figure  9  B).  This  lineage  gives  rise  to  the  organizer  and  the  superficial 

mesoderm, which in turn generates the GRP following involution over the dorsal lip (Blum 

et al. 2009b). Therefore, cilia-driven leftward flow was analyzed in control embryos and 

upon interference with  ATP4 function  by  ATP4aMO injection  or  SCH28080 incubation. 

Flow  parameters  were  determined  in  dorsal  explants  which  were  placed  in  buffer 

containing FITC-labeled latex beads (diameter 0.5µm) at stage 17, when leftward-flow was 

most robust. Fluid flow dependent movement of beads was recorded and processed for 

further analysis as described in Schweickert et al. (2007). Targeting was confirmed by co-

injection of fluorescent lineage tracer. Three key parameters of flow were analyzed: 
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Figure 12: Gain And Loss Of ATP4a Or ATP4b Affects Laterality in Xenopus

Quantification of  Pitx2c expression patterns after loss or gain of ATP4a/ATP4b function. Please 
note  that  specifically  loss  of  ATP4a  and  gain  of  ATP4b  function  severely  impaired  LR-
development.  These  conditions  could  be  in  part  rescued  by  co-injection  of  ATP4a DNA or 
ATP4bMO, respectively. Please note further that all specific gain- and loss-of-function treatments 
were significantly different from control injections (not indicated). 

Statistical analysis: Chi²-test; ns = not significant, * = p<0.05, ** = p<0.01 and *** = p<0.001. 
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(1) Directionality, which is represented by the dimensionless parameter ρ (rho). A value of 

ρ=1 indicated that all trails pointed to the same direction. Conversely, when ρ=0, all trails 

were moving in random directions. (2) Number of directed trails. All individual trails, which  

show a ρ−value below 0.6 were excluded from further analysis, because they cannot be 

distinguished from particles moved by Brownian motion. Therefore, the number of particles 

reflected  the  directionality  of  single  particle  movement.  (3)  In  addition  to  parameters 

reported  in  most  studies,  velocity  was  also  used  as  a  readout,  because  insufficient 

strength of flow might potentially affect LR-development as well (Schweickert et al. 2007; 

Tran et al. 2007; Vick et al. 2009; Schweickert et al. 2010; Beyer et al. 2011). 
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Figure 13: Loss Of ATP4 Function Impairs Cilia-Driven Leftward Flow

(A–F) Quantification  of  flow analysis  in  dorsal  explants.  (A) Directionality  and  (B) velocity  of 
fluorescent beads added to GRP explants at st. 17 were drastically reduced in ATP4a morphants 
or  SCH28080-treated specimens,  as  compared  to  wildtype,  CoMO-injected,  or  DMSO-treated 
embryos. n represents the number of explants analyzed. 
(C–F) Frequency distribution of trajectory angles in representative explants injected/incubated with 
(C)  CoMO,  (D) ATP4aMO,  (E) DMSO, and  (F) SCH28080.  Dashed circles  indicate  maximum 
frequency in histogram specified in percent. 

a = anterior, l = left, n = number of particles above threshold, p = posterior, r = right, v = average 
velocity of particles, ρ = quality of flow. Statistical analysis: Wilcoxon sum of ranks (Mann-Whitney) 
test; ns = not significant, * = p<0.05, ** = p<0.01 and *** = p<0.001. 
Reprinted from: Walentek et al. 2012#.
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Figure 14: Single Representation Of Flow Diagrams After Loss Of ATP4 Function 

(A) Uninjected  controls.  (B) CoMO-injected  controls.  (C) ATP4aMO-injected  specimens.  (D) 
DMSO- and (E) SCH28080-treated embryos. 

Color code: red = strongly impaired flow, orange = significantly affected flow, yellow = moderately 
affected flow and green = wildtype-flow. Reprinted from: Walentek et al. 2012#.
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Analysis revealed that control flow reached ρ-values of 0.76±0.08, 0.7±0.16 and 0.84±0.12 

in untreated, CoMO-injected and DMSO-treated specimens (Figure 13 A, C, E and Figure 

14), respectively. In contrast, flow was disturbed in ATP4a morphants and upon SCH28080 

incubation (200µM) with ρ-values of 0.45±0.22 and 0.6±0.21, respectively (Figure 13 A, D, 

F and Figure 14). The number of particle trails with ρ>0.6 was also decreased (Figure 14). 

In wildtype, CoMO injected and DMSO-treated explants flow velocities of 2.5±1.09 μm/s, 

2.43±0.95 μm/s and 2.98±0.78 μm/s were observed,  respectively (Figure 13 B, C, E). 

Average velocity of moving particles was reduced to 1.16±0.93 μm/s in ATP4a morphants 

and to 1.78±0.69 μm/s in SCH28080-treated specimens (Figure 13 B, D, E). In summary, 

flow was attenuated in  strength,  and directionality was randomized after  loss of  ATP4 

function  (Figure 13 A, B and  Movie 1). These results were in agreement with the data 

obtained from differential targeting and post-MBT rescues (Figure 9 B).
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Ciliogenesis Defects Of GRP Cilia In ATP4a Morphants Cause Aberrant Flow

Aberrant flow can either be attributed to loss of the flow-generating structure, lack of ciliary 

motility or to ciliogenesis defects, namely impaired cilia growth and polarization on the cell  

surface (Tran et al.  2007; Vick et al.  2009; Beyer et  al.  2011). Flow analysis revealed 

residual flow (Figure 13), therefore loss of the GRP structure and complete loss of ciliary 

motility  was  ruled  out.  Next,  ciliation  of  the  GRP was  analyzed  by scanning  electron 

microscopy (SEM – as described in Schweickert et al. 2007). The overall structure of the 

GRP was not altered in ATP4a morphants (Figure 15 A, B) and the cell size was normal 

(not shown). However, ciliation was greatly reduced in comparison to control specimens 

(Figure 15 A`, A`` and B`, B``). For quantification, SEM micrographs were analyzed using 

ImageJ  and  Cell-Gridder  (Thumberger  2011).  Ciliation  rate  and  cilia  length  were 

significantly reduced in  ATP4aMO injected embryos (Figure 15 C, D). Furthermore, over 

50% of the remaining cilia were not correctly polarized to the posterior pole of GRP cells 

(Figure 15 E). In summary, the cause of flow defects was the impaired ciliogenesis of GRP 

cilia in ATP4a morphants. 

Turbulent And Weak Flow In Morphants Is Sufficient For Bilateral Down-Regulation 
Of Coco And Activation Of The Nodal Cascade

In general, LR-defects in ATP4a morphants could be attributed to defects in ciliogenesis of 

GRP cilia and turbulent flow. In over 50% of morphants, bilateral expression of asymmetric  

marker genes was observed (Figure 9 B). The midline barrier (i.e. Lefty expressing dorsal 
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Figure 15: Analysis Of Ciliation Defects At The GRP After Loss Of ATP4 Function

(A–E)  SEM analysis  of  GRP ciliation  and morphology. (A,  B) Representative  dorsal  explants 
reveal  shorter  cilia, fewer  ciliated  cells,  and  polarization  defects  in ATP4a  morphant  (B)  as 
compared to CoMO-injected specimen (A). Cell boundaries are indicated by dashed orange lines 
in higher magnification of SEM pictures in (A`) and (B`). Blow-ups in (A`) and (B`) illustrate a long 
and posteriorly polarized cilium in (A`), indicated by a green arrowhead, and two short cilia in (B`), 
of  which  one  emerges  from  a  central  position,  indicated  by  a  yellow  arrowhead. (A``,  B``) 
Evaluation  of  cilia  polarization:  Green  =  posterior,  yellow  =  other,  red  =  no  cilium. (C-E) 
Quantification of ciliation rate (C) and cilia length (D) of GRP cilia in defined areas, as indicated by 
white squares in  (A) and  (B).  Cilia polarization  (E) was assessed in areas of defined size, as 
indicated by dashed boxes in (A) and (B).

Number of dorsal explants (in parentheses) or cilia [in brackets] analyzed. a = anterior, l = left, p = 
posterior, r = right. Statistical analysis: Box-plots - Wilcoxon sum of ranks (Mann-Whitney) test, 
Bar-graphs - Chi²-test; ns = not significant, * = p<0.05, ** = p<0.01 and *** = p<0.001. Reprinted 
from: Walentek et al. 2012#.
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tissue) prevents the diffusion of asymmetric signals from the left to the right side (Cha et 

al. 2006; Cheng et al. 2000). Therefore, bilateral expression of Pitx2c suggested defects in 

the establishment of the midline barrier, in addition to turbulent flow. Expression of midline 

genes, i.e. Xbra and Lefty (also called Antivin in Xenopus), was analyzed after ATP4aMO 

injection  into  the  DMZ  (Figure  16).  Surprisingly,  Xbra and  Lefty expression  was  not 

affected (Figure 16 A-C). 

Next, the presence and correct expression of genes in flow sensing lateral (somitic) GRP 

cells were investigated. WMISH for  Xnr1 and  Coco revealed normal expression before 

flow  (not  shown)  and  argued  against  defects  related  to  the  flow  sensing  mechanism 

(Schweickert et al. 2010). When Xnr1 and Coco expression was analyzed following flow 

stages  (st.  20),  flow-dependent  down-regulation  of  left  Coco expression  was  lost  in 

morphants, as compared to controls (Figure 17 A, B). Loss of left-sided Coco repression 

and lack of Xnr1 de-repression was thus far only reported when flow was lost (Schweickert 

et  al.  2007,  Vick  et  al.  2009).  This  was  accompanied  by  loss  of  asymmetric  gene 

expression in the LPM. As  ATP4a morphants displayed bilateral  induction of the nodal 

cascade (Figure  9  B),  loss  of  Coco asymmetry implicated bilateral  down-regulation  of 

Coco. This hypothesis was tested in epistatic loss-of-function experiments. Coco, as well 

as Pitx2c expressions, were used as readouts. 
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Figure 16: Midline Formation Is Unaffected After Loss Of ATP4 Function

(A-C) Analysis of midline marker gene expression by WMISH revealed normal midline formation in 
ATP4a morphants. (A) Xbra expression (st. 17) in the circumblastular collar and notochord.  (B) 
Early Lefty expression (st. 22) at the midline was not affected in ATP4a morphants. Please note 
bilateral  Lefty expression  in  the  LPMs of  ATP4a morphant.  (C) Late  Lefty expression  in  the 
notochord, floor plate and dorsal endoderm in cleared tailbud stage embryos (st. 32). 

a = anterior, d = dorsal, l = left, p = posterior, r = right, st. = stage and v = ventral. 
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Bilateral  knock-down of  Xnr1 by injection of  Xnr1MO prevented induction of the nodal 

cascade in the LPM as previously reported (Figure 17 C-1) (Schweickert  et  al.  2010).  

Parallel loss of ATP4a did not induce bilateral expression in absence of Xnr1 (Figure 17 C-

2), placing ATP4a function upstream of Xnr1 de-repression. When Xnr1MO was injected to 

the left side only, Pitx2c expression was prevented as well (Figure 17 C-3). When ATP4a 

was knocked-down bilaterally, loss of left Xnr1 function resulted in right-sided induction of 

the nodal cascade (Figure 17 C-4). Conversely, when  Xnr1MO was injected to the right 

side only, normal left-sided induction of the nodal cascade was not prevented (Figure 17 

C-5).  Loss of  Xnr1 function on the right side in  ATP4a morphants inhibited right-sided 

induction and restored asymmetric expression of  Pitx2c  in the left LPM (Figure 17 C-6). 

Taken together, these experiments indicated that  ATP4aMO-induced bilateral expression 

of Pitx2c was Xnr1-dependent and might represent a direct result of a weak and turbulent  

flow. 

This hypothesis would require that effects of  ATP4aMO rely on ciliary motility. Therefore, 

ciliary motility was inhibited by injection of Dnah9MO (Dnah9-Spl-MO in Vick et al. 2009). 

Indeed, parallel loss of ciliary motility and ATP4a led to a loss of nodal cascade induction 

as reported previously for loss of ciliary motion alone (Figure 17 C-7). Moreover, when 

bilateral loss of  ATP4a was combined with unilateral knock-down of  Dnah9, induction of 

the nodal cascade was prevented on the side where ciliary motion was inhibited (Figure 17 

C-8, -9). 

Next, a triple knock-down was performed: (1) ATP4aMO was injected bilaterally (resulting 

in bilateral Pitx2c expression), (2) Xnr1MO was injected to the left side (resulting in inverse 

expression of Pitx2c; Figure 17 C-4) and (3) Dnah9MO to the right side (resulting in left-

sided Pitx2c expression; Figure 17 C-9). In specimens treated this way, Pitx2c expression 

was  absent  on  either  side  in  the  LPM.  Therefore,  effects  of  ATP4aMO  on  LR-axis 

specification  relied  on  Xnr1-mediated  detection  of  flow  and Dnah9-dependent  ciliary 

motion. 

In conclusion, bilateral symmetric Coco expression post flow (Figure 17 A, B) represented 

bilateral down-regulation. This was tested in ATP4aMO injected specimens, in which ciliary 

motility was inhibited on the left side: Inverted right-only repression of Coco was observed 

(Figure 17 A, B), demonstrating that flow-dependent down-regulation on the right side took 

place.
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Figure 17: Turbulent Flow In ATP4a Morphants Causes Bilateral Nodal Cascade Induction

(A-B) WMISH of st. 20 dorsal explants with probes specific for (top) Coco and (bottom) Xnr1 (A). 
Left-sided  Coco repression  was  lost  in  (middle)  ATP4a morphants  and  inverted  upon  (right) 
parallel left-sided knock-down of flow. Xnr1 expression was unaffected. (B) Quantification of Coco 
expression  patterns.  (C)  Quantification  of  Pitx2c expression  patterns  in  st.  26–32  tadpoles 
following  MO injections  into  the C1 lineage (dorsal  midline-GRP)  of  4-cell  stage embryos  as 
indicated. Note that the bilateral induction (please compare Figure 9 B) in ATP4a morphants was 
dependent  on  both  the  presence  of  GRP-Xnr1  and  ciliary  motility.  Please  further  note  that 
unilateral  knock-down of  ATP4a was less efficient  in  inducing bilateral  Pitx2c expression than 
bilateral  injections.  (D–F) Analysis of bead trajectories in time-lapse movies of dorsal explants 
from  representative  (D) CoMO-injected  or  (E) ATP4aMO-injected  embryos  and  (F) specimen 
treated with SCH28080. Flow is displayed as GTTs of 25 s length (color bar in D). → 



                                                                                                                                                    Results

Analysis of flow patterns in ATP4a morphants and SCH28080 treated specimens revealed 

particle movements towards the left  and right margins of the GRP (Figure 17 D-F and 

Movie 1). In 9 (of 25) severely affected ATP4aMO morphant explants ρ-values were below 

0.3, the number of  directed particles was below 120/movie and no more than 28% of 

particle trails projected towards the same direction. Therefore, flow strength/directionality 

equivalent to only ~15 directed particles was sufficient to induce bilateral down-regulation 

of  Coco and  concomitant  bilateral  induction  of  the  nodal  cascade.  This  finding  was 

unexpected and possibly the first case where bilateral induction was clearly correlated with  

flow patterns and not with midline-barrier defects. 

Turbulent  And  Weak Flow  On The  Left  Side  Of  The  GRP Enhances  Right-Sided 
Induction Of The Nodal Cascade In ATP4a Morphants

Vick  et  al.  (2009)  reported  that  flow on the  left  side  of  the  GRP was  necessary and 

sufficient  for  left-sided induction of the nodal  cascade,  and flow on the right  side was 

dispensable. Flow directionality and strength were diminished in ATP4a morphants (Figure 

13), but the residual flow was sufficient to induce the nodal cascade bilaterally (Figure 17).  

Therefore,  unilateral  knock-down  of  ATP4a was  tested  and  compared  with  effects  of 

bilateral loss-of-function (Figure 9 B). 

When ATP4aMO was injected only to the left side at 4-cell stage (Figure 17 C-11), over 

80% of embryos developed normally in terms of Pitx2c expression. In ~10% of morphants 

Pitx2c expression was lost, indicating that ciliation and flow were reduced to a level, which 

was not able to induce Coco down-regulation. In these specimens the wildtype flow on the 

right side did not compensate for loss of flow on the left side. Vick et al. (2009) suggested 

that flow on the contra-lateral side is not relevant for sensing of flow. Therefore, it was 

astonishing that ATP4aMO injections to the right side only (Figure 17 C-12) were a lot less 

effective than bilateral knock-down (Figure 9 B), when  Pitx2c expression was analyzed. 

Therefore, loss of ATP4a on the left side enhanced effects on the right side of the GRP. 
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Note that trajectories in (E) and (F) project to the left side (indicated with blue arrows) and right 
side (indicated with pink arrows) of the GRP, whereas GTTs in (D) point uniformly to the left. White 
arrows represent trajectories running anteriorly or posteriorly.

a = anterior, GTT = gradient time-trail, l = left, p = posterior, r = right and st. = stage. Statistical  
analysis: Chi²-test; ns = not significant, * = p<0.05, ** = p<0.01 and *** = p<0.001. 
Reprinted and modified from: Walentek et al. 2012#.
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ATP4a Is Required For Canonical And Non-Canonical Wnt Signaling 

When high amounts (1pmol/injection) of  ATP4aMO were applied, morphant phenotypes 

developed features known from Wnt signaling defects (Figure 18 A):  ATP4a morphants 

showed loss of anterior most head structures, reduced pigmentation, shortening of the AP-

axis and cyst formation (Figure 18 A and Figure 9 C) (Borchers et al. 2000; Wallingford et  

al. 2001; Tao et al. 2005; Tran et al. 2007; Cruciat et al. 2010). In a recent report, ATP6 

(also  called  vacuolar  H+ATPase)  was  found  to  be  necessary  for  canonical  and  non-

canonical Wnt signaling (Cruciat et al. 2010). Moreover, ciliogenesis defects in Kupffer's 

vesicle of zebrafish embryos were observed upon loss of ATP6 function. For this reason, a 

possible interaction of ATP4 with Wnt signaling was tested.

First, engrailed 2 (En2) expression, a direct target of canonical Wnt/β-catenin (β-cat) in the 

mid-/hindbrain barrier,  was assessed after ATP4a knock-down (McGrew et al.  1999).  A 

significant reduction in  En2 expression levels was observed after  ATP4aMO injections, 

which was rescued by co-injection of 1ng/µl β-cat DNA (Figure 18 B). 

Next, the level of interaction was experimentally tested by induction of secondary axes. In 

Xenopus,  this  can be achieved by misexpression of  Wnt-pathway components  on the 

ventral side of the embryo (Figure 18 C-F) (Sokol et al. 1991). Secondary axis formation 

was observed when Xwnt8a (80%), Dvl2 (90%), β-cat (>90%) or Sia (~40%) mRNAs were 

injected  to  the  ventral  side  at  4-cell  stage  (Figure  18  G).  Co-injections  of  ATP4aMO 

significantly reduced induction of secondary axes by Xwnt8a (~20% reduction) and Dvl2 

(~40% reduction), but not by β-cat or Sia (Figure 18 G). This implicated that the functional 

interaction  of  ATP4a and  Wnt  signaling  took  place  at  the  level  of  membrane-bound 

signalosome components, including Dvl2 (Cruciat et al. 2010).

Effects on non-canonical Wnt signaling of the planar cell polarity (PCP) branch were tested 

as  well.  Neural  tube  closure  requires  PCP-dependent  convergent  extension  (CE) 

movements within the neuroectoderm (Wallingford et al. 2001). The width of the neural 

plate,  which  directly  correlates  with  neural  tube  closure,  was  analyzed  in  control  and 

morphant embryos. Embryos were unilaterally injected into the right side and stained for 

the neural plate marker  Sox3 by WMISH (Rogers et al. 2008). While the neural tube of 

stage 18 control  embryos  was  nearly  completely  closed,  a  significant  widening of  the 

neural plate on the injected side was observed in ATP4a morphants (Figure 19 A). 
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Specificity  of  the  effect  was  confirmed  by  partial  rescue  upon  co-injection  of  60ng/µl 

ATP4a mRNA (Figure 19 A). CE movements also significantly contribute to the lengthening 

of the embryo during development (Keller  et  al.  2008).  Shortening of the AP-axis  was 
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Figure 18: ATP4a Is Required For 
Canonical Wnt-Signaling

(A) Phenotypes of  ATP4a morphant 
tadpoles  (st.  45),  which  were  less 
pigmented,  displayed shortened AP- 
axes, small heads and reduced eyes. 
(B) Reduced  En2 expression at  the 
mid-hindbrain boundary of morphant 
st. 27 tadpoles could be rescued by 
co-injection of β-cat DNA. 
(C-G) Xwnt8- and Dvl2-mediated, but 
not  β-cat or  Xsia-induced,  twinning 
requires ATP4a. 
(C-F) Representative  examples  of 
embryonic twinning after ventral gain 
of indicated Wnt-component. 
(G) Quantification  of  embryonic 
twinning. 

Statistical analysis: Chi²-test; ns = not 
significant,  *  =  p<0.05,  **  =  p<0.01 
and *** = p<0.001.

Reprinted  and  modified  from: 
Walentek et al. 2012#.
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analyzed in tailbud stages (st. 32). ATP4aMO injected specimens were significantly shorter 

than control specimens, and this effect was also partially rescued by co-injection of 80ng/µl 

of ATP4a mRNA (Figure 19 B). 

The  level  of  interaction  in  PCP-signaling  was  tested  using  a  standard  CE  assay  in 

Xenopus (Green  et  al.  1990):  Embryos  were  injected  at  4-cell  stage  into  the  animal 

hemisphere  and  grown  until  late  blastula  stages  (st.  8/9).  Then,  the  animal  cap  was 

explanted and cultured in presence of activin until early tailbud stages (st. 25-30). Activin 

treatment induces notochord formation within uncommitted animal cells. The notochord 

exerts  CE  movements  during  development.  Therefore,  the  activin-treated  explant 

elongates, which can be used as a readout for CE/PCP (Figure 19 C). Uninjected and 

CoMO injected explants elongated when activin was added (Figure 19 D), and elongation 

was reduced in ~30% of ATP4aMO injected animal caps (Figure 19 D). Moreover, when a 

constitutive active form of the Wnt/PCP-pathway component  RhoA GTPase (RhoA CA) 

was co-injected with ATP4aMO, elongation of explants was restored in ~20% of specimens 

(Figure 19 D) (Paterson et al. 1990). In contrast, this was not the case when a dominant 

negative form of RhoA (RhoA DN) was co-injected (Figure 19 D) (Paterson et al. 1990). 

Taken together, ATP4a was required for canonical as well as non-canonical Wnt signaling 

during  Xenopus  laevis development,  and  the  level  of  interaction  was  upstream  of 

intracellular effector molecules β-cat and RhoA in canonical and non-canonical signaling, 

respectively. 

The ATP4a morphant phenotype was also characterized by reduced pigmentation and cyst 

formation (Figure 18 A and Figure 9 C). Both phenotypes were previously correlated with  

loss of Wnt11-mediated non-canonical Wnt-signaling defects (Matthews et al. 2008; Tételin 

et al. 2010). Both systems were analyzed, and loss of ATP4a was compared to the effects 

described upon Wnt11 loss-of-function in the literature. When ATP4aMO was targeted to 

the  NC,  analysis  of  the  NC  marker  Twist1 revealed  that  loss  of  ATP4a was  able  to 

phenocopy these effects. Twist1 expression intensity was decreased and migration of cells 

was  inhibited  (Figure  19  E)  (Mayor  et  al.  2001).  This  was  the  case  for  pronephric  

development as well: Loss of Wnt11 was reported to inhibit the formation and branching of 

the pronephric tubules in morphants (Tételin et al. 2010). The same effect was observed in 

ATP4a morphants (Figure 19 F). In conclusion, the phenotype in ATP4a morphants (Figure 

18 A) could be explained by a decrease in canonical and non-canonical Wnt-signaling.
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Figure 19: ATP4a Is Required For Non-Canonical Wnt-Signaling

(A - D) Analysis of convergent extension. (A) Neural tube closure: widening of the neural tube in 
ATP4a morphants. Embryos were injected unilaterally into the animal right blastomeres at the 4-
cell stage, fixed and processed for Sox3 expression to visualize the neural plate by WMISH at st. 
18. Staging was according to the progress of neural tube closure on the uninjected (left) side. 
Note that the widening of the neural plate was partially rescued upon ATP4a mRNA co-injection. 
(B) Shortening of the anterior-posterior (AP) axis. Embryos were bilaterally injected into the DMZ 
at  the  4-cell  stage,  and  the  AP extension  was  determined  at  st.  32.  Note  that  MO-induced 
shortening was partially rescued by ATP4a mRNA co-injection. The width of the neural plate (A) 
and the length of embryos (B) were measured (as indicated by red lines). Results are depicted as 
box plots. → 
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LR-Axis Defects Are Independent Of Primary Axis Development In ATP4a Morphants

Wnt-dependent development of the primary axes is thought to be a prerequisite for the 

correct setup of the LR-axis (Danos et al. 1995; Lohr et al. 1997). Therefore, a possible 

correlation of LR-defects with AP-axis defects was investigated. ATP4a morphant embryos 

were analyzed for Pitx2c expression (Figure 9 B) and AP-axis development (Figure 20, left 

panel). Quantification of Pitx2c expression patterns in wildtype-like embryos, embryos with 

a shorter AP-axis and/or defects in head patterning, revealed that LR-defects were not 

over-represented in any of these phenotypes (Figure 20). Therefore, there was no need to 

exclude specimens from analysis of specific effects on the LR-axis. 
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(C-D) Convergent-extension  movements  of  activin-induced  animal  cap  explants:  (C) 
Schematically  depicted  animal  cap experiment.  (D)  Reduced  elongation  in  ATP4aMO-injected 
explants was rescued by co-injection of constitutively active (CA) RhoA mRNA, but not after co-
injection of dominant negative (DN) RhoA mRNA. (E) Neural crest cell specification and migration: 
Right-sided ATP4aMO-injection resulted in reduced and altered Twist1 mRNA expression at st. 26 
(n1-n3/4; neural crest migratory streams).  (F) Right-sided pronephric tubule (pnt) defects upon 
unilaterally  ATP4aMO-injection, as demonstrated by WMISH using the pronephros marker gene 
ATP1b1. 

Statistical analysis: Box-plots - Wilcoxon sum of ranks (Mann-Whitney) test, Bar-graphs - Chi²-
test; ns = not significant, * = p<0.05, ** = p<0.01 and *** = p<0.001.
Reprinted and modified from: Walentek et al. 2012#.

Figure 20: LR-Defects In ATP4a Morphants Are Not Coupled To Primary Axis Defects 

Quantification of  Pitx2c expression patterns in  ATP4a morphants, which either displayed normal 
primary  axes  development  (wt)  or  defects  in  AP-axis  elongation  (short)  or  defects  in  head 
patterning (head). Quantity and type of  Pitx2c expression defects were not significantly lower in 
wt-like morphants.

Statistical analysis: Chi²-test; ns = not significant, * = p<0.05, ** = p<0.01 and *** = p<0.001.
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ATP4a  Mediated  Wnt/β-cat  Signaling  Is  Necessary  And  Sufficient  For  Foxj1 
Expression During Gastrulation

LR- and ciliogenesis defects in  ATP4a morphants (Figure 9, 16) and the requirement for 

ATP4 in Wnt-signaling (Figure 18, 20) suggested that ciliogenesis was under Wnt control. 

The forkhead-box transcription factor Foxj1 (a master regulator of motile ciliogenesis) was 

expressed in the superficial  mesoderm (SM) (Figure 21 A) (Stubbs et al.  2008).  Foxj1 

expression  during  gastrulation  was  decreased in  ATP4a morphants  and in  SCH28080 

treated embryos (Figure 21 A, D-F). Co-injection of β-cat DNA rescued Foxj1 expression in 

ATP4aMO injected specimens (Figure 21 B,  D).  Foxj1 expression in the SM was also 

rescued  by  β-cat DNA injections  in  SCH28080  experiments  (Figure  21  E-G).  Drug 

treatment  was  less  efficient,  and  batch  dependency  was  observed,  which  prevented 

quantification.  Therefore,  only  one  experiment  is  shown  for  a  proof  of  principal  that 

pharmacological inhibition was comparable to MO injections (Figure 21 B, G). Next, the 

gain-of-function  effects  of  canonical  Wnt-signaling  components,  i.e.  β-cat and  a 

constitutive active version of the canonical co-receptor  LRP6 (LRP6∆E1-4), were tested 

(Niehrs et al. 2010). Injection of β-cat DNA to the ventral side at the 4-cell stage induced 

Foxj1 expression in more ventral aspects of the mesodermal ring (Figure 21 C). This was 

also the case when  LRP6∆E1-4  DNA was used (not shown). It is noteworthy that, DNA 

injections of these Wnt components did not induce secondary axis formation (not shown). 

In  order  to  confirm the  relevance of  ATP4aMO-induced  Foxj1 down-regulation  for  LR-

development, Pitx2c expression was analyzed. Co-injection of 0.5ng/µl Foxj1 DNA partially 

rescued LR-defects in  ATP4aMO injected specimens (Figure 21 H). Significantly,  when 

Foxj1 was knocked-down by Foxj1MO, loss of Pitx2c expression was observed (Figure 21 

H).  Dose-dependency was observed in  the rate of  Pitx2c misexpression,  ranging from 

~10%,  to  ~30%  and  50%  in  0.2,  1  and  2pmol/embryo  injected  Foxj1 morphants, 

respectively  (Figure  21  H).  Taken  together,  ATP4a mediated  Wnt/β-cat  signaling  was 

necessary and sufficient  for  mesodermal  Foxj1 expression during gastrulation.  Loss of 

ATP4a only  partially  inhibited  Foxj1 expression,  and  bilateral  Pitx2c expression  was 

observed (Figure 21 A, H). In contrast, more pronounced loss of Foxj1 by Foxj1MO caused 

absence of nodal cascade induction (Figure 21 H). 
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Figure  21:  ATP4a  Is  Required  For  Wnt/β-cat  Mediated  Induction  Of  Foxj1 During 
Gastrulation

(A–C) Reduced mRNA expression of  Foxj1 in the SM of  ATP4a morphant or SCH28080-treated 
embryos (A) was rescued upon co-injection of a β-cat DNA expression construct (B). (C) Ectopic 
expression of Foxj1 on the ventral lip following injection of a β-cat DNA expression construct into 
ventral  blastomeres at  the  4-cell  stage (VMZ lineage).  (D) Quantification  of  Foxj1 expression 
results.  (E-G) Batches of  control  (E),  SCH28080 treated  (F) and SCH28080 treated embryos, 
which were injected with  β-cat DNA into  the DMZ at  4-cell  stage  (G).  Foxj1 expression was 
rescued in this experiment by co-injection of β-cat DNA. (H) Partial rescue of Pitx2c expression in 
ATP4a morphants upon co-injection of a Foxj1 DNA expression construct. Please note that knock-
down of  Foxj1 by  Foxj1MO resulted predominantly in  absent  Pitx2c expression,  while  loss of 
ATP4a displayed bilateral expression patterns of Pitx2c.

d = dorsal, l = left, r = right, st. = stage and v = ventral. Statistical analysis: Chi²-test; ns = not 
significant, * = p<0.05, ** = p<0.01 and *** = p<0.001. 
Reprinted and modified from: Walentek et al. 2012#.
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ATP4a Regulates Wnt/PCP-Dependent Cilia Polarization At The GRP

Although  Foxj1 DNA co-injection rescued LR-defects in ~25% of  ATP4a morphants, the 

relatively low efficiency of rescue indicated that re-gaining Foxj1 function was not sufficient 

to completely compensate for loss of ATP4 function (Figure 21 H).  Decrease in  Foxj1 

expression, reduced ciliation rates and a decrease in cilia length (Figure 15 C, D) were 

observed in ATP4a morphants. In addition, defects in cilia polarization were found as well 

(Figure 15 E). The posterior localization of the motile monocilium on the cell surface is a 

central  requirement  for  the  generation  of  a  directional  laminar  flow  to  the  left  side. 

Polarization of GRP cilia was reported to be under control of Wnt/PCP signaling (Antic et 

al.  2010).  Because  ATP4a was also necessary for  non-canonical  Wnt signaling during 

Xenopus development, a role of ATP4a in cilia polarization was experimentally tested.

Reduction  of  Foxj1 expression  levels  in  the  SM during  gastrulation  (Figure  21  A,  D) 

suggested that  genes,  which  were  required  for  dorsal  CE-movements  and -processes 

might have been affected in addition to the effect on Foxj1. Therefore, organizer function, 

dorsal mesoderm induction and Wnt-ligand expression were analyzed after ATP4a knock-

down (Figure 22). The expression of direct targets of maternal Wnt/β-cat signaling and 

markers  of  the  organizer,  i.e.  goosecoid (Gsc;  not  shown)  and  Xnr3,  were  not  down-

regulated, indicating normal organizer induction (Blum et al.  1992; Glinka et al.  1996). 
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Figure  22:  ATP4a  Is  Not  Required  For  Organizer  Induction,  Mesoderm  Formation  And 
Expression of Xwnt11b During Gastrulation

(Upper  row)  Control  specimens.  (Bottom  row)  ATP4a morphants.  Please  note  that  organizer 
induction (Xnr3 expression), mesoderm induction (Xbra expression), dorsal mesoderm formation 
(Not expression; plane of bi-section indicated by dashed line) and expression of Xwnt11b were not 
affected in ATP4a morphants.

d = dorsal, l = left, r = right, st. = stage and v = ventral.
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Moreover,  Xnr3 was  necessary for  CE in  dorsal  mesoderm (Yokota  2003).  Therefore, 

ATP4aMO  inhibited  PCP downstream  of  or  in  parallel  to  Xnr3 function.  Induction  of 

mesoderm and  in  particular  of  dorsal  mesoderm was  not  disturbed,  as  implicated  by 

unaffected  expression  of  Xbra and  Not  (Figure  22),  which  were  both  reported  to  be 

necessary for CE/PCP (von Dassow et al. 1993; Yamada et al. 1998; Tada et al. 2000). In  

addition,  the  expression of  Xwnt11b was analyzed,  a  Wnt-ligand required  for  CE/PCP 

during gastrulation (Smith et al. 2000). The expression of this factor was unaffected after 

ATP4a loss-of-function as well (Figure 22).

Taken together, defects in posterior localization of motile cilia were a result of interference 

with Wnt/PCP-signaling perception during formation of the GRP in  ATP4a morphants. In 

order to confirm this hypothesis, ciliogenesis was rescued in ATP4a morphants either with 

Foxj1 DNA or by co-injection of ATP4a DNA, and GRP ciliation was analyzed by IHC and 

SEM (Figure 23). Ciliation rate, cilia length and posterior localization of cilia were affected 

in  ATP4aMO  morphants  (Figure  23  B  and  E-G).  When  Foxj1 DNA was  co-injected, 

increased ciliation rate and ciliary length were observed (Figure 23 C, E, F). In contrast, 

posterior polarization was not established (Figure 23 G). The rate of posterior polarization 

was even decreased in these specimens. Rescue of  ATP4aMO-induced defects by co-

injection of  ATP4a DNA was more efficient on all levels (Figure 23 D): Ciliation rate and 

ciliary length were improved (Figure 23 E, F), and a positive effect on cilia polarization was 

observed (Figure 23 G). 

In  IHC  samples,  cilia  could  not  be  distinguished  from basal  bodies,  which  were  also 

stained by the antibody.  Therefore, in IHC experiments cilia numbers were likely over-

represented.  The basic  findings were  confirmed by SEM analysis  for  discrimination  of 

ciliation and basal bodies. In SEM micrographs an increase in cilia number was confirmed 

after co-injection of Foxj1 DNA (Figure 23 H), but cilia polarization was not rescued (Figure 

23 I). 

In  summary,  loss  of  ATP4a did  not  affect  organizer  formation  and  dorsal  mesoderm 

induction  (Figure  22),  but  was  specifically  required  for  Wnt/PCP  mediated  posterior 

polarization of cilia, even in the presence of Foxj1 (Figure 23).
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Figure 23: ATP4a Is Required For Posterior Polarization Of GRP Cilia, Downstream Of Foxj1

Embryos were injected at the 4-cell stage into the DMZ and dorsal explants were prepared at st. 
17.  Specimens  were  processed  for  IHC  (A-G),  or  for  SEM analysis  (H,  I) to  determine  cilia 
polarization, ciliation rate and cilia length of GRP cilia. → 
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Summary

ATP4a was required for LR-axis development post MBT. The role of ATP4a was to mediate 

Wnt-signaling (Figure 24): (1) During gastrulation,  ATP4a-dependent Wnt/β-cat signaling 

was necessary and sufficient for expression of Foxj1, the master regulatory gene of motile 

cilia.  (2)  During  neurulation,  ATP4a was  necessary  for  Wnt/PCP-signaling,  which  was 

responsible for posterior localization of GRP cilia. Loss of ATP4 function impaired leftward 

flow. Residual and directionally randomized flow induced bilateral  Coco down-regulation 

and caused bilateral nodal cascade induction in the LPM. Therefore, ATP4a was required 

for the generation of leftward flow and symmetry-breakage in  Xenopus  (Walentek et al. 

2012).
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(A–G) IHC using antibodies against acetylated α-tubulin to visualize cilia (red) and actin (green) to 
outline cell boundaries. Cascade blue dextran was used as lineage tracer in  (B-D).  (A) Control 
uninjected (uninj.) specimen. (B) ATP4a morphant. (C) Co-injection of ATP4aMO and Foxj1 DNA. 
(D) Co-injection of ATP4aMO and ATP4a DNA. (A`-C`) Evaluation of results. (E) Quantification of 
ciliation rate – note that  Foxj1 or  ATP4a co-injection partially rescued ciliation rates in  ATP4a 
morphants.  (F) Quantification of cilia length – note that  Foxj1 or  ATP4a co-injection significantly 
rescued cilia length in ATP4a morphants. (G) Quantification of cilia polarization – note that ATP4a 
DNA co-injection,  but  not  Foxj1 DNA co-injection  partially  rescued  cilia  polarization  in  ATP4a 
morphants. Also note that co-injection of Foxj1 aggravated polarization defects. (H-I) Ciliation rate 
(H) and  cilia  polarization  (I) was  also  quantified  in  SEM  specimens  and  confirmed  findings 
obtained by IHC analysis. Note that ciliation rate was slightly over-represented in IHC samples.

Color code  (A`-D`): red = no cilium, yellow = mispolarized cilium and green = cilium posteriorly 
localized. a = anterior, l = left, p = posterior, r = right and st. = stage. Statistical analysis: Box-plots 
- Wilcoxon sum of ranks (Mann-Whitney) test, Bar-graphs - Chi²-test; ns = not significant,  * = 
p<0.05, ** = p<0.01 and *** = p<0.001. Reprinted and modified from: Walentek et al. 2012#.

Figure 24: Graphical Summary Of ATP4a 
Function  In  Xenopus  laevis LR-
Development 

The  gastric  H+/K+-ATPase  α (ATP4a)  is 
required  for  Wnt/β-cat  dependent  Foxj1 
expression  during  gastrulation,  and 
Wnt/PCP  dependent  cilia  polarization  of 
GRP  cilia  during  neurulation.  Both 
processes  are  required  for  generation  of 
directional  leftward  flow  and  symmetry-
breakage in Xenopus laevis.

Reprinted from: Walentek et al. 2012#.
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Wnt-Signaling During Gastrulation and GRP Formation 

The Canonical Wnt-Receptor Frizzled 8 Mediates β-cat Dependent Foxj1 Expression

Previous experiments on  ATP4a and  Frizzeled8 (Fz8) implicated a specific role for the 

canonical Wnt-receptor  Fz8 in  Foxj1 expression and LR-axis development (Beyer 2011; 

Walentek et al. 2012). Fz8 was expressed in the dorsal mesoderm during gastrulation, and 

loss of  Fz8 function perturbed GRP ciliation, leftward flow and  Pitx2c expression (Beyer 

2011).  In  order  to  test  if  Fz8  regulated  Foxj1 expression in  the SM via  β−cat,  rescue 

experiments  were  performed (Figure  25).  Fz8MO injection  to  the DMZ at  4-cell  stage 

reduced  Foxj1 expression in the SM (Figure 25 B, D).  Foxj1 expression was not only 

down-regulated,  but  also  lost  in  about  50% of  Fz8 morphants  (Figure  25  B,  D).  Co-

injection of β−cat DNA partially rescued Foxj1 expression in Fz8 morphants (Figure 25 C, 

D). This data suggested that Fz8-mediated canonical Wnt/β-cat signaling post-MBT was 

required for Foxj1 expression during gastrulation. 
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Figure  25:  Frizzled8  Is  Required  For  Wnt/β-cat  Mediated  Induction  Of  Foxj1 In  The 
Superficial Mesoderm

(A–B) Reduced mRNA expression of  Foxj1 (assessed by WMISH) in the SM of  Fz8  morphants 
injected to the DMZ lineage at the 4-cell stage (B) was rescued upon co-injection of a β-cat DNA 
expression construct (C). (D) Quantification of results. 

d = dorsal, l = left, r = right, st. = stage and v = ventral. Statistical analysis: Chi²-test; ns = not 
significant, * = p<0.05, ** = p<0.01 and *** = p<0.001.
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Ligand-Dependent  Wnt-Signaling  Regulates  Foxj1 Expression  In  The  Superficial 
Mesoderm Post-MBT

Published  data  indicated  that  Xwnt11b and  Xsfrp2  (Xenopus  secreted  frizzled-related  

protein 2) were expressed during gastrulation, hence qualifying for Foxj1 regulation in the 

SM (Pera et al. 2000; Smith et al. 2000; Cha et al. 2009). WMISH for these genes during 

stages when Foxj1 is expressed revealed co-expression of Xwnt11b and Foxj1 (Figure 26 

A, B). Xsfrp2 was expressed at the edge of the involuting mesoderm and within a second 

domain  in  the  prospective  neuroectoderm  (Figure  26  C),  i.e.  Xsfrp2 was  expressed 

adjacent to the expression domains of Foxj1 and Xwnt11b. Xsfrps have a dual role in Wnt-
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Figure 26: Ligand-Driven Wnt/β-cat Signaling Is Required For Expression Of Foxj1 In The 
Superficial Mesoderm

(A) Expression of  Foxj1 in the SM after WMISH and in bi-sections  (A`, A``). Note that  Foxj1 is 
specifically expressed in the superficial layer with some distance to the dorsal lip (indicated by 
black arrowhead in  A``).  (B) Expression of  Xwnt11b in the SM in whole-mounts and bi-sections 
(B`, B``). Note that Xwnt11b is specifically expressed in the superficial layer with some distance to 
the dorsal lip (indicated by black arrowhead in  B``).  (C) Expression of  Xsfrp2 around the SM in 
whole-mounts  and  bi-sections  (C`,  C``).  Note  that  Xsfrp2 is  not  expressed  in  the  superficial 
mesoderm (dorsal lip is indicated by black arrowhead in C``).  (D, D`  and D``) Post-MBT gain of 
Xsfrp2 in the DMZ lineage by injection of Xsfrp2 DNA at the 4-cell stage inhibited Foxj1 expression 
in the SM (red arrowhead in D``), but induced ectopic expression of Foxj1 in the neuroectoderm, 
including deep tissues (indicated by yellow arrowhead in D``).

Planes of section are indicated by dashed lines. an = animal, d = dorsal, l = left, r = right, st. = 
stage, v = ventral and veg = vegetal.
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signaling: They are known as mediators of long-range Wnt-signaling (Mii et al. 2009), but 

can also prevent ligand/receptor interaction and pathway activation (Kawano et al. 2003). 

Expression of Xsfrp2 (Figure 26 C) thus suggested a potential role as negative regulator of 

Foxj1 expression (Figure 26 A). 

A  Xsfrp2 DNA construct  was  injected  into  the  DMZ  at  the  4-cell  stage,  and  Foxj1 

expression  was  analyzed  during  gastrulation.  Following  Xsfrp2 gain-of-function  Foxj1 

expression in the SM was lost (Figure 26 D). This result thus confirmed the notion that 

Xsfrp2 was a negative regulator of Foxj1 expression. Unexpectedly, Foxj1 expression was 

observed  more  animally,  extending  into  the  neuroectoderm  (Figure  26  D).  Foxj1 

expression in these specimens was not restricted to the superficial layer within its new 

domain, but was found in deep cells as well (Figure 26 D``). 

Two conclusions emerge from these results: (1)  Foxj1 expression in the SM required a 

Wnt-ligand, which could be inhibited by Xsfrp2; (2) Xsfrp2 gain-of-function in the DMZ was 

able to induce ectopic Foxj1 expression. 

Xwnt11b Expression Suggests Multiple Roles In LR-Development

It  was  shown  that Xwnt11b can  activate  the  canonical  and  non-canonical  signaling 

branches (Tada et al. 2000; Tao et al. 2005; Kofron et al. 2007). In zebrafish, the silberblick 

mutant  carries  a  loss-of-function  mutation  for  Wnt11 and  displays  defects  in  the 

morphogenesis of Kupffer's vesicle (Oteiza et al. 2010). ATP4aMO injection phenocopied 

loss of  Wnt11-signaling in  the neural  crest  (NC) (Figure 19 E)  and during pronephros 

development (Figure 19 F) (Matthews et al. 2008; Tételin et al. 2010), indicating that loss 

of ATP4a could affect Xwnt11b signaling in the SM.

First, expression analysis of Xwnt11b was performed (Figure 27). During gastrulation (st. 

10 – 11.5), Xwnt11b was expressed around the blastopore and within the SM, which was 

progressively moving towards the dorsal lip (Figure 27 A-C). During early neurula stages 

(st. 13) the expression domain was restricted to the involuting cells around the blastopore 

(Figure 27 D). During late neurulation (st. 20) and early tailbud stages (st. 27)  Xwnt11b 

was expressed in the somites and the neural crest (NC) (Figure 27 E, F). In tailbud stages, 

Xwnt11b was also found in  the  tailbud tip  (Figure 27 F).  Expression of  Xwnt11b thus 
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indicated two distinct roles in LR-development: (1) During gastrulation, Xwnt11b potentially 

regulated  Foxj1 expression in the SM (Figure 27 A-C) via the canonical branch of Wnt-

signaling. (2) During neurulation, Xwnt11b expression in the circum-blastular collar (CBC) 

(Figure 27 D``), i.e. a tissue adjacent to the posterior-most part of the GRP, suggested that 

Xwnt11b regulated cilia  alignment  via  the  PCP-pathway (Antic  et  al.  2010;  Gao et  al. 

2011).

Xwnt11b Is Required For Leftward Flow And LR-Development In Xenopus

The function of Xwnt11b was investigated in loss-of-function experiments. A Xwnt11bMO 

was designed and injected to the DMZ at 4-cell stage. In order to analyze a possible effect  

on  organizer  induction  and  dorsal  mesoderm  formation,  markers  were  analyzed  by 

WMISH: Xnr3, a direct target of early Wnt/β-cat signaling (Figure 28 A), and Not (Figure 28 

B), a gene required for notochord formation, were not decreased in intensity. These results 

indicated  normal  organizer  induction  and  dorsal  mesoderm  formation.  Next,  Xwnt11b 

morphant embryos were analyzed for Foxj1 expression in the SM: An animal shift of the 
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Figure 27: Xwnt11b Expression During LR-Relevant Developmental Stages Of Xenopus

WMISH expression analysis of Xwnt11b expression. (A, A`) Zygotic expression of Xwnt11b starts 
during  early  gastrulation  (e.g.  st.10)  in  the  dorsal-most  SM.  (A`) Bi-section.  (B-D) During 
subsequent gastrulation st.  10.5  (B),  st.  11.5  (C) and st.  13  (D),  Xwnt11b expression extends 
ventrally, where it is expressed in the deep ventral mesoderm (B`). Please note that during late 
gastrulation/early  neurulation  (st.13,  D),  Xwnt11b is  strongly  expressed  at  the  dorsal 
circumblastular collar (D``), i.e. the tissue, which is situated posterior to the GRP during following 
stages.  (E-F) During late neurulation (st. 20,  E) and tailbud stages (st. 27,  F), expression was 
found in somitic tissues (E, F) and at the tailbud (F).

a = anterior, an = animal, d = dorsal, l = left, p = posterior, r = right, st. = stage, v = ventral and veg  
= vegetal.
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Foxj1 expression domain was observed (Figure 28 C), probably indicating defects in CE 

movements. Down-regulation in Foxj1 expression was found as well (Figure 28 C, D), but 

only in ~10% of specimens.

Next,  the  effect  of  Xwnt11bMO  on  LR-development  was  tested  by  Pitx2c expression 

analysis. In contrast to the minor effects on  Foxj1 expression in the SM (Figure 28 D), 

Pitx2c expression was lost (~55%) or altered (~15%) in a majority of Xwnt11b morphants 

(Figure  28  E).  This  indicated  a  requirement  for  Xwnt11b in  a  Foxj1-independent 

mechanism.  In  order  to  elucidate  the  level  of  interaction  between  Xwnt11b and  LR-

development, flow was analyzed in dorsal explants of uninjected and Xwnt11b morphant 

embryos.  Cilia-driven  leftward  flow  was  disturbed  upon  Xwnt11b loss-of-function,  i.e. 

directionality  was  lost  (ρ=0.51±0.16)  and  velocity  was  significantly  reduced  (1.37±0.32 

μm/s) as compared to control specimens, with values of ρ=0.84±0.07 and 3.01±0.93 μm/s, 

respectively (Figure 28 F-I).
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Hence, Xwnt11b was required for LR-development, but not for Foxj1 expression per se in 

the SM (Figure 28 D, E). Residual flow in morphants was observed, accompanied by loss  

of  nodal  cascade induction (Figure 28 E-I).  These results  indicated that  Xwnt11b was 

required for LR-development beyond generation of leftward flow, because turbulent flow 

alone (in ATP4a morphants) was sufficient for bilateral nodal cascade induction.

Loss Of Xwnt11b Affects GRP Morphology, Ciliogenesis And Cilia Polarization

In order to investigate why knock-down of  Xwnt11b prevented nodal cascade induction, 

GRP morphology, ciliogenesis and polarization of cilia were analyzed in dorsal explants of 

Xwnt11bMO injected embryos by IHC (Figure 23). In explants from uninjected specimens 

over 60% of GRP cells were ciliated (Figure 29 A, E and F). 60% of cilia were localized to 

the posterior pole of GRP cells (Figure 29 A`, D), and cell size was ~100µm² (Figure 29 G).  

In explants from Xwnt11bMO injected embryos, analysis of dorsal explants revealed: (1) 

decrease in cilia number (by ~10%) and (2) polarization rate (by ~30%) (Figure 29 B`, D 

and E); (3) shorter cilia (Figure 29 F) and (4) an (up to 10-fold) increase in GRP cell size  

(Figure 29 G).  These results were confirmed in post-MBT loss-of-function experiments 

using  DNA  encoding  a  dominant  negative  Xwnt11b C-terminal  deletion  construct 

(dnXwnt11b) (Tada et al. 2000): Dorsal explants revealed (1) decreased cilia polarization 

by ~30% (Figure 29 C`, D); (2) cilia length was reduced (Figure 29 F) and (3) an increase  
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Figure 28: Xwnt11b Is Required For LR-Axis Formation And Leftward Flow

(A-E) WMISH  expression  analysis  of  Xnr3  (A),  Not  (B) and  Foxj1  (C) expression  during 
gastrulation (st. 10.5), and of Pitx2c expression patterns in tailbud stage embryos (st. 27 – 32, not 
shown). Please note that organizer induction and dorsal mesoderm formation was not affected in 
Xwnt11b morphants,  as  judged  by  Xnr3 (A) and  Not (B) expression,  respectively.  (D) 
Quantification of Foxj1 expression in Xwnt11b morphants revealed a minor but significant effect of 
Foxj1 expression in the SM (indicated by red arrowhead in  C).  In most  morphants,  the  Foxj1 
expression domain was only shifted towards the animal pole,  probably indicating delay in SM 
involution.  (E) A highly significant loss of  Pitx2c expression was found in  Xwnt11b morphants, 
indicating a Foxj1-independent function of Xwnt11b during LR-development.  (F-G) Quantification 
of flow analysis in dorsal explants. (F) Directionality and (G) velocity of fluorescent beads added to 
GRP explants at st. 17 were drastically reduced in Xwnt11b morphants, as compared to uninjected 
(uninj.)  embryos.  n  represents  number  of  explants  analyzed.  (H–I) Frequency  distribution  of 
trajectory angles in representative explants injected with Xwnt11bMO (I) and uninj. specimens (H). 
Dashed circles indicate maximum frequency in histogram specified in percent. 

a = anterior, d = dorsal, l = left, n = number of particles above threshold, p = posterior, r = right, v = 
ventral in (A-C) or v = average velocity of particles in (H, I), ρ = quality of flow. Statistical analysis: 
Wilcoxon sum of ranks (Mann-Whitney) test; ns = not significant, * = p<0.05, ** = p<0.01 and *** = 
p<0.001. 
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in average GRP cell size was observed (Figure 29 G). In contrast to Xwnt11bMO injection, 

over-expression of  dnXwnt11b did not cause a reduction in ciliation rate (Figure 29 E), 

possibly indicating less pronounced inhibition. 

In  conclusion,  Xwnt11b was  necessary  post-MBT for  correct  morphology of  the  GRP 

(increased  cell  size)  and  blastopore  closure  (not  shown),  as  well  as  ciliation  (cilia 

polarization and length) (Figure 29).

GRP-Expression Of Xnr1 And Coco Is Under Xwnt11b Control

Induction of the nodal cascade was lost in Xwnt11bMO injected specimens (Figure 28 E) 

and  a  turbulent  flow was  observed  (Figure  28  F-I).  Because  turbulent  flow in  ATP4a 

morphants was sufficient for nodal cascade induction (Walentek et al. 2012), loss of Pitx2c 

expression in the LPM in Xwnt11b-experiments indicated defects downstream of leftward 

flow. Xnr1 and Coco were expressed in lateral (somitic) parts of the GRP and required for 

nodal cascade induction. Therefore, expression of these genes was analyzed by WMISH 

in manipulated specimens. Injection of  Xwnt11bMO to the DMZ at the 4-cell stage and 

analysis  of  Xnr1 revealed  down-regulation  (45%)  or  complete  loss  (55%)  of  Xnr1 

expression (Figure 30 A).  dnXwnt11b DNA injections interfered with  Xnr1 expression as 

well (Figure 30 A). Coco-expression analysis after inhibition of Xwnt11b function revealed 

the same finding: Coco expression was down-regulated in 90% of Xwnt11bMO, as well as 

50% of  dnXwnt11b DNA injected specimens (Figure 30 B). Taken together, these results 

indicated  that  Xwnt11b was  required  for  Xnr1 and  Coco expression,  which  were  a 

prerequisite for induction of the nodal cascade in the LPM. 

Summary

Taken  together,  post-MBT  Wnt  signaling  was  an  important  regulator  of  LR-axis 

development in three ways (Figure 31): (1)  Fz8-dependent Wnt/β-cat signaling regulated 

Foxj1 expression in the SM. (2) Non-canonical Wnt signaling was required for gastrulation 

movements  (a  prerequisite  for  GRP  formation)  and  cilia  polarization  during  GRP 

morphogenesis.  (3)  Xwnt11b-dependent  Wnt-signaling  of  a  yet  unknown  branch  was 

required for correct setup of the Xnr1/Coco-mediated flow-sensing mechanism.
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Figure 29: Post-MBT Xwnt11b Is Required For Posterior Polarization Of GRP Cilia And GRP 
Morphology 

(A–G) Embryos were injected at the 4-cell stage into the DMZ and dorsal explants were prepared 
at st. 17. Specimens were processed for IHC (A-C) to determine cilia polarization (D), ciliation rate 
(E), cilia length (F) and GRP cell size (G). (A–C) IHC using antibodies against acetylated α-tubulin 
to visualize cilia (red) and actin (green) to outline cell boundaries.  (A) Control uninjected (uninj.) 
specimen. (B) Xwnt11b morphant.  (C) Embryo after injection of dominant negative (dn) Xwnt11b 
DNA.  (A`-C`) Determination  of  results.  (D) Quantification  of  cilia  polarization  revealed loss  of 
polarization after loss of Xwnt11b function post-MBT. (E) Quantification of ciliation rate – note that 
only MO-mediated loss of Xwnt11b significantly decreased ciliation rate, indicating a minor effect 
of Xwnt11b on ciliation. (F) Quantification of cilia length revealed a significant decrease after loss 
of Xwnt11b function. (G) Quantification of GRP cell size revealed a highly significant increase in 
cell size after manipulation of Xwnt11b, indicating severe defects in non-canonical Wnt-signaling.
 
Color code  (A`-C`): red = no cilium, yellow = mispolarized cilium and green = cilium posteriorly 
localized. a = anterior, l = left, p = posterior, r = right and st. = stage. Statistical analysis: Box-plots 
- Wilcoxon sum of ranks (Mann-Whitney) test, Bar-graphs - Chi²-test; ns = not significant,  * = 
p<0.05, ** = p<0.01 and *** = p<0.001.

Figure 30: Post-MBT Xwnt11b-Signaling Is Required For Xnr1- And Coco-Dependent Flow 
Sensing

(A-B) Embryos were injected at the 4-cell stage into the DMZ, and dorsal explants were prepared 
at st. 16/17 (pre-flow stages). Specimens were processed for WMISH to assess GRP-Xnr1 (A) 
and GRP-Coco (B) expression. → 
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(A) Xnr1 expression in the somitic GRP was significantly reduced in Xwnt11bMO and dnXwnt11b 
DNA injected specimens.  (B) Xwnt11MO and  dnXwnt11b DNA injections also decreased  Coco 
expression.  In  both  cases  Xwnt11bMO  was  more  efficient  than  dnXwnt11b DNA,  possibly 
indicating a role of Xwnt11b pre-MBT. 
Color  code: green arrowheads = wt-expression, purple arrowheads = reduced expression and 
gray arrowheads = absent expression. a = anterior, l = left, p = posterior and r = right. Statistical 
analysis: Chi²-test; ns = not significant, * = p<0.05, ** = p<0.01 and *** = p<0.001.

Figure  31:  Graphical  Summary  Of  Wnt-Signaling  Functions  In  Xenopus  laevis LR-
Development 

Foxj1 expression during gastrulation is possibly regulated by Xwnt8a and marginally dependent 
on Xwnt11b. Xsfrp2 probably restricts canonical Wnt-signaling and  Foxj1 expression to the SM 
(blue).  Canonical  Wnt-signaling  via  Frizzled  8  (Fz8)  stimulates  β-cat  stabilization  and  Foxj1 
expression in the SM, which is required for motile ciliogenesis at the GRP (yellow). Xwnt11b is 
also pivotal  for  non-canonical  Wnt/PCP-dependent convergent  extention (CE) movements and 
cilia polarization of GRP cilia during neurulation. Both processes are required for generation of 
directional leftward flow and symmetry-breakage in Xenopus laevis. Moreover, Xwnt11b-signaling 
post-MBT via an unknown Wnt-branch is required for expression of Coco and Xnr1 in somitic GRP 
portions (green), which is a prerequisite for flow sensing, induction of the nodal signaling cascade 
and  Pitx2c in  the  left  lateral  plate  mesoderm  (LPM). 
st. = stage.
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ATP4a  And  Wnt-Signaling  In  The  Mucociliary  Epithelium  Of  The 
Xenopus Larval Skin 

ATP4a  Is  Required  for  β-cat  Dependent  Foxj1 Expression  And  Ciliation  In  The 
Xenopus Larval Skin

In the epidermal ectoderm, which gives rise to the mucociliary epithelium (MCE) of the skin 

(Hayes et  al.  2007),  ATP4a protein  was found at  the plasma-membrane (Figure 6 A). 

Therefore, a potential function of ATP4a in Foxj1-dependent ciliogenesis was analyzed in 

this system as well.

IHC revealed that ATP4a was found in multiciliated cells (MCCs) and non-ciliated cells of 

the  skin  (Figure  32  C).  Signal  strength  varied  between  MCCs  and  other  cell  types 

(indicated in Figure 32 C`), such that strong as well as very weak staining intensities were 

observed in neighboring non-ciliated cells. In MCCs intermediate staining intensity was 

observed. 

ATP4aMO-mediated loss-of-function was performed in the skin MCE.  Foxj1 expression 

during neurulation (st.  15) (Figure 32 D, E) as well  as cilia-driven fluid flow in  tailbud 

stages (st. 32) (Figure 32 F-I) were examined. Embryos were unilaterally injected at the 4-

cell  stage,  and the  contra-lateral  side  was used as  internal  control.  Analysis  of  Foxj1 

expression disclosed decrease in Foxj1 expression after ATP4aMO injection (Figure 32 D, 

E) as compared to uninjected and CoMO-injected specimens. This finding was confirmed 

at the morphological level: The average number of MCCs decreased by ~30% after loss of 

ATP4a function (Figure 32 F-H). Moreover, SEM analysis unveiled that less individual cilia 

projected from the apical surface of MCCs in ATP4a morphants (Figure 32 F`, G`). Cilia-

driven flow over the skin epithelium was analyzed (Mitchell et al. 2007; Schweickert et al.  

2007; Vick et al. 2009): Stage 32 embryos were anesthetized and placed in bead solution. 

Movement of fluorescent beads was recorded, and ImageJ/Particle Tracker were used to 

quantify  flow  velocity  in  CoMO  injected  and  ATP4a morphant  embryos.  Average  flow 

velocity in  ATP4aMO injected specimens was reduced to ~10µm/s (Figure 32 I),  while 

velocity in CoMO injected specimens was ~80µm/s. 
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Figure 32: ATP4a Is Required For Foxj1 Expression, Ciliation And Cilia-Driven Flow In The 
Xenopus Skin Mucociliary Epithelium 

(A, B and D) WMISH for Foxj1 expression. (A) Foxj1 expression was found at the floor plate (fp) 
and in the skin ectoderm (se) during late neurulation (st. 29). (B) In tailbud stages (st. 32) Foxj1 
was expressed in the fp of the tailbud, in the se, in the cloaca (c) and in the proximal pronephric 
tubules (pnt,  inset  in  B).  (C) Immuno-histochemistry (IHC) for  ATP4a (red)  and acetylated  α-
tubulin (green, C``) revealed presence of ATP4a protein in all skin cells at st. 27 (C, C`). Protein 
amount varied in different cells (-types): low (I in C`), medium (II in C`) and high (III in C`). (D-E) 
Loss  of  Foxj1 expression  in  the  skin  during  neurulation  (st.  15)  after  ATP4aMO  injection 
(specimens were unilaterally injected to the animal pole of the ventral-right blastomere at 4-cell 
stage, targeting the se).  (D) Decreased  Foxj1 expression is indicated by red arrowhead in the 
upper-right panel.  (E) Quantification of results.  (F-H) SEM analysis and quantification of ciliated 
skin  cells  in  control  (CoMO)  and  ATP4a morphants.  (F-G) High-power  magnification  of  SEM 
micrographs revealed a decrease in cilia number and length in ciliated cells after ATP4aMO (G`) 
injection, as compared to control injections (F`). (H) Quantification of ciliated cell numbers. → 
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Canonical Wnt-signaling has not been reported in the Xenopus laevis skin. However, loss 

of  Lef1 (a transcriptional co-factor of  β-cat) in  Xenopus tropicalis inhibited formation of 

MCCs in the skin (Semenov et al. 2007, Roël et al. 2009). Epistatic rescue experiments 

were performed in order to elucidate if Wnt/β-cat regulated Foxj1-mediated ciliation. Skin 

ciliation was analyzed by IHC for acetylated tubulin (tubulin). Upon  ATP4aMO injection 

loss of ciliation (Figure 33 A, B, F, G and K) was observed. Notably, apically enriched but  

disorganized tubulin, which was not projecting from the apical surface, was seen in ATP4a 

morphants (Figure 33 B`, G). The number of tubulin-positive cells (i.e. ciliated cells and 

cells with enriched apical tubulin) did not decrease (Figure 33 K). These results suggested 

that the number of MCCs in the skin did not change upon  ATP4a loss-of-function, but 

rather that MCCs lost their ability to form cilia. Co-injection of ATP4a DNA was sufficient to 

rescue the number  of  ciliated  cells  and the number of  cilia  projecting  from the apical  

surface (Figure 33 C, H and K). Interestingly, a 2-fold average increase in tubulin-positive 

cells was also observed (Figure 33 K). Next, it was tested if activation of the Wnt-signaling 

pathway downstream of the receptor (by β-cat DNA) or over-expression of the target gene 

(by  Foxj1 DNA) was able to rescue ciliation as well. Co-injection of  β-cat or  Foxj1  DNA 

together with  ATP4aMO increased the number of  ciliated cells,  but not to a significant 

extent (p>0.05) (Figure 33 K). In contrast, the number of cilia projecting from the apical 

surface  was  significantly  (p<0.01)  rescued  after  co-injection  of  DNAs  (Figure  33  K). 

Furthermore, the number of tubulin-positive cells in ATP4a morphants was increased after 

injection  of  β-cat  and Foxj1 DNAs (Figure  33  K).  Analysis  of  cilia-driven  fluid  flow in 

uninjected,  ATP4a morphant and rescued embryos confirmed these findings (Movie 2): 

Flow was lost or severely affected in  ATP4aMO injected specimens as described above 

(Figure 32 I), while co-injections of ATP4a, β-cat or Foxj1 DNAs partially restored fluid flow 

(representative examples are shown in Movie 2). 

In conclusion,  ATP4a-dependent Wnt/β-cat-signaling was required for  Foxj1 expression 

(Figure  33)  as  well  as  for  the  formation  and  function  of  motile  cilia  in  MCCs  of  the 

skin(Figure 32).
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(I) Quantification of cilia-driven flow velocity in control and ATP4a morphants. Tailbud stage (st. 32) 
embryos were anesthetized and placed in fluorescent bead solution,  movement of beads was 
recorded and quantified as indicated in the text and depicted in Movie 2.

a = anterior, d = dorsal, l = left, p = posterior, r = right, st. = stage and v = ventral. Statistical 
analysis: Box-plots - Wilcoxon sum of ranks (Mann-Whitney) test, Bar-graphs - Chi²-test; ns = not 
significant, * = p<0.05, ** = p<0.01 and *** = p<0.001.
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Figure 33: ATP4a Is Required For Wnt/β-cat- And Foxj1-Dependent Ciliation In The Xenopus 
Skin 

(A-J) IHC for cilia (α-tubulin, red) and the actin cytoskeleton (green). Four embryos (two areas [A-
E] per embryo) were analyzed per treatment.  (G-J) Injected specimens were also analyzed for 
lineage tracer delivery in the blue channel (Cascade blue dextran).  (A`-E`) Lateral  projections 
revealed effective ciliation of the skin in control (uninj.,  A) and treated specimens. Ciliation rate 
was reduced in ATP4a morphants (B`), which was in part rescued by co-injection of ATP4a (C`), 
β-cat (D`) or Foxj1 (E`) DNAs. (F-J) High-power magnification revealed long ciliary bundles (green 
arrowheads)  in  uninj.  specimens  (F),  but  only apically enriched  α-tubulin,  which was not  (red 
arrowhead)  or  only  in  part  (orange  arrowhead)  projecting  from  the  cell  surface  in  ATP4a 
morphants (G). This phenotype was rescued upon co-injection of ATP4a (H), β-cat (I) or Foxj1 (J) 
DNAs. (K) Quantification of results revealed significant rescue of ciliated cell number (marked by 
green and orange arrowheads in F`-J`) only after co-injection of ATP4a DNA, while the number of 
wt-like cells (projecting >10 cilia from the apical surface, indicated by green arrowheads in F`-J`) 
was significantly rescued in all conditions. → 
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ATP4a And β-cat Are Required Downstream Of The Notch/Delta Pathway In The Skin 

The MCE of the Xenopus skin was reported to consist of three cell types, namely MCCs, 

ion secreting cells (ISCs) and large goblet cells (Hayes et al. 2007; Dubaissi et al. 2011;  

Quigley  et  al.  2011).  While  goblet  cell  specification  in  Xenopus MCE  has  not  been 

addressed  so  far,  specification  of  MCCs  and  ISCs  (derived  from  the  deep  layer  of 

ectoderm) was shown to be under control of Notch/Delta-signaling (Deblandre et al. 1999; 

Quigley et al. 2011).

In  order  to  evaluate  the  hierarchy  of  Wnt-  and  Notch/Delta-signaling  events  in  MCC 

specification and Foxj1 expression, embryos were injected with either Dll1 (Delta-like 1) / 

X-Su(H)-DBM  (DNA-binding mutant  form of  the Notch co-factor suppressor-of-hairless) 

mRNA alone  or  in  combination  with  ATP4aMO  (Figure  34).  Foxj1 expression  of  the 

injected versus the uninjected side was analyzed in neurula stage embryos (st. 19) (Figure 

34  G).  Inhibition  of  Notch-signaling  via  Dll1 and  X-Su(H)-DBM significantly  (p<0.01) 

increased Foxj1 expression on the injected side (Figure 34 B, G). When ATP4aMO was 

co-injected  with  either  construct,  Foxj1 expression  decreased  below  wildtype-levels 

(Figure  34  C,  G).  Therefore,  ATP4a-dependent  Wnt/β-cat  signaling  was  required 

downstream of Notch/Delta-signaling for Foxj1 expression in MCCs. 

In order to test if Notch/Delta-signaling might be a mediator of competence during skin 

MCE development and maintenance,  Notch-ICD (Notch intracellular domain) mRNA was 

injected and Wnt-pathway activation  was manipulated  by  ATP4aMO or  β-cat  DNA co-

injection  (Figure  34  D-G).  Upon  gain  of  Notch-signaling  Foxj1 expression  was  down-

regulated or lost, as compared to the contra-lateral side (Figure 34 D, G). Co-injection of 

ATP4aMO further down-regulated  Foxj1 expression, which was then virtually absent on 

the  injected  side  (Figure  34  E,  G).  When  β-cat  DNA was  co-injected  with  Notch-ICD 

mRNA, no rescue effect was observed (Figure 34 F, G). These findings suggested that 

Notch/Delta-signaling was required for the mediation of competence, upstream of Wnt-

dependent Foxj1 expression in Xenopus skin MCE cells.
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The number of tubulin(+)-cells (indicated by green, orange and red arrowheads in F`-J`) was not 
decreased in ATP4a morphants, and increased in all rescue conditions, suggesting gain of Wnt/β-
cat and Foxj1 signaling in ATP4a DNA injected specimens.
 
st. = stage. Statistical analysis: Wilcoxon sum of ranks (Mann-Whitney) test; ns = not significant, * 
= p<0.05, ** = p<0.01 and *** = p<0.001.
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Figure  34:  ATP4a  And  Wnt/β-cat  Are  Required  Downstream  Of  Notch/Delta  For  Foxj1 
Expression In The Skin 

(A-F) WMISH and assessment of  Foxj1 expression in the skin MCE of uninjected (uninj.) and 
unilaterally right injected (as indicated) neurula stage (st. 19) embryos. (A, B and D) Inhibition of 
Notch-signaling  in  the  skin  increased  Foxj1 expression  (B),  while  gain  of  Notch-signaling 
decreased Foxj1 expression (D), as compared to uninj. (A) controls and uninjected contra-lateral 
sides of respective embryos. (C) Inhibition of ATP4a by ATP4aMO co-injection prevented increase 
in Foxj1 expression upon inhibition of Notch-signaling by X-Su(H)-DBM mRNA. (E) Loss of ATP4a 
in Notch-ICD injected specimens further decreased Foxj1 expression. (F) Gain of β-cat in Notch-
ICD  injected  embryos  did  not  rescue  Foxj1 expression,  suggesting  that  Delta-signaling  was 
required during mediation of competence for Foxj1 expression in skin cells. → 
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Next, the effect of  ATP4aMO injections on ISCs was investigated. ISCs were reported to 

express genes encoding the vacuolar H+ATPase (ATP6) and were suggested to regulate 

ion homeostasis. Therefore, expression of ATP6V1E1 (E1 subunit of ATP6) was analyzed 

in  order  to  elucidate  if  ISCs  were  present  in  ATP4a morphants.  In  contrast  to  Foxj1 

expression in MCCs (Figure 32 D, E), expression of ATP6V1E1 was not affected in ATP4a 

morphants (Figure 35) (Quigley et al. 2011). 

Taken together, ATP4a was required downstream of Notch/Delta-signaling (Figure 34) for 

Foxj1 expression (Figure 32 D, E) and ciliation in MCCs of the skin (Figure 32 F-H and 

Figure 33). ATP4a was not required for specification of ISCs (Figure 35) or intercalation 

per se (Figure 33).

ATP4a-Function Is Required For Otogelin Expression In Goblet Cells 

In order to analyze effects of ATP4aMO injections on goblet cells, expression of the goblet 

cell marker  Otogelin was analyzed by WMISH (Hayes et al. 2007).  Otogelin expression 

started  around  stage  12  in  the  ventral  skin  ectoderm  (Figure  36  A,  B).  Expression 

increased in  concomitant  stages (~st.15-20)  (Figure  36  C)  and was  present  until  late 
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(G) Quantification of results. 
st. = stage. Statistical analysis: Chi²-test; ns = not significant, * = p<0.05, ** = p<0.01 and *** = 
p<0.001.

Figure  35:  Specification  Of  Ion  Secreting  Cells  (ISCs)  And  ATP6 Expression  Are 
Independent Of ATP4a

WMISH in tailbud stage (st. 32) embryos and assessment of  ATP6V1E1 expression, which is a 
marker for  ISCs in the skin MCE, did not  reveal decrease in  expression upon loss of  ATP4a 
function.                                                                                                                             st. = stage.
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tailbud stages (not shown), but expression levels decreased (Figure 36 D and not shown). 

Next,  Otogelin expression  was  analyzed  in  ATP4aMO  injected  specimens.  Otogelin 

expression was down-regulated in ATP4a morphants (Figure 36 E), suggesting that ATP4-

mediated Wnt-signaling could be required in this cell type as well.
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Figure  36:  Otogelin,  A  Marker  Gene  For 
Goblet  Cells,  Is  Expressed  During  MCE 
Development  In  An  ATP4a-Dependent 
Manner 

(A-D) WMISH  analysis  of  developmental 
Otogelin expression.  Otogelin was  not 
expressed pre-MBT (st. 7,  A), i.e.  Otogelin was 
only expressed zygotically from st. 12 onwards 
(B).  Expression  started  in  the  ventral  skin 
ectoderm  (st.  12,  B)  and  expanded  towards 
dorsal regions during later development (st. 15, 
C),  eventually  covering  the  whole  embryo, 
except  for  the  neuroectoderm  (C`).  In  early 
tailbud  stages  (st.  26)  expression  started  to 
decrease,  and  was  not  found  at  the  cement 
gland  (anterior-most  structure).  (E) Otogelin 
expression  was  decreased,  but  not  lost  in 
unilateral  right  injected  ATP4a morphants, 
indicating requirement for ATP4a in goblet cells.

a = anterior, an = animal, d = dorsal, l = left, p = 
posterior, r = right, st. = stage, v = ventral and 
veg = vegetal.
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Characterization Of A Novel Cell Type In The Xenopus Skin

We have recently involved serotonin (5-hydroxytryptamine; 5-HT) signaling in regulation of 

ciliary beat frequency (CBF) in MCCs (Thumberger 2012). Therefore, experiments were 

performed  to  test  if  5-HT  or  the  receptor  HTR3  (required  for  CBF)  regulated  Foxj1 

expression as well. Loss of 5-HT signaling by means of HTR3MO injection or squelching 

of 5-HT by over-expression of a HTR3-ligand binding-domain (HTR3-LBD) mRNA (Beyer 

et  al.  2011)  were  employed.  Upon  injection  of  HTR3MO  or  HTR3-LBD mRNA  Foxj1 

expression was not down-regulation (Figure 37). Serotonin signaling was thus required for 

regulation of CBF, but not for Foxj1 expression in MCCs of the Xenopus skin.

Serotonin-positive cells  were characterized by a small  apical  surface and presence of 

vesicle-like  structures filled with  5-HT (Figure  38 A,  B and D-E).  5-HT synthesis  from 

tryptophan depends on tryptophan-hydroxylase (TPH) (Matthes et al. 2010). Expression of  

TPH in the MCE started around st. 25 (Figure 38 A, C). WMISH for  TPH was combined 

with IHC for 5-HT and revealed co-localization of TPH expression and 5-HT in vesicle-like 

structures (Figure 38 A).  Visualization of cilia (by IHC for tubulin) confirmed that  TPH-
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Figure 37: Serotonin (5-HT) Signaling Does Not 
Mediate  Wnt/β-cat  Signaling  And  Foxj1 
Expression In The Skin

(A-C) WMISH  analysis  of  Foxj1 expression  in 
neurula stage (st.16) controls (uninj., A), unilaterally 
right  injected  HTR3 morphants  (B) and  after 
unilateral  right-sided  HTR3-LBD mRNA-mediated 
loss  of  5-HT  signaling  (C).  Note  that  Foxj1 
expression  on  the  injected  side  was  not  down-
regulated, and in some specimens a minor increase 
in staining intensity was evident (C).

st. = stage. 
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expressing and 5-HT containing cells were non-ciliated (Figure 38 A). Next, WMISH for the 

goblet cell marker  Otogelin was combined with IHC for 5-HT. Serotonin-containing cells 

were not Otogelin positive (Figure 38 B). In order to elucidate if serotonergic cells belong 

to the ISC-population, Notch/Delta-signaling was manipulated (as described above), and 

TPH expression was compared with ATP6V1E1 expression. While injection of Notch-ICD 

mRNA inhibited expression of  ATP6V1E1,  TPH expression was found more abundant in 

the  skin  (Figure  38  C).  Conversely,  when  Dll1 or  X-Su(H)-DBM mRNAs  were  used, 

ATP6V1E1 expression was increased, but THP expression was down-regulated (Figure 38 

C).  These  findings  were  confirmed  when  5-HT  and  tubulin  were  stained  by  IHC  in 

Notch/Delta-manipulated  embryos:  (1)  Gain  of  Notch-signaling  by  Notch-ICD mRNA 

induced increased presence of 5-HT vesicles in the skin at the expense of MCCs (Figure  

38 D, E). (2) Inhibition of Notch-signaling by Su(H)-DBM mRNA decreased the number of 

5-HT vesicles in the MCE, and the number of MCCs was increased (Figure 38 D-F). In  

conclusion,  TPH-expressing and 5-HT-containing cells represented a distinct cell type in 

the  Xenopus skin MCE. It  is  suggested to name this cell  type according to its unique 

features features: TPH-expressing and serotonin-secreting cells – TASCs.

To further characterize TASCs in the skin MCE, ATP4a loss-of-function was performed and 

TPH expression was analyzed in unilaterally injected embryos. TPH expression was down-

regulated in ATP4a morphants (Figure 39). The negative effect of ATP4aMO injections was 

partially  rescued  upon  co-injection  of  ATP4a DNA,  thereby  demonstrating  specificity 

(Figure 39). When  TPH expression was stimulated by  Notch-ICD mRNA injection,  β-cat 

DNA was  not  able  to  induce  further  increase  in  TPH expression  (Figure  39).  When 

ATP4aMO was co-injected with  Notch-ICD mRNA, TPH expression was lost (Figure 39). 

Therefore, ATP4a-mediated Wnt-signaling was required downstream of the Notch/Delta-

pathway, either specifically for TPH expression or for the induction of TASC-identity within 

MCE cells. 
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Figure 38: Tryptophan-hydroxylase Expressing And 5-HT Secreting Cells Represent A New 
Cell Type In The Skin

(A-B) Combined  analysis  of  WMISH  and  IHC  during  tailbud  stages  (st.  27-35).  (A) TPH 
expression (purple) co-localized with 5-HT vesicles (green), but not with ciliated cells (α-tubulin, 
red), indicating that 5-HT is actively produced and localized to vesicles in the skin.  (B) WMISH 
signal (purple staining) for the goblet cell marker Otogelin did not co-localize with 5-HT vesicles 
(green)  as  well.  (C) Opposite  effects  upon  Notch/Delta-signaling  manipulation  in  ISCs  and 
serotonergic  cells.  Gain  of  Notch-signaling  by  unilaterally  right  injection  of  Notch-ICD mRNA 
prevented formation of ISCs, as judged by expression of ATP6V1E1, but increased expression of 
TPH in the skin (upper panel). Conversely, inhibition of Notch-signaling by injection of Dll1-STU or 
X-Su(H)-DBM mRNAs increased presence of ISCs, but decreased TPH expression (middle and 
lower level, respectively).  (D-F) IHC for cilia (red) and 5-HT (green) in control (uninj.)  (D) and 
manipulated specimens (E, F) revealed that manipulation of Notch/Delta-signaling had the same 
effects  on  ciliation  (multiciliated  cells,  MCCs)  and  5-HT,  like  described  for  ISCs  and  TPH 
expression (C), i.e. increase in MCC abundance upon Notch-signaling inhibition, and increase of 
5-HT vesicle-containing cells upon Notch-signaling stimulation. 

Figure 39:  TPH Expression Requires ATP4a Mediated Wnt/β-cat Signaling Downstream Of 
Notch-signaling

WMISH for TPH in control (uninj., A) and manipulated embryos, which were unilaterally injected to 
the right-animal blastomeres at 4-cell stage.  TPH expression was reduced in  ATP4a morphants 
(B), and this effect could be rescued upon co-injection of  ATP4a DNA (C). While gain of Notch-
signaling (Notch-ICD) enhanced  TPH expression  (D), co-injection of  β-cat DNA has not further 
enhanced  expression  intensity  or  number  of  TPH expressing  cells  (E).  Conversely,  when 
ATP4aMO was co-injected with Notch-ICD mRNA, TPH expression was reduced on the injected 
side (F).
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Summary

ATP4a  was  required  downstream  of  Notch/Delta-signaling  in  MCCs  for  Wnt/β-cat 

dependent  Foxj1 expression,  ciliogenesis and establishment of  cilia-driven flow. It  was 

dispensable for ATP6V1E1 expression in ISCs. In contrast to MCCs and ISCs, TASCs did 

require active Notch-signaling for TPH expression and 5-HT localization. HTR3-mediated 

5-HT-signaling in the skin was not required for Foxj1 expression, but for regulation of CBF 

in MCCs (Thumberger 2011).  Otogelin expression in goblet cells of the outer layer was 

down-regulated  after  ATP4a loss-of-function  as  well.  Taken  together,  ATP4a-mediated 

Wnt-signaling was required for correct gene expression and function of the Xenopus skin 

MCE (Figure 40).
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Figure 40: Graphical  Summary Of ATP4a And Wnt-Signaling Functions In The  Xenopus 
Skin Mucociliary Epithelium 

Three out of four cell  types of the skin MCE require ATP4a-mediated Wnt/β-cat signaling, i.e. 
goblet cells in the outer cell layer (orange), and MCCs and TASCs from the deep layer (light red). 
MCCs, ISCs, and probably TASCs as well, are derived from the deep layer and need to intercalate 
into the outer layer during MCE development (indicated by arrows in the upper-right inset). Cell 
fate within the deep cell layer is mainly mediated by Notch/Delta-signaling, but additional factors 
are  required  for  separation  between  MCCs  and  ISCs,  which  are  Wnt-dependent  and 
-independent,  respectively.  Goblet  cells  express  Otogelin and produce mucus,  MCCs express 
Foxj1 and  project  motile  cilia  into  the  mucus,  ISCs  express  ATP6V1E1 and  regulate  ion 
homeostasis, while TASCs express TPH and produce 5-HT, which they secrete to regulate ciliary 
beat frequency (CBF) via cilia-localized HTR3, a ligand gated Ca2+ receptor channel.
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ATP4a, Wnt-Signaling And Foxj1 Expression In The Neuroectoderm 

ATP4a Is Required For β-cat Dependent Foxj1 Expression In The Floor Plate Of The 
Neural Tube And Downstream of Hedgehog-Signaling

ATP4a-dependent Wnt/β-cat signaling was required for  Foxj1 expression and ciliation in 

the SM/GRP (Figure 24) as well as the MCE of the skin (Figure 40). Hence, Wnt/β-cat 

signaling via ATP4a could be a general regulator of motile ciliogenesis during  Xenopus 

development. 

Foxj1 was expressed in the floor plate (Figure 32 A and Figure 41 A) from stage 12/13 

onwards (Pohl et al. 2004). Expression of Foxj1 in the floor plate was previously reported 

to be under control of Sonic hedgehog (Shh) (Yu et al. 2008). Recently, a revised model  

proposed  that  Hedgehog  (HH)  signaling  was  dispensable  for  floor  plate  induction  in 

Xenopus (Peyrot et al. 2011). These findings thus suggested that HH-signaling could be 

required for Foxj1 expression downstream of floor plate induction. Therefore, requirement 

of ATP4a and Wnt-signaling for Foxj1 expression in the floor plate and interaction of Wnt- 

and HH-signaling were tested. 

ATP4aMO was injected into dorsal blastomeres at 4-cell stage. Embryos were cultured 

until they have reached neurula stages, and Foxj1 expression was analyzed by WMISH. 

Upon MO-mediated loss of ATP4a-function, a decrease in floor plate Foxj1 expression was 

observed in  15  out  of  19  specimens (Figure  41 B).  When  ATP4aMO was  co-injected 

together with β-cat DNA, Foxj1 expression was at wildtype-levels in 9 of 21 manipulated 

embryos (Figure 41 C). This supported the idea that ATP4a-dependent Wnt/β-cat signaling 

was required for Foxj1 expression in the floor plate as well. Ectopic activation of Foxj1 was 

found in the anterior neural plate in β-cat DNA co-injected embryos (Figure 41 E), whereas 

it was excluded from the anterior-most portions of the neural plate in uninjected embryos 

(Figure 41 D). Wnt/β-cat signaling was thus necessary and sufficient for Foxj1 expression 

in neural plate. In order to confirm that interference with Wnt-signaling did not affect floor  

plate  induction  or  HH-signaling,  floor  plate-morphology  and  gene  expression  were 

analyzed in  ATP4a morphants. In floor plate cells, triangular shape due to strong apical 

constriction was observed in uninjected and morphant embryos (Figure 41 A`, B` and C`). 
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Figure 41: ATP4a And Wnt-Signaling Are Required Downstream Of Hedgehog-Signaling For 
Foxj1 Expression In The Floor Plate Of The Neural Tube

WMISH in control  and manipulated embryos for  Foxj1 (A-E and H),  Shh (F) and  Xsfrp2 (G) 
expression during neurula stages (st. 14-19).  (A-E) Foxj1 expression was specifically lost in the 
floor plate (fp), but not in the skin ectoderm upon dorsal injection of  ATP4aMO (B), and without 
affecting fp morphology  (A`,  B`).  (C) Fp-Foxj1 was rescued upon co-injection of  β-cat DNA in 
morphants.  In comparison to uninjected (uninj.)  controls  (D),  Foxj1 expression was expanded 
towards the anterior edge of the neural plate (yellow arrowhead in  E), normal anterior edge of 
Foxj1 expression is indicated by white arrowheads in (D and E). (F, H) Fp-Shh and neural Xsfrp2 
expression patterns were not  affected in  ATP4a morphants.  (H) Embryos were either  kept  in 
normal  medium  (left  panel),  medium  with  ethanol  (Et-OH)  or  10µM  cyclopamine,  and  Foxj1 
expression  was  assessed.  Inhibition  of  Hedgehog  (HH)-signaling  by  cyclopamine  specifically 
inhibited fp-Foxj1 expression (indicated by red arrowhead) without affecting expression in the skin 
ectoderm or  at  the  blastopore.  Please  note  that  fp-Foxj1 expression  was  in  part  restored in 
embryos, which were injected with β-cat DNA to the DMZ at the 4-cell stage before incubation.
 
Planes  of  section  are  indicated  by  dashed  lines  in  (A-C).  White  arrowheads  indicate  wt-like 
expression,  red  arrowheads  indicate  reduced  expression  and  yellow  arrowhead  indicates  an 
expanded expression domain. a = anterior, d = dorsal, l = left, p = posterior, r = right, st. = stage 
and v = ventral.



                                                                                                                                                                Results

Shh expression was not altered in ATP4a morphants as well (Figure 41 F). In addition, a 

change in  Xsfrp2  expression, which was a negative regulator of  Foxj1 expression in the 

SM (Figure 26 C, D), was not observed upon loss of ATP4a-function (Figure 41 G). These 

findings argued for normal floor plate specification in ATP4a morphants.

Next, interaction of the Wnt- and HH-pathway was tested. Untreated and ethanol (0.1% 

EtOH) treated specimens revealed strong expression of  Foxj1 in the floor plate in early 

neurula stages (21 of 23 in untreated; 19 of 26 EtOH-treated embryos). Inhibition of HH-

signaling by 10µM cyclopamine (11-deoxojervine) inhibited floor plate Foxj1 expression in 

26  of  29  specimens  (Figure  41  H).  Notably,  cyclopamine  did  not  interfere  with  Foxj1 

expression in the skin and in the involuting SM (Figure 41 H). This suggested, that HH-

signaling was required for  Foxj1 expression in the floor plate, but not for expression in 

other epithelia during neurulation. 

Next, it was tested if Wnt/β-cat signaling was sufficient to restore Foxj1 expression in the 

absence of HH-signaling. In this experiment, embryos were either incubated with 10µM 

cyclopamine or injected with β-cat DNA into dorsal blastomeres at the 4-cell stage followed 

by incubation.  Analysis  of  Foxj1 expression  by WMISH revealed  that  β-cat DNA was 

sufficient to rescue  Foxj1 expression in 3 of 5 embryos in the presence of cyclopamine 

(Figure 41 H), while it was lost in 7 of 7 non-injected specimens. This preliminary finding 

suggested that HH-signaling was required upstream of canonical Wnt-signaling for Foxj1 

expression in the floor plate. 

Taken together,  Foxj1 expression in the floor plate was also dependent on ATP4a and 

activation of the canonical Wnt-signaling branch (Figure 41 A-E). Furthermore, β-cat was 

sufficient  to  induce  ectopic  Foxj1 expression  in  more  anterior  domains  of  the 

neuroectoderm (Figure 41 E). Rescue of Foxj1 expression in absence of HH-signaling by 

injection of β-cat DNA (Figure 41 H) further demonstrated that HH-signaling was required 

upstream of Wnt/β-cat for Foxj1 expression. 

95



                                                                                                                                                                Results

ATP4a Is Required For Cilia-Driven Flow In The 4th Ventricle Of The Brain

In addition to the floor plate, ciliated cells line the brain ventricles and produce flow of 

cerebrospinal fluid (CSF) (Kishimoto et al. 2011). Ependymal flow was previously reported 

to occur during late tadpole stages in Xenopus (Miskevich 2010). In order to elucidate the 

precise location of MCCs in the brain, IHC for tubulin was performed on isolated heads of 

stage 45 tadpoles (Figure 42 A). Following staining, the brain was prepared (Figure 42 B)  

and sectioned. Analysis of transversal sections (Figure 42 C-K) revealed a population of 

MCCs projecting from the roof of the 4th brain ventricle into the lumen (Figure 42 H`, H`` 

and I`, I``). 

In a first approach to analyze ATP4a-function in this tissue, fluorescent bead solution was 

injected into the 4th brain ventricle of anesthetized stage 45 tadpoles, which were either 

untreated or previously injected with CoMO, ATP4aMO or ATP4a-Spl-MO. Next, movement 

of  beads  was  recorded  in  order  to  visualize  fluid  flow.  As  shown  in  representative 

examples  (Movie  3),  ependymal  flow  was  strong  in  uninjected  and  CoMO-injected 

tadpoles, but reduced in strength in ATP4a morphants. 

Summary

Experiments revealed that ATP4a-function was also required for ciliogenesis of motile cilia 

in the neuroectoderm, i.e. the floor plate and the roof of the 4 th brain ventricle. ATP4a 

mediated Wnt/β-cat signaling in the floor plate, which was necessary and sufficient for 

Foxj1 expression. Epistatic experiments revealed that HH-signaling was required upstream 

of Wnt-signaling for Foxj1 expression in the floor plate. Analysis of the tadpole ependyma 

detected MCCs in the roof of the 4th brain ventricle, which produced fluid flow in an ATP4a-

dependent manner. Therefore, ATP4a and Wnt-signaling were regulators of ciliogenesis in 

the neuroectoderm as well. 
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ATP4a,  Foxj1 Expression And Ciliation Of The Larval Gastrointestinal 
Tract 

Multiciliated Cells Line The Proximal Gastrointestinal Tract Of Xenopus
 
ATP4a was required for Foxj1 expression and/or generation of motile cilia (Figure 24, 40, 

41 and Movie 3) in all analyzed epithelia. This suggested that cilia might be present in the  

stomach as well, i.e. the tissue where ATP4-function was well documented in vertebrates 

(Shin et al. 2009).

ATP4a was strongly expressed in the larval gastrointestinal tract (GIT) (Figure 43 A, B). In 

stage 43, expression levels were high in the gastric epithelium. Weaker expression was 

found more proximal extending into the oesophagus (Figure 43 A). At stage 45, staining in 

the stomach and oesophagus further intensified (Figure 43 C). In order to improve probe 

penetration during WMISH, analysis was also performed on isolated GITs (Figure 43 D). 

Weak expression of ATP4a was also found more distal to the stomach (Figure 43 C, D), 

i.e. at the junction of stomach and small intestine. Next, ISH for Foxj1 was performed on 

whole  embryos  and  isolated  GITs.  ISH  revealed  presence  of  Foxj1 transcripts  in  the 

proximal gut as well (Figure 43 E, F). In fact, ATP4a and Foxj1 were co-expressed in the 

oesophagus, stomach and the proximal small intestine (Figure 43 C-F). These findings 

revealed a new expression domain for  Foxj1 in  Xenopus.  Moreover,  Foxj1 expression 

indicated that ciliation extended into the stomach and small intestine. 
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Figure 42: The Roof Of The 4th Ventricle Of the Xenopus Brain Harbors Multiciliated Cells 

IHC for acetylated tubulin (red) revealed a population of MCCs in the roof of the 4 th ventricle. (A, 
A`) IHC was performed on prepared tadpole heads – (A) bright field and (A`) fluorescent channel 
(red). (B, B`) After IHC, the brain was prepared and sectioned – (B) bright field channel, planes of 
section are indicated by dashed lines and annotated corresponding to  (C-K).  (B`) Fluorescent 
channel  (red);  brain  ventricles  (I.-IV.)  and  main  structures  are  annotated.  (C-K) Transversal 
sections of the tadpole brain; ventricle lumina are outlined by dashed line in  (E-I). MCCs were 
found within the 4th ventricle and lined the ventricle roof (H-H`` and I-I``).

Anterior to the left in (A, B). Dorsal up in (C-K). CER = cerebellum, CH – cerebral hemisphere, 
MED – medulla oblongata, OL – olfactory lobe, OT – tectum opticum and PG – pineal gland.
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Figure 43: ATP4a/Foxj1 Are Co-Expressed During Endoderm Development, And MCCs Are 
Present In The Gastrointestinal Tract 

(A-F) WMISH for ATP4a (A, C and D) and Foxj1 (E, F) transcripts revealed co-expression of both 
genes in the tadpole (st. 45) gastrointestinal tract (GIT). (A) Weaker, but specific staining (a sense 
probe did not stain the larval gut, (B)) was found in st. 43 (A), which further intensified in st. 45 (C, 
D). ATP4a and Foxj1 expression was found in the oesophagus (oes), the stomach (sto, indicated 
by arrowheads in  A-F) and the small intestine (smi) (please compare with  G`).  (G-I) IHC for  α-
tubulin  (red)  revealed  MCCs in  the  proximal  GIT,  i.e  in  the  oes,  the  sto  (indicated  by  white 
arrowheads) and the smi.  (G, G`) Bright field pictures of a prepared GIT at st. 45. The proximal 
GIT is annotated in  (G`).  (G`` and H-H``). Florescent channel in sectioned larval GIT revealed 
presence of MCCs. Inset in  (G``) is a magnification of the area indicated by a dashed box.  (H`) 
High-power  magnification  of  stomach  area  indicated  by  dashed  box  in  (H).  (H``) Further 
magnification of area indicated by dashed box in (H`). (I) IHC for α-tubulin on adult gastric tissue 
revealed  presence  of  monocilia,  but  not  MCCs.  (J,  J`) SEM analysis  of  adult  gastric  tissue 
confirmed presence of monocilia on hexagonal-shaped gastric cells.
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IHC for tubulin was performed on isolated GITs from stage 45 Xenopus tadpoles (Figure 

43  G,  H).  After  staining,  samples  were  sectioned  (Figure  42).  The  oesophagus,  the 

stomach and the proximal  small  intestine  were ciliated (Figure  43 G,  H).  MCCs were 

present within the epithelium, and cilia bundles projected from most cells (Figure 43 H`, 

H``). Density of MCCs decreased in the proximal small intestine (not shown) and no MCCs 

were found in more distal parts of the small and large intestine (Figure 43 G, H). 

Next, adult gastric tissue was examined by IHC and SEM. In contrast to the larval stomach 

(Figure 43 G, H), adult tissue was not covered by MCCs (Figure 43 I, J). However, tubulin 

signals were visible in gastric cells (Figure 43 I), indicating the presence of monocilia. The 

adult  gastric epithelium was covered by a layer of  mucus,  which potentially prevented 

penetration of the tissue by the antibody. Therefore, patches of gastric tissue were also 

analyzed by SEM, which did not require the use of antibodies. SEM revealed monociliated 

hexagonal cells in the gastric epithelium, with microvilli-like structures on the apical surface 

from which a cilium projected into the lumen (Figure 43 J). Hence, there were differences 

between the larval and adult gastric epithelium, i.e. strong ciliation and presence of MCCs 

in the larval stomach (Figure 43 G, H) was opposed by presence of monocilia in adult  

tissue (Figure I, J). 

MCCs and  Foxj1 expression in the proximal larval gut further indicated that these cilia 

were motile (Figure 43). Therefore, an assay for gut-cilia motility was developed. For this 

aim, the proximal gut was isolated from an anesthetized tadpole and placed in culture 

medium containing anesthetic (to prevent peristaltic movements). Next, fluorescent beads 

were  injected  directly  into  the  oesophagus.  Fluorescent  beads  were  recorded  and 

movement was analyzed (Movie 4). The beads were translocated from the oesophagus 

(where they were injected) to more posterior locations, i.e. the stomach and small intestine 

(Movie  4).  Moreover,  this  movement  stopped in  the  small  intestine,  where  fluorescent 

beads accumulated (Movie 4). 

Summary

Analysis of gene expression and ciliation in the larval GIT of Xenopus located expression 

of  ATP4a and  Foxj1,  and  presence  of  MCCs in  the  oesophagus,  stomach  and  small 

intestine.  Furthermore,  an  assay  was  developed  in  order  to  functionally  analyze  cilia 

motility in this new MCE of the proximal gut. 
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Discussion

ATP4a And Wnt-Signaling In Vertebrate Symmetry-Breakage 

The Revised Function Of ATP4a In LR-Axis Development Of Xenopus laevis

Previous reports (Levin et al. 2002; Aw et al. 2008) have implicated an ATP4a-function in 

LR-development  during  cleavage  stages  of  Xenopus.  However,  the  present  work 

demonstrated  that  ATP4  was  required  during  gastrula  and  neurula  stages  for  the 

generation of a directional cilia-driven leftward flow. When ATP4a-function was lost in the 

dorsal-medial  lineage,  the  nodal  cascade  was  induced  bilaterally,  and  single  organ 

inversion (heterotaxia) occurred. Bilateral marker-gene expression and increased rates of 

heterotaxia were also observed in the initial study on ATP4 in Xenopus (Levin et al. 2002). 

This indicated that both studies have basically obtained the same results, which linked loss 

of ATP4a-function to ectopic gene expression in the right LPM and defects in asymmetric 

organ placement.  Moreover,  bilateral  expression of left-sided genes could be linked to 

heterotaxia in both studies. Although gene expression patterns in the LPM were previously 

questioned to be of predictive nature for organ situs (Vandenberg 2012), they were in good 

agreement with organ placement in this study.  

The basic finding that ATP4a was a prerequisite for correct LR-development was shared 

by both studies. However, several important differences were evident as well:

(1) Asymmetric expression of   ATP4a   during cleavage stages  

The initial studies reported asymmetric whole mount in situ hybridization (WMISH) signals 

at  and  beneath  the  apical  plasma  membrane  (Levin  et  al.  2002),  although  batch-

dependent variability was observed (Aw et al. 2008). Symmetric signals throughout the 

cytoplasm of the animal hemisphere were observed in a large number of embryos from 

different batches in this study. The latter observation argued against early LR-asymmetries 

and was in line with localization patterns for many other maternal mRNAs (King et al. 

2005).  
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It is noteworthy that in this study cleavage stage embryos were perforated at the vegetal 

pole before WMISH in order to increase probe penetration. In cases when the vegetal pole 

was not perforated, cytoplasmatic signals were reduced or absent, and precipitated dye 

was found outside of the cell at the plasma membranes (not shown). These specimens 

resembled the sub-apical mRNA-localization patterns published by Levin et al. (2002). In 

conclusion,  the  asymmetric  membrane-localized  mRNA  pattern  of  ATP4a probably 

represented  a  staining  artifact,  and  ATP4a was  in  fact  symmetrically  localized  to  the 

cytoplasm of the animal hemisphere. 

In addition, asymmetric protein localization was observed as well (Aw et al. 2008), but no 

obvious asymmetries were observed at the protein level in this study. Asymmetric protein 

localization reported by Aw et al. (2008) was found predominantly within the cytoplasm. 

ATP4a is a transmembrane protein, and functionality requires the assembly of a tetrameric 

complex, consisting of two ATP4a- and two β-subunits. This assembly takes place at the 

membrane,  and  only  stable  β-subunit-dependent  folding  renders  ATP4  functional. 

Therefore,  cytoplasmatic  localization  of  ATP4a  protein  is  at  least  unusual,  and  these 

proteins are likely non-functional.

(2) Timing   of ATP4-dependent events during LR-development  

ATP4 was reported to act only during early stages (st. 2-~6), and that pharmacological 

inhibition from gastrulation onwards was ineffective in altering LR-development (Levin et 

al. 2002). In contrast, data from this study demonstrated that LR-defects could be obtained 

even  when  incubation  started  at  the  beginning  of  gastrulation  (st.  10/11),  but  higher 

SCH28080 concentrations (200µM) needed to be applied. This was possibly due to the 

localization of GRP-forming cells before and after gastrulation: Before gastrulation, these 

cells were located at the outside of the embryo, but became situated within the inner cavity 

of the archenteron after gastrulation (Shook et al. 2004). It is conceivable that the relevant 

tissue thus was harder to reach by the drug from gastrulation onwards, which offered a 

reasonable explanation why higher concentrations had to be applied. 

At the molecular level, the rescue effects of DNA-injections in ATP4a morphants strongly 

argued for a role of ATP4a from late blastula stages onwards (post-MBT; Newport et al. 

1982), i.e. after the onset of zygotic transcription and much later than proposed by the 

“ion-flux” model.    
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Taken  together,  the  previously  proposed  mechanism  of  ATP4a-function  during  LR-

development  seems  highly  unlikely,  and  a  revised  role  of  ATP4a  in  flow-dependent 

symmetry breakage is proposed (Figure Dis-1): 

During specification of the LR-axis, ATP4a is required for Wnt-signaling in the SM and at  

the GRP. In the SM, ATP4a mediates activation of the canonical Wnt/β-cat branch, which is 

necessary  and  sufficient  for  mesodermal  Foxj1 expression  during  gastrulation.  During 

neurulation,  ciliogenesis  progresses  at  the  GRP,  and  Wnt/PCP-mediated  posterior 

polarization  of  cilia  depends on  ATP4a-function.  Therefore,  ATP4a mediates  two  Wnt-

dependent steps during symmetry-breakage, which take place post-MBT. These steps are 

both required for the generation of a directional  cilia-driven leftward flow. Loss of flow 

directionality leads to bilateral  down-regulation of  Coco in somitic portions of the GRP, 

hence inducing the nodal cascade in the left and right LPM. Bilateral activation of the nodal 

cascade in the LPM causes heterotaxia in tadpoles after interference with ATP4-function.
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Figure Discussion-1: Timing And Role Of ATP4a-Dependent LR-Development

At  the onset  of  MBT and  gastrulation  (st.  8/9),  ATP4a is  required  for  ligand-driven  Wnt/β-cat 
signaling to induce Foxj1 expression (st. 10) in the superficial mesoderm, from which the GRP is 
derived.  Foxj1 is  required for motile ciliogenesis at the GRP during late gastrulation and early 
neurulation (st. 10-14). Furthermore, at mid neurulation (st. 14), ATP4a is required for ligand-driven 
Wnt/PCP signaling, which is necessary during subsequent neurulation for GRP cilia alignment to 
the posterior pole of cells (st. 16). Both ATP4a-dependent processes are necessary for the setup 
of a directional cilia-driven leftward flow (st. 17), which down-regulates Coco on the left side of the 
GRP (st. 19). → 
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Plausibility  Of  The  “Ion-Flux”  Model  In  Xenopus Without  Asymmetric  ATP4a-
Function 

The “ion-flux”  model  proposed that asymmetric  ATP4a mRNA localization and function 

generates  voltage  gradients,  along  which  5-HT accumulates  on  the  right  side  of  the 

embryo via gap junctions (GJ) which serve as cytoplasmatic channels (Levin 2003; Levin 

et al. 2007). Serotonin on the right side was hypothesized to activate Mad3, which in turn  

inactivates  Xnr1 expression on the right side by histon deacteylase- (HDAC) dependent 

methylation of the Xnr1 asymmetric enhancer region (ASE) (Carneiro et al. 2011). 

The most upstream signal for asymmetric ATP4a mRNA localization was proposed to be 

the breaking of chiral symmetry of the oocyte by sperm entry, and asymmetric transport of 

ATP4a mRNA along  cytoskeletal  components  (Aw  et  al.  2008,  2009).  To  that  end, 

Vandenberg et al. (2010) argued that a late-induced organizer (e.g. by Sia mRNA injection) 

in UV-irradiated embryos was not  able to rescue LR-development,  because very early 

cues were missing. However, more than 70% of embryos treated this way developed situs 

solitus,  which was a fairly good rescue after  treatment by UV. The frequency of  situs 

solitus was not different when embryos, which had the induced organizer on the same side 

as the endogenous organizer, were compared to embryos in which the induced organizer 

was in an ectopic location. These results were in conflict with predictions drawn from the 

“ion-flux” model (discussed in detail in Schweickert et al. 2011) (Figure Dis-2).    

The  lack  of  asymmetric  ATP4a-function  during  LR-development  also  questioned  the 

presence of any other early mechanisms implicated by the “ion-flux” model, because they 

were  proposed  to  act  downstream or  in  parallel  with  ATP4a.  Reinvestigation  of  5-HT 

localization and function during LR-development of  Xenopus revealed that 5-HT did not 

accumulate on either  side of  the early embryo (Beyer  et  al.  2011).  Interestingly,  5-HT 

signaling via receptor HTR3 was a prerequisite for Wnt-dependent specification of the SM, 

Foxj1 expression and generation of leftward-flow, similar to ATP4a. Loss of 5-HT signaling 

in the early embryo had more drastic effects than loss of ATP4a (Beyer et al. 2011): 
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Coco down-regulation releases repression of Xnr1, which induces the nodal cascade exclusively in 
the left lateral plate mesoderm (LPM), a prerequisite for correct inner organ morphogenesis, i.e.  
situs solitus.   

st. = stage, GRP = gastrocoel roof plate and PCP = planar cell polarity.
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(a)  Xnr3 expression in the organizer and (b) somitic  Xnr1 expression were lost in  HTR3 

morphants.  In  addition,  (3)  GRP cell  size  was  increased.  All  of  these  aspects  were 

unaffected in  ATP4a morphants. This indicated overlapping but distinct functions of both 

players in Wnt-signaling and LR-development. 

Recently, GJ communication (GJC) was also reanalyzed in Xenopus (Beyer et al. 2012): 

GJC was required in endodermal LECs post-flow, and interference with GJC inhibited the 

transfer  of  laterality cues from the midline to  the LPM. This finding was confirmed by 

another  study,  which  essentially  proposed  the  same  function  for  GJC  in  mouse  LR-

development  (Viotti  et  al.  2012)  (Figure  Dis-3).  Taken together,  the  functions  of  three 

central players of the “ion-flux” model in frog were revised and put in line with the leftward 

flow model of symmetry-breakage by our recent findings (Beyer et al. 2011; Beyer et al.  

2012; Walentek et al. 2012). 

Right-asymmetric inactivation of the  Xnr1-enhancer via 5-HT/Mad3-dependent activation 

of HDAC was proposed to constitute the mechanism, by which early asymmetries are 

transferred to the LPM (Carneiro et al. 2011). This mechanism seems implausible in the 

light  of  recent  data  on 5-HT localization  and function  during  LR-development  (no  LR-

asymmetries  in  5-HT localization  were  observed;  Beyer  et  al.  2011).  Moreover,  5-HT 

binding to Mad3 was reported to take place in the intracellular space, but earlier studies 

from  Levin  and  co-workers  implicated  requirement  for  membrane-standing  receptors 

(Fukumoto et  al.  2005).  This  discrepancy argues against  an  intracellular  role  of  5-HT. 

Studies  by  Ohi  et  al.  (2007)  further  demonstrated  that  the  right  LPM  had  the  same 

potential for nodal cascade induction as the left LPM. This should not be the case when 

the Xnr1 ASE-enhancer was inactivated on the right side. 
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Figure Discussion-2: Spemann's Organizer Independent LR-Axis Formation

Prediction of laterality in rescued UV-irradiated embryos. 4-cell stage embryos with hypothetical 
predetermined LR-axis  are  shown (red,  right;  uncolored,  left).  Endogenous ventral  and dorsal 
blastomeres  are  indicated  by  sperm  symbols  (entry  site)  and  circles  (former  organizer), 
respectively. Following UV-irradiation and thus elimination of endogenous organizer, rescue could 
be  targeted  to  four  distinct  positions  (yellow  star)  relative  to  initial  dorso-ventral  (DV)  and 
hypothetical pre-determined left-right axes. Organizer rescues could be performed at initial dorsal 
or ventral (sperm entry) side or at a 90° angle to initial DV axis, thus at left or right blastomeres. 
Induced dorso-ventral axes are indicated (d–v). Cell fates of hypothetically predetermined left and 
right blastomeres are superimposed on neurula specimens  (red, right; uncolored, left). If the LR-
axis  would  be  prefixed,  UV  rescued  embryos  should  predictably  display  different  laterality 
phenotypes depending  on site of  rescue.  Asymmetric  organ placements range from wild-type 
(situs solitus),  mirror image (situs inversus), to randomization of single organs (heterotaxia). Note 
the differences in  the  frequency of  wild-type  situs  solitus between  prediction  of  an early  pre-
patterned LR axis and the published experimental data by Vandenberg and Levin (2010). 
Reprinted from Schweickert et al. 2011***.
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In conclusion, it is unlikely that early LR-asymmetries exist in Xenopus. Thus the question 

arises  how other  factors implicated within  the  “ion-flux”  hypothesis  might  contribute to 

symmetry-breakage:

(1) ATP6 (vacuolar H  +  ATPase)  

Interference with ATP6-function in  Xenopus, chick and zebrafish embryos was linked to 

LR-axis  defects  and  aberrant  gene  expression  in  the  LPM  (Adams  et  al.  2006).  In 

Xenopus,  ATP6 was proposed to  act  symmetrically (and in  concert  with  ATP4)  during 

cleavage stages and to control pH- and voltage-differences between the left and right side.  

In zebrafish, ciliogenesis in the KV was affected after pharmacological inhibition (Adams et 

al. 2006). ATP6 was also required for Wnt-signaling activation in Xenopus and human cell 

lines (Cruciat et al. 2010). Therefore, it is tempting to propose a function for ATP6 in LR-

development,  similar  to  that  of  ATP4,  i.e.  Wnt-dependent  Foxj1 expression  and  cilia 

polarization at  the GRP. Preliminary loss-of-function experiments (Tözser  2010)  further 

indicated  that  dorsal  (but  not  ventral)  loss  of  ATP6  was  able  to  interfere  with  LR-

development. A definite answer as to the role of ATP6 in LR-development might come from 

analysis  of  leftward  flow,  ciliation  of  the  GRP and  Foxj1 expression  in  the  SM  after 

morpholino- (MO) mediated loss-of-function in future experiments. In addition, it will  be 

interesting  to  elucidate  if  ATP4  and  ATP6  have  common  or  distinct  functions  during 

symmetry-breakage.  

(2) Potassium transport

Several  potassium (K+)  channels and transporters were  shown to  be required for  LR-

development in Xenopus and chick: KCNQ1, KCNE1, Kir4.1 and K-ATP, all of which were 

proposed to contribute K+-ions to the extracellular space (Rutenberg et al. 2002; Adams et 

al. 2006; Aw et al. 2008; Morokuma et al. 2008). Extracellular binding of K+-ions to ATP4a 

is a limiting step for extracellular acidification by ATP4  (Shin et al. 2009). Pharmacological 

inhibition of these LR-components caused  heterotaxia, which was also the dominant LR-

phenotype after inhibition of ATP4 (Aw et al. 2008; Morokuma et al. 2008). Therefore, loss 

of K+-transport might have the same effect on LR-development as loss of ATP4. Loss-of-

function  experiments  should  be  performed,  followed  by  analysis  of  Foxj1 expression, 

ciliation and leftward flow, in order to test this hypothesis. 
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(3) 14-3-3 proteins

The family of dimeric 14-3-3 proteins is known to regulate sub-cellular localization and 

activity  of  target  proteins  (Chen et  al.  2011).  Inhibition  of  14-3-3  proteins  by the drug 

fusicoccin (FC) altered LR-development in Xenopus and was proposed to control H+-fluxes 

(Bunney et  al.  2003).  14-3-3  protein  function  was  recently  proposed to  regulate  Wnt-

dependent processes as well (Takemaru et al. 2009). 14-3-3s were shown to regulate β-

cat localization within cells and activation of β-cat target genes (Takemaru et al. 2009): 14-

3-3ξ enhanced β-cat  signaling,  while  14-3-3ε and  -η acted  negatively  on  target  gene 

expression.  FC-treatment  also  inhibited  growth  in  various human cancer  cell-lines  (de 

Vries-van Leeuwen et al.  2010),  indicating possible inhibition of Wnt-signaling. 14-3-3β 

regulated Dapper 1, which promotes degradation of Dvl (Chen et al. 2011). Furthermore,  
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Figure Discussion-3: An Updated Comparison Of Timing and Sequence Of Events Between 
The “Ion-Flux” and “Leftward Flow” Models 

“ion-flux”:  After  fertilization,  during  early  cleavage  stages,  mRNAs  and  proteins  are 
asymmetrically  distributed,  which  generates  asymmetric  membrane  potentials  and  pH.  Along 
electrochemical gradients, generated by asymmetric ion channels and pumps, Serotonin (5-HT) is 
transported  via  gap  junction  communication  (GJC),  and  accumulates  on  the  right  side  of  the 
embryo.  Asymmetric  5-HT  activates  the  histon  deacetylase  (HDAC),  which  inhibits  nodal 
expression on the right side of the embryo. (Mechanisms challenged by experiments from other 
groups are marked with a red cross and the process is indicated in red).
“leftward flow”: During early development, the primary axes (anterior-posterior and dorso-ventral) 
are  formed.  When  gastrulation  starts,  the  superficial  mesoderm  (SM)  is  patterned  and  Foxj1 
expression is induced. After involution of the SM into the archenteron, the gastrocoel roof plate 
(GRP) starts to  grow motile  cilia,  which are posteriorly localized and produce a leftward flow. 
Leftward flow down-regulates Coco in the left-somitic GRP, which releases repression of nodal, 
and  laterality  cues  can  be  transported  via  GJC  to  the  left  lateral  plate  mesoderm  (LPM). 
Asymmetric  nodal  cascade induction  and  asymmetric  organogenesis are  common  to  both 
models. Sensitive time-frames for loss of ATP4a (orange), 5-HT signaling (yellow) and GCJ (red) 
are indicated.
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Dapper  1  and  2  were  shown  to  play  a  role  during  development  of  dorsal  tissues  in 

zebrafish (Chen et al. 2011). In conclusion, a role of 14-3-3 proteins in Wnt-dependent LR-

axis development seems possible. This should be addressed in future studies, using FC-

treatment and MO-mediated loss-of-function.  Foxj1 expression, ciliation of the GRP and 

leftward flow should be analyzed in manipulated embryos, in order to gain more insight on 

the mechanisms of 14-3-3 proteins in LR-development. 

In  summary,  ATP4a and  5-HT  were  not  LR-asymmetric  during  early  Xenopus 

development, and it is possible that other components of the “ion-flux” model act in Wnt- 

and cilia-dependent manner as well (with the exception of HDAC).  
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Figure Discussion-4:  Comparison Of  LR-Defects  After  Loss  Of  Wnt-  And Ca2+-Signaling 
Components 

Upper row: Processes which are relevant for normal LR-development. 
Left column: Component targeted. Please see text for further details.
(+) = loss of component affected LR-relevant event, (-) = loss of component did not affect LR-
relevant event, ? = effect was not determined so far, absent / bilateral = Pitx2c expression pattern 
in the LPM. 
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The Many Roles Of Wnt-Signaling In LR-Axis Development Of Xenopus

ATP4, 5-HT and Xwnt11b were all required for Wnt-signaling during LR-development, but 

revealed  phenotypes  which  indicated  overlapping  and  distinct  functions  of  these 

components (Beyer et al. 2011) (Figure Dis-4). 

These findings seem confusing – however, some useful hypotheses can be deduced from 

the presented results  and previously published data (Figure Dis-5):  (1)  Early maternal 

Wnt/β-cat signaling is required for  organizer  induction and primary axes formation.  (2) 

Post-MBT Wnt/β-cat  is  further  required  for  Foxj1 expression  in  the  SM.  (3)  Wnt/PCP 

signaling aligns GRP cilia to the posterior pole of GRP cells during mid-neurula stages. (4)  

Wnt/Ca2+ (likely  together  with  Wnt/PCP  and  Wnt/Ror2)  is  necessary  for  gastrulation 

movements and morphogenesis of prospective GRP cells during mid/late gastrulation and 

early neurulation. (5) Expression of  genes in somitic GRP cells might  be governed by 

Wnt/PKA in mid-neurula stages, maybe by crosstalk with the HH-pathway. 
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Figure  Discussion-5:  Proven  And  Hypothetical  Influences  Of  Different  Wnt-Signaling 
Processes In LR-development Of Xenopus  

Please see text for details.
AP = anterior-posterior, DV = dorso-ventral, Fz = Frizzled, GRP = gastrocoel roof plate, PCP = 
planar cell polarity, PKA = protein kinase A and Xnr1 = Xenopus nodal related gene 1.
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(1) Early effects on primary axis induction

Loss  of  5-HT-signaling  via  HTR3  had  the  most  severe  phenotype,  including  loss  of 

organizer gene expression (Vick 2009; Beyer 2011; Beyer et al. 2011). Organizer formation 

is a result of early maternal Wnt-signaling processes, and 5-HT/HTR3 seem to influence 

these  processes  (Heasman  2006).  Serotonin-signaling  probably  acts  prior  to  ATP4a-

function and Xwnt11b in the SM (not including maternal-depletion of Xwnt11b; Tao et al. 

2005). Notably, interference with organizer induction  per se affects the setup of primary 

axes  and  LR-axis  development.  This  was  demonstrated  by  UV-irradiation  of  Xenopus 

embryos in which cortical rotation and organizer formation were disturbed (Danos et al. 

1995).  Even  minor  impairment  of  primary  DV-axis  induction  affected  formation  of  the 

dorsal mesoderm and notochordal gene expression, i.e.  Not (called Noto in mouse) (von 

Dassow et al.  1993).  Noto was required for PNC morphogenesis,  Wnt/PCP, and  Foxj1 

expression during mouse LR-development (Alten et al. 2012). A homologous mechanism 

in  Xenopus seems likely,  suggesting a requirement for coordinated organizer induction 

during Noto-dependent LR-development  (Figure Dis-4 and Dis-5).      

(2)  Wnt/  β  -cat dependent expression of   Foxj1   in the SM  

Effects on Foxj1 expression in the SM and ciliogenesis at the GRP could be attributed to 

loss of post-MBT Wnt/β-cat signaling.  Foxj1 expression was least  affected in  Xwnt11b 

morphants, moderately affected in ATP4a morphants and severely affected after loss of 5-

HT-signaling  (Beyer  et  al.  2011).  This  process  was  mediated  by  the  canonical  Fz8 

receptor, and restriction of  Fz8 expression to the dorsal mesoderm potentially limits the 

Foxj1 expression domain towards more ventral portions of the mesodermal ring (Beyer 

2011). 

This conclusion is supported by the fact that the ventral mesoderm was equally competent 

to express Foxj1 upon ectopic β-cat activation post-MBT. It is noteworthy that this was an 

essentially  different  finding  than  ventral  expression  of  Foxj1 after  injection  of  Wnt-

components as mRNAs (as described by Beyer 2011). mRNA injections of these signaling 

molecules induced a secondary organizer, therefore establishing dorsal fate in ventral cells 

(Sokol et al. 1991). Activation of the pathway post-MBT (by DNA injections) induced Foxj1 

expression  in  ventral  mesoderm,  without  secondary  organizer  induction  (not  shown). 

These results indicated that ventral cell fate was not changed in this experimental setup. 
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A recent publication on Foxj1 expression in the zebrafish KV has shown that Foxj1 was a 

direct target of β-cat, which likely applies to Xenopus as well (Caron et al. 2011). Xwnt11b 

inhibition was insufficient for a robust loss of Foxj1 expression in the SM, but experiments 

implicated that Wnt-ligands were required in this process.

Two non-canonical Wnt5-type ligands (Wnt5a and Xwnt5b) have been reported to be co-

expressed with  Xwnt11b during gastrulation (Cha et al. 2008; xenbase.org Bowes et al. 

2009a, 2009b). Foxj1 expression was equally decreased upon injection of dnXwnt11b DNA 

(not shown) as after Xwnt11bMO-mediated knock-down. Previous studies on the function 

of  the  dnXwnt11b-construct  have  shown  that  it  also  inhibits  Wnt5-type  ligands  during 

Xenopus gastrulation (Smith et al. 2000; Tada et al. 2000). Therefore, a role of other non-

canonical Wnt-ligands in Foxj1 expression seems unlikely. 

Wnt8a and  Wnt3a were  expressed  around  the  KV,  and  loss-of-function  altered  LR-

development in zebrafish (Caron et al. 2011). Xwnt8a is a canonical Wnt-ligand (Christian 

et al. 1991, 1993; Torres et al. 1996), and expression starts at the onset of gastrulation  

within the mesodermal ring (Christian et al. 1993). Xwnt8a is not expressed within the SM, 

however, diffusion could account for Wnt/β-cat signaling activation within the SM. Xwnt3a 

is  expressed  slightly  later  than  Xwnt8a,  and  probably  too  late  to  account  for  Foxj1 

expression (expression profiles at xenbase.org Bowes et al. 2009a, 2009b). Hence, it is 

likely that Foxj1 expression is activated by Xwnt8a via Fz8. 

The Foxj1 expression domain is potentially restricted to the SM by dorsal expression of the 

receptor (Fz8) and inhibition of signaling by secreted antagonists (e.g. Xsfrp2) towards 

ventral and animal aspects of the embryo (Figure Dis-4 and Dis-5).  

(3)  Wnt/PCP dependent posterior polarization of GRP cilia

In  ATP4a morphants,  Wnt/PCP dependent  posterior  localization of  GRP cilia  could be 

experimentally separated from Wnt/β-cat dependent induction of ciliogenesis by injection 

of  Foxj1 DNA.  Moreover,  several  studies  implicated  that  posterior  localization  of  cilia 

requires the core-PCP component Vangl2 (Antic et al. 2010; Borovina et al. 2010; Song et  

al. 2010). 
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Inhibition of  5-HT signaling  or  Xwnt11b  prevented cilia  polarization  as  well,  but  these 

defects were accompanied by an increase in cell size. Alterations of cell  size were not  

observed  in  ATP4a morphants  or  after  loss  of  Vangl2  (Antic  et  al.  2010).  Therefore, 

Wnt/PCP signaling seems to be specifically required for cilia localization, but not for cell-

size regulation. 

In  accordance  with  other  studies,  Fz8  loss-of-function  did  not  inhibit  gastrulation 

movements, and polarization of remaining GRP cilia was not affected (Tada et al. 2000; 

Beyer 2011). These findings implicated that Fz8 mediated only canonical Wnt-signaling 

during  LR-development.  The  non-canonical  receptor  Fz7  was  reported  to  regulate 

Wnt/PCP and CE in  Xenopus, and to interact with Xwnt11b (Djiane et al. 2000).  Fz7 is 

expressed in the SM during gastrulation and in the GRP during neurulation (e.g. st 14;  

xenbase.org Bowes et al. 2009a, 2009b). Taken together, Fz7 is a strong candidate for the 

receptor which regulates Wnt/PCP dependent cilia polarization in the GRP. 

Gradients of non-canonical Wnt-ligands were reported to provide the initial cue for Vangl2-

dependent alignment of cells in vertebrates (Gao et al. 2011). This was shown to occur via 

the  Wnt/Ror2-pathway,  but  Xwnt11b  did  not  act  via  this  pathway  during  Xenopus 

gastrulation (Schambony et al. 2007; Gao et al. 2011). This suggested that the Wnt/Ror2 

signaling branch is not required for cilia polarization in GRP cells. 

The expression of  Xwnt11b (and other Wnt5-type ligands) in involuting cells of the CBC 

(which  are  located  posterior  to  the  GRP)  could  generate  such  a  ligand  gradient  and 

subsequent  posterior  localization  of  GRP  cilia  (Cha  et  al.  2008;  expression  profiles 

xenbase.org Bowes et al. 2009a, 2009b). This hypothesis needs to be addressed in further 

experiments,  targeting Fz7 and Wnt5-type ligands by loss-of-function experiments,  and 

archenteron injections of extracellular Wnt-inhibitors (e.g. Xsfrp proteins). Generation of a 

cilia-driven rightward-flow by an inverted gradient could be tested as well by: (a) Depletion 

of endogenous non-canonical Wnt-ligands (during/after involution of the SM, e.g. by caged 

or photoactivated MOs), and (b) application of protein-soaked beads anterior to the GRP. 

This inverted gradient could lead to anterior localization of GRP cilia and, consequently, a 

rightward flow of extracellular fluids (Figure Dis-4 and Dis-5).

113



                                                                                                                                                          Discussion

(4)  CE, cell size regulation and expression of genes in somitic cells of the GRP

In addition to Wnt/PCP, other non-canonical pathways regulate gastrulation movements 

and blastopore closure in  Xenopus: Wnt/Ca2+, Wnt-Ror2 and Wnt/PKA (Kühl et al. 2000; 

Kohna  et  al.  2005;  Park  et  al.  2006;  Schambony  et  al.  2007).  While  gastrulation 

phenotypes  were  rarely  encountered  in  ATP4a morphants,  loss  of  5-HT  signaling  or 

Xwnt11b frequently impaired full  blastopore closure.  Xwnt11b-signaling acts in  synergy 

with  Xbra  in  CE  of  the  dorsal  mesoderm  (Tada  et  al.  2000).  Andre  (2009)  has 

demonstrated that loss of Xbra perturbs morphogenesis of the GRP and Xnr1 expression 

in somitic cells of the GRP. 

Xwnt11b  was  shown  to  be  only  required  for  non-canonical  Wnt-signaling  during 

gastrulation (Smith et al. 2000; Tao et al. 2005). Wnt11-type ligands can act via Wnt/PCP,  

Wnt/Ca2+ and Wnt/PKA,  suggesting  that  5-HT/Xwnt11b-signaling  could  be required  for 

activation  of  additional  signaling  branches,  beyond  Wnt/β-cat  and  Wnt/PCP  (Uysal-

Onganer et al. 2012). 

Interference with  Xwnt11b-  or  5-HT-signaling  also  increased cell  size in  the GRP and 

reduced expression of genes in lateral cells of GRP, i.e.  Xnr1 and  Coco. In conclusion, 

these effects could potentially be ascribed to non-canonical Wnt-signaling defects, apart 

from Wnt/PCP. 

The following model tries to integrate Ca2+-, Wnt- and Wnt/Ca2+-signaling in the regulation 

of  gastrulation movements/GRP formation,  cell  size regulation and gene expression in 

somitic cells of the GRP (Figure Dis-5): 

During early stages, 5-HT/HTR3-signaling might regulate general Ca2+-homeostasis. This 

is required for canonical Wnt/β-cat signaling and organizer induction. Xenopus Bicaudal C 

(xBicC) and PKD2-dependent Ca2+-waves could activate  Xzic3 expression in the dorsal 

mesoderm  of  the  gastrula.  Xzic3  is  required  for  inhibition  of  β-cat  and  possibly  de-

repression of non-canonical Wnt-signaling. Mesodermal Xwnt11b activates non-canonical 

Wnt-signaling of various branches. Wnt/PCP is Dvl-/ATP4-dependent and required in the 

GRP to  mediate  posterior  localization  of  cilia.  Xwnt11b-activated Wnt/Ca2+ signaling  is 

potentially required for sustained inhibition of Wnt/β-cat signaling in the SM/GRP, therefore 

promoting gastrulation movements and blastopore closure. Both processes require Dvl-
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function as well. Wnt-dependent regulation of intracellular Ca2+-levels might regulate cell 

size in GRP cells. In somitic cells of the GRP, higher  xBicC levels inhibit Dvl-mediated 

signaling,  i.e  Wnt/PCP dependent  posterior  localization  of  cilia  and Wnt/Ca2+  signaling 

could be prevented. Inhibition of Dvl-dependent signaling in somitic cells might increase 

activation of the Wnt/PKA-branch. Gli3 is not activated by HH-signaling in these cells, and 

activated PKA could cleave Gli3, turning it into a repressor (Gli3R). Gli3R could regulate 

target gene repression in these cells with the help of Xzic3. Down-regulation of HH-target  

genes could facilitate gene-expression in the somitic cells required for flow sensing, i.e.  

Xnr1, Coco and Derierre . 

Several lines of evidence support such a model:

(4. A) Ca  2+   and   Xenopus   LR-development  

Cell size control in epithelial cells was implicated to depend on regulation of intracellular 

Ca2+-levels (Schreiber 2005; Mongin et al. 2011). Increased cell size was also reported 

after loss of Wnt11-function in the zebrafish KV (Oteiza et al. 2010). HTR3 is an atypical 5-

HT receptor, which was previously shown to mediate Ca2+-influx in epithelial cells (Doran 

2004). 

Increase  in  cell  size  and  loss  of  Xnr1/Coco expression  were  also  observed  after 

interference with the Ca2+-channel PKD2 during gastrulation in Xenopus (Vick 2009), and 

LR-defects  were  reported  in  the  zebrafish  (Bisgrove  et  al.  2005).  Depletion  of  

endoplasmatic Ca2+-stores by application of thapsigargin during gastrulation or neurulation 

caused LR-defects as well (Schneider et al. 2008; Tingler 2011). 

Ca2+-waves  were  observed  in  Xenopus embryos  during  gastrulation,  and  experiments 

indicated that they were required for cell polarity and CE movements (Wallingford et al. 

2001; Kohna et al. 2005; Kreiling et al. 2008). 

In  conclusion,  Ca2+-homeostasis  and  Ca2+-dependent  processes  are  a  prerequisite  for 

gastrulation and LR-development. 
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(4. B) Functions for Ca  2+  -signaling in SM-patterning and GRP-morphogenesis   

Ca2+-release  from  intracellular  stores  during  late  blastula/early  gastrula  stages  was 

required for induction of Xzic3 expression (Leclerc et al. 2003). Xzic3 was expressed in the 

deep dorsal mesoderm, and was a regulator of LR-development in vertebrates (Ware et al. 

2006;  Cast  et  al.  2012).  Xzic3 expression was also under control  of  Xbra in  Xenopus 

(Kitaguchi et al. 2002).  Xzic3 could block  β-cat to activate target gene expression, and 

Xzic3 expression was necessary for CE (Fujimi et al. 2011; Cast et al. 2012). 

It  is thought that canonical and non-canonical Wnt-signaling branches can inhibit  each 

other,  although  a  parallel  activation  of  Wnt/β-cat  and  Wnt/PCP was  shown  in  certain 

tissues  (Torres  et  al.  1996;  Li  et  al.  2008).  Expression  of  Xzic3 in  a  Ca2+-dependent 

manner  could  thus be required  to  release  β-cat  dependent  inhibition  of  non-canonical 

branches in the dorsal mesoderm. Furthermore, manipulation of Wnt-signaling affected 

Ca2+-wave frequency, also indicating interaction between Wnt- and Ca2+-signaling during 

gastrulation (Kohna et al. 2005). Hence, Xzic3 expression should be analyzed by WMISH 

after thapsigargin treatment or MO-mediated loss of PKD2/HTR3 function.   

(4. C) Xzic3 and the regulation of gene expression in somitic GRP cells 

The somitic expression  nodal in the mouse was regulated by  Zic3 as well, and gain of 

Xzic3 in  frog  enhanced  expression  of  Xnr1  (Ware  et  al.  2006;  Maurus  et  al.  2009). 

Although this regulation was mediated by the 2.7 kb nodal enhancer region, the nature of 

the  regulatory  process  remained  obscure.  Zic3  belongs  to  the  superfamily  of  Gli 

transcriptional  regulators  and  is  known to  enhance  target  gene  activation  by  physical 

interaction with Gli3 (Zhu et al. 2008). However, a Gli3-binding site was not found within 

the 2.7 kb nodal enhancer region (Ware et al. 2006). 

Hedgehog (HH)  signaling,  which  is  the  main  regulator  of  Gli3-mediated transcriptional 

control, was dispensable for early LR-development. It was required in the mouse for the 

competence of  the LPM to  respond to  nodal  cascade activation (Tsiairis  et  al.  2009).  

Therefore, is seems unlikely that Zic3 and Gli3 depend on HH-signaling in the GRP. This 

could  be  tested  by  analysis  of  gene-expression  and  morphology  at  the  GRP  after 

application of cyclopamine during gastrulation/neurulation.  
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(4. D) xBicC/Gli3/PKA and the regulation of somitic gene expression 

Xenopus Bicaudal C (xBicC) was required for inhibition of Dvl-dependent canonical Wnt-

signaling  (Maisonneuve et  al.  2009).  Loss of  xBicC caused cilia  mispolarization,  flow-

defects  and  loss  of  gene  expression  at  the  somitic  GRP (Maisonneuve  et  al.  2009; 

Montino 2011). xBicC was further implicated in post-transcriptional regulation of PKD2 via 

micro RNA (miR) 17 (Tran et al.  2010).  In this  scenario,  xBicC repressed the miR-17 

dependent translational inhibition and degradation of PKD2 mRNA. 

xBicC mediates inhibition of Dvl-dependent Wnt-signaling and might thus prevent posterior 

localization of cilia in lateral domains of the GRP (where it was stronger expressed than in  

the medial GRP) (Blum et al. 2007; Schweickert et al. 2007; Maisonneuve et al. 2009; Vick 

2009). 

Gli3 was also proposed to be dependent on miR-17 post-transcriptional regulation (Tran et 

al. 2010). Hence, one could imagine that a miR-17 regulating process involving xBicC acts 

in  the  dorsal  mesoderm and  controls  the  presence  of  Gli3  and  PKD2 proteins.  Gli3-

mediated  events  can occur  in  two  flavors:  Gli3  can  act  as  transcriptional  activator  or 

inhibitor  of  target  genes (Jiang et al.  2008).  These functional  differences of  Gli3  were 

mediated at the basal body of cilia by PKA-dependent modification of the protein (Chen et  

al. 2007). 

Wnt1- and Wnt7a-mediated regulation of PKA-activity controlled the myogenic program via 

transcriptional  regulation  of  CREB and  other  factors  in  the  paraxial  mesoderm of  the 

mouse (Chen et  al.  2005).  Ca2+-signaling was required  for  correct  paraxial  mesoderm 

development in  Xenopus as well (Ferrari et al. 1999; Kohna et al. 2005). Therefore, the 

transcriptional repressor version of Gli3 (enhanced by Xzic3) could act on target genes in  

somitic (paraxial) GRP cells. This in turn could mediate competence for  Xnr1,  Coco and 

Derierre expression, which did not require HH-signaling activation (Tsiairis et al. 2009). If  

this idea is applicable, MO-mediated knock-down of Gli3 or pharmacological inhibition of 

PKA-activity should reduce expression of Xnr1, Coco and Derierre.

Taken together, one can distinguish between (at least) five phases and modes of Wnt-

signaling during GRP formation,  generation of leftward flow and mediation of  laterality 

cues from the midline to the LPM (Figure Dis-5).  
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The Inductive Potential Of A Weak Cilia-Driven Flow Argues In Favor Of The Two-
Cilia Model  

In addition to the setup of the GRP and leftward flow, the interpretation of flow-generated 

signals is a prerequisite for LR-development. Inhibition of cilia-driven fluid flow by knock-

down  of  ciliary  motor-proteins  or  increase  of  fluid  viscosity  prevented  expression  of 

asymmetric  genes  in  the  LPM (Schweickert  et  al.  2007;  Vick  et  al.  2009).  In  ATP4a 

morphants,  a  weak  and  turbulent  flow  was  sufficient  to  induce  the  nodal  cascade 

bilaterally,  in  the  absence  of  midline-barrier  defects  (Cheng  et  al.  2000).  Moreover,  a  

recent report claimed that only two rotating cilia were required to induce the nodal cascade 

in mouse embryos (Shinohara et al. 2012). Both findings indicate that sensing of leftward  

flow might be much more sensitive than previously estimated. Four conclusions can be 

drawn: 

(1)  Cilia-dependent symmetry breakage is a very robust process, which can cope with 

dramatic loss of ciliation and still account for correct LR-development.

(2)   Bilateral  expression  does not  always  indicate  midline-barrier  defects,  therefore,  it  

might  be worth to  (re-)investigate ciliation and flow-patterns in  experimental  conditions 

when bilateral nodal cascade induction is/was predominant.

 

(3)  Vertebrate  symmetry-breakage  does  not  require  a  large  ciliated  epithelium  during 

development, as only two rotating cilia were the minimum requirement for nodal cascade 

induction in the mouse (Shinohara et al. 2012). 

(4)   Even  small  changes in  flow patterns  and velocity  might  be  potentially  sensed  in 

systems like the kidney or the ependyma, where fluid flows regulate functions in adult  

tissue,  and  dysfunction  was  associated  with  human  disease  (Sawamoto  et  al.  2006; 

Wessely et al. 2008). 

Despite the very sensitive flow-detection mechanism, it was surprising to see that turbulent 

flow on the left side enhanced induction of the nodal cascade on the right side of the GRP. 

The nature of cilia-driven flows is that of low Reynolds numbers (Freund et al. 2012). The 

Reynolds number characterizes the influence of inertia and viscosity on fluid dynamics. 

When the Reynolds number is small, viscosity is the dominating factor. Hence, a particle 
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stops when it is not actively moved by a cilium. The results from epistatic experiments in 

this study and the results obtained by Shinohara et al. (2012) therefore argue against a  

morphogen-based model of symmetry breakage and favor the two-cilia model (Figure Dis-

6). 

The two-cilia model proposes that sensory cilia at the lateral edges of the flow-generating 

structure (GRP, node/PNC, KV) detect fluid flow by deflection (McGrath et al. 2003; Norris 

et al. 2005; Hirokawa et al. 2006, 2009; Hamada 2008; Vick et al. 2009; Field et al. 2011;  

Kamura et al. 2011; Hirokawa et al. 2012). As Shinohara et al. (2012) pointed out in their  

discussion, mechanical motion of fluid (a “wave”) can be transmitted fast and at distance,  

even when Reynolds numbers are low. In conclusion, flow on the contra-lateral side of the 

GRP can be relevant for symmetry breakage within the two-cilia model. Thus, only when 

flow is completely ablated (e.g. loss of ciliary motion byDnah9MO), induction does not take 

place (Vick et al. 2009). 

Experiments by Vick et al.  (2009) revealed that nodal  cascade induction was inhibited 

upon loss of cilia-driven flow on the left side of the GRP. This was somewhat contradictory 

to  the findings discussed above.  A possible  explanation for the lack of  nodal  cascade 

induction in unilaterally injected Dnah9 morphants could be the presence of immobilized 

motile cilia on the left  side of the GRP. These cilia might act like “wave breakers” and 

interfere  with  the  fluid  motion  generated  by  rotating  cilia  on  the  right  side,  thereby 

preventing  deflection  of  sensory  cilia  on  the  left  side.  This  idea  could  be  tested  in 

experiments which specifically target the formation of motile cilia on the left side of the 

GRP, without affecting sensory cilia.  However,  such an experimental separation will  be 

hard to achieve with techniques available to date.  
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Figure Discussion-6: Two Models Of Flow Sensing In LR-Development  

Morphogen model (left panel). In this illustration the molecules (red stars) are secreted from the 
ciliated epithelium. 2-cilia model (right panel) with motile cilia at the center and immotile sensory 
cilia at the margin of the ciliated epithelium. These would initiate a Ca2+-signal. 
Please see text for further details. Illustration and text taken from: Vick 2009###.
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Evolution Of Symmetry-Breakage And LR-Axis Development

LR-axis  asymmetries  and  asymmetric  nodal  cascade  expression  was  found  in 

protostomes as well as deuterostomes (Levin et al. 1995; Blum et al. 2009; Schweickert et 

al. 2011; Hirokawa et al. 2012). This indicated that asymmetric nodal expression and LR-

axis development were features of the urbilateria, about 600 million years ago (Robertis et 

al. 1996).  

(1)  Symmetry-breakage in deuterostomes

In this study, I have shown that the proton pump ATP4a was required for Wnt-dependent 

ciliation and ciliary function in the frog  Xenopus. The fact that inhibition of ATP4 caused 

LR-defects throughout the deuterostomes strongly suggested that ATP4-dependent Wnt-

signaling events were highly conserved in this lineage (Levin et al.  2002; Hibino et al. 

2006; Shimeld et al. 2006; Gros et al. 2009). Therefore, this connection probably emerged 

with  the evolution of  ATP1-like ATPases into proton pumps (ATP4 and ATP12).  It  was 

proposed that this event took place after separation from the protostomes (Axelsen et al.  

1998; Okamura et al. 2003).

Flow-mediated  symmetry-breakage  was  so  far  confirmed  for  the  mouse,  rabbit,  frog, 

axolotl and two fish species (Nonaka et al. 1998; Essner et al. 2002, 2005; Okeda et al.  

2005; Feistel et al.  2006; Blum et al.  2009; Schweickert et al. 2011). In contrast, cilia-

independent  mechanisms  were  proposed  for  the  pig,  chick,  urochordates  and 

echinoderms (Levin 2003; Tabin 2006; Levin et al. 2007; Aw et al. 2009; Gros et al. 2009;  

Vandenberg et al. 2009; Vandenberg 2012; Thompson et al. 2012). 

(1. A) Symmetry breakage in vertebrates and the “chick problem”

In  the  pig  and  in  birds,  morphological  asymmetries  of  the  node  (the  equivalent  of 

Spemann's organizer) were reported to initiate asymmetric gene expression (Blum et al. 

2009; Gros et al. 2009). At least in birds, this node-asymmetry was generated by ATP4-

dependent cell migration (Gros et al. 2009). Asymmetric cell migration of node cells was 

proposed to follow the asymmetric function of ATP4, but no asymmetries in expression 

patterns  were  reported,  and  a  mechanism  which  could  account  for  these  functional 

asymmetries was not elucidated so far. (Levin et al. 2002).  
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Serotonin-signaling,  ATP6-  and  K+-channel-function,  and  GJC were  also  shown  to  be 

necessary for correct LR-development in the chick (Levin et al. 2002;  Gros et al. 2009; 

Vandenberg et al. 2009; Zhang et al. 2009). They were proposed to act in an “ion-flux”  

mechanism of  symmetry breakage.  In  contrast  to  Xenopus,  where  these factors  were 

suggested to act very early in development, the function in LR-asymmetry of the chick was 

attributed to gastrula/neurula stages (Levin et al. 2002, 2007). This is the time-frame in 

which  our  group  has  found  connections  of  these  factors  to  cilia-dependent  symmetry 

breaking events in Xenopus, i.e. generation of flow and transfer of asymmetric cues from 

the midline to the LPM (Beyer et al. 2011; Beyer et al. 2012; Walentek et al. 2012). 

Preliminary data revealed presence of  Foxj1 expression in the chick prior to asymmetric 

cell migration (Geyer 2010). A large ciliated epithelium was not detected, however, some 

cilia were present before and during asymmetric migration of node cells (Geyer 2010).  

Experiments in frog and mouse embryos demonstrated that a weak flow and as few as two 

cilia were sufficient to break symmetry (Shinohara et al. 2012). This argued against the 

requirement for a large ciliated epithelium in symmetry breakage of the chick as well.

Studies on Talpid3 (ta3) in chick, which was required for cilia assembly, argued against a 

ciliary mechanism for symmetry-breakage in birds: The ta3 mutant developed normally in 

terms of LR-axis formation, but cilia-dependent HH-signaling in the limb and other organs  

was compromised (Ede et al. 1964; Davey et al. 2006; Tabin 2006). 

Recently,  experiments  on  ta3  in  zebrafish  revealed  that  zygotic  depletion  did  not 

significantly perturb LR-development, but late developmental events were affected (e.g. 

pronephros  development).  When maternally  derived  transcripts  were  targeted  as  well, 

ciliogenesis in the KV and LR-development were compromised (Bangs et al. 2011; Ben et 

al. 2011). This suggested that a separation of maternal and zygotic effects of ta3 in the 

chick could be possible as well.

HH-signaling around the chick node was required for asymmetric gene expression in the 

LPM and correct  laterality (Levin et  al.  1995).  The fact  that  ta3-mutant  chick embryos 

developed a normal LR-axis argued against a loss of ciliation during early stages: Primary 

cilia seemed to be present and capable of HH-signaling transduction – hence, probably 

maternally  contributed ta3  mRNA or  protein  might  compensate  for  loss  of  zygotic  ta3 

during early development and symmetry-breakage of the chick. 
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Taken together, it is tempting to speculate that ATP4-dependent Foxj1 expression, motile 

ciliogenesis  and  cilia  polarization  act  upstream  of  node  asymmetry  in  birds.  This  is 

supported  by experiments  of  Zhang et  al.  (2009),  which  demonstrated  involvement  of 

Vangl2  in  chick  symmetry-breakage.  The  authors  presented  an  “ion-flux”  related 

explanation: Blastoderm cells located on the left and right side already know about their 

left  or  right  “identity”  from  earlier  cues  and  Vangl2  mediates  imprinting.  A direct  link 

between  Wnt/PCP and  direction  of  cell  migration  might  be  envisaged  to  account  for 

asymmetric morphology of the node and gene expression, but would still require a LR-

biasing  mechanism (Aw et  al.  2009;  Wan et  al.  2011).  It  could  thus  not  account  for  

generation of de novo asymmetry, which was required for LR-development in the chick as 

well (Levin et al. 1997). 

As discussed above, Vangl2 was required for alignment of cells along a gradient of non-

canonical Wnt-ligands in mammalian cells (Gao et al. 2011). Beyond that, Wnt/PCP and 

Vangl2  governed posterior  localization of  cilia  within  the GRP/PNC (Antic  et  al.  2010; 

Borovina et al. 2010; Song et al. 2010). Non-canonical Wnt-ligands are expressed around 

the primitive streak of the chick and were required for gastrulation movements,  like in 

Xenopus and the mouse (Hardy et al. 2008). Therefore, I would like to propose that Vangl2  

localization  within  blastoderm  cells  of  the  chick  was  correlated  with  gastrulation 

movements towards the streak. Hence, loss of Vangl2-function in the chick might have 

prevented correct  gastrulation and cilia polarization,  which in consequence could have 

affected LR-development (Harrisson 1989; Tada et al. 2000; Hardy et al. 2008; Zhang et  

al. 2009; Antic et al. 2010; Song et al. 2010).

Therefore, loss of Foxj1-function, cilia motility or bathing the embryo in methyl-cellulose 

should all  prevent  asymmetric  node-cell  migration and asymmetric  gene expression in 

chick as well. This will be tested in future experiments in order to resolve conservation of  

symmetry-breakage in vertebrates.        
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(1. B) Symmetry breakage in urochordates and echinoderms  

ATP4-dependent LR-asymmetries were reported in urochordates and echinoderms (Hibino 

et al. 2006; Shimeld et al. 2006): 

In  urochordates,  head/brain  structures  were  asymmetric,  i.e.  right-asymmetric  sensory 

cells, and the tail of the larva bended towards the left side within the vitelline membrane 

(Nishide et al. 2012). Moreover, nodal cascade activation occured asymmetrically on the 

left  side, like in vertebrates (Blum et al.  2009). In  Ciona intestinalis,  inhibition of ATP4 

during gastrula and neurula stages caused aberrant Pitx expression (Shimeld et al. 2006). 

Interestingly, bilateral expression was found in up to 40% of treated embryos, suggesting a 

similar function of ATP4 in urochordate LR-development, as seen in Xenopus (Levin et al. 

2002; Shimeld et al. 2006). 

Two  recent  publications  readdressed  LR-development  in  urochordates  (Nishide  et  al.  

2012; Thompson et al. 2012). In C. intestinalis and Halocynthia roretzi, posterior localized 

cilia were found in the ectoderm during neurulation and before the onset of asymmetric 

gene expression. While one study, judged by morphological analysis of cilia, claimed that 

these were not motile (Thompson et al. 2012), the other study has linked motility of cilia to 

LR-development: Nishide et al. (2012) demonstrated that different species of urochordates 

(including  C.  intestinalis)  rotated  within  the  vitelline  membrane.  Rotation  in  H.  roretzi 

stopped when the left side of the embryo started to express nodal  (Nishide et al. 2012). 

These  experiments  revealed  an  unexpected  but  tempting  mechanism  for  cilia-driven 

symmetry-breakage in urochordates, which could unify symmetry-breakage in vertebrates 

and urochordates. 

In radial-symmetric adult echinoderms (sea urchins, starfish, etc.), the bilateral symmetric 

body-plan was lost during evolution (Duboc et al. 2005; Hibino et al. 2006; Amemiya 2007; 

Smith et al. 2008). However, the echinoderm pluteus larva is bilaterally symmetrical, and 

the adult develops from only one of the paired coelomic sacs (Hibino et al. 2006). During 

this developmental  process, asymmetric nodal  cascade expression within the coelomic 

sacs decided from which of the paired anlage the adult animal emerged (Hibino et al. 

2006). 
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Like  in  urochordates  and  in  Xenopus,  inhibition  of  ATP4  in  sea  urchins  affected  the 

expression of asymmetric genes and asymmetric development, i.e. formation of the adult 

rudiment in only one of the coelomic sacs (Hibino et al. 2006). During gastrulation, motile  

cilia were present and a rotational movement of the larva could be observed during these 

stages of development, which probably preceded asymmetric gene expression (Soliman 

1983, 1984; Duboc et al. 2005; and Schweickert unpublished observation). In the light of  

the experiments presented in this study and data on urochordate symmetry-breakage, it is 

attractive  to  propose that  cilia-driven rotational  movement  of  the  gastrula  might  break 

symmetry  in  echinoderms  as  well.  This  possibility  should  be  addressed  in  future 

experiments,  e.g.  by  manipulation  of  swimming  and  analysis  of  ciliation  after 

pharmacological inhibition of ATP4.

In  summary,  it  seems possible  that  ATP4-  and  cilia-dependent  events  control  LR-axis 

patterning throughout the deuterostomes.              

(2)  Symmetry breakage in protostomes

Asymmetries  in  the  cleavage  pattern  were  ascribed  to  be  instructive  for  asymmetric 

nodal/Pitx expression and morphogenesis in  snails  (Grande et  al.  2009; Kuroda et al.  

2009;  Oliverio  et  al.  2010).  Asymmetric  gene  expression  was  shown  to  start  during 

trochophora stages (Grande et al. 2009). Timing of expression implicated that symmetry-

breakage  and  nodal  cascade  activation  slightly  preceded  these  stages  in  snails 

(Schweickert  et  al.  2011).  This  seems  to  be  a  comparable  developmental  stage  to 

gastrulation/neurulation stages, when symmetry is broken in (most) deuterostomes (Blum 

et al. 2009). Furthermore, a rotational movement of pre-trochophora and early trochophora 

larvae  was  reported  (Kuang  et  al.  2002;  Byrne  et  al.  2009;  Shartau  et  al.  2010).  In 

conclusion,  cilia-driven  rotational  movements  of  the  embryo  seems  to  be  a  suitable 

mechanism for symmetry-breakage in snails (like in urochordates and echinoderms). 

It  is  possible  that  maternal  cues  (like  in  Xenopus)  establish  DV-axis  by  asymmetric 

cleavages  one  and  two  in  spiralian  embryos,  and  that  this  DV-information  is  in  turn 

instructive for micromere positioning in respect to macromeres, e.g. by affecting the plane 

of  cleavage  (Grande  2010).  Micromere  positioning  (and  the  angle  in  respect  to 

macromeres)  could  determine  cilia-dependent  swimming  direction  (Vladar  et  al.  2009; 

Grande 2010). Cleavage-plane determination involved actin-dependent processes, which 

124



                                                                                                                                                          Discussion

also mediated cilia polarization in vertebrates (Azoury et al. 2009; Vladar et al. 2009; Song 

et al. 2010). Hence, actin-dependent determination of the cleavage-plane in comparison to 

swimming  behavior  could  be  attractive  targets  for  future  experiments.  This  could  be 

investigated by incubation of snail embryos in methyl-cellulose or actin inhibitors, followed 

by analysis of micromere arrangement, asymmetric gene-expression and ciliation.        

 

Thus,  I  would  like  to  speculate  about  a  conserved  organizer-  and  cilia-dependent 

mechanism, which breaks symmetry in proto- and deuterostomes (Figure Dis-7): 

Fluid motions are generated either by rotational movement of larvae or by generation of a  

leftward-flow. These fluid motions are sensed by deflection of cilia and concomitant Ca 2+-

influx. This would mean that during evolution, motile cilia on the embryonic surface would 

have been incorporated into the primitive gut, which might also offer an explanation why 

symmetry-breakage is still developmentally connected to the gastric proton pump ATP4 

(Figure Dis-7). 
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Figure Discussion-7: Hypothetical Evolution Of Cilia-Driven Symmetry-Breakage 

(A) Schematic representation for symmetry-breakage by larval rotation within the vitelline 
membrane. 
(B) Schematic representation for symmetry-breakage by leftward flow at the GRP. 
(C) Schematic representation of the hypothetical evolution of cilia-driven symmetry-breakage from 
the urbilateria (last common ancestor of protostomes and deuterostomes) to modern protostomes 
(e.g. snails) and deuterostomes (e.g. sea urchins, ascidians, modern fish, amphibians, birds and 
mammals). Evolutionary events are indicated in red and mode of symmetry-breakage is indicated 
in blue. Please see text for further details.
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ATP4a And  The  Regulation  Of  Foxj1 Expression In  Ciliated  Epithelia 
During Xenopus Development 

ATP4a And Wnt-Signaling In The Mucociliary Epithelium Of The Skin

The  ciliated  Xenopus skin  epithelium  was  proposed  to  serve  as  a  model  for  the 

investigation of conserved mechanisms in mucociliary epithelia (MCE) development and 

function (Look et al. 2001; Hayes et al. 2007; Dubaissi et al. 2011). MCEs are broadly  

found in  animals  and humans,  e.g.  MCEs are lining  the airways,  the  oviduct  and the 

ependyma (Norris et al. 2012). The Xenopus skin MCE consists of mucus secreting goblet 

cells from the outer cell layer and cell types derived from the deep ectodermal layer, i.e.  

multiciliated cells (MCCs) and ion secreting cells (ISCs) (Stubbs et al. 2008; Quigley et al. 

2011; Dubaissi et al. 2011; Stubbs et al. 2012). 

Tryptophan-hydroxylase- (TPH) expressing and 5-HT-secreting cells (TASCs) constituted a 

novel  cell  type  of  the  skin,  which  regulated  ciliary  beat  frequency  (CBF)  in  MCCs 

(Thumberger 2011). The small apical surface (in comparison to goblet cells) and sensitivity 

to Notch/Delta-signaling manipulation were common features of TASCs, MCCs and ISCs 

(Deblandre et al. 1999; Quigley et al. 2011). Thus TASCs are likely derived from the deep 

ectodermal layer as well. However, direct experimental evidence still needs to be provided 

by  transplantation  of  cells  from  the  outer  epithelium  of  a  wildtype  embryo  on  deep 

ectodermal cells of a fluorescent host (Stubbs et al. 2012). When TASCs also intercalate 

from the deep layer,  5-HT vesicles should be found in fluorescent cells from the host 

embryo. 

While goblet cells, MCCs and ISCs have been also described in human MCEs, TASCs 

have not been described in human tissue so far (Mucenski et al. 2005; Ross et al. 2007).  

However,  functional  studies  established  a  link  between  5-HT  and  coordinated  Ca2+-

elevation via HTRs in human airway epithelia (Bayer et al. 2007). Serotonin was also able 

to regulate CBF in the mouse, and Ca2+ was an important regulator of CBF in many other 

tissues (Doran 2004; Katow et al. 2007; König et al. 2009; Schmid et al. 2011). Hence,  

Ca2+-influx by activated cilia-localized HTR3 receptor-channels (Thumberger 2011) could 

be  a  possible  mechanism how 5-HT from TASCs regulates  CBF in  Xenopus.  The  5-

HT/Ca2+/CBF-regulatory  module  was  also  present  in  lower  deuterostomes  and 
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protostomes (Kuang et al. 2002; Doran 2004; Katow et al. 2007). Therefore, the regulation  

of CBF seems to be a conserved and ancient mechanism in MCEs from various animals 

and humans.

This study revealed that ATP4a-mediated Wnt/β-cat signaling was not only required for 

Foxj1 expression in the SM, but also in the skin MCE. When DNA expression vectors 

encoding ATP4a, Foxj1 or Wnt/β-cat were co-injected in  ATP4a morphants,  cilia-driven 

flow and ciliation were rescued. These experiments suggested that the skin MCE and the 

SM underlie a common mechanism of transcriptional control for the generation of motile 

cilia. 

In the  Xenopus skin, Notch-signaling activation inhibited MCC- and ISC-formation, while 

inhibition promoted specification of these cell types (Deblandre et al. 1999; Ross et al.  

2007).  In  contrast  to  MCCs and ISCs,  TASCs required  Notch-signaling  activation  and 

appeared later in development (Deblandre et al. 1999; Quigley et al. 2011). This could 

constitute  a  functional  backup,  which  guarantees  robust  mucus  flow  over  the  skin 

ectoderm: When less MCCs are specified during early MCE-development, more TASCs 

can appear at later stages, which in turn stimulate higher CBF. This idea could be tested 

by  quantitative  analysis  of  fluid  flow  velocity  and  cell  type  abundance  after  mild 

manipulations of Notch/Delta-signaling in tadpoles. 

MCCs and ISCs had in common that they needed to intercalate into the outer epithelium 

after specification (Quigley et al. 2011). In ATP4a morphants, cells with apically enriched 

but disorganized tubulin were found within the outer epithelium. ISCs were unaffected. 

This suggested that in MCCs and ISCs cell-fate specification took place and that both cell  

types  could  intercalate.  Beyond  the  role  of  Foxj1 in  transcriptional  activation  of  the 

ciliogenesis program, earlier studies proposed that actin-dependent basal-body docking to 

the apical membrane was deficient after loss of Foxj1 in MCCs (Huang et al. 2003; Pan et 

al.  2007).  This  was  in  good  agreement  with  the  subcellular  phenotype  in  ATP4a 

morphants.  Interestingly,  when  β-cat or  Foxj1 DNAs  were  over-expressed  in  ATP4a 

morphants, more tubulin-positive cells were observed in the MCE. This could indicate that  

in addition to MCCs ISCs were forced to start the ciliary program, but failed to form cilia. 

RhoA GTPase activity was required for apical docking of basal-bodies and cilia outgrowth 

in MCCs, downstream of Foxj1 (Pan et al. 2007). RhoA-activity was regulated by Wnt/PCP 

and  acted  downstream  of  ATP4a  (and  independent  of  Wnt/β-cat)  in  CE.  Foxj1 was 
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sufficient  to  rescue  ciliation  rate  at  the  GRP,  but  not  Wnt/PCP  dependent  posterior 

localization of cilia.  Therefore, it  is  tempting to speculate that ATP4a not only controls 

Wnt/β-cat dependent expression of Foxj1, but also Wnt/PCP and RhoA dependent docking 

of basal bodies in the skin. Wnt/PCP was also shown to align cilia beating in the Xenopus 

skin and,  thereby,  to  control  the  directionality  of  cilia-driven flow (Mitchell  et  al.  2007, 

2009). Whereas cilia-driven flow was virtually absent in ATP4a morphants, rescue by β-cat 

and  Foxj1 DNAs could restore fluid flow. However, directionality was not re-established, 

suggesting a similar separation of Wnt/β-cat and Wnt/PCP defects, as demonstrated for 

GRP cilia. 

Such a separation of Wnt-dependent events during MCE-development can be tested by 

analysis of basal-body docking (using γ-tubulin staining) in ATP4aMO injected specimens. 

Alignment of basal-bodies in ATP4a morphants and morphants rescued by Foxj1 can be 

analyzed as well (by Mig12-GFP; Hayes et al. 2007). Rescue of  ATP4a morphants with 

ATP4a DNA was more efficient in restoring ciliation than rescue with Foxj1 or β-cat DNAs, 

supporting  this  notion.  Furthermore,  increased  numbers  of  tubulin-positive  cells  were 

observed, implicating that gain of ATP4a could result in a gain of Wnt/β-cat signaling and 

Foxj1 expression in the MCE.
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Figure Discussion-8: Model Of Skin Mucociliary Epithelial Development In Xenopus 

Relative developmental time is indicated by arrow (upper-most).
Delta-signaling dependent development of MCCs and ISCs (incl. additional factors) is represented 
in the light blue box. Please note that this model suggests a Wnt-dependent transformation of 
MCCs into goblet cells during later development (not further discussed in the text). Notch-signaling 
dependent development of precursor cells and TASCs is depicted in the green box. Please see 
text for further details.
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Experiments suggested that expression of  TPH and possibly Otogelin were regulated by 

ATP4a-dependent Wnt/β-cat in TASCs and goblet cells, respectively. In MCCs and TASCs, 

Wnt-signaling was downstream of Notch/Delta-signaling and probably accounted for cell-

type  maturation.  Presence  of  Wnt-signaling  is  also  a  shared  feature  of  MCEs  from 

Xenopus, mouse and humans (Mucenski et al. 2005; Park et al. 2006; Ross et al. 2007). 

Wnt-signaling  thus  needs  to  be  incorporated  into  the  conserved  tool-box  of  signaling 

pathways during MCE-development, in addition to Notch/Delta-signaling (Figure-Dis-8). 

ATP4a And Canonical Wnt-Signaling In The Floor Plate 

Foxj1 expression in the floor plate was attributed to Shh-dependent activation of the HH-

pathway in the zebrafish (Yu et al.  2008).  In  Xenopus,  gain of  β-cat in the floor plate 

lineage restored  Foxj1 expression in  ATP4a morphants and after  inhibition of the HH-

pathway by application of cyclopamine. Thus, ATP4a-dependent Wnt/β-cat signaling acted 

downstream  of  HH-signaling  in  the  floor  plate,  and  activation  of  both  pathways  was 

required for Foxj1 expression. These findings were in agreement with a revised model for 

dorsal cell fate specification in  Xenopus, which proposed that HH-signaling plays only a 

minor role during induction of floor plate identity (Peyrot et al. 2011). 

In the mouse neural tube, HH-signaling regulates the expression of the secreted Wnt-

inhibitor sFRP2 (Lei et al. 2006).  Upon inhibition of HH-signaling, sFRP2 expression was 

extended towards ventral portions of the neural tube and Wnt-dependent gene expression 

was  down-regulated  (Lei  et  al.  2006).  Similar  to  sFRP2 in  the  mouse,  Xsfrp2 was 

expressed in the Xenopus neural tube (Pera et al. 2000). Therefore, it is possible that HH-

dependent Foxj1 expression in the frog is regulated by a similar mechanism. This could be 

experimentally  addressed  by  analysis  of  Xsfrp2 expression  in  cyclopamine-incubated 

embryos.
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Motile Cilia And Wnt-Signaling 

Preliminary experiments from the brain ependyma and the gastrointestinal tract indicated a 

link between ATP4a, Wnt-signaling, Foxj1 expression and ciliation in these tissues as well. 

Hence,  the  data  suggested  that  formation  of  motile  cilia  was  regulated  by  Wnt/β-cat 

signaling  throughout  Xenopus development.  Foxj1 expression  in  zebrafish  was  also 

regulated by Wnt/β-cat (Caron et al. 2011), which argues for conservation of mechanisms 

in vertebrates. This in turn reveals a new interaction between Wnt-signaling and motile  

cilia, in addition to the established role for Wnt/PCP signaling (Pan et al. 2007; Mitchell et 

al. 2009; Zeng et al. 2010; Wallingford et al. 2011; Yasunaga et al. 2011).
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Figure Discussion-9: Hypothetical Mechanism Of ATP4a- And pH-Dependent Wnt-Signaling 
Activation

Upper row left: Before ligand binding, components are present in the membrane of the signal-
receiving cell. 
Upper row right: Upon binding of the Wnt-ligand to the Fz-receptor, Dvl is recruited to the 
intracellular part of Fz and gets activated. Moreover, Fz-bound ligands recruit membrane-standing 
LRP6 co-receptors to the complex. Activated Dvl-molecules polymerize and recruit more ligand-
receptor/co-receptor complexes. ATP4 is bound to this complex by an unknown adaptor protein. 
Middle row right: Dvl-polymerization induces formation of the Wnt-signalosome by endocytosis.
Middle row left: After signalosome endocytosis, ATP4-mediated proton pumping acidifies the 
signalosome lumen.
Lower row left: Signalosome acidification permits a conformational change of the LRP6 
intracellular tail and subsequent phosphorylation by CK1 and GSK3β. 
Lower row right: Recruitment of GSK3β to the signalosome prevents stabilization of 
APC/β−cat/GSK3β complexes, which ultimately stabilizes cytoplasmatic β-cat and stimulates 
Lef/TCF-dependent target gene expression. 
Please see text for further details. 
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ATP4a And pH-Dependent Wnt-Signaling
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Functional experiments and subcellular ATP4a localization suggested interaction with Wnt-

signaling at the level of membrane-associated pathway components (ligand, receptor and 

Dvl) (Borchers et al. 2000; Wallingford et al. 2001; Tao et al. 2005; Tran et al. 2007; Niehrs 

et al. 2010). ATP6 and ATP4 were required for Wnt/β-cat and Wnt/PCP signaling (Bilic et 

al. 2007;  Buechling et al. 2010; Cruciat et al. 2010). ATP6 was proposed to account for  

Wnt-signalosome formation and acidification, which was a prerequisite for activation of 

LRP6 (Cruciat  et  al.  2010).  ATP4a was found in vesicle-like structures near the apical 

membrane, which suggested that ATP4 might be required for acidification of signalosomes 

as well. 

Down-regulation of non-canonical Wnt/PCP, Wnt/Ca2+, Wnt/Ror2 or Wnt-PKA signaling can 

affect gastrulation and blastopore closure in Xenopus (Kohna et al. 2005; Park et al. 2006; 

Schambony  et  al.  2007).  This  was  also  observed  upon  loss  of  Xwnt11b  function.  In 

contrast, gastrulation movements and blastopore closure were not considerably affected in 

ATP4a morphants.  As ATP4 and  ATP6 were  both  expressed in  the  dorsal  mesoderm 

(Cruciat et al. 2010), lack of gastrulation defects upon inhibition of one proton pump might  

have indicated redundant functions. Nevertheless, inhibition of a single ATPase reliably 

down-regulated  β-cat  dependent  gene  expression  and  Wnt/PCP  mediated  processes 

(Cruciat et al. 2010). Interestingly, these Wnt-branches required LRP6 for correct signaling 

(Tahinci et al. 2007). Thus, ATP4- and ATP6-dependent signalosome acidification possibly 

regulates only the transduction of signals via LRP6, without affecting other non-canonical 

signaling branches.   

In theory, pH-change within the signalosome could trigger a conformational change of the 

LRP6 extracellular domain, which was shown to repress activation of LRP6 dimers (Liu et  

al. 2003). This change in the extracellular conformation could consequently change the 

conformation  of  the  intracellular  tail  of  LRP6  and  promote  downstream  events  as 

previously  suggested  by  Liu  et  al.  (2003).  Taken  together,  the  following  model  of 

ATP4/Wnt-interaction is envisaged (Figure-Dis-9):

After Wnt-binding to Fz, the receptor gets activated and recruits Dvl to the membrane. In 

addition, ligands of the canonical and Wnt/PCP branch recruit LRP6 to this complex by 

binding to the extracellular domains. Fz-bound Dvl polymerizes with other Dvl molecules, 

thereby promoting  signalosome formation  and internalization (Niehrs  et  al.  2010).  The 
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signalosome  constitutes  an  enclosed  compartment,  which  can  be  acidified  by  proton 

pumps (Buechling  et  al.  2010;  Cruciat  et  al.  2010).  pH-shift  induces a  conformational 

change  within  the  extracellular  domain  of  LRP6,  which  is  accompanied  by  a 

conformational  change of the intracellular part  of  the protein (Liu et  al.  2003).  Such a 

mechanism  could  explain  the  requirement  of  proton  pump-mediated  acidification  of 

signalosomes  in  Wnt-signaling  activation.  This  model  will  be  tested  by  sequence-

modification of LRP6 extracellular domains and functional experiments on pH-dependency 

of manipulated proteins.   

Concluding Remarks  

The data provided in this thesis work uncovered a new role for ATP4 in ciliogenesis and 

LR-development of  Xenopus laevis and potentially beyond. Furthermore, ATP4-function 

was required for activation and regulation of Wnt-signaling in diverse tissues, contributing 

a new player to this important signaling pathway. Taken together, these findings argue for 

conservation  of  symmetry-breakage  among  vertebrates  and  multiple  roles  for  Wnt-

signaling within this process.
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Materials & Methods

In vitro fertilization

X. laevis can be kept in tanks filled with 18-22 °C cold water. For experiments,  X. laevis  
females were stimulated for ovulation by injection of human chorion gonadotropin (β-HCG, 
Sigma;  400-500μl)  into  the  dorsal  lymph  sac.  About  12  hours  after  injection  females 
started to spawn and kept laying eggs for throughout the following day. Eggs have been 
obtained by massaging and were collected in culture dishes (water was removed). For 
sperm extraction the testicles of males were removed and stored in 1 x MBSH at 4°C for  
up to 2 weeks. For fertilization a small peace of a testicle was dissected and added to 
freshly  obtained  eggs.  After  gently  mixing  movement  of  sperms  was  induced  by 
decreasing the salt concentration of the 1 x MBSH using water. ~40 min after fertilization 
the fertilization jelly was removed by incubation in 2% cystein @ pH8 for up to 7 min.  
Isolated eggs have been washed 4-5x in 0.1xMBSH and transferred into 1 x MBSH for  
microinjection.

Fixation

Embryos were cultivated to the stage of interest and then transferred into 5 ml of freshly 
prepared 1 x MEMFA (WMISH), 1-5 ml of 4% PFA (IHC) or 2% PFA / 2.5% GA (SEM) for 
fixation. After incubation for 1-2h at room temperature or overnight at 4°C embryos were  
washed in buffer and either stored in ethanol at -20 °C or further prepared for IHC or post-
fixed in a second step for SEM. 

Incubation

SCH28080

For whole mount incubation experiments, SCH28080, which was dissolved in DMSO, was 
applied  directly  into  the  culture  medium and  vortexed  for  ~15sec.  A stock  solution  of 
SCH28080 in DMSO was stored for up to two months at -20°C. As control, DMSO without 
SCH28080 was used. 200ΜM concentrations were used if not specified otherwise in the 
figure legend.

Cyclopamine 

For whole mount incubation experiments, cyclopamine, which was dissolved in Ethanol, 
was applied directly into the culture medium and vortexed for ~15sec. A stock solution of  
cyclopamine  in  Ethanol  was  stored  for  up  to  two  years  at  -20°C.  As control,  Ethanol 
without  cyclopamine was used.  Application started at  st.  8.  10µM concentrations were 
used. 

Microinjections

For the injections embryos were transferred to 2% Ficoll  in 1 x MBSH solution in a Petri 
dish coated with 1% agarose. Embryos were injected at the 2-8-cell stage using a Harvard 
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Apparatus setup with a thin glass-needle (5-10μm diameter). Drop size was calibrated to 
about  7-8  nl  per  injection.  In  all  experiments  only embryos  with  a clear  dorso-ventral  
segregation of pigment were used for injections (Danilchik et al. 1988; Klein 1987) and 
only correctly targeted specimens were processed for further analysis. The targeting was 
controlled by co-injection of either lineage tracer mRNAs (eGFP, mGFP, mRFP; diluted to 
a concentration of about 50-100ng/μl) or Dextranes (25mg/ml stock was diluted 1:10-1:40) 
as indicated.

Morpholino Oligonucleotides (MOs)

Specific MOs were provided by GeneTools.

Morpholino  concentrations  of  ATP4aMO (5`-GTCATATTGTTCCTTTTTCCCCATC-3`)  or 
CoMO  (random  control  oligo;  Gene  Tools)  used  in  cases  not  specified  in  the  figure 
legends:
1x 0.5 pmol: Figure 18 C.
2x 0.5 pmol: Figure 10, Figure 11, Figure 14 A-D, Figure 15 B-C, Figure 16, Figure 17, 
Figure 18 A-C and E, Figure 21 A-B and H, Figure 22, Figure 23, Figure 32 D-E and G-I,  
Figure 33, Figure 34, Figure 35, Figure 36 E, Figure 39, Figure 41 A-E, Movie 1, Movie 2, 
Movie 3.        
4x 0.5 pmol: Figure 20 D. 
1x 1 pmol: Figure 19 G, Figure 20 A and E-F.  
2x 1 pmol: Figure 19 A-B, Figure 20 B.

Morpholino  concentrations  of  ATP4a-Spl-MO (5`-CCCCCCCCCCCATTTCTTACAATGT-
3`) are specified in the figure legends and 2x 0.5 pmol was used in Movie 3.

Morpholino concentrations of  ATP4bMO (5`-TCATTGAAAGTTGCCATTTCTCTCC-3`) are 
specified in the figure legends. 

dnah9MO (dnah9-SB-MO in Vick et al. 2009) was used at concentrations of 1 pmol per 
injection.

Xnr1MO (Schweickert et al. 2010) was used at concentrations of 0.5 pmol per injection.

Foxj1MO (ATG-MO  in  Stubbs  et  al.  2008)  concentrations  are  specified  in  the  figure 
legends. 

Fz8MO (Beyer 2011) was used at concentrations of 1 pmol per injection.

Xwnt11bMO (5`-TAACCCAGTGACGGGTCGGAGCCAT-3`) was used at concentrations of 
1 pmol per injection.

HTR3MO (HTR3MO-A in Beyer et al. 2011) was used at concentrations of 2x 1 pmol.
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mRNA and DNA injections

mRNAs were prepared using the Ambion message machine kit and diluted to the following 
concentrations: 

30 ng/ml RhoA CA and RhoA DN (Paterson et al., 1990) 
60 - 80 ng/ml ATP4a-MT (60ng/µl in Figure 20 B; 80ng/µl in Figure 9 B and Figure 20 A)
80 ng/ml Dvl2 (Sokol, 1996)
100 ng/ml Xwnt8a (Sokol et al., 1991) 
100ng/µl β-cat:GFP (Miller and Moon, 1997) 
150ng/µl Notch-ICD (Deblandre et al. 1999) 
150ng/µl Dll1-STU (Deblandre et al. 1999)
150ng/µl X-Su(H)-DBM (Deblandre et al. 1999)

DNAs were purified using the PureYield Plasmid Midiprep kit (Promega) and diluted to the 
following concentrations: 

0.5 ng/µl HTR3-LBD (Beyer et al. 2011) 
0.5 ng/µl Foxj1-CS2+ (Stubbs et al. 2008) 
1 ng/µl ATP4a-CS2+MT 
1 ng/µl ATP4b-CS2+ 
1 ng/µl β-cat-GFP-CS2+ (Miller and Moon, 1997)
1 ng/µl CS2+ (empty vector)
1 ng/µl Xsfrp2-CS2+ (VON STEINBEISSER)
1 ng/µl dnXwnt11b-CS2+ (Tada et al. 2000)

Whole-mount in situ hybridization (WMISH)

Was performed as described in detail by (Greenan and Metzinger 2008). This protocol was 
developed by the De Robertis laboratory, following basic procedures described in (Harland 
1991), and can be obtained following this link: 
 http://www.hhmi.ucla.edu/derobertis/protocol_page. 
AP-conjugated anti-Fab-fragments antibody (Roche) was used @ 6µl / 50ml Blocking.

Immuno-histochemistry (IHC)

Embryos were fixed as described above (or processed for WMISH) and washed 3x in PBS 
@ RT for 5`. 
Membranes were permeabilized by PBS with 0.01% Triton-X100 (3x 20 min @ RT) before 
each blocking step. CAS-blocking was used at a dilution of 1:10 in PBS with Triton-X100. 
Blocking took place for 2h @ RT or over night @ 4°C before application of Antibodies.  
Antibodies were diluted in 100% CAS as indicated below and incubated over night @ 4°C.
Actin (phalloidin) and Nucleus (Hoechst) staining was performed as last step (at least 1h 
incubation @ RT) after antibody incubation and reagents were diluted as indicated below 
in PBS with Triton-X100. 

Anti-ATP4a (rabbit, 1:500) (Chen et al., 1998)
Anti-Tubulin Acetylated (mouse, 1:700; Sigma)
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Anti-rabbit Alexa 555 (goat, 1:250; Invitrogen)
Anti-mouse DyLight 488 (rabbit, 1:250; Jackson Immuno Research)
Anti-mouse Cy3 (sheep, 1:250; Sigma)
Alexa488-conjugated phalloidin (Invitrogen, 1:40)
Hoechst 33342 (Molecular Probes, 1:15.000 or below)

Combined WMISH and IHC

WMISH was performed as described above and washed 3 times for 30min at RT. Than 
IHC was performed as described above. 

Scanning electron microscopy (SEM)

Embryos were freshly dissected (to uncover the GRP) in 0.1xMBSH and fixed in a mixture 
of 2% paraformaldehyde (PFA) and 2.5% glutaraldehyde (GA) for 1hr at room temperature 
or overnight at 4°C. The specimens were washed three times for 10min in 0.1M phosphate 
buffer (PB, pH7.5) and were then postfixed for 1-2hrs in 1% OsO4/0.1M PB at 4°C. After 
extensive washing embryos were gradually dehydrated in an ethanol series and stored in 
100% ETOH at -20°C until  submitted to the drying procedure. Critical point drying was 
performed using CO2 as drying agent. Embryos were sputter with gold and viewed under  
a LEO DSM 940A.
[Please note that all SEM preparations and microscopy was performed by T. Beyer or I.  
Schneider and details should be obtained from Beyer 2011].

Quantitative GRP-analysis

SEM or IHC was performed on dorsal explants as described above. For quantification the 
customized software tool “Cell Gridder” was used, which was developed by T. Thumberger 
and which is described in Thumberger (2011). 

Quantification of MCC-phenotypes in the Xenopus skin

From each embryo two confocal image z-stacks were taken, which were non-overlapping. 
The  z-stacks  were  processed  for  maximum intensity  z-project  in  ImageJ  and  tubulin-
stained cells and phenotypes were scored as described in the respective figure legend.

Flow analysis

For  analysis  of  leftward  flow  at  the  GRP,  a  semi-automated  tool  was  used.  For 
visualization of extracellular particle movement driven by ciliary motility, fluorescent beads 
were added to the GRP and their motion was documented by taking time-lapse movies in 
a time window of 25 sec. Only the central  region of the GRP was analyzed what was 
achieved by applying a mask of a defined size. Particle movement was analyzed using the 
ImageJ plug-in ParticleTracker, measurements and statistics were calculated. Slow and 
random movements which most likely displayed Brownian motion were excluded using the 
Rayleigh's test of uniformity on each trajectory. Particles movements which reach a mean 
resultant  length  (rho)  of  0.6  were  count  as  being  directed.  The  resulting  data  were 
summarized  and  significances  have  been  calculated  by  analyzing  the  mean  resultant 
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length towards the left side against the mean length of all trajectories excluding random 
movement. Significances were calculated by Mann-Whitney-U test (Bonferroni corrected) 
in statistical-R. This analysis was developed by Thomas Thumberger (formerly Weber) and 
is described in detail in Vick et al. (2009) and Thumberger 2011.
Skin  flow was  analyzed  in  anesthetized  tadpole  embryos,  placed  in  fluorescent  bead 
solution. Velocity of flow was determined using Particle Tracker.

Animal cap assay

Embryos were injected four times into the animal pole at the four-cell stage and cultivated 
until  late  blastula  stages  (st.  8/9).  Injection  efficiency  was  controlled  by  analysis  of 
fluorescent lineage tracer analysis. The animal cap was prepared and treated with activin 
following standard procedures (Green and Smith 1990).  Recombinant  human Activin A 
(R&D Systems) was added immediately after dissection, and embryos were cultured until  
control specimens reached stage 22–30.

Clearing of embryo tissue

For clearing embryos were transferred into increasing concentrations of Methanol (25, 50, 
75  and  100%)  and  methy-salicylate  or  a  1:2  mixture  of  benzyl  alcohol  and  benzyl 
benzoate.

Cloning

Total RNA isolation

Total  RNA was  isolated  using  a standardized protocol.  Embryos were  transferred  into 
Trifast (PEQGold) and macerated. After incubation at room temperature (at least 10 min) 
200μl chloroform have been added and vortexed for 15 sec, incubated @ RT for 5 min and 
centrifuged.  The  aqueous  phase  was  transferred  into  a  new  reaction  tube,  500μl 
isopropanol were added. After vortexing 10min incubation @ RT, the sample have been 
centrifuged for 15 min @ 4°C and 14000rpm. Supernatant was discarded, RNA pellet was 
washed using 75% ethanol. Discarding the supernatant and drying was followed by re-
suspension in 30 μl autoclaved water. The final RNA concentration was measured and the 
RNA was stored at -80°C.

Reverse transcriptase (RT) reaction, cDNA synthesis

Up to 1μg total RNA was used for preparation of cDNA. RNA and 0,5μl random hexamers 
(Promega) were diluted in water to a final volume of 14μl. After 5min @ 70°C and snap 
cooling on ice the following components were added:
5 μl M-MLV RT Buffer (5x)
1.25 μl dNTPs (10mM)
3.75μl H2O dest.
1μl M-MLV Reverse transcriptase with volume of 25μl. 
After 10min @ RT and 60min at 50°C the reaction was stopped by 15 min at 70°C. The 
cDNA was stored at -20°C.
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Standard PCR

Each reaction contained:

1-5μl cDNA
5μl Taq Buffer (5x)
2.5μl dNTPs (2mM)
1μl forward primer
1μl reverse primer
0.2μl Taq polymerase
add water to obtain a total volume of 20µl.

The standard PCR protocol included the following steps:

(1) Denaturation step, 5min @ 95°C
(2) Denaturation step, 30sec @ 95°C
(3) Primer annealing, 45sec @ variable temperature.
(4) Elongation, 1min/1kb @ 72°C
(5) Stop of reaction, 8°C for ever

Steps (2)-(4) were repeated. For subsequent ligation into pGEM-TEasy vector, an extra 
step was programmed (10min at 70°C), in which an adenosine was added at each 3'-
terminus by the Taq-polymerase.

Primers used in this study: 

Full-length ATP4a: 
forward 5`-ATGGGGAAAAAGGAACAATATG-3`
reverse 5`-TTAATAATACATCTCCTTGTCGAAC-3`

Cloning of ATP4a Intron2 sequence:
HKaEx2-for  5`-GCATGAAAAAATGGAC-3
HKaEx3-rev  5`-CTGTTCTAGCCGACAG-3

Verification of ATP4a Intron2 sequence in Figure 12: 
HKaEx2-for  5`-GCATGAAAAAATGGAC-3
HKaInt2-rev  5`-TCCTGTCTGCCAATAAACCC-3

Elongation factor 1α:
forward 5`-CAGATTGGTGCTGGATATGC-3`
reverse 5`-ACTGCCTTGATGACTCCTAG-3`

Actin cytoskeletal type-8: 
forward 5`-AGGGTGTAATGGTTGGTATGG-3`
reverse 5`-ACCTTCTACAATGAACTTCGTG-3`

PCR-products were cloned into the pGem TEasy vector.
All sequences have been verified by sequencing.
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Ligation

PCR products have been ligated into the PGEM-T-Easy vector. Each reaction
contained:
2.5μl Rapid Ligation buffer (2x)
0.5μl PGEM-T Easy Vector
0.5μl T4 DNA Ligase
0.5μl H2O
1μl PCR product
After gently mixing the reaction incubated at 4°C over night followed by transformation of 
competent  E. coli (XL1-blue) using the heat  shock method.  The bacteria solution was 
plated  onto  LB-agar  plates  (100μg/ml  Ampicillin,  0.5mM  IPTG,  80μg/ml  X-Gal)  and 
incubated over night at 37°C. Blue staining indicated no insertion of a DNA fragment into 
the multiple cloning site of the vector whereas white colonies were further analyzed.

Mini preparation

Plasmid DNA from E. coli cultures was isolated using a modified alkaline lysis protocol. All 
centrifugation steps were done at 4°C. 3ml of selective LB medium (100μg/ml Ampicillin) 
were inoculated with a single bacteria colony from a selective plate and grown overnight @ 
37°C. 1.5 ml of the culture were poured into a microcentrifuge tube and bacteria were 
pelleted in a microcentrifuge at 6000g for 15min. The supernatant was discarded and the 
pellet  re-suspended  by  vortexing  in  100μl  P1  buffer.  When  the  bacteria  suspension 
appeared uniform, 200μl of P2 buffer were added and the tube was flicked several times to 
thoroughly mix the reagents.
Alkaline lysis was allowed to proceed for 5min and was then stopped by neutralizing with 
150μl of P3 and mixed gently. After 20 min of incubation on ice, the lysate was cleared by 
centrifugation in a microcentrifuge at 14.000rpm for 10min. 400μl of the clear supernatant  
were transferred to a fresh tube and mixed with 1ml of 100% Ethanol to precipitate the 
plasmid DNA. After  precipitation for 30min at -20°C the plasmid DNA was pelleted by 
centrifuging at 14.000rpm for 10min. The pellet was washed in 70% ethanol, dried and re-
suspended in 50μl sterile water.

Restriction enzyme digests of DNA (20μl)

To check for insertion of the correct PCR-product after mini-prep, inserts were released 
from the plasmids by digestion with  a restriction enzyme cutting on both sides of  the 
multiple cloning site (e.g. EcoR1). 5μl of plasmid-DNA, 2μl 10x buffer, 0.2 μl BSA and 0.5μl 
enzyme were added, and 12.3μl sterile water to a final volume of 20μl. Incubation took  
place at 37°C for 2h and after digestion the reaction was analyzed on an agarose gel. The 
products of each reaction were checked on a standard 1% agarose gel supplemented with 
an end concentration 0.4μg/ml ethidium bromide solution.

DNA amplification (midi preparation)

100ml  of  selective  LB  medium  (100μg/ml  Ampicillin)  were  inoculated  with  1ml  of  a 
positively  tested bacteria  culture  and grown overnight  shaking  at  37°C.  Bacteria  were 
harvested by centrifugation, lysed and DNA was purified following the Promega “PureYield 
Plasmid Midiprep System” using the vacuum method. The concentration of nucleic acids in 
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aqueous solutions was determined via spectrophotometry. The ratio of absorption (A) at 
260nm and  280nm wavelength  indicated  the  purity  of  the  solution  (pure  nucleic  acid  
solution: 1.8 for DNA, 2.0 for RNA). The content of either DNA or RNA was inferred from 
the A260 value with  1 unit  corresponding to 50μg/μl  DNA and 40μg/μl  RNA. For sub-
cloning into other vectors (i.e. Cs2+ or CS2+MT) the insert and the desired vector were 
digested by restriction enzymes, the insert was purified from a 1% agarose gel using DNA-
Purification-Kit (Biozym) and re-ligated into the new vector.

mRNA synthesis

Restriction enzyme digests of DNA (50μl)

For linearization of plasmids 20μg of plasmid DNA was used in a 50μl reaction. 2μl of 
restriction  enzyme  were  used  and  the  digestion  was  incubated  overnight  at  37°C. 
Approximately 600ng of the digestion were controlled on a 1% agarose gel. Efficiency of 
linearization was tested on a 1% agarose gel by comparison with the unlinearized plasmid. 

Synthesis of capped RNA

For capped RNA synthesis the Ambion kit mMESSAGE mMACHINE (High yield capped 
RNA Transcription kit) was used, following the suggested standard protocol. Concentration 
of the mRNA was then determined by spectrophotometry and the quality by running on an 
agarose gel.

Histological analysis of embryos after WMISH

After  re-hydration embryos were equilibrated in a small  volume of embedding medium 
(~1ml, gelatin-albumin mix). 2ml of embedding medium were mixed shortly but vigorously 
with 140μl of glutaraldehyde and poured into a square mold formed of two glass brackets. 
The mixture was allowed to harden and the equilibrated embryo was transferred upon the 
surface of the block, excess of embedding medium was carefully removed. Another 2ml of 
embedding medium mixed with  glutaraldehyde were poured into  the  mold so that  the 
embryo was sandwiched between two layers of embedding mix. The hardened block was 
trimmed with a razor blade and attached onto a plate. The plate was mounted into the 
holder of the vibratome and 30-80μm thick sections were prepared. The sections were 
arranged onto glass slides, embedded with Mowiol and protected with glass cover slips.

Photo documentation

Documentation of living or fixed embryos was performed after re-hydration in PBS- wi th a 
Zeiss  dissecting  microscope  STEREO  Discovery.V12,  a  LEICA MZFLIII  with  a  digital 
camera (AxioCam HRc, Zeiss) or a Zeiss microscope Axioskop 2 with a digital camera 
(AxioCam Hrc, Zeiss). Confocal imaging was performed on a Zeiss LSM700 or LSM 5 
Pascal. Fluorescent images were processed using ImageJ and TIFF-files were generated. 
Further manipulations (replacement of background, brightness, contrast, color, etc.) of all  
images  was  performed  using  Adobe  Photoshop.  Figures  were  designed  in  Adobe 
Illustrator.  Hereby  I  confirm  that  in  no  case  original  data  was  manipulated  in  an 
inappropriate way, i.e. the content of a picture was not changed in a way, which would 
qualitatively change the information contained. 
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Buffers, Solutions and Media

WMISH/IHC

10x Phosphate Buffered Saline (PBS, 1l)
80g NaCl
2g KCl
14.4g Na2HPO4
2.4g KH2PO4
800ml DDW
adjust pH to 7.4, add DDW to 1L, autoclave
1x PBSw (500ml)
50ml PBS- (10x)
500μl Tween20
add DDW to 500ml

WMISH

1x Alkaline Phosphatase Buffer (AP1, 1l)
100ml TRIS (pH 9.5, 1M)
20ml NaCl (5M)
50ml MgCl2 (1M)
adjust pH to 9.5, add DDW to 1l

1x Maleic Acid Buffer (MAB, 1l)
11.61g Maleic Acid (100mM)
30ml NaCl (5M)
800ml DDW
adjust pH to 7.5, add DDW to 1l, autoclave

20x Sodium Citrate Buffer (SSC, 1l)
175.3g NaCl
88.2g Sodium citrate
800ml DDW
adjust pH to 7, add DDW to 1l, autoclave

Hybridization solution (1l)
10g Boehringer Block
500ml Formamide
250ml SSC (20x)
Heat to 65°C for 1 hour
120ml DDW
100ml Torula RNA (10mg/ml in DDW, dissolved at 65°C; filtered)
2ml Heparin (50mg/ml in 1xSSC pH 7)
5ml Tween20 (20%)
10ml CHAPS (10%)
10ml EDTA (0.5M)
filter (5μm)
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Antibody Blocking Buffer (1l)
10g Boehringer Block
dissolve in 800ml PBS- at 70°C, vortex frequently,
100ml Goat Serum (30min at 56°C heat inactivated)
add PBS- to 1l, filter (0.45μm)
1ml Tween-20

Frog experiments

5x MBSH (1l)
25.7g NaCl
0.375g KCl
1g NaHCO3
1g MgSO4*7H2O
0.39g (CaNO3)2*4H2O
0.3g CaCl2*2H2O
11.9g Hepes
5 ml Penicillin/Streptomycin
add DDW to 1l, adjust pH of 7.4, filter (0.45μm)
10xMEMFA (1ml)
500ml MOPS (0.1M, pH 7.4)
200ml EGTA (2mM)
10ml MgSO4 (1M)
add DDW to 1l, autoclave

1x MEMFA (100ml)
10ml MEMFA (10x)
10ml Formaldehyde (37%)
80ml H2O

Gurdon’s buffer
88mMNaCl
15mM HEPES
1mM KCl
15mMTris-HCl, pH 7.6

Ficoll
2% Ficoll diluted in 1xMBSH

Cystein
2% Cystein diluted in DDW, adjust pH to 7.99
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Bacteria culture

Super Optimal Catabolite repression medium (S.O.C., 500ml)
2.5g Yeast extract
10g Tryptone
1ml NaCl (1M)
1.25ml KCl (1M)
5ml MgCl2 (1M)
5ml MgSO4 (1M)
1.8g Glucose
autoclave

Lysogeny Broth (LB) medium (1l)
10g Tryptone
10g NaCl
5g Yeast extract
add DDW to 1l, adjust pH to 7 (for LB agar add 15g/l agar) autoclave

DNA preparation

P1 (Re-suspension buffer)
50mM TRIS-HCl
10mM EDTA (pH8)
add RNaseA (DNase free) to a final concentration of 100μg/ml

P2 (Lysis buffer)
0,2M NaOH
1% SDS

P3 (Neutralization buffer)
3M Potassium acetate, pH 5.5

Other applications

Embedding medium for vibratome sections
2.2g Gelatine
135g Bovine Serum Albumin
90g Sucrose
dissolve in 450ml PBS.

Mowiol (Mounting medium)
96g Mowiol 488
24g Glycerol
24ml DDW
stir for 2h, then add
48ml TRIS 0.2M pH 8.5
stir for 20min at 50°C
centrifuge for 15min at 5000rpm, keep supernatant
and store at -20°C.
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50x Tris Acetate EDTA Electrophoresis Buffer (TAE, 1l)
15.1g Tris base
57.1ml Glacial acetic acid

100ml EDTA (0.5M, pH8)
add DDW to 1l, adjust pH to 8.5

Sörensen phosphate buffer
Stock solution A: 0.2M NaH2PO4 *H2O
Stock solution B: 0.2M Na2HPO4
for 200ml 0.1M, pH 7.4: 19ml A + 81ml B + 100ml H2O
for 200ml 0.1M, pH 7.0: 39ml A + 61ml B + 100ml H2O

Sources of supply

Chemicals and lab-ware

Acetic acid AppliChem, Darmstadt
Agarose Roth, Karlsruhe
Albumin fraction V AppliChem, Darmstadt
Ampicillin AppliChem, Darmstadt
Anti-Digoxigenin-AP Roche, Mannheim
BM Purple Roche, Mannheim
Boehringer Block Roche, Mannheim
Bovine serum albumin AppliChem, Darmstadt
BSA AppliChem, Darmstadt
CAS-Block Invitrogen, Karlsruhe
CHAPS Sigma, Schnelldorf
Chloroform Merck, Darmstadt
Cyclopamine Biomol, Hamburg
Cystein Roth, Karlsruhe
Desoxynucleosidtriphosphate (dNTPs) Promega, Mannheim
DIG RNA Labeling Mix Roche, Mannheim
Dimethylsulfoxid (DMSO) Roth, Karlsruhe or AppliChem, Darmstadt
Disodium hydrogen phosphate AppliChem, Darmstadt
Dithioreitol (DTT) Promega, Mannheim
DMSO Roth, Karlsruhe
EDTA Roth, Karlsruhe
Ethanol Roth, Karlsruhe
Ethidium Bromide Roth, Karlsruhe
Ethyl-p-Aminobenzoat (Benzocain) Sigma, Schnelldorf
Ethylenediamine tetraacetic acid EDTA Roth, Karlsruhe
Ethyleneglycol tetraacetic acid EGTA Roth, Karlsruhe
Ficoll AppliChem, Darmstadt
FluoSphere Fluorescent beads 500nm Invitrogen, (Molecular Probes), Karlsruhe
Formaldehyd AppliChem, Darmstadt
Forceps (#3, #5) Fine Science Tools, Heidelberg
Formamide Roth, Karlsruhe
Gelatine Roth, Karlsruhe
Glass coverslips Roth, Karlsruhe
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Glass slides Roth, Karlsruhe
Glucose AppliChem, Darmstadt
Glutaraldehyde AppliChem, Darmstadt
Glycerol Roth, Karlsruhe
Glycin AppliChem, Darmstadt
Goat serum Sigma, Schnelldorf
HCG (human chorionic gonadotropin) Sigma, Schnelldorf
HCl (37%) Merck, Darmstadt
Hepes AppliChem, Darmstadt
Heparin Sigma, Schnelldorf
Injection-needle Sterican (0,4x20 mm) B. Braun, Melsungen
Injection syringe F1, 1ml B. Braun, Melsungen
Lambda-DNA Promega, Mannheim
Ligase (T4-Ligase) Promega, Mannheim
Lithium chloride Serva, Heidelberg
Loading Buffer AppliChem, Darmstadt
Magnesium chloride Roth, Karlsruhe
Magnesium sulfate AppliChem, Darmstadt
Maleic acid Roth, Karlsruhe
Methanol Roth, Karlsruhe
Methyl salicylate AppliChem, Darmstadt
Micro centrifuge tubes Sarstedt, Nümbrecht
Morpholino Oligonucleotides Gene Tools, Philomath
Objective slides Roth, Karlsruhe
Oligonucleotides Operon, Cologne
Osmium tetroxide Plano, Wetzlar
Parafilm Roth, Karlsruhe
Paraformaldehyde AppliChem, Darmstadt
PBS+ (10x) Gibco (Invitrogen) Karlsruhe
Penicillin/Streptomycin Gibco (Invitrogen) Karlsruhe
pGEM-T-Easy-Vektor Promega, Mannheim
Phenol/chloroform (Rotiphenol) Roth, Karlsruhe
Plastic pipettes Sarstedt, Nümbrecht
2-Propanol Roth, Karlsruhe
Proteinase K Roth, Karlsruhe
Rhodamine-B-dextran Molecular Probes (Invitrogen), Karlsruhe
RNAse A Roth, Karlsruhe
RNAsin Promega, Mannheim
Saccharose Applichem, Darmstadt
SCH28080, Sigma, Schnelldorf
Sodium acetate Roth, Karlsruhe
Sodium chloride Roth, Karlsruhe
Sodium citrate Roth, Karlsruhe
Sodium dihydrogen phosphate AppliChem, Darmstadt
Sodium hydroxide AppliChem, Darmstadt
Sp6-RNA-Polymerase Promega, Mannheim
Sucrose AppliChem, Darmstadt
Syringe filters Whatman, Dassel
T7-RNA-Polymerase Promega, Mannheim
Taq-DNA-Polymerase (Go-Taq) Promega, Mannheim
Torula RNA Sigma, Schnelldorf
TRIS base AppliChem, Darmstadt
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TRIS HCl AppliChem, Darmstadt
Triton-X100 Serva, Heidelberg
Tryptone AppliChem, Darmstadt
Tween-20 AppliChem, Darmstadt

Kits
DNA-Purification-Kit (Easy-Pure) Biozym, Hessisch Oldendorf
mMESSAGE mMACHINE SP6 Ambion, Darmstadt
pGEM-T Easy Vector System Promega, Mannheim
PureYield Plasmid Midiprep System Promega, Mannheim
PeqGOLD TriFast Peqlab, Erlangen

Proteins and Antibodies
Restriction enzymes and buffers Promega, Mannheim or New England Biolabs,  Ipswich
Modifying enzymes and buffers Promega, Mannheim
Anti-digoxigenin-AP Roche, Mannheim

IHC-antibodies (cf. Immono-histochemistry)

Special Hardware

Peltier Thermal Cycler PTC-200 Biozym, Hessisch Oldendorf
Vibratome Leica, Bensheim
Stereo microscope Zeiss, Oberkochen
Zeiss DSM 940A Zeiss, Oberkochen
LSM 5 Pascal Zeiss, Oberkochen
LSM 700 Zeiss, Oberkochen
Axioplan 2 Zeiss, Oberkochen
Critical point dryer CPD 030 Balzers, Austria
Sputter coater SCD 050 Balzers, Austria
LEO DSM 940A Zeiss, Oberkochen

Animals

Adult African clawed frogs (Xenopus laevis) were obtained from Guy Pluck, Xenopus
express, Ancienne Ecole de Vernassal, Le Bourg 43270, Vernassal, Haute-Loire,
France. They were kept species-appropriate at a 12h light-cycle in the animal facility of
the Institute of Zoology, University of Hohenheim.

Materials and Methods sections adapted and modified/extended from Beyer (2011). 
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