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1.  General Introduction 
 
In 1809 the genus Fusarium was first described by the German naturalist Johann Heinrich 

Friedrich Link and comprises a broad spectrum of highly pathogenic species, producing 

important diseases on roots, stems, leaves, cereal heads and corn cobs of plants at almost any 

time in their life cycle. Fusarium head blight (FHB), also known as scab, or Fusarium ear 

blight is one of the most devastating fungal diseases affecting several small-grain cereals such 

as wheat, barley, rye, oats and rice worldwide. Throughout the last century repeatedly 

occurring FHB epidemics have been documented in all main regions of wheat production 

such as Central and East Europe, Russia, China, Australia, Argentina and especially the US 

and Canada (Windels 2000). FHB infection on wheat reduces grain yield, seed quality and 

vigor due to blighted spikes producing shrunken, bleached and shriveled kernels (tombstones) 

with depressed seed weights (McMullen et al. 1997, Goswami and Kistler 2004). 

Among the large number of Fusarium species that can cause FHB, relatively few are 

considered to be of overall significance (Parry et al. 1995). Homothallic Fusarium 

graminearum (teleomorph Gibberella zeae (Schwein.) Petch) is the most frequently 

encountered and most destructive pathogen that causes FHB in cereals as well as Gibberella 

ear rot in maize worldwide (Miedaner et al. 2008). Depending on environmental conditions 

different species are predominant in different of the world´s wheat-growing areas. Whilst 

Fusarium graminearum generally is associated with warmer and humid conditions mainly of 

North America, Central Europe and China, anamorph Fusarium culmorum (W.G. Smith) 

Sacc. (teleomorph not known) and Fusarium avenaceum (teleomorph Gibberella avenaceae) 

play an important role in cooler, maritime regions of Northern Europe (Leonard and Bushnell 

2003, Xu et al. 2005, Miedaner et al. 2008). Fusarium poae (teleomorph not known) is 

associated more with relatively dry warm conditions and is reported to prevail in some 

European and North and South-American countries (Nicholson 2009).  

Owing to yield losses that may reach 50 - 60%, FHB has become a major threat to the worlds´ 

food supply and is considered by the International Maize and Wheat Improvement Centre 

(CIMMYT) as one of the most limiting factors of worldwide wheat production (Dubin et al. 

1997, Nicholson 2009). In recent years FHB has emerged as a disease of fundamental 

economic importance, leading to direct economic losses of close to $ 3.5 billion in the 1990s 

only in the United States and Canada. In addition to yield losses, indirect economic losses due 

to contamination of grain with mycotoxins, such as trichothecenes, zearalenon and 

fumonisins, lower market grade or lead to rejection of whole charges. 
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Trichothecenes are secondary metabolites that are potent inhibitors of protein synthesis in 

eukaryotic cells, causing feed refusal, vomiting, diarrhea, dermatitis, hemorrhages and weight 

loss (Ward et al. 2008). Thus, trichothecene mycotoxins pose a serious health hazard to 

humans and especially nonruminant animals when exposure levels are too high. F. 

graminearum and F. culmorum produce deoxynivalenol (DON) and nivalenol (NIV) that are 

the most prevalent type-B trichothecene mycotoxins associated with FHB in wheat. DON, 

which is also known as vomitoxin, often is accompanied with acetylated derivatives (3-

ADON and 15 ADON) that are less toxic (Nicholson et al. 2009).  

By the end of 2003, about 100 countries had specific regulations for maximum levels of 

mycotoxins in food or feedstuffs (van Egmond et al. 2007). In the EU, since 2005 legally 

enforceable limits in grain and food products allow a maximum DON content in unprocessed 

bread wheat of 1.25 mg kg-1, in bread and bakeries of 0.5 mg kg-1 and in baby food of 0.2 mg 

kg-1 (Anonymous 2005). 

Initial infection e.g. in F. graminearum is primarily by ascospores from infected wheat or 

maize stubbles while conidia produced on flowering spikes may cause secondary infections 

(Miedaner et al. 2008). Continuous improvement of agricultural productivity such as intensive 

use of stubble retention practices and non-inversion tillage, vastly increasing maize 

cultivation and narrow crop rotations facilitate pathogen survival on crop residues. These are 

considered the principal inoculum source especially for F. graminearum infection of the 

successive wheat crop (Maiorano et al. 2008). The preference of agronomically advantageous 

but mostly less FHB resistant semi-dwarf wheat varieties further exacerbates disease severity 

and yield loss. To reduce the impact of FHB epidemics and subsequent DON accumulation 

within grain, crop management and agrochemical measures are only partly effective because 

of necessary cost minimization in crop production, insufficient fungicide efficiency and 

narrow time frames for fungicide application during flowering representing the period of 

highest susceptibility to Fusarium infection of the wheat spike. Therefore, breeding and 

cultivation of highly disease-resistant varieties plays a key role in effective Fusarium control. 

Morphological resistance to natural FHB infection is seemingly mediated, among others, 

through increased plant height due to a longer distance from the infected crop debris to the 

leaves and spikes (Mesterházy 1995), but tall genotypes are not desired by breeders and 

growers. Instead, the advantages of using dwarfing genes were soon recognized when largely 

increased use of inorganic nitrogenous fertilizers, pesticides and irrigation enabled higher 

grain yields (Gale and Youssefian 1985, Hedden 2006). More and heavier grain per spike 

caused the tall wheat plants to become prone to lodging in high winds and rain which required 
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breeding for shorter and stronger plant stature. Owing to its short stiff straw the variety Norin 

10, that was registered and released in Japan in 1935, was introduced to the USA in 1946 

(Pestsova et al. 2008). In the 1950s the reduced height (Rht) genes Rht-B1b and Rht-D1b 

derived from Norin 10 were utilized in wheat breeding programmes in the USA in order to 

improve lodging resistance in winter wheats (Ellis et al. 2002, Borojevic and Borojevic 2005). 

Through the efforts of Norman E. Borlaug, who led the CIMMYT wheat breeding programme 

in Mexico, the exploitation of Rht-B1b (syn. Rht1) and Rht-D1b (syn. Rht2) rapidly spread 

throughout the wheat-growing world. The newly developed semi-dwarf wheat varieties gave a 

quantum jump in productivity when accompanied by intensive agronomic practices and were 

the basis of the ‘Green Revolution’ (Swaminathan 2006). The first US variety based on Norin 

10 Rht genes was the variety Gaines that was released in 1961. Already by 1985 over half the 

world wheat crop contained dwarfing genes and today approximately 90% of the world´s 

semi-dwarf wheat varieties carry Rht-B1b or Rht-D1b (Gale and Youssefian 1985, Worland et 

al. 1998a, Pestsova et al. 2008). In fact, the merits of globally increased yield performance by 

Rht genes were recognized in 1978 by the award of the Nobel peace prize to Norman Borlaug. 

The Rht-D1b allele was also widely used in the high yielding environments of North-Western 

Europe. In Great Britain the first semi-dwarf variety was released in 1974, and today the great 

majority of UK varieties contain Rht-D1b (Gale and Youssefian 1985, Gosman et al. 2007). 

In Germany, today around 50% of all registered winter wheat varieties carry Rht-D1b, 

whereas only few (6% in 2004) carry Rht-B1b (Knopf et al. 2008, E. Ebmeyer pers. 

commun.). As consequence of a dwarfed phenotype with reductions in height of around 16–

23%, Rht-B1b and Rht-D1b most importantly lead to higher overall grain yields of about 8–

24% depending on genetic background and environment (Gale and Youssefian 1985, Worland 

and Petrovic 1988, Flintham et al. 1997a/b, Worland et al. 2001). The yield advantages of 

these semi-dwarfs result from increased partitioning of assimilates to the developing ear 

generating increased spikelet fertility and accordingly higher grain numbers per spike but 

reduced grain size. Due to increased grain yield in combination with slightly reduced total 

plant biomass the harvest index of Rht-varieties e.g. in British varieties rose from 35% in the 

1920s to values up to 55% today (Evans 1998, Hedden 2006).  

 

Originating from the wild-type alleles Rht-B1a located on chromosome 4B and Rht-D1a on 

chromosome 4D via single gain-of-function base-pair mutations, Rht-B1b and Rht-D1b 

encode transcription factors which belong to the DELLA proteins, a subset of the GRAS 

family of transcriptional regulators (Bolle et al. 2004). DELLA proteins act as repressors of 
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plant growth, whereas Gibberellins (GAs) promote growth by overcoming DELLA-mediated 

growth restraint (Achard and Genschik 2009). The point mutations of Rht-B1b and Rht-D1b 

lead to the introduction of a stop codon into a conserved region known as the DELLA 

domain, which is predicted to be in the N-terminus of the protein. Peng et al. (1999) proposed 

that translation might restart after the introduced stop codon, resulting in shortened proteins 

which are resistant to GA-induced degradation. Accumulation of the mutant DELLA protein 

causes continuous growth inhibition and, accordingly, leads to agronomically advantageous 

dwarfed plant height and improved straw strength by inhibition of stem cell elongation 

(Dalrymple 1986, Flintham et al. 1997a, Peng et al. 1999). In addition to wheat, DELLA gene 

orthologues have been described among several species including Arabidopsis thaliana (GAI, 

RGA, RGL1, RGL2, RGL3), maize (dwarf8), grape (VvGAI1), rice (SLR1/OsGAI), barley 

(SLN1) and rape seed (BrRGA1) indicating that the function of GA-signalling repression is 

highly conserved in monocots and dicots (Peng et al. 1999, Boss and Thomas 2002, Sun and 

Gubler 2004, Muangprom et al. 2005).  

 
Another commercially highly important source of GA-insensitivity is Rht-B1d (syn. Rht1S) 

which represents an allelic variant to Rht-B1b and originated from another old Japanese 

variety Saitama 27 (Table 1, Worland and Petrovic 1988). Since being incorporated into 

Italian wheats in 1947, Rht-B1d has spread into many Mediterranean countries. By now, 80% 

of the Italian, 26% of the Bulgarian and a large proportion of the varieties of former 

Yugoslavia are carrying Rht-B1d based on selective advantages under high temperatures due 

to the weakness of its GA-insensitivity compared to Rht-B1b and Rht-D1b (Worland and 

Petrovic 1988, Ganeva et al. 2005). Rht-B1d exhibits only half the potency of Rht-B1b and 

reduces height by around 11% combined with an increase in spikelet fertility and grain 

number. However, a reduction in grain size compensates an advantage in grain yield.  

Alternative GA-insensitive allelic variants at the Rht-B1 and the Rht-D1 locus are Rht-B1c 

(syn. Rht3) derived from the British variety Tom Thumb and Rht-D1c originating from the 

Chinese variety Ai-bian 1 (Worland and Petrovic 1988). Due to an increased magnitude of the 

GA-insensitivity both alleles confer an extreme dwarfed phenotype with height reductions up 

to 46%. Nevertheless, both alleles are much less exploited in actual commercial breeding 

programmes because of enhanced disadvantages such as reduced grain size and quality,
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Table 1. Current nomenclature of the most important height reducing (Rht) genes and their homoeologous alleles in wheat according to Börner et 
al. (1996), Worland et al. (1998a), McIntosh et al. (2008), and Holzapfel et al. (2008) 
 
Rht gene All

ele 
Chromosome Old nomenclature /   

association 
Source GA-    

sensitivity 
Intensity of use in current 
wheat breeding 

Dwarfism 

Rht-A1 a  4A rht wild-type  (monomorph) - 

Rht-B1 a 4BS rht wild-type - - - 

 b  Rht1 Norin 10 - very high ++ c 

 c  Rht3 Tom Thumb - low ++++ 

 d  Rht1 Saitama Saitama 27 - high + 

 e  Rht Krasnodari1 Krasnodari 1 - medium +++ 

 f  Rht T. aethiopicum W6824D, W6807C (T. aethiopicum) a - ? - 

 g  - fast-neutron mutant of Rht-B1b + - - 

Rht-D1 a 4DS rht wild-type - - - 

 b  Rht2 Norin 10 - very high +++ 

 c  Rht10 Ai-bian 1 - low ++++ 

 d  Rht Ai-bian 1a spontaneous mutation of Ai-bian 1 - ? ++ 

Rht8 a 2DS Rht8 WMS261-165bp Ciano 67, Brevor, Saitama 27 + high - b 

 b  Rht8 WMS261-174bp Cappelle-Desprez, Mara, Norin 10 + high + 

 c  Rht8 WMS261-192bp Akakomugi, Bezostaya + very high ++ 

 d  Rht8 WMS261-201bp Pliska, Courtot + low ? 

 e  Rht8 WMS261-210bp Chino, Klein Esterello, Klein 157 + low ? 

 f  Rht8 WMS261-215bp Klein 49 + low ? 

 g  Rht8 WMS261-196bp Mirleben + - ? 

 h  Rht8 WMS261-206bp Weihenstephan M1 + - ? 
a tetraploid 
b WMS261-165bp is promoting height by 3-4cm compared to WMS-174bp (Worland et al. 1998) 
+, ++, +++, ++++ = dwarfism severity from low to very severe 
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chromosomal and environmental instability that are not sufficiently compensated by higher 

grain numbers so that overall grain yield is mostly reduced (Hedden 2006). As the potency of 

the GA-insensitive alleles is reflected in the degree of growth retardation, lines being 

homozygous for the least potent Rht-B1d show identical height reduction to those being 

heterozygous for Rht-B1b, and those being homozygous for Rht-B1b are indistinguishable 

from those heterozygous for Rht-B1c (Worland 1986). 

The distribution of the most widely used GA-insensitive semi-dwarfing alleles Rht-B1b and 

Rht-D1b is restricted to geographical areas that are not subjected to heat stress during the time 

of meiosis as this has been demonstrated to reduce spikelet fertility (Worland and Law 1985, 

Ellis et al. 2005). The most important GA-responsive Rht gene is Rht8 that is closely linked to 

the photoperiodic insensitive gene Ppd-D1a in a Rht8/Ppd-D1a linkage group (Worland et al. 

1998a, Ganeva et al. 2005). The Italian wheat breeder Nazareno Strampelli introduced 

Rht8/Ppd-D1a derived from the old Japanese semi-dwarf landrace Akakomugi into European 

wheats (Table 1, Worland et al. 1998a). In 1913, Strampelli made the first crosses in order to 

combine short straw, early maturity and high yield potential of Akakomugi with the 

adaptability of local varieties (Borojevic and Borojevic 2005). The identification of a tightly 

linked microsatellite marker, WMS261, located 0.6cM distal to Rht8 on the short arm of 

chromosome 2D facilitated its recognition (Korzun et al. 1998). The 192bp-allele at this locus 

named Rht8c was generally used as diagnostic for Rht8. Recently Ellis et al. (2007) reported 

that Norin 10 also carries a 192bp allele at the Xgwm261 locus resulting in a second haplotype 

that has no association with the height reducing allele Rht8c. The authors suggested that, 

hence, WMS261-192bp is only indicative of Rht8c in wheat varieties that have inherited this 

allele from Akakomugi or a Strampelli wheat ancestor. 

In contrast to Rht8c, the closely linked Ppd-D1a allele has proven extremely important in 

promoting height reduction by shortening the plant’s life cycle due to a 2.089bp deletion 

upstream of the coding region leading to mis-expression of the 2D pseudo-response regulator 

gene (Worland et al 1998a/b, McIntosh et al. 2008). Owing to its mode of action the use of 

Rht8c/Ppd-D1a prevails in wheats of South and South-Eastern Europe further to Southern 

Ukraine and Russia and in the spring wheats introduced by CIMMYT. Therefore, the 

improved adaptability to these areas suffering from desiccating summer conditions excludes 

utilization in areas such as much of Northern Europe and America where maximal yields are 

associated with extended life cycles (Worland et al. 2001, Ganeva et al. 2005). However, 

Worland et al. already in 1998 accentuated the need to breed for earlier flowering wheats 
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carrying Ppd-D1a with the upcoming effects of global warming in Northern Europe to ensure 

high yield by summer drought stress avoidance. 

Interactions between Rht8c and Ppd-D1a were detected for increased grain numbers per 

spikelet, enhanced spikelet fertility, improved grain fill before the onset of summer 

desiccation and consequently increased yield under these conditions (Worland et al., 

1998a/b). Accordingly, e.g. in Bulgaria 84% of the tested modern wheat varieties are carrying 

Rht8c/Ppd-D1a, whereas in Germany and the United Kingdom so far all locally bred varieties 

are lacking Rht8c/Ppd-D1a (Worland et al. 1998a, Ganeva et al. 2005, Knopf et al. 2008). 

Studies carried out in the UK, Germany and in former Yugoslavia on single chromosome 

recombinant lines, suggested that solely presence of Rht8c reduces plant height by around 

10% (5-10cm) without significant adverse effects on plant yield (Worland et al. 1998a). This 

indicates Rht8c possibly being a viable alternative major height reducing allele other than the 

GA-insensitive or the photoperiod-insensitive ones. 

 
Today, on total 21 different GA-insensitive or -sensitive Rht genes are described with 

additional allelic variants for the most prevalently exploited loci Rht-B1 (alleles a-g), Rht-D1 

(alleles a-d) and Rht8 (alleles a-h) as shown in Table 1 (McIntosh et al. 2008). Only a few of 

the known Rht alleles are used agronomically, as typical features such as higher grain 

numbers and increased harvest index do not always compensate for reduced grain size and 

shoot biomass (Evans 1998, Hedden 2006). 

 

Lines carrying Rht genes for a long time were hypothesized to be more susceptible to 

soilborne fungal pathogens under natural infection in agricultural practice because of the short 

stature leading to short distances from the infected crop debris on the soil surface to the leaves 

and finally the spikes (Mesterházy 1995). Although phenotypic effects of plant height are not 

the only source of FHB resistance in wheat as demonstrated by registered varieties of similar 

plant height significantly varying in their FHB resistance, a general negative association 

between FHB resistance and plant height was reported from several wheat populations 

(Mesterházy 1995, Buerstmayr et al. 2000, Somers et al. 2003, Anonymous 2009). Both traits 

show complex inheritance controlled by multiple major and minor genes and, moreover, 

resistance evaluation can be confounded by large environmental effects and genotype × 

environment interactions. Nevertheless, in all conducted quantitative trait loci (QTL) mapping 

studies several QTL for FHB resistance coincided with QTL for straw length (Buerstmayr et 

al. 2009). Interestingly, until the beginning of this study possible segregation for Rht alleles, 
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especially for Rht-D1b as the most important Rht allele in Northern Europe, was not 

monitored in any study. 

For example Hilton et al. (1999) analysed two populations segregating for Rht-B1b and Rht-

D1b, but without differentiation for their Rht status and hence did not obtain a sound 

conclusion on the Rht effects. Additionally the populations were analysed only at one location 

excluding a differentiation between the genotypic and the genotypic × location interaction 

effects that are of great importance in the pathosystem (Miedaner et al. 2001a). In 2007, a 

major QTL for FHB resistance that co-localised with the Rht-D1 locus in a QTL mapping 

study was observed by Draeger et al. in an Arina × Riband population. This QTL explained 

13 to 24% of the total phenotypic variance, but was not stable across all environments and 

was verified only on a limited number of lines. Whether the association of Rht-D1b is due to 

close linkage of the wild-type allele Rht-D1a to a QTL conferring FHB resistance or 

pleiotropy of Rht-D1b remains unclear from this study and has to be further examined. 

Simón et al. (2004) analysed the influence of different Rht genes, including Rht-D1b, on 

resistance to Septoria tritici leaf blotch in wheat near isogenic lines in the Mercia and 

Cappelle-Desprez background by spray inoculation. The authors found strong association of 

reduced plant height and increased disease severity only in very short wheats carrying Rht-

B1c and Rht12 (derived from the variety Karkagi 522), respectively. The Norin 10 alleles Rht-

B1b, Rht-D1b as well as the Saitama 27 allele Rht-B1d had no impact on S. tritici leaf blotch 

in the used genetic backgrounds. This indicates that, depending on the pathosystem, common 

Rht alleles do not necessarily lead to increased susceptibility compared to the tall wild-types.  

For Fusarium resistance evaluation, to separate the epidemiological effects of plant height per 

se and the effects of Rht genes, artificial spray inoculation onto the crop canopy is essential 

and was conducted in the present experiments. Generally, two different types of resistance are 

known: resistance to initial infection (type I) and resistance to fungal spread within the spike 

(type II) (Schroeder and Christensen 1963). As the combination of initial disease incidence 

and spread within the spike is reflected by the percentage of infected spikes per plot 

multiplicated by the mean percentage of infected spikelets per infected spike, combined type I 

and II resistance can be assessed by visually rating the percentage of infected spikelets of all 

spikelets per trial plot. Measuring only type II resistance can be achieved via inoculation of a 

spore suspension into single spikelets and rating the fungal spread after a few days.
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Taken together, until the beginning of the present studies in 2004 a verification of the effects 

of Rht-D1b on FHB resistance was not available on a broad basis of several segregating 

European winter wheat populations involving appropriate population sizes and being tested in 

a reliable number of environments. Additionally a direct comparison of the effects of different 

Rht alleles on type I and II FHB resistance has not yet been conducted in a comparable 

genetic background of e.g. isogenic lines.  

 

At present in agricultural practice of Germany only moderately resistant wheat varieties are 

available (Anonymous 2009). Until recently the level of FHB resistance within European 

breeding programmes was usually obtained through the combination of favourable not yet 

characterized genes derived from adapted European elite germplasm after multi-step 

phenotypic selection. In this way in the last decades much progress has been achieved in the 

development of moderately FHB resistant varieties mainly by use of conventional breeding 

methods. In the recent years high effort was put into the identification and fine mapping of 

QTL or genes from genetically distant sources possessing high FHB resistance.  

Currently the most effective and best validated FHB resistance QTL are Qfhs.ndsu-3BS, 

recently designated as Fhb1, that mediates primarily type II resistance and Qfhs.ifa-5A being 

associated primarily with type I resistance. Both QTL were derived from the highly resistant 

Chinese spring wheat variety Sumai 3 and related lines and reduce FHB disease severity up to 

33% and DON content up to 59% compared to the marker class with no donor QTL (Bai and 

Shaner 2004, Liu et al. 2006, Anderson 2007, Buerstmayr et al. 2009). Further major 

resistance QTL being recently detected and fine mapped are Fhb2 and Fhb3 on chromosomes 

6BS and 7AL, respectively (Cuthbert et al. 2007, Qi et al. 2008). Even though the marker-

based introgression of resistance QTL seemingly offers a substantial increase in FHB 

resistance within the shortest time possible, this expectation appears only true in case of 

sufficiently powerful donor QTL (Kosová et al. 2009). Nevertheless, the utilization of exotic 

donor QTL in high-yielding European germplasm is always hampered or at least time and 

cost consuming due to the negative agronomic performance of the exotic genetic backgrounds 

causing pronounced linkage drag. 

Another approach being pursued is the search for effective FHB resistance QTL in adapted 

Central European elite germplasm (Gervais et al. 2003, Paillard et al. 2004). For example 

Schmolke et al. (2005) observed two major QTL on chromosomes 6AL and 7BS. However, 

the effects of these QTL were yet not large enough to justify the expenses of a marker-

assisted introgression programme replacing continuous phenotypic selection.  
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Besides the improvement of host resistance, likewise the pathogens´ capability to adapt to and 

possibly overcome improved host resistance has to be considered in the wheat/Fusarium 

pathosystem. Breakdowns of disease resistance depending on one or only few major 

resistance genes in wheat have been documented most thoroughly with regard to cereal rusts 

(McIntosh and Brown 1997) and powdery mildew (Wolfe and McDermott 1994). In these 

cases major resistance genes were overcome by evolution of the pathogen population caused 

by selection for mutants, recombinants or immigrants that were better adapted to the resistant 

wheat varieties. Generally, the genetic basis of aggressiveness and the ability of mutation, 

recombination and gene flow influence the success of adaptation of fungal populations to 

hosts with improved resistance. On contrast to the wheat/rust pathosystems, aggressiveness of 

G. zeae as well as FHB resistance in wheat are quantitatively inherited traits (Cumagun et al. 

2004a, Holzapfel et al. 2008). Isolate aggressiveness, in this context, represents the quantity 

of disease induced by a pathogenic isolate on a susceptible host (van Eeuwijk et al. 1995). On 

the basis of a QTL mapping population, pathogenicity contrarily segregated in a qualitative 

manner. The according pathogenicity locus in G. zeae was designated as PATH1 and mapped 

adjacent to loci that affect pigmentation (PIG1), perithecial production (PER1) and toxin 

amount (TOX1) (Cumagun et al. 2004a). 

One prerequisite for effective selection within a population is sufficient genetic variation. For 

aggressiveness large genetic variation was found in isolate collections, crossing populations 

and especially within-field populations among G. zeae sampled from different continents 

within a country or state and even within individual fields (Bai and Shaner 1996, Miedaner 

and Schilling 1996, Goswami and Kistler 2005, Miedaner et al. 2008). Hence, Zeller et al. 

(2004) observed that most of the genetic variation in the North American meta-population is 

already shared by most of the local populations revealing generally low differentiation among 

subpopulations and relatively few identified unique haplotypes. Although geographic and 

genetic distance are correlated to some extent, the observed differences between 

subpopulations are relatively small and genetic isolation might therefore rather reflect the 

time required for the alleles to diffuse over large geographical distances. 

Another important factor in the evolution of pathogen populations is sexual recombination. 

Within progeny of moderately aggressive parental isolates Cumagun and Miedaner (2004) 

observed transgressive segregation for isolate aggressiveness and DON production. Although 

until now it could not be determined whether outcrossing and recombination in the field occur 

regularly or episodically, the occurrence of transgressive segregants indicates that solely 

sexual recombination could result in increased aggressiveness of F. graminearum field 
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populations. Thus, determining the segregation variance from crosses of already highly 

aggressive parents would enable detailed investigation on the fungal capability to 

continuously increase its level of aggressiveness through sexual recombination. 

Furthermore, environmentally stable host × isolate interaction might be a selective force and, 

thus, could trigger a breakdown of increased host resistance as described by Mesterházy 

(1984). However, the majority of published literature describes an absence of isolate-specific 

interaction to wheat varieties varying in their FHB resistance (van Eeuwijk et al. 1995, 

Goswami and Kistler 2005).  

Nevertheless, aggressiveness and its role in adaptation of the Fusarium pathogen is still 

insufficiently investigated. Although quantitative adaptation to the host is theoretically 

expected to be slower, the widespread use of single highly effective resistance genes or QTL 

grown on large acreages pose a yet undefined risk of pathogen evolution towards increased 

aggressiveness and mycotoxin production, possibly leading to long term erosion of expectedly 

durable quantitative FHB resistance. 

In the last decade numerous examples have demonstrated the capability of adaptation between 

and within Fusarium spp. to changing hosts and environments. For example, the predominant 

species shifted from F. culmorum to F. graminearum and the more pathogenic NIV-producers 

are on the rise in maize-dominated crop rotations of Northern Europe (Carter et al. 2002, 

Waalwijk et al. 2003). Additionally, upcoming benzimidazole fungicide resistance of F. 

graminearum in China, or the shift from 15-ADON to 3-ADON producers featuring higher 

fitness, fecundity and growth rates than isolates from the 15-ADON population give 

unambiguous hints that evolutionary selection may drive a rapid shift of a pathogen 

population towards higher fitness, toxigenicity and aggressiveness (Gale et al. 2002, Ward et 

al. 2008).  

Regarding the population structure and interaction pattern, the ability and time required by 

e.g. F. graminearum to overcome increased FHB resistance in wheat will depend on whether 

survival and reproduction on a resistant host are important parts of the fungus´s life cycle that 

imply selective forces thriving evolutionary adaptation. However, both theory and 

experimental evidence remain scarce and further investigation is needed to gather empirical 

knowledge on the modalities of Fusarium spp. response to selection pressures imposed by 

increased quantitative FHB resistance in wheat. 
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Hence, the overall goal of this project was to broaden and deepen empirical knowledge on the 

inheritance of FHB resistance, with special focus on the effects of Rht dwarfing genes on 

FHB resistance, and isolate aggressiveness in the wheat/Fusarium pathosystem. Therefore the 

specific objectives regarding host, pathogen and their interaction in multi-environmental field 

trials using artificial spray and/or single floret inoculation of F. graminearum or F. culmorum 

spores were to investigate 

 

1. the effects of the Rht-D1b semi-dwarfing allele on FHB resistance in three genetically 

unrelated populations of adapted European elite winter wheat varieties segregating for 

this allele. 

2. the segregation variance for FHB resistance in three crossing populations of adapted 

European winter wheat parents with the aim to locate effective FHB resistance QTL. 

3. the effects of commonly used Rht-dwarfing genes on either type of FHB resistance 

(type I and II) utilizing two sets of near-isogenic lines (NILs) in the genetic 

background of the winter wheat varieties Mercia and Maris Huntsman.  

4. the segregation variance for isolate aggressiveness within progeny of two crosses of 

highly aggressive parental F. graminearum isolates (FG07 × FG153, FG3211 × 

FG96). 

5. whether environmentally stable transgressive recombinants with further increased 

aggressiveness can be recovered from these crosses of already highly aggressive 

parents and, thus, whether there is a detectable quantitative upper limit of 

aggressiveness in F. graminearum populations. 

6. wheat variety × fungal isolate interactions and to determine whether increased 

aggressiveness of eleven highly aggressive F. graminearum and F. culmorum isolates 

exceeds the resistance capabilities of a presently registered and available set of seven 

wheat varieties that represent moderate to high FHB resistance. 

 

 

 

For references please see chapter 7. 
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Abstract 

 
Fusarium head blight (FHB) is one of the major fungal diseases in wheat throughout the 
world. To control FHB severity, breeding genetically resistant varieties is thought to be the 
most promising strategy. In wheat breeding programmes, short cultivars predominantly 
carrying the Norin 10 derived semi-dwarfing allele Rht-D1b (Rht2) are preferred worldwide 
because of higher achievable grain yields and lower risk of lodging. This study was conducted 
to determine the influence of different alleles at the Rht-D1 locus on FHB reaction. Three 
winter wheat populations were produced by crossing rather susceptible varieties ‘Biscay’, 
‘Pirat’ and ‘Rubens’ carrying mutant-type allele Rht-D1b with the more resistant varieties 
‘Apache’, ‘Romanus’ and ‘History’ containing the Rht-D1a wild-type allele (rht2). The 190, 
216 and 103 progeny of the F4-derived populations were assayed for the presence of Rht-D1a 
or Rht-D1b, plant height, and mean FHB rating after spray inoculation at flowering time with 
a highly aggressive isolate of Fusarium culmorum. Comparably, high mean FHB severities 
ranging from 28% to 49% for all population × environment combinations were achieved, with 
significant genotypic variation for FHB rating and plant height within all populations. Both 
traits were negatively correlated with r ranging from -0.48 to -0.61 in the complete 
populations. However, within the subpopulations homozygous for one or other height allele 
these correlations decreased considerably. The Rht-D1b semi-dwarfing allele resulted in 7–
18% shorter plants, depending on the population, but a considerably increased FHB reaction 
of 22–53%. Nevertheless, significant genotypic variance for FHB resistance remained in all 
tested Rht-D1b subpopulations indicating that selection for moderately FHB resistant 
genotypes within agronomically beneficial Rht-D1b genotypes is still feasible. 
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Abstract 

 
Reduced height (Rht) genes are used in wheat (Triticum aestivum L.) breeding throughout the 
world. Fusarium head blight (FHB) is one of the most destructive wheat diseases caused by 
Fusarium graminearum (Schwabe) and F. culmorum (W.G. Sm.) Sacc. Objectives of this 
study were to analyze the effects of (i) specific Rht dwarfing genes on FHB reaction using 
two sets of near-isogenic lines (NILs) and (ii) genetic background and environment on FHB 
reaction. We inoculated NILs carrying Rht-B1b, Rht-B1d, Rht-D1b, Rht8c, and Rht-

D1b+Rht8c in the background of the British winter wheat cultivar Mercia possessing medium 
height and moderate resistance, and NILs carrying Rht-B1b, Rht-B1c, Rht-D1b and Rht-

B1b+Rht-D1b in the background of the rather tall, generally more resistant British cultivar 
Maris Huntsman, as well as three German check cultivars (‘Toras’, ‘Certo’, ‘Travix’) carrying 
the Rht-D1b allele. Entries were tested in eight (Mercia) and four (Maris Huntsman) 
environments, respectively, by inoculation with F. culmorum. In the Mercia data set, Rht-B1d 

and Rht-D1b significantly increased mean FHB rating by 35 and 52%, respectively. Rht-B1b 

and Rht8c increased FHB rating only by 19%, being not significantly different to the wild-
type line (rht). Rht8c affected heading date due to its linkage with the photoperiod insensitive 
Ppd1 allele. In the Maris Huntsman data set, FHB rating was increased by 22 to 83%, but 
only the very short Rht-B1c and Rht-B1b+Rht-D1b lines showed significance. Although the 
mutant Rht alleles increased FHB susceptibility, the checks show that these negative effects 
can be largely counteracted by a more resistant genetic background. 
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Abstract 

 
Fusarium head blight (FHB) resistance is of particular importance in wheat breeding 
programmes due to the detrimental effects of this fungal disease on human and animal health, 
yield and grain quality. Segregation for FHB resistance in three European winter wheat 
populations enabled the identification of resistance loci in well-adapted germplasm. 
Populations obtained from crosses of resistant cultivars Apache, History and Romanus with 
susceptible semi-dwarfs Biscay, Rubens and Pirat, respectively, were mapped and analysed to 
identify quantitative trait loci (QTL) for FHB severity, ear emergence time and plant height. 
The results of the present study together with previous studies in UK winter wheat indicated 
that the semi-dwarfing allele Rht-D1b seems to be the major source for FHB susceptibility in 
European winter wheat. The high resistance level of the cultivars Romanus and History was 
conditioned by several minor resistance QTL interacting with the environment and the 
absence of Rht-D1b. In contrast, the semi-dwarf parents contributed resistance alleles of 
major effects apparently compensating the negative effects of Rht-D1b on FHB reaction. The 
moderately resistant cultivar Apache contributed a major QTL on chromosome 6A in a 
genome region previously shown to carry resistance loci to FHB. A total of 18 genomic 
regions were repeatedly associated with FHB resistance. The results indicate that common 
resistance-associated genes or genomic regions are present in European winter wheats. 
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Abstract 

 
Gibberella zeae (anamorph: Fusarium graminearum) is the most common cause of Fusarium 
head blight (FHB) of wheat (Triticum aestivum) worldwide. Aggressiveness is the most 
important fungal trait affecting disease severity and stability of host resistance. Objectives 
were to analyze in two field experiments (i) segregation for aggressiveness among 120 
progenies from each of two crosses of highly aggressive parents and (ii) stability of FHB 
resistance of seven moderately to highly resistant winter wheat cultivars against isolates 
varying for aggressiveness. Aggressiveness was measured as FHB severity per plot, Fusarium 

exoantigen absorbance, and deoxynivalenol content. In the first experiment, mean FHB 
ratings were 20 to 49% across environments and progeny. Significant genotypic variation was 
detected in both crosses (P < 0.01). Isolate-environment interaction explained approximately 
half of the total variance. Two transgressive segregants were found in cross B across 
environments. Traits were significantly (P < 0.05) intercorrelated. In the second experiment, 
despite significant (P < 0.05) genotypic variance for cultivar and isolate, no significant (P > 
0.05) interaction was observed for any trait. In conclusion, progeny of highly aggressive 
parents might exhibit increased aggressiveness due to recombination and may, therefore, 
adapt nonspecifically to increased quantitative host resistance. 
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6.  General Discussion 

 

6.1  Variation of resistance among wheat 

 
To reduce the impact of Fusarium epidemics on yield and grain quality, and to comply with 

nationally established maximum levels of mycotoxin contamination, in the last decades much 

emphasis was placed on breeding for improved FHB resistance in wheat worldwide. To 

reliably identify potent quantitative trait loci (QTL) for FHB resistance suitable for 

subsequent marker-assisted selection (MAS), in the present study three populations from the 

adapted European elite winter wheat gene pool each were evaluated across five environments: 

Apache × Biscay (N=190), History × Rubens (N=103) and Romanus × Pirat (N=216). The 

progeny of all three populations showed a normal distribution for FHB severity following 

spray inoculation which confirms the quantitative character of FHB resistance with only small 

to medium effects of single QTL that are widely spread across the wheat genome (Löffler et 

al. 2009).  

Subsequent QTL analysis from a companion study of Holzapfel et al. (2008) revealed FHB 

resistance QTL with overlapping confidence intervals in all three populations on 

chromosomes 1BL and 4DS. The latter, being the QTL with the highest additive effect, was 

coincident with the Rht-D1 dwarfing locus and accounted for up to 36.4% of the phenotypic 

variance. In total, 13 (Apache × Biscay), 14 (Romanus × Pirat) and 8 (History × Rubens) QTL 

for FHB resistance were detected that were spread across all chromosomes except for 

chromosomes 3A, 5D and 7D. Mostly these QTL interacted significantly with the 

environments as observed in several QTL mapping studies comprising European winter wheat 

(Paillard et al. 2004, Draeger et al. 2007, Srinivasachary et al. 2008).  

Moreover, Holzapfel et al. (2008) compared these QTL with FHB resistance QTL derived 

from published European winter wheat mapping populations. The authors found coincidences 

in map positions for a comparably large number of QTL identified in the present analysis 

resulting in 18 genomic regions with varying effects that were repeatedly associated with 

FHB resistance. This indicates that common resistance-associated genes or genomic regions 

are present in European winter wheats. Congruently, Buerstmayr et al. (2009) summarized the 

relevant findings of 51 QTL mapping studies on FHB resistance and reported FHB resistance 

QTL on all wheat chromosomes except for 7D. Powerful major QTL originated only from 

Asian (e.g. Sumai 3, Wangshuibai, Nyu Bai, Nobeokabouzu) and a Brazilian variety 

(Frontana), whereas in European elite winter wheat germplasm solely minor QTL were 
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detected that are currently not amenable to marker-assisted selection. On total, the authors 

counted 22 genomic regions that have been repeatedly detected in more than one mapping 

population.  

Applying a novel QTL meta-analysis approach, including 176 initial QTL for FHB type I and 

type II resistance, Löffler et al. (2009) found six, ten and three independently inherited Meta-

QTL (MQTL) located on the A, B, and D genome, respectively, each comprising 2-13 initial 

QTL. Taken together, coincident genomic regions or MQTL, respectively, indicate that these 

(M)QTL are stable and therefore potentially useful for marker-assisted selection. Three of the 

19 MQTL described by Löffler et al. (2009) already comprised 38% of all QTL included in 

the meta-analysis and were located on chromosomes 3B, 5A and 6B. These were already 

suspected to be carriers of major QTL derived from Asian origins prior to analysis (Cuthbert 

et al. 2007). On chromosome 1B eleven initial QTL aggregated to three separate MQTL 

located within a range of about 70 cM. Interestingly, one of these three MQTL comprised 

only the QTL consistently detected by Holzapfel et al. (2008) in the European resistance 

donors Apache, Romanus and History, whereas the other two included QTL from European 

(Arina, Dream), Brasilian (Frontana) and Asian (Wangshuibai) material. 

The detection of few major and dozens of minor QTL proves the quantitative and complex 

inheritance of FHB resistance. Many of these resistance QTL coincide with QTL for plant 

height. In all mapping populations segregating at the Rht-D1 locus, corresponding mapping 

analysis revealed a stable QTL at this locus with the largest effect on FHB resistance 

throughout (Draeger et al. 2007, Holzapfel et al. 2008, Srinivasachary et al. 2009).  

 

6.1.1  Specific role of the Rht genes 

In general, taller genotypes show less FHB severity, whereas short varieties, especially those 

carrying the dwarfing allele Rht-D1b, are suspect to higher susceptibility to FHB (Miedaner 

1997, Hilton et al. 1999). Basically it has been postulated that in case of natural infection 

conidia spread more easily to the spikes of shorter varieties because of the shortened distance 

between leaf layers and/or from the spike to crop debris on the soil surface as natural infection 

source (Mesterházy 1995). Therefore, to minimize any epidemiological influence of plant 

height per se, in the present experiments repeated spray inoculation and spatial separation in 

the field were applied for short and tall progeny of the History × Rubens and Romanus × Pirat 

populations, both possessing a wide variation in plant height. However, still moderate 

negative overall correlation coefficients (r = -0.48 to -0.61) between plant height and FHB 

severity could be detected. Interestingly, when classified to the Rht-D1 status, within 
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subpopulations carrying either Rht-D1a or Rht-D1b only reduced correlation coefficients with 

r = -0.33 to -0.44 remained. Although disease escape due to plant height per se can be widely 

excluded, the presence of Rht-D1b resulted in considerably higher mean FHB ratings of 22–

53% compared to mean FHB ratings of the Rht-D1a subpopulations as shown in all three 

populations.  

To further exclude the influence of plant height per se due to possible disease escape, from 

each population a maximum number of genotypes carrying either Rht-D1a or Rht-D1b were 

selected within a minimum range of plant height (Apache × Biscay: 3cm, Romanus × Pirat: 

7cm, and History × Rubens: 8cm). Additionally, these genotypes were analysed for their 

DON and exoantigen (ExAg) content that represents the amount of fungal biomass within the 

host spike tissue (Cumagun et al. 2004b). Hence, on a similar level of plant height the 

increase in FHB severity due to presence of Rht-D1b compared to Rht-D1a remained in all 

three populations, although on a reduced scale of 7–27% being significant only for the 

Romanus × Pirat population (Table 2). Interestingly, the DON content increased to a much 

larger extent in all three populations compared to FHB severity, whereas the increases in the 

ExAg content most strongly varied between the populations. 

 
Table 2. Best linear unbiased predictors (BLUPs) for plant height (PH), FHB rating, 
deoxynivalenol (DON) content, and exoantigen (ExAg) content of progenies selected for 
similar plant height and differing in the Rht-D1 allele from three segregating populations 
inoculated with F. culmorum in 3 locations in 2006 
 

Subpopulation 
Population       Trait 

Rht-D1a  Rht-D1b 
∆Rht-D1b/ 
Rht-D1a 

  N=17  N=18   
Apache × Biscay PH (cm) 77.6  77.8 + 0.2% n.s

.  FHB (%) 29.9  32.1 + 7.4% n.s

.  DON (mg kg-1) 15.8  19.8 + 24.8% n.s

.  ExAg (OD405)
a 0.31  0.35 + 11.9% n.s

.          N=15  N=16   
Romanus × Pirat PH (cm) 90.5  87.9 - 2.9% ** 
 FHB (%) 26.5  33.8 + 27.4% ** 
 DON (mg kg-1) 30.9  45.4 + 46.8% ** 
 ExAg (OD405) 0.25  0.39 + 54.7% ** 
         N=10  N=11   
History × Rubens PH (cm) 86.8  86.5 - 0.4% n.s

.  FHB (%) 34.0  38.1 + 11.9% n.s

.  DON (mg kg-1) 37.2  48.4 + 30.2% n.s

.  ExAg (OD405) 0.98  1.07 + 8.84% n.s

.         *, ** Significantly different at P < 0.05, 0.01, respectively 
        a Optical density measured at 405 nm 
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In accordance with our results similar observations on Rht-D1b were made in different 

European winter wheat populations as Arina × Riband, Spark × Rialto, Apache × Contra, 

Solitär × Travix and History × Excellenz (Draeger et al. 2007, Srinivasachary et al. 2008, 

Holzapfel et al. 2008). Throughout, major QTL at or near the Rht-D1 locus were identified 

indicating that the QTL allele Rht-D1b is a major contributor to FHB susceptibility or, on the 

contrary, is lacking a major FHB resistance QTL. Accordingly, the wild-type allele Rht-D1a 

showed the highest additive effect in each of the present populations with a mean reduction in 

FHB severity of 16.3, 29.2 and 31.5%, but similarly led to taller plants of 5.7, 17.1 and 

16.1cm, respectively. 

Confirming our findings, on chromosome 4D the Meta-QTL with the narrowest confidence 

interval comprised only QTL seemingly tightly linked to the Rht-D1 gene and originated only 

from studies including parents differing in their Rht-D1 status (Löffler et al. 2009). Close 

linkage of FHB susceptibility genes that consistently cosegregate with Rht-D1b for many 

generations might be a possible explanation for increased FHB severity as likewise 

hypothesized by Draeger et al. (2007) and Srinivasachary et al. (2008). Alternatively, Rht-

D1b conferring insensitivity to gibberellic acid (GA) may have negative pleiotropic effects on 

FHB response rather than linkage.  

This question cannot be fully answered from our and/or literature results. Nevertheless, 

further evidence supporting pleiotropy was given by comparative evaluation of different Rht 

dwarfing alleles of worldwide agricultural importance and their specific impact on FHB 

resistance (Miedaner and Voss 2008). Of the 21 currently described Rht genes (McIntosh et 

al. 2008), the most prevalent Rht-B1b and Rht-D1b derived from Norin 10, Rht8c from 

Akakomugi and Rht-B1d from Saitama 27 are possessed by more than half of the worlds´ 

wheat varieties (Gale and Youssefian 1985, Ellis et al. 2005, Ganeva et al. 2005, Mathews et 

al. 2006). In accordance to Worland et al. (1998a) and Ganeva et al. (2005), Rht-B1b, Rht-

B1d, Rht-D1b and Rht8c reduced plant height by 15 to 21% implemented in the genetic 

background of Mercia, a UK variety possessing medium height and moderate FHB resistance. 

Interestingly, these Rht alleles significantly differed in their FHB severity response following 

spray inoculation of F. culmorum. Whereas Rht-D1b and Rht-B1d vastly increased FHB 

susceptibility, Rht-B1b as well as Rht8c revealed a considerable, but not significant increase 

across eight environments (Miedaner and Voss 2008). Among the near-isogenic lines of the 

rather tall and slightly more resistant variety Maris Huntsman, the effects of the Rht genes on 

FHB rating were less pronounced. Only the extremely dwarfed lines containing Rht-B1c 

derived from the variety Tom Thumb and the combination of Rht-B1b+Rht-D1b showed 
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significantly increased FHB susceptibility in addition to the strongest reduction in plant height 

of 53 and 46%, respectively.   

Using the same isogenic lines of Mercia and Maris Huntsman carrying Rht-B1b and Rht-D1b, 

Srinivasachary et al. (2008) obtained comparable results. Rht-D1b significantly increased 

FHB susceptibility, whereas Rht-B1b led to an intermediate increase in FHB severity with no 

significant difference compared to the tall (rht) line in their field trial on one location.  

In the present study, the Rht effects proved to be robust over years in the Mercia data set and 

the check varieties. Across both data sets the underlying Rht genes, although derived from 

genetically different sources, consistently enhanced FHB severity from at least 19 up to 83%. 

Nevertheless, in accordance to Hilton et al. (1999) who analysed the effects of Rht-B1b and 

Rht-D1b in near-isogenic lines of Maris Widgeon and Maris Huntsman, the FHB resistance 

response strongly depends on the genetic background and environmental factors. This 

becomes obvious by the German check varieties Toras and Certo, which were much less 

susceptible to FHB compared to the respective Mercia and Maris Huntsman Rht-D1b lines. 

The large differences in FHB response indicate that these varieties might incorporate further 

QTL for FHB resistance resulting in Toras being among the most FHB-resistant varieties in 

Germany (Anonymous, 2009). Likewise, Holzapfel et al. (2008) detected resistance QTL with 

major effects in Rht-D1b carrying varieties Biscay, Pirat, Rubens and Travix partly 

compensating the negative effect of Rht-D1b on FHB resistance.  

 

In two populations of the crosses between the Chinese varieties Sumai 3 × Nobeokabouzu-

komugi and Sumai 3 × Gamenya, Handa et al. (2008) detected a significant FHB resistance 

QTL on 2DS near the Rht8 semi-dwarfing gene locus. Interestingly, both wild-type alleles 

from the resistant variety Nobeokabouzu-komugi and the highly susceptible variety Gamenya 

reduced FHB severity and DON accumulation compared to the respective semi-dwarfing 

allele Rht8c present in Sumai 3 (V. Korzun pers. commun.). The authors postulated that this 

QTL is a gene complex consisting of Rht8a being associated with type I resistance and a 

multidrug resistance-associated protein(s) controlling type II resistance by detoxification of 

DON. This hypothesis of an absent resistance allele in case of Rht8c presence agrees with our 

findings of a moderate negative effect on FHB resistance comparable to Rht-B1b, or a 

negative pleiotropic effect of Rht8c on FHB reaction that is greatly diminished compared to 

Rht-D1b.  

However, although the exact length of the introgressed segments bearing the respective Rht 

genes are not known (Korzun pers. commun.), it is highly unlikely that three Japanese donor 
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varieties all carry QTL closely linked to the respective Rht genes that are differentially 

promoting FHB susceptibility without any documented segregation over decades. Therefore, 

the effects of these loci are most likely caused by differential pleiotropic Rht-allele effects 

rather than linkage in multiple cases. 

 

6.1.2  Evaluation of type II resistance in Rht-isogenic lines 

In the present field trials using spray inoculation the overall rating of the percentage of FHB 

diseased spikelets per plot inevitably combines two types of resistance: the resistance to initial 

infection (type I) and resistance to fungal spread within the spike (type II). Owing to the 

difficulty in measuring Rht gene effects solely on type I resistance in the field, evaluation of 

type II resistance in a point inoculation experiment including near-isogenic lines allows to 

draw conclusions on Rht gene effects on type I resistance when compared to the former spray 

inoculation results.  

In such a way, Srinivasachary and colleagues (2008) recently revealed that Rht-D1b confers 

enhanced FHB severity towards initial infection (type I), but has no effect on fungal spread 

within the spike (type II). This may be further substantiated by the fact that the meta-QTL on 

chromosome 4D comprised solely QTL that were detected using spray inoculation (Löffler et 

al. 2009). Likewise, Srinivasachary et al. (2009) found that Rht-B1b significantly increased 

type I FHB severity, but on the contrary decreased type II FHB severity compared to Rht-B1a. 

However, the authors assessed the resistance of tall (rht), Rht-B1b and Rht-D1b near-isogenic 

lines of the varieties Mercia and Maris Huntsman on the basis of a comparably small data set 

of 28 and 30 plants per line, respectively, in an artificial environment of a polytunnel using a 

less aggressive isolate.  

To obtain results on the effects of individual Rht genes exclusively on fungal spread (type II 

FHB severity) on a more comprehensive data base, we evaluated the same near-isogenic 

Mercia and Maris Huntsman lines containing the tall (rht), Rht-B1b, Rht-D1b and additional 

Rht alleles in a field trial in Hohenheim in 2006 and 2007. Following point inoculation of 25 

single spikes in 1m two-row plots of each line, with one replication in 2006 plus each of two 

replications in 2007, for Mercia and Maris Huntsman lines disease was rated twice as 

percentage of diseased spikelets per spike at 19 and 24 days post inoculation (Table 3). As a 

result, Rht-B1b significantly (P < 0.05) increased fungal spread in both sets of isogenic lines. 

Rht-D1b led to significantly (P < 0.05) increased fungal spread compared to the tall (rht) line 

only in the Maris Huntsman data set, but showed no difference in the Mercia background 

across both years. Within the Mercia background, Rht8c most vigorously decreased fungal 
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spread in absolute terms by 4.3% in comparison to the tall (rht) line. This further supports the 

results from the spray inoculation trials that Rht8c decreases combined type I + II FHB 

resistance to a lesser extent than Rht-B1b or Rht-D1b, respectively, when compared to the tall 

(rht) line. 

Rht-B1d reduced fungal spread, although significant (P < 0.05), only to a small extent of 1.9% 

less infected spikelets per spike compared to the respective tall (rht) Mercia line. 

Unexpectedly from the strongest increase in FHB severity resulting from the spray 

inoculation experiment, Rht-B1c and the combination of Rht-B1b+Rht-D1b showed no 

significant effect on type II FHB resistance.  

 

Table 3. Average percentage of Fusarium head blight (FHB) infected spikelets per spike of 
five near-isogenic Rht-lines each of the varieties Mercia and Maris Huntsman and three check 
varieties following point inoculation with a conidial suspension (1 × 106 spores/ml) of F. 

culmorum isolate FC46 for testing type II resistance in a field experiment in Hohenheim 

 

a  Numbers followed by different letters are significantly different (P < 0.05) according to Tukey-test. Checks 
   were calculated as separate data set, significant differences between checks are presented in capital letters. 
 

In conclusion, following point inoculation, all near-isogenic Rht-lines revealed only minor 

absolute differences for type II FHB severity in both genetic backgrounds compared to the 

spray inoculation experiment measuring type I + II FHB severity (Miedaner and Voss 2008). 

Although partially significant, the percentage of infected spikelets per spike varied only by 

6.5% in the Mercia and 4.2% in the Maris Huntsman background, respectively. In accordance 

to the results from the spray inoculation trials (Miedaner and Voss 2008), likewise the fungal 

spread within the spike was highly dependent on the genetic background and line × year 

interaction. This was particularly illustrated by the disease scores of the Rht-D1b carrying 

                 Infected spikelets per spike (%) 

Mercia  Maris Huntsman Line 

  Both years      2006      2007            2007 

rht 25.9 d a 29.7 b 23.5 c  15.1 a 
Rht-B1b 28.1 e 28.5 b 27.4 d  17.1 b 
Rht-B1c        13.6 a 
Rht-B1d 24.0 c 28.6 b 21.2 b    
Rht-D1b 25.0 cd 23.7 a 25.2 c  17.8 b 
Rht-B1b + Rht-D1b        13.9 a 
Rht8c 21.6 b 22.5 a 20.7 b    
          
Checks with Rht-D1b:          
Toras 12.1 A 11.6 A 11.0 A  11.0 A 
Certo 20.3 B 24.8 B 16.7 B  15.8 B 
Travix 22.7 C 26.5 B 19.5 C  19.1 C 
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check varieties Toras, Certo and Travix, that significantly (P < 0.05) varied within a much 

larger range of about 10% and showed significant differences between years within the 

Mercia data set (Table 3). Accordingly, the results from spray and single floret inoculation 

carried out in the present work demonstrate that the negative effects of Rht-B1b, Rht-B1c, 

Rht-B1d, Rht-D1b and Rht8c on FHB resistance mainly affect resistance to initial infection 

(type I) with little, if any consistent effect on fungal spread within the spike (type II). As a 

consequence, point inoculation trials carried out in an artificial environment involving only 

one to two genotypes as conducted by Srinivasachary et al. (2008, 2009) seem not to be 

sufficient to conclude on effects of individual Rht genes in the field.  

 

 

6.2 Variation of aggressiveness and DON production among G. zeae crossing 

populations 

 

The incremental approach to increase disease resistance, especially when relying on only few 

major resistance QTL, may pose a yet undefined risk of changes in the genetic structure of 

fungal populations towards a severe increase in aggressiveness within the pathogen 

population. For the quantitative inheritance of resistance and aggressiveness in the 

wheat/Fusarium pathosystem little is known about pathogen evolution in response to 

increasing quantitative host resistance. In the last decade several examples have been 

documented demonstrating the high adaptability of the fungus to consistently changing 

environmental conditions (Gale et al. 2002, Carter et al. 2002, Waalwijk et al. 2003, Ward et 

al. 2008). Therefore, it is possible that Fusarium populations likewise adapt to increased 

quantitative resistance in modern agroecosystems. However, if the quantitative nature of this 

pathosystem evolution is slower compared to that against major gene resistance, it is more 

difficult to detect and could better be characterized as a process of erosion rather than a 

breakdown as described by McDonald and Linde (2002). The authors specified a risk 

assessment framework on the basis of five factors that have to be considered to evaluate the 

risk of pathogen evolution: (I) mutation, (II) population size, (III) gene and genotype flow, 

(IV) reproduction and mating system, and (V) directional selection. 

Consistent development of phylogenetically distinct lineages indicates a generally low but 

constant average mutation frequency per locus in F. graminearum at 1 × 10-6 (Fincham et al. 

1979, O´Donnell et al. 2000, Miedaner et al. 2008). Nevertheless, mutational adaptation to 

changing environments should be considered in large populations. 
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Several studies mainly spanning North America and Asia revealed large population sizes with 

high genetic diversity sampled across different countries and even within individual fields 

with little or no substructuring within populations for F. graminearum as the most prevalent 

Fusarium species (Miedaner et al. 2001b, Zeller et al. 2004, Schmale et al. 2006, Qu et al. 

2008, Burlakoti et al. 2008). In addition, for G. zeae high gene flow was observed due to long 

distance dispersal of primarily sexual ascospores (Markell and Francl, 2003, Maldonaldo-

Ramirez et al. 2005, Schmale et al. 2005/2006, Burlakoti et al. 2008). Moderately low clonal 

genotype flow of asexual propagules, representing a linked package of advantageous alleles 

that has already been selected over years, pose a high but more regional risk to cause 

epidemics (Schmale et al. 2006).  

In the recent work, main emphasis was put on sexual recombination as the most obvious 

mechanism to achieve and maintain high genetic diversity and the possible influence of 

efficient directional selection due to increased FHB resistance levels within the host. 

Pathogens with mixed (sexual and asexual) reproduction systems, as present in G. zeae, are 

suspected to pose the highest evolutionary risk for adaptation (McDonald and Linde 2002). 

As used to create the analysed F. graminearum populations, sexual recombination can be 

observed under laboratory conditions (Bowden and Leslie, 1999). In the field, common 

outcrossing can only be inferred from high genetic diversity and low levels of linkage 

disequilibrium that are typical for random mating populations (Miedaner et al. 2008).  

Accordingly, a negative correlation (r = -0.59, P < 0.01) between genetic similarity and 

geographical distance on the one hand may indicate co-existence of genetically divergent 

populations of F. graminearum on a continental scale (Zeller et al. 2004, Schmale et al. 2006, 

Gale et al. 2007). On the other hand regional subdivision in population structure might simply 

reflect the time required for long-distance gene or genotype flow between populations 

separated by large geographic distances rather than consistent regional differentiation.  

Very recently, Chen and Zhou (2009) determined a low outcrossing rate of 5.7–20.9% in three 

F. graminearum crosses under field conditions, but the database was insufficient to prove 

general validity and it remains unclear whether outcrossing occurs regularly or episodically in 

the field. However, only rare sexual recombination is needed to sustain high genotypic 

diversity and the appearance of a randomly mating population (Leslie and Klein 1996, Zeller 

et al. 2004).  

The mixed mating system enables the fungus to recombine alleles for aggressiveness as 

rapidly as breeders can put together QTL for resistance. Due to clonal reproduction these new 

combinations that provoke increased aggressiveness can be maintained over years and are 



General Discussion 

26 
 

subject to environmental selection. Hence, if increases in pathogen aggressiveness are 

possible or likely, respectively, efficient directional selection may be one of the main forces 

that trigger durable changes in population composition towards isolates possessing superior 

aggressiveness. Similarly, the genes facilitating mycotoxin production, especially DON, 

might be under a non-specific selection as high DON content is attributed to higher 

aggressiveness (Cumagun and Miedaner 2004). 

 

Within the progeny of a cross of two moderately aggressive F. graminearum isolates, 

Cumagun and Miedaner (2004) described continuous distributions for the traits 

aggressiveness and DON production. As a result, moderately aggressive parents gave rise to a 

comparably high number of recombinants transgressive towards higher aggressiveness and 

DON levels following only one sexual reproduction phase. Accordingly, within progenies of 

crosses of parental isolates already representing a high level of aggressiveness, one could 

expect a narrowed distribution possessing a sharp range of recombinant aggressiveness close 

to the parental mean without significant transgressions. In strong contrast, in the present study 

including two such crosses wide significant normal distributed variation and, within progeny 

of cross B, even some transgressions towards increased aggressiveness, DON-, and fungal 

mycelium production were observed (Voss et al. 2010).  

In 2007, the weather conditions in Hohenheim and Eckartsweier were much more appropriate 

to infection than in 2006, whereon the tested isolates generally reacted with heightened 

aggressiveness resulting in increased FHB severity and ExAg content. We found highly 

significant (P < 0.01) isolate × environment (environment = year × location) interaction that 

accounted for most of the variation observed for FHB rating, fungal biomass and 

deoxynivalenol content (Voss et al. 2010). Broken down further, the isolate × year interaction 

proved of predominant relevance, while isolate × location interaction was not significant (P > 

0.1). Whereas less aggressive isolates as FG24 gained a pronounced increase in 

aggressiveness in 2007 compared to 2006 (+30% FHB severity on average across Cross A 

and B), isolates that have already been highly aggressive in 2006 increased in aggressiveness 

only to a lesser extent (+17.0% average in Cross A, +18.3% in Cross B). Hence, the large 

differences in aggressiveness in 2006 almost vanished in 2007 demonstrating a rather strong 

episodic selection due to changed weather conditions during the infection period.  

Although not significant, the isolate-specific fungal mycelium production increased up to 3-

fold in both pathogen populations from 2006 to 2007. Interestingly, the DON content was 

inconsistent for both populations. Previous studies on Fusarium populations have found 
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strong correlations between the amount of fungal mycelium represented by the ExAg 

absorbance and DON production, suggesting the feasibility of using the ExAg absorbance as 

an indirect measure for DON presence in the grain (Liu et al. 1997, Schnerr et al. 2002, 

Cumagun et al. 2004b, Burlakoti et al. 2007). Some authors concluded that the amount of 

produced DON relative to the amount of fungal mycelium in the host tissue remains a 

constant ratio. In contrast, we observed only weak correlations between ExAg absorbance and 

DON content (r = 0.43 among Cross A; r = 0.34 among Cross B). In agreement with findings 

of Miedaner et al. (2004), the highly variable DON/Fusarium ExAg ratio possessed 

significant (P = 0.01) genotypic variation in both progeny sets and, furthermore, no 

correlation between this ratio and FHB severity could be observed. This implies that DON is 

rather required at a threshold level to inhibit host resistance reactions and to enable fungal 

spread, than being a basic aggressiveness factor per se. Hence, increasing the amount of DON 

beyond this threshold seems not to suffice to further increase FHB severity.  

Genetic analysis of the role of trichothecenes in pathogenicity or aggressiveness of F. 

graminearum on wheat and maize that were assessed using tri5-mutant lines are supporting 

this point of view. Tri5-deficient knockout mutants are lacking DON and any DON-

precursors, but still are able to cause initial infection without the ability to spread within the 

wheat spikes (Bai et al. 2002). In the field, DON-nonproducing strains appeared to be only 

less aggressive on wheat instead of non-aggressive compared to the DON-producing 

progenitor strains (Bai et al. 2002, Desjardins et al. 1996/2006, Maier et al. 2006). This 

confirms that DON is not required for pathogenicity but acts as one aggressiveness factor 

enhancing host colonization. 

Whether increased DON production by highly aggressive isolates is cause or effect of 

accelerated fungal invasion of host tissue cannot definitively be determined from our or 

literature results. Hence, more aggressive isolates might rather speed up invasion because of 

multiple interacting factors that generally confirm the quantitative character of aggressiveness 

with DON, among other mycotoxins, being just one part of the whole. Conclusive evidence 

has been obtained from several pathosystems that furthermore composition and activity of cell 

wall-degrading enzymes play a decisive role in the infection process (Kikot et al. 2009). 

Phalip et al. (2005) identified a powerful enzymatic arsenal secreted by F. graminearum that 

comprises 24 different enzyme classes necessary for plant cell wall penetration, maceration 

and digestion. Among these, e.g. fungal cutinases, pectinases, xylanases, lipases, exo-

cellulases, endo-cellulases and β-glucosidases are considered as important aggressiveness 

factors in Fusarium spp. (Phalip et al. 2005, Kikot et al. 2009). 
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Summarized, the analyses of two segregating populations across four environments confirmed 

the ability of F. graminearum to significantly increase isolate-specific aggressiveness and 

DON production by sexual recombination, but the degree of aggressiveness is highly 

dependent on location and especially year effects.  

 

 

6.3  Interaction of wheat resistance and pathogen aggressiveness 

 
The interaction of host plant resistance and pathogen aggressiveness in the wheat/Fusarium 

pathosystem is complex because of quantitative inheritance with a continuous distribution 

among the progeny of host and pathogen in addition to wide genetic variation for both traits 

(Snijders 1990, Carter et al. 2002, Cumagun and Miedaner 2004, Cumagun et al. 2004a, 

Schmolke et al. 2005). As described likewise for FHB resistance of wheat varieties, we 

observed the aggressiveness of Fusarium isolates to be subject to environmental variability 

that influences disease initiation and development.  

Generally, there is no recognized interaction between wheat genotypes and Fusarium isolates 

(Snijders and van Eeuwijk 1991, van Eeuwijk et al. 1995, Bai and Shaner 1996). 

Nevertheless, in some studies specific interactions were noted that were, however, not 

consistent across environments (e.g. Dusabenyagasani et al. 1997, Mesterházy 2002). In the 

according ANOVA, a resulting significant host × isolate interaction was rather caused by 

scaling effects than by changes in rank order of the evaluated isolates varying widely in 

aggressiveness. 

In the present study seven medium to highly resistant wheat varieties were inoculated with 

eleven highly aggressive isolates to examine possible variety × isolate interactions, thus to 

avoid possible effects due to preassigned large differences in isolate aggressiveness (Voss et 

al. 2010). We observed no significant variety × isolate interaction and the variety rankings 

also were consistent across isolates indicating that the host variety plays no major role in the 

genetic composition of a pathogen population. Likewise, Snijders and van Euwijk (1991) 

found no evidence for isolate-specific resistance in a study containing 17 winter wheat 

genotypes evaluated with four F. culmorum isolates over 3 years. Hence, from our results in 

accordance to findings of several authors, the FHB resistance in wheat can be described as 

non-specific and horizontal at least for the most prevalent species as e.g. F. graminearum and 

F. culmorum (van Eeuwijk et al. 1995, Mesterhazy et al. 1999). This is even true for highly 

aggressive isolates and rather resistant wheat genotypes. For both, wheat lines and F. 
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graminearum isolates genotype × environment interactions played the major role in the 

individual development of FHB severity. 

Nevertheless, we found the level of FHB resistance to be correlated with the stability of 

resistance, meaning varieties being moderately resistant to FHB varied more with respect to 

disease severity and DON accumulation than did the highly resistant varieties. This was 

confirmed by Buerstmayr et al. (2009) who similarly evaluated 56 susceptible to resistant 

wheat genotypes in five locations in two years. Referring to the pathogen, constant levels of 

FHB severity across varying environmental conditions for infection and disease development 

largely depend on the level of isolate aggressiveness with less aggressive isolates showing 

higher isolate × environment interaction.  

 

The most important question remains whether the incremental approach to increase disease 

resistance in actual breeding programmes worldwide consistently triggers evolutionary 

selection within Fusarium species towards higher aggressiveness and accumulation of 

aggressiveness alleles by sexual recombination. Furthermore, a crucial aspect to evaluate is 

whether any improved quantitative FHB resistance in wheat can potentially be lowered by 

newly evolved isolates.  

Taken together the five evolutionary forces that affect the risk of pathogen evolution as 

described by McDonald and Linde (2002), we can assume a merely constant mutation rate 

within highly diverse and large F. graminearum populations worldwide (O´Donnell et al. 

2000, Miedaner et al. 2008). Long-distance transport is rather limited to the sexual ascospores 

(gene flow), but substantiates extensive interpopulation genetic exchange (Zeller et al. 

2003/2004, Schmale et al. 2005/2006, Burlakoti et al. 2008). The mating system of F. 

graminearum can be described as mixed, with common sexual outcrossing at a frequency of 

up to 21% (Chen and Zhou 2009), although the data for proven outcrossing frequencies or 

selfing in the field are insufficient yet. However, owing to the presence of transgressive 

segregation within F. graminearum crosses of parental isolates already possessing high levels 

of aggressiveness, we present evidence that corroborate the major role of sexual 

recombination as driving force in the pathogen evolution. 

In conclusion, following the framework of McDonald and Linde (2002) the evolutionary risk 

of F. graminearum to adapt to and finally overcome improved quantitative FHB resistance in 

wheat can be characterized as high. Although the present proof of missing variety × isolate 

interaction indicates that local appearance of highly resistant varieties may not be able to 

trigger a short-term adaptation of the pathogen, comprehensive use of wheat germplasm with 



General Discussion 

30 
 

significantly increased FHB resistance might cause a consistent directed selection on the 

pathogen especially when it is based only on a few major QTL, like Fhb1 or Qfhs.ifa-5A.  

 

To generate predictions whether the Fusarium pathogens will adapt to their hosts and 

environments in terms of increased aggressiveness, it is essential to be able to link the concept 

of isolate aggressiveness to other concepts in evolutionary epidemiology such as isolate 

fitness (Galvani 2003). Aggressiveness describes the combination of speed and degree of 

disease severity caused by a pathogenic isolate resulting from the expression of several 

quantitative components, i.e. infection efficiency, fungal biomass and spore production and 

germination rate of spores, that do not inevitably quantify a change in isolate fitness. Since 

isolate fitness is determined by additional parameters such as spore viability and saprophytic 

survival that are not considered as aggressiveness-related traits, isolate aggressiveness cannot 

be considered strictly equivalent to isolate fitness. 

Hence, the ability of a Fusarium population to overcome improved FHB resistance in wheat 

varieties by increased isolate aggressiveness depends on two factors: (1) the intensity of 

natural selection provoked by increased FHB host resistance being the evolutionary force and 

(2) the aggressiveness components expected to evolve that are closely related to isolate 

fitness. 

Accordingly, if more aggressive isolates predominantly possess superior fitness and natural 

selection towards higher aggressiveness occurs based on disadvantageous environmental 

conditions for disease development, then it is likely that pathogen aggressiveness will 

increase and host resistance would erode gradually with time. From our results weather 

conditions unfavorable for infection as were present in 2006 or considerably increased host 

resistance, respectively, could meet the criteria of these disadvantageous environmental 

conditions. If highly aggressive isolates are lacking superior fitness for all environments and 

poorly or moderately aggressive isolates are favored under conditions conducive for disease 

development, then aggressiveness within the fungal population should not increase 

continuously due to inconsistent selection towards heightened aggressiveness. 

Assuming a high amount of fungal biomass in the host reflects competitive fitness, then a 

high correlation between FHB severity and ExAg content indicates superior fitness of highly 

aggressive isolates producing more mycelium compared to less aggressive isolates. In the 

present study the correlation coefficients of FHB severity and fungal biomass content 

decreased considerably from 2006 to 2007 in both populations (Cross A: r = 0.77 in 2006 to r 

= 0.47 in 2007; Cross B: r = 0.78 to r = 0.47) but remained significant (P < 0.01), indicating a 
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variable but present advantage of high isolate specific aggressiveness in terms of fungal 

biomass production across changing environmental conditions. We do not know, however, 

whether higher fungal biomass in the host supports a higher fecundity of the isolate, an 

important parameter for fitness. 

From literature only few datasets exist on positive or negative (trade-off) correlations between 

increased aggressiveness and fitness of fungal pathogens. In 1988, Leonard et al. observed 

that C. carbonum revealed low aggressiveness on maize but a great survival ability, whereas 

C. heterostrophus expressed high aggressiveness but a low survival ability. Both findings 

suggest trade-offs between aggressiveness and fitness. In contrast, Montarry et al. (2007) 

found no evidence for a trade-off between aggressiveness and overwinter survival of P. 

infestans on potato tubers.  

In order to understand the complex interactions of each individual aggressiveness component 

with competitiveness and finally fitness within a Fusarium spp. population in the field, further 

investigation is required. 

 

 

6.4  Consequences for resistance breeding in wheat  

 
During the last decades the improvement of FHB resistance in high yielding wheat varieties 

has been a major effort in wheat breeding programmes worldwide. As in Germany the level of 

FHB resistance represents a knockout criterion for variety registration the aim remains to 

combine an acceptable moderate level of FHB resistance with lodging-resistance and high 

yield performance.  

At present, the semi-dwarfing allele Rht-D1b is necessary to utilize and assure high yield 

potential by increased spikelet fertility, higher grain number per ear, increased harvest index 

and superior lodging resistance and, hence, is preferred within the breeding strategies of many 

wheat breeders for northern and central Europe (Gale and Youssefian 1985, Li et al. 2006, 

Addisu et al. 2009, E. Ebmeyer, pers. commun.). To cope with future demands for improved 

and consistent FHB resistance combined with maximum yield performance two strategies 

seem reasonable: (1) substitution of Rht-D1b by other dwarfing alleles with similar agronomic 

effects less compromising FHB resistance and (2) the accumulation of (new) FHB resistance 

loci in susceptible but high-yielding Rht-D1b-varieties to counterbalance the negative effect 

of Rht-D1b on FHB resistance. 
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From the currently described 21 Rht genes including additional allelic variants for the most 

prevalently exploited loci Rht-B1, Rht-D1b and Rht8 (McIntosh et al. 2008) only a few are 

used agronomically within commercial European wheat varieties, as typical features such as 

higher grain numbers and increased harvest index do not always compensate for reduced grain 

size and shoot biomass (Evans 1998, Hedden 2006). As shown in both varietal backgrounds 

of Mercia and Maris Huntsman the use of Rht-B1b might be the most self-evident alternative 

for Rht-D1b in northwestern Europe because of a reduced negative effect on FHB resistance 

(Miedaner and Voss 2008). Nevertheless, currently only 6% of the German officially 

registered varieties contain Rht-B1b (Knopf et al. 2008), although e.g. Rht-B1b-carrying 

variety Hermann has been one of the most grown varieties in Germany for the last five years 

that already combines maximum yield and good FHB resistance (Anonymous 2009). 

Considering future climate change scenarios for central Europe, predicted climate warming 

may have substantial consequences for the structure and dynamics of agroecosystems leading 

to rapid northern shifts in distribution of adapted plant and pathogen species as well as 

adapted wheat germplasm (Aerts et al. 2006). Additionally, the likelihood of crop failure is 

expected to rise sharply because the risk of extreme regional weather conditions such as 

summer drought stress or increasing variability of rainfall will become more accentuated 

(Ferrara 2009). Nevertheless, Harrison and Butterfield in 1996 predicted an increasing winter 

wheat yield rate of 0.2 t ha-1 decade-1 up to the 2020s and 0.36 t ha-1 decade-1 beyond. All 

together this illustrates the persisting need for plant stability ensured by effective and stress 

insensitive Rht genes.  

In the varietal background of Mercia, semi-dwarfing Rht8c linked with photoperiodic 

insensitive Ppd-D1a offered similar positive performance referring to reduction both in plant 

height and FHB resistance compared to Rht-B1b. Due to the shortening of the plant´s life 

cycle, integrating the Rht8c/Ppd-D1a complex offers the best opportunity for reducing plant 

height, accelerating time of flowering, increasing spikelet fertility and grain fill before the 

onset of desiccating dry summer conditions predominant in south and central Europe as well 

as in Russia (Worland et al. 1998a/b, 2001, Borojevic and Borojevic 2005). The Rht-B1d 

allele is believed to correlate with less temperature sensitivity compared to Rht-B1b and Rht-

D1b (Worland 1986, Worland and Petrovic, 1988). Accordingly, this allele prevails in Italian, 

Bulgarian and Yugoslavian varieties. Confirming literature, in the present study Rht-B1d led 

to a reduction in plant height similar to Rht-B1b. However, a strong increase in FHB 

susceptibility caused by Rht-B1d comparable to Rht-D1b may question a future use in 

Northern Europe. 
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Hence, the replacement of Rht-D1b by Rht8c/Ppd-D1a that affects FHB resistance to a lesser 

extent than the GA-insensitive genes might be an option for future demands on the long run, 

as indicated by Ellis et al. (2005). For a more short term approach lines solely carrying Rht8c 

or Ppd-D1a are already existent for commercial breeding by breaking the Rht8c/Ppd-D1a 

linkage group (Worland et al. 1998a). Depending on the varietal background of the two 

alleles, Ppd-D1a reduces plant height of around 10cm by shortening the plants life cycle due 

to its photoperiod insensitivity whereas Rht8c reduces plant height by 5-10cm without adverse 

interactive environmental effects on yield (Worland et al. 1998a/b, Korzun et al. 1998, 

Worland et al. 2001). In conclusion, on the short term the sole use of Rht8c might be an 

alternative for high-yielding, humid environments of Northern Europe to achieve shortened 

plant stature combined with less negative effects on FHB resistance whereas earlier heading 

provided by photoperiod-insensitive Ppd-D1a, at present, can be counterproductive for 

achieving maximal grain yield. 

Resulting from the optimum balance between increased harvest index and reduced total shoot 

weight, the maximum grain yields are obtained at intermediate plant heights between 70 and 

100cm (Flintham et al. 1997a/b). According to the background varietal height, intrinsically 

taller varieties require more potent Rht alleles to achieve optimum height.  

Therefore, to achieve the appropriate height reduction for the target varietal background and 

environment, for breeders it is useful to utilize a wide range of dwarfing genes at their 

disposal (Ellis et al. 2005). Since various Rht dwarfing alleles as well as combinations of 

several semi-dwarfing alleles result in too severe plant shortage in homozygous condition, 

such as Rht-B1c or Rht8c+Rht-D1b, hybrid wheat breeding might offer advantages for both 

grain yield and exploitation of additional Rht dwarfing alleles that have yet no commercial 

use. Additional Rht-allele specific characteristics would offer further advantages for future 

hybrid wheat breeding. One example is the inhibition of pre-harvest alpha-amylase production 

conferred by Rht-B1c that is likewise expressed in heterozygous condition (Flintham et al. 

1997b). Nevertheless, because in homozygous status Rht-B1c as well as the combination of 

Rht-B1b+Rht-D1b resulted in the strongest increase of FHB susceptibility in the Maris 

Huntsman data set, its effects on FHB resistance in heterozygous status require further 

investigation. At least the severe plant shortage combined with significantly less increase of 

FHB susceptibility of Rht-D1b+Rht-8c compared to solely Rht-D1b in the Mercia isogenic 

lines suggest yet unknown positive epistatic effects of Rht-allele combinations. Taken 

together, a wider range of Rht alleles could be used in homozygous or heterozygous condition 
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to optimally adapt a wheat line or hybrid to a target environment referring to yield 

performance, disease and lodging resistance as well as heat and drought tolerance. 

However, utilization of Rht-D1b often is a prerequisite in actual northern European wheat 

breeding programmes (H. Coester and E. Ebmeyer pers. comm.). In the present study 

significant transgressions towards higher resistance occurred only in the Apache × Biscay 

progeny. Nevertheless, significant genotypic variation for FHB resistance and plant height 

within crosses of susceptible short-strawed varieties (Biscay, Pirat, Rubens) all carrying Rht-

D1b, with more resistant long-strawed varieties (Apache, Romanus, History) indicate 

feasibility of selection for short-strawed varieties conferring improved FHB resistance (Voss 

et al. 2008). In the present populations this was expressed by many recombinants being 

significantly less FHB susceptible, but offering plant heights similar to the short-strawed 

parent. Likewise, lines with FHB ratings similar to the resistant parent being significantly 

shorter could also be found.  

 

To fulfill the criteria for variety registration, selection for Rht-D1b-varieties conferring 

improved FHB resistance to counterbalance the negative effect of Rht-D1b results in either 

increased selection intensity or requires enlarged population sizes when solely using 

phenotypic selection. Accordingly, fast and low cost incorporation and accumulation of 

powerful FHB resistance QTL into susceptible but high-yielding Rht-D1b germplasm via 

marker assisted selection (MAS) presently is a major aim and, hence, the second option to 

achieve increased FHB resistance combined with short plant stature.  

MAS is increasingly becoming a common tool in commercial wheat breeding programmes 

(Wilde et al. 2007/2008). Qualitative mapping of Fhb1, Fhb2, Fhb3 and further significant 

QTL on chromosomes 1B, 2B, 2D, 5A, 6A or 7B, respectively, for FHB resistance in wheat 

already provides tightly linked markers that can reduce linkage drag associated with the 

incorporation of exotic FHB resistance QTL sources (Cuthbert et al. 2007, Wilde et al. 

2007/2008, Holzapfel et al. 2008, Löffler et al. 2008). At present, the most useful QTL are 

those on chromosomes 3BS (Fhb1), 5AS (Qfhs.ifa-5A) and 6BS (Fhb2) derived from Sumai 3 

involving mapping populations.  

For the purposes of MAS, diagnostic markers are currently available only for Fhb1 (Liu et al. 

2008). Therefore, the community of wheat breeders strongly focuses on the incorporation of 

Fhb1 in their aim to effectively improve Fusarium resistance with minimum expenses. In this 

way Fhb1 has been successfully introduced into many breeding populations worldwide in 

recent years, including primarily the USA, Canada, Australia and Germany (Buerstmayr et al. 
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2009, H. Coester pers. commun.). Owing to the glucosylation process fungal DON seemingly 

is detoxified into less phytotoxic DON-3-glucoside by this QTL (Lemmens et al. 2005). The 

conjugated form is referred to as masked mycotoxin because DON-3-glucoside escapes 

routine detection methods but can release its toxic precursor after hydrolysis in mammals or 

after subsequent food processing (Berthiller et al. 2005, 2009a). In order to investigate the 

concentrations of DON-3-glucoside Berthiller et al. (2009b) analysed a set of 77 naturally 

Fusarium-contaminated wheat and maize samples from Austria, Germany and Slovakia. The 

detected DON-3-glucoside concentrations in all cereal samples corresponded to about 5 up to 

46 mol% of their DON concentrations which on total varied from 42 to 4130 µg kg-1. The fact 

that Fhb1 further shifts this proportion towards DON-3-glucoside indicates the future 

importance to consider both DON and DON-3-glucoside with regard to food and feed safety. 

In general, knowledge on the physiological mode of action has to be further deepened when 

breeding extensively relies on single major resistance genes such as Fhb1.  

Moreover, in case of reliance on single major resistance genes in agroecosystems many 

examples of ineffective qualitative resistance offer abundant evidence that selection for 

pathogen virulence in the field is highly efficient (McDonald and Linde 2002). From literature 

it has been repeatedly demonstrated that artificial selection for quantitative traits as 

aggressiveness can likewise result in pathogens´ quantitative adaptation to host varieties 

(Pariaud et al. 2009). As one of the first studies in this area, Leonard already 1969 observed 

an increase in the mean infection efficiency of two populations of P. graminis f.sp. avenae by 

approximately 10-15% after seven asexual generations only on the quantitatively resistant 

host from which they were isolated. Confirming Leonard´s results of an adaption to the 

variety of origin, Chin and Wolfe (1984) as well as Villaréal and Lannou (2000) found 

significantly increased multiplication rates and infection efficiency of powdery mildew (B. 

graminis) isolates on quantitatively resistant barley and wheat varieties solely on the host 

variety from which they were collected. Only few experiments have investigated the selective 

effect of susceptible and quantitatively resistant host varieties on pathogen evolution with yet 

controversial results depending on the pathosystem. Zhan et al. (2002) found a strong impact 

of host genotypes on the dynamics of pathogen populations in Mycosphaerella graminicola 

strains. Their experiments revealed that the pathogen populations evolved more slowly on a 

more resistant host variety referring to genotypic diversity and changes in genetic structure 

and that reproductive fitness and aggressiveness of a fungal strain were not correlated. Within 

the same pathosystem Ahmed et al. (1996) similarly demonstrated that pathogen populations 

isolated from susceptible wheat varieties produced higher levels of disease, whereas Lehmann 
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and Shaner (1997) found isolates of Puccinia recondita f.sp. tritici reproductively more fit on 

partially resistant wheat varieties.  

Consequently, cultivation of wheat varieties with increased FHB resistance mainly based on a 

specific mode of action of single major resistance genes (e.g. Fhb1) on large acreages in all 

main countries of wheat production should induce no directional short-term but a considerable 

long-term selective force. This poses a definite evolutionary risk of Fusarium spp. to 

significantly increase isolate-specific aggressiveness to an open maximum by sexual 

recombination as confirmed in the present study (Voss et al. 2010).  

Therefore, the emphasis of future research activities is to discover and/or develop more 

diagnostic markers to aid effective and efficient pyramiding of the most promising FHB 

resistance QTL originating from genetically unrelated resistance sources. Application of 

array-based high throughput markers, such as DArT (diversity array technology) markers or 

SNP (single nucleotide polymorphism) detection methods will complement existing PCR-

based markers in the next years (Buerstmayr et al. 2009). Recently, experimental marker-

assisted pyramidisation of different FHB resistance loci has successfully been conducted 

(Miedaner et al. 2006, Wilde et al. 2008, Shi et al. 2008) and seems promising when 

combined with phenotypic selection as the most effective tool to accumulate additional minor 

resistance QTL to achieve a reliable and durable level of FHB resistance. A broad base of 

major and minor resistance genes should weaken the directional selective force of improved 

quantitative FHB resistance on Fusarium spp. populations and may prevent a slow erosion of 

quantitative FHB resistance due to consistently increasing aggressiveness on the long run. 
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8.  Summary 

 

Fusarium head blight (FHB), or scab, is one of the most devastating fungal diseases affecting 

small-grain cereals and maize, causing severe yield losses and contamination of grain with 

mycotoxins such as deoxynivalenol (DON) worldwide. Fusarium graminearum (teleomorph 

Gibberella zeae) and Fusarium culmorum are the most prevalent Fusarium species in wheat 

production in Central and Northern Europe. Breeding for increased resistance to FHB in 

wheat is considered the most effective strategy for large scale disease management and 

mycotoxin reduction as agronomic practices and fungicide application are often insufficient to 

effectively counteract or prevent FHB epidemics. Height reducing Rht genes are extensively 

used in wheat breeding programmes worldwide in order to improve lodging resistance and 

yield potential, with Rht-D1b being the most important Rht allele in Northern Europe. 

However, their individual effects on FHB resistance are yet unclear. Due to the incremental 

approach to increase host resistance the question arises whether the Fusarium pathogen has 

the capability to adapt by increased aggressiveness, defined as the quantity of disease induced 

by a pathogenic isolate on a susceptible host, and/or increased mycotoxin production. 

Therefore, the objectives of the present study were to investigate the effects on FHB 

resistance of Rht-D1b and additional Rht alleles, the segregation variance for FHB resistance 

and identification of FHB resistance QTL (quantitative trait loci) in subsequent mapping 

analyses in three crossing populations segregating for the semi-dwarfing Rht-D1b allele and 

two sets of isogenic wheat lines. Regarding the pathogen, the study aims to determine the 

segregation variance in two F. graminearum crosses of highly aggressive parental isolates and 

to examine the stability of host FHB resistance, pathogen aggressiveness and the complex 

host-pathogen-environment interactions in a factorial field trial. All experiments were 

conducted on the basis of multienvironmental field trials including artificial inoculation of 

spores. FHB severity was repeatedly visually rated as the percentage of infected spikelets per 

plot. The DON and fungal mycelium content, measured as exoantigen (ExAg) absorbance, 

were analysed with two enzyme-linked immunosorbent assays (ELISA).  

The presence of Rht-D1b resulted in 7-18% reduction in plant height, but considerably 

increased FHB severity by 22-53% within the 190, 216 and 103 progenies from the European 

elite winter wheat crosses Apache × Biscay, Romanus × Pirat and History × Rubens, 

respectively. In a subset of progenies selected for similar plant height, Rht-D1b still resulted 

in increased FHB severity of 7-27%. In the same subset the DON content was increased by 

25-46% and fungal mycelium content rose by 9-55%, although only significant for the 
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Romanus × Pirat population. When divided into subpopulations carrying either Rht-D1a or 

Rht-D1b, significant genetic variation for the trait FHB resistance remained in both 

subpopulations of all three progeny.  

In the following QTL mapping analyses the QTL with the strongest additive effects was 

located at the Rht-D1 locus on chromosome arm 4DS and accordingly coincided with a major 

QTL for plant height in all three wheat populations. When combined with a second major 

QTL located on chromosome 1BL, both QTL explained a total phenotypic variance ranging 

from 45 to 79% in the different population × environment combinations. On total, a high 

number of 8 to 14 minor QTL for FHB reaction that were found in the three populations 

emphasised the quantitative inheritance of FHB resistance in European winter wheat. The 

detected QTL mostly showed significant QTL-by-environment interactions and often 

coincided with QTL for plant height. By means of isogenic lines in the genetic background of 

the variety Mercia, Rht-D1b and Rht-B1d significantly increased mean FHB severity by 52 

and 35%, respectively, compared to the wild-type (rht). Rht-B1b and Rht8c led to non-

significant increases in mean FHB severity of 19%. Among the Maris Huntsman data set, the 

Rht alleles increased mean FHB severity by 22 up to 83%, but only the very short lines 

carrying Rht-B1c or Rht-B1b+Rht-D1b showed significance. Following single floret 

inoculation the Rht effects on FHB resistance to fungal spread within the spike (type II) were 

less pronounced. Only Rht-B1b consistently increased fungal spread up to 13% whereas Rht8c 

led to a significant decrease of 17% in comparison to the wild-type.  

The analyses of 120 progenies of the crosses from each of the highly aggressive parental F. 

graminearum isolates FG07 × FG153 and FG3211 × FG96 revealed significant genetic 

variation for aggressiveness, DON and fungal mycelium production following sexual 

recombination. This variation resulted in stable transgressive segregants towards increased 

aggressiveness in one of the two progeny. The factorial field trial, including eleven F. 

graminearum and F. culmorum isolates varying in aggressiveness and seven European elite 

winter wheat varieties, varying in their FHB resistance level, displayed no significant wheat 

variety × isolate interaction. Nevertheless, isolates possessing increased aggressiveness 

significantly increased FHB severity and DON production at a progressive rate on varieties 

with reduced FHB resistance. 

In conclusion, the analysed Rht alleles led to differently pronounced negative effects on FHB 

resistance that strongly depended on the genetic background. However, significant genetic 

variation for FHB resistance exists for selection and, thus, to largely counteract these effects 

by accumulating major and minor FHB resistance QTL. Significant genetic variation for 
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aggressiveness among F. graminearum and the capability to increase its level of 

aggressiveness beyond yet known levels simply by sexual recombination may lead to long 

term erosion of FHB resistance when single exotic major resistance genes such as Fhb1, Fhb2 

or Fhb3 are deployed on a large scale. The rate at which increased aggressiveness develops 

will depend on the selection intensity and whether it is of constant, episodic or balanced 

nature. Consequently, the selection pressure imposed on the pathogen should be minimized by 

creating and maintaining a broad genetic base of FHB resistance that relies on more than one 

genetically unrelated resistance source by combining phenotypic and marker-assisted 

selection to achieve a sustainably improved FHB resistance in wheat breeding. 
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9.  Zusammenfassung 

 

Ährenfusariosen zählen aufgrund hoher Ertrags- und Qualitätsverluste sowie der 

Kontamination des Erntegutes mit Mykotoxinen, vor allem Deoxynivalenol (DON), zu den 

bedeutendsten Pilzkrankheiten in Getreide und Mais weltweit. Fusarium graminearum 

(teleomorph Gibberella zeae) und Fusarium culmorum sind die am häufigsten 

vorkommenden Fusarium-Arten in Zentral- und Mittel-Europa. Zur umfassenden 

Krankheitskontrolle und Reduktion der Mykotoxinbelastung stellt die Resistenzzüchtung in 

Weizen die effektivste Methode dar, da agronomische Verfahren und Fungizid-Applikation 

häufig nicht ausreichend wirksam sind um Fusarium-Epidemien entgegenzuwirken bzw. zu 

verhindern. Zur Erhöhung der Halmstabilität und des Ertragspotentials werden weltweit in 

Weizenzuchtprogrammen Verzwergungsgene, die sogenannten Rht-Gene verwendet, wobei 

das Verzwergungsallel Rht-D1b das bedeutendste Rht-Allel im nordeuropäischen Raum ist. 

Jedoch sind ihre individuellen Auswirkungen auf die Fusarium-Resistenz bisher unbekannt. 

Aufgrund zunehmender Bestrebungen die Wirts-Resistenz gegenüber Ährenfusariosen zu 

erhöhen, gewinnt die Frage an Bedeutung, ob das Fusarium-Pathogen die Fähigkeit zu 

Anpassungsreaktionen in Form von erhöhter Aggressivität und/oder erhöhter 

Mykotoxinproduktion besitzt. Die Aggressivität ist definiert als Quantität der 

Krankheitsausprägung hervorgerufen durch ein pathogenes Isolat auf einem anfälligen Wirt. 

Zielsetzung dieser Arbeit war es deshalb die Auswirkungen von Rht-D1b und weiterer Rht-

Allele auf die Wirtsresistenz sowie die Aufspaltungsvarianz für Fusarium-Resistenz anhand 

von drei für Rht-D1b-spaltenden Populationen und zwei Gruppen isogener Linien zu 

untersuchen und in einer anschließenden Kartierungsstudie Resistenz-Loci zu identifizieren. 

Auf Seiten des Pathogens wurde die Aufspaltungsvarianz für Aggressivität in zwei 

Nachkommenschaften hochaggressiver Eltern-Isolate bestimmt, sowie die Stabilität der 

Wirts-Resistenz, Pathogen-Aggressivität und der komplexen Wirt-Pathogen-Umwelt-

Interaktionen in einem faktoriellen Inokulations-Versuch untersucht. Die Feldversuche 

wurden über mehrere Umwelten (Jahr × Ort-Kombinationen) angelegt. Der Fusarium-Befall 

wurde mehrfach visuell als prozentualer Anteil befallener Ährchen der gesamten Ährchen 

einer Parzelle nach künstlicher Inokulation bonitiert. Der Pilzmyzelgehalt, gemessen als 

Fusarium-Exoantigen (ExAg)-Absorption, sowie der DON-Gehalt wurden mittels ELISA 

(enzyme-linked immunosorbent assay) analysiert. 

Innerhalb der 190, 216 bzw. 103 Nachkommen der Kreuzungen Apache × Biscay, Romanus × 

Pirat und History × Rubens reduzierte die Anwesenheit von Rht-D1b die Wuchshöhe um 7-
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18% bei gleichzeitig deutlicher Erhöhung des Fusarium-Befalls von 22-53%. Bei der 

Betrachtung von selektierten Nachkommen mit vergleichbarer Wuchshöhe, führte Rht-D1b zu 

einer verbleibenden Erhöhung der Fusarium-Anfälligkeit von 7-27%, einer Zunahme des 

DON-Gehaltes von 25-46% sowie des Pilzmyzel-Gehaltes von 9-55%. Die Effekte waren 

jedoch nur in der Population Romanus × Pirat signifikant. Getrennt in Rht-D1a- bzw. Rht-

D1b-tragende Subpopulationen war die genetische Varianz für Fusarium-Resistenz innerhalb 

beider Subpopulationen aller Nachkommenschaften signifikant. In der nachfolgenden QTL-

Kartierung wurde der stärkste QTL (quantitative trait locus) für Fusarium-Resistenz in allen 

drei Populationen am Rht-D1-Lokus auf Chromosomen-Arm 4DS lokalisiert, entsprechend 

gekoppelt mit einem Major-QTL für Wuchshöhe. In Kombination mit einem zweiten Major-

QTL auf Chromosom 1BL erklärten beide Fusarium-Resistenz-Loci 45-79% der 

phänotypischen Varianz in den jeweiligen Population × Umwelt-Kombinationen. Insgesamt 

bestätigt die größere Anzahl von 8 bis 14 detektierten Resistenz-Loci mit kleineren Effekten 

in den verschiedenen Populationen den quantitativen Charakter der Fusarium-Resistenz in 

Europäischem Winterweizen. Die detektierten Resistenz-Loci zeigten überwiegend 

signifikante Interaktionen mit den entsprechenden Umwelten und fielen oft mit Loci für 

Wuchshöhe zusammen. Auf Basis von isogenen Linien im genetischen Hintergrund der 

Weizensorte Mercia führten Rht-D1b und Rht-B1b zu einer signifikanten Erhöhung des 

Fusarium-Befalls von 52 bzw. 35% im Vergleich zum Wildtyp (rht). Rht-B1b und Rht-8c 

erhöhten den Fusarium-Befall um 19%, jedoch nicht signifikant. Im genetischen Hintergrund 

der Sorte Maris Huntsman konnte durch die Rht-Allele eine Erhöhung des Fusarium-Befalls 

von 22-83% beobachtet werden, jedoch waren nur die kürzesten Linien mit Rht-B1c bzw. Rht-

B1b+Rht-D1b signifikant. Nach der Einzelähreninfektion waren die Effekte der Rht-Allele auf 

die Resistenz gegenüber der Ausbreitung des Pathogens in der Ähre (type II) deutlich geringer 

ausgeprägt. Einzig Rht-B1b führte zu einer verstärkten Ausbreitung des Pilzes in der Ähre um 

bis zu 13% im Vergleich zum Wildtyp (rht), während die Pilzausbreitung durch Rht8c 

signifikant um 17% verringert wurde.  

Die jeweils 120 Nachkommen der Kreuzungen zweier hochaggressiver F. graminearum-

Isolate (FG07 × FG153 und FG3211 × FG96) wiesen signifikante genetische Varianz für die 

Merkmale Aggressivität, DON-Gehalt und Pilzmyzel-Produktion auf. Die Aufspaltungs-

varianz nach sexueller Rekombination resultierte in umweltstabilen transgressiven Nach-

kommen mit erhöhter Isolataggressivität in einer der beiden Populationen. Anhand der 

faktoriellen Inokulation von elf europäischen Elite Winterweizensorten mit variierenden 

Resistenzniveaus mit sieben unterschiedlich aggressiven F. graminearum und F. culmorum-
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Isolaten zeigten sich keine signifikanten Weizensorte × Isolat-Interaktionen. Dennoch 

erhöhten die hochaggressiven Isolate den Fusarium-Befall und den DON-Gehalt in den 

Sorten mit geringerer Fusarium-Resistenz überproportional.  

Zusammenfassend zeigten die untersuchten Rht-Allele unterschiedlich stark ausgeprägte 

negative Auswirkungen auf die Fusarium-Resistenz in starker Abhängigkeit vom genetischen 

Hintergrund. Ausreichende genetische Varianz für die Fusarium-Resistenz erlaubt eine 

zielgerichtete Selektion um die negativen Effekte der Rht-Allele durch Akkumulation von 

Resistenz-Loci mit größeren und kleineren Effekten weitestgehend zu kompensieren. 

Demgegenüber zeigen die hohe genetische Varianz für das Merkmal Aggressivität in 

Nachkommenschaften hochaggressiver Eltern-Isolate und die Fähigkeit des Pathogens das 

Aggressivitätsniveau mittels sexueller Rekombination graduell weiter zu erhöhen, dass 

langfristig eine Erosion der Fusarium-Resistenz stattfinden könnte, wenn nur wenige 

exotische Major-Resistenz-Gene wie Fhb1, Fhb2 oder Fhb3 großflächige Verwendung 

finden. Die Geschwindigkeit, mit der sich die Pathogenaggressivität steigern könnte, wird 

dabei entscheidend von der Selektionsintensität, ausgelöst durch verbesserte, oligogen 

basierte Wirtsresistenz, und der Art der Selektion (konstant, episodisch, oder 

umweltabhängig) abhängen. Folglich sollte zukünftig der auf das Pathogen ausgeübte 

Selektionsdruck minimiert werden, indem durch die Kombination von phänotypischer und 

markergestützter Selektion eine breite genetische Basis für die Fusarium-Resistenz in Weizen 

geschaffen und erhalten bleibt, welche auf mehreren Resistenzquellen beruht um eine 

dauerhaft verbesserte Fusarium-Resistenz zu erreichen. 
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