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1. General introduction 

 

Maize (Zea mays L.) is a major crop for food and feed production in Europe. In 2009, 13 

million ha of arable land were cultivated with maize in Europe (FAOSTAT, 2011). Maize 

growers have to cope with a range of different diseases, the prevalence of which depends 

mainly on the region under consideration. In general, all parts of the maize plant are 

susceptible to certain diseases (White and Carson, 1999). As a consequence, much 

attention is paid to diseases of the maize ear, because high grain yields and qualities can be 

ensured only by healthy ears and kernels. Among the various ear rot diseases of maize, the 

most prevalent in Europe are those caused by the genus Fusarium. 

 

Epidemiology of Fusarium graminearum  

 

The genus Fusarium includes a range of toxigenic fungi, which give cause for concern in 

many maize growing regions in the world. Occurrence of different Fusarium species on 

maize in Europe is very much dependent on the climatic conditions (Logrieco et al., 2002). 

In the hot and dry areas of Southern Europe, F. verticillioides (Sacc.) Nirenberg and 

F. proliferatum (Matsushima) Nirenberg are very widespread. In Northern and Central 

Europe, the prevalent Fusarium species on maize is F. graminearum Schwabe (teleomorph 

Gibberella zeae (Schwein.) Petch). Infections with this pathogen are frequent in years 

characterized by low temperature and frequent rainfalls during summer and autumn. For 

instance, F. graminearum was among the predominant Fusarium species on naturally 

infected maize ears in surveys in Germany in 2006 and in 2007 (Goertz et al., 2010) and in 

Switzerland in 2005 and 2006 (Dorn et al., 2009). 

Main sources of inoculum for new infections are colonized plant residues. 

Infections mainly take place through sexually formed ascospores as well as through 

asexually formed macroconidia. Ascospores are spread by wind, whereas macroconidia are 

spread by splashing and wind driven rain (Sutton, 1982). F. graminearum is able to 

colonize almost all plant tissues. Owing to its teleomorphic name and to the infected plant 

tissue, the corresponding diseases in maize are called Gibberella stalk rot and Gibberella 

ear rot (GER). The latter is sometimes also referred to as red ear rot. The primary mode of 
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GER infection is via the maize silks (= styles) mediated through germination of spores on 

the silks and followed by growth of hyphae, which penetrate the cob and immature maize 

kernels. Mechanical ear wounds caused for example by birds, insects or hail, can promote 

infections, too. However, wound infection is considered less important compared to silk 

infection (Sutton, 1982; Munkvold, 2003a). 

Typically for GER is a red or pink mold that usually starts at the ear tip and spreads 

downwards (Figure 1). Early infections can lead to completely diseased ears covered with 

reddish mycelium with husks tightly adhering onto them (Payne, 1999). 

 

 

Figure 1 Severe symptoms of Gibberella ear rot on artificially infected maize ears. 
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Consequences of Gibberella ear rot  

 

GER can lead to yield losses (Vigier et al., 2001), yet far more important under Central 

European growing conditions is contamination of the maize grains with mycotoxins. These 

fungal metabolites reduce the quality of harvested grains and consumption can lead to 

serious consequences for the health of humans and animals. Among the various 

mycotoxins produced by F. graminearum, the most prevalent are deoxynivalenol (DON) 

and zearalenone (ZEA). DON belongs to the trichothecenes, a group of immunosupressive 

mycotoxins associated with toxicoses of mammals. DON is considered as the most 

common trichothecene on cereals and as a potential aggressiveness factor of the fungus 

(Glenn, 2007). Consumption of maize contaminated by ZEA is problematic especially for 

women due to its mycoestrogenic properties. In pigs, which are the most sensitive farm 

animals, ZEA causes prolonged estrus intervals, stillbirth and other fertility disorders 

(Fink-Gremmels and Malekinejad, 2007). Especially in maize, ZEA has been encountered 

at very high concentrations (Bottalico, 1998). Further, contaminations lead to economic 

losses due to reduced feed intakes and performances of animals, as well as rejections in the 

market (Wu, 2007). The European Union notified maximum levels for certain food 

contaminants, including DON and ZEA, to protect public health. The limits in unprocessed 

maize intended for use as food are 1.75 mg kg
-1

 of DON and 0.35 mg kg
-1

 of ZEA 

(European Commission, 2007). Furthermore, for animal grain feed, guidance values are 

0.9-12 mg kg
-1

 for DON and 0.1-3 mg kg
-1

 for ZEA, depending on the animal and its age 

(European Commission, 2006a). Surveys from the last ten years show that DON 

concentration in grain maize varies tremendously depending on the variety, location and 

year. Furthermore, the concentration in many samples is regularly beyond the legal 

threshold level set by the European Commission (Eder et al., 2011). 

 

 

Prevention of mycotoxin accumulation  

 

So far, there is no efficient fungicidal control of ear rots in maize available. Therefore, 

certain risk factors should be taken into account, to reduce mycotoxin contaminations, 

following good agricultural practices, e.g., choice of varieties, crop rotation, crop planning, 

http://www.lfl.bayern.de/ipz/mais/41768/
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soil management, harvesting and post-harvest measures (European Commission, 2006b). 

But cultural practices have only limited effects on infection and mycotoxin accumulation, 

whereas post-harvest measures can only prevent further development of mycotoxins. 

Therefore, genetic resistance to ear rots and associated mycotoxins has the greatest 

potential (Munkvold, 2003b). The use of transgenic varieties, which carry a Bacillus 

thuringiensis (Bt) derived gene encoding for a insecticide toxin, has been proposed for 

prevention of mycotoxin contamination (Munkvold et al., 1997). In field experiments with 

European corn borer infestation, Bt varieties showed lower mycotoxin contamination than 

their isogenic counterparts (Magg et al., 2002; Papst et al., 2005). However, due to the 

prevalence of silk infection and the lacking acceptance of transgenic plants in Europe, 

genetic improvement of maize by means of classical resistance breeding seems most 

promising. 

 

 

Genetic improvement of resistance to Gibberella ear rot and mycotoxin accumulation 

 

Resistance to Gibberella ear rot and mycotoxin accumulation is inherited quantitatively 

(Chungu et al., 1996; Ali et al., 2005; Bolduan et al., 2009). Since GER epidemics are 

sporadic and disease severity is strongly influenced by the environment, artificial 

inoculation is usually performed to assess the resistance of the germplasm. Artificial 

inoculation enhances infections and overcomes the variability of certain years, when 

natural infection levels are too low to identify genotypic differences (Reid et al., 1996a).  

Genotypic variation for resistance to GER and mycotoxin accumulation has been 

reported for European (Bolduan et al., 2009; Löffler et al., 2010) and South- and North-

American maize germplasm (Presello et al., 2004; Reid et al., 1993; Reid et al., 1996b) and 

heritabilities were reported to be moderate to high. DON concentration and GER severity 

showed a strong positive relationship in various maize materials. In contrast, the 

relationship between ZEA concentration and GER severity is less clear, as correlations 

were reported to vary from not significant to strong (Atlin et al., 1983; Cullen et al., 1983; 

Bolduan et al., 2009; Löffler et al., 2010; Reid et al., 1996b). Depending on the strength of 

these correlations, phenotypic selection may be conducted either directly by mycotoxin 

analyses or indirectly by ear rot evaluations. 
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Phenotypic selection for increased resistance represents a difficult and time 

consuming process because of labor-intensive field experiments and expensive mycotoxin 

analyses. An efficient alternative to classical phenotypic selection might be provided by 

marker-assisted selection (MAS). In quantitative genetics, MAS describes a method of 

integrating molecular genetics with artificial selection (Lande and Thompson, 1990). MAS 

has been proposed by a number of authors, who conducted quantitative trait loci (QTL) 

mapping studies on the resistance of maize to ear rots caused by different Fusarium 

species. Ali et al. (2005) found several QTL for resistance to GER after artificial 

inoculation in a Canadian recombinant inbred line population. However, they also noted a 

strong influence of the environment on disease resistance. QTL mapping experiments on 

resistance to Fusarium ear rot (FER), which is mainly caused by F. verticillioides and 

F. proliferatum, showed a relative complex inheritance (Ding et al., 2008; Pérez-Brito et 

al., 2001; Robertson-Hoyt et al., 2006). Many of the detected QTL could only explain 

moderate or small proportions of the total phenotypic variance and in some cases epistasis 

seemed to play an important role. Robertson-Hoyt et al. (2006) found QTL having effects 

on both FER severity and fumonisin content, which provides an explanation for the strong 

genetic correlation between these traits at the molecular level. In a recent meta analysis of 

published QTL studies, several meta QTL influencing the resistance to three different ear 

rot diseases of maize (GER, FER, Aspergillus ear rot) were identified (Xiang et al., 2010). 

This indicated the presence of genomic regions, which confer unspecific resistance to 

different ear rots of maize.  

Maize varieties grown in Europe are nearly exclusively developed in hybrid 

breeding programs. During the selection process, a large number of inbreds or doubled 

haploid (DH) lines is usually tested for their per se performance and for their testcross 

performance. For setting up a breeding program, it is essential to have information on 

heritabilities of and genotypic correlations between line and testcross performances as well 

as on the relevance of different modes of gene action. Depending on the magnitude of 

correlations and heritabilities, selection concentrates either on the one or the other type of 

performance. Although additive gene action is considered to be of primary importance for 

resistance to GER (Gendloff et al., 1986; Chungu et al., 1996), the correlations between 

lines and their testcross progenies have been reported to be low (Bolduan et al., 2010; 

Löffler et al., 2011). Therefore, prediction of hybrid performance based on parent line 

performance is quite difficult. This might indicate presence of non-additive gene action in 
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hybrids and/or a consequence of inbreeding depression of lines contrasted to better vigor of 

hybrids.  

In applied breeding programs, selection is always conducted for several traits 

simultaneously, e.g., by using selection indices. Therefore, apart from correlations between 

and heritabilities of line and testcross performances, it is also necessary to consider 

correlations between the traits under selection. Generally, simultaneous improvement of 

undesirably correlated traits is difficult, whereas desirable correlations accelerate the 

selection process. Robertson-Hoyt et al. (2007) reported a weak relationship between the 

resistance to FER of lines and agronomic performance of their testcrosses. However, little 

is known about how selection for increased resistance to GER and mycotoxin 

contamination affects the expression of agronomically important traits such as grain yield.  

 

 

Objectives of this study 

 

The objectives of this study were to 

(1) estimate quantitative-genetic parameters for GER severity and mycotoxin 

concentration in connected populations of doubled haploid (DH) lines 

(Publication 1 and 2), 

(2) map QTL for GER resistance and reduced mycotoxin contamination in these 

populations (Publication 1 and 2), 

(3) examine the congruency of QTL in these populations (Publication 2), 

(4) evaluate the prospects of using MAS to breed for GER resistance and reduced 

mycotoxin contamination (Publication 1 and 2), 

(5) estimate the genotypic correlation between the resistance of DH lines per se and the 

resistance of their testcrosses (Publication 3), 

(6) evaluate the influence of selection for increased resistance on agronomic 

performance of hybrids (Publication 3) and 

(7) examine the relevance of different modes of gene action involved in the expression 

of the resistance in flint maize (Publication 4). 
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Abstract 

 

Fusarium graminearum Schwabe causes Gibberella ear rot (GER) of maize (Zea mays L.), 

an important disease in Europe, which reduces grain yield and leads to contamination with 

the mycotoxins deoxynivalenol (DON) and zearalenone (ZEA). The objectives of this 

study were to (i) estimate quantitative-genetic parameters for GER severity, DON and 

ZEA contaminations, (ii) map quantitative trait loci (QTL) for GER resistance, reduced 

DON and ZEA contaminations, and (iii) examine the prospects of marker-assisted 

selection (MAS) for these traits. The plant material, comprising 150 doubled haploid lines 

from a cross of two maize inbreds, was evaluated under artificial inoculation with 

F. graminearum across 2 locations in 2009 and 2010. Heritabilities on an entry mean basis 

across environments were moderately high (0.65-0.77) and QTL analyses identified four to 

six QTL for these traits. Identification of colocalized QTL in bins 1.11 and 2.04 with large 

effects, together explaining 29 to 35% of the total genotypic variance, suggested the 

presence of identical QTL with pleiotropic effects. This was supported by strong genotypic 

correlations among these traits (0.89-0.95). Due to the lower costs of genotyping compared 

to phenotyping, the study showed that breeding for GER resistance and reduced mycotoxin 

contamination, could be accelerated by adopting MAS. Application of MAS would be 

most efficient in off-season nurseries and in combination with phenotypic selection during 

the crop season. 
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Abstract 

 

Fusarium graminearum Schwabe causes Gibberella ear rot (GER) of maize (Zea mays L.) 

leading to yield losses and contamination with the immunsuppresisve mycotoxin 

deoxynivalenol (DON). To increase marker-assisted selection (MAS) efficiency, 

identification of QTL, which are effective across different genetic backgrounds, is 

necessary. The objectives of this study were to (i) map QTL for resistance to GER and 

reduced DON contamination, (ii) examine the congruency of QTL across four connected 

populations, and (iii) draw conclusions about the prospects of MAS. The populations under 

study comprised doubled haploid (DH) lines derived from crosses of four flint inbreds. 

GER severity and DON concentration were recorded after artificial inoculation with spores 

of F. graminearum. The estimates of genotypic variances (𝜎𝐺
2) were significant and 

heritabilities were moderately high to high. The detected QTL together explained 21-49% 

of 𝜎𝐺
2 for GER severity and 19-30% for DON concentration. Colocalized QTL for 

resistance to GER and reduced DON contamination were identified in each of the four 

mapping populations. In addition, QTL located at similar positions were detected across 

three populations in two chromosomal regions and across two populations in additional 

two regions. The results suggested a combination of classical phenotypic selection and 

MAS as a promising strategy in breeding maize for resistance to GER and reduced DON 

contamination. 
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Abstract 

 

Fusarium graminearum Schwabe causes Gibberella ear rot (GER) of maize, a disease, 

which leads to reduction of grain yield and contamination with deoxynivalenol (DON). 

DON is an important mycotoxin adversely affecting the health of humans and animals. The 

objectives of this study were to (i) analyze means and genotypic variances for line per se 

performance (LP) and testcross performance (TP) of doubled haploid (DH) lines for GER 

severity and DON concentration as well as for some agronomic traits, (ii) examine 

genotypic correlations among these traits, (iii) validate QTL for resistance detected in 

previous studies for LP and their effect on TP and (iv) investigate the relative efficiency of 

indirect selection (RE) for LP to improve TP. Testcross progenies of 94 DH lines 

originating from four flint populations were developed using a susceptible dent tester as 

pollinator. LP was evaluated at two locations in 2008 and 2009, while TP was evaluated at 

the same two locations in 2009 and 2010. Artificial inoculations using conidia spores of 

F. graminearum led to appreciable disease development in lines and testcrosses. Average 

GER severity and DON concentration in the testcrosses were lower than the theoretical 

mean mid-parent values of the tester and DH lines, indicating mid-parent heterosis for 

resistance. Genotypic variation for resistance was significant for LP and TP. Genotypic 

correlations between LP and TP for GER severity and DON concentration were low. 

Accordingly, resistance QTL for LP had no significant effects on TP. RE for resistance was 

low. Therefore, resources should be mainly allocated for the evaluation of testcrosses. 

Correlations of resistance to GER and DON contamination with important agronomic traits 

(grain yield under non-inoculated conditions, number of days to silking, plant height) were 

not significant. This indicated that selection for resistance and these agronomic traits can 

be carried out simultaneously.  
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Abstract 

 

Fusarium graminearum causes Gibberella ear rot (GER) of maize leading to contamination 

of grains with deoxynivalenol (DON), a mycotoxin that reduces the quality of food and 

feed. A generation means analysis was conducted to estimate significance of different 

modes of gene action for resistance to GER and DON contamination in flint maize 

germplasm adapted to Central Europe. Five crosses of two resistant (UH006, UH007) and 

two susceptible (UH009, D152) flint inbred lines were developed and each cross 

comprised both parent lines (P1, P2) as well as the F1 and F2 generation and the first 

backcross to both parents (BC1-P1, BC1-P2). The entries were evaluated after artificial 

inoculation with F. graminearum at two locations in 2009 and 2010. The results indicated 

the prevalence of additive gene action. Significant dominance effects were found only in 

one cross for resistance to GER, but in four crosses for resistance to DON contamination. 

Due to the importance of additive gene action, the prospects look good to realize 

improvement of resistance and accumulation of more favorable gene combinations in 

future breeding lines of the flint germplasm group.  
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6. General discussion 

 

Genetical properties of the doubled haploid lines populations under study 

 

In the present work, five populations of doubled haploid (DH) maize lines (D152×UH006, 

D152×UH007, UH009×UH006, UH009×UH007 and UH007×UH006) derived from 

crosses of four flint inbred lines were studied for various genotypic and phenotypic 

characteristics. Population sizes were quite variable and ranged from 46 individuals in the 

smallest population (D152×UH006) to 227 individuals in the largest population 

(UH009×UH007). For QTL mapping experiments, it is reasonable to have mapping 

populations with at least 100 individuals, because this number is necessary to detect a QTL 

explaining 10% of the phenotypic variance with a power of 85% (Charcosset and Gallais, 

1996). This population size is therefore often considered as lowest boundary. Accordingly, 

QTL analyses of the smallest population (D152×UH006) were not informative and for that 

reason not included in the publications preceding this general discussion. However, it is 

worthwhile to discuss all five populations together regarding their relatedness and their 

genetical properties. 

 

Genetic linkage maps and levels of polymorphism 

The marker ordering along the chromosomes of the five individual linkage maps was 

generally in good agreement with that of the IBM2 2008 Neighbors map (Lawrence et al., 

2008) serving as a reference map. Depending on the population, the proportion of 

polymorphic markers relative to all markers ranged from 34% polymorphism 

(UH009×UH007) to 50% polymorphism (D152×UH006). Associations among the four 

parental lines based on modified Roger’s distance estimates (Reif et al., 2005) using SSR 

marker data are illustrated in Figure 2, which shows that parents UH007 and UH009 are 

closer related compared for example to D152 with the others. In harmony with this, a 

similar dendrogram was obtained from the pedigree data. 
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Figure 2 Dendrogram showing associations among the four parent lines (D152, UH006, 

UH007 and UH009) revealed by unweighted pair-group method using arithmetic averages 

cluster analysis based on modified Roger’s distance (horizontal axis). Analyses were based 

on 307 shared SSR markers. 

 

Moderate to low levels of polymorphism based on marker data among the parental 

lines indicated further that some chromosomal regions are identical by descent. This may 

be expected, because the parent lines are elite inbreds, which are adapted to the Central 

European climate and have common ancestors derived from French, German and Spanish 

flint germplasm in their pedigrees. In applied breeding programs, it is common to derive 

new lines from crosses of already adapted breeding lines. However, it is likely that this was 

responsible for the poorer marker coverage on certain chromosomes, the loose linkage 

between certain segments and representation of the ten maize chromosomes by eleven 

separate linkage groups in four of the mapping populations. Many markers especially on 

chromosome 7 were monomorphic among the parents and, thus, marker coverage on this 

chromosome was unsatisfying in all populations. This could indicate the presence of genes 

needed for superior agronomic performance and/or climatic adaptation on this 

chromosome, which have become fixed during selection for these traits.  
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Genome proportions and segregation distortion 

The distributions of the genome proportions of UH006 and UH007 in the five populations 

were as expected for DH populations derived from the F1 generation. The genome 

proportions were more or less normally distributed and had means ranging from 49 to 53% 

with standard deviations ranging from 8 to 13% depending on the population under 

consideration. However, for some markers, significant deviations from the expected 

Mendelian segregation ratio (segregation distortion) of 1:1 in DH lines were observed.  

The proportion of mapped markers showing segregation distortion ranged from 12 

to 27% (P ≤ 0.01) and is within the range reported in other studies with maize (Lu et al., 

2002; Ali et al., 2005; Zhang et al., 2006; McMullen et al., 2009). According to Zhang et 

al. (2010) segregation distortion is not supposed to have a significant impact on the 

estimation of QTL locations and effects. The reasons for segregation distortion, however, 

are not clear. The populations of DH lines under study were developed by pollinating F1 

plants of all five crosses with the pollen of an inducer line, followed by identification of 

haploid seeds and subsequent chromosome doubling of the haploid seedlings with 

colchicine treatment. There might be genetic factors, which enhance the haploid induction 

rate during the fertilization process, and/or the tolerance of seedlings to colchicine 

treatment and transplanting. These may lead to distorted segregation of genomic regions 

carrying such factors, but this is an area, where information is still lacking. Across all five 

populations, distorted markers were observed on all chromosomes, but certain 

chromosome regions were more affected than others. Interestingly, in the two populations 

having UH009 as a common parent (UH009×UH006, UH009×UH007), large proportions 

of chromosome 10 exhibited an under-representation of the UH009 genome. One 

explanation for this observation might be that UH009 possesses factors on this 

chromosome, which act against successful haploid induction or chromosome doubling. As 

a consequence, genotypes carrying the responsible alleles of UH009 may have got lost 

during DH development. In populations D152×UH007, UH009×UH006 and 

UH007×UH006, large proportions of chromosome 7 were distorted. In addition, some 

distorted regions from the present study were congruent with distorted regions, including 

those on chromosomes 7 and 10, described earlier in populations developed by selfing or 

random mating (Lu et al., 2002). This suggests that certain maize chromosomes are 

ubiquitously prone to segregation distortion. Further studies on gametophytic factors and 
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their impact on DH development could be worthwhile, because the use of DH lines has 

become common practice in maize breeding. 

 

 

Genetics of resistance to Gibberella ear rot and mycotoxin contamination 

 

In previous studies of Bolduan et al. (2009a) and in the present study, inbred lines UH006 

and UH007 demonstrated their superiority in terms of resistance, whereas D152 and 

UH009 showed very high susceptibility. In the light of their response to infection with 

F. graminearum, the main purpose behind crossing these four lines was the development 

of DH populations showing large genotypic variation to conduct QTL mapping 

experiments, in other words to identify genomic regions responsible for increased 

resistance. Apart from this main objective, the DH lines developed from these 

recombinations represent potential new breeding lines and more than 25% of them have 

already been evaluated as testcrosses for agronomically important traits such as grain yield. 

As a consequence, some of these DH lines are meanwhile used as breeding lines within the 

maize breeding program of the Universität Hohenheim (personal communication, W. 

Schipprack, 2011). 

 

Genotypic variation in DH lines and testcrosses 

For the DH line populations, estimates of the genotypic variances (𝜎𝐺
2) and genotype-by-

environment interaction variances (𝜎𝐺𝐸
2 ) for GER severity, DON and ZEA concentration 

were significant in all instances (Martin et al., 2011; Martin et al., 2012a). Significance of 

these two parameters showed that (1) differences among DH lines for the resistance traits 

had genetic causes and (2) the DH lines at least partly responded differently depending on 

the environment. A common goal of plant breeders is selection of genotypes, which exhibit 

stable expression for the measured traits in many target environments. In regard of this, the 

present study clearly shows that selection decisions aiming at the improvement of 

resistance to GER and mycotoxin contamination need to be based on resistance screenings 

across multiple environments. The estimates of heritabilities (h
2
) for the resistance traits 

were moderately high to high and varied in magnitude among the populations, namely 
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from 0.69 to 0.82 for GER severity, from 0.64 to 0.80 for DON concentration and for ZEA 

concentration the estimate was 0.65. In the present study, DH lines were evaluated in four 

environments, and thus, the prospects seem good that line resistance can be improved 

using a reasonable number of locations and years for resistance tests. The results on 

genotypic variances and heritabilities are in good agreement with earlier studies on GER, 

DON and ZEA (Reid et al., 1995; Chungu et al., 1996; Ali et al., 2005; Bolduan et al., 

2009a; Löffler et al., 2010a). 

Owing to the large genotypic variance for resistance, the populations may 

furthermore be described in terms of their usefulness for selecting superior individuals as 

defined by Schnell (1983). The usefulness of a population depends on its average 

performance, the square root of the heritability, the genotypic standard deviation and the 

applied selection intensity. In this regard, populations UH007×UH006 and UH009×UH006 

were both similar superior to the other populations for GER resistance consistently across 

varying selection intensities. Thus, in these populations the chances are most promising to 

select superior transgressive segregants, i.e., progeny, which outperform the better parent 

due to accumulation of favorable QTL alleles from both parents. Indeed, some of these DH 

lines showed superior disease resistance, yet the differences to the better parent (UH006) 

were statistically not significant. 

More important than per se performance of maize lines is their performance in 

hybrid combinations with genotypes from the opposite heterotic pool. Therefore, 94 DH 

lines from the four largest populations and their testcrosses with a moderately susceptible 

dent single cross tester were evaluated for GER severity and DON concentration (Martin et 

al., 2012b). For GER severity and DON concentration, the estimates of 𝜎𝐺
2 of testcrosses 

within populations were five to three times smaller, respectively, compared to those of the 

corresponding DH lines. The estimates of 𝜎𝐺𝐸
2  of testcrosses within populations were in 

contrast to the corresponding DH lines not significant. Smaller genotypic variances in 

testcrosses were expected according to quantitative genetic theory (see e.g. Hallauer et al., 

2010). Lack of significance of estimates of 𝜎𝐺𝐸
2  of testcrosses within populations indicated 

that resistance was expressed relatively stable across the four test environments. In 

contrast, significant genotype-by-environment interactions were reported in previous 

studies on testcrosses (Bolduan et al., 2010; Löffler et al., 2011). However, a significant 

population-by-environment interaction effect suggested a different response in the test 

environments depending on the source population. The estimates of h
2
 for GER severity 
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and DON concentration of the testcrosses were only moderate and lower compared to 

those of the corresponding DH lines. This suggests that selection will be effective in both 

groups, but progress will be slower in testcrosses compared to lines assuming identical 

selection intensities.  

 

Colocalization of QTL and genotypic correlations 

Estimates of the genotypic correlation (rg) between visually rated GER severity and 

mycotoxin concentrations were high (rg ≥ 0.9) in DH lines as well as in testcrosses (Martin 

et al., 2011; Martin et al., 2012a, b). This close relationship is in harmony with the majority 

of previous studies and indicates that mycotoxin contamination is a consequence of fungal 

growth (Reid et al., 1996; Bolduan et al., 2009a; Czembor and Ochodzki, 2009; Löffler et 

al., 2010b). Trichothecene mycotoxins like DON were suggested to serve as 

aggressiveness factors especially in wheat and potentially also in maize and, thus, might 

even promote fungal growth and ear rot symptoms (Harris et al., 1999; Maier et al., 2006). 

The role of zearalenone on the other hand is less clear but is also considered as a result of 

fungal growth. Cultivation of maize varieties resistant to GER will therefore reduce the 

risk of accumulation of mycotoxins.  

The QTL analyses for resistance to GER and mycotoxin contamination revealed 

many colocalized QTL for these traits, as expected from the strong genotypic correlations 

(Martin et al., 2011; Martin et al., 2012a). In some cases QTL for reduced ZEA or DON 

contamination were detected, which were not colocalized with GER resistance QTL. In 

these instances, however, the individual LOD profile curves indicated peaks for GER 

resistance as well, yet QTL were not detected either due to non-significance or model 

selection criteria. Thus, “pure mycotoxin QTL”, in other words, QTL influencing 

mycotoxin contamination only were not found. This gives a genomic explanation for the 

strong genotypic correlation among these traits and further suggests mycotoxin 

accumulation being a consequence of fungal growth and/or presence of pleiotropic QTL. 

Similar to the results of the present study, Robertson-Hoyt et al. (2006) found several 

common QTL for Fusarium ear rot resistance and reduced mycotoxin contamination using 

US germplasm.  
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Relevance of different modes of gene action 

Resistance to GER and mycotoxin accumulation is quantitatively inherited. Although Reid 

et al. (1994) reported indications of a major dominant gene conferring increased resistance 

and Yuan et al. (2008) reported a gene encoding for a guanylyl cyclase-like protein to be 

associated with increased resistance (both studies with Canadian maize material), genetic 

improvement is achieved only slowly and usually requires intensive phenotypic evaluation 

of genotypes. Further, information about genes or QTL, which are stably expressed across 

environments or genetic backgrounds, is needed. A strong influence of different 

environments on the expression of detected QTL was demonstrated by Ali et al. (2005) in a 

Canadian recombinant inbred line population. For early maize germplasm adapted to 

Central Europe, there has been, apart from the present study, no report on QTL controlling 

resistance to GER and mycotoxin contamination and neither on inheritance of these traits. 

In the present study, modes of gene action for these traits were studied by QTL mapping, 

generation means analysis and comparison of the performance of DH lines and their 

testcrosses.  

The use of homozygous DH lines enabled the study of additive and additive-by-

additive interaction effects of QTL, and the use of four test environments allowed testing 

for QTL-by-environment interactions (Martin et al., 2011; Martin et al. 2012a). For 

resistance to GER, DON and ZEA contamination, QTL-by-environment interactions were 

less pronounced than expected from the significant estimates of 𝜎𝐺𝐸
2 , probably a 

consequence of using adjusted entry means across environments for the analyses. Additive 

gene action was by far more important than digenic interactions of QTL. This was 

indicated by the higher number of QTL having significant additive effects, their relative 

contributions to the total genotypic variance explained and the magnitude of their effects. 

In accordance with this result, the trait distributions of the DH line populations followed 

normal distributions and had means not significantly different from the corresponding 

parent lines means. Further, only in population UH007×UH006, two epistatic interactions 

of QTL were significant for GER resistance and one was significant for reduced DON 

concentration. Among these interactions of QTL, only one of the involved QTL in each 

interaction had also a significant and relatively strong additive effect alone. A minor role 

of epistasis compared to additive gene action was corroborated by generation means 

analysis using the five F1-crosses, from which the DH populations had been derived, the 

F2- and the first backcross generations to the parents (BC1-P1, BC1-P2) as well as the two 
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parent lines of each cross (Martin et al., 2012c). These analyses indicated significance of 

digenic epistasis only for DON contamination in one cross, namely dominance-by-

dominance interaction in UH009×UH006.  

From the results of the generation means analysis (Martin et al., 2012c) and from 

the testcross experiment (Martin et al., 2012b), there were indications of partial dominance 

being of importance for the expression of resistance. In generation means analysis, 

dominance effects were significant in some of the crosses analyzed and the flint×flint F1-

crosses were more resistant than expected from the theoretical mid-parent performance. 

Similarly, in the testcross experiment, flint×dent crosses were on the average significantly 

more resistant than expected from the theoretical mid-parent performance of the tester and 

corresponding DH lines. Thus, there were indications of mid-parent heterosis, which is 

likely to be caused by dominant gene action. Interestingly, the mid-parent and flint×flint F1 

performances in generation means analysis were stronger correlated than the mid-parent 

and flint×dent testcross performances in the testcross experiment. This suggested a greater 

role of additive effects in the intrapool crosses (flint×flint) than in the interpool crosses 

(flint×dent). Possibly, different resistance alleles have become fixed in the selection history 

of each heterotic pool and by recombining divergent lines from both pools, new allele 

combinations lead to an increased mean resistance. Consequently, resistance of these 

crosses is not easily predictable from the performance of the parents and, thus, intensive 

field testing of testcrosses is needed to identify the best combinations. This is in agreement 

with findings of Kovács et al. (1994), who observed an on the average better resistance of 

hybrids compared to their inbred parents and concluded that prediction of hybrid resistance 

was only partially possible. 

Besides dominant gene action, superior performance of hybrids may also be due to 

increased vigor, which is known to positively contribute to increased tolerance to biotic 

and abiotic stresses. This is similar to what is usually observed for grain yield caused by 

higher genetic divergence of the parents and consequently higher heterosis especially in 

interpool hybrids (Melchinger and Gumber, 1998). In accordance with these observations, 

increased vigor of hybrids has been associated previously with increased resistance to 

Fusarium ear rot caused by F. verticillioides and F. proliferatum in experiments conducted 

in the US Cornbelt (Eller et al., 2008b).  
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Effects of resistance QTL in different genetic backgrounds 

A commonly encountered problem in QTL mapping studies is low transferability of results 

from separate experiments. In the present study, QTL analyses were conducted in 

populations connected by common parent lines to take this issue into account. Joint linkage 

analysis using a common linkage map as proposed by Blanc et al. (2006) is a preferable 

approach in designs with connected populations, to draw inferences about consistent QTL 

effects across populations. However, due to shortage of common polymorphic markers 

among the mapping populations, QTL locations were compared using the concept of 

chromosomal bins (Gardiner et al., 1993). 

One apparently common QTL with a large additive effect was detected in 

populations UH007×UH006 (qger2, qdon2, qzea3) and UH009×UH006 (qger10, qdon10) 

in bin 2.04, which influenced GER and mycotoxin accumulation (Martin et al., 2011; 

Martin et al., 2012a). Furthermore, its substantial contribution to the genotypic variance in 

both populations and the good marker coverage in this region suggest selecting for this 

QTL in a marker assisted-breeding program. In addition, it would be interesting to study 

this QTL under natural infection conditions, when GER severity does usually not reach the 

levels of infection as in the present study. The QTL had on the average an additive effect 

of 7.5% reduction of ear rot under artificial inoculation. It would be interesting to know, if 

this effect is absolute, i.e., constant under natural GER severities, which are usually lower 

than under artificial inoculation. 

Among the 94 testcrosses, 52 carried this QTL and had either one allele of UH006, 

UH007 or UH009 (26 testcrosses from population UH007×UH006 and 26 from population 

UH009×UH006). However, in contrast to the corresponding DH lines the three allelic 

groups of testcrosses were not significantly different from each other for GER severity and 

DON concentration (Figure 3). This may indicate that this QTL acts in a recessive manner 

in flint×dent interpool crosses, which could partly explain the weak genotypic correlations 

between line and testcross performance. However, due to the low number of individuals 

and the presence of further segregating QTL in each of the three groups, conclusions about 

the mode of gene action of this QTL are preliminary. Future research on the effects of the 

most promising QTL detected in the present study in hybrids would be very valuable. 
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Figure 3 Boxplots of adjusted means across four environments of 51 doubled haploid lines 

and their testcrosses from two populations (UH007×UH006, UH009×UH006) carrying 

different alleles (UH006, UH007 or UH009) of a common QTL on chromosome 2 (bin 

2.04) for resistance to Gibberella ear rot (GER) and deoxynivalenol (DON) contamination. 

Means followed by the same letter are not significantly different for a given trait at 

P ≤ 0.05. N indicates the number of individuals in each allelic group. 

 

Another promising marker region was found at the distal end of the long arm of 

chromosome 2. Detection of a QTL for GER resistance (qger3) and LOD peaks for 

reduced DON and ZEA contamination in UH007×UH006 in bin 2.08 as well as detection 

of two QTL for GER resistance and reduced DON contamination (qger7, qdon5) in 

D152×UH007 in bin 2.09 linked to a common SSR marker strongly suggested presence of 

a common resistance QTL across both populations (Martin et al., 2012a). In addition, there 

are indications for a QTL in this region contributing to unspecific resistance to further ear 

rot pathogens and associated mycotoxins as recently described by Xiang et al. (2010). 

These authors revealed common QTL regions across a range of genetic backgrounds for 

resistance to Fusarium spp. and Aspergillus flavus, an important maize ear pathogen 

causing contamination with aflatoxins. This would additionally provide an explanation for 

the positive correlations reported for these ear rots and their toxins (Presello et al., 2006; 

Robertson-Hoyt et al., 2007; Bolduan et al., 2009a; Löffler et al., 2010b). 
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Generally, common QTL locations across populations were relatively rarely and 

less often detected than expected taking into account that the populations share common 

parents (Martin et al., 2012a). Possible reasons for this outcome include (i) limited power 

of QTL detection, (ii) fixation of QTL in some of the crosses, (iii) lack of common 

markers, (iv) epistasis as well as (v) QTL-by-environment interactions. Possible strategies 

for further research in this area could include an increase of the number of mapping 

populations possibly compensated by a reduction of individual population sizes and/or 

crossing one superior line like UH006 to several diverging lines. The latter approach is 

known as nested association mapping and has already been demonstrated to be promising 

for the improvement of other resistances (McMullen et al., 2009; Kump et al., 2011; 

Poland et al., 2011). Genotypes carrying favorable allele combinations could then be 

extracted and further used for example within marker-assisted recurrent selection to 

increase the overall resistance level in the breeding populations.  

 

 

Relationship between resistance and agronomic traits 

 

In applied breeding programs, selection is always conducted for several traits 

simultaneously. Selection progress in breeding for multiple traits depends to a large extent 

on the magnitude of the correlations among the target traits and on, whether the 

correlations are favorable. Therefore, it is of crucial importance to consider the correlated 

response of selection for resistance on other economically important traits.  

In the DH line populations, the number of days to silking was negatively correlated 

with GER severity, DON and ZEA concentration and this relationship was partly also 

reflected by the QTL mapping results (Martin et al., 2011; Martin et al. 2012a). In ten 

instances, QTL for DTS were colocalized with QTL for GER resistance and/or reduced 

DON contamination. This indicated an influence of the silking date and subsequent ear and 

kernel development on the resistance. This observation might be explained methodically 

and/or genetically. On the one hand, there might be a potential influence of the time period 

between inoculation and visual rating, for example a prolonged period of disease 

development in combination with weather conditions favoring fungal growth after 

inoculation of earlier flowering entries could intensify disease development. On the other 
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hand, linkage or pleiotropy of QTL, which influence female flowering, ear and kernel 

development as well as disease resistance, could have caused the observed correlations. 

Similar conclusions were also drawn by Robertson et al. (2006), who found weak 

correlations between Fusarium ear rot and days to silking. Consideration of flowering time 

for selection decisions on GER resistance is therefore essential to avoid a shift towards 

later maturity. 

For GER, it is known that increased ear rot resistance leads to higher yields in 

environments with heavy infection of Fusarium spp. (Vigier et al., 2001; Eller et al., 

2008b). In Central Europe, the main problem of infection with F. graminearum is mainly 

quality reduction by mycotoxin contamination. The incidence of ear rots and the 

contamination with mycotoxins is very much dependent on the prevalent weather 

conditions in a certain year. Therefore, agronomic performance of resistant maize hybrids 

in years with only low natural incidence of ear rots and low impact on yield is of crucial 

importance. In the testcross experiment (Martin et al., 2012b), GER severity and DON 

concentration were determined under artificial inoculation, while several agronomic traits 

were studied under non-inoculated conditions with low incidence of ear rot. Moderate 

genotypic correlations of both GER severity and DON concentration with dry matter 

content indicated that resistant hybrids may have later maturity and higher moisture 

content at harvest. Thus, even though late maturing hybrids may express resistance in the 

field, the risk of post-harvest accumulation of mycotoxins in improperly dried maize grains 

must be considered. The relationship between resistance and early plant vigor of 

testcrosses (rated at the four to five leaf stage) indicated that plants being more vigorous at 

an early stage of development tend to be more resistant to GER. However, this generally 

promising relationship was relatively weak. Furthermore, the resistance traits were 

genetically not correlated with grain yield as well as with the number of days to silking or 

plant height, two important traits genetically correlated to biomass yield (Lübberstedt et 

al., 1997; Méchin et al., 2001). Hence, there seems to be no direct penalty of disease 

resistance on agronomic performance. Therefore, selection for these breeding goals can 

most likely be performed simultaneously without negative side effects. Furthermore, as 

elite material was used in this study, the prospects are good to breed for resistance using 

the adapted germplasm, thus avoiding introgressions of exotic resistance sources, which 

often have poorer agronomic performance (Munkvold, 2003; Eller et al., 2008a).  
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Ways to genetically improve the resistance 

 

Many questions have to be addressed by a maize breeder, who intends to improve 

resistance to GER and mycotoxin accumulation of the germplasm. In this study, some 

answers could be provided, which might be helpful to set up a selection program. 

However, answers to specific questions may vary depending on the breeding material and 

target environments. Hence, there is still need to conduct further research in this area. In 

this section some recommendations will be given, how a selection program could be set up 

and which issues should be considered. 

 

Evaluation of methods to phenotypically assess the resistance  

One critical issue in a resistance breeding program is the presence of sufficient levels of 

infection pressure of the pathogen of interest. In the case of F. graminearum, it was very 

helpful to ensure satisfying and homogenous infection pressures by performing artificial 

silk channel inoculation according to Reid et al. (1996). Artificial inoculation allowed very 

good differentiation of the genotypes under study. By comparison, ear rot severities under 

natural infection pressure allowed no reliable differentiation. Hence, in most cases there 

will be a need to conduct artificial inoculations, although this creates additional work load. 

In this regard, environments known to be conducive to heavy natural infection could be 

very valuable for the screening of genotypes due to lower labor costs. 

Once, a decision on artificial inoculation has been made, one question that arises is 

how much amount of inoculum should be used. In previous studies using the Fusarium 

isolate from this study, the amount of inoculum was doubled in hybrids compared to lines 

due to different sizes of maize ears (Bolduan et al., 2010; Löffler et al., 2011). In these 

cases, conclusions about different resistance levels of lines and testcrosses were difficult to 

draw owing to confounding with varying amounts of inoculum. In contrast, one objective 

of the present study was to conduct sound comparisons between line per se and testcross 

performance and therefore equal amounts of inoculum were used. Nevertheless, in applied 

breeding programs, it may be reasonable to adjust inoculum dosage depending on various 

factors such as the objectives of the experiment (comparing vs. maximizing variation of 
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lines and testcrosses), aggressiveness of the used Fusarium isolate as well as on the 

resistance level of candidate lines and testers. 

Conventional mycotoxin analyses are relatively expensive and it would be 

advantageous to substitute them. High estimates of rg among GER severity, DON and ZEA 

concentration suggested that costly determination of this mycotoxin is not necessary, and 

visual assessment of GER is sufficient. This is underpinned by the magnitudes of the 

relative efficiencies of selection for reduced mycotoxin concentration based on visual ear 

rot rating, which are even larger than 100% in the case of GER vs. DON and about 100% 

in the case of GER vs. ZEA (Martin et al., 2011; Martin et al., 2012a). One limitation to 

this general statement would be, when different persons are involved in visual rating of 

GER severity, which may in consequence result in a potential bias. NIRS-based prediction 

of DON concentration according to a calibration of Bolduan et al. (2009b), which has been 

validated in the present study (Martin et al. 2012a), circumvents this problem and is also 

relatively inexpensive compared to DON determination by ELISA. However, visual GER 

rating is the cheapest alternative and should be given priority. 

 

Application of marker-assisted selection 

In quantitative genetics, marker-assisted selection (MAS) describes a method of integrating 

molecular genetics with artificial selection. Assuming equal selection intensities, pure 

MAS is superior to classical phenotypic selection, if the proportion of genotypic variance 

explained by QTL exceeds h
2
 (Lande and Thompson, 1990). Based on the results of the 

present study, classical phenotypic selection for GER resistance and reduced mycotoxin 

contamination would be more effective than pure MAS, at least in the populations studied. 

However, classical phenotypic selection is based on expensive field trials with artificial 

inoculation and is laborious. MAS offers the advantages of cost-effective evaluation of a 

larger germplasm set and consequently a higher selection intensity. Further, MAS can be 

carried out in off-season winter nurseries, where phenotypic selection is not possible. 

These factors may lead to a significant improvement in the efficiency of MAS. The 

combination of classical phenotypic selection and MAS could be a promising strategy for 

maize breeders. For instance, preselection of the genotypes based on MAS before sowing 

in the normal growing season would increase overall selection intensity, and would allow 

completion of more than one selection cycle per year. Consequently, a rapid increase of the 
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genetic gain per year for the resistance traits could be realized. Although congruency of 

QTL across populations was less pronounced than expected, some major QTL for 

resistance to visible ear rot and mycotoxin accumulation being quite stable across 

environments were detected in at least two mapping populations. Focusing on such QTL in 

MAS seems most promising. Considering the decreasing costs of genotyping, it can be 

expected that in the near future marker data will be generated routinely for the whole 

genome. Thus, it will be possible to conduct MAS simultaneously for QTL underlying 

various traits of interest including resistance traits. Further, owing to the growing 

knowledge on the use of high density DNA markers to predict the genotypic performances 

for various quantitative traits, genome-wide selection as proposed by Meuwissen et al. 

(2001) looks promising for increasing the response to selection. 

 

Improving line and hybrid resistance 

The results of the present study suggest that selection for resistance will be efficient both in 

lines as well as in testcrosses. However, the correlated response of selection for resistance 

is expected to be quite low owing to the weak estimates of rg between DH lines and their 

testcrosses (Martin et al., 2012b). Although selection among lines has several advantages, 

the results suggest conducting selection mainly based on performance of testcrosses in 

order to improve hybrid performance, the ultimate goal in maize breeding. Therefore, 

resources should be mainly allocated for evaluation of disease resistance of testcrosses and 

experimental hybrids. 

Several questions must be addressed in testcross experiments. Among them, choice 

of the optimal tester(s) and allocation of resources are of crucial importance. Based on the 

results of the present study, the use of a moderately susceptible tester seems appropriate, 

because mid-parent heterosis for increased resistance was observed, and the use of a 

resistant tester could therefore complicate correct ranking of lines. This would be in 

accordance with Löffler et al. (2011), who recommended the use of a tester with 

(moderate) susceptibility to avoid masking effects of dominant alleles imparting resistance. 

Further, the use of a single cross of two similarly susceptible inbreds instead of an inbred 

as tester should be considered. Some practical advantages of using a single cross tester are 

better representation of the particular heterotic pool, increased and prolonged pollen 

shedding as well as higher vigor. In addition, testcross performance of a single cross tester 
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is confounded with only half of the specific combining ability effects compared to a line 

tester. Furthermore, it might be fruitful, if the tester was strong in terms of general 

combining ability for yield and other agronomically important traits. Resistance screening 

in testcrosses could thereby be conducted along with the normal assessment of agronomic 

performance. About six plants per plot would be sufficient in single cross hybrids to 

reliably determine GER resistance (Bolduan et al., 2009a), but more plants are 

recommended in the case of three-way cross hybrids to account for genotypic segregation. 

Shortly before harvest, inoculated ears could then be rated visually, but should be removed 

thereafter to get an unbiased measure of grain yield and other traits. 

Although the focus of selection should be on hybrids, line resistance should not be 

neglected. Improved resistance to ear rots in lines will allow better seed qualities and 

quantities. Furthermore, owing to the prevalence of additive gene action, improvement of 

resistance in lines will in the long run also improve resistance of hybrids, although 

progress will be slow. Additive gene action further suggests that a good resistance level 

has to be ensured in lines of both heterotic pools (flint and dent) to obtain superior hybrids. 

One may focus on selection of genotypes carrying favorable marker alleles at major QTL 

by applying MAS in lines, as well as on elimination of very susceptible lines by 

phenotypic evaluations. The latter are recognized usually early and with minor testing 

efforts, in other words with a lower number of replications and optionally environments. 

Such a strategy could be implemented relatively easy in a breeding program using DH 

lines (Martin et al., 2012b).  

 

 

Conclusions  

 

A large number of colocalized QTL for GER resistance and reduced mycotoxin 

accumulation found in the present study provide a good explanation for the commonly 

observed strong genotypic correlations among these traits. The strong correlations 

corroborated earlier reports that costly determinations of mycotoxins are not necessary. 

Some of the detected QTL were quite large and appear suitable for MAS. The study 

indicated that the prospects are good to improve the resistance of the flint germplasm by 

utilizing promising breeding lines like UH006 and UH007 or transgressive segregants 
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derived from their cross thereby taking advantage of the prevalent additive mode of gene 

action in flints. But further research should focus on (1) fine mapping to validate the 

reported QTL effects and (2) the expression of the detected QTL in different genetic 

backgrounds, including dent×flint hybrids with regard to the final goal of breeding superior 

maize hybrids. The results from the present study indicated that the effects of promising 

resistance QTL in different backgrounds, including combinations with individuals of the 

opposite heterotic pool, are rather low. Therefore, it seems reasonable to allocate more 

resources to experiments with testcrosses than lines. In the near future, genomic tools may 

be available and should allow a greater efficiency of molecular breeding. Finally, our 

results based on elite material showed that selection of hybrids with increased agronomic 

performance will have no direct penalty on resistance and vice versa and should therefore 

be conducted simultaneously.  
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7. Summary 

 

Maize (Zea mays L.) is affected by a number of diseases. Much attention is paid to ear rot 

diseases, which affect grain yield and particularly grain quality. Among the various ear rots 

of maize, Gibberella ear rot (GER) caused by Fusarium graminearum Schwabe 

(teleomorph Gibberella zeae (Schwein.) Petch) is prevalent in Central Europe. This fungal 

pathogen produces secondary metabolites (mycotoxins), which adversely affect the health 

of humans and animals. Two important mycotoxins are the immunosuppressant 

deoxynivalenol (DON) and the mycoestrogen zearalenone (ZEA). The most efficient 

method to reduce mycotoxin contamination in maize is cultivation of resistant varieties. 

However, resistance breeding using classical phenotypic selection is laborious and time-

consuming. Therefore, marker-assisted selection (MAS) may be a promising alternative to 

classical selection. Furthermore, for setting up a breeding program, knowledge about the 

relevance of the different modes of gene action and genotypic correlations among 

resistance and agronomic traits is required. 

The objectives of this study were to (1) estimate quantitative genetic parameters for 

GER severity and mycotoxin concentration in connected populations of doubled haploid 

(DH) lines, (2) map quantitative trait loci (QTL) for GER resistance and reduced 

mycotoxin contamination in these populations, (3) examine the congruency of QTL in 

these populations, (4) evaluate the prospects of using MAS to breed for GER resistance 

and reduced mycotoxin contamination, (5) estimate the genotypic correlation between the 

resistance of DH lines per se and the resistance of their testcrosses, (6) evaluate the 

influence of selection for increased resistance on agronomic performance of hybrids and 

(7) examine the relevance of different modes of gene action involved in the expression of 

the resistance in flint maize. 

Three field experiments were conducted, each of which comprised a different set of 

plant material. Experiment I comprised five DH line populations derived from the 

following F1 crosses among elite flint inbred lines: D152×UH006, D152×UH007, 

UH007×UH006, UH009×UH006 and UH009×UH007. Experiment II comprised testcross 

progenies of 94 DH lines and a dent single cross tester. Experiment III comprised the five 

F1 crosses, from which the DH populations had been derived, the F2 and the first backcross 
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generations to the parents (BC1-P1, BC1-P2) as well as the two parent lines of each cross. 

Each experiment was conducted in four environments (year-location combinations). 

Plants were artificially infected with spores of F. graminearum shortly after mid-

silking using the silk channel inoculation technique. In all experiments, GER severity was 

visually rated based on the ear surface covered with mycelium in percent and DON 

concentration was determined. In Experiment I, ZEA concentration was additionally 

determined in population UH007×UH006. In Experiment II, performance of testcrosses 

was additionally assessed for early plant vigor, plant height, dry matter content and grain 

yield measured under non-inoculated conditions.  

The DH lines were genotyped with 363 publicly available simple sequence repeat 

(SSR) DNA markers. The genetic linkage maps comprised 98 to 133 SSR markers, 

depending on the population. QTL analyses were performed for resistance to GER, DON 

and ZEA contamination.  

Estimates of genotypic and genotype-by-environment interaction variances in 

Experiment I for GER severity and mycotoxin concentration were significant and 

heritabilities were moderately high to high in all populations. Thus, differences among DH 

lines for the resistance traits were mainly caused genetically and the resistance response 

varied depending on the environment. Owing to the effectiveness of artificial inoculation, 

the prospects are good to improve line resistance using a small number of test 

environments.  

QTL were detected in the four largest populations (D152×UH007, UH007×UH006, 

UH009×UH006 and UH009×UH007). Depending on the population, the mapped QTL 

together explained 21-51% of the genotypic variance for GER severity and 19-45% for 

DON concentration and 52% for ZEA concentration. Additive gene action was more 

important than digenic interactions of QTL, as indicated by the number of QTL having 

significant additive effects, their relative contributions to the total genotypic variance 

explained and the magnitude of their effects. 

Colocalized QTL for resistance to GER and mycotoxin contamination were 

identified in each mapping population. This was in agreement with strong genotypic 

correlations among these traits. QTL located at similar positions were detected across three 

populations in two chromosomal regions and across two populations in additional two 
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regions. The results of this study indicated that a combination of classical phenotypic 

selection and MAS is a promising strategy for resistance breeding. 

In Experiment II, significant genotypic variation for resistance in lines and 

testcrosses showed that selection will be successful in both groups. Owing to low 

genotypic correlations between lines and testcrosses, however, resources should be mainly 

allocated to the evaluation of GER in testcrosses. Correlations of resistance with 

agronomic traits were weak or not significant. Therefore, selection for resistance and better 

agronomic performance can be carried out simultaneously.  

In Experiment III, generation means analysis indicated a prevalence of additive 

gene action for resistance. Significant dominance effects were found in only one cross for 

resistance to GER, but in four crosses for resistance to DON contamination. Owing to 

prevalence of additive gene action, the prospects are good to improve the resistance of the 

flint germplasm and to accumulate more favorable gene combinations in future breeding 

lines. Comparing the hybrid performance of flint×flint crosses of Experiment II and 

flint×dent crosses of Experiment III with their corresponding mid-parent performances 

indicated mid-parent heterosis for resistance. Therefore, prediction of hybrid performance 

based on performance of their parents will be possible only to a very limited extent.  

Future research should focus on fine mapping and validating of the detected QTL. 

For an efficient use of the QTL in a marker-assisted breeding program, knowledge about 

their effects in different genetic backgrounds is needed. Of particular importance are 

thereby the QTL effects in flint×dent crosses, which represent the preferred type of hybrid 

in Central European maize breeding programs. 

 

 



Zusammenfassung 

 
47 

8. Zusammenfassung 

 

Mais (Zea mays L.) wird von zahlreichen Krankheiten befallen. Große Aufmerksamkeit 

wird dabei den Kolbenfäulen zu Teil, welche den Kornertrag und besonders die 

Kornqualität beeinträchtigen. Kolbenfusariosen sind die wichtigsten Kolbenfäulen an 

Mais. In Mitteleuropa ist Fusarium graminearum Schwabe (teleomorph Gibberella zeae 

(Schwein.) Petch) der wichtigste Erreger dieser Krankheit. Dieser pilzliche Schaderreger 

produziert sekundäre Metabolite (Mykotoxine), die gesundheitsschädlich für Menschen 

und Tiere sind. Zwei wichtige Mykotoxine sind das immunsuppressiv wirkende 

Deoxynivalenol (DON) und das Mykoöstrogen Zearalenon (ZEA). Der effizienteste Weg 

Mykotoxinkontaminationen zu vermeiden ist der Anbau resistenter Sorten. Allerdings ist 

die Resistenzzüchtung mittels klassischer phänotypischer Selektion arbeits- und 

zeitaufwendig. Daher könnte die Marker-gestützte Selektion eine vielversprechende 

Alternative zur klassischen Selektion darstellen. Darüber hinaus sind für die Planung eines 

Zuchtprogrammes Kenntnisse über die Bedeutung verschiedener Genwirkungsweisen und 

über genotypische Korrelationen zwischen der Resistenz und agronomischen Merkmalen 

notwendig.    

Die Ziele der vorliegenden Arbeit waren, (1) quantitativ-genetische Parameter für 

Kolbenfusariumbefall und Mykotoxinkonzentration in verbundenen Populationen doppelt-

haploider (DH) Linien zu schätzen, (2) sog. quantitative trait loci (QTL) für 

Fusariumresistenz und reduzierte Mykotoxinkontamination in diesen Populationen zu 

kartieren, (3) die Übereinstimmung der QTL in diesen Populationen zu untersuchen, (4) 

die Aussichten der Marker-gestützten Selektion für die Züchtung auf Fusariumresistenz 

und reduzierte Mykotoxinkontamination zu bewerten, (5) die genotypische Korrelation 

zwischen der Resistenz von DH-Linien per se und deren Testkreuzungen zu schätzen, (6) 

die Auswirkung der Selektion auf verbesserte Resistenz auf agronomische Eigenschaften 

von Hybriden zu bewerten und (7) die Bedeutung verschiedener Genwirkungsweisen auf 

die Expression der Resistenz in Flint-Mais zu untersuchen.  

Drei Feldexperimente wurden durchgeführt, in denen jeweils unterschiedliches 

Pflanzenmaterial geprüft wurde. In Experiment I wurden fünf DH-Populationen 

untersucht, die aus folgenden F1-Kreuzungen von Elite-Flint-Inzuchtlinien erstellt wurden: 

D152×UH006, D152×UH007, UH007×UH006, UH009×UH006 und UH009×UH007. In 
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Experiment II wurden die Testkreuzungsnachkommen von 94 DH-Linien und einer Dent-

Einfachkreuzung, die als Tester fungierte, untersucht. In Experiment III wurden neben den 

fünf F1-Kreuzungen, aus denen die DH-Populationen abgeleitet wurden, deren F2- und 

erste Rückkreuzungsgenerationen zu beiden Eltern (BC1-P1, BC1-P2) sowie die zwei 

Elternlinien jeder Kreuzung untersucht. Jedes Experiment wurde in vier Umwelten (Jahr-

Ort-Kombinationen) durchgeführt. 

Die Versuchspflanzen wurden kurz nach dem Erscheinen der Narbenfäden 

künstlich mit Sporen von F. graminearum infiziert. In allen Experimenten wurde der 

Kolbenfusariumbefall visuell als prozentualer Anteil der mit Mycel überdeckten 

Kolbenoberfläche bonitiert und die DON-Konzentration in den Körnern gemessen. In 

Experiment I wurde zusätzlich in der Population UH007×UH006 die ZEA-Konzentration 

erfasst. In Experiment II wurden in den Testkreuzungen zusätzlich Jugendentwicklung, 

Wuchshöhe, Trockenmassegehalt und Kornertrag unter nicht-inokulierten Bedingungen 

bestimmt. 

Die DH-Linien wurden mit 363 öffentlich zugänglichen sog. simple sequence 

repeat (SSR) DNA-Markern genotypisiert. Die genetischen Kopplungskarten enthielten je 

nach Population zwischen 98 und 133 SSR-Marker. 

Die Schätzwerte für die genotypischen Varianzen und Genotyp-Umwelt-

Wechselwirkungsvarianzen für Kolbenfusariumbefall und Mykotoxinkonzentrationen 

waren in Experiment I in allen Populationen signifikant und die Heritabilitäten waren 

mäßig hoch bis hoch. Somit waren die Unterschiede zwischen den DH-Linien 

hauptsächlich genetisch bedingt. Die Resistenzreaktion wurde jedoch auch von der 

Umwelt beeinflusst. Aufgrund der Effizienz künstlicher Inokulation sind die Aussichten 

günstig, die Linienresistenz mit einer geringen Anzahl an Test-Umwelten zu verbessern.  

QTL wurden in den vier größeren Populationen gefunden (D152×UH007, 

UH007×UH006, UH009×UH006 und UH009×UH007). Je nach Population erklärten die 

kartierten QTL zusammen 21-51% der genotypischen Varianz für Kolbenfusariumbefall, 

19-45% für DON-Konzentration und 52% für ZEA-Konzentration. Additive Genwirkung 

war von größerer Bedeutung als digenische Wechselwirkungen von QTL, was aufgrund 

der Anzahl an QTL mit signifikanten additiven Effekten, deren relativen Beiträgen zur 

gesamten erklärten genotypischen Varianz und der Größe ihrer Effekte ersichtlich war. 
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In Übereinstimmung mit den engen genotypischen Korrelationen wurden 

kolokalisierte QTL für die Resistenz gegen Kolbenfusarium und Mykotoxinkontamination 

in jeder Kartierungspopulation gefunden. QTL an ähnlichen Positionen wurden auf zwei 

Chromosomenabschnitten über drei Populationen hinweg und auf weiteren zwei 

Chromosomenabschnitten über zwei Populationen hinweg gefunden. Die Ergebnisse 

deuteten darauf hin, dass eine Kombination von klassischer phänotypischer und Marker-

gestützter Selektion eine vielversprechende Strategie für die Resistenzzüchtung ist. 

In Experiment II waren die genotypischen Varianzen für die Resistenz in den 

Linien und Testkreuzungen signifikant. Dies zeigt, dass in beiden Gruppen erfolgreich 

selektiert werden kann. Jedoch sollten aufgrund der geringen genotypischen Korrelationen 

zwischen Linien und Testkreuzungen die vorhandenen Ressourcen größtenteils zur 

Prüfung von Testkreuzungen verwendet werden. Die Korrelationen zwischen der Resistenz 

und den agronomischen Merkmalen waren schwach oder nicht signifikant. Dadurch kann 

problemlos auf Resistenz und verbesserte agronomische Eigenschaften selektiert werden. 

In Experiment III zeigten Generationsmittelwertanalysen eine vornehmliche 

Bedeutung additiver Genwirkung auf die Resistenz. Signifikante Dominanzeffekte wurden 

nur in einer Kreuzung für die Resistenz gegen Kolbenfusarium gefunden, allerdings in vier 

Kreuzungen für Resistenz gegen DON-Kontamination. Aufgrund der Bedeutung der 

additiven Genwirkungsweise sind die Aussichten gut, die Resistenz im Flint-Material zu 

verbessern und günstige Genkombinationen in zukünftigen Zuchtlinien anzureichern. 

Vergleiche der Flint×Flint-Hybridkreuzungen aus Experiment II und der Flint×Dent-

Hybridkreuzungen aus Experiment III mit den jeweiligen Elternmittelwerten deuteten auf 

eine Überlegenheit der Nachkommen gegenüber dem Elternmittel aufgrund von Heterosis 

hin. Aufgrund dessen wird es nur eingeschränkt möglich sein, die Resistenz von Hybriden 

aufgrund der Resistenz ihrer Eltern vorherzusagen. 

Zukünftige Forschungsarbeiten sollten sich auf die Feinkartierung und Validierung 

der gefundenen QTL konzentrieren. Um die QTL effizient zu nutzen, sind Kenntnisse über 

deren Effekte in unterschiedlichen genetischen Hintergründen notwendig. Dabei sind die 

QTL-Effekte in Flint×Dent-Hybridkreuzungen von besonderer Bedeutung, da diese den 

bevorzugten Hybrid-Typ in Mitteleuropäischen Maiszüchtungsprogrammen darstellen.  
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