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1. General introduction 

The cultivation of maize (Zea mays L.) in Europe has expanded dramatically since 

the introduction of hybrid varieties during the last 50 years. In 2006, 13.5 million ha of 

maize were grown for grain use and 7.8 million ha for forage and silage in Europe 

(FAOSTAT 2008). Along with the expansion of acreage of maize in Central Europe, the 

incidence of maize ear rots caused by Fusarium spp. has increased and this disease 

complex has emerged as a major threat to maize cultivation. These ear rots adversely affect 

the quantity and quality of grain production (Vigier et al., 2001). However, the main 

implication is the contamination of grain and stover with mycotoxins which can lead to 

reduced economic return besides serious intoxications in humans and animals. In fact, 

maize has the highest mycotoxin contamination among all important grain cereals 

(Munkvold, 2003a). 

 

Fusarium species and mycotoxins associated with maize ear rot in Central Europe 

Fusarium spp. cause two distinct ear rots of maize, Gibberella ear rot and Fusarium 

ear rot. Gibberella ear rot in Europe is caused by F. graminearum Schwabe (teleomorph 

Gibberella zea (Schw.) Petch) and F. culmorum, the former being the main causal agent. It 

predominates in cooler areas (Görtz et al., 2008; Dorn et al., 2009) and requires high 

humidity from silking to harvest for its development (Bottalico, 1998; Stewart et al., 2002). 

Symptoms of Gibberella ear rot typically initiate from the tip and cover the ear and husks 

with a red or pink mold (Munkvold, 2003b) (Fig. 1). Main inoculum sources of F. 

graminearum are macroconidia, ascospores or mycelia which are dispersed through wind, 

rain, insects or birds. The most important mode of disease infection is via the spores that 

land on the silks. These spores germinate and mycelia grow down the silk channel to the 

kernels and cob (Sutton, 1982). However, infection is also caused by spores entering 

through kernel wounds caused by insects, such as the European corn borer (Ostrinia 

nubilalis Hübner), birds or hail. 

Gibberella ear rot leads to contamination with deoxynivalenol (DON), nivalenol 

(NIV) and zearalenone (ZEA). When infected grain is fed to livestock, DON causes 

vomiting (“vomitoxin”), feed refusal, decreased weight gain and it acts as an 

immunosuppressant (Pestka, 2007; Miller, 2008). ZEA causes reproductive problems, such 
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as reduced litter size, swine estrogenic symptom and male infertility (Morgavi and Riley, 

2007). 

 

Figure 1. Typical symptoms of Gibberella ear rot caused by Fusarium graminearum 

(A), Fusarium ear rot caused by F. verticillioides (B), and development of Fusarium 

ear rot following damage of the European corn borer (Ostrinia nubilalis, C). 

In Europe, Fusarium ear rot is primarily caused by F. verticillioides (Sacc.) 

Nirenberg (Syn. = F. moniliforme Sheldon) (teleomorph G. fujikuroi (Sawada) Wr.), but F. 

subglutinans and F. proliferatum are also frequently isolated from plant tissue (Logrieco et 

al., 2002). Fusarium ear rot was observed to predominate in warmer and drier areas/years 

compared to F. graminearum (Bottalico, 1998; Görtz et al. 2008; Dorn et al., 2009). 

Microconidia are the main inoculum source of F. verticillioides. These disperse in a similar 

manner as F. graminearum. Infection pathways include infection through the silk and 

entering through wounds of the kernels. The white or light pink mold of F. verticillioides 

typically occurs on random kernels, groups of kernels or physically injured kernels 

(Munkvold, 2003b) (Fig. 1). Fusarium verticillioides is known to cause symptomless 

infection of kernels and systemic growth in maize plants. Moreover, abiotic stress factors 

like nitrogen deficiency and drought were reported to enhance the severity of Fusarium ear 

rot (Shelby et al., 1994; Miller, 2001; Bacon et al., 2008). 

Infection of maize ears with F. verticillioides leads to accumulation of fumonisins 

(FUM), mainly FB1. The toxin was reported to cause equine leukoencephalomalacia, 

porcine pulmonary edema, liver cancer in rats and neural tube defects in mice. There is 
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also evidence that it is associated with human esophageal cancer (Voss et al., 2007; Miller, 

2008). 

Due to the potential serious impacts on the health of farm animals and humans following 

the consumption of contaminated maize grain and related products, the EU (Commission 

Regulation (EC) No 1126/2007 of September 2007) has released legally enforceable limits 

in unprocessed maize for DON, FUM, and ZEA (1.750, 4.000 and 350 µg kg
-1

, 

respectively). For animal feeding, the limits of mycotoxin concentrations are between 

2.000 and 8.000 µg kg
-1 

for DON and FUM and 250 to 500 µg kg
-1 

for ZEA, depending on 

the animal. Amongst livestock, swine is the most sensitive animal to mycotoxin intake, 

whereas poultry is the least (Morgavi and Riley, 2007). Furthermore, mycotoxins also 

affect the health of farmers, grain handlers and producers through their exposure to 

contaminated dust, which is formed during harvesting of the crop and processing of 

infected maize grain. 

 

Control of ear rots caused by Fusarium spp. and contamination by mycotoxins 

Severe damage of Fusarium spp. to maize is often associated with continuous 

maize monoculture or in crop rotations where maize is followed by wheat and vice versa. 

Sources of inoculum are seed, soil, and infected plant residues. Therefore, disease 

management practices are based on extended crop rotation with non-host crops and the 

reduction of inoculum sources, mainly by plowing of infected residues. However, these 

practices are only of preventive character and do not provide the desired level of disease 

control. Moreover, they have only limited applicability in many maize cultivating areas 

due to economic considerations. There are practically no chemical treatments that are 

effective in preventing these ear rots. Maize that has been modified to have a Bt (Bacillus 

thuringiensis) endotoxin was reported to reduce the contamination with Fusarium spp. and 

the resultant mycotoxins in maize grain indirectly through protection of the plants against 

insect damage (Munkvold et al., 1997, 1999; Bakan et al., 2002; Schaafsma et al., 2002; 

Magg et al., 2003). However, Magg et al (2002) and Papst et al. (2005) observed reduced 

concentration only of some mycotoxins but not of others. Efforts have also been made in 

genetic engineering to minimize mycotoxin concentrations through detoxification in vivo 

(Duvick, 2001) but no efficient technology based on this approach is available. 

Furthermore, prospects for the commercial cultivation of genetically modified plants are 
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doubtful in most of the EU countries and especially in Germany. Therefore, the most 

promising approach to minimize ear rot damage and mycotoxin contamination in the field 

is the development of maize genotypes endowed with genetic resistance. Resistant maize 

hybrids have wide acceptance by growers and consumers, and their cultivation is 

economically rewarding. However, most maize genotypes are highly susceptible and 

sources of good resistance are rare (Reid et al., 2009). 

 

Breeding for resistance to Gibberella and Fusarium ear rots 

The most important prerequisites for a resistance breeding program are (1) genetic 

variation for resistance traits in the breeding material and (2) efficient and reliable 

germplasm screening methods to identify resistant genotypes. Because of the sporadic 

nature of epidemics, a technique allowing a large-scale artificial infection is required to 

select resistant genotypes in large sets of breeding material. According to the two major 

modes of fungal entry into the maize ear, two distinct inoculation methods are mainly used. 

One technique simulates fungal entry through the silk by injecting a conidial suspension 

into the silk channel of maize ears, while the other technique simulates fungal entry into 

kernel wounds by injecting a conidial suspension into artificially wounded kernels 

(Ullstrup, 1970; Chungu et al., 1996a; Reid et al., 1996a). These two main fungal entry 

modes, i.e., silk and kernel infection showed no or only moderate but inconsistent 

association with the response of maize genotypes (Lemmens 1999; Presello et al., 2004; 

Schaafsma et al., 2006). 

Studies have been conducted to assess variability for resistance in maize breeding 

germplasm, showing genotypic differences for both Gibberella ear rot resistance and DON 

contamination in Canada (Reid et al., 1993, 1996a; Schaafsma et al., 1997), as well as for 

Fusarium ear rot and FUM contamination in the US Corn-Belt (White et al., 2002; 

Clements et al., 2004; Kleinschmidt et al., 2005). Resistances to both, Gibberella and 

Fusarium ear rots and the resulting mycotoxin contaminations are quantitatively inherited 

and there is no evidence of the presence of major genes or of completely resistant 

genotypes. Additive and dominance genetic effects as well as digenic (additive x 

dominance) interaction effects were reported to control the inheritance of resistance traits 

(Gendloff et al., 1986; Chungu et al., 1996b). This was confirmed by the few QTL studies 

that have been conducted so far on resistance to Gibberella ear rot (Ali et al., 2005) and on 
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Fusarium ear rot (Pérez-Brito et al., 2001; Robertson-Hoyt et al., 2006; Ding et al., 2008). 

Numerous QTL with only small to moderate effects were detected, and their effects 

showed limited consistency across environments. Therefore, marker-assisted selection for 

resistance to these ear rots can not be recommended with the present level of genetic 

information. 

Depending on the location and environmental conditions, which vary from year to 

year, maize varieties may be affected by both Gibberella and Fusarium ear rots. Therefore, 

it is of interest to know if the mechanisms of resistance are specific to one of the 

pathogens, or genetic improvement of resistance is effective in controlling disease severity 

of and mycotoxin contamination by one or more pathogens belonging to Fusarium spp. 

Only a few studies examined the association between Gibberella and Fusarium ear rots, 

showing little evidence of general resistance mechanisms to both of them (Presello et al., 

2004; Schaafsma et al., 2006). 

In hybrid maize breeding, selection is carried out for line per se performance during 

inbreeding and on the hybrid level in testcrosses and experimental hybrids. Nevertheless, 

the ultimate goal is the superior performance of inbred lines in hybrid combinations. As 

generating and evaluating of testcrosses is expensive and labor intensive, indirect 

improvement of testcross performance by line per se selection would be advantageous in 

regard of saving time and resources. However, for indirect selection to be effective, a high 

correlation between line per se and testcross performance is required. This correlation was 

shown to vary considerably depending on the trait and the stage of inbreeding of the tested 

lines (Hallauer and Miranda, 1988). So far, little is known about the correlation between 

line per se and testcross performance for resistance to ear rots caused by Fusarium spp. 

and the related mycotoxin contaminations. 

The relationship of the amount of symptomatic tissue and mycotoxin production is 

a key element in the design and implementation of resistance breeding programs. Field 

evaluation of ear rot symptoms is cheaper and faster than chemical determination of 

mycotoxin concentrations. If visible disease rating is an appropriate trait to predict 

mycotoxin contamination, it would enable increased testing capacity and maximize 

selection gain in a resistance breeding program. Strong correlations have been observed for 

ear rot symptoms of Gibberella ear rot and DON in Canada after artificial inoculation 

(Reid et al., 1996b, 1996c), but no clear trend was reported between disease symptoms and 
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ZEA production (Cullen et al., 1983; Hart et al., 1984; Bakan et al., 2002). For Fusarium 

ear rot, a high correlation between the symptoms and FUM has been observed in the US 

corn belt (Robertson et al., 2006). 

The present study was conducted to establish basic concepts for an efficient 

resistance breeding to Gibberella and Fusarium ear rots in maize breeding programs in 

Central Europe which are based on early maturing germplasm adapted to the prevalent 

climatic conditions. In contrast to US and Canadian materials, little information on genetic 

variation for resistance to Gibberella and Fusarium ear rots and the mechanisms of 

resistance are publicly available for early European maize materials. 

 

Objectives 

The specific objectives of this study were to: 

(1) evaluate a set of early maturing European elite inbred lines for resistance to ear rots 

and mycotoxins contamination caused by F. graminearum and F. verticillioides, 

(2) estimate genetic and genotype-environment interaction variances and heritabilities 

for ear rot ratings and mycotoxin concentrations, 

(3) determine genotypic and phenotypic correlations of ear rot ratings with mycotoxin 

concentrations, 

(4) determine correlations between line per se and testcross performance for Gibberella 

ear rot rating and DON concentration, 

(5) examine the aggressiveness of, and mycotoxin production by different isolates of F. 

graminearum and F. verticillioides, and 

(6) evaluate the potential of near infrared spectroscopy to estimate concentrations of 

DON and FUM in maize grains under artificial inoculation. 
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Abstract. Maize ear rots caused by Fusarium spp. are of major concern in all maize-

growing areas of Europe. Our objectives were to (1) evaluate early maturing European elite 

inbred lines for resistance to F. graminearum and F. verticillioides and mycotoxin 

production, (2) estimate genetic and genotype-environment interaction variances and 

heritabilities, and (3) examine the relationships among these traits. Two field experiments 

were conducted under artificial inoculation across different environments. In Experiment 1, 

42 inbreds were evaluated for resistance to F. graminearum. In Experiment 2, 21 inbreds 

(a subset of inbreds tested in Experiment 1) were evaluated for resistance to F. 

verticillioides. Data were recorded on severity of Gibberella (AGER) and Fusarium ear 

rots and accumulation of Deoxynivalenol (DON), Zearalenone, and Fumonisins. Artificial 

inoculation was effective in promoting both diseases, particularly Gibberella ear rot. 

Genotypic and genotype-environment interaction variances were generally significant. 
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Heritability estimates were moderate to high. Disease severity had strong correlations with 

respective mycotoxin concentrations, being highest between AGER and DON (0.94). 

Selection for resistance to both ear rots is expected to result in favorable correlated 

response for the respective mycotoxin concentrations, particularly for DON through 

selection for resistance to Gibberella ear rot. We recommend to conduct initial selection on 

the basis of visual rating and to evaluate the selected elite material for mycotoxin 

concentration. 
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Abstract. Maize ear rots caused by Fusarium ssp. cause reduction in grain yield and 

contamination with mycotoxins which are harmful to humans and animals. To develop 

resistant maize cultivars, reliable large-scale phenotyping is essential. Our objectives were 

to (1) examine the precision of enzyme-linked immunosorbent assays (ELISA) for 

determination of deoxynivalenol (DON) and fumonisins (FUM), (2) to evaluate the 

potential of near-infrared reflectance spectroscopy (NIRS) to estimate concentrations of 

DON and FUM in grain produced in artificially inoculated maize plants, and (3) to 

compare the efficiency of ELISA, NIRS, and visual rating of disease severity for the 

estimation of mycotoxin concentrations. Insignificant variation was observed between 

duplicate evaluations of DON and FUM by ELISA, showing very high accuracy of this 

method. The DON and FUM determinations by ELISA were more closely correlated with 

the concentrations predicted through NIRS than with visual rating of disease severity. For 

the prediction of DON, NIRS had very high magnitude of the coefficients of determination 
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of calibration and cross validation (R
2
 = 0.82-0.90). Thus, the adoption of NIRS has 

promising potential to predict DON concentrations in grain samples of inoculated maize 

ears in resistance breeding programs. 
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Abstract. The most important pathogens causing ear rot of maize in Central Europe are 

Fusarium graminearum and F. verticillioides. Our objectives were to (1) compare eight 

isolates of each species on two susceptible inbred lines for their variation in ear rot rating 

and mycotoxin production across three years, and (2) examine two susceptible and three 

resistant inbred lines for potential isolate x line interactions across two years under 

inoculation of the silk channel. Ear rot rating, zearalenon (ZEA) and deoxynivalenol 

(DON) concentrations were evaluated for all F. graminearum isolates, additionally 

nivalenol (NIV) concentrations were analyzed for two NIV producers. Fumonisin 

concentrations (FUM) were evaluated for all F. verticillioides isolates. Mean ear rot 

severity was highest for DON producers of F. graminearum (62.9% of the ear covered by 
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mycelium), followed by NIV producers of the same species (24.2%) and lowest for F. 

verticillioides isolates (9.8%). For the latter species, ear rot severities highly differed 

among years (2006: 24%, 2007: 3%, 2008: 7%). Mycotoxin concentrations among isolates 

showed a broad range (DON: 100-284 mg kg
-1

, NIV: 15-38 mg kg
-1

, ZEA: 1.1-49.5 mg kg
-

1
, FUM: 14.5-57.5 mg kg

-1
). Significant genotypic variances were found for isolates and 

inbred lines in all traits and both species. Isolate x line interactions were significant only 

for ear rot rating (P<0.01) and DON concentration (P<0.05) of the F. graminearum 

isolates. However, no rank reversals occurred. Most isolates were capable of differentiating 

the susceptible from the resistant lines. For resistance screening, a sufficiently aggressive 

isolate should be used to warrant maximal differentiation among inbred lines. High FUM 

concentrations of grain with minimal disease symptoms must be considered in F. 

verticillioides infections. 
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5. Paper 4: Genetic variation in testcrosses and relationship between 

line per se and testcross performance for resistance to Gibberella ear rot 
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Abstract. Gibberella ear rot (GER) caused by Fusarium spp. is a major concern in maize 

production in Central Europe. Thus, the development of hybrid cultivars having resistance 

to GER is an important breeding goal. The objectives of our study were to (1) evaluate the 

variation in testcross performance (TP) of European maize germplasm for GER resistance 

and deoxynivalenol (DON) contamination, (2) estimate variance components, 

heritabilities, and correlations of these resistance traits, and (3) examine the relationship 

between line per se (LP) and TP. Sixty testcrosses of 30 diverse flint inbred lines with two 

dent inbred testers were evaluated in four environments under artificial inoculation. Data 

were recorded on severity of GER and concentration of DON. Significant estimates of 

genotypic and genotype-environment interaction variances were found for testcrosses with 

both testers. Genotypic variances were in general higher for LP than for TP in each set of 
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testcrosses. Phenotypic correlations between LP and TP were moderate ( pr̂ ≤ 0.57) for 

resistance traits. We suggest a multi-stage selection procedure to develop GER resistant 

maize hybrids based on multi-environment tests under artificial inoculation starting with 

selection for LP, followed by selection for TP. In both cases, the tested genotypess should 

first be scored for GER resistance and only the most promising evaluated for DON 

concentration. 
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6. General discussion 

The most cost effective, environmental friendly and publicly acceptable method of 

controlling ear rots and mycotoxin concentrations in maize caused by Fusarium spp. is 

growing of cultivars endowed with genetic resistance. So far, maize breeding materials in 

Europe have not been subjected to long-term selection pressure for ear rot resistance and 

low mycotoxin contamination. Ear rots caused by Fusarium spp. were not considered to be 

an economic threat until the EU released legally enforceable limits in unprocessed maize 

grain for the mycotoxins deoxynivalenol (DON), fumonisins (FUM), and zearalenone 

(ZEA). In our study, we focused on F. graminearum, causing Gibberella ear rot (GER), 

and F. verticillioides, causing Fusarium ear rot (FER). These species have been reported to 

be the predominant causative agents of the two diseases under Central European conditions 

(Logrieco et al. 2002; Görtz et al. 2008; Dorn et al. 2009). Gibberella ear rot causes 

contamination with DON, nivalenol and ZEA, and Fusarium ear rot causes contamination 

with FUM. 

Improving the level of resistance in the adapted breeding material requires sound 

knowledge of the epidemiology of the pathogen species, effective screening methods and 

reliable estimates of the quantitative-genetic parameters for resistance traits. Currently, this 

information can only be gained from field experiments, as there are no laboratory tests or 

seedling assays available and testing under greenhouse conditions is not practicable in 

large scale breeding programs. 

 

Screening techniques 

To investigate genetic differences in the breeding material for their response to ear 

rot severity and mycotoxin contamination, an appropriate infection pressure of the relevant 

pathogen(s) is required. The predominance of pathogen species and the severity of ear rot 

symptoms are strongly influenced by environmental conditions (Görtz et al. 2008), and 

therefore may change among locations and years. Moreover, disease pressure within one 

location can be highly variable due to variable occurrence and distribution of inoculum 

sources like infected debris or neighboring crops. We recorded ear rot severity under 

natural infection in four environments (EWE06, HOH06, EWE07, and HOH07). No 

significant genotypic differences were observed in the tested material even in EWE06, the 
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environment with the highest natural ear rot severity. This leads to the conclusion that 

under the conditions prevailing in Southwest Germany, artificial inoculation is necessary to 

warrant adequate and uniform infection pressure and, thus, to facilitate selection for 

resistance traits in a breeding program. 

Artificial inoculation is carried out to provide the required dose of inoculum at the 

appropriate time and at the right place (organ of the plant). This has several advantages 

compared to natural disease pressure: (i) it assures testing for the desired resistance traits as 

the predominant and relevant pathogen is used for inoculation, (ii) all plots and plants in an 

experiment are exposed to the same inoculum pressure, leading to higher heritability by 

decreasing the plot-to-plot random variability, and (iii) it circumvents escape reactions in 

the plant-pathogen interaction, which can mask useable genetic resistance. 

There are two major modes of fungal entry and, accordingly, resistance to ear rots 

caused by Fusarium spp. is divided into two components: (i) silk resistance (or resistance 

to initial penetration) and (ii) kernel resistance (or resistance to the spread of the pathogen 

in the host tissue). Consequently, two inoculation techniques have been developed: without 

and with mechanical injury of the kernel tissue (Ullstrup, 1970; Chungu et al., 1996a; Reid 

et al., 1996). The correlation between both types of resistance was found to be only low to 

moderate. Therefore, some experts are of the view that testing for only one type may not 

provide the information required in a resistance breeding program (Reid et al., 1996; 

Lemmens, 1999). 

Inoculation methods with mechanical injury of the kernel tissue simulate insect 

feeding to some degree. Although high levels of infection are obtained by this method, it is 

of limited value because important morphological barriers are bypassed (Drepper and 

Renfro, 1990). Therefore, wound-type inoculations might be of superior importance in 

geographic regions that are facing high pressure from insect feeding on ears, especially the 

European corn borer (Ostrinia nubilalis). However, under such conditions it might be 

worthwhile to select for resistance to insect feeding, rather than tackling the resulting 

secondary damage. Further, for both, F. graminearum and F. verticillioides, the 

predominant pathway described in the literature for infecting maize ears is via the silks 

(Nelson 1992; Reid et al., 1996; Munkvold et al. 1997b; Desjardins et al., 2002). Hence, 

we conducted our study by applying the silk channel inoculation as described by Reid et al. 

(1996). This inoculation method was reported to be very promising in generating 
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information on resistance to the most important infection pathway combined with high 

consistency compared to other methods (Ullstrup, 1970; Chungu et al., 1996a). 

Furthermore, it also seems to be an appropriate method to combine testing for resistance to 

initial penetration and spread of the pathogens in the host tissue. 

In our study, artificial silk channel inoculation proved to be effective in promoting 

disease development of F. verticillioides (AFER) in inbred lines and of F. graminearum 

(AGER) in both inbred lines as well as hybrids (Bolduan et al., 2009a, 2010; Miedaner et 

al., 2010). In general, ear rot severities and mycotoxin concentrations were much higher 

following inoculation than under natural conditions. Inoculation with F. graminearum 

consistently resulted in higher AGER severity at the location with cooler crop season, i.e., 

HOH compared with EWE (Bolduan et al., 2009a; 2010). This may be due to low 

temperature stress conditions for maize that weakened the host. Therefore, screening for 

AGER should be avoided in chilly environments as the expected heavy disease 

development might not allow for any differentiation between genotypes. The ability to 

differentiate genotypes might also be reduced if the volume and/or the concentration of the 

inoculum are too high (Reid et al., 1996). Excessively high volumes of inoculum will be 

forced down the silks and will directly infect cob and kernels which does not occur in 

nature. The natural barrier of the silk channel would be bypassed and genotypes with 

useful resistance are rated as susceptible. High inoculum concentrations would even 

increase disease severity in environments which are already conducive to fungal growth. 

Therefore, it might be worthwhile to adjust the inoculum dose to the environmental 

conditions, as well as to the genotypes (inbreds vs. hybrids) and the average resistance 

level of the material to be tested to allow for an optimal differentiation of the test 

candidates. 

Moreover, care has to be taken to select representative plants for inoculation in 

order to obtain more consistent and reliable results in the screening experiments. Plants 

that are weakened by biotic and/or abiotic stress may show increased susceptibility to 

infection, which masks their expression of genetic resistance. Ears of a given genotype 

should be inoculated at the same time to ensure similar weather conditions for infection 

and disease development. On the other hand, disease severity is affected by the flowering 

date (physiological stage of development) of the host plant; inoculations are not optimally 

effective if made too early or too late (Reid et al. 1996). 
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Silk channel inoculation and visual assessment of ear rot severity are labor 

intensive and time consuming. Therefore, it would be worthwhile to evaluate phenotypic 

traits that can be easily assessed without prior inoculation but are related to resistance 

traits. This would help to eliminate the most susceptible genotypes, and thereby to 

minimize the number of genotypes that are to be evaluated under artificial inoculation. 

Traits considered to be related with ear rot resistance were days to silking (DTS), husk 

covering (Butrón et al., 2006; Warfield and Davis, 1996) as well as length of the silk 

channel. However, in our study, DTS showed no significant correlation to the resistance 

traits. Silk channel length had only a moderate phenotypic correlation with AFER ( pr̂  = -

0.54). Further, we observed no significant genotypic variation for husk covering and husk 

tightness in the tested inbred lines (Bolduan et al., 2009a). Therefore, our study gives no 

support to perform selection based on these agronomic traits in order to improve resistance 

to ear rots in maize. 

 

Fusarium species and isolates 

Fusarium infection of maize ears is caused by two distinct diseases that show 

overlappings but also differ in some of their epidemiological characteristics. Under Central 

European conditions, F. graminearum and F. verticillioides have been reported to be the 

predominant causative agents of Gibberella and Fusarium ear rot, respectively (Logrieco et 

al. 2002; Görtz et al. 2008; Dorn et al. 2009). However, changes in environmental 

conditions, agricultural practices, and crop rotations may result in a shift in the 

predominance of the pathogen species. For example, F. culmorum, the causal organism of 

Fusarium head blight of wheat has been almost completely replaced by F. graminearum 

during the last decades in Europe (Waalwijk et al., 2003). Furthermore, resistance 

responses to different Fusarium spp. are only moderately correlated with each other 

(Presello et al., 2004; Schaafsma et al., 2006; Bolduan et al., 2009a). Consequently, 

monitoring the abundances of Fusarium species causing ear rots of maize is essential to 

adapt resistance breeding programs to the pathogen species predominant in the target 

environment. 

Silk channel inoculation with F. graminearum was generally more effective than 

with F. verticillioides for disease development and accumulation of the main mycotoxins 
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DON and FUM, respectively (Paper 1 and 3). This can not only be explained by the growth 

conditions in Central Europe, which are less favorable for F. verticillioides than for F. 

graminearum (Bottalico 1998). Several studies showed that inoculation with F. 

verticillioides leads to relatively low infection severity even under warmer growth 

conditions (Reid et al. 2002) combined with very high inoculation pressure (Clements et al. 

2004; Robertson et al. 2006). However, FUM concentrations in our experiments were 

much higher than expected from the relatively low levels of visible infection. This is in 

accordance to other studies, where appreciable FUM concentrations were found even in the 

absence of symptoms (Munkvold et al., 1997a; Desjardins et al., 1998). The variable 

response to inoculation is most likely attributable to the different epidemiology of F. 

verticillioides compared to F. graminearum. 

Modern maize cultivars are generally infected with symptomless endophytic 

colonizations by F. verticilliodes but disease symptoms are rarely exhibited under non-

stress environments (Bakan et al., 2002; Dorn et al., 2009). It was reported that under 

extreme drought or other conditions stressing plant growth, the fungus is not in a balanced 

state with the plant, resulting in different degrees of pathological responses (Schulz et al., 

1999). This illustrates that the effects of infection by F. verticillioides are more 

multifaceted and less understood than those of F. graminearum. Therefore, selection for 

Fusarium ear rot and FUM concentration seems to be more difficult due to more complex 

host-pathogen-environment interactions. Furthermore, the error of visual assessment of 

AFER is higher compared to AGER due to the random distribution of single infected 

kernels, which reduces heritabilities. 

We observed moderate positive correlations between AGER and AFER (rp = 0.63, 

rg = 0.88) and between DON and FUM (rp = 0.59; rg = 0.77) (Bolduan et al., 2009a) as also 

reported in earlier studies (Presello et al., 2004; Schaafsma et al., 2006). These results 

suggest that there may be some common genes and mechanisms for resistance to both 

Fusarium species. Therefore, selection for resistance to one species is expected to result in 

correlated response for resistance to the other. In our study, genotypes with low AGER and 

DON values also showed low AFER and FUM values but not necessarily vice versa. For 

this reason, pre-selection for resistance to F. graminearum can be recommended if 

resources are limited. Nevertheless, evaluation of resistance to both pathogens is essential 

as the testing of the germplasm advances in each breeding cycle. Further research on 
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Fusarium ear rot is necessary to get a better understanding of the complex interactions 

between F. verticillioides and maize to develop hybrids with low FUM concentrations. 

For developing hybrids with stable resistance in the field, the breeder has not only 

to work on the predominant pathogen species in the target region but must also select 

aggressive isolates of the pathogen for inoculation. We evaluated eight isolates, each of F. 

graminearum and F. verticillioides, for analyzing variation of ear rot severity and 

mycotoxin production following silk channel inoculation of two susceptible and three 

resistant inbred lines. The isolates differed in their geographical origin and for F. 

graminearum also for the host from which they were originally obtained. Significant 

variation among isolates was found for ear rot severity and mycotoxin concentrations in F. 

graminearum and F. verticillioides. Further, all isolates produced ear rot severity and 

mycotoxin concentrations that enabled differentiation between susceptible and resistant 

inbreds in Southwest Germany, irrespective of their geographic origin (Miedaner et al., 

2010). More importantly, the F. graminearum isolate (Fg1) that originated from maize did 

not show higher aggressiveness than the isolates originating from wheat. This corroborates 

the low pathogenic specialisation of F. graminearum reported earlier by Miedaner (2008). 

Environmental conditions had higher influence on disease severity for F. 

verticillioides than for F. graminearum (Bolduan et al., 2009a; Miedaner et al., 2010). The 

least aggressive isolates of both pathogen species were the most sensitive to varying 

environmental conditions (Miedaner et al., 2010). Moreover, differences between 

susceptible and resistant inbreds were smaller for the less aggressive isolates. No major 

changes in ranking were found among resistant and susceptible inbreds in our study, when 

inoculated with different isolates of F. graminearum or F. verticillioides (Paper 3). 

Therefore, inoculation with a single environmentally stable and sufficiently aggressive 

isolate is efficient for reliable identification of genotypes with useful resistance. 

Carter et al. (2002) and Maier et al. (2006) stated that NIV-producing isolates show 

especially high aggressiveness on maize. Unlike these reports, the two NIV-producing 

isolates tested in our study were among the least aggressive isolates (Miedaner et al., 

2010). Therefore, a proper choice is to use DON producing isolates in resistance 

screenings, considering the importance of DON due to the legally enforceable limits 

released by the EU. Further, all tested F. graminearum isolates produced considerable 

amounts of ZEA. This is in contrast to the study of Hart et al. (1982), where only one out 
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of three isolates produced ZEA in the inoculated maize ears. Information about ZEA in 

maize is much less than for DON. Owing to its estrogenic behaviour and its high 

toxigenicity, this toxin should be subject to future research in maize 

 

Variation for resistance traits 

Significant estimates of 2

gσ  (P < 0.01) and 2
h  (≥ 0.65) were found for ear rot 

ratings and mycotoxin concentrations following silk channel inoculation in the tested 

inbred lines and their testcrosses for Gibberella ear rot (Bolduan et al., 2009a; Bolduan et 

al., 2010) and for inbred lines for Fusarium ear rot (Bolduan et al., 2009a). These results 

are especially promising as the majority of the tested germplasm belonged to the European 

flint pool which confers early vigor and chilling tolerance to the dent x flint hybrids. 

Compared to the broad variation in the heterotic pool of the dent material, flint germplasm 

has a comparatively narrow genetic basis (Reif et al., 2005). Further, our study suggests 

that selection will be effective for improving resistance to ear rots caused by Fusarium spp. 

in elite flint inbreds with superior agronomic performance. This is of great importance as 

the relationship between resistance traits and grain yield influences the feasibility of 

developing cultivars with improved resistance, especially if the sources of resistance are 

unadapted and/or exotic. Negative genetic relationships between disease resistance and 

agronomic traits may occur due to negative pleiotropy or to repulsion phase linkages 

between favorable alleles at disease resistance loci and genes affecting agronomic traits. 

For example, the US Corn Belt line CG1 had good performance for AFER and FUM, but 

did not even develop ears in HOH07 and showed considerable lodging in all environments. 

Even with marker assisted backcrossing it would take at least three to four years to 

introgress one QTL for resistance from unadapted (exotic) germplasm into elite breeding 

material due to linkage drag, whereas resistance loci from adapted germplasm can be 

directly used for recurrent selection or forward breeding. 

Significant estimates of 2

geσ  were found for all traits, except for FUM following 

artificial inoculation with both pathogens (Bolduan et al., 2009a, 2010). Hence, for 

effective selection, resistance traits need to be evaluated in more than one environment. On 

the other hand, inoculation procedures are labour-intensive and require time-consuming 

visits to off-station sites during flowering time. Therefore, initial selection among inbred 
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lines may be conducted for ear rot rating in only one environment with the objective to 

eliminate only the highly susceptible ones. Subsequently, the selected lines can be tested in 

two to three environments for line per se performance (LP) and/or testcross performance 

(TP). 

For AGER we obtained lower estimates of 2

gσ  and 2
h  values for TP than for LP. 

This was in accordance with theoretical quantitative-genetic expectations under the 

assumption of additive gene action (Wricke and Weber, 1986). Thus, multi-location testing 

is more important for TP than for LP (Bolduan et al., 2010). Further, assuming similar 

selection intensities, the expected response to selection for LP should be higher than for 

TP. However, due to moderate correlations between LP and TP for AGER and DON, 

selection based on LP is not sufficient because the ultimate goal is to develop resistant 

hybrids. 

Estimates of 2

gσ  for TP, were distinctly smaller than half 
2ˆ
gσ  of LP, particularly 

with the susceptible tester D23. Further, the overall mean AGER was similar for TP and 

LP of the resistant tester P006. This most likely reflects the presence of non-additive 

effects in the inheritance of resistance traits. The presence of dominant resistance genes in 

each tester is also supported by the moderate correlations (rg, rp) of LP with TP in each set 

of testcrosses for AGER and DON. Our findings are in accordance with the results of 

Gendloff et al. (1986) and Chungu et al. (1996b), who also found the presence of additive 

as well as non-additive gene action in the inheritance of resistance to GER. 

High estimates of rg between TP with the two different testers suggested that 

general combining ability is of greater importance than specific combining ability. Further, 

correlations (rg, rp) between LP with TP in both sets of testcrosses were similar. Therefore, 

the use of a single elite inbred tester should be effective for identifying lines with high 

general combining ability for resistance traits. 

Estimates of 2

gσ  and 2
h  for AGER and DON were smaller for TP with the 

susceptible tester D23 than with the resistant tester P006. Based on our findings, the 

resistance level of the inbred tester should be moderate to high as the use of a highly 

susceptible tester may lead to low differentiation between the tested lines due to very high 

disease levels. However, care must be exercised in the genetic interpretation of our data. 

We applied doubled volume of inoculum to testcrosses than to inbred lines to 
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counterbalance the higher vigor of hybrids. This may have reduced
2ˆ
gσ  in testcrosses of the 

susceptible tester D23 due to a higher disease severity. 

 

Efficiency of selection for resistance traits 

For a successful breeding program it is essential to optimally allocate the available 

resources in order to maximize selection gain. The reduction of mycotoxin concentrations 

in the grain of hybrids can be seen as the major goal in improving maize for resistance to 

Gibberella and Fusarium ear rots. However, quantitative analysis of mycotoxins by HPLC 

is expensive and very time-consuming. Even for the ELISA method, currently the cheapest 

alternative, large resources are required for extensive germplasm evaluation as is the case 

in breeding programs. Significant and high estimates of rp (≥ 0.70) and rg (≥ 0.73) were 

found between ear rot severity and mycotoxin concentrations for Giberella and Fusarium 

ear rots, respectively, following silk channel inoculation (Bolduan et al., 2009a, 2010). 

These results showed that indirect selection for low mycotoxin concentrations through 

selection for low disease severity is preferable (Bolduan et al., 2009a). Visual rating for 

disease severity is much cheaper and faster than any type of mycotoxin analysis. Assuming 

a fixed budget, indirect selection based on AGER/AFER allows for testing a larger number 

of genotypes more intensively over a range of environments, compared to direct selection 

based on mycotoxin concentrations. Hence, selection gain will be increased through higher 

heritabilities and stronger selection intensities. In addition, selection based on 

AGER/AFER can be immediately put into effect for the planting of a winter nursery. In 

contrast, this would not be feasible with lab analysis of mycotoxins. 

Heritability and selection gain can further be enhanced by increasing the number of 

test environments at the cost of the number of replications and plants per plot (Bolduan et 

al., 2009a). Our results suggest that it is sufficient to reduce the number of inoculated 

plants per plot to five if homogenous material is under test. This is the case in most of the 

breeding programs with the current shift towards production of doubled haploid lines. 

However, we recommend inoculating not fewer than five plants per plot to account for 

uncertainties of biological and environmental factors. Larger numbers of plants are 

required if segregating populations are to be tested. 
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Severity of ear rots in our study was rated as the percentage of visibly infected 

kernels (0 – 100%) on a single ear basis. This rating scale is most suitable if variance 

components and correlation coefficients have to be computed. Grades (1-5/9) based on 

classes are not as accurate and encounter limitations in their statistical analysis, whereas 

the assessment of grades in the field is faster. 

As the testing progresses, genotypes selected for low disease severity need to be 

evaluated for mycotoxin concentrations to confirm the resistance reaction of the selected 

genotypes and discard “false positives”. This is especially important if selection is based 

on AFER as large quantities of FUM were reported even in the case of symptomless 

infection (Bacon et al., 2008). Currently, the ELISA assay is the most suitable method for 

the evaluation of large sets of genotypes. It combines the advantages of ease of operation 

and high sample throughput compared to chemical analytical techniques like HPLC. In our 

study, we observed insignificant variation between duplicate evaluations of field plot 

samples for their DON or FUM concentrations, showing the high repeatability of this 

method (Bolduan et al., 2009b). Hence, proper ranking of genotypes for their DON and 

FUM concentrations can be based upon one ELISA determination per field plot. 

As an alternative to the ELISA assay, we evaluated the potential of near infrared 

spectroscopy (NIRS) to estimate concentrations of DON and FUM. Maize flour was 

obtained by grinding the grain produce of artificially inoculated plants, which had higher 

than usual concentration of these mycotoxins. Ranking of genotypes by ELISA and NIRS 

was very similar but NIRS technology is remarkably cheaper, as no mycotoxin extractions 

and test kits are needed. Further, NIRS yielded higher R
2
 for the prediction of DON and 

FUM than visual disease severity ratings. Thus, NIRS was shown to be superior to visual 

ratings of disease severity. However, visual rating is faster and cheaper than NIRS, as it 

does not involve shelling of the ears and grinding of the kernels. Therefore, we recommend 

performing initial selection on the basis of ear rot rating. Subsequently, concentration of 

mycotoxins in the selected fraction could be predicted with NIRS. Finally, those genotypes 

showing low ear rot ratings and predicted mycotoxin concentrations could be analyzed 

with ELISA. 

The ultimate tool for the breeder would be NIRS measurements of the whole grain 

during the harvest process directly on the plot combine for non-destructive determination 
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of mycotoxins in the kernels. Although still destructive, our study provides a basis to draw 

preliminary conclusions about the potential use of NIRS in maize breeding programs. 

 

Conclusions and outlook 

The present study provides basic information about quantitative-genetic parameters 

and the inheritance of resistance to F. graminearum and F. verticillioides in early maturing 

European elite germplasm of maize. The presence of significant genetic variability along 

with the high estimates of heritability for all resistance traits seem to be promising for the 

development of high yielding hybrids with good agronomic performance in combination 

with low mycotoxin concentrations in the grain. Disease severity ratings showed strong 

correlations with the respective mycotoxin concentrations. Therefore, we recommend to 

perform initial selection on the basis of visual ratings and to evaluate only the selected elite 

material for mycotoxin concentrations. This helps the breeder to maximize selection gain 

for a given budget. 

Based on the high estimates of 2
h  and the moderate magnitude of correlation 

between LP and TP we recommend a multi-stage selection scheme to develop hybrids 

resistant to GER with low DON concentrations: (i) evaluation of agronomically promising 

lines for AGER in only one environment in order to eliminate only the highly susceptible 

lines, (ii) evaluation of TP of the selected lines for AGER with one tester of moderate to 

high resistance level from the opposite heterotic pool in two to three environments, (iii) 

evaluation for DON concentration in the elite fraction of testcrosses. 

More reliable information needs to be generated especially about the complex 

relationship between F. verticillioides and the maize host as well as the inheritance of 

resistance traits for both, F. verticillioides and F. graminearum. For the latter, studies have 

been initiated at the University of Hohenheim for mapping quantitative trait loci to identify 

important genomic regions and determine the type of gene action involved in the 

inheritance of in GER resistance. 
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7. Summary 

Ear rots of maize, caused by Fusarium spp., are of major concern because they lead 

to losses in grain yield and contamination with mycotoxins which harm animals and 

humans. In the absence of other strategies, breeding maize for genetic resistance is 

currently the most promising avenue to control these rots and mycotoxin accumulation. 

The predominant pathogens in Central Europe are F. graminearum, the causative agent of 

Gibberella ear rot (GER), and F. verticillioides, the causative agent of Fusarium ear rot 

(FER). GER causes contamination with deoxynivalenol (DON), nivalenol (NIV) and 

zearalenone (ZEA), whereas FER causes contamination with fumonisins (FUM). 

Information on the resistance to GER and FER and mycotoxin contamination is lacking for 

maize adapted to the cooler climatic conditions of Central Europe. 

In this study we investigated (1) the resistance of early maturing European elite 

inbred lines against GER and FER and contamination of mycotoxins, (2) the genetic 

variances and heritabilities for ear rot ratings and mycotoxin concentrations, (3) the 

correlations of ear rot ratings with mycotoxin concentrations, (4) the correlations between 

line per se (LP) and testcross performance (TP) for GER rating and DON concentration, 

(5) the aggressiveness of and mycotoxins produced by different isolates of F. graminearum 

and F. verticillioides, and (6) the potential of near infrared spectroscopy (NIRS) to 

estimate concentrations of DON and FUM in maize grains under artificial inoculation. 

In total, four experiments were conducted. In Experiment 1, 42 inbred lines were 

inoculated with F. graminearum and evaluated for ear rot severity (AGER), DON, and 

ZEA accumulation in four environments. The material included 38 early-maturing elite 

inbreds developed by the University of Hohenheim and four Canadian inbreds with high 

resistance to GER and/or FER. Experiment 2 included 21 inbred lines, which were 

inoculated with F. verticillioides and tested for ear rot severity (AFER) and FUM 

contamination in three environments. In Experiment 3, testcrosses of 30 flint inbreds with 

two dent testers were inoculated with F. graminearum and evaluated for AGER and DON 

in four environments. In Experiment 4, five inbreds were inoculated with eight isolates 

each of F. graminearum and F. verticillioides and evaluated for ear rot ratings and 

mycotoxin concentrations in three environments. Maize flour obtained from inoculated 

plants of Experiment 1, 2 and 3 was used to develop NIRS calibrations for the prediction 
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of DON and FUM concentrations. The inbred lines included in Experiment 2, 3, and 4 

were taken at random from those tested in Experiment 1. 

Inoculation was carried out using the silk channel method. It resulted in higher ear 

rot severities and mycotoxin concentrations than under natural conditions. The study 

showed that the silk channel inoculation method was effective in promoting GER and FER 

and can be used for large-scale evaluation of breeding materials. In addition, our findings 

demonstrated that artificial inoculation is necessary under conditions prevailing in 

Southwest Germany to establish an uniformly high disease pressure and facilitate selection 

for ear rot resistance traits. 

Significant genotypic variances and moderate to high heritabilities ( 2
h  ≥ 0.65) were 

found for AGER, DON and ZEA among the inbred lines and for AGER and DON among 

the testcrosses, as well as for AFER and FUM among the inbred lines. Further, genotype x 

environment interaction variances were significant for all traits except FUM. Thus, the 

results underlined the presence of ample genotypic variation and the need to conduct multi-

environment tests for reliable identification of resistant genotypes. 

Ear rot ratings and mycotoxin production of eight isolates each of F. graminearum 

and F. verticillioides differed significantly. Even though, isolate x inbred interactions were 

significant only in the case of F. graminearum, and no rank reversals occurred among the 

tested inbred lines. Most isolates differentiated the susceptible inbreds from the resistant 

ones for severity ratings. However, the differences between the two groups were smaller 

for the less aggressive isolates. Therefore, we recommend using a single, environmentally 

stable and sufficiently aggressive isolate for resistance screenings under artificial 

inoculation. 

Strong correlations between ear rot severity and mycotoxin concentrations (rg ≥ 

0.73) indicated that selection for low ear rot severity under artificial inoculation will result 

in high correlated selection response for low mycotoxin concentration, particularly for 

AGER and DON (rg ≥ 0.96). Selection for ear rot severity is less resource-demanding and 

quicker than selection for mycotoxin concentration. Thus, it enables the breeder to 

maximize selection gain for a given budget. However, the selected elite material should be 

evaluated for mycotoxin concentrations in order to avoid “false positives”. In this regard, 

NIRS showed high potential to predict DON concentrations in grain obtained from 

artificially inoculated maize. Compared to the commonly employed ELISA assay, NIRS 
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assays are considerably cheaper, because no mycotoxin extractions and test kits are 

needed. 

We observed moderate positive correlations between AGER and AFER ( r  = 0.63), 

and identified inbreds combining resistance to both ear rots. Therefore, selection for 

resistance to one pathogen is expected to result in indirect response to the other. 

Nevertheless, in advanced stages of each breeding cycle, lines preselected for other 

agronomically important traits should be evaluated for resistance to both pathogens. 

Genotypic variances for AGER and DON were generally higher in LP than TP. 

Thus, assuming identical selection intensities for each scheme, the expected response to 

selection for LP should be higher than for TP. However, owing to moderate correlations 

between LP and TP for AGER and DON, selection based on LP is not sufficient, because 

the ultimate goal is to develop resistant hybrids. Therefore, a multi-stage selection 

procedure is recommended with evaluation of agronomically promising lines for AGER in 

only one environment in order to eliminate highly susceptible lines, followed by evaluation 

of TP of the selected lines for AGER with one tester of moderate to high resistance level 

from the opposite heterotic pool in two to three environments. 
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8. Zusammenfassung 

Die durch Erreger der Gattung Fusarium hervorgerufenen Kolbenfäulen beim Mais 

sind von großer Bedeutung, da sie zu Ertragsverlusten und zur Kontamination des 

Erntegutes mit Mykotoxinen führen, welche die Gesundheit von Menschen und Tieren 

gefährden. Aufgrund fehlender geeigneter Bekämpfungsmöglichkeiten ist die Züchtung 

von genetisch resistentem Mais der derzeit aussichtsreichste Weg, die Kolbenfäulen sowie 

die damit einhergehende Kontamination mit Mykotoxinen zu bekämpfen. Die in 

Zentraleuropa vorherrschenden Erreger sind F. graminearum [engl. Gibberella ear rot 

(GER)] und F. verticillioides [engl. Fusarium ear rot (FER)]. GER führt zur Kontamination 

des Erntegutes mit Deoxynivalenol (DON), Nivalenol (NIV) und Zearalenon (ZEA), 

wohingegen FER zur Anreicherung mit Fumonisinen (FUM) führt. Für Maiszuchtmaterial, 

welches an die kühleren klimatischen Bedingungen in Zentraleuropa angepasst ist, liegen 

bislang keine verlässlichen Informationen über Resistenz gegen GER und FER und die 

entsprechenden Toxinkontaminationen vor. 

In der vorliegenden Arbeit wurden (1) frühreife europäische Elite-Inzuchtlinien auf 

Resistenz gegen GER und FER sowie die entsprechenden Toxinkontaminationen getestet, 

(2) die genetischen Varianzen und Heritabilitäten für Befallsstärken und 

Toxinkonzentrationen geschätzt, (3) die Korrelationen zwischen Befallsstärken und 

Toxinkonzentrationen, sowie (4) die Korrelation zwischen Linieneigenleistung (LP) und 

Testkreuzungsleistung (TP) für GER-Befallsstärke und DON-Konzentrationen berechnet, 

(5) die Aggressivität und Toxinproduktion verschiedener Isolate von F. graminearum und 

F. verticillioides verglichen und (6) die Eignung der Nah-Infrarot Spektroskopie (NIRS) 

zur Schätzung von DON- und FUM-Konzentrationen in Maiskörnern nach künstlicher 

Inokulation untersucht. 

Insgesamt wurden dazu vier Experimente durchgeführt. In Experiment 1 wurden 42 

Inzuchtlinien mit F. graminearum inokuliert und auf die Befallsstärke (AGER) sowie die 

Anreicherung mit DON und ZEA in vier verschiedenen Umwelten untersucht. Der 

untersuchte Satz von Inzuchtlinien bestand aus 38 frühreifen Inzuchtlinien aus dem 

Zuchtprogramm der Universität Hohenheim sowie vier kanadischen Inzuchtlinien mit 

hoher Resistenz gegen GER und/oder FER. Experiment 2 beinhaltete 21 Inzuchtlinien, 

welche mit F. verticillioides inokuliert und auf Befallsstärke (AFER) sowie FUM-

Konzentrationen in drei Umwelten untersucht wurden. In Experiment 3 wurden 
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Testkreuzungen von 30 Flint Inzuchtlinien mit zwei Dent Testern mit F. graminearum 

inokuliert und auf AGER sowie die Anreicherung mit DON in vier verschiedenen 

Umwelten untersucht. In Experiment 4 wurden fünf Inzuchtlinien mit jeweils acht 

verschiedenen Isolaten von F. graminearum und F. verticillioides inokuliert und auf 

Befallsstärke sowie Mykotoxinkonzentrationen in drei Umwelten untersucht. Für die 

Entwicklung einer NIRS-Kalibration zur Vorhersage von DON- und FUM-Konzentration 

wurde das Maismehl zuvor inokulierter Pflanzen aus den Experimenten 1, 2 und 3 

verwendet. Die Inzuchtlinien, welche in den Experimenten 2, 3 und 4 untersucht wurden, 

stellten eine zufällige Auswahl aus den Inzuchtlinien in Experiment 1 dar. 

Die Inokulationen wurden durch die Injektion einer Sporenlösung in den 

Narbenfadenkanal durchgeführt. Diese Methode führte generell zu höheren Befallsstärken 

und Mykotoxinkonzentrationen als unter natürlich auftretender Infektion. Die Ergebnisse 

dieser Untersuchung beweisen, dass die Inokulation des Narbenfadenkanals die 

Befallsstärke von GER sowie FER erhöht und für die breit angelegte Evaluierung von  

Zuchtmaterial empfohlen werden kann. Weiterhin zeigten die Ergebnisse, dass eine 

künstliche Inokulation unter den im Südwesten Deutschlands vorherrschenden 

klimatischen Bedingungen notwendig ist um einen gleichmäßig hohen Infektionsdruck und 

damit eine Selektion auf Resistenzmerkmale gegen Kolbenfäulen zu gewährleisten. 

Signifikante genotypische Varianzen sowie mittlere bis hohe Heritabilitäten ( 2
h  ≥ 

0.65) konnten für die Merkmale AGER, DON und ZEA zwischen den Inzuchtlinien und 

für AGER und DON zwischen den Testkreuzungen nachgewiesen werden. Gleiches gilt 

für AFER und FUM zwischen den Inzuchtlinien. Weiterhin waren die Genotyp x Umwelt 

Interaktionen signifikant für alle Merkmale mit Ausnahme von FUM. Die Ergebnisse 

sprechen somit für das Vorhandensein ausreichender genotypischer Variation sowie die 

Notwendigkeit einer Prüfung in mehreren Umwelten, um eine eindeutige Identifizierung 

von resistenten Genotypen zu gewährleisten. 

Die Befallsstärken und Toxinproduktionen der je acht Isolate von F. graminearum 

und F. verticillioides unterschieden sich signifikant. Trotz signifikanter Isolat x Linien 

Interaktionen im Falle von F. graminearum konnten keine Rangumkehrungen zwischen 

den untersuchten Inzuchtlinien beobachtet werden. Wenngleich die meisten Isolate 

bezüglich der Befallsstärke geeignet waren zur Unterscheidung zwischen anfälligen und 

resistenten Inzuchtlinien, fielen diese Unterschiede bei weniger aggressiven Isolaten 
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geringer aus. Daher empfehlen wir für Resistenztests unter künstlicher Inokulation den 

Einsatz eines umweltstabilen Einzelisolates mit ausreichend hoher Aggressivität. 

Starke Korrelationen zwischen Befallsstärke und Toxinkonzentrationen (rg ≥ 0.73) 

zeigten, dass eine Selektion auf geringe Befallsstärke unter künstlicher Inokulation zu 

einem korrelierten Selektionserfolg für niedrige Toxinkonzentrationen führt, insbesondere 

im Falle von AGER und DON (rg ≥ 0.96). Die Selektion auf Befallsstärke ist schneller und 

mit weniger Aufwand verbunden als die Selektion auf Toxinkonzentrationen. Dies 

ermöglicht dem Züchter die Maximierung des Selektionsgewinns im Rahmen eines 

vorgegebenen Budgets. Trotzdem sollte das selektierte Elitezuchtmaterial auch auf 

Toxinkonzentrationen untersucht werden, um die Selektion von „falsch Positiven“ 

auszuschließen. In dieser Hinsicht zeigte der Einsatz von NIRS hohes Potential zur 

Vorhersage der DON-Konzentration in künstlich inokuliertem Mais. NIRS ist im 

Vergleich zu den üblicherweise genutzten ELISA-Assays bedeutend kostengünstiger, da 

keine Mykotoxin-Extraktion nötig ist und der Kauf von Testkits entfällt. 

Eine mittlere positive Korrelation wurde zwischen AGER und AFER (r = 0.63) 

beobachtet und es konnten Inzuchtlinien identifiziert werden, welche eine Resistenz gegen 

beide Arten der Kolbenfäule vereinen. Folglich lässt die Selektion gegen einen der Erreger 

einen korrelierten Selektionserfolg für den anderen Erreger erwarten. Im fortgeschrittenen 

Stadium eines Selektionszyklus sollten jedoch solche Linien, welche bereits für andere 

agronomisch bedeutende Merkmale vorselektiert wurden, auf Resistenz gegen beide 

Erreger untersucht werden. 

Die genotypischen Varianzen für AGER und DON waren für LP generell größer als 

für TP. Unter Annahme gleicher Selektionsintensität ist daher der erwartete 

Selektionsgewinn für LP höher als für TP. Im Hinblick auf den nur mäßigen 

Zusammenhang zwischen LP und TP für die Merkmale AGER und DON ist jedoch eine 

nur auf LP basierende Selektion nicht ausreichend, da das eigentliche Ziel die Entwicklung 

resistenter Hybriden ist. Wir empfehlen daher eine mehrstufige Selektion, beginnend mit 

dem Testen agronomisch vielversprechender Inzuchtlinien auf AGER in einer Umwelt, 

gefolgt von der Evaluierung der daraus selektierten Linien auf TP in zwei bis drei 

Umwelten, wobei ein Tester des anderen heterotischen Pools mit mittlerer bis hoher 

Resistenz für AGER verwendet werden könnte. 
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