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1 Summary/Zusammenfassung 

1.1 Summary 

Urea is a soil nitrogen (N) form available to plant roots and a secondary N 

metabolite liberated in plant cells by protein degradation, especially during 

senescence. Despite the fact that urea also represents the most widespread form 

in N fertilizers used in agricultural plant production, membrane transporters that 

might contribute to urea uptake in plant roots or urea retranslocation in senescent 

leaves have so far been characterized only in heterologous systems.  

The first part of the thesis investigated a role of the H+/urea cotransporter AtDUR3 

in N nutrition of Arabidopsis thaliana plants. T-DNA insertion lines with a defective 

expression in AtDUR3 showed impaired growth on urea as a sole nitrogen source. 

In transgenic lines expressing an AtDUR3-promoter-GFP construct, promoter 

activity was upregulated under N deficiency and localized to the rhizodermis, 

including root hairs, as well as to the cortex in more basal root zones. The AtDUR3 

protein accumulated in plasma membrane-enriched protein fractions, and AtDUR3 

gene expression in N-deficient roots was repressed by ammonium and nitrate but 

induced after supply of urea. Higher urea accumulation in roots of wild-type plants 

relative to the T-DNA insertion lines confirmed that urea was the transported 

substrate of AtDUR3. Influx of 15N-labeled urea allowed the calculation of an 

affinity constant of 4 µM. These results indicated that AtDUR3 is the major 

transporter for high-affinity urea uptake in Arabidopsis roots and suggested that 

the high substrate affinity of AtDUR3 reflects an adaptation to the low urea levels 

usually found in unfertilized soils. 

A physiological function of urea and its transporters in leaves was investigated in 

the second part of the thesis. Currently it is unclear whether transport and 

metabolism of urea might limit the overall retranslocation of N during senescence. 

AtDUR3 transcript levels were only slightly de-repressed under N starvation, but 

strongly increased in senescent leaves. Urea concentrations in leaf samples of 

different plant and leaf age showed a strong increase after plants turned into 

generative growth. In parallel, mRNA as much as the protein abundance of 
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AtDUR3 increased with leaf age. The analysis of leaf petiole exudates revealed 

that urea was indeed a translocated N form and urea-N represented approx. 13% 

of the total amino acid-N irrespective of the N status of the plant. Urea 

concentrations determined in apoplastic wash fluids supported a role of AtDUR3 in 

urea retrieval from the leaf apoplast, and transgenic AtDUR3-promoter-GUS lines 

indicated a localization of AtDUR3 promoter activity in the vasculature of old 

leaves. Thus, AtDUR3 might keep internal urea in the cytosol by urea retrieval 

from the apoplast, allowing urea to be transported to the vascular bundle, where it 

is either passively loaded to the phloem or converted into amino acids for long-

distance N translocation.  

A strong daytime-dependent phenotype with shorter leaf petioles of an Arabidopsis 

line overexpressing AtDUR3 led to an in silico analysis of the AtDUR3 promoter 

sequence revealing that salicylic acid (SA) appears to induce AtDUR3 gene 

expression in senescent leaves. SA is well known for its involvement in the 

initiation of senescence. A strongly enhanced uptake capacity for 15N-labeled urea 

in N-sufficient Arabidopsis roots after SA pretreatment indicated that SA might be 

able to mimic N-deficiency conditions, paving the way to the possibility that SA 

builds a regulatory link between developmental and N deficiency-induced 

senescence. 

1.2 Zusammenfassung 

Harnstoff ist eine im Boden vorkommende, für Pflanzenwurzeln verfügbare 

Stickstoffform und ein sekundärer Stickstoffmetabolit, der durch 

Proteindegradation in Pflanzenzellen freigesetzt wird. Trotz der Tatsache, dass es 

sich bei Harnstoff um die am weitesten verbreitete Stickstoffdüngerform der 

agrarwirtschaftlichen Pflanzenproduktion handelt, sind Membrantransporter, die 

zur Harnstoffaufnahme in Pflanzenwurzeln oder zur Harnstoffretranslokation in 

seneszenten Blättern beitragen, bisher nur in heterologen Systemen 

charakterisiert.  

Der erste Teil der Arbeit untersucht die Rolle des H+/Harnstoff - Cotransporters 

AtDUR3 in der Stickstoffernährung in Arabidopsis thaliana. T-DNA Insertionslinien 

mit einer fehlenden Expression des AtDUR3 Gens zeigten vermindertes 

Wachstum, wenn Harnstoff als einzige Stickstoffquelle angeboten wurde. Die 
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Promoteraktivität in transgenen Linien, die ein AtDUR3-promoter-GFP Konstrukt 

exprimieren, war unter Stickstoffmangel hochreguliert und in der Rhizodermis 

inklusive der Wurzelhaare lokalisiert, sowie auch im Cortex in den basaleren 

Wurzelzonen. Das AtDUR3 Protein wurde vorwiegend in der mit 

Plasmamembranen angereicherten Proteinfraktionen detektiert. In unter N-Mangel 

kultivierten Wurzeln war die AtDUR3 Genexpression durch Ammonium und Nitrat 

reprimiert, wurde aber durch Zugabe von Harnstoff induziert. Des Weiteren 

bestätigte eine höhere Harnstoffakkumulation in Wurzeln von Wildtyppflanzen im 

Vergleich zu den T-DNA Insertionslinien, dass Harnstoff das transportierte 

Substrat von AtDUR3 war. Eine Affinitätskonstante von 4 µM konnte mithilfe von 

Influxexperimenten mit 15N-markiertem Harnstoff berechnet werden. Diese 

Ergebnisse zeigen, dass AtDUR3 der Haupttransporter für die hochaffine 

Harnstoffaufnahme in Arabidopsiswurzeln ist und weisen darauf hin, dass die 

hohe Substrataffinität von AtDUR3 eine Adaption an die normalerweise in 

ungedüngten Böden vorherrschenden niedrigen Harnstoffgehalte ist. 

Im zweiten Teil der Arbeit wurde die physiologische Funktion von Harnstoff und 

seinen Transportern in Blättern untersucht. Derzeit ist nicht klar, ob der Transport 

und Metabolismus von Harnstoff die gesamte Stickstoffretranslokation während 

der Seneszenz limitiert. Unter Stickstoffmangel waren die AtDUR3 

Transkriptmengen nur leicht de-reprimiert, stattdessen aber in seneszenten 

Blättern stark erhöht. Nach dem Wechsel der Pflanzen in die generative 

Wachstumsphase waren die Harnstoffkonzentrationen in Blattproben 

unterschiedlichen Pflanzen- und Blattalters stark erhöht. Parallel dazu erhöhte sich 

mit zunehmendem Pflanzenalter die AtDUR3 mRNA- und Proteinmenge 

gleichermaßen. Die Analyse von Blattstielexudaten hat gezeigt, dass Harnstoff 

tatsächlich eine translozierte Stickstoffform ist und Harnstoff-N circa 13% des 

totalen Aminosäurestickstoffs darstellt, unabhängig vom Stickstoffstatus der 

Pflanze. Die Harnstoffkonzentrationen im apoplastischen Wasser weisen auf eine 

Rolle von AtDUR3 in der Harnstoffrückgewinnung aus dem Blattapoplasten hin, 

und transgene AtDUR3-promoter-GUS Linien zeigten eine Lokalisation der 

AtDUR3 Promoteraktivität nahe der und im Leitbündel von alten Blättern. 

Demnach hält AtDUR3 vermutlich den internen Harnstoff durch 

Harnstoffrückgewinnung aus dem Apoplasten im Zytosol, damit er in die Nähe des 

Leitgewebes transportiert werden kann. Dort wird er entweder passiv ins Phloem 
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geladen oder für den Langstreckentransport von Stickstoff in Aminosäuren 

umgewandelt.  

Eine AtDUR3-Überexpressionslinie in Arabidopsis, die einen stark tageszeiten-

abhängigen Phänotyp mit kürzeren Blattstielen zeigt, führte zu einer in silico 

Analyse der AtDUR3 Promotersequenz. Diese zeigte, dass Salizylsäure (SA) für 

die AtDUR3 Geneinduktion in seneszenten Blättern benötigt zu werden scheint. 

SA ist bekannt für seine Beteiligung an der Initialisierung der Seneszenz. Eine 

stark erhöhte 15N-Harnstoffaufnahme nach SA-Vorbehandlung in mit ausreichend 

Stickstoff versorgten Arabidopsiswurzeln impliziert, dass SA in der Lage ist, 

Stickstoffmangelbedingungen zu imitieren. Damit könnte SA die Verbindung 

zwischen der Regulation der entwicklungsbedingten und der 

stickstoffmangelinduzierten Seneszenz sein. 
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2 Introduction 

2.1 Importance of nitrogen for plant growth 

In natural ecosystems and in most agricultural systems nitrogen (N) is often 

considered to be one of the most important factors limiting plant growth since it 

represents up to 80% of the total mineral elements found in plants (Marschner, 

1995). The strong increases in crop yields that have been obtained for most crops 

since the middle of last century are strongly based on elevated N fertilizer 

application together with improved plant protection measures and breeding efforts 

(Millder and Crane, 2005). However, N is one of the most expensive nutrients to 

supply and the major running cost in plant production (Singh, 2006). On the other 

hand it has been reported that the recovery of fertilizer N by the grain is relatively 

low (Raun and Johnson, 1999). In agricultural systems, where plants rely on 

fertilizers to meet their N demand, the low N recovery by plants may cause 

problems by the negative environmental impact mainly linked to nitrate leakage, 

affecting biodiversity, air and water quality, and the global climate (Bacon, 1995; 

Lawlor et al., 2001). A major challenge of modern agriculture is therefore to reduce 

the excessive input of N fertilisers by enhancing fertilizer use efficiency and, at the 

same time, to improve grain quality without negatively affecting yield. One possible 

way to achieve this goal is by improving the acquisition of fertilizer N by crops 

and/or by increasing their N utilization efficiency including assimilation, 

translocation and remobilisation when grown with reduced N supply. This requires 

a deeper understanding of the genetic basis of N assimilation and N use at 

different stages of plant development (Lourde et al., 2003). 

The soil represents an extremely heterogeneous medium affecting the availability 

of minerals and thus plant nutrition (Hodge, 2004). Nutrients dissolved in the soil 

solution need to be transported to the root surface by diffusion and mass flow 

(Marschner, 1995). A mixture of forms of inorganic N (nitrate and ammonium) as 

well as to a lower extent of organic forms, such as amino acids, peptides or urea, 

is available in most natural soils, but especially in agricultural soils the 

concentration of different N forms can vary three to four orders of magnitude 
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(Wolt, 1994; Miller et al., 2007). Plants therefore constantly sense their nutrient 

environment and respond to it by modifying their uptake and metabolism using an 

intricate system of sensors, receptors, transporters, signal transduction 

components and gene expression regulators that collectively lead to changes in 

growth rates and development (Coruzzi and Zhou, 2001). The amount of N 

necessary for a plant to complete its life cycle varies among species. Additionally, 

the N demand of a plant varies according to its developmental stage being high 

during vegetative growth and decreasing during the reproductive phase, when N 

reserves are remobilized.  

2.2 Primary nitrogen uptake and assimilation 

On most arable soils, nitrate (NO3
-) is the major form of N uptake. Two gene 

families, the NRT1 and NRT2 families representing low and high-affinity nitrate 

uptake systems, respectively, mediate nitrate uptake by roots (e.g. Muller et al., 

1995; Devienne et al., 1994; Trueman et al., 1996, Crawford and Forde, 2002, 

Miller et al., 2007). Although depending on the plant species and growth 

conditions, a large proportion of the nitrate ions taken up from the soil are 

immediately translocated to the leaf and transiently stored in the vacuole. Nitrate 

reductase in the cytosol as well as nitrite reductase in the chloroplast need 

reductants such as NADH and ferredoxin (Fd) from photosynthesis to reduce 

nitrate to ammonium, which is then incorporated into amino acids via the glutamin-

synthetase/glutamin-oxoglutarat-aminotransferase (GS/Fd-GOGAT) cycle (Lea et 

al., 1992; Campell, 1999). 

The average ammonium concentration in well-aerated agricultural soils is often 

much lower than that of nitrate, rarely exceeding 50 µM (Marschner, 1995; Miller et 

al., 2007). However, the difference in soil concentration does not necessarily 

reflect the uptake ratio of the two N forms. Since ammonium is already a reduced 

N form, it is preferentially taken up when both N forms are present in particular as 

long as N concentrations are below 1 mM (Gazzarini et al., 1999, Xu et al., 1992).  

Similar to nitrate, the uptake of ammonium from the soil is mediated by low (LATS) 

and high-affinity transport systems (HATS). Ammonium transporters of the AMT1 

family thereby play a major role in HATS, while members of the AMT2 as well as 
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members of the aquaporin families have been shown to mediate low-affinity 

transport (Gazzarini et al., 1999; Loqué et al., 2005; Yuan et al., 2007).  

Following its uptake ammonium is in general immediately assimilated in the roots 

by GS1 and NADH-GOGAT and the generated glutamine (Gln) is translocated to 

the shoot via the xylem (Coruzzi, 2003). Other amino acids such as glutamate 

(Glu), aspartate (Asp) and asparagine (Asn) may also be produced and 

translocated (Lam et al., 1995). Thus, ammonium is assimilated in the root, while 

nitrate is preferentially assimilated in the shoot. 

Glutamine synthetase (GS) transfers the ammonium to Glu, generating Gln using 

one molecule of ATP (Lea and Miflin, 1974, Miflin and Lea 1980, Lea et al., 1992). 

The affinity of GS for ammonium is extremely high (Km ≈ 20-40 µM). In plants, 

there are two GS isoforms: GS1 is encoded by five nuclear genes in Arabidopsis 

and targeted to the cytosol, while GS2 is encoded by a single nuclear gene and 

targeted to both the plastid and the mitochondria (Taira et al., 2004). While the 

latter is mainly expressed in mesophyll cells being part of the primary N 

assimilation and photorespiratory ammonia fixation, GS1 is present in phloem 

companion cells and roots where it is thought to synthesize Gln for long-distance 

transport (Edwards and Coruzzi, 1990; Carvalho et al., 1992; Coruzzi, 2003). 

Since GS1 is also induced by wounding and during senescence, differential roles 

for GS1 (synthesis of amino acids for long-distance transport) and GS2 (synthesis 

of amino acids for protein biosynthesis) have been suggested (Masclaux et al., 

2000). 

Much less attention has been given to uptake mechanisms of other nitrogenous 

compounds, especially organically bound N in the form of proteins, amino acids or 

urea. Even though nitrate and ammonium are the predominant N forms available 

to plants in most soils, urea and not nitrate is the most commonly used N fertilizer. 

Due to its high N content and cheaper production costs, urea fertilizers make up 

more than 50% of the total N fertilizers used worldwide 

(http://www.fertilizer.org/ifa/statistics/statsind). Urea fertilizers combine the 

advantages of rapid availability to plants and of a retarded microbial transformation 

into nitrate, which is the N form most prone to leaching. The microbial degradation 

process of urea can even be further slowed down by the co-application of urease 

http://www.fertilizer.org/ifa/statistics/STATSIND/
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inhibitors that have been demonstrated to further reduce N losses from urea-

fertilized plots (Xu et al., 2000). 

In soils, urea is rapidly degraded to ammonium and CO2 by urease, a nickel-

dependent enzyme, which amongst others is synthesized and secreted by 

microorganisms (Watson et al., 1994). Therefore, the concentration of urea in 

lakes or natural soils is usually low and ranges between 0.1 - 3 M (Cho et al., 

1996; Mitamura et al., 2000a; Mitamura et al., 2000b), but up to 70 M in fertilized 

crop-planted soils (Gaudin et al., 1987). With regard to this very low concentration 

it has been assumed that plants take up urea-derived N mainly in the form of 

ammonium (Polacco and Holland, 1993; Marschner, 1995). 

Due to its low molecular weight and neutral character urea was believed for a long 

time to enter plant cells via diffusion through plant membranes (Galluci et al., 

1971). Only a very limited number of physiological studies indicated that urea 

uptake may be plant-regulated, for example, because ammonium and nitrate 

exerted adverse effects on urea uptake (Bradley et al., 1989). However, all 

in planta-studies lacked verification whether urea itself or its degradation product 

ammonium had been transported across plant membranes. The first reliable 

experimental evidence for protein-mediated urea uptake by plant cells has been 

obtained by Wilson et al. (1988), who reported that short-term influx of 14C-labeled 

urea in algal cells was dependent on the ATPase inhibitor DCCP or the 

protonophore CCCP and therefore appeared to be coupled to the proton gradient 

across the plasma membrane. Since concentration-dependent uptake followed bi- 

or even multiphase kinetics, the authors suggested the combined action of a high- 

and a low-affinity urea transport system in planta. Kinetically and energetically, 

these transport systems are clearly set apart from a passive, diffusion-like 

transport mechanism (Wilson et al., 1988). Later, CCCP-sensitive urea uptake was 

also confirmed in Arabidopsis suspension cells (Liu et al., 2003a). 

2.3 The role of senescence in nitrogen efficiency 

Besides an efficient N uptake and utilization during vegetative growth, N 

remobilization and retranslocation from senescing organs into the grain in the 

reproductive growth phase are further limiting factors for an efficient recovery of 

fertilizer N. Although N uptake after anthesis or during the onset of leaf 
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senescence contributes to seed filling to a varying extent (Niu et al., 2007) it has 

been estimated that > 70% of the seed N in annual crop species is derived from 

the retranslocation of N from senescing vegetative tissues into reproductive 

organs (Peoples and Dalling, 1988; Patrick and Offler 2001). In wheat or maize 

grains the contribution of leaf N remobilisation to N grain content was shown to be 

more than 50% (Kichey et al., 2007) and in field-grown rice even 60% (Mae, 

2004), suggesting that the extent of N remobilization varies with plant species and 

growth system (Lohaus and Moellers, 2000). Improving N remobilisation during 

senescence would contribute to plant N economy and limit the requirement for 

exogenous N uptake after onset of flowering, therefore being a key process that 

directly affects protein quality and grain yield. 

Senescence is a stage of plant development which is commonly defined as the 

sequence of biochemical and physiological events comprising the final stage of 

development until plant death (Smart, 1994). Senescence-associated nutrient 

mobilization is probably common to all plants (Hill, 1980; Mauk and Noodén, 1992; 

Hocking, 1994; Nieminen and Helmisaari, 1996) and the nutrient salvage from 

older or damaged leaves has the obvious adaptive value of recycling nutrients that 

may be limiting in the environment or that are energetically costly to acquire 

(Leopold, 1961). In contrast to aging, senescence represents only the final stage 

of vegetative plant development and is characterized by the transition from nutrient 

assimilation to nutrient remobilization in order to support growth of generative 

organs. Senescence is therefore often associated with the onset of bolting.  

Senescence is induced by endogenous signals including age, developmental cues 

and plant growth regulators (Raghothama et al., 1991; Gan and Amasino, 1995; 

Grbic and Bleecker, 1995; Noodén and Penney, 2001; Riefler et al., 2006). A first 

visible symptom correlated to N mobilization and therewith protein degradation in 

leaf senescence in general is the yellowing of the leaves. Genetic and 

environmental factors that interfere with yellowing tend to modify protein 

degradation; however, protein degradation can be induced prematurely by a 

number of exogenous environmental stresses, including light or temperature 

stress, dehydration, nutrient stress or pathogen attack (Beers and McDowell, 

2001; Pic et al., 2002; Xiong et al., 2005). Premature senescence induced by 

abiotic stress is estimated to be a primary cause for crop losses worldwide with the 

potential to reduce average crop yields by more than 50%.  
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These endogenous and exogenous signals inducing senescence appear to be 

coordinated through a common signaling network (Buchanan-Wollaston et al., 

2003; Lim et al., 2003; Thomas et al., 2003). Unfortunately, the network of 

interaction between all inducing factors shows no clear hierarchy but rather hubs 

of more or less important factors, which complicates to define specific effects of 

single hubs. Recent transcriptome analysis indicated that signalling pathways 

involving ethylene, jasmonic acid and salicylic acid seem to play a crucial role in 

the network as they regulate the expression of genes required for developmental 

senescence (Buchanan-Wollaston et al., 2005). In addition, transcription factors 

from at least 20 different gene families are expressed during developmental leaf 

senescence (Guo et al., 2004; Buchanan-Wollaston et al., 2005). Among these are 

members of the MYB, AP2, NAC and WRKY transcription factor families. Several 

members of the WRKY transcription factor family are thought to be involved in 

senescence (Eulgem et al., 2000; Robatzek and Somssich, 2001, 2002). 

WRKY53, for example, regulates other WRKY transcription factors as well as 

stress genes and senescence-associated genes (SAGs) (Hinderhofer and 

Zentgraf, 2001; Miao et al., 2004). But also the overexpression of NAC 

transcription factors has been shown to alter plant senescence (Balazadeh, 2011). 

2.3.1 Nitrogen remobilisation during senescence 

A first step of the leaf senescence program is the breakdown of leaf cell 

components resulting in the mobilization of nutrients. In most plant tissues the 

largest fraction of organic N is contained in proteins. In the photosynthetic active 

tissue of C3 plants more than 50% of N is found in chloroplast proteins (Ellis, 

1979), of which ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO) 

alone makes up to 50% of the total plastidial N (Mae et al., 1983; Feller and 

Fischer, 1994). Therefore, the initial target of senescence is the chloroplast as it 

represents an enormous source of N; its recovery is of vital importance for the 

plant to gain full benefit from the photosynthetic loss of its leaves (Smart, 1994; 

Noodén et al., 1997). The advantage of chloroplast breakdown initiation during the 

early stages of senescence is seen in maintenance of cellular metabolism 

ensuring a successful remobilization of the N reserves localized in this organelle 

(Matile et al., 1996; Masclaux et al., 2000; Thomas and Donnison, 2000; Dangl et 

al., 2000). However, chloroplast breakdown comprises the photosynthetic 
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productivity of crops (Krupinska and Humbeck, 2004) causing the dilemma for 

agronomists that efficient N remobilisation is associated with an early loss of CO2 

fixation, which is one of the reasons for the negative correlation of seed protein 

content and grain yield (Beninati and Busch, 1992). 

The dismantling of the chloroplast needs to be tightly regulated as to prevent cell 

damage due to the highly photodynamic nature of some of the breakdown 

products (Hörtensteiner, 2004). While chloroplasts show the first symptoms of 

senescence–associated impairment in leaves, other organelles such as 

mitochondria and nuclei remain intact to provide energy and to allow the 

expression of specific genes required for senescence while total RNA levels drop 

(Lim et al., 2003; Diaz et al., 2005). As the central vacuole remains intact, cellular 

compartmentation can be maintained during leaf senescence (Matile, 1997; 

Noodén, 2004). 

In higher plant cells, most hydrolytic activities reside in the central vacuole, which 

typically contains 50-100% of the acid nuclease and 80-100% of the acid protease 

activity of a cell (Matile 1997). Searches for senescence–associated genes 

allowed to identify a number of cysteine proteases (Buchanan-Wollaston et al., 

2003), in particular SAG12 (Guo et al., 2004), which has been extensively used as 

a molecular marker for late senescence ever since. Also chloroplasts contain 

active proteases, but whether they are responsible for RuBisCO degradation is still 

unclear. However, there is evidence for the generation of small senescence-

associated vacuoles (SAVs) with high-proteolytic activities in senescing leaf cells; 

these SAVs contain chloroplast proteins and merge with the central vacuole at a 

later stage. 

2.3.2 Senescence-associated urea metabolism  

Protein cleavage by peptidases leads to an accumulation of oligopeptides and free 

amino acids in senescing leaves (Brouquisse et al., 2001; Fischer, 2007). 

However, no general increase of all amino acids was observed in senescent 

Arabidopsis leaves. While levels of Arg, Ser, Tyr, Leu, Ile and GABA increased 

several fold, Glu, Asp, Asn and Gln slightly decreased or remained unchanged 

(Diaz et al., 2005). The arginine increase in senescing leaves (Polacco and 

Holland, 1993, Diaz et al., 2005) went along with a steady increase of arginase 
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activities with leaf age (Paschalidis and Roubelakis-Angelakis, 2005). After being 

transported to the mitochondria, arginine is re-assimilated within the ornithine 

cycle (urea cycle) by degradation into ornithine and urea, a process mediated by 

arginase (Polacco and Holland, 1993; Marschner, 1995). Urea concentrations in 

senescing leaves have so far been poorly characterized, but a subsequent 

accumulation of urea following arginine degradation is to be expected. Although 

transcriptome and metabolome analyses have described enzymes, transporters 

and nitrogenous compounds active during N retranslocation, and even though 

amino acid-N is widely accepted as the most important N form for phloem 

transport, experimental evidence for the significance and efficiency of different N 

forms for retranslocation processes is poor. In particular amino acids with a narrow 

C/N ratio are synthesized for an efficient long-distance transport of N, making urea 

a promising candidate for a not yet investigated role in N retranslocation. 

Next to a possible direct export of urea, it can be hydrolysed in the cytosol by 

urease to ammonium. Since the chloroplast is becoming increasingly unable to 

assimilate N as chloroplast localized N-assimilation enzymes such as NiR, GS and 

GOGAT decrease, ammonium assimilation is shifted into the cytosol. In a large 

variety of plants, the induction of cytosolic glutamine synthetase (GS1) and 

glutamate dehydrogenase (GDH) genes has been detected during leaf 

senescence (Bernhard and Matile 1994; Masclaux et al., 2000; Cabello et al., 

2006; Martin et al., 2006). GDH is ubiquitous in all organisms, its exact role in 

plants, however, is still not understood. It has been reported to be specifically 

present in phloem companion cells and the cytosol of senescing leaves (Tercé-

Laforgue et al., 2004). Thus, a role of GDH in Glu catabolism during senescence 

and N-limitation appears likely (Dubois et al., 2003). 

Taken together, besides by acquisition from the soil, urea can also accumulate in 

plant cells as a consequence of secondary N metabolism. Besides being released 

from the ornithine cylce, urea may also be liberated during the catabolism of purins 

or ureides, in particular allantoin and allantoate. Leguminous plant species employ 

ureides for long-distance translocation of N, and thus shuttle potentially larger 

amounts of N through urea in their sink tissues (Stebbins and Polacco, 1995). 

However, plant species like Arabidopsis appear to have the enzymatic capacity to 

degrade ureides without generating urea as an intermediate, leaving arginine 

catabolism as the only confirmed source for the generation of urea (Witte, 2011). 
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Since urea accumulation is particularly high in source leaves of older plants and in 

germinating seeds (Zonia et al., 1995), it has been proposed that urea 

accumulation mainly reflects N recycling as a consequence of protein and in 

particular arginine catabolism, which is emphasized by an increase in arginase 

protein levels relative to total seed protein (Bailey and Boulter, 1971, Zonia et al., 

1995). These stages of enhanced N re-mobilization are further characterized by 

increased activities of cytosolic glutamine synthetase (GS1), probably as a 

prerequisite for the generation and re-fixation of urea-derived N (Masclaux et al., 

2000; Witte et al., 2002). Although tissue aging and seed germination are 

accompanied by massive increases in urea concentrations, the routes of 

intracellular urea synthesis and the size of intracellular urea pools in different plant 

compartments have not yet been characterized in quantitative terms. Thus, it is 

currently unclear whether internal urea accumulation has a meaning for the short-

term storage and long-distance transport of N, whether and to what extent urea is 

transported across intracellular membranes and to what extent transport systems 

are required to do so. 

2.4 Molecular mechanisms of urea transport in plants      

(partially published J. Membrane Biol. 2006, 212 (2), 83-91) 

2.4.1 Yeast as a model to study urea transport systems 

Short-term uptake experiments using 14C-labeled urea identified two major 

pathways for urea uptake into yeast cells: one is an active, energy-dependent 

transport system with a rather low Km of 14 M, while the other is a passive 

transport system that operates at concentrations above 0.5 mM (Cooper and 

Sumrada, 1975). Screening of EMS-mutagenized yeast cells on media with 

different N sources allowed identification of a yeast strain that did not or poorly 

grow on urea or ureidoglycolate (Sumrada et al., 1976). Transformation of this 

mutant by a genomic library from yeast and screening of transformants with 

complemented urea uptake led to the identification of ScDUR3 (ElBerry et al., 

1993). Supply of 14C-labeled urea to a liquid culture of the ScDUR3-complemented 

yeast mutant and trapping of liberated 14CO2 indicated that the reintroduced gene, 

which encodes a hydrophobic protein with 15 putative trans-membrane domains 

(Turk and Wright, 1997; Saier, 2000), mediated or at least assisted in urea uptake. 
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Under adequate N supply, ScDUR3 expression was repressed in a manner similar 

to that of other genes in the allantoin pathway, suggesting a regulatory link 

between ScDUR3 and other genes involved in urea-releasing N catabolism 

(ElBerry et al., 1993). 

2.4.2 Plant aquaporins can act as urea transporters 

To isolate genes encoding urea transporters in plants, the ScDUR3 gene was 

disrupted in an ura- yeast background and transformed with a cDNA library from 

Arabidopsis seedlings. Subsequent screening of the resulting transformants 

on < 5 mM urea as a sole N source allowed the isolation of four genes, AtTIP1;1, 

AtTIP1;2, AtTIP2;1 and AtTIP4;1, that all encoded members of the tonoplast 

intrinsic protein (TIP) subfamily of aquaporins (Liu et al., 2003b). Growth 

complementation of the ura- dur3- mutant by the isolated TIPs from Arabidopsis 

was insensitive to pH but inhibited in the presence of phloretin 

[3-(4 hydroxyphenyl)-1-(2,4,6-trihydroxyphenyl)- 1-propanone], which is commonly 

used as a transport inhibitor for various classes of urea transporters including 

aquaporins (You et al., 1993; Ishibashi et al., 1994; Tsukaguchi et al., 1998). In a 

parallel approach, AtTIP2;1 was heterologously expressed in Xenopus laevis 

oocytes where it enhanced the accumulation of radio-labeled urea in oocytes 

independent of external pH in a range from pH 5 to 8, confirming the 

pH-independent growth complementation in yeast (Liu et al., 2003b). Urea 

accumulation in AtTIP2;1-expressing oocytes increased linearly with external urea 

supply even when raising urea concentrations from 100 µM to 30 mM. Such linear 

concentration-dependent kinetics is typical for channel-mediated substrate 

transport and commonly observed for low-affinity transporters, although discrete 

substrate affinities cannot be calculated. A function of TIPs in urea transport had 

been previously observed, when the TIP homologue from tobacco NtTIPa, that is 

sequence-wise closely related to AtTIP2;1, was expressed in Xenopus laevis 

oocytes, where it was permeable to radiolabeled glycerol and urea besides water 

(Gerbeau et al., 1999). Moreover, oocyte expression also allowed the 

demonstration that plasma membrane intrinsic proteins (PIPs), too, may be 

permeable to urea. Functional expression of NtAQP1 and, to a lesser extent, of 

Arabidopsis PIP2;1, facilitated significantly the accumulation of radiolabeled urea 

relative to water-injected oocytes (Eckert et al., 1999). In another yeast 
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complementation approach, which used an expression library from zucchini for 

complementation of the dur3 mutant, CpNIP1, an NOD26-like intrinsic protein was 

isolated (Klebl et al., 2003). This emphasized that not only members of the TIP 

subfamily but also PIP- and NIP-like aquaporins may permeate urea, thus 

suggesting a comparable situation to that in mammals, where 4 out of 11 AQPs 

transport urea besides water (King et al., 2004). 

2.4.3 Urea transport across tonoplast and plasma membranes 

The high abundance of TIPs that were found to mediate urea transport suggested 

that their host membrane, the tonoplast, should exhibit high urea permeabilities. 

Indeed, recording volume changes in membrane vesicles from wheat roots in 

response to external urea revealed an up to 3-fold higher and mercury-sensitive 

permeability of vesicles enriched with endosomal membranes compared to the 

lower, mercury-insensitive urea permeability of plasma membrane-enriched 

vesicles (Tyerman et al., 1999). By stopped-flow spectrofluorimetry tonoplast 

vesicle preparations from tobacco were reported to be permeable to urea at a 

75-fold higher rate than plasma membrane vesicles (Gerbeau et al., 1999). 

Whether these differences are caused by a higher activation state and/or density 

of urea-transporting TIPs in tonoplast membranes or by a higher ratio of 

urea-transporting versus urea-impermeable aquaporins is currently unresolved. A 

prerequisite for tackling this question is a reliable membrane localization of the 

diverse urea-transporting aquaporins. A membrane assignment based on the 

sequence-dependent classification into TIPs and PIPs, at least, appears not 

reliable, because some aquaporins can be found in both types of membranes, as 

put in evidence by Western blot analysis with membrane fractions from the ice 

plant Mesembryanthemum crystallium (Barkla et al., 1999), by GFP-tagging of TIP 

proteins and expression in Arabidopsis protoplasts (Liu et al., 2003b), or by 

systematic sequencing of membrane proteins (Marmagne et al., 2004). 

Nevertheless, for certain TIPs, such as AtTIP2;1, a major localization in the 

tonoplast has been reported by several independent approaches (Daniels et al., 

1996; Saito et al., 2002; Carter et al., 2004) and thus appears very reliable. Taken 

together, these observations suggest that urea transport across the tonoplast is of 

greater physiological significance for a plant cell than that across the plasma 
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membrane, supposing that urea transport is not just a non-specific side activity of 

TIPs. 

2.4.4 Possible physiological roles of TIPs in urea transport in plants 

Although some TIPs show distinct organ- and cell type-specific expression 

patterns (Ludevid et al., 1992; Daniels et al., 1996; Ma et al., 2004), systematic 

gene expression analyses in different Arabidopsis organs indicated that all plant 

organs express a certain individual subset of TIPs (AtGen-Express; Schmid et al., 

2005), per se not allowing to derive information on their possible function in urea 

transport. 

Vacuolar compartmentation mediated by TIPs could be beneficial to transiently 

store or to detoxify an excess amount of urea that otherwise would accumulate in 

the cytoplasm. Under natural conditions this might be a rare event, but it is 

expected to become relevant in leaf-fertilized crop plants. An addition of the 

urease inhibitor phenylphosphorodiamidate (PPD) to foliar-applied urea increased 

leaf tip necrosis and increased the urea content but decreased ammonia levels 

and urease activity in soybean leaves (Krogmeier et al., 1989). Moreover, 

enhanced urea levels in necrotic areas indicated that leaf tip necrosis in response 

to leaf fertilization resulted from accumulation of excess urea rather than from the 

formation of excess ammonia. It will certainly be interesting to test whether an 

increased expression level of urea-transporting TIPs in urea-fertilized leaves of 

transgenic lines will diminish or delay leaf damage via an enhanced vacuolar 

loading capacity for urea. To further elucidate a physiological role of urea-

transporting TIPs in different plant tissues, a separate determination of urea 

concentrations in different intracellular compartments seems required, since it is 

still unclear whether urea can accumulate in the vacuole or in other organelles. 

Theoretically, TIPs will mediate urea transport independently of the proton gradient 

across the membrane, just following the direction of the substrate concentration 

gradient. 

Due to a rather constitutive expression and activity of urease in almost any cell 

type (Holland et al., 1987; Polacco and Holland, 1993), cytoplasmic urea 

concentrations should be low. With respect to micromolar Km values of plant 

ureases (Kerr et al., 1983), urea-transporting TIPs will rather move low amounts of 
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urea in planta, while their urea-transporting function would increase whenever 

leaves are sprayed with urea fertilizers or urease activity is lost, i.e., under nickel 

deficiency (Gerendás and Sattelmacher, 1997). 

2.4.5 The Arabidopsis urea transporter AtDUR3 belongs to the sodium 

solute symporter protein family 

A genome-wide in silico search indicated that the Arabidopsis gene At5g45380 

showed 41% sequence identity to the putative yeast urea transporter gene 

ScDUR3. Homologous EST clones were also found in maize, rice, soybean, 

barley, wheat, and oilseed rape. It is interesting to note, however, that in all plant 

species investigated so far only one DUR3 homolog could be identified on the 

basis of database search in EST collections and genomic DNA. An Arabidopsis 

EST clone matching the genomic sequence of AtDUR3 was then used for 

functional complementation of the urea uptake-defective yeast mutant ura- dur3-. 

Heterologous expression of AtDUR3 conferred yeast growth on 2 mM urea but 

only at a medium pH of 6 or lower, indicating that protons might stimulate 

AtDUR3-dependent urea transport (Liu et al., 2003a). AtDUR3 was predicted to 

encode an integral membrane protein with 14 transmembrane-spanning domains 

with its N and C termini protruding into the apoplasmic space (Schwacke et al., 

2003). A phylogenetic analysis of AtDUR3 and the 22 most homologous and best 

characterized amino acid sequences derived from a BLAST search revealed a 

relatively high similarity among DUR3 proteins from plants and yeast and that all 

these sequences belong to the superfamily of sodium solute symporters (SSS) 

(Liu et al., 2003a). The SSS family includes currently more than one hundred 

members of pro- and eukaryotic origin (Jung, 2002) and some of them have been 

described to transport sugars, amino acids, nucleosides, myoinositols, vitamins, 

ions, phenyl acetate, water and urea (Reizer et al., 1994; Turk and Wright, 1997; 

Saier, 2000). Among all SSS proteins, DUR3 members showed closest relation to 

bacterial sodium pantethonate or sodium proline symporters (Figure 1). Since all 

these substrates appear to be structurally quite different, it will be exciting to 

uncover how substrate selectivity is determined in this transporter class. Leung et 

al. (2000) reported that SSS transporters such as the low-affinity sodium-glucose 

transporters from pig (pSGLT3) or rabbit (rbSGLT1), the sodium-iodide transporter 

from rat (rNIS), or the human sodium-chloride-GABA transporter can act as urea 
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channels in the absence of substrate but as urea cotransporters in the presence of 

substrate. This raises the possibility that in SSS transporters urea is just an 

alternative substrate for water that usually maintains the bulk flow of the 

substrates. 

 

 

Figure 1: Phylogenetic tree of characterized SSS family proteins with highest sequence 

similarity to AtDUR3. 

 

2.4.6 Substrate specificity and transport mechanism of AtDUR3 

To study its transport mechanism in more detail, AtDUR3 was expressed in 

X. laevis oocytes and substrate transport was investigated by two-electrode 

voltage clamp. Although urea itself is neutral, the presence of urea induced a weak 

inward current of positive charge, indicating the cotransport of cations (Liu et al., 

2003a). To increase sensitivity of urea transport measurements in oocytes the 

accumulation rate of 14C-labeled urea was determined. It was found that low pH 
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strongly stimulated urea import. This observation was in good agreement with an 

improved yeast complementation at acidic pH and suggested that AtDUR3 co-

transported mainly protons. Even though urea accumulation was not altered in the 

presence of 3 mM sodium in the bathing solution (Liu et al., 2003a), it might be too 

early to exclude that also alternative cation gradients might drive uphill transport of 

urea. For example, in the SSS member OpuE, a sodium/proline cotransporter, 

substrate transport strongly depended on the external sodium concentration in the 

medium (von Blohn et al., 1997). 

Since SSS family members have been described to mediate the transport of a 

large variety of solutes, substrate specificity of AtDUR3 was tested, but no current 

was observed in response to glucose, galactose, myo-inositol or proline. Only in 

the presence of thio-urea an even weaker current was observed than for urea, 

suggesting a rather high urea specificity of AtDUR3. In most of the cases, SSS 

proteins were suggested to preferentially transport one substrate or a structurally 

closely related substrate group (Turk and Wright, 1997), whereas SSS proteins 

with a broad range of different substrates seem to be the exception (Leung et al., 

2000). 

Similar to urea-induced currents, radiolabeled urea uptake into AtDUR3-

expressing oocytes was concentration-dependent and saturated around 50 µM 

urea (Liu et al., 2003a). Both transport assays allowed to calculate a Km value of 

approx. 3 µM, indicating that AtDUR3 mediates high-affinity transport of urea. 

Thus, AtDUR3 exhibited a relatively high-affinity compared to most other urea 

transporters that saturate at millimolar concentrations (Leung et al., 2000). As 

pointed out by Liu et al. (2003a), uptake studies with AtDUR3 in yeast cells were 

difficult to perform due to the rapid degradation of urea by endogenous yeast 

urease. Acid trapping and determination of 14CO2 released after the supply of 

radiolabeled urea, as described in ElBerry et al. (1993), does not allow 

determination of short-term substrate influx like it is required for the biochemical 

characterization of membrane transporters. 

Studies in cyanobacteria showed that substrate degradation can be successfully 

avoided when high-affinity urea influx was investigated in the absence of any 

urease activity (Valladares et al., 2002). Only after disruption of the UreG gene, 

which encodes an accessory protein required for the synthesis of active urease, 
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high-affinity urea influx could be reliably determined in Synechocystis. The 

corresponding ABC-type urea transporter Urt was then shown to transport urea 

against a concentration gradient at a substrate affinity of 1 µM (Valladares et al., 

2002). Thus, at least in plants, fungi and cyanobacteria measurements of 

high-affinity urea import can be easily perturbed if urease-dependent urea 

degradation remains uncontrolled. 

2.4.7 Regulation of AtDUR3 gene expression in Arabidopsis 

To collect evidence for the physiological function of AtDUR3-mediated urea 

transport in planta, changes of AtDUR3 mRNA levels were examined under 

different conditions (Liu et al., 2003a). When Arabidopsis plants were cultured 

hydroponically and then subjected to N deficiency for 3 days AtDUR3 mRNA 

levels strongly increased in roots but not in shoots. This transcriptional response 

was reminiscent of the N deficiency-induced derepression of high-affinity 

ammonium (AMT) and nitrate (NRT) transporters in Arabidopsis roots (Gazzarrini 

et al., 1999; Lejay et al., 1999), both of which are considered to contribute to N 

uptake under N-deficient growth conditions. 

Gene expression levels of AtDUR3 were further examined in mature leaves and 

germinating seeds of Arabidopsis (Liu et al., 2003a), since it is known that in both 

of these developmental stages high amounts of urea are liberated via the 

degradation of storage proteins. Indeed, AtDUR3 mRNA was abundant in 

germinating seeds peaking five days after germination, suggesting a direct and/or 

indirect role of AtDUR3 in the transport of endogenously synthesized urea. Since 

arginase appeared to be localized in mitochondria, whereas urease is localized in 

the cytoplasm (Faye et al., 1986; Goldraij and Polacco, 2000), urea is supposed to 

pass the mitochondrial membrane on its way into the cytoplasm by a yet unknown 

transport mechanism (Figure 2). As AtDUR3-mediated transport of urea depends 

on a proton gradient, it is difficult to imagine that AtDUR3 participates in this 

transport step. 

Presuming a localization in the plasma membrane does not yet point to an obvious 

role of AtDUR3 in mature leaves. Based on the observation that AtDUR3 gene 

expression in seedlings and leaves coincides with developmental stages, in which 

urea is liberated from internal N sources, it is tempting to speculate that AtDUR3 
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participates in transport processes that are linked to the recycling of urea-N in 

plants. 

 

Figure 2: Model for protein-mediated urea transport pathways in plant cells.  

AtDUR3 mediates secondary active, high-affinity urea transport across the plasma membrane, 
while aquaporins of the PIP or TIP subfamilies mediate low-affinity urea transport. In particular TIPs 
might further transport urea across the tonoplast for transient storage in the vacuole or 
remobilization. M, mitochondrion. 

 

2.4.8 Physiological roles of high- and low-affinity urea transporters in 

plants 

As a proton/urea symporter AtDUR3 is able to transport urea into root cells even 

when external concentrations are low. With regard to the almost ubiquitous 

occurrence of ureases in soil substrates and their millimolar affinity constants 

(Dalal, 1985) AtDUR3 might find its role in the lower micromolar concentration 

range of urea that might be left over in the soil solution after microbial degradation. 

The particularly low Km of AtDUR3 might therefore reflect an evolutionary 

adaptation directed to use this diluted but valuable N source.  

Plasma membrane-localized aquaporins of the PIP or, depending on their 

membrane localization, even of other MIP families might increasingly contribute to 

urea import with increasing concentrations of external urea. Their linear 

concentration-dependent transport kinetics makes it likely that this transporter 
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class serves in low-affinity uptake of urea. Under agricultural conditions, this 

transport system might become relevant in roots after urea application to soil or in 

leaves after foliar spray with liquid urea fertilizers. With respect to the tonoplast 

localization of certain or even most TIPs, a low-affinity transport pathway would 

also allow plant cells to load urea into the vacuole for transient storage of this N 

source (Figure 2). To what extent this transport path depends on cytoplasmic 

urease requires further studies determining urea in different subcellular 

compartments of plant lines with altered urease activities.  

In conclusion, plants possess different types of urea transporters for passive and 

secondary active transport of urea across different cellular membranes. Together 

with a large number of transport systems for other N forms these membrane 

transporters appear to enable plants optimizing their N intake and 

compartmentation in dependence of the N forms being available in the medium 

and being synthesized endogenously. 

2.5 Aim of this study 

Characterizing the molecular basis of soil-to-plant and whole-plant fluxes of N has 

been the challenge for the past decade and requires a deep understanding of the 

molecular basis of N uptake, assimilation and N use at different stages of plant 

development. To improve plant N use efficiency it requires a better knowledge on 

the regulation of plant N metabolism during senescence which is regulating this 

terminal phase of development. The enormous and rapid progress in plant 

functional genomics has already uncovered some of the molecular components 

involved in these complex pathways and research efforts need to be made to 

develop genotypes that use N more efficiently. 

Despite the importance of urea as a fertilizer and an intermediate in leaf N 

metabolism, kinetic and molecular aspects of urea transport in leaf cells have only 

been investigated to a limited extent. A deeper understanding of urea transport 

processes in plants and their regulation by N will not only allow a better 

understanding of the importance of urea for plant N nutrition but also an 

improvement of its utilization as N fertilizer for soil and foliar application in 

agricultural crop production. Since urea is also an important intermediate in 

secondary N metabolism of higher plants, urea transporters such as AtDUR3 and 
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AtTIPs might be promising candidates to carry out a physiological function in urea 

acquisition, in long-distance urea translocation or in intracellular urea 

compartmentation. Some information is already available, but there are important 

gaps related to the molecular basis of urea transport across the plasma or 

mitochondrial membrane. The latter ties with the general lack of data on urea 

concentrations in different cell compartments.  

The aim of the first part of the thesis was therefore to investigate and quantify the 

contribution made by AtDUR3 to urea uptake in Arabidopsis roots. For this 

purpose, plant growth on urea as the sole N source, urea concentrations in the 

root tissue and root uptake capacities for 15N-labeled urea were determined in 

wild-type Arabidopsis plants and in two independent T-DNA insertion lines 

defective in AtDUR3 gene expression. Furthermore, promoter–reporter gene 

fusions were expressed in transgenic plants to localize AtDUR3 promoter activity 

in roots, gene expression studies under different N regimes were performed and 

immunological approaches were undertaken to determine membrane localization. 

In the second part of the thesis a focus was laid on urea as a prominent N form 

generated during senescence, its relative contribution to N retranslocation from 

senescing leaves into sinks and on the relative contribution of the urea transporter 

AtDUR3 in these processes. This required first a quantitative characterization of 

urea pools in senescent leaves of different plant or leaf age and their correlation to 

the expression of urea transport proteins. To further describe the physiological 

function of urea transporters in planta, metabolites were measured in the 

apoplastic washing fluid and in leaf petiole exudates in a series of Arabidopsis 

mutant and wild-type plants with de-regulated expression of the AtDUR3 urea 

transporter or of urease, the enzyme catalysing the hydrolysis of urea. An in silico 

approach indicated the involvement of salicylic acid (SA) in the transcriptional 

regulation of AtDUR3. Therefore, uptake studies using 15N-labelled urea were 

undertaken to verify a regulatory role of SA in urea transport.  
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3 Materials and Methods 

3.1 Isolation of T-DNA insertion lines and growth test on agar 

plates 

The T-DNA insertion lines for AtDUR3 SALK_042649 (atdur3-1) and 

SALK_036318 (atdur3-3) were obtained from the Salk Institute collections, selfed 

and selected for homozygosity of the T-DNA insertion by PCR using primers for 

the left border of the insert (5´-GCGTGGACCGCTTGCTG-3´) and for the AtDUR3 

gene (5´-GGAAGAAACGTTAAGACAGGA-3´). The PCR products from the T-DNA 

insertion lines were cloned and sequenced to confirm the positions of the 

insertions. Homozygous lines were analyzed by RNA gel blots. For the growth test 

(Figure 3c), modified half-strength Murashige and Skoog (MS) medium (Murashige 

and Skoog, 1962) without N was supplemented with 1 µM NiSO4 and 50 µM KNO3. 

Plates containing no further N served as a negative control. Either 500 and 5000 

M NH4NO3 or 50, 500, 1000 and 5000 M urea were added as N sources. 

Columbia-0 and atdur3 insertion lines were cultured for 3 weeks in a growth 

chamber (Percival, http://www.percival-scientific.com) under a 10 h/22°C light and 

14 h/19°C dark regime. 

3.2 Promoter:GFP  and GUS analysis 

For the AtDUR3-promoter::GFP fusion, a 1046 bp fragment of the genomic region 

of AtDUR3 upstream of the translation initiation site was amplified by PCR using 

Pfu Turbo DNA polymerase (Stratagene) and the DNA sequence was verified. The 

gene-specific primers DUR3pro5 

(5´-AAAAGCTTAAGGTAAAGAAAGGATACTTGTA-3´) and DUR3pro3 

(5´-AAACCATGGTTCCTCTTCTTCTTTACGTTTT-3´) were used to generate a 

HindIII restriction site at the 5´-end, and a NcoI restriction site at the 3´-end, 

respectively. The HindIII–NcoI fragment of the AtDUR3 promoter sequence was 

used to replace the CaMV 35S promoter in CaMV35S–SGFP–TYG–nos (Chiu et 

al., 1996) and directly fused with sGFP. Then the AtDUR3 promoter–sGFP–nos 

gene cassette was subcloned into pGreen0029 (Hellens et al., 2000) as a HindIII–
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EcoRI fragment. The HindIII–NcoI fragment of the AtDUR3 promoter sequence 

was also cloned into pBI101 (Clonetech) for promoter-GUS fusion. Agrobacterium 

tumefaciens (strain GV3101:pMP90)-mediated Arabidopsis transformation was 

conducted as described previously (Loqué et al., 2006). N-deficient medium for 

microscopic observation of promoter:GFP plants (Figure 5) was prepared by 

replacing nitrate in MGRL medium (Fujiwara et al., 1992) with an equivalent of 

chloride salts (Inaba et al., 1994). Fluorescence of GFP in transgenic plants was 

observed under an inverted fluorescence microscope equipped with an apotome 

(Zeiss Axiovert 200 M, http://www.zeiss.com). Transgenic plants expressing the 

AtDUR3pro::GUS construct were either cultured on soil under long-day conditions 

and old leaves showing first symptoms of senescence  were used for analysis. 

Additionally, plants were cultured on ½ MS medium for 4 weeks before transfer to 

N-deficient medium for 4 days.  

3.3 Whole-mount immunohistochemistry  

The procedure for whole-mount preparations was modified from Lauber et al. 

(1997). Fourteen-day-old Col-0 and atdur3-1 roots were fixed in 4% 

paraformaldehyde dissolved in microtubule-stabilizing buffer (MTSB; 50 mM 

1,4-piperazinediethanesulfonic acid (PIPES), 5 mM EGTA, 5 mM MgSO4, 

pH 6.9-7.0) at room temperature for 30 min and washed 3 times in phosphate-

buffered saline buffer (PBS; 0.02 M sodium phosphate buffer with 0.15 M sodium 

chloride, pH 7.4) and two times in ultra-pure water. Roots were placed onto silane-

coated microscopic slides (Histo Bond, Marienfield) with a drop of water. 

Coverslips were removed after dipping the slides into liquid N. After drying for 1 h, 

specimens were rehydrated in PBS for 10 min. Cell walls were partially digested 

with 2% driselase (Sigma) for 30 min. The plasma membrane was permeabilized 

with 0.4% Nonident P40 in 10% DMSO–PBS for 1 h. 

Non-specific interactions of antiserum were blocked with 1% BSA in PBS 

overnight, and antisera were diluted in 3% BSA in PBS and incubated overnight. 

Primary antiserum raised against AtDUR3 was used at the dilution of 1:500. 

Cy3-conjugated anti-rabbit-IgG was employed as a secondary antibody (Dianova; 

http://www.dianova.de) at a dilution of 1:200. Apotome scanning of specimens was 

http://www.zeiss.com/
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performed with an inverted fluorescence microscope (Zeiss), equipped with 

appropriate filters for Cy3, using the AxioVision software (version 4.5; Zeiss). 

3.4 Hydroponic plant culture  

Arabidopsis thaliana seeds were germinated in the dark for 4 days and cultured on 

rockwool moistened with tap water. After 1 week, tap water was replaced by half-

strength nutrient solution containing 1 mM KH2PO4, 1 mM MgSO4, 250 µM K2SO4, 

250 µM CaCl2, 100 µM Na–Fe–EDTA, 50 µM KCl, 30 µM H3BO3, 5 µM MnSO4, 

1 µM ZnSO4, 1 µM CuSO4, and 1 µM NaMoO4, pH adjusted to 5.8 by KOH. N was 

supplied as 2 mM NH4NO3. To suppress exogenous degradation of urea by 

urease liberated from decaying root cells, urea was supplied with 75 µg l-1 of the 

urease inhibitor phenylphosphorodiamidate (PPD; Martens and Bremner, 1984; 

Pedrazzini et al., 1987) whenever indicated in the legend. The nutrient solution 

was renewed once a week during the first 3 weeks, twice in the fourth week and 

every 3 days for the following weeks. Plants were grown hydroponically under 

non-sterile conditions in a growth cabinet. If not otherwise indicated the following 

conditions were applied: 10 h/14 h (short day) light/dark; light intensity 200-280 

µmol m-2 sec-1; temperature 22°C/18°C and 60-70% humidity.  

Senescence was induced either by a switch from short to long day (16 h /8 h 

light/dark) conditions and/or by applying N starvation for 4 days to induce N 

remobilisation. Additionally, senescence was induced by shading of a single leaf of 

the plant (leaf number (no) 7) by wrapping aluminium foil around it for a periode of 

up to 3 days. 

Next to wild-type and the two atdur3 T-DNA insertion lines a ureG mutant lacking a 

functional urease was employed which was kindly provided by C.P. Witte (Witte 

et al., 2005). Seeds of the crossing of ureGA with atdur3-1 leading to the double 

mutant line dur3ureGA as well as a 35S-overexpression line of AtDUR3 

(35SDUR3) in the wild-type background Col-0 were kindly provided by Soichi 

Kojima (RIKEN, Japan). 
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3.5 RNA gel blot analysis 

Total RNA was isolated by phenol-guanidine extraction followed by lithium chloride 

precipitation according to Logemann et al. (1987) or by extraction with TRIzol 

(Invitrogen) following the manufacturer’s protocol. Total RNA (10–20 g per lane) 

was separated by electrophoresis on 3-(N-morpholino) propanesulfonic acid 

(MOPS)-formaldehyde agarose gels, blotted onto Hybond-N+ nylon membranes 

(Amersham) and cross-linked to the membrane by incubation at 80°C for 2 h. The 

coding sequences of AtDUR3, AtAMT1;1, AtTIP2;1 and SAG12 were used as 

probes for hybridization to total RNA. Hybridization to a randomly primed 

32P-radiolabeled probe was performed at 42°C in 50% (v/v) formamide, 1% (w/v) 

sarcosyl, 5x SSC and 100 µg ml-1 yeast t-RNA. Membranes were washed at 42°C 

once in 2x SSC, 0.1% (w/v) SDS for 40 min and once in 0.2x SSC, 0.1% (w/v) 

SDS for 40 min. A 25S- RNA probe was used as a RNA loading control. 

3.6 15N influx and retranslocation analysis 

Urea influx measurements in plant roots were conducted after rinsing the roots in 

1 mM CaSO4 solution for 1 min, followed by incubation for 10 min in nutrient 

solution containing different concentrations of 15N-labeled urea (95-98 at.% 15N) as 

the sole N source. After a final rinse in 1 mM CaSO4 solution, roots and shoots 

were separated and stored at -70°C before freeze-drying. Each sample was 

ground and 1.0–2.5 mg sample powder was used for 15N determination by isotope 

ratio mass spectrometry (Finnigan; http://www.thermo.com). Values obtained for 

concentration-dependent urea influxes up to 200 µM urea were directly fitted to the 

Michaelis–Menten equation. For salicylic acid (SA) treatments, plant roots were 

incubated in nutrient solution containing 500 µM SA 3 h prior to the uptake 

experiment (Figure 28). Uptake experiments were repeated two or three times, 

and representative results are shown. 

For retranslocation studies 10 µl of a 2% 15N-labeled urea (96 at.% 15N) solution 

blended with 0.05% detergent (Silwet gold) were applied for 3 days on leaf no. 6 in 

6 week-old hydroponically grown plants under long day conditions. For this 

purpose a 1.5 ml tube was cut, its border lubricated with Vaseline (Balea) and 

stamped onto the middle of the leaf to create a defined area of uptake.  
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3.7 Preparation of microsomal and plasma membrane fractions 

Fresh root or shoot tissue was ground in a buffer containing 250 mM 2-amino-2-

(hydroxymethyl)-1,3-propanediol (TRIS)–HCl (pH 8.5), 330 mM sucrose, 

25 mM EDTA, 5 mM ß-mercaptoethanol (ß-ME), 2 mM dithiothreitol (DTT) and 

1 mM phenylmethyl-sulfonyl fluoride (PMSF). Homogenates were centrifuged at 

10.000 g for 15 min. Supernatants were filtered through nylon mesh (58 µm) and 

centrifuged at 100.000 g for 30 min to pellet microsomal membrane fractions. The 

pellet was resuspended in conservation buffer (5 mM Bis-TRIS propane-MES, 

pH 6.5, 250 mM sorbitol, 20% w/v glycerol, 1 mM DTT, 2 mM PMSF) and gently 

homogenized in a potter, as previously described in Loqué et al. (2006). Plasma 

membrane fractions were prepared by aqueous two-phase partitioning based on 

Larsson et al. (1987). A microsomal pellet was resuspended in microsomal buffer 

(5 mM KH2PO4, pH 7.8, 330 mM sucrose) and added to dextran-polyethylene 

glycol buffer (6.4% dextran T-500, 6.4% PEG 3350, 5 mM KH2PO4, 3 mM KCl and 

330 mM sucrose). The two phases were mixed and centrifuged at 1500 g for 

5 min. Upper and lower phases were collected and re-partitioned twice with fresh 

washing buffer (5 mM KH2PO4, pH 7.8, 330 mM sucrose, 1 mM PMSF). The upper 

and lower phases were diluted with washing buffer and centrifuged at 100 000 g 

for 60 min to pellet the membranes, respectively. The pellet was re-suspended in 

conservation buffer and gently homogenized in a potter. Protein concentrations 

were determined using a Bradford protein assay kit (Bio-Rad, http://www.bio-

rad.com) with BSA as a standard. 

3.8 Protein gel blot analysis 

Polyclonal antibodies were raised against an oligopeptide representing the 

C-terminal 14 amino acids of AtDUR3 (n-LLELEKTKKNDEEG-c). The antiserum 

was affinity-purified using a nitrocellulose membrane for peptide binding as 

described in Ludewig et al. (2003). Sodium dodecyl sulfate-PAGE and protein gel 

blot analysis were performed as described previously (Loqué et al., 2006) always 

using 5µg protein per lane. Antiserum raised against AtDUR3 was diluted in 

blocking solution at 1:5000 or 1:10.000 (Figure 4b, c). The secondary antibody 

was diluted 1:100.000. The dilution of the antibodies against AHA2 and DET3 has 



Chapter 3 Material and Methods 

34 

been described in Yuan et al. (2007) and was performed accordingly. Rainbow 

marker (Amersham) or Magic marker (Invitrogen) were used as molecular weight 

markers. 

3.9 Determination of urea concentrations 

Root urea concentrations were determined based on a colorimetric reaction 

described by Kyllingsbæk (1975). Approximately 50 mg of freeze-dried plant 

tissues was milled and suspended in 1 ml of cold 10 mM formic acid. After 

centrifugation at 16000 g and 4°C for 15 min, 30 µl of the supernatant were 

incubated with 1 ml of a color development reagent (4.6 mM diacetylmonoxime, 

1.28 mM thiosemicarbazide, 6.6% H2SO4, 14.6 µM ferric chloride hexahydrate and 

0.006% orthophosphoric acid) at 99°C for 15 min, and then cooled down at 4°C for 

5 min. Absorbance at 540 nm was measured with a photometer. The ureides 

allantoin, ornithine, arginine, and uric acid did not interfere with urea 

determinations, but other ureides were not tested. 

3.10  Leaf petiole exudates 

Exudates from leaf petioles were collected in 500 µl 10 mM EDTA solution pH 8.5 

as described by Corbesier et al. (2001). In brief, petioles were detached as low as 

possible and were cut a second time inside EDTA solution without crushing the 

stem. After rinsing for 1 min 2-3 leaves were pooled and transferred into the 

collection tubes with petioles immersed in the EDTA solution. Exudates were 

collected over a time period of 6-8 h in a closed system to prevent transpiration 

under controlled light and temperature. Exudates were analysed for urea, sugar 

and amino acid concentration.  

3.11  Apoplastic wash fluid 

Apoplasmic wash fluids (AWF) were collected using the infiltration–centrifugation 

method described by Lohaus et al. (2001). Briefly, leaves of different ages 

(1-6, 7-12, >12) from approximately 100 six week old wild type or atdur3-1 plants 

grown under long day conditions and starved for N for 4 days were pooled 
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corresponding to ~3-4 g fresh weight each. Leaves were washed in ice-cold milli-Q 

water (Milipore, Schwalbach, Germany) and infiltrated with ice-cold milli-Q water 

by five applications of a pressure of 0.8 bar for 2 min and wiped dry with tissues. 

AWF was collected by centrifugation for 20 min at 100 g. The volume of the 

collected liquid was measured, and samples were stored at – 20°C before urea 

analysis.  

3.12  Analytical methods 

Amino acids were measured as described by Zurbriggen et al. (2009). To detect 

primary and secondary amino acids the fluorescing reagent AQC 

(6-aminoquinolyl-N-hydroxysuccinimidylcarbamat) was used. The separation was 

carried out with a reversed phase HPLC system (Waters) consisting of a gradient 

pump, a degasing module, an autosampler and a fluorescence detector. 

Chromatograms were recorded using the software program Millennium 32 or 

Empower. The gradient was accomplished with a buffer containing 140 mM 

sodium acetate, pH 5.8 (Suprapur, Merck) and 7 mM triethanolamine (Sigma). 

Acetonitril (Roti C Solv HPLC, Roth) and purest HPLC water (Baker) were used as 

eluents.  

3.13  In silico data analysis 

The eFP Browser of the Bio-Array Resource (BAR) by Winter et al. (2007) was 

employed to extract data from transcriptome analysis. The microarray dataset 

dealing with SA treatment was obtained from the AtGenExpress project of the 

Schmid, Lohmann and Weigel labs (2005) as presented on the TAIR website 

(http://www.arabidopsis.org). The subset provided by Buchanan-Wollaston et al. 

(2005) used the Affymetrix ATH1 Arabidopsis Genome Array.  

For an analysis of the promoter of AtDUR3 the Arabidopsis Gene Regulatory 

Information Server (AGRIS) was used as an information resource for Arabidopsis 

promoter sequences, transcription factors and their target genes (Davuluri et al., 

2003; Yilmaz et al., 2011). The coexpression analysis was performed in Atted-II 

which allowed the mining of coexpressed gene networks (Obayashi et al., 2009). 

http://www.arabidopsis.org/
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Visualization of coexpressed genes was carried out using Genevestigator (Hruz et 

al., 2008). 
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4 Results  

4.1 AtDUR3 represents the major transporter for high-affinity 

urea transport across the plasma membrane of nitrogen-

deficient Arabidopsis roots         

(published in The Plant Journal (2007), 52, 30-40) 

4.1.1 Disruption of AtDUR3 causes growth inhibition on urea when it 

is supplied as a sole nitrogen source 

To investigate the contribution made by AtDUR3 to urea uptake in Arabidopsis 

roots, two independent T-DNA insertion lines in the Columbia-0 (Col-0) 

background were obtained from the insertion mutant collections of the Salk 

Institute Genomic Analysis Laboratory (Alonso et al., 2003). The T-DNAs were 

found to be inserted either 520 or 586 bp downstream of the start codon (Figure 

3a), and the lines were named atdur3-1 and atdur3-3, respectively. Roots of 

hydroponically grown Col-0, atdur3-1 and atdur3-3 plants were then harvested for 

the extraction of total RNA and subsequent RNA gel blot analysis. Transcript 

levels of AtDUR3 were low in N-sufficient but strongly increased in N-deficient 

roots of wild-type plants, whereas no AtDUR3 mRNA was detected in roots of 

homozygous progenies from either T-DNA insertion line (Figure 3b).  

The two atdur3 insertion lines did not show any visible growth difference on soil or 

nutrient solution supplemented with nitrate or ammonium as the N source. When 

grown on sterile agar plates supplemented with urea as a sole N source, however, 

growth differences between Col-0 and atdur3 plants became apparent. While wild-

type plants developed green leaves when supplied with 1 mM, and even as little as 

0.5 mM urea, both insertion lines became chlorotic and accumulated more 

anthocyanins than the wild type, this being another visible sign of N deficiency 

(Figure 3c). Shoot biomass production was little affected, if at all. With a supply of 

ammonium nitrate, shoot growth of all lines was better than with urea and no 

phenotypical differences were observed among the different lines (Figure 3c).  
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Figure 3: Disruption of AtDUR3 leads to impaired growth under urea supply.  

(a) Schematic representation of the positions of the T-DNA insertions in atdur3-1 and atdur3-3. The 
insertions in the AtDUR3 gene are located 520 and 586 bp, respectively, downstream of the 
putative translation start. (b) Ribonucleic acid gel blot analysis of RNA from N-starved roots from 
wild-type Col-0, atdur3-1 and atdur3-3 plants using the coding sequence of AtDUR3 as a probe. (c) 
Growth of the insertion lines atdur3-1 and atdur3-3 and their corresponding wild-type (Col-0) on 
sterile half-strength MS medium supplied with 1 µM NiSO4  and 50 µM KNO3 and different 
concentrations of ammonium nitrate or urea as a sole N source. 
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4.1.2 Plasma membrane localization of AtDUR3 

The intracellular localization of AtDUR3 was investigated employing protein gel 

blot analysis of membrane protein fractions from Arabidopsis roots. An antibody 

raised against 14 amino acids of the C-terminus of AtDUR3 detected a single band 

at approximately 55 kDa in the microsomal membrane fraction of Col-0 roots 

(Figure 4a). This was somewhat lower than the calculated molecular weight of 

75 kDa for AtDUR3, but corresponded to the expected size with respect to the 

hydrophobicity of the protein. No signal was detected in microsomal membrane 

protein fractions from roots of the atdur3-1 and atdur3-3 insertion lines, confirming 

the specificity of the antibody. In wild-type roots accumulation of the AtDUR3 

protein strongly increased during N deficiency (Figure 4b). Microsomal fractions 

from roots that were starved of N for a period of 3 days were then separated by 

two-phase partitioning into fractions enriched with plasma membranes or 

endosomal membranes (Larsson et al., 1987). In a subsequent protein gel blot 

analysis (Figure 4c), use of an antibody raised against the Arabidopsis plasma 

membrane H+-ATPase (AHA2) confirmed enrichment of plasma membrane 

proteins in the upper phase (U), while enrichment of endosomal membrane 

proteins in the lower fraction (L) was verified by detection of DET3, a subunit of the 

endosomal V-type H+-ATPase (Schumacher et al., 1999). A highly preferential 

enrichment of AtDUR3 in the upper phase of N-deficient protein fractions indicated 

plasma membrane localization of AtDUR3. 

In a whole-mount immunohistochemical approach, fluorescence imaging assisted 

by an apotome was directed to root hairs, which are usually less vacuolated and 

densely filled with cytoplasm (Figure 4d-A). After whole-mount specimens of root 

hairs from N-starved roots of Col-0 plants were incubated with AtDUR3-specific 

antiserum and a Cy3-conjugated, secondary fluorescent antibody, red 

fluorescence was observed along the border of individual root hair cells (Figure 

4d-C). Due to the absence of a large vacuole in the hair tip (Figure 4d-A), 

localization of AtDUR3 could be assigned to the plasma membrane. No AtDUR3 

signal was detected in root hairs of the atdur3-1 insertion line (Figure 4d-D). Taken 

together, both independent experimental approaches indicated that AtDUR3 

accumulated in the plasma membrane of root cells of N-deficient Arabidopsis 

plants.   
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Figure 4: AtDUR3 localizes to the plasma membrane.  

(a) Protein gel blot analysis of microsomal membrane fractions from roots of wild-type (Col-0) or 
atdur3-1 and atdur3-3 plants cultured under N deficiency. For AtDUR3 protein detection a 
polyclonal antibody raised against the C-terminus of AtDUR3 was employed. An AtDUR3-specific 
signal was detected at approximately 55 kDa. (b) Protein gel blot analysis of root membrane 
fractions from roots of wild-type (Col-0) plants cultured under a continuous supply of 2 mM 
ammonium nitrate (+N) or under N deficiency for 1, 2 or 3 days (-N). (c) Microsomal fractions (M) 
from N-deficient roots (-N 3d) of wild-type (Col-0) plants were separated by aqueous two-phase 
partitioning into a plasma membrane-enriched upper phase (U) and an endosomal membrane-
enriched lower phase (L). Protein gel blot analysis was conducted with antibodies against AtDUR3, 
an Arabidopsis plasma membrane H

+
-ATPase (AHA2) and a subunit of an endosomal H

+
-ATPase 

(DET3). (d) Intracellular localization of the AtDUR3 protein in N-starved root hairs from Col-0 (a and 
c) or from atdur3-1 (b and d) plants. Whole-mount root samples were stained with an anti-AtDUR3 
antiserum and a Cy3-conjugated red-fluorescing secondary antibody. Whole-mount images were 
taken by an inverted fluorescence microscope equipped with an apotome. The bar represents 
10 µm. 
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4.1.3 Localization of AtDUR3 promoter activity in outer root cells  

Cell type-specific expression of AtDUR3 was investigated in Arabidopsis plants 

transformed with an AtDUR3 promoter:GFP construct containing 1046 bp of the 

5’-upstream region of AtDUR3. Green fluorescent protein-dependent fluorescence 

in the roots of several independent transformants cultured under N-sufficient 

conditions was detected at a low level in the meristem of root apices and in the 

root cap as well as in basal root hair zones, but was absent from the younger root 

hair zone (Figure 5a,c,e). Green fluorescent protein-derived fluorescence strongly 

increased after plants were transferred to N deficiency (Figure 5b,d) when AtDUR3 

transcripts and protein abundance also increased (Figure 3b, 2b). The N 

deficiency response of AtDUR3 promoter activity was confined to epidermal and 

cortical cells in the basal root hair zone but limited only to epidermal cells in the 

younger root hair zone (Figure 5b,d). In the root hair zone, promoter activity was 

also observed near the xylem in vascular tissues, although at a comparatively low 

intensity (Figure 5b). 
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Figure 5: Localization of the promoter activity of AtDUR3.  

Transgenic plants expressing an AtDUR3-promoter::GFP construct were grown on MGRL agar 
plates under N-sufficient (+N) or N-deficient conditions (-N). Images from upper (a and b) and lower 
(c and d) root hair zones and root tips (e and f) were taken by an apotome-equipped fluorescence 
microscope. Bars represent 50 µm. rh, ep, co and xy indicate root hair, epidermis, cortex and 
xylem, respectively. 

4.1.4 Regulation of AtDUR3 gene expression by nitrogen availability 

Changes in AtDUR3 gene expression in response to different N treatments were 

monitored in roots following RNA extraction from hydroponically grown Col-0 

plants. While levels of AtDUR3 mRNA were high in N-deficient roots, they were 

rapidly repressed after resupply of ammonium or nitrate (Figure 6). Both forms of 
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N, ammonium and nitrate, seemed to act with high efficiency even though residual 

mRNA levels were slightly higher after the ammonium treatment. Thus, 

upregulation of AtDUR3 gene expression under N deficiency most likely reflected 

a de-repression from ammonium, nitrate or other N sources, similar to that 

reported for the ammonium transporter genes AtAMT1;1 and AtAMT1;3 

(Gazzarrini et al.,1999; Rawat et al., 1999).  

 

 

Figure 6: Regulation of AtDUR3 gene expression in Arabidopsis roots in dependence of the 

N supply.  

Ribonucleic acid gel blot analysis of total root RNA from hydroponically grown 6-week-old 
Arabidopsis plants using the coding sequence of AtDUR3 as a probe. Plants were cultured under 
continuous supply of 2 mM ammonium nitrate (+N) or under N deficiency for 4 days (-N). N-
deficient plants were resupplied with 2 mM NH4

+ 
or NO3

-
 or with 1 mM urea in the presence of the 

urease inhibitor phenylphosphorodiamidate (PPD) for up to 24 h. Ethidium bromide-stained RNA 
(EtBr) served as a loading control. 

 

Resupply of urea to N-deficient plants led to a dramatic upregulation of levels of 

AtDUR3 mRNA in roots (Figure 6), which exceeded even the transcript levels 

present in N-deficient plants. Thus, AtDUR3 gene expression was also substrate 

inducible, similar to the transcriptional regulation of the high-affinity nitrate 

transporter AtNRT2;1 by nitrate (Lejay et al., 1999).  

4.1.5 Role of AtDUR3 in the accumulation of urea in roots 

Urea is highly sensitive to enzymatic degradation by urease, which is among the 

most persistent enzymes in nature and almost ubiquitously expressed by most 

organisms (Polacco and Holland, 1993). Influx of urea into the roots of N-deficient 

wild-type plants was therefore determined in the presence of the urease inhibitor 

phenylphosphorodiamidate (PPD). To exclude any interference of this inhibitor on 

anything other than urea hydrolysis in the outside medium, urea concentrations 

and AtDUR3 gene expression in roots were determined in wild-type and the two 

T-DNA insertion lines in the presence or absence of PPD under adequate or 
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deficient N supply (Figure a,c). Additionally, urea influx of 200 µM 15N-labeled urea 

into roots and translocation to shoots of wild-type plants under N-deficient 

conditions was compared under different PPD pretreatment (Figure 7b). However, 

neither urea influx and translocation to shoots nor AtDUR3 gene expression or 

urea concentrations in the roots of N-sufficient or N-deficient plants significantly 

differed in the presence or absence of PPD under our growth conditions (Figure 

7). Moreover, an influx analysis of 15N-labeled urea was performed with 

Arabidopsis plants grown in a sterile medium in Magenta boxes. A comparison 

with influx analyses conducted under non-axenic growth conditions provided no 

indication of urea degradation prior to short-term urea uptake from nutrient 

solutions (Gassert, 2006).  

 

Figure 7: No effect of the urease inhibitor PPD on urea uptake and translocation or AtDUR3 

gene expression. Continuation next page.  

(a) Urea concentrations in roots of Col-0, atdur3-1 or atdur3-3 plants grown hydroponically for 38 d 
under continuous supply of 2 mM ammonium nitrate or, alternatively, for a period of 4 d under N 
deficiency. Plants were grown in the presence or absence of phenylphosphorodiamidate (PPD) for 
3 h. Bars indicate means ± SD, n =10. (b) Influx of 

15
N-labeled urea into roots and translocation to 

shoots of wild-type Col-0 plants grown hydroponically for 38 d under continuous supply of 2 mM 
ammonium nitrate before culture under N deficiency for 4 d. 

15
N-labelled urea was supplied at 

200 μM in the presence or absence of PPD. Bars indicate means ± SD, n =10. (c) RNA gel blot 
analysis of the wild-type root samples from (b) using the coding sequence of AtDUR3 as a probe. 
Ethidium bromide-stained RNA (EtBr) served as a loading control. 



Chapter 4 Results 

45 

 

 

Figure 7 continued. 

 

In order to independently verify whether urea is taken up as an intact molecule or 

else in the form of its degradation product (ammonium), the concentration of urea 

in the root tissue of plants subjected to different N treatments was determined. To 

avoid any possible degradation of urea, nutrient solutions were supplemented with 

PPD. When Col-0 plants and the two insertion lines atdur3-1 and atdur3-3 were 

cultured with a continuous supply of 2 mM ammonium nitrate, root urea 

concentrations were around 25 µmol g-1 dry weight (DW) and did not differ 

significantly between lines (Figure 8). Under conditions of N deficiency, urea levels 

in all lines decreased by approximately 80%. After resupply of 50 or 100 µM urea 

for 3 h to N-deficient plants, urea accumulated only in wild-type roots and reached 

three- to fivefold higher levels than in the two insertion lines (Figure 8). Thus, 

functional expression of AtDUR3 enhanced the accumulation of intact urea 

molecules, suggesting the acquisition of externally fed urea by AtDUR3 in planta. 

However, after supply of 1 mM urea, accumulation of urea in both atdur3 insertion 

lines increased to a level corresponding to 60% of the wild type, suggesting that 

other low-affinity transport systems then contributed to urea uptake. 
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Figure 8: Urea accumulation in roots of wild-type plants and atdur3 insertion lines in 

response to urea resupply. 

Plants were cultured hydroponically for 6 weeks under continuous supply of 2 mM ammonium 
nitrate (+N). After a N starvation treatment for 4 days (-N), plants were resupplied with different 
concentrations of urea for 3 h in the presence of the urease inhibitor phenylphosphorodiamidate 
(PPD). Urea concentrations were determined in freeze-dried root samples.  

4.1.6 High-affinity urea uptake by AtDUR3 in Arabidopsis roots 

For a concentration-dependent influx analysis of 15N-labeled urea in roots, the two 

insertion lines atdur3-1 and atdur3-3 were grown together with their wild-type for 

38 days on nutrient solution containing 2 mM ammonium nitrate before they were 

subjected to N deficiency for another 4 days. In a concentration range of 

3-200 µM, urea influx in Col-0 roots approached saturation at approximately 17 µM 

(Figure 9a). In contrast, urea influx into roots of atdur3-1 and atdur3-3 plants was 

between 70 and 90% lower than in the wild-type and identical in both insertion 

lines, showing no saturable kinetics within this concentration range. A low-affinity 

uptake analysis conducted with the wild-type Col-0 showed that urea influx 

continued to increase with an almost linear concentration dependency between 

200 and 1200 µM (Figure 9b). Urea influx in atdur3-1 increased with increasing 

external supply at a similar rate as in the wild-type. At 1.2 mM urea, uptake rates in 

atdur3-1 were only 20–30% lower than in the wild-type. Thus, kinetic analysis 

revealed a dominant role for AtDUR3 only in high-affinity urea uptake in 

Arabidopsis roots and allowed calculation of an apparent affinity constant (Km) for 

urea transport by AtDUR3 of 4.0 µM. 
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Figure 9: Disruption of AtDUR3 decreases the capacity for high-affinity uptake of 
15

N-labeled 

urea.  

Concentration-dependent influx of 
15

N-labeled urea into roots of Col-0, atdur3-1 and atdur3-3 
plants. Plants were cultured in nutrient solution containing 2 mM ammonium nitrate for 38 days 
before transfer to N deficiency for 4 days. (a) Urea influx into wild-type and atdur3-1 or atdur3-3 
plants at an external supply of 3–200 µM urea. (b) Urea influx into roots of wild-type and atdur3-1 
plants at an external supply of 200-1200 µM urea. Dots indicate means ± SD, n = 10. 
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4.2 A role of AtDUR3 in urea accumulation and urea 

translocation out of senescent leaves 

The studies on the high-affinity urea transporter AtDUR3 in the first part of this 

thesis focused on its physiological function in primary uptake of urea from the soil. 

The second part will elucidate its role in intercellular transport and 

N retranslocation during senescence in shoots. 

4.2.1 In vegetative growth stages AtDUR3 expression and urea 

concentration in shoots are only weakly affected by the nitrogen 

status  

To obtain an insight into the physiological relation between urea and AtDUR3 gene 

expression in different organs of Arabidopsis, RNA gel blot analysis and urea 

concentration measurements were performed in roots and shoots of 

hydroponically-grown Arabidopsis plants, that were precultured under adequate or 

deficient N supply (Figure 10). 

Under N-sufficient growth conditions AtDUR3 mRNA could not be detected in 

roots or shoots (Figure 10a). In agreement with previous gene expression analysis 

(Figure 6) AtDUR3 was strongly de-repressed in roots of N-starved plants. In view 

of these high expression levels in roots, AtDUR3 gene expression in shoots 

showed only a slight increase under N-deficient conditions (Figure 10a). 

Urea concentrations under N-sufficient conditions were three times higher in roots 

than in shoots (Figure 10b). In roots, N deficiency led to a strong decrease in urea 

concentrations by about 85%, while urea concentrations in shoots did not change 

at all. This indicated a rapid depletion of the root urea pool as a N reserve under 

N-limiting conditions, while the urea pool in the shoot remained unaffected and 

thereby may operate in a different physiological context. Interestingly, the level of 

urea in roots under N deprivation was similar to the concentration found in shoots 

suggesting that this reflects a background level of urea generated by protein 

turnover that is not serving as a N source under N-limiting conditions. 
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Figure 10: AtDUR3 gene expression and urea concentrations in roots and shoots of 

Arabidopsis wild-type plants in dependence of the N nutritional status.  

(a) RNA gel blot analysis of total root and shoot RNA from 6 week-old wild-type Arabidopsis plants 
cultured hydroponically on 2 mM NH4NO3 continuously (+N) or for 4 days on N-deficient medium 
(-N). (b) Urea accumulation in roots and shoots of wild-type Arabidopsis plants grown 
hydroponically for 6 weeks under permanent NH4NO3 supply (+N) or N-deficient medium for 4 days 
(-N). Bars indicate means ± SD, n=6. DW, dry weight. Ethidium bromide (EtBr)-stained gel was 
used as RNA loading control.  

Daytime-dependent changes in either urea concentrations or AtDUR3 and 

AtTIP2;3 gene expression in wild-type plants cultured under adequate N supply 

were monitored over a 24h time period (Figure 11). While AtTIP2;3 showed a 

strong diurnal regulation which was in accordance to findings of Loqué et al. 

(2005), mRNA abundance of AtDUR3 was below the detection limit (Figure 11). 

This is clearly different to the expression pattern observed for root transporters 

such as ammonium transporters, which showed a distinct diurnal regulation with 

stronger expression levels during the day due to their co-regulation by 

photoassimilates or related metabolites from shoots (Gazzarrini et al., 1999, Lejay 

et al., 2003). Furthermore, neither in root nor in shoot tissues there was any 

significant daytime-dependent change in the urea concentration (Figure 11b) 

indicating that urea pools are only affected under N deficiency in roots, but seem 

to play only a minor role in N distribution and balance under adequate N nutrition.  
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Figure 11: AtDUR3 gene expression in roots and urea concentration in dependence of 

daytime. 

(a) Total root RNA was used for RNA gel blot analysis applying AtDUR3 and AtTIP2;3 as probes. 
(b) Urea concentrations as determined in root and shoot samples harvested at different daytimes. 
6 week-old Col-0 plants grown on 2 mM NH4NO3 under short-day conditions were harvested at 9 
(onset of light), 14, 19 (beginning of dark phase) and 24 o´clock. EtBr-stained gel served as loading 
control for the RNA gel blot analysis. Bars indicate means ±SD, n=3. 

4.2.2 The influence of leaf and plant age on urea accumulation and the 

regulation of urea transporters  

In silico analysis confirmed that the urea transporter AtDUR3 was only weakly 

expressed in leaves of plants during the vegetative growth phase. However, 

several independent transcriptome studies revealed that AtDUR3 was highly de-

repressed in senescent and cauline leaves (Figure 12).  
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Figure 12: Microarray analysis indicates an elevated expression of AtDUR3 in senescent 

leaves.  

Data were obtained from the Arabidopsis eFPBrowser (at bar.utoronto.ca, Winter et al., 2007). All 
data were produced using the Affymetrix ATH1 Arabidopsis Genome Array. 

To further investigate the role of AtDUR3 in senescent leaves, leaf material of 

mature Arabidopsis plants was assayed that corresponded either to different leaf 

age or to different developmental stages. During vegetative plant growth of up to 

6.5 weeks, urea concentrations were similar between old and young leaves 

(Figure 13a).  

With the beginning of bolting after 7.5 weeks a weak increase of urea 

concentration in older leaves (7-14) was observed. After 8.5 weeks the urea level 

in all leaves steeply increased reaching 4-5 times higher levels in week 10.5 than 

in younger plants. The concentration of urea thereby increased gradually from 

young leaves to old leaves in week 8.5, while in the middle of the 9th or 10th week 

the highest urea concentration was shifted to younger leaves as the oldest leaves 

started to decay.  

The expression levels of AtDUR3 in the same samples mostly followed the urea 

concentrations in the leaf fractions (Figure 13b). Thus, AtDUR3 transcript levels 

were regulated by plant age as well as by leaf age. The overall level of AtDUR3 

expression rose especially after the plants turned into the generative growth phase 

between weeks 6.5 and 7.5 and the increase in urea accumulation. While in week 

5.5 highest AtDUR3 expression was in the oldest leaf, it was almost undetectable 

in 6.5 week-old leaves and then increased especially in the middle-agedd leaves 

up to the young leaves at 9.5 weeks. RNA levels of the ammonium transporter 

AMT1;1 were similarly regulated as those of AtDUR3 increasing with plant age. 
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AMT1;3, however, was differently expressed and rather derepressed in younger 

plants. 

 

Figure 13: Urea concentrations and corresponding gene expression analysis of AtDUR3, 

AtAMT1;1, AtAMT1;3, AtTIP2;3 and SAG12 in leaves in dependence of plant and leaf age.  

(a) Urea concentrations and (b) RNA gel blot analysis of AtDUR3, AtAMT1;1, AtAMT1;3, AtTIP2;3 
and SAG12 in Arabidopsis leaves of different plant age. To generate four pools of different leaf 
age, leaves no. 1-3 (young leaves), 4-6, 7-9 and 10-14 (older leaves) were harvested separately 
and pooled for analysis. Plants were grown on soil under low light conditions and harvested 
between 5.5-10.5 weeks always 4 h after the onset of light. The leaf material was kindly provided 
by Ulrike Zentgraf, ZMBP Tübingen, Germany. A probe against 25S was used as loading control 
for RNA gel blot analysis. RNA quality of old leaves after 9.5 and 10.5 weeks was too poor to yield 
reproducible results. Bars indicate means of 3 technical replica. 

In contrast, the tonoplast-localized aquaporin AtTIP2;3, which can also act as a 

low-affinity urea transporter, showed a different transcriptional regulation to that of 

AtDUR3. AtTIP2;3 was most upregulated in all leaves in week 6.5. Before, at 5.5 

weeks, AtTIP2;3 was preferentially expressed in the old leaves. Thereafter, 

AtTIP2;3 expression levels decreased in particular in the older leaves and 

approached the detection limit. The higher the age of the plant was, the weaker 
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was the expression of AtTIP2;3, and it was therefore almost an opposite regulation 

to AtDUR3. 

As a marker for senescence the expression of SAG12 (senescence-associated 

gene 12, encoding a cysteine protease) was investigated as well. Due to several 

rounds of hybridisation and stripping the membrane quality was already negatively 

affected, but expression was detected in old leaves of 9.5 week-old plants and 

weakly also in young leaves of 10.5 week-old plants. This was in agreement with 

studies of Zentgraf et al. (2004) who showed in comparable samples an induction 

of transcript levels for SAG12 in old leaves of 8 week-old plants but not in young 

leaves. 

4.2.3 Different triggers of senescence induce AtDUR3 gene expression 

and urea accumulation  

As urea concentrations and AtDUR3 gene expression were elevated in senescent 

leaves (Figure 13) a possible contribution of the transporter to urea accumulation 

was addressed by comparing wild-type plants with the T-DNA insertion line 

atdur3-1 (Figure 14). Senescence was induced by a switch from short to long days 

after 4 weeks of growth and urea concentrations were measured in three different 

leaf fractions pooling leaf number 1-6 (old leaves), 7-12 or all leaves above (>12, 

young leaves). After 5 weeks urea concentrations were still low in all leaf fractions 

being at a similar level than shown before (Figure 10 and Figure 13), and there 

was no significant difference between the wild type and atdur3-1. However, there 

was a tendency to slightly higher urea concentrations in the oldest leaves (1-6) in 

both lines.  

One week later urea concentrations rose in all leaf fractions to a twofold higher 

level in young leaves (>12) and up to a fourfold higher level in old leaves (1-6). 

Most interestingly, while in the young (>12) and middle (7-12) aged leaves urea 

concentrations in the two lines were similar, urea concentrations in old wild-type 

leaves were approximately 40% higher than those in atdur3-1 leaves. 

Nevertheless, urea concentrations in the atdur3-1 insertion line also increased with 

the age of the leaves, but did not exceed the level found in middle-aged leaves 

(7-12). 
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Figure 14: In the generative phase AtDUR3 contributes to elevated urea concentrations in 

old leaves.  

Urea concentrations determined in 5 or 6 weeks-old wild type (Col-0) and atdur3-1 plants. Plants 
were grown on nutrient solution and transferred after 4 weeks of culture in short days to long-day 
conditions. Bars represent means ±SD, n=10. The asterisk denotes significant differences among 
means at p<0.05 according to Tukey´s test.  

Since there are many external signals to trigger senescence, AtDUR3 expression 

and urea accumulation were also investigated in plants under short day conditions 

when senescence was induced either by N deprivation (Figure 15) or by shading 

of single leaves (Figure 16). 

Northern analysis comparing AtDUR3 gene expression in young and old leaf 

tissues (Figure 15a) of the N-starved plants were as well in agreement with 

microarray data from developmental series (Figure 12). In wild-type shoots the 

transcript level of AtDUR3 was more induced in old than in young leaves. As 

expected, AtDUR3 transcripts were absent in the atdur3 insertion line. Thus, 

elevated urea concentrations in old leaves of Arabidopsis plants coincided with an 

enhanced expression level of AtDUR3. 

In N-starved plants the concentrations of urea (Figure 15b) in young leaves 

showed no difference between the wild-type and the atdur3-1 insertion line but 

were 2-3 fold lower than in old leaves. These concentrations were similar to those 

in shoots during the vegetative growth stage (Figure 14). In old leaves of plants 

subjected to N-limiting conditions urea concentrations were 20% lower in atdur3-1 
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compared to the wild type, but still rose above the level in young leaves. Thus, the 

differences in urea concentration of old leaves between wild type and atdur3-1 

showed a similar pattern in developmental as in N starvation-induced senescence.  

 

Figure 15: AtDUR3 gene expression and leaf urea concentrations in wild-type and in 

atdur3-1 under prolonged N deprivation.  

(a) RNA gel blot analysis of AtDUR3 expression and (b) urea concentrations in shoots of wild-type 
(Col-0) and atdur3-1 plants precultured on 2 mM NH4NO3 for 6 weeks in short-day conditions and 
transferred on N-deprived medium for 9 days. Bars indicate means ±SD, n=6. The asterisk denote 
significant differences among means at p<0.001 according to Tukey´s test.  

Leaf shading for up to three days also lead to an increase in urea concentrations 

(Figure 16b). Within the first day of shading urea concentrations in wild-type leaf 

no. 7 (middle-aged leaf) did not differ significantly, even though it tended to 

increase within the first 12h. After three days a significant rise of around 50% up to 

40 µmol g-1 DW were observed which was accompanied by first visible symptoms 

of leaf yellowing (data not shown). RNA gel blot analysis showed a weak 

expression of AtDUR3 without shading and an upregulation reaching its highest 

expression after 1 day of shading (Figure 16a).  

Urea concentrations in the transgenic line ureGA also increased due to shading. 

Starting from a concentration reached by the wild type after 3 days of shading, 

urea concentrations in ureGA were about one third higher at all times. In the first 

24 h urea concentrations stayed the same and significantly increased after 3 days.  



Chapter 4 Results 

56 

AtDUR3 gene expression in ureGA leaves started as well at a higher expression 

intensity than the wild-type but stayed constant up to 1 day. Only after 3 days of 

shading RNA levels increased reflecting the development of urea concentrations 

(Figure 16) Interestingly, SAG12 expression was induced only after 3 days of 

shading in both lines, but was more prominent in Col-0.  

 

Figure 16: AtDUR3 and SAG12 gene expression and urea concentration in leaf no. 7 in dark 

induced senescence.  

(a) RNA gel blot analysis of AtDUR3 and SAG12 expression and (b) urea concentrations in leaf no. 
7 of wild-type (Col-0) and ureGA plants after shading. Plants were cultured on 2 mM NH4NO3 for 
6 weeks when leaf no. 7 was shaded with aluminium foil for 0.5- 3 days. Bars indicate means ±SD, 
n=3. Significant differences among means at p<0.05 according to Tukey´s test are denoted by 
different letters. A probe against 25S served as loading control for RNA gel blot analysis.  

Taken together urea concentrations and AtDUR3 gene expression levels rose 

after onset of senescence irrespective of the means by which senescence was 

induced. Thereby, both measures were elevated in the oldest leaves and 

progressed with time to the younger leaves as senescence evolved.  

4.2.4  A role of AtDUR3 in urea retrieval  

High urea accumulation in senescent leaves might lead to a loss of urea from the 

cytoplasm into the apoplast by e.g. aquaporins of the NIP, PIP and/or TIP families 

located at the plasma membrane. Since AtDUR3 was up-regulated simultaneously 
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with increasing urea concentrations and since it is functional at the plasma 

membrane, a role in urea retrieval of AtDUR3 was tested. Therefore, urea 

concentrations in apoplastic wash fluids from N-starved leaves of different age in 

wild-type and atdur3-1 plants were determined as well as the urea levels in the 

corresponding leaves (Figure 17).  

 

 

Figure 17: Urea determination in the apoplastic wash fluid and its corresponding leaves. 

Urea concentrations in (a) the apoplastic wash fluid of pooled leaf fractions and (b) in the pooled 
leaf fractions itself. Wild-type and atdur3-1 plants were cultured hydroponically under short-day 
conditions on 2mM NH4NO3 for 5 weeks before transfer to long-day conditions. The different leaf 
fractions were collected from 6 week-old plants that were deprived of N for 4 days. Bars show 
means of 3 technical replica. 

Preliminary results showed that in wild-type leaves the urea concentrations in the 

apoplastic wash fluid were low and did not differ in the different leaf fractions 

(Figure 17a). In contrast, urea concentrations in the apoplastic solution of the 

atdur3-1 insertion line were much higher than in the wild type and additionally 

increased with leaf age, reaching more than 30-fold higher levels in senescent 

leaves corresponding to approximately 1 mM urea.  

For comparison, urea concentrations in leaf extracts were analysed as well (Figure 

17b). As expected, urea accumulated to highest levels in the oldest leaves. There 

was no obvious difference between the two lines. This suggests a major role of 

AtDUR3 in recapturing urea from the apoplast during leaf senescence.  
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4.2.5 Urea as a translocated nitrogen form in senescent leaves and the 

contribution of AtDUR3 to urea translocation  

The intercellular localisation of a protein often provides an important indication of 

its physiological function. Transgenic lines expressing the AtDUR3pro::GUS 

construct were analysed for their GUS activity in senescent leaves. For this 

purpose plants were cultured on soil under long-day conditions and old leaves 

showing first symptoms of leaf yellowing were used for GUS staining (Figure 18). 

Preliminary results indicated that the AtDUR3 promoter is active in the leaf 

vasculature, suggesting that the transporter might be either involved in the 

intercellular transport of urea from neighbouring cells towards the vascular bundle 

or even contributes to phloem loading. When senescence was induced by N 

deficiency, a similar localization was observed showing stronger expression 

towards the base of the leaf and getting less pronounced towards the tip, where 

senescence was already too far advanced. 

 

Figure 18: Gus staining in transgenic lines expressing AtDUR3pro::GUS. 

Transgenic plants expressing the AtDUR3pro::GUS construct were cultured for 8 weeks on soil 
under long day conditions (A, B) and leaves showing first symptoms of senescence were analysed 
for GUS activity. Transgenic plants grown under axenic conditions and short-day conditions for 4 
weeks under adequate N supply were subjected to N deficiency for 4 days and GUS staining was 
performed (C, D). 

To test the hypothesis that urea is a suitable form for N retranslocation in 

Arabidopsis, a preliminary experiment was performed in leaves of senescing wild-

type plants precultured under adequate or N-deficient conditions. Leaf petiole 

exudates, as an approximation for the composition of the phloem sap, were 
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collected from leaves of different age and urea concentrations therein were 

compared to those in whole leaves (Figure 19). In whole leaves that were grouped 

to obtain sufficient amount of biomass for analysis, urea concentrations increased 

with the age of the leaf irrespective of the N status of the plant (Figure 19a). Urea 

concentrations in the leaf petiole exudates followed that tendency observed in the 

whole leaves and showed highest urea concentrations in the exudates of the 

oldest leaf (Figure 19b). Interestingly, even if urea concentrations in the oldest leaf 

fraction under N-deficiency were slightly lower in the whole leaves, urea 

concentrations in the corresponding leaf petiole exudates tended to increase 

compared to an adequate N status of the plants indicating an increase of urea 

translocation under N limiting conditions only from the oldest leaves. Cauline 

leaves showed low urea concentrations in the whole leaves as well as in leaf 

petiole exudates and were therefore more similar to a young leaf then to an old 

leaf. 
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Figure 19: Dependence of urea concentration in leaves and leaf petiole exudates on leaf age 

and N status 

(a) Urea concentrations in whole leaf fractions of wild type plants and (b) urea concentrations in 
leaf petiole exudates in leaves of defined age collected for 6h in 10 mM EDTA solution. Cauline, 
young (leaf no. 18), middle-aged (leaf no.12 and 7) and old leaves (leaf no. 3) of three plants were 
pooled for analysis. Plants were cultured hydroponically under adequate N supply (2 mM NH4NO3) 
for 4 weeks before transfer to long-day conditions for another 2 weeks to induce senescence. N 
deficiency was induced 4 days prior to harvest (-N). Bars indicate means ± SD, n=4.  

In order to enhance urea accumulation in leaves, the atdur3-1 line was crossed 

with ureGA. In addition, AtDUR3 over-expression lines were examined. To test 

these lines for their urea uptake capacity, influx analysis at 100 µM 15N-labelled 

urea was performed in roots precultured under N-sufficient or N-deficient 

conditions (Figure 20). The overexpressor line showed the highest urea influx in 

N-sufficient roots indicating that the protein is not only strongly expressed in this 

line (Figure 21a) but is also functional. Under N-limiting conditions also the wild 
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type and ureGA showed elevated urea influx, while in the overexpressor the 

uptake capacity was even doubled, suggesting that in addition to the ectopically 

expressed AtDUR3 protein, also the native AtDUR3 protein was upregulated, 

leading to a strong increase in urea uptake capacity.  

 

Figure 20: Urea uptake analysis in dependence of the nitrogen status in different mutants 

defective in urea transport or metabolism.  

Influx of 
15

N-labeled urea into Arabidopsis roots of wild-type Col-0, atdur3-1, ureGA, dur3ureGA 
and 35SDUR3 in dependence of the N status. Plants were grown hydroponically for 38 d under 
continuous supply of 2 mM NH4NO3 (+N) or subjected to N deprivation for 4 days (-N) prior to the 
experiment. 100µM 

15
N-labeled urea was supplied for 10 min. Bars indicate means ± SD, n=8. 

Using these mutant lines impaired either in urea transport and/or metabolism, 

plants were cultured hydroponically under adequate or deficient N supply after 

induction of senescence by transfer to long-day conditions and urea 

concentrations were compared in leaf petiole exudates and the corresponding leaf 

extracts (Figure 21 and Figure 22). 

In wild-type plants precultured under N-sufficient conditions Western blot analysis 

of microsomal membrane fractions in leaf samples of different leaf age revealed a 

very low amount of the AtDUR3 protein in the youngest leaves that increased with 

the age of the leaf (Figure 21a). As expected, in atdur3-1 and dur3ureGA plants no 

AtDUR3 protein was detectable. In the urease-defective ureGA mutant AtDUR3 

abundance in each leaf fraction was higher than in the wild type and showed a 

similar increase towards the oldest leaf. 35SDUR3 showed very high protein levels 

of AtDUR3 which were not affected by leaf age and were much higher than in any 

other line. 
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Figure 21: Contribution of AtDUR3 and UreG to urea accumulation and urea export in leaves 

of N sufficient plants. 

(a) Protein gel blot analysis of AtDUR3 in leaves of different age from wild type (Col-0), atdur3-1, 
ureGA, dur3ureGA and 35SDUR3. Microsomal membrane fractions (MMF) were prepared from N-
sufficient plants and 5µg MMF per lane were assayed by anti-DUR3. (b) Urea concentrations in 
whole leaves and (c) urea concentrations in leaf petiole exudates collected for 6h in 10 mM EDTA 
solution. Young (leaf no. 12), middle-aged (leaf no. 7) and old leaves (leaf no. 3) of three plants 
were pooled for analysis. Plants were cultured hydroponically under adequate N supply (2 mM 
NH4NO3) for 4 weeks before transfer to long day to induce senescence. Bars indicate means ± SD, 
n=5. Different letters denote significant differences among means at p<0.05 according to Tukey´s 
test.  

Urea concentrations in wild-type leaf samples of different leaf age showed 

significant differences with low urea concentrations in younger or sink leaves and 

up to 4 times higher concentrations in leaves of more advanced leaf age (Figure 

21b). Unexpectedly, urea concentrations in the oldest leaves of atdur3-1 did not 
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differ from the wild type, which might be due to a reduced light intensity causing a 

delayed development compared to earlier experiments (Figure 14). In ureGA, urea 

concentrations in all leaf samples nearly doubled compared to the wild type, 

though not significantly in the youngest leaf. In all lines the effect of leaf age on 

urea concentration was prominent. The leaves in the dur3ureGA line showed the 

same increase in urea concentrations as its background line ureGA. Interestingly, 

the AtDUR3 overexpressor line 35SDUR3 showed only a tendency of a leaf 

age-dependent increase in urea accumulation. 

As an approximation for phloem sap composition leaf petiole exudates were 

collected and analyzed for urea concentrations (Figure 21c). In general, urea 

concentrations in leaf petiole exudates followed a similar pattern as in their 

corresponding leaves, increasing with leaf age. Unlike urea concentrations in 

leaves, there was no significant change in urea levels in the exudates of young 

and middle-aged leaves in any line. Only the old leaves showed a varying degree 

of urea in their exudates. Again, there was no significant difference between the 

urea concentration in the sap of the oldest leaf between Col-0 and atdur3-1. 

UreGA showed a significantly higher urea concentration in the exudates of leaf 

no. 3, which was also found in dur3ureGA. Urea export from older leaves in 

35SDUR3 was slightly higher than in wild-type plants. 

In addition to the plant culture under N-sufficient (+N) conditions another set of 

plants was starved for N for 4 days before harvest to provoke the N remobilization 

processes (Figure 22). Under these conditions, AtDUR3 protein levels in Col-0 

slightly increased relative to N-sufficient conditions and were highest in the oldest 

leaf. In the ureGA mutant, the protein was more abundant and still showed an 

increase towards the oldest leaves. Again, AtDUR3 abundance in 35SDUR3 was 

not dependent on the age of the leaf and was high in all three leaf fractions. 

The effect of nitrogen depletion on urea accumulation was strongest in the oldest 

and middle-aged leaves emphasising the importance of N remobilization 

processes on urea accumulation. In the wild-type, young and middle-aged leaves 

were not affected, but in the oldest leaf urea concentrations rose by about 25% 

relative to N-sufficient plants. Nitrogen starvation had little impact on the oldest 

leaves of atdur3-1 and therefore tended to be slightly lower compared to wild type.  
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Figure 22: AtDUR3 contributes to urea re-translocation under nitrogen limiting conditions. 

(a) Protein gel blot analysis of AtDUR3 in leaves of different age from wild type (Col-0), atdur3-1, 
ureGA, dur3ureGA and 35SDUR3. Microsomal membrane fractions (MMF) were prepared from N-
depleted plants and 5µg MMF per lane were assayed by anti-DUR3. (b) Urea concentrations in 
whole leaves and (c) urea concentrations in leaf petiole exudates collected for 6h in 10 mM EDTA 
solution. Young (leaf no. 12), middle-aged (leaf no. 7) and old leaves (leaf no. 3) of three plants 
were pooled for analysis. Plants were cultured hydroponically under adequate N supply (2 mM 
NH4NO3) for 4 weeks before transfer to long day to induce senescence. N starvation was applied 
for 4 days prior to harvest. Bars indicate means ± SD, n=5. Different letters denote significant 
differences among means at p<0.05 according to Tukey´s test.  

However, compared to wild type atdur3-1 had a significantly higher level of urea in 

the middle-aged leaves. UreGA and dur3ureGA showed highest levels of urea in 

all leaf samples compared to N-sufficient conditions. While in the oldest leaf there 

was only a small increase under N starvation, urea concentrations the younger 
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leaves increased by 30%. In the overexpressor line 35SDUR3 N depletion led to a 

significant increase in urea concentration in the oldest leaf which was still less than 

in the wild type. 

Urea concentrations in leaf petiole exudates in young and middle-aged leaves 

were not affected by the N status of the plant in any line. Also in the oldest leaves 

of the wild type and atdur3-1 N deficiency had no considerable impact. In ureGA, 

however, urea concentrations in the leaf petiole exudate from the oldest leaves 

doubled under N deficiency and created an even larger difference to the wild type. 

Unexpectedly, in dur3ureGA there was no increase under N deficiency which 

resulted in a significant lower urea concentration compared to ureGA, indicating a 

contribution of AtDUR3 to net urea export out of older leaves. Urea concentrations 

in leaf exudates of the oldest leaf of 35SDUR3 plants were similar to those in the 

wild type. 

Taken together, AtDUR3 protein abundance and urea concentrations in leaves as 

well as in leaf petiole exudates increased with leaf age, but a contribution of the 

transporter to urea export and thus phloem loading could only be detected in the 

absence of urease and when plants were grown under N-limiting conditions.  

In order to quantify the amount of N that was exported out of the leaves in the form 

of urea, amino acid concentrations were determined in the leaf petiole exudates 

(Table 1). High standard deviations partially caused by the analysis of very small 

sample volumes made a clear interpretation difficult. However, the most abundant 

amino acid was glutamine followed by asparagine, serine, glutamate and aspartic 

acid. This is in agreement with previous reports on amino acid abundance in 

phloem exudates of Arabidopsis plants (Hirner et al., 2006). In general there were 

more amino acids translocated under +N conditions than under N deficiency, but 

this did not change the general order of abundance of amino acids. Additionally, 

amino acids were exported in larger amounts from the oldest leaves when 

subjected to N deprivation. In old leaves of wild-type plants urea represented 

approximately 10% of total amino acids independent of the N status of the plant 

(Table 2). Therefore, urea-N represents approximately 13% of the total amino 

acid-N indicating that urea is a quantitative important N-form for N utilized for 

phloem loading. 
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Table 1: Amino acid concentrations in leaf petiole exudates under N-sufficient and 

N-deficient conditions. 

Amino acid concentrations in leaf petiole exudates of  Col-0, atdur3-1, ureGA, dko and 35Sdur3 
plants collected for 6h in 10 mM EDTA solution. Young (leaf no. 12), middle-aged (leaf no. 7) and 
old leaves (leaf no. 3) of three plants were pooled for analysis. Plants were cultured hydroponically 
under adequate N supply (2 mM NH4NO3) for 4 weeks before transfer to long day to induce 
senescence. N starvation was applied for 4 days prior to harvest. Values are means +/-SD. 
Different letters denote significant differences among each amino acid (aa) at p<0.05 according to 
Tukey´s test, n=5. 

µmol g
-1

 DW h
-1

AA

+N Leaf

Col-0 young (>12) 17,8 +/- 18,3
ac

7,38 +/- 7,61
a

1,28 +/- 1,23
ab

1,56 +/- 1,67
a

0,99 +/- 0,95
a

0,94 +/- 1,04
a

0,59 +/- 0,54
a

0,53 +/- 0,54
a

0,8 +/- 0,94
a

0,43 +/- 0,4
a

middle (7-12) 15,9 +/- 3,95
ac

6,13 +/- 0,98
a

1,33 +/- 0,45
ab

1,48 +/- 0,29
a

0,88 +/- 0,2
a

0,85 +/- 0,14
a

1,15 +/- 0,71
a

0,59 +/- 0,17
a

0,53 +/- 0,12
a

0,43 +/- 0,15
a

old (1-6) 12,6 +/- 7,28
ac

4,05 +/- 2,56
a

1,41 +/- 0,84
ab

0,71 +/- 0,41
a

0,87 +/- 0,39
a

0,66 +/- 0,38
a

0,49 +/- 0,24
a

0,76 +/- 0,42
ab

0,36 +/- 0,18
a

0,84 +/- 0,49
ab

atdur3-1 young 6,2 +/- 4,01
a

2,59 +/- 1,56
a

0,3 +/- 0,19
b

0,47 +/- 0,3
a

0,4 +/- 0,24
a

0,25 +/- 0,17
a

0,22 +/- 0,17
a

0,17 +/- 0,13
a

0,37 +/- 0,18
a

0,19 +/- 0,15
a

middle 23,8 +/- 15,3
c

9,5 +/- 6,64
a

1,6 +/- 0,72
ab

1,85 +/- 1,21
a

1,46 +/- 0,76
a

1,13 +/- 0,65
a

2,02 +/- 2,54
a

0,91 +/- 0,38
ab

0,66 +/- 0,11
a

0,72 +/- 0,28
a

old 12,8 +/- 7,26
ac

4,09 +/- 2,66
a

1,42 +/- 0,89
ab

0,6 +/- 0,33
a

0,77 +/- 0,5
a

0,69 +/- 0,26
a

0,64 +/- 0,19
a

0,75 +/- 0,44
ab

0,39 +/- 0,12
a

0,88 +/- 0,5
ab

ureGA young 5,46 +/- 3,68
a

2,14 +/- 1,27
a

0,37 +/- 0,23
b

0,42 +/- 0,24
a

0,39 +/- 0,32
a

0,24 +/- 0,15
a

0,34 +/- 0,25
a

0,16 +/- 0,12
a

0,28 +/- 0,21
a

0,15 +/- 0,13
a

middle 15,7 +/- 9,31
ac

5,93 +/- 3,23
a

1,17 +/- 0,62
ab

1,23 +/- 0,64
a

1,21 +/- 0,83
a

0,78 +/- 0,43
a

0,95 +/- 0,85
a

0,53 +/- 0,28
a

0,71 +/- 0,4
a

0,46 +/- 0,24
a

old 24 +/- 10,3
c

7,83 +/- 2,93
a

2,26 +/- 1,11
a

1,27 +/- 0,37
a

1,66 +/- 0,57
a

1,3 +/- 0,69
a

0,66 +/- 0,11
a

1,55 +/- 0,77
b

0,71 +/- 0,24
a

1,75 +/- 0,91
b

dur3xureGA young 8,85 +/- 3,69
ab

3,33 +/- 1,31
a

0,68 +/- 0,18
ab

0,67 +/- 0,25
a

0,61 +/- 0,22
a

0,39 +/- 0,15
a

0,5 +/- 0,3
a

0,26 +/- 0,11
a

0,41 +/- 0,18
a

0,26 +/- 0,14
a

middle 22,8 +/- 14,5
bc

9,67 +/- 6,53
a

1,49 +/- 0,48
ab

1,86 +/- 1,07
a

1,34 +/- 0,47
a

1,15 +/- 0,51
a

1,29 +/- 0,55
a

0,69 +/- 0,39
ab

0,91 +/- 0,89
a

0,55 +/- 0,52
a

old 16,2 +/- 14,7
ac

5,05 +/- 5,2
a

1,41 +/- 1,13
ab

0,77 +/- 0,84
a

1,19 +/- 1,14
a

0,92 +/- 0,68
a

0,85 +/- 0,87
a

0,88 +/- 0,79
ab

0,77 +/- 0,6
a

1,01 +/- 0,75
ab

35SDUR3 young 14,5 +/- 4,62
ac

6,08 +/- 1,4
a

0,96 +/- 0,4
ab

1,06 +/- 0,25
a

0,72 +/- 0,22
a

0,63 +/- 0,19
a

0,52 +/- 0,19
a

0,36 +/- 0,15
a

0,78 +/- 0,34
a

0,32 +/- 0,16
a

middle 12,4 +/- 4,39
ac

4,57 +/- 1,57
a

0,94 +/- 0,11
ab

0,89 +/- 0,32
a

0,91 +/- 0,17
a

0,6 +/- 0,18
a

1,26 +/- 1,05
a

0,36 +/- 0,05
a

0,56 +/- 0,21
a

0,25 +/- 0,06
a

old 14,1 +/- 8,68
ac

3,8 +/- 2,94
a

1,58 +/- 1,27
ab

0,59 +/- 0,48
a

0,74 +/- 0,59
a

1,11 +/- 0,48
a

1,01 +/- 0,57
a

0,69 +/- 0,21
ab

0,6 +/- 0,32
a

0,72 +/- 0,17
a

AspTotal Gln Thr LeuGluSer Asn Pro Val

 

µmol g
-1

 DW h
-1

AA

+N Leaf

Col-0 young (>12) 0,89 +/- 0,99
a

0,66 +/- 0,68
a

0,36 +/- 0,35
a

0,38 +/- 0,4
ab

0,25 +/- 0,25
a

0,4 +/- 0,43
ab

0,16 +/- 0,15
ab

0,06 +/- 0,05
a

0,04 +/- 0,03
ab

0,05 +/- 0,03
a

middle (7-12) 0,52 +/- 0,12
a

0,44 +/- 0,07
a

0,39 +/- 0,12
a

0,32 +/- 0,12
ab

0,28 +/- 0,08
a

0,28 +/- 0,13
ab

0,17 +/- 0,04
ab

0,05 +/- 0,03
a

0,03 +/- 0,01
ab

0,06 +/- 0,02
a

old (1-6) 0,27 +/- 0,15
a

0,32 +/- 0,17
a

0,56 +/- 0,33
ab

0,43 +/- 0,22
ab

0,36 +/- 0,21
a

0,12 +/- 0,07
b

0,15 +/- 0,1
ab

0,13 +/- 0,06
a

0,1 +/- 0,06
ab

0 +/- 0
a

atdur3-1 young 0,4 +/- 0,28
a

0,24 +/- 0,16
a

0,13 +/- 0,1
a

0,13 +/- 0,11
b

0,09 +/- 0,07
a

0,16 +/- 0,12
b

0,04 +/- 0,03
b

0,02 +/- 0,01
a

0,01 +/- 0,01
b

0,03 +/- 0,03
a

middle 1 +/- 0,62
a

0,68 +/- 0,41
a

0,61 +/- 0,24
ab

0,43 +/- 0,15
ab

0,47 +/- 0,17
ab

0,26 +/- 0,14
ab

0,25 +/- 0,11
ab

0,1 +/- 0,08
a

0,07 +/- 0,03
ab

0,08 +/- 0,02
a

old 0,26 +/- 0,11
a

0,32 +/- 0,18
a

0,57 +/- 0,31
ab

0,36 +/- 0,29
ab

0,47 +/- 0,17
ab

0,13 +/- 0,03
b

0,16 +/- 0,05
ab

0,17 +/- 0,17
a

0,14 +/- 0,06
ac

0,01 +/- 0,01
a

ureGA young 0,25 +/- 0,19
a

0,18 +/- 0,14
a

0,12 +/- 0,1
a

0,11 +/- 0,12
b

0,09 +/- 0,06
a

0,11 +/- 0,09
b

0,05 +/- 0,03
b

0,02 +/- 0,01
a

0,01 +/- 0,01
b

0,02 +/- 0,02
a

middle 0,66 +/- 0,49
a

0,5 +/- 0,34
a

0,37 +/- 0,19
a

0,34 +/- 0,26
ab

0,29 +/- 0,13
a

0,28 +/- 0,2
ab

0,18 +/- 0,09
ab

0,05 +/- 0,04
a

0,04 +/- 0,02
ab

0,06 +/- 0,04
a

old 0,54 +/- 0,22
a

0,73 +/- 0,4
a

1,15 +/- 0,58
b

0,76 +/- 0,42
a

0,84 +/- 0,42
b

0,24 +/- 0,14
ab

0,3 +/- 0,15
a

0,18 +/- 0,1
a

0,25 +/- 0,15
c

0,05 +/- 0,06
a

dur3xureGA young 0,41 +/- 0,2
a

0,31 +/- 0,15
a

0,21 +/- 0,1
a

0,22 +/- 0,1
ab

0,15 +/- 0,07
a

0,24 +/- 0,13
ab

0,07 +/- 0,04
bc

0,04 +/- 0,02
a

0,02 +/- 0,01
b

0,04 +/- 0,04
a

middle 1,11 +/- 0,87
a

0,69 +/- 0,46
a

0,48 +/- 0,33
a

0,38 +/- 0,3
ab

0,35 +/- 0,23
a

0,43 +/- 0,59
ab

0,18 +/- 0,09
ab

0,13 +/- 0,07
a

0,04 +/- 0,02
ab

0,08 +/- 0,1
a

old 0,42 +/- 0,34
a

0,53 +/- 0,46
a

0,71 +/- 0,55
ab

0,49 +/- 0,41
ab

0,52 +/- 0,37
ab

0,14 +/- 0,11
b

0,26 +/- 0,18
ac

0,13 +/- 0,12
a

0,12 +/- 0,07
ab

0,02 +/- 0,04
a

35SDUR3 young 0,76 +/- 0,42
a

0,49 +/- 0,19
a

0,25 +/- 0,12
a

0,3 +/- 0,13
ab

0,16 +/- 0,07
a

0,78 +/- 0,21
a

0,09 +/- 0,03
ab

0,16 +/- 0,12
a

0,03 +/- 0,01
ab

0,03 +/- 0,04
a

middle 0,39 +/- 0,16
a

0,33 +/- 0,1
a

0,24 +/- 0,04
a

0,26 +/- 0,04
ab

0,17 +/- 0,04
a

0,37 +/- 0,19
ab

0,1 +/- 0,01
ab

0,14 +/- 0,07
a

0,03 +/- 0,01
ab

0,03 +/- 0,01
a

old 0,64 +/- 0,41
a

0,54 +/- 0,32
a

0,54 +/- 0,15
ab

0,43 +/- 0,24
ab

0,36 +/- 0,12
ab

0,21 +/- 0,11
ab

0,17 +/- 0,07
ab

0,2 +/- 0,16
a

0,1 +/- 0,01
ab

0,03 +/- 0,05
a

Gly Met TyrAlaGABA Ile Lys Phe Arg His

 

µmol g
-1

 DW h
-1

AA

-N Leaf

Col-0 young (>12) 5,01 +/- 1,28
ab

1,63 +/- 0,25
b

0,32 +/- 0,06
b

0,53 +/- 0,16
ab

0,28 +/- 0,06
bc

0,25 +/- 0,08
ab

0,21 +/- 0,09
b

0,1 +/- 0,05
a

0,22 +/- 0,05
bc

0,21 +/- 0,08
bc

middle (7-12) 13,4 +/- 4,28
ae

4,99 +/- 1,18
ab

1,09 +/- 0,49
ab

1,11 +/- 0,1
ab

0,95 +/- 0,2
ab

0,61 +/- 0,3
ab

0,49 +/- 0,29
ab

0,51 +/- 0,26
a

0,65 +/- 0,21
abc

0,44 +/- 0,24
ab

old (1-6) 13,1 +/- 7,27
ae

3,82 +/- 2,56
ab

1,19 +/- 0,6
ab

0,93 +/- 0,5
ab

0,53 +/- 0,24
bc

0,9 +/- 0,5
bc

1,04 +/- 0,56
bc

1,05 +/- 0,54
a

0,73 +/- 0,34
abc

0,68 +/- 0,35
ab

atdur3-1 young 3,84 +/- 2,07
a

1,02 +/- 0,53
b

0,17 +/- 0,15
b

0,42 +/- 0,23
ab

0,18 +/- 0,1
b

0,24 +/- 0,14
b

0,21 +/- 0,12
b

0,09 +/- 0,03
a

0,17 +/- 0,09
b

0,21 +/- 0,12
bc

middle 15,7 +/- 3,08
ce

5,82 +/- 0,73
ab

1,22 +/- 0,25
ab

1,04 +/- 0,18
ab

1,05 +/- 0,12
ac

0,87 +/- 0,18
bc

0,72 +/- 0,19
bc

0,67 +/- 0,47
a

0,77 +/- 0,13
abc

0,61 +/- 0,13
ab

old 14,7 +/- 8,14
be

4,2 +/- 2,6
ab

1,37 +/- 0,77
ab

1,13 +/- 0,7
ab

0,62 +/- 0,37
bcd

1,03 +/- 0,56
bc

1,1 +/- 0,6
bc

0,88 +/- 0,35
a

0,85 +/- 0,39
bd

0,76 +/- 0,4
ab

ureGA young 5,7 +/- 2,16
ac

2,07 +/- 0,76
ab

0,45 +/- 0,13
bc

0,39 +/- 0,16
b

0,38 +/- 0,13
bc

0,31 +/- 0,1
ab

0,25 +/- 0,08
b

0,21 +/- 0,21
a

0,29 +/- 0,09
bc

0,22 +/- 0,07
bc

middle 17,4 +/- 11,1
de

4,53 +/- 3
ab

1,04 +/- 0,66
ab

1,88 +/- 1,21
a

0,84 +/- 0,58
ab

1,05 +/- 0,69
bc

0,9 +/- 0,58
bc

0,34 +/- 0,25
a

0,8 +/- 0,51
abc

0,92 +/- 0,59
ac

old 19,1 +/- 13,1
ef

5,53 +/- 3,81
ab

1,77 +/- 1,19
a

1,49 +/- 0,96
ab

0,9 +/- 0,58
ab

1,19 +/- 0,81
ac

1,37 +/- 0,91
ac

1,08 +/- 1,37
a

1,11 +/- 0,69
ad

0,95 +/- 0,62
ad

dur3xureGA young 4,51 +/- 1,07
ab

1,37 +/- 0,27
b

0,3 +/- 0,11
b

0,58 +/- 0,11
ab

0,24 +/- 0,05
bc

0,22 +/- 0,03
b

0,16 +/- 0,04
b

0,12 +/- 0,07
a

0,19 +/- 0,05
bc

0,18 +/- 0,04
b

middle 18,8 +/- 9,65
ef

6,95 +/- 3,19
ac

1,65 +/- 0,64
ac

1,61 +/- 1,17
ab

1,46 +/- 0,7
a

0,83 +/- 0,39
bc

0,68 +/- 0,36
bc

0,61 +/- 0,47
a

0,96 +/- 0,48
cd

0,59 +/- 0,29
ab

old 8,19 +/- 5,43
ad

1,9 +/- 1,48
ab

0,8 +/- 0,51
ab

0,57 +/- 0,52
ab

0,34 +/- 0,2
bc

0,51 +/- 0,34
ab

0,65 +/- 0,36
bc

0,39 +/- 0,17
a

0,54 +/- 0,32
abc

0,42 +/- 0,25
bcd

35SDUR3 young 7,62 +/- 3,31
ad

1,7 +/- 0,77
ab

0,54 +/- 0,23
ab

1,04 +/- 0,42
ab

0,31 +/- 0,11
bc

0,49 +/- 0,25
ab

0,32 +/- 0,19
b

0,16 +/- 0,05
a

0,37 +/- 0,15
abc

0,38 +/- 0,2
bcd

middle 13,8 +/- 4,15
ae

5,06 +/- 2,09
ab

0,97 +/- 0,11
ab

1,38 +/- 0,24
ab

0,95 +/- 0,28
ab

0,54 +/- 0,16
bc

0,34 +/- 0,09
ab

0,84 +/- 0,47
a

0,73 +/- 0,16
bd

0,36 +/- 0,08
ab

old 28,3 +/- 12,1
f

11,5 +/- 5,17
c

1,94 +/- 0,96
a

1,61 +/- 1,16
ab

1,47 +/- 0,69
ad

1,68 +/- 0,64
c

1,58 +/- 0,65
c

0,91 +/- 0,19
a

1,65 +/- 0,51
d

1,2 +/- 0,46
a

Total Val IleLeuGluSer AsnGln ThrPro

 

µmol g
-1

 DW h
-1

AA

-N Leaf

Col-0 young (>12) 0,22 +/- 0,09
bc

0,31 +/- 0,08
ab

0,18 +/- 0,05
b

0,25 +/- 0,08
a

0,09 +/- 0,03
b

0,07 +/- 0,02
bc

0,08 +/- 0,03
a

0,01 +/- 0
b

0,01 +/- 0
a

0,03 +/- 0,02
a

middle (7-12) 0,44 +/- 0,21
ab

0,46 +/- 0,15
ab

0,37 +/- 0,09
ab

0,48 +/- 0,16
a

0,3 +/- 0,17
ab

0,18 +/- 0,09
ab

0,18 +/- 0,07
a

0,03 +/- 0,02
ab

0,03 +/- 0,01
a

0,07 +/- 0,05
a

old (1-6) 0,53 +/- 0,31
ab

0,37 +/- 0,14
ab

0,36 +/- 0,16
ab

0,18 +/- 0,06
a

0,39 +/- 0,19
ab

0,11 +/- 0,05
bde

0,08 +/- 0,04
a

0,15 +/- 0,08
ace

0,08 +/- 0,04
a

0 +/- 0
a

atdur3-1 young 0,17 +/- 0,1
b

0,28 +/- 0,09
ab

0,14 +/- 0,08
b

0,24 +/- 0,13
a

0,1 +/- 0,05
b

0,06 +/- 0,03
b

0,08 +/- 0,05
a

0,01 +/- 0,01
b

0,01 +/- 0,01
a

0,04 +/- 0,02
a

middle 0,46 +/- 0,1
ab

0,51 +/- 0,1
ab

0,4 +/- 0,06
ab

0,51 +/- 0,18
ab

0,49 +/- 0,11
ab

0,25 +/- 0,04
ad

0,16 +/- 0,04
a

0,07 +/- 0,03
abd

0,03 +/- 0,01
a

0,09 +/- 0,02
ab

old 0,54 +/- 0,31
ab

0,48 +/- 0,24
ab

0,39 +/- 0,2
ab

0,27 +/- 0,08
a

0,52 +/- 0,31
ab

0,2 +/- 0,06
ab

0,1 +/- 0,04
a

0,16 +/- 0,09
ac

0,06 +/- 0,05
a

0,01 +/- 0,03
a

ureGA young 0,16 +/- 0,05
b

0,21 +/- 0,07
b

0,15 +/- 0,06
b

0,2 +/- 0,1
a

0,19 +/- 0,06
b

0,09 +/- 0,03
bd

0,06 +/- 0,02
a

0,02 +/- 0,01
be

0,01 +/- 0,01
a

0,03 +/- 0,01
a

middle 0,79 +/- 0,53
ac

1,24 +/- 0,54
c

0,64 +/- 0,41
a

1,04 +/- 0,67
b

0,48 +/- 0,31
ab

0,24 +/- 0,14
ad

0,37 +/- 0,25
b

0,05 +/- 0,03
abd

0,04 +/- 0,03
a

0,19 +/- 0,13
b

old 0,63 +/- 0,44
ab

0,67 +/- 0,38
bc

0,54 +/- 0,28
ab

0,41 +/- 0,18
a

0,77 +/- 0,51
a

0,27 +/- 0,11
ae

0,12 +/- 0,06
a

0,2 +/- 0,15
c

0,08 +/- 0,08
a

0,02 +/- 0,03
a

dur3xureGA young 0,18 +/- 0,04
b

0,28 +/- 0,07
ab

0,17 +/- 0,03
b

0,26 +/- 0,04
a

0,07 +/- 0,04
b

0,05 +/- 0,02
b

0,08 +/- 0,02
a

0,01 +/- 0
b

0,02 +/- 0,02
a

0,03 +/- 0,01
a

middle 0,51 +/- 0,26
ab

0,64 +/- 0,46
ab

0,54 +/- 0,31
ab

0,64 +/- 0,35
ab

0,45 +/- 0,23
ab

0,23 +/- 0,12
acd

0,21 +/- 0,1
ab

0,07 +/- 0,04
abd

0,13 +/- 0,06
ab

0,07 +/- 0,05
a

old 0,39 +/- 0,21
ab

0,27 +/- 0,15
b

0,4 +/- 0,24
ab

0,29 +/- 0,21
a

0,29 +/- 0,17
ab

0,1 +/- 0,06
bde

0,11 +/- 0,07
a

0,09 +/- 0,06
abc

0,12 +/- 0,07
a

0,01 +/- 0,02
a

35SDUR3 young 0,41 +/- 0,21
ab

0,64 +/- 0,19
bc

0,31 +/- 0,12
ab

0,32 +/- 0,12
a

0,2 +/- 0,1
b

0,1 +/- 0,04
bde

0,16 +/- 0,06
a

0,03 +/- 0,01
ab

0,06 +/- 0,06
a

0,07 +/- 0,04
a

middle 0,34 +/- 0,02
ab

0,58 +/- 0,08
bc

0,4 +/- 0,07
ab

0,47 +/- 0,04
ab

0,23 +/- 0,05
ab

0,15 +/- 0,04
ab

0,2 +/- 0,04
ab

0,05 +/- 0,01
abd

0,13 +/- 0,09
ab

0,05 +/- 0,02
a

old 0,9 +/- 0,31
a

0,89 +/- 0,36
ac

0,59 +/- 0,17
ab

0,59 +/- 0,13
ab

0,76 +/- 0,26
a

0,35 +/- 0,12
a

0,24 +/- 0,05
ab

0,18 +/- 0,06
cd

0,27 +/- 0,2
b

0 +/- 0
a

HisAsp Phe TyrMetLys GlyArgAla GABA
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Table 2: Comparison of urea and total amino acids in leaf petiole exudates in dependence of 

the N supply. 

 

 

+N 

[µmol g-1DWh-1] 

-N 

[µmol g-1DWh-1] 

Old leaves   

Total aa 
12.6 13.3 

Urea 
1.3 (10.3%) 1.3 (9.7%) 

Middle leaves 
  

Total aa 
15.9 13.4 

Urea 0.3 (1.9%) 0.2 (1.5%) 

Young leaves 
  

Total aa 
17.8 5.1 

Urea 
0.2 (1.1%) 0.1 (1.9%) 

 

4.2.6 Retranslocation of 15N-labelled urea from senescing leaves 

A quantification of the contribution of AtDUR3 to urea re-translocation was 

investigated by short-term re-translocation assays with 15N-labelled urea in wild-

type and atdur3-1 plants precultured under different N regimes. In wild-type plants, 

the natural abundance was determined in N-sufficient leaves of different age 

(Figure 23). Surprisingly, there was a clear gradient in the 15N/14N ratio from old to 

young leaves. While an adequate N supply yielded a higher abundance of 15N in 

the old leaves, N deprivation led to an opposite pattern with heavier N in the 

younger leaves. Taking into account remobilization processes of N from old to 

young leaves when plants are grown under N deficiency, this suggests that 

remobilised N is heavier than newly assimilated one.  
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Figure 23: The natural 
15

N abundance in leaves of N-sufficient and N-deficient Arabidopsis 

plants. 

Natural abundance of 
15

N in different leaf fractions of wild-type plants. Plants were cultured for 6 
weeks under long-day conditions at either continuous supply of 2 mM NH4NO3 (+N) or 4 days N 
starvation prior to harvest. Old (leaf no. 1-5), middle (leaf no. 7-12) and young (leaf no. >12) leaves 
were separately harvested and analysed by IR-MS. Bars represent mean of two biological replica. 

Short-term labelling of leaf no. 6 of 6 week-old wild-type or atdur3-1 plants cultured 

under long days either under N-sufficient (+N) or N-deficient (-N) conditions for 4 

days conditions was performed by applying 10 µl of a 2% solution of 15N-labelled 

urea on a defined area for a period of 3 days. Changes in 15N/14N ratio were 

monitored in old (1-5), middle (7-12) and young (>12) leaves as well as in the roots 

(Figure 24) after subtraction of the natural abundance found in each fraction prior 

to labelling.  
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Figure 24: Changes in 
15

N/
14

N ratios after short-term labelling of a single leaf.  

15
N/

14
N ratio in (a) wild-type leaves from plants precultured under adequate or deficient N supply, 

(b) in wild-type and atdur3-1 leaves from N-deficient plants and (c) in roots of wild-type and 
atdur3-1 precultured under adequate or deficient N supply. 6 week-old wild-type and atdur3-1 
plants were cultured under long-day conditions under either continuous supply of 2 mM NH4NO3 
(+N) or 4 days of N starvation prior to harvest. Leaf no.6 was labelled with 10 µl of 2% 

15
N-labelled 

urea solution for 3 days. Old (leaf no. 1-5), middle (leaf no. 7-12) and young (leaf no. >12) leaves 
were separately harvested and analysed by IR-MS. Bars indicate means ± SD, n=7. 

In N-sufficient wild-type plants the 15N/14N ratio increased from the old and 

middle-aged leaves to young leaves (Figure 24a). N starvation reinforced this 

pattern and the ratio increased now also in the middle-aged leaves, indicating a 

preferential translocation of the heavier N to younger leaves. Comparing the 

changes in 15N/14N ratio between the wild-type and atdur3-1 plants from 
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N-deficient preculture confirmed the preferential allocation of heavy N into younger 

parts of the plant (Figure 24b). However, there was no difference between the two 

lines indicating that a loss of AtDUR3 had no or such a weak effect that it could not 

be detected. Interestingly, the 15N/14N ratio also increased in roots when plants 

were precultured under N-limiting conditions (Figure 24c), indicating that even 

during early senescence roots create a sink for N from source leaves. 

4.2.7 Day-length specific phenotype of plants over-expressing AtDUR3 

and regulatory elements in its promoter region  

35SDUR3 plants showed no differences in phenotype compared to Col-0 as long 

as plants were grown under short-day conditions (Figure 25). However, when 

plants were cultured in long days, 35SDUR3 shoots clearly altered their 

morphology. The petiole length was reduced, therefore the rosette appeared more 

compact. The leaf shape changed as well, became curly and a bit broader, 

indicating that the actual shade avoidance phenotype of the wild type with 

elongated petioles got lost in the overexpressor line. Fresh weight as well as 

flowering time were not altered in the transgenic line (Kriegel, 2011). It is important 

to note here that the atdur3-1 insertion line did not show any phenotypical 

differences to the wild type under any of the growth conditions tested so far. 

Additionally, only one AtDUR3 overexpressing line (B3) could be tested due to a 

very low germination rate of the other overexpressing lines. To rule out an 

influence by the insertion per se, other lines have to be analysed in near future.  

 

Figure 25: A day length-dependent phenotype of a transgenic line ectopically expressing 

35S::AtDUR3.  

Shoot phenotype of wild-type (Col-0) and 35SDUR3 as influenced by short-day conditions (10h/ 
14h light/dark) or long days (16h/ 8h light/dark). Plants were cultured hydroponically for 6 weeks on 
adequate N supply (2 mM NH4NO3) under continuous day length. 
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To better understand this extraordinary performance of the overexpressor the 

properties of the promoter region of AtDUR3 were analysed (Figure 26). 1000 bp 

of the genomic DNA sequence upstream of the transcription star of AtDUR3 

contained several binding sites and predicted motifs for known transcription factors 

(TF) (Figure 26). Promoter elements indicated regulation of AtDUR3 expression by 

different signals such as light, ABA or UV-B. Related to the subject of senescence 

two binding sites for transcription factors of the WRKY family (W-box) as well as a 

bZIP binding site appeared to be interesting. Subsequent coexpression analysis 

via Atted-II (Obayashi et al., 2009) identified, among others, WRKY60 (At2g25000) 

as being closely related with AtDUR3 expression with a correlation coefficient of 

0.65 as well as bZIP50 (At1g77920) with a correlation coefficient of 0.61. 

Comparison of the expression levels of AtDUR3, WRKY60 and bZIP50 at different 

developmental stages indicated that coexpression of AtDUR3 and bZIP50 

matched even closer at different developmental stages that of AtDUR3 and 

WRKY60 (Figure 26). 
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Figure 26: In silico analysis of the transcriptional regulation of AtDUR3. 

(a) Promoter elements in AtDUR3 predicting the regulation by several TFs. The Arabidopsis Gene 
Regulatory Information Server (AGRIS, Davuluri et al., 2003) was used as information resource of 
Arabidopsis promoter sequences, transcription factors and their target genes, using 1000bp of the 
genomic DNA sequence upstream of the transcription start of AtDUR3. (b) Coexpression analysis 
of AtDUR3 with WRKY60 and bZIP50. Genevestigator (Hruz et al., 2008) was used to visualize the  
levels of coexpressed genes found via Atted-II (Obayashi et al., 2009). 
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4.2.8 Salicylic acid is required for induction of AtDUR3 gene 

expression during senescence and mimics N-deficiency effects 

on AtDUR3 transport activity  

In silico data mining of relative expression levels confirmed that AtDUR3 was 

induced after the onset of flowering in Col-0 leaves (Figure 27). However, in the 

transgenic line NahG, in which salicylic acid (SA) accumulation is prevented by 

expression of the SA-degrading enzyme salicylate hydroxylase, no induction of 

AtDUR3 occurred in leaves after the onset of flowering. This dependency on SA 

seemed to be exclusive, since mutants with e.g. a defect in either the ethylene 

signalling pathway (ein2) or jasmonic acid pathway (coi1) showed no altered 

AtDUR3 expression levels in senescent leaves. This pointed to a prominent role of 

SA in the induction of AtDUR3 gene expression in senescent leaves. 

 

Figure 27: AtDUR3 expression during senescence in leaves of mutants defective in 

phytohormone signaling. 

Relative expression levels of AtDUR3 in Col-0 before and at flowering as well as in the transgenic 
line NahG (unable to accumulate SA due to salicylate hydroxylase expression), ein2 (ethylene 
insensitive mutant) and coi1 (defective in jasmonic acid signalling). The microarray dataset was 
obtained from AtGenExpress (Schmid et al., 2005) using a subset of Buchanan-Wollaston et al., 
(2005). 

An uptake experiment with 15N-labelled urea in wild-type roots was then performed 

in the absence or presence of salicylic acid to validate the putative effect of SA on 

AtDUR3 expression and AtDUR3 activity. For this purpose, roots of 6 weeks-old 
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plants cultured under continuous supply of 2 mM NH4NO3 (+N) or subjected to N 

deprivation for 4 days (-N) were treated with 500 µM SA for 3h before the uptake 

experiment. To separately assess the contribution of high-affinity (HATS) and 

low-affinity transport systems (LATS) 200 and 2000 µM 15N-labelled urea, 

respectively, were used (Figure 28).  

 

 

Figure 28: Root incubation with salicylic acid increases urea uptake capacity.  

Urea influx into roots of hydroponically-grown Arabidopsis wild-type plants. Plants were grown for 6 
weeks under continuous supply of 2 mM NH4NO3 (+N) or subjected to N deprivation for 4 days (-N) 
prior to the experiment. 500µM salicylic acid was applied 3 h before the uptake experiment with 
either 200 µM (for high-affinity transport, HATS) or 2000 µM (for low-affinity transport, LATS) 

15
N-

labelled urea for 10 min. Bars indicate means ± SD, n=8. 

 

As expected, urea uptake in the high-affinity range (200 µM) was low when plants 

were precultured under N-sufficient conditions. N deficiency led to a strong 

increase in urea influx as observed previously (Figure 9). Under adequate N 

supply the application of SA led to an increase in urea uptake capacity that was 

comparable to that under N-deficient conditions, indicating that SA may mimic N 

deficiency in roots. Under N-deficient conditions, however, the preincubation with 

SA had no further stimulatory effect on urea uptake. 

However, not only the HATS was affected by SA, but also the LATS showed a 

doubling of urea influx after SA application. In addition, the low-affinity transport 

capacity was slightly increased in the absence of SA, which probably reflected the 

contribution of the HATS. This suggested that SA stimulates besides HATS for 

urea also the LATS. 
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5 Discussion 

5.1 AtDUR3 represents the major transporter for high-affinity 

urea transport across the plasma membrane of nitrogen-

deficient Arabidopsis roots         

(published in The Plant Journal (2007), 52, 30-40) 

Heterologous expression in yeast and oocytes allowed identification of AtDUR3 as 

a high-affinity urea transporter in Arabidopsis (Liu et al., 2003a). Belonging to the 

SSS superfamily, AtDUR3-mediated urea transport depends on co-transport with 

protons. Of the broad range of neutral and charged solutes that have been 

reported as substrates for SSS-type transporters in different organisms (Reizer et 

al., 1994), heterologous expression studies with AtDUR3 permitted the testing of 

only a few (Liu et al., 2003a). Furthermore, these studies could not exclude the 

possibility that urea permeation might reflect a physiologically irrelevant transport 

activity of AtDUR3. In other words, the physiological nature of this unique transport 

system as to its significance in plant N nutrition has been poorly understood so far. 

The first part of the present study set out to investigate the physiological role of 

AtDUR3 in urea transport in planta and shows that AtDUR3 does indeed represent 

the major transporter for high-affinity urea uptake in Arabidopsis roots. 

5.1.1 AtDUR3 acts as a nitrogen-regulated urea transporter at the root 

plasma membrane 

A general feature of membrane transporters that fulfil a function in nutrient uptake 

by roots is their transcriptional upregulation under limiting supply of the 

corresponding nutrient (Ahn et al., 2004; Gazzarrini et al., 1999; Rausch and 

Bucher, 2002; Takahashi et al., 2000). In the case of the high-affinity nitrate and 

ammonium transporter genes in Arabidopsis roots, NRT2;1 and AMT1;1, 

transcriptional upregulation under N deficiency reflected a de-repression most 

likely due to decreasing root concentrations of glutamine or other reduced N forms 

(Nazoa et al., 2003; Rawat et al., 1999; Vidmar et al., 2000). Corresponding with 

such a N-dependent regulation, transcript levels of AtDUR3 increased in N-
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deficient roots and were strongly repressed after resupply of ammonium or nitrate 

(Figure 6). Since nitrate-dependent repression of AtDUR3 mRNA levels was even 

stronger than that of ammonium, it is possible that nitrate per se is a signal for 

transcriptional repression in addition to a repression by its downstream 

metabolites (Wang et al., 2000, 2001). Moreover, levels of AtDUR3 transcript were 

strongly induced after resupply of urea to N-deficient roots (Figure 6). Substrate 

induction was even stronger than the preceding de-repressive effect by N 

deficiency in root cells. This suggests that AtDUR3 is not exclusively a component 

of the N deficiency stress response in Arabidopsis but also represents a substrate-

inducible transport system, similar to NRT2;1 for nitrate (Lejay et al., 1999; Zhuo et 

al., 1999).  

Two independent experimental approaches indicated that the AtDUR3 protein 

resides predominantly in the plasma membrane of root cells. First, protein gel blot 

analysis employing a specific antibody raised against the C-terminus of AtDUR3 

documented a several-fold higher abundance of the protein in a plasma 

membrane-enriched protein fraction from N-deficient roots relative to a protein 

fraction depleted of plasma membrane proteins (Figure 4c). The fact that a small 

portion of AtDUR3 protein was also detected in endosomal membrane fractions 

was most likely due to an incomplete separation of the two fractions. In addition, a 

minor fraction of AtDUR3 may have resided in endosomal compartments, 

reflecting, for example, proteins that were trafficking to or from the plasma 

membrane (Takano et al., 2005). Secondly, whole-mount immunohistochemistry 

allowed tracing of AtDUR3-dependent fluorescence along the border of root hair 

cells (Figure 4d). Since these cells were densely filled with cytoplasm, the 

observed fluorescence could be assigned to the plasma membrane. Also in this 

approach, only a minor portion of the labeled protein appeared to be localized 

inside the cells. Taken together, the highly predominant localization of AtDUR3 in 

the root plasma membrane strongly supports a role for the protein in substrate 

exchange between root cells and the external medium.  

A role for AtDUR3 in urea uptake from the external medium was indicated by a 

phenotypical analysis of two T-DNA insertion lines, in which no AtDUR3 mRNA or 

protein could be detected (Figure 3b and Figure 4a). The absence of any visual 

symptoms or growth defects when ammonium nitrate was supplied as the sole N 

source suggested that gene disruptions in AtDUR3 did not interfere with the 
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acquisition of ammonium or nitrate in general. When grown on agar medium 

supplied with 500-1000 µM urea as a sole N source, both insertion lines atdur3-1 

and atdur3-3 exhibited chlorotic leaves and appeared to accumulate increased 

levels of anthocyanins (Figure 3c). These two symptoms are highly indicative of N 

deficiency (Marschner, 1995; Steyn et al., 2002) and suggest that AtDUR3 also 

contributed to urea uptake in the millimolar concentration range. In fact, 

concentration-dependent uptake studies confirmed that urea influx in the atdur3 

mutant was still significantly lower than in the wild-type in a concentration range 

from 0.5 to 1.2 mM urea, although the contribution of AtDUR3 to urea influx did not 

change in absolute terms (Figure 9b). As there are no close homologs to AtDUR3 

within the SSS superfamily of Arabidopsis (Figure 1) it is likely that AtDUR3 

performs a unique physiological function in urea-based N nutrition. 

Urea concentrations in the roots of hydroponically grown wild-type plants 

decreased approximately fivefold under conditions of N deficiency (Figure 8). 

Although our approach to determine urea cannot rule out the interference of other 

ureides, this observation supports the notion that internal accumulation of urea 

depends on provision of N to the roots and that root urea pools are also broken 

down under N deficiency during vegetative growth (Walker et al., 1985). As N-

dependent changes in internal urea pools were similar in wild-type and insertion 

lines, the loss of AtDUR3 function did not substantially impair the internal 

utilization of urea. However, slightly lower urea concentrations in the two insertion 

lines after a period of N starvation pointed to the possibility that AtDUR3 

contributes to the retrieval of urea lost by efflux, e.g., via urea-transporting 

aquaporins in the plasma membrane (Eckert et al., 1999; Gerbeau et al., 1999). 

The strong increase in urea concentrations in roots after resupply of urea to N-

deficient wild-type plants relative to the insertion lines (Figure 8) clearly indicated 

that AtDUR3 mediated a significant accumulation of urea when supplied in the 

micromolar concentration range; at millimolar concentrations of external urea, 

additional transport processes must have contributed to urea uptake.  

Transient storage of urea inside the cell will most likely depend on urea transport 

into the vacuole, because urease is a cytoplasmic enzyme (Witte et al., 2002). 

Several fold higher urea transport capacities across the tonoplast membrane than 

across the plasma membrane have been reported for tobacco and wheat, and the 

mercury sensitivity of this transport process pointed to an involvement of 
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aquaporins (Tyerman et al., 1999), most likely represented by homologs of the TIP 

subfamily of aquaporins (Liu et al., 2003b). With regard to the size of the vacuole 

relative to the cytoplasm, such a high vacuolar loading capacity could then create 

an intracellular sink that withdraws a large amount of urea from urease-mediated 

degradation and might finally increase the driving force for AtDUR3-dependent 

and -independent urea transport across the plasma membrane.  

5.1.2 Physiological role of AtDUR3-mediated urea transport in 

Arabidopsis roots 

Transgenic plants expressing an AtDUR3-promoter::GFP fusion construct showed 

high promoter activity in rhizodermal cells including root hairs as well as in cortical 

cells of mature root hair zones (Figure 5). Promoter activity became more 

restricted to outer root cells in younger root zones but was absent in the root apex. 

This N deficiency-enhanced fluorescence was supported by increasing mRNA 

levels of AtDUR3 in N-deficient roots (Figure 6; Liu et al., 2003a). Such a cell-type-

specific expression pattern was reminiscent of that found for high-affinity 

ammonium and nitrate transporters which also contribute to import of N from the 

external medium (Guo et al., 2002; Loqué et al., 2006; Nazoa et al., 2003). 

Interestingly, AtDUR3 promoter activity was also observed in the stele of N-

deficient roots (Figure 5b,d), most likely reflecting developing xylem vessels or 

underlying xylem parenchyma cells. Indeed, earlier studies reported that urea was 

translocated in the xylem sap when urea was supplied as a dominant N form or 

when nickel deficiency prevented urease from degrading urea prior to 

translocation (Gerendás et al., 1998; Hine and Sprent, 1988). Thus, xylem-

associated AtDUR3 expression might reflect an involvement of the transporter in 

xylem loading or in retrieval of urea to xylem parenchyma cells. 

A quantitative determination of the uptake capacity of AtDUR3 was obtained by 

influx studies using 15N-labeled urea. Concentration-dependent influx of urea in 

atdur3-1 and atdur3-3 showed a linear concentration dependency (Figure 9a), 

which is typical for channel-mediated urea transport, as has been demonstrated 

for AtTIP2;1 when expressed in oocytes (Liu et al., 2003b). In contrast, urea influx 

in wild-type plants was steeply elevated relative to the increase in external urea 

supply at concentrations below 50 µM, reaching up to 10-times the activity of 
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atdur3. Between 50 and 200 µM urea wild-type plants showed no further significant 

increase in urea influx (Figure 9a). Taking into account the fact that urea influx in 

wild-type and atdur3-1 plants showed the same concentration-dependent increase 

at higher urea supply (Figure 9b), this study demonstrated that AtDUR3 is the 

major high-affinity urea transporter in Arabidopsis roots. Subtracting the urea influx 

in atdur3-1 from that in wild-type plants allowed calculation of a substrate affinity of 

AtDUR3 of 4 µM. This value accords well with the Km  value of 3 µM as determined 

by 14C-urea transport assays and electrophysiological studies in AtDUR3-

expressing Xenopus oocytes (Liu et al., 2003a). Considering the average urea 

concentrations of below 70 µM in natural or agricultural soils (Cho et al., 1996; 

Gaudin et al., 1987; Mitamura et al., 2000a, b), this particularly high substrate 

affinity is very likely to allow saturation of AtDUR3-mediated substrate transport 

into root cells in most soils. The low Km of AtDUR3 may be seen as an adaptation 

to the ubiquitous occurrence of microbial ureases. These enzymes usually have 

an affinity for their substrate in the millimolar range (Dalal, 1985) and are therefore 

unable to completely deplete soil urea. We propose a role for AtDUR3 as a unique 

transport system in Arabidopsis, allowing the direct use of urea, a limited but 

highly valuable N source in soils. 

5.2 AtDUR3 retrieves apopolastic urea for nitrogen 

remobilization in senescent Arabidopsis leaves in 

dependence of the salicylic acid regulatory pathway 

Reducing fertilizer input and at the same time increasing seed yield and quality by 

enhanced N fertilizer use efficiency is one of the major goals of agriculture today, 

especially when considering that these traits are negatively correlated (Krupinska 

and Humbeck, 2004). Next to primary uptake of N by roots the mobilization and 

retranslocation of N is one of the most limiting steps in N use efficiency. Cellular 

processes including the chemical transformation of N forms or the intracellular 

trafficking of N reserves are involved in delivering N from their sites of origin (e.g. 

the chloroplast undergoing disassembly) to the sites where long-distance transport 

of recycled N starts off (Gregersen et al., 2008; Mascleaux and Chardon, 2011). 

To elucidate bottlenecks in the efficient recycling of N, an even more detailed 

understanding at the whole-plant as well as at the cellular level is required.  
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Transcriptome analyses in senescent leaves have already provided significant 

insights into the nature and role of changes in gene expression during senescence 

and a lot of differentially expressed genes have been identified (Smart, 1994; 

Buchanan-Wollaston, 1997; Nam, 1997; Quirino et al., 2000, Gao, 2004). Some of 

these genes have proven to be apparent bottlenecks in efficient N metabolism and 

underlined the potential of increasing N use efficiency in plants by modulating their 

expression. For example, overexpression of a cytosolic GS1 isoform, which has 

been shown to be strongly upregulated in senescent leaves led to an increased 

kernel number under high and low N fertilization (Martin et al., 2006). However, 

modulating just one gene might not be sufficient in the long run, especially since 

the regulatory network governing senescence with its multiple interactions of the 

molecular components is so complex that a regulatory hierarchy is hard to figure 

out and might even not exist. Therefore, a combination of physiological, 

biochemical, genetic and molecular approaches is required to fully elucidate the 

regulation of both, the senescence initiation and execution.  

Experimental evidence for the significance and efficiency of different N forms for 

retranslocation processes is poor. Based on the first part of this study that has 

demonstrated the contribution of urea transporters for N uptake in roots, the 

second part of the thesis aimed at elucidating their role in N retranslocation as well 

as the role of urea as an intermediate in N remobilization during leaf senescence. 

5.2.1 Urea as a senescence-induced metabolite 

Organ-specific urea determinations in roots and shoots of wild-type plants 

indicated that in the vegetative growth stage urea accumulation in shoots is low 

and not affected by the N nutritional status of the plant (Figure 10). Moreover, this 

urea concentration is similar to concentrations found in roots under N deficiency, 

when root urea pools are depleted. Together with the observation that urea 

concentrations exhibit no daytime-dependent changes (Figure 11), shoot urea 

pools only seemed to have a minor or no function as N storage or intermediate 

and rather described a background urea level derived by general protein turnover 

processes. As this urea cannot be accessed under N-limiting conditions and since 

urease activity in the cytosol is not a rate-limiting factor (Witte, 2011), this 

background might reflect urea that is compartmentalized in the mitochondria, 
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where urea is generated in the ornithine cycle as a consequence of arginine 

catabolism (Polacco and Holland, 1993).  

A first quantitative characterization of the available urea in senescent leaves 

showed that urea concentrations started to increase with the switch of the plant 

into the generative growth phase being highest in the oldest leaves (Figure 13 and 

Figure 21). This was in agreement with an increase in arginine concentrations and 

arginase activity reported previously (Polacco and Holland, 1993; Goldraij and 

Polacco, 1999; Diaz et al., 2005; Paschalidis and Roubelakis-Angelakis, 2005). As 

in roots, leaf vacuoles might serve as transient storage compartments, whenever 

urea production exceeds the capacity of urease and urea (Witte, 2011; Britto and 

Kronzucker, 2002). Additionally, urea might also leak out of the cell via aquaporins 

located at the plasma membrane, indicating that the apoplast might also serve as 

a short-term reservoir for urea as anticipated previously by Sattelmacher (2001). 

However, urease is a very stable enzyme and might even be present in the 

apoplast (Polacco and Holland, 1993), which is in agreement with low urea 

concentrations found in apoplastic wash fluids (Figure 17). 

An accumulation of urea in senescent leaves could be observed independent of 

the way senescence was induced (Figure 14, Figure 15 and Figure 16). In the 

mutant line ureGA, that is unable to hydrolyse urea, the increase in leaf urea 

concentration after induction of senescence by shading was higher than in the wild 

type (Figure 16 and Figure 21). Comparing urea concentrations in different leaf 

fractions indicated that the elevation in overall urea concentration in ureGA was 

mostly due to an increase in old and middle-aged leaves, but not in young leaves 

(Figure 21). Interestingly, N deficiency, which had no impact on urea 

concentrations in the different wild-type leaf fractions, led to elevated urea 

concentrations in the youngest leaves in ureGA, while in the old and middle-aged 

leaves urea concentrations were just slightly increased in this mutant (Figure 21 

and Figure 22). This indicates that in young leaves of ureGA urea is either 

increasingly generated under N deficiency, a feature that in wild-type plants is 

masked by a functional urease. Or, urea is increasingly translocated into young 

leaves from the source leaves, in which the strong urea accumulation might lead 

to an increased leakage into the apoplast. Indeed urea concentrations in leaf 

petiole exudates tended to be enhanced in the oldest leaves of the wild type 

(Figure 21c), indicating that urea was not only increasingly accumulating in 
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senescent leaves, but may also have serveed as a translocated N form in 

Arabidopsis. In the oldest leaves of ureGA, urea concentrations in leaf petiole 

exudates were significantly higher, indicating that the high urea concentrations of 

the leaves were reflected in the exudates. However, this holds true only for old 

leaves, since in middle and young leaves with urea concentrations comparable to 

old leaves of wild type this could not be observed, suggesting that controlled 

loading of the phloem might have taken place. 

Taken together, urea represents an intermediate in N remobilization processes 

liberated during senescence. Based on its leaf- and plant age-dependent increase 

during senescence, urea might be suitable as a metabolic marker for early stages 

of leaf senescence, since its appearance is common for senescence. Additionally, 

urea can be transported in the phloem sap, indicating that urea potentially 

contributes to N retranslocation during senescence. 

5.2.2 Role of AtDUR3 in retrieval of apoplastic urea 

In shoots, the expression of the high-affinity urea transporter AtDUR3 correlated 

with urea concentrations. N deficiency just slightly induced AtDUR3 expression, 

which was not subject to a daytime-dependent regulation (Figure 10 and Figure 

11). This emphasizes a less important physiological function of AtDUR3 in leaves 

during the vegetative growth phase (Schmid et al., 2005, Figure 12). However, 

gene expression increased with the onset of senescence and since AtDUR3 is 

localized to the plasma membrane, an import function of apoplastic urea into the 

cytosol became likely (Figure 29).  

Several lines of evidence indicated that AtDUR3 takes over a retrieval function of 

apoplastic urea in senescent leaves: i) As urea accumulated over time in old 

leaves and urea concentrations were closely related to AtDUR3 gene expression 

levels (Figure 15), urea accumulation appeared to be directly stimulated by 

AtDUR3 expression and activity. ii) Under high cellular urea accumulation, urea-

transporting aquaporins localized at the plasma membrane are capable of urea 

permeation as a consequence of passive transport along a concentration gradient. 

Correlating urea concentrations in the apoplastic wash fluid to AtDUR3 gene 

expression in wild-type and atdur3-1 leaves indicated that a functional expression 

of AtDUR3 decreased apoplastic pools of urea (Figure 17). The concentration 
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found in the apoplast of the atdur3-1 mutant line accounted for approximately 

1 mM urea (Figure 17). This value matches the apoplastic concentrations reported 

for ammonium, which is also supposed to leak from the cytosol to the apoplast via 

NH3-transporting aquaporins (Schjoerring et al., 2002).  

 

Figure 29: Urea metabolism in senescent leaves. 

The senescence-induced degradation of proteins especially from the chloroplast generates large 
amounts of urea. As soon as urea is liberated via arginine catabolism during senescence, urea is 
accumulating in the cytosol. Some urea may be leaking to the apoplast via aquaporins (AQPs) 
located in the plasma membrane. Urea, which is lost into the apoplastic space, can then be 
retrieved by AtDUR3.  RCB, RuBisCO-containing body. 

With regard to the fact that AtDUR3 cotransports urea with protons (Liu et al., 

2003a) and that the leaf apoplastic pH is approximately 1.5-2 pH units lower, i.e. 

more acidic than the cytosol (Sattelmacher, 2001; Britto and Kronzucker, 2002), 

an urea import function of AtDUR3 from the apoplast into the cytosol of leaf cells is 

proposed. iii) The collection of leaf petiole exudates from N-deficient leaves 

allowed recovering largest amounts of urea when urease activity was lost, but 

AtDUR3 was functional, as in ureGA (Figure 22c). Thus, AtDUR3 was able to 

increase the phloem loading capacity, at least via the apoplastic phloem loading 

pathway. Actually, this hypothesis could be supported by the preliminary 

localization of the AtDUR3 promoter activity confirming AtDUR3 promoter activity 

in the vasculature of senescent leaves (Figure 18). Additionally, overexpression of 

AtDUR3 did not lead to an increase in urea concentrations in the phloem sap, 

indicating that it might not be involved directly in phloem loading (Figure 21). 
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Thus, AtDUR3 may find its precise role in a back-up function to keep as much 

urea as possible in the cytoplasm under growth conditions, in which large amounts 

of urea are generated via protein catabolism.  

Such a regulation of apoplastic metabolites has also been shown for ammonium 

and its transporters (Nielsen and Schjoerring, 1998; Sattelmacher, 2001; 

Sohlenkamp et al., 2002). NH4
+ is constantly generated in large quantities in plant 

leaves by processes such as photorespiration, nitrate reduction, protein turnover, 

and lignin biosynthesis (Joy, 1988; Leegood et al., 1995). Aquaporins might be 

responsible for a leakage into the apoplastic space since they were shown to 

transport ammonia as well (Loqué et al., 2005; Dynowski et al., 2008), and 

ammonium transporters of the high-and low-affinity systems have been shown to 

play an orchestrated role in keeping pH, N status and ammonium retrieval in 

balance (Schjoerring et al., 2002; Sohlenkamp et al., 2002).  

5.2.3 A Role of AtDUR3 in nitrogen retranslocation 

Long-distance transport of nutrients from senescing leaf tissue to the seeds or 

other parts of the plant is thought to take place via the phloem (Hill, 1980). Hence, 

also the phloem accessibility of a nutrient influences the efficiency with which it is 

mobilized from senescing leaves (Bukovac and Wittwer, 1957). Preliminary 

localisation studies of AtDUR3promoter::GUS plants (Figure 18) pointed to a 

localisation close to or even in the vascular bundle. It has been shown that GS1 

and GDH are strongly induced in senescent leaves, and GDH especially in phloem 

companion cells (Pérez-Garcia et al., 1998; Olea et al., 2004; AbuQamar et al., 

2006). AtDUR3 might therefore contribute to an increase of urea concentration in 

those cells that mediate urea transport to the site of phloem loading which are the 

companion cells in the vascular bundle. The primary function of urea may not be to 

serve as a N form for phloem loading, but rather to be hydrolysed, so that its N can 

be re-assimilated and translocated in another form such as glutamine or 

asparagine, which have been shown to be the most dominant amino acids found 

in the petiole exudates (Table 1). This would explain why urea was only visible in 

the ureGA background, since elevated urea concentrations may have led to a 

stronger phloem loading, and, as a consequence, the contribution of AtDUR3 

could only be observed in the double knock out dur3ureGA. Since urea 

http://www.plantphysiol.org/content/118/4/1361.full#ref-11
http://www.plantphysiol.org/content/118/4/1361.full#ref-16
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concentrations were always measured in whole leaf samples, a localized 

accumulation of urea in the vascular tissue was not observed. In fact, urea 

concentrations in whole leaf samples of dur3ureGA plants appeared similar to 

those found in the ureGA mutant (Figure 21 and Figure 22). Furthermore, this 

would also explain the slightly higher total amino acid exudation of old leaves of 

35SDUR3 plants under –N conditions (Table1), since urease is not the limiting 

step of urea metabolism (Gerendás and Sattelmacher, 1997). In future, it would be 

highly interesting to also exploit downstream genes of AtDUR3 such as urease, 

GS and GDH encoding genes to further strengthen this theory. 

Glutamine appears as a preferential N form for phloem loading (Caputo and 

Barneix, 1997). This view, however, mainly builds on the correlation of amino acid 

concentrations in leaves with that in the phloem sap, while it is still unclear to what 

extent enzymatic or transport steps determine the synthesis of low molecular-

weight N compounds required for phloem loading. As a N form with a narrow C/N 

ratio urea would actually be an ideal transport form. In order to clarify if a retrieval 

function of AtDUR3 and subsequent urea accumulation is also related to the 

availability for phloem loading and retranslocation, Arabidopsis mutant lines with 

altered expression of genes involved in the transport or assimilation of urea were 

investigated (Figure 21 andFigure 22). When N deficiency was applied for 4 days 

to trigger the remobilization of N, urea levels in the petiole sap of ureGA strongly 

increased which was not observed in dur3ureGA (Figure 22), pointing to a 

quantitative contribution of AtDUR3 to phloem loading that was only visible in the 

ureGA background, but otherwise masked in the wild-type background. 

Interestingly, the AtDUR3 over-expressing line showed no significant increase in 

urea retranslocation also under N deficiency. Uptake experiments with 15N-labelled 

urea, however, proofed an enhanced  AtDUR3 transport activity in this line, 

irrespective of its N nutritional status (Figure 20 and Figure 21). Thus, the lack of 

retranslocation in 35SDUR3 was not due to a limited transport capacity but rather 

implies that the transport activity in the wild type is not limiting as long as 

ammonium is generated by an active urease and long-distance transport forms (in 

particular glu and asn) are generated.  

In order to put the amount of urea translocated into perspective, amino acid levels 

were determined in the petiole exudates as well. Previous metabolite profiling 
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studies performed on Arabidopsis leaves over time showed that the concentration 

of individual amino acids fluctuated independently from each other with leaf 

ageing. As shown there, glutamate and aspartate, the most abundant amino acids 

in young leaves of Arabidopsis, decreased with senescence. In contrast, less 

abundant amino acids like tyrosine, leucine, isoleucine and the non-proteinogenic 

amino acid, γ-aminobutyric acid (GABA), accumulated with ageing (Diaz et al., 

2008). In general, the results found in this study confirmed the general order of 

abundance reported before with glutamine being most abundant over glutamate, 

serine, asparagine and aspartate (Table 1). A rough estimation showed that 

urea-N represented approximately 13% of total amino acid-N indicating that urea 

is a quantitatively important N form utilized for phloem loading.  

The retranslocation studies could not identify an explicit role of AtDUR3 in urea 

retranslocation (Figure 24). Surprisingly, roots seemed to be able to still create a 

sink for N, especially under N starvation. In literature, it is often referred to that 

roots do not create a sink anymore as soon as plants enter the generative phase 

supporting solemnly the development of the seed (Mattsson et al., 1993). 

However, an interesting discovery was made regarding the natural abundance of 

15N in the different leaf fractions that changed with the leaf age as well as in 

dependence of the N nutritional status of the plant (Figure 23). Under N-sufficient 

conditions the 15N/14N ratio was higher in the old leaves most likely due to the 15N 

discrimination by nitrate reductase, which is about 15‰ (Tcherkez and Farquhar, 

2006). Under N starvation, however, 15N accumulated in younger leaves indicating 

that 15N transiently accumulated in old leaves, which was then retranslocated to 

young leaves. This leads to the conclusion that remobilized N is heavier than 

freshly assimilated N which might be a future tool to distinguish these two N pools. 

More experiments determining the progression of the natural abundance of 15N 

during different developmental stages in sink and source leaves have to be 

performed to verify this hypothesis. 

5.2.4 AtDUR3 gene expression in leaves is regulated by salicylic acid 

35SDUR3 plants developed a strong conditional phenotype as soon as plants 

were cultured under long-day conditions (Figure 25). To learn more about the 

regulation of AtDUR3 expression, the promoter region of AtDUR3 was analysed 
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(Figure 26), yielding several predicted binding sites for transcription factors of the 

WRKY, MYB, RA, GATA and bZIP families. As an independent in silico approach 

coexpression analysis was performed and pointed to two genes, whose 

expression pattern closely matched that of AtDUR3, namely WRKY60 and bZIP50.  

WRKY60 belongs to the WRKY superfamily of TFs, which have been shown to be 

involved in the regulation of various physiological and developmental programs 

including pathogen defense and senescence (Eulgem et al., 2000, Rushton et al., 

2010). Besides a documented interaction of WRKY60 with WRKY40, WRKY18 or 

itself (Xu et al., 2006), it has been reported to be inducible by SA (Li et al., 2004). 

The TF bZIP50, however, belongs to a large family of TFs that regulate processes 

including pathogen defence, light and stress signalling, seed maturation and flower 

development (Jakoby et al., 2002). BZIP50 has mostly been reported to be 

involved in defence responses to pathogens. Moreover, in a transcriptome 

analysis performed to identify genes affected by long-term N deprivation or short-

term nitrate nutrition in Arabidopsis, bZIP50 turned out to be de-repressed under 

N-limiting conditions and was repressed after 3h of nitrate resupply (Scheible et 

al., 2004). Additionally, the subcellular localisation of the corresponding protein 

was predicted to reside not only in the nucleus, but also in mitochondria, even 

though at a lower likelihood (Heazlewood et al., 2007). A few studies have 

reported that certain metabolic pathways, activated during stress or pathogen 

infections, are also induced during senescence (Quirino et al., 1999). Strong 

evidence is lacking but it has been shown that pathogen-related genes can also be 

upregulated under sterile conditions in the absence of pathogens when plants 

undergo senescence, pointing to a common regulatory pathway.  

A search for conditions causing and for mutants with altered AtDUR3 gene 

expression clearly indicated that AtDUR3 derepression in senescent leaves 

depended on SA. AtDUR3 expression was not induced in NahG, a transgenic line 

incapable of SA accumulation (Figure 27). SA is one of the superior regulatory 

hubs involved in the induction of senescence (Morris et al., 2000), but it has been 

mostly studied in dependence of pathogen attack, where the SA pathway is 

responsible for systemic acquired resistance (Durrant and Dong, 2004). 

Arabidopsis mutants defective in SA signaling (npr1, pad4, eds5, and sid2 

(eds16)) or transgenic plants (NahG) that cannot accumulate SA show enhanced 

susceptibility to pathogens (Cui et al., 2002) and a delay in the onset of 
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developmental leaf senescence in Arabidopsis (Buchanan-Wollaston et al., 2005). 

However, all these findings are only based on reverse genetic approaches and 

therefore have to be treated with care. 

To get an idea of the effect of SA on AtDUR3 activity in planta, 15N-labelled urea 

influx was analyzed in dependence of the N nutritional status of the plants and in 

the presence of SA (Figure 28). SA clearly showed a strong stimulation of urea 

transport rates at N-sufficient conditions, where the high-affinity uptake systems 

usually are not activated. In this experiment, therefore, no additional induction 

could be obtained by a SA treatment under N-deficient conditions. Surprisingly, 

this inducing effect was not limited to high-affinity urea uptake, but also applied to 

low-affinity urea uptake. The low-affinity uptake system is usually differently 

regulated by the N status, and rather downregulated as soon as strong N 

deficiency is induced. However, the low-affinity system could be strongly induced 

irrespective of the N nutritional status, indicating that SA might have a wide range 

of action, which would be in agreement with its role as a dominant bottleneck in 

the regulatory network (Buchanon-Wollaston et al., 2005).  

Further studies have to confirm these findings, but an attractive hypothesis is that 

salicylic acid might be the signaling link between developmental senescence and 

N deficiency-induced senescence, merging for a combined initiation of target 

genes (Figure 30). SA by itself has been shown to be responsible for the 

expression of approximately 20% of the senescence-induced genes (Buchanan-

Wollaston et al., 2005). In the present working model, AtDUR3 represents one of 

these genes being indirectly regulated by SA, putatively via WRKY60 or bZIP50 

(Figure 30). 
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Figure 30: Working model of the regulation of AtDUR3 by salicylic acid (SA). 

Senescence is induced by several regulatory mechanisms. One is the salicylic acid 
(SA)-dependent pathway. N-deficiency might induce senescence by SA, thereby engaging in the 
regulatory network of SA. SA in turn induces transcription factors, e.g. WRKY60 and bZIP50, that 
are upstream of the transcriptional regulation of AtDUR3. 

In further studies, mutants will be employed to alter internal SA concentrations or 

to directly impair WRKY60 or bZIP50 expression. As the N deficiency signal is 

starting in the root (Walch-Liu et al, 2005) and if SA is this N deficiency signal, SA 

application to the root and a time-dependent analysis of N deficiency responses in 

the shoot will help to better understand how these two regulatory pathways are 

entangled.  

Taken together, urea is a prominent N intermediate generated during senescence 

that serves as a mobile transient storage form for N before its conversion into 

amino acids for long-distance transport. Most likely, AtDUR3 fulfills a urea retrieval 

function in the vasculature, keeping urea levels high in the cells and contributing 

only in an indirect way to phloem loading. Primary root uptake, the mobilization 

and the retranslocation of N are major limiting factors for N use efficiency. Since 

urea and AtDUR3 are involved in all of these processes they are promising targets 

to improve N use efficiency. As yield parameters were not included in this work 

and the overexpression of the transporter did not result in higher urea 

retranslocation, but indicated a higher amino acid efflux from older leaves, further 

studies on the impact of altered urea levels and AtDUR3 expression especially in 

crop plants should be conducted. Additionally, the impact of SA on the 
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N-regulatory network opens another door to investigate up- and downstream 

situated genes and metabolites, whose regulation might have a more powerful 

impact on N use efficiency. 
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