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1 Introduction 

 

1.1 Insulin signaling 

 

1.1.1 Insulin 

 

Insulin is the most important anabolic hormone acting on multiple target tissues. It controls 

the uptake of glucose and amino acids into muscle and adipose tissue, regulates synthesis of 

glycogen and inhibits gluconeogenesis in the liver (1). It promotes fatty acid synthesis in the 

liver and inhibits lipolysis in adipose tissue (2). Furthermore, it regulates proliferation (3) and 

apoptosis, it controls food uptake (4) and insulin synthesis (5). The absolute (type I diabetes) 

or relative (type II diabetes) lack of insulin results in dramatic metabolic consequences and 

leads, when treated insufficiently, ultimately to pathological lesions such as retinopathy, neu-

ropathy and nephropathy. The untreated type I diabetes leads to death.  

Insulin is released from the pancreatic β-cells in response to increased blood glucose concen-

trations and this is amplified by free fatty acids (6), amino acids (7) and incretins, such as 

glucagon-like peptide (GLP-) 1 and glucose-dependent insulinotropic polypeptide (GIP) (8). 

The hormone acts on its target tissues via the insulin receptor and glucagon is its major 

physiological antagonist. 

 

1.1.2 The insulin receptor (IR) 

 

The insulin signaling cascade is initiated by binding of insulin to its receptor. The complete 

insulin receptor (IR) is a heterotetramer comprised of two α and two β-subunits, linked by 

disulfide-bonds (Figure 1). Both IR subunits are encoded by a 22-exon gene, spanning 120 

kb located on chromosome 19. The extracellular α-unit exists in two isoforms: IR-A and IR-B 

(reviewed in (9)). The isoforms differ by the presence (IR-B) or absence (IR-A) of exon 11 (12 

amino acids) and they are generated via differential splicing (10). Differences regarding their 

expression patterns (11), receptor activation, binding of insulin and IGF-I and -II (9) and dif-

ferences in proliferative and metabolic signaling have been observed (12). Briefly, both IR 
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isoforms predominantly bind insulin but in addition, IR-A has a higher affinity for IGF-I and -II 

as compared to IR-B and an aberrant expression in tumorous tissues has been reported. IR-B 

is predominantly involved in metabolic signaling.  

The binding of insulin induces a conformational change of the receptor leading to autophos-

phorylation of at least 7 tyrosine residues in the membrane spanning β-subunit of the IR (13). 

These residues are located in the juxtamembrane (JM) domain (Tyr 953, Tyr 960, corre-

sponding to human IR amino acid sequence) as well as the tyrosine kinase activation loop (A-

loop) (Tyr 1146, Tyr 1151, Tyr 1152) and the C-terminal domain (Tyr 1316, Tyr 1322). Auto-

phosphorylation in the A-loop activates the kinase activity of the IR (14) and facilitates the 

binding of docking molecules containing a src homology 2 (SH2)-domain (see below). Phos-

pho-tyrosine residues in the JM domain (located in NPXpY motifs) have distinct functions: the 

motif NPEpY960 enables the binding and IR mediated phosphorylation of docking proteins 

containing a phosphotyrosine binding (PTB) domain, thus initiating signal transduction (15) 

(Figure 1). Furthermore the JM domain contains the motif for insulin stimulated IR internaliza-

tion (16). The C-terminal phospho-tyrosines are involved in regulation of IR kinase activity 

(17). 

The IR is expressed not only in the classical insulin target tissues liver, skeletal muscle and 

adipose tissue but also in the brain, vasculature and endocrine pancreas. The importance of 

the IR expression in these tissues for glucose homeostasis has been demonstrated with tis-

sue specific IR-knock out mice (reviewed in (18;19)). Other tissues that express the IR in low 

concentrations are lungs, kidney, heart, spleen, monocytes and erythrocytes (20;21).  

 

1.1.3 Insulin signal transduction 

 

The activated IR recruits a number of docking proteins which act as scaffolds directing the 

insulin signal into different signaling pathways, most importantly the phosphatidylinositol-3 

(PI-3) kinase and the mitogen activated protein (MAP) kinase pathway and the activation of 

the insulin dependent glucose transporter (GLUT) 4 translocation in muscle and adipose tis-

sue (22) (Figure 1). This signal diversification is accomplished by IR-mediated phosphoryla-

tion of tyrosine residues of these docking proteins, which are then bound by other signaling 

proteins via SH2-domains, a conserved region with a high affinity for phosphorylated tyrosine 

residues. Depending on the motif in which the phosphorylated tyrosine is located (23), pro-

teins with different classes of SH2 domains can bind to the docking proteins.  

Several adapter proteins are substrates of the activated IR (Figure 1):  Src homology s/α-

collagen-related protein (Shc) (24) and Grb associated binder 1 (Gab1) (25) both of which 
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direct the insulin signal into the mitogenic MAP kinase pathway; Gab1 can also bind p85, the 

regulatory subunit of the PI-3 kinase. Another adapter is SH2-B which has been known as a 

substrate of the IR for long (26) but only recently the function of SH2-B1 as endogenous insu-

lin sensitizer (27) and regulator of metabolism, body weight (28), longevity and oxidative 

stress (29) has been described. The IR also phosphorylates the adapter protein with a PH 

and SH2 domain (APS, also known as SH2-B2) (30) and this protein might be involved in 

negative regulation of the insulin signal (31), but has also been shown to promote mitogenic 

signaling (32). APS forms a complex with Casitas b-lineage lymphoma (Cbl) and Cbl associ-

ated protein (CAP) (33) and the IR-dependent phosphorylation of Cbl leads to the recruitment 

of this complex to lipid rafts (34). This eventually activates the small G-protein TC10 which 

provides the second signal for the translocation of GLUT4 vesicles and may function in paral-

lel with the activation of the PI-3 kinase pathway, which is the other main effector of GLUT4 

translocation (35). All the mentioned adapter proteins, except Shc, bind the IR via their SH2-

domains.  

The most important substrates of the activated IR are the insulin receptor substrates (IRS) 1 – 

6. Like Shc they bind to phospho-Tyr 960 of the IR via a PTB domain (36) (refer also to sec-

tion 1.2.1).  The IR-induced tyrosine phosphorylation of the IRS proteins creates multiple 

binding site for different downstream signaling proteins. Many of the phospho-tyrosine resi-

dues in IRS proteins are bound by the regulatory p85 subunit of the PI-3 kinase (Figure 4) 

leading to the activation of the kinase (37). They also associate with the small docking protein 

growth receptor bound 2 (Grb2) thus activating the MAP kinase pathway (38). Other adaptor 

proteins, like Nck and Crk have been shown to interact with IRS proteins as well (39-41). Fur-

thermore enzymes, such as the src like kinase Fyn and the tyrosine phosphatase SHP-2 are 

activated (42;43). SHP-2 is not only important for deactivation of the insulin signal by dephos-

phorylation of IRS-1 (44) but also acts as another scaffolding protein associating with Gab1 

(45) and acting as a positive effector of insulin-activated MAP kinase pathway and mitogene-

sis (46-49) (Figure 1).  

The binding of so many different effector molecules and the activation of various signaling 

pathways is a unique feature of the IRS proteins which enables the broad spectrum of effects 

that insulin has on metabolism, proliferation and survival.   
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Figure 1 Structure and binding partners of the activated human insulin receptor (IR). Upon insulin bind-
ing the IR undergoes autophosphorylation thus creating docking sites in the juxtamembrane domain 
(JM) for a number of different proteins, which become phosphorylated by the IR. The phosphorylated 
substrates of the IR can bind different downstream signaling proteins which enables the activation of 
the PI-3 kinase- and MAP kinase pathway as well as initiation of GLUT4 translocation. Abbreviations: 
A-loop, activation loop; APS, adapter protein with a PH and SH2 domain; CAP, Cbl associated protein; 
Cbl, Casitas b-lineage lymphoma; Gab-1, Grb associated binder-1; GLUT4, glucose transporter 4; 
Grb2, growth receptor bound 2; JM, juxtamembrane domain; MAPK, mitogen activated protein kinase; 
PI3-K, phosphatidylinositol 3-kinase; PKB, protein kinase B; PKC, protein kinase C; pY, phospho-
tyrosine residues; Shc, Src homology s/α-collagen-related protein; SHP-2, Src homology phosphatase-
2;  -S-S, disulfide bonds. 

 

1.1.4 PI-3 kinase pathway and PKB/Akt dependent signaling 

 

Binding of p85 to IRS proteins directs the catalytical p110 subunit of the PI-3 kinase class IA 

towards the plasma membrane where it phosphorylates phosphatidylinositol (4,5)-

bisphosphate (PIP2) thus leading to the generation of phosphatidylinositol (3,4,5)-

trisphosphate (PIP3). Recently it has been shown that mostly p110α, not p110� is responsi-

ble for the insulin dependent generation of PIP3 (50). This second messenger is needed to 

recruit the kinases PDK1 and PKB/Akt via their PH domains towards the membrane where 

PDK1 phosphorylates PKB/Akt on threonine 308 (51). Another kinase, PDK2, which has been 

identified as mammalian target of rapamycin complex (mTORC) 2 (52) phosphorylates 

PKB/Akt in its hydrophobic motif on serine 473 leading to its full activation. Of note, mTORC2 
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consists of the kinase mammalian target of rapamycin (mTOR), Sin1, G�L and rictor and is 

insensitive to rapamycin. After activation PKB/Akt detaches from the membrane and phos-

phorylates a number of downstream kinases and transcription factors (Figure 2). 

PKB/Akt phosphorylates glycogen synthase kinase (GSK)-3, which enables the activation of 

glycogen synthase (GS), the key enzyme responsible for the formation of glycogen. Simulta-

neously glycogenolysis is stopped by the action of PKB/Akt, which reduces the activity of gly-

cogen phosphorylase (53).  

PKB/Akt also phosphorylates the forkhead box (Fox) family of transcription factors, with the 

most prominent members FoxO1 and FoxA2 (54). These transcription factors are regulated in 

a complex manner with insulin dependent and independent phosphorylations and acetylations 

(55;56). FoxO1 for instance is phosphorylated by PKB/Akt on Thr 24, Ser 256 and Ser 319 

(57) and this enables the binding of 14-3-3 proteins, which mask the nuclear import sequence 

and this leads to its exclusion from the nucleus (58). Other Fox proteins are regulated simi-

larly. The Fox proteins are important transcriptions factors of the gluconeogenic genes phos-

phoenolpyruvate carboxykinase (PEPCK) and glucose 6 phosphatase (G6Pase) in the liver 

and genes involved in hepatic fatty acid oxidation and ketogenesis (59;60). Another member 

of the FoxO family, the proapoptotic FoxO3a is phosphorylated and regulated by PKB/Akt in a 

similar manner as FoxO1 (61). PKB/Akt also inactivates other proapoptotic signaling proteins 

such as Bad (62) and Bax (63), thereby regulating survival signals and mediating the an-

tiapoptotic effects of insulin (Figure 2).  

Another target of PKB/Akt is the tuberous sclerosis complex 1/2 (TSC1/TSC2) which acts as 

GTPase activating protein (GAP) towards the small G-Protein Rheb leading to the transition 

from the active GTP-bound state to the inactive GDP-bound state (64). The phosphorylation 

of TSC1/TSC2 inhibits its function and leads to the accumulation of Rheb GTP and this acti-

vates by yet undefined mechanisms the rapamycin sensitive mTORC1, a nutrient sensitive 

complex (65) that contains the mTOR kinase and the proteins G�L and raptor. Active 

mTORC1 phosphorylates the p70 S6 kinase and the transcription factor 4E-BP1 (66), which 

is the prerequisite for the initiation of protein synthesis (Figure 2). A recent study showed, that 

mTORC1 is also involved in the insulin dependent induction of sterol regulatory element bind-

ing protein (SREBP) -1c (67), a transcription factor responsible for the regulation of fatty acid 

synthase (FAS) and stearoyl-CoA desaturase (SCD) -1. The induction of SREBP-1c is appar-

ently also dependent on the insulin-induced generation of PIP3 by the PI-3 kinase as this 

second messenger activates atypical protein kinase C (PKC) isoforms which are important for 

the induction of this transcription factor (68). PKB/Akt therefore regulates a broad range of 

metabolic and antiapoptotic functions  (Figure 2). 
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Figure 2 Insulin signaling via insulin receptor substrates (IRS). Abbreviations: aPKC, atypical protein 
kinase C; CPT1, carnitine palmitoyltransferase 1; ERK, extracellular signal regulated protein kinase; 
FAS, fatty acid synthase; G6Pase, glucose-6-phosphatase; Grb2, growth receptor bound 2; GSK-3, 
glycogen synthase kinase-3; GK, glucokinase; IRS, insulin receptor substrate; MEK, MAPkinase-ERK 
kinase; MCAD, medium-chain acyl-CoA dehydrogenase; mTORC, mammalian target of rapamycin 
complex; PEPCK, phosphoenolpyruvate carboxykinase; PI3-K, phosphatidylinositol-3 kinase; PK, pyu-
vate kinase; PKB, protein kinase B; Sos, son of sevenless; SRE, serum response factor; SREBP-1c, 
sterol regulatory element binding protein 1c; TCF, ternary complex factor; TF, transcription factors; 
TSC, tuberous sclerosis complex; ↑, upregulation; ↓, downregulation. 

 

1.1.5 MAP kinase pathway 

 

Insulin controls via the PI-3 kinase/PKB pathway a broad range of metabolic functions. How-

ever, it also has a role in differentiation and proliferation as the MAP kinase pathway is acti-

vated via the binding of the small adaptor protein Grb2 to the IRS proteins and Shc. Grb2 

associates with the ras nucleotide exchange factor mSos (son of sevenless) via its SH3 do-

mains and thereby recruits it to the plasma membrane where it promotes the activation of a 

small G-protein p21ras, which binds and activates the serine/threonine kinase raf. A phos-

phorylation cascade from raf to the dual specific kinase MAP kinase-ERK kinase (MEK)1 to 

extracellular signal-regulated protein kinase (ERK)1/2 leads to the translocation of ERK1/2 

into the nucleus. Here ERK1/2 phosphorylates different transcription factors and induces 
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thereby several early response genes, such as FBJ osteosarcoma oncogene (c-fos) and acti-

vating transcription factor (ATF)3 (69) (Figure 2). Alternatively the activated IR binds and 

phosphorylates Gab1 which associates with SHP2 and also leads to activation of MAP kinase 

signaling (70). 

 

1.2 IRS proteins 

 

IRS proteins are important mediators of the insulin signaling, despite their lack of enzymatic 

activity. They are central for the transduction, amplification, modulation and termination of the 

insulin signal. As described in the previous sections IRS proteins function as branching point 

for different signaling pathways by binding to various downstream signaling proteins, such as 

the PI-3 kinase, Grb2 and SHP-2. So far, there are six different isoforms identified with differ-

ent tissue specific distributions (reviewed in (71). At least five of them are expressed in hu-

man tissues: IRS-1, -2, -4, -5 and -6, whereas IRS-3 only appears in rodent adipose tissue 

and brain. The most prominent IRS isoforms are IRS-1 and IRS-2, which are highly con-

served proteins in human, mouse and rat. Their functional importance has been demon-

strated with different knock out mouse models (72). Studies with a global knock out of IRS-1 

demonstrated that this IRS protein is mainly involved in insulin-like growth factor (IGF)-1 sig-

naling. IRS-1 knock out mice show growth retardation but only mild insulin resistance which 

never progresses to diabetes (73;74). Abe et al. demonstrated that IRS-1 knock out mice 

have a metabolic syndrome-like phenotype with insulin resistance in fat and muscle tissue, 

increased blood pressure and elevated plasma triglycerides as well as impaired endothelial 

vascular relaxation (75). All groups also reported a compensatory up-regulation of IRS-2, 

which maintains an almost normal PI-3 kinase activity in the liver (76;77). Importantly, the 

restoration of hepatic IRS-1 expression via adenoviral infection is sufficient to normalize insu-

lin sensitivity in the IRS-1 knock out mice (78).  

In contrast, the general IRS-2 knock out mouse is characterized by reduced β-cell mass and 

insulin resistance in liver and muscle without compensatory up-regulation of IRS-1, leading 

ultimately to type 2 diabetes mellitus (79;80). Male IRS-2 knock out mice die from dehydration 

and hyperosmolar coma after 12 to 16 weeks of life (79). Transgenic islets expressing IRS-2 

in the IRS-2 knock out mice cured diabetes, demonstrating an essential function of IRS-2 for 

normal β-cell function (81). Hence, based on the studies mentioned above IRS-1 and IRS-2 

are not only alternative substrates for the IR (77) but are differentially regulated and exert 

different functions.  



Introduction 16 

For the liver there is currently some controversy whether IRS-1 or IRS-2 is the dominant me-

diator of hepatic insulin action. Studies with complete IRS-1 or IRS-2 knock out mice indi-

cated a prominent role of IRS-2 in the liver (82-86) but studies with liver specific knock down 

and knock out models showed that IRS-1 and IRS-2 have rather complementary functions 

than one or the other being the dominant isoform (87-89). Recent data imply that IRS-2 is 

important during fasting and early postprandial insulin signaling (90;91) and that it has a func-

tion in the regulation of lipid metabolism since the liver-specific knock down of IRS-2 with 

shRNA resulted in hepatic steatosis (88). 

 

1.2.1 Protein structure of IRS-1 and -2 

 

Both IRS isoforms appear to have a similar general architecture (71;92;93) (Figure 3). They 

are composed of a N-terminal pleckstrin homology (PH) domain which enables their interac-

tion with phospholipids in the plasma membrane. The PH-domain is followed by a PTB-

domain that mediates the interaction with the tyrosine phosphorylated IR (92;93). These two 

domains are highly conserved by 75% homology among IRS-1 and IRS-2 (94) and they could 

be crystallized for IRS-1 in 1999 (93). In contrast, the C-terminal part of the IRS proteins is 

poorly conserved with only 35% of matching amino acids (95). A crystallization of this appar-

ently unstructured region was not achieved up to now. 

The C-terminal part contains a large number of tyrosine phosphorylation motifs. In their phos-

phorylated state these sites represent binding motifs for many downstream signaling proteins 

(Figure 4), such as adaptor proteins involved in ras signaling (Grb-2 (24), Nck (39), Crk (41)), 

the SH2 domain-containing protein-tyrosine phosphatase (SHP)-2, which is involved in at-

tenuation of the insulin signal by dephosphorylation of IRS-1 (44) as well as the lipid phos-

phatase SHIP2, the suppressor of ras signaling ras-GAP and the p85 regulatory subunit of 

the lipid kinase PI-3 kinase (96) which is of great importance for the metabolic actions of insu-

lin. Only IRS-2 has a unique kinase regulatory loop binding domain (KRLB), ranging from 

amino acid residue 591 to 733 (Figure 3). This domain interacts with the tyrosine phosphory-

lated kinase activation loop of the IR (97-99) and it appears that its function is to limit IRS-2 

tyrosine phosphorylation hereby regulating the extent of IRS-2 activation (100).  
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Figure 3 Insulin receptor substrate (IRS) protein structure. Schematic diagram of IRS-1 and IRS-2 do-
main structure. Amino acid numbering corresponding to mouse IRS-1/2. Abbreviations: C, C-terminus; 
KRLB, kinase regulatory loop binding domain; N, N-terminus; PH, pleckstrin homology domain; PTB; 
phosphotyrosine binding domain. 

Despite their common features IRS-1 and -2 show a number of differences which renders 

them as point of diversification of the insulin signal. This is accomplished via several mecha-

nisms: both molecules appear in different subcellular compartments (101) with unequal fre-

quency, IRS-2 being higher concentrated in the cytosol than in other intracellular compart-

ments (102). The IRS proteins also show different activation kinetics (103;104), probably due 

to structural differences such as the KRLB domain. Recently, it was found that the phospho-

tyrosine residues of IRS-1 and -2 bind different interaction partners. IRS-2 binds exclusively 

PLC�, the adaptor protein Shc and the tyrosine kinase Fyn (105) whereas only IRS-1 binds 

the kinase Csk (105). Of note, despite the common interaction partners of IRS-1 and -2 both 

proteins have different numbers of binding sites for each partner. IRS-1 has eight p85 binding 

sites, whereas IRS-2 has up to eleven and IRS-1 can bind up to five SH2-containing inositol 

phosphatase (SHIP)2 molecules while IRS-2 has only two potential binding sites (105). These 

differences between both IRS proteins are likely to enable their distinct roles in insulin and 

IGF-1 signaling. 
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Figure 4 IRS-1 and IRS-2 phospho-tyrosine residues and binding partners. Abbreviations: Grb2, 
Growth receptor bound 2; PI3K, phosphoinositide-3 kinase; SHP-2, SH2 domain containing protein 
tyrosine phosphatase 2. 
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1.2.2 Regulation of IRS proteins 

 

The regulation of both IRS-1 and IRS-2 isoforms occurs on different levels: gene expression, 

degradation, change of subcellular localization, and posttranslational modification such as 

tyrosine phosphorylation and serine/threonine phosphorylation, as well as S-nitrosation, O-

linked β-N-acetylglucosamine-modification and acetylation. Although IRS-proteins are ex-

pressed in several tissues the focus of the following sections will be hold on IRS regulation in 

the liver because the phosphorylation of hepatic IRS-2 and its functional consequences were 

investigated in this thesis.  

 

1.2.2.1 Expression 

 

The major regulation of IRS-1 action in the liver appears not to be on the transcriptional level, 

however, some information is available: a) short term insulin stimulation of rat hepatoma cells 

is reported to result in an upregulation of IRS-1 protein (106) and refeeding increases the 

hepatic IRS-1 levels in mice (106), b) stimulation with dexamethasone  increases the amount 

of IRS-1 in Fao rat hepatoma cells (107) and also in the liver of rats (108), c) short term insu-

lin injection in humans resulted in increased muscular IRS-1 levels (106). Contrary to that, 

fasting had only minimally increasing effects on the hepatic IRS-1 amount (109). 

Unlike IRS-1, IRS-2 is highly regulated at the transcriptional level: fasting strongly induces 

hepatic IRS-2 mRNA (90;110) and protein level (111). IRS-2 protein was 3.5-fold increased 

after a 16 hour-fast in C57Bl6 wildtype (wt) mice (112). Furthermore signaling molecules 

known to be activated during fasting induce IRS-2 mRNA and protein expression in different 

cell culture models. IRS-2 expression is induced by cAMP and the glucocorticoid dexa-

methasone in HeLa cells (113) and in Fao rat hepatoma cells (L. Fritsche, unpublished data). 

Dexamethasone alone induces IRS-2 protein in adult rat hepatocytes (114) and primary rat 

adipocytes (115) and it leads to an increased IRS-2 promotor activity as determined in a 

luciferase reporter assay (110). The group of Montminy could demonstrate that forskolin-

induced increase of cAMP induces IRS-2 expression via activation of cAMP response  ele-

ment binding protein (CREBP) in murine β-cells (116) and Canettieri et al. showed that IRS-2 

expression in the liver is stimulated by the CREBP-Torc2 (transducer of regulated CREBP 

activity 2) pathway (111). Glucagon, the hormone which controls the hepatic glucose metabo-

lism during fasting has been shown to induce IRS-2 mRNA expression in primary rat hepato-

cytes (83). This induction of IRS-2 during fasting appears critical for glucose homeostasis and 

serves as a feedback response that limits glucose output from the liver. 
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Studies investigating the promoter region of the IRS-2 gene revealed several response ele-

ments. It contains an insulin response element (IRE) (117) which is recognized by forkhead 

transcription factors like FoxO1 (110). Guo and co-workers showed that FoxO1 and IRS-2 are 

regulated reciprocally, with FoxO1 increasing the expression of IRS-2, while insulin signaling 

via IRS-2 results in FoxO1 down-regulation (118). Liver specific FoxO1 knockout mice display 

a 50% decrease of IRS-2 gene expression (119) and the expression of a constitutively nu-

clear FoxO1 in mouse liver induces IRS-2 significantly (120). Transcription factor E3 (TFE3), 

a leucine zipper–containing basic helix loop helix protein, has also been show to promote 

IRS-2 transcription (121). Interestingly the IRS-2 promotor also contains a region which binds 

SREBP (named sterol regulatory element, SRE), which partially overlaps with the IRE. 

SREBP is induced by insulin and it negatively regulates the expression of IRS-2, by replacing 

FoxO1 from the promotor (110). Furthermore, ERK has been shown to induce IRS-2 expres-

sion upon oxidative stress in HepG2 cells via the transcription factors NF1 and SP1 (122). 

 

1.2.2.2 Degradation 

 

Targeted degradation has been verified as a regulator of IRS-1 protein levels: in vitro studies 

demonstrated that long term (up to 24 h) insulin stimulation of cultured Fao hepatoma cells 

results in proteasomal degradation of the IRS-1 protein without a change of IRS-1 mRNA 

levels (123-126). Other agents such as tumor necrosis factor (TNF)α, interferon (INF)γ, plate-

let derived growth factor (PDGF) and phorbol esters also reduce the IRS-1 protein levels in 

different cell culture models (127;128). Suppressor of cytokine signaling (SOCS)-1 and -3 are 

reported to bind via their SH2 domains to IRS-1 and promote its ubiquitination and degrada-

tion (129). Since several cytokines are inducers of SOCS expression this provides a mecha-

nism for the interaction of cytokines with the insulin signaling pathway. Insulin-induced degra-

dation of IRS proteins is thought to be mainly dependent on mTOR. Serine phosphorylation of 

IRS-1 via the mTOR-p70 S6K1 pathway is reported to release IRS-1 from intracellular com-

plexes thereby enabling its degradation. The nutrient sensitive mTOR mediates the phos-

phorylation of Ser 636/639 in human IRS-1 (corresponding to Ser 632/635 in rodent IRS-1) in 

muscle and adipose tissue  (130;131) and this site is hyperphoshorylated in the liver during 

prolonged stimulation with insulin (132), palmitate (133) and in diet-induced obesity (134). 

Rapamycin, the widely used mTOR inhibitor, prevents insulin-induced IRS-1 degradation in 

CHO cells (135) and 3T3-L1 adipocytes (125;136), stressing the importance of this kinase for 

the degradation of IRS-1. The mTOR-activated p70 S6K1 has recently been shown to be es-

sential for the cullin 7 (CUL7) E3 ligase dependent ubiquitination of IRS-1 in vitro (137).  
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For IRS-2 similar degradation mechanisms are described. High insulin concentrations which 

emerge during the fed state lead to reduced IRS-2 concentrations in the liver (83). This is 

accomplished through inhibition of transcription (117) and subsequent downregulation of IRS-

2 mRNA (123) and increased proteasomal degradation of the IRS-2 protein. Rui and col-

leagues demonstrated that insulin mediates the ubiquitination and subsequent proteasomal 

degradation of IRS-2 via the PI-3 kinase – PKB/Akt – mTOR pathway (138). The role of insu-

lin as a suppressor of IRS-2 protein levels is eminent in liver insulin receptor knock out 

(LIRKO) mice. The complete lack of insulin signaling in the liver of these mice results in 5-fold 

increased IRS-2 but not IRS-1 protein concentrations (139). It has been speculated that the 

fast degradation of IRS-2 protein in the liver after onset of refeeding (90) is the prerequisite to 

shift the insulin signaling towards IRS-1, which is suspected to be dominant for postprandial 

insulin signaling (91). In this context, the degradation of IRS-2 seems to be essential for the 

physiological regulation of hepatic nutrient homeostasis.  

However, the proteasomal degradation of IRS-2 is also induced under pathophysiological 

conditions, such as insulin resistance. SOCS-1 and -3, negative regulators of cytokine signal-

ing, are not only reported to promote ubiquitination and degradation of IRS-1, but also of IRS-

2 in mice (129). SOCS-1 and -3 can inhibit IRS-2 function in an additional manner. Both 

SOCS isoforms can bind to different regions in the IR and inhibit thereby the interaction and 

activation of the IRS proteins (140). Furthermore, SOCS-1 has been also implicated as nega-

tive regulator of IRS-2 expression (141): SOCS-1 knock out mice are reported to have in-

creased IRS-2 protein levels and increased tyrosine phosphorylation of IRS-2 and subse-

quently enhanced PKB/Akt activation.  

In conclusion, accelerated degradation of IRS proteins stimulated by hyperinsulinemia and 

hyperlipidemia as it occurs in obesity is one of the mechanisms discussed in the development 

of insulin resistance (142). 

 

1.2.2.3 Posttranslational modification  

 

1.2.2.3.1 Phosphorylation 

 

Apart from degradation and expression, the IRS-proteins are extensively regulated via multi-

ple reversible posttranslational modifications, most importantly phosphorylations. The amino 

acid sequence of IRS-1 and -2 provides a multitude of tyrosine, serine and threonine residues 

as potential phosphorylation sites. The phosphotyrosine interactome of both IRS isoforms has 

recently been analyzed demonstrating at least 21 (IRS-1) and 16 (IRS-2) functional tyrosine 
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residues that are mandatory for the transduction of the insulin signal (105) (Figure 4). In addi-

tion, even more potential and verified serine/threonine phosphorylation sites exist: With Net-

phos2.0 (143) 124 potential serine/threonine phosphorylation sites for IRS-1 can be calcu-

lated and up to now more than 20 of these sites have been studied in great detail. For IRS-2 

a similar number of potential serine/threonine phosphorylation sites is expected, however, 

only 2 sites have been studied so far.  

The vast amount of possible posttranslational modifications of the IRS is a unique feature of 

these proteins and the significance of such modifications, especially the serine/threonine 

phosphorylations of IRS-1 are thoroughly studied. In general, the function of serine/threonine 

phosphorylations is to modulate and precisely regulate the insulin (and IGF) signal in a posi-

tive and negative fashion (144;145), with many phospho-sites involved in the termination of 

the signal. Furthermore, other extra- and intracellular stimuli are integrated into the insulin 

signal via the phosphorylation of IRS proteins and the pathological hyperphosphorylation of 

certain serine/threonine residues is implicated in the development of insulin resistance and 

type II diabetes (142). 

The mechanisms involved in the regulation of insulin signal transduction by serine/threonine 

phosphorylation are the association of IRS-1 with other signaling molecules (146;147), the 

subcellular localization of IRS-1 (102) and regulation of its degradation (136). The sites impli-

cated in a negative regulation (corresponding to rat IRS-1 sequence) are Ser 24 (148), Ser 

267 (149), Ser 270 (150), Ser 307 (151;152), Ser 332 (153), Ser 357 (154), Ser 522 (155), 

Ser 612 (156-158), Ser 632/635 (159-161), Ser 662 (157;158), and Ser 1099/1100 (162).  

The IRS-1 kinases responsible for phosphorylation of IRS-1 serine residues and for attenua-

tion of insulin signaling are the nutrient sensitive kinase mTOR (131;163-165) (166) and its 

downstream kinase p70 ribosomal S6 kinase (p70 S6K) 1 (150;161). The mTOR/p70 S6K 

pathway is over-activated in states emerging from overnutrition characterized by hyperglyce-

mia, hyperinsulinemia and increased concentrations of free fatty acids (FFA) (133;134;167).  

Other important serine/threonine kinases like c-jun-N-terminal kinase (JNK) (151), protein 

kinase C (PKC)-� (168;169), PKC-δ (154), inhibitor of κB (I�B) kinase (148;170), glycogen 

synthase kinase (GSK)-3 (153) and MAP kinases (160) also phosphorylate IRS-1. These 

kinases help to turn off the insulin signal when activated under physiological conditions but 

when stimulated permanently they are implicated in the pathogenesis of insulin resistance. 

Chronically elevated concentration of insulin, FFA (171;172) and TNFα (151;173) are all re-

ported to activate the above mentioned kinases resulting in decreased hepatic insulin sensi-

tivity and glucose tolerance. 

One of the most intensely studied sites is Ser 307 (Ser 312 in the human IRS-1 homolog). 

This site is responsible for the PI-3 kinase dependent downregulation of the insulin signal 
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because it interferes with the IRS-1-IR interaction (174). There are many kinases that phos-

phorylate Ser 307, with JNK being the first one reported (151). The introduction of a dominant 

negative JNK isoform into the liver of obese diabetic mice led to an improved insulin sensitiv-

ity and also to a decreased hepatic glucose output due to decreased expression of gluconeo-

genic enzymes (144;175;176). But in contrast to the cell culture based results the transgenic 

mouse expressing a non-phosphorylatable IRS-1 307 Ala mutation was not protected from 

high fat diet-induced insulin resistance and developed, compared to the control animals,  

even a more pronounced insulin resistant phenotype (177). Thus, it is necessary to verify 

which of the phosphorylated serine residues of IRS-1 in the insulin resistant state are markers 

of chronic activation of serine/threonine kinases and which are causally involved in the im-

pairment of insulin action. 

IRS
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Figure 5 Posttranslational modification of IRS proteins and their interplay. IRS-proteins are extensively 
posttranslationally modified. Insulin induces tyrosine phosphorylation, which is the prerequisite for fur-
ther signal transduction and serine/threonine phosphorylation, leading to both activation and attenua-
tion of the signaling. Other stimuli like acutely and chronically elevated cytokines, free fatty acids, glu-
cose and insulin not only induce serine/threonine phosphorylation but also acetylation, O-Glc-
NAcylation and nitrosation. The roles of these modifications are less clear than of the phosphorylations, 
but they have been implicates in positive as well as negative regulation of signal transduction. Bold 
lines represent  the activation of the system, dashed lines indicate an attenuation. Abbreviations: IRS, 
insulin receptor substrates; FFA, free fatty acids.  

Other serine phosphorylation sites of IRS-1 are involved in positive regulation of the insulin 

signal transduction. The phosphorylation of Ser 302 (178;179), Ser 318 (180), Ser 325 (181), 

Ser 629 of human IRS-1 (182), Ser 789 (183) and Ser 1216 (168) has been associated with 

improved insulin signaling (Figure 5), although the data are not consistent presumably due to 

the stimulus, kinetics and the cell type. Phosphorylation on one residue can also have differ-

ent effects depending on the time course of insulin action. The early phosphorylation of Ser 
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318 is involved in enhanced insulin action, but phospho-Ser 318 is also necessary for the 

attenuation in the late phase (184). It has been hypothesized that the net result of serine 

phosphorylations of IRS-1 depends on the time course and the interdependency of phos-

phorylated serine sites rather than the phosphorylation of single residues (185).  

Surprisingly little is known about the regulation of IRS-2 by serine/threonine phosphorylations 

To date only two sites are described as possible targets of JNK (186;187). Based on in vitro 

studies Solinas and colleagues proposed that Thr 348 in IRS-2 is a functional homolog to Ser 

307 in IRS-1, which is involved in negative regulation of the insulin signal (186). Another 

group could show that JNK phosphorylates IRS-2 on Ser 488 and that this is a prerequisite 

for the GSK-3β-dependent phosphorylation of Ser 484. This sequential phosphorylation led to 

an inhibition of the insulin signal in hepatocytes and it could be speculated that it contributes 

to the development of insulin resistance (187).  

Interestingly there appears to be some substrate specificity of serine kinases to IRS proteins: 

PKC-� phosphorylates IRS-1, -3 and -4 but not IRS-2 in in vitro kinase assays (188).  

 

1.2.2.3.2 Other posttranslational modifications 

 

Beside phosphorylations several other posttranslational modifications are present in IRS pro-

teins.  

The posttranslational modification on serine/threonine residues of IRS-1 with O-linked β-N-

acetylglucosamine (O-GlcNAc) has been demonstrated in muscle and adipose tissue (189). 

This modification, first identified in the 1980s in rat liver subcellular organelles (190;191), is 

enhanced by the increased activity of the hexosamine biosynthetic pathway, which generates 

UDP N-acetylglucosamine, the substrate for the addition of O-GlcNAc-moieties by O-GlcNAc-

transferase (192). Hyperglycemia and hyperlipidemia have been shown to increase the flux 

through this pathway (193), thus O-GlcNAc-modification is enhanced during insulin resistant 

states and has also been related to impaired insulin action (194;195). In some proteins O-

GlcNAc-modification occurs on the same sites as phosphorylations thereby inhibiting the 

proper phosphorylation. Ball et al. showed that in IRS-1 Ser 1036 is the major site of O-

GlcNAc-modification and under conditions that model the diabetic state (high glucose, chronic 

insulin stimulation) the level of O-GlcNAc-modification was increased in human embryonic 

kidney (HEK293) cells at this site (196). A number of serine residues (Ser 984, Ser 985, Ser 

1011 in human IRS-1) which are located adjacent to functional tyrosine residues can be modi-

fied with O-GlcNAc and it has been speculated that this affects the interaction of IRS-1 with 
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SH2-domain containing proteins (197). However, the effect of the O-GlcNAc-modification on 

the interaction of IRS-1 with downstream signaling partners needs further clarification.  

For IRS-2 only little information is available regarding the O-GlcNAc-modification. One study 

could demonstrate the existence of this modification in IRS-2 derived from skeletal muscle of 

glucosamine plus insulin infused rats (195). 

A further posttranslational modification of IRS-1 described in muscle tissue is the S-

nitrosation via nitric oxide which has been implicated in the down-regulation of insulin action 

(198;199). It appears that this modification induces the proteasomal down-regulation of IRS-1 

in cultured skeletal muscle cells (200) as well as in rat liver (201). The relevance of this modi-

fication for IRS-proteins needs to be clarified further. 

Furthermore, IRS-1 can also be modified by acetylation, i.e. the transfer of an acetyl group to 

a lysine residue. This modification is found on histones and it is important for chromatin regu-

lation (202) but it is known that the histone acetyltransferases (HATs) and histone deacety-

lases (HDACs) also have non-histone substrates (203), among them many proteins involved 

in the pathogenesis of diabetes (204). It was demonstrated that IRS-1 is acetylated on lysine 

residues and this modification led to improved insulin signaling, whereas the activity of a spe-

cific deacetylase (HDAC2) was associated with insulin resistance (205). In contrast, the ace-

tylation of IRS-2 seems to have opposing effects on insulin signaling: a study of Zhang dem-

onstrated that IRS-2 is acetylated at the basal state and for sufficient insulin signal transduc-

tion the removal of acetyl residues by SirT1 protein deacetylase is needed (206). Acetylation 

of IRS-2 was furthermore shown in a cell free system (207).  

 

1.3 Insulin resistance and type II diabetes mellitus 

 

Type II diabetes mellitus, insulin resistance and the metabolic syndrome are diseases with 

epidemic proportions. For 2010 worldwide 285 million patients will be affected with diabetes 

(208). The prevalence of diabetes in the United States is estimated with 12.3 %, in Europe 

8.6 %. Germany has a higher prevalence than the average of european countries with 12% 

(208). Leading causes are overnutrition, obesity and a sedentary lifestyle, which is common in 

westernized civilizations.  

Type II diabetes is preceded by the development of insulin resistance. This is a metabolic 

disorder of multifactorial genesis defined as the inability of insulin to exert its effects on target 

tissues. Rare monogenetic forms of diabetes have been described (209) and genome-wide 

association studies are conducted to identify genes responsible for the development of im-
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paired insulin secretion, insulin resistance and diabetes (210). But in general the development 

of diabetes is believed to be caused by complex genetic and epigenetic factors to be defined 

yet (211). Impaired cellular insulin action is found on the level of IR and IRS-proteins: reduced 

expression/increased degradation and impaired function due to pathologically increased post-

translational modifications, which have been described in detail in section 1.2.2.3.  

Insulin resistance leads to transient hyperglycemia due to unsuppressed hepatic gluconeo-

genesis and impaired glucose uptake into muscle and adipose tissue. Simultaneously, lipoly-

sis is not inhibited and therefore free fatty acids (FFA) are released from the adipose tissue 

into the circulation. Paradoxically, the hepatic activation of SREBP-1c, although being con-

trolled by insulin, is increased in the insulin resistant state, resulting in enhanced lipogenesis. 

This is called selective insulin resistance (212). To compensate the impaired insulin re-

sponse, the �-cells secrete more insulin, causing hyperinsulinemia and this hypersecretion 

could eventually lead to �-cell failure. Untreated, insulin resistance is a circulus vitiosus be-

cause hyperinsulinemia, hyperglycemia and increased FFA concentrations results in glucoli-

potoxicity which not only impairs insulin signaling in all insulin responsive tissues but which 

also promotes �-cell apoptosis, thereby exacerbating insulin resistance further. The enlarged 

fat mass, which occurs during obesity, contributes to insulin resistance due to secretion of 

FFA (213;214) and proinflammatory cytokines (adipokines), e. g. TNFα (215) and IL-6 

(216;217).  

Insulin resistance can lead to type II diabetes mellitus which is characterized by a combina-

tion of impaired or even absent insulin secretion, insulin resistance, increased fasting plasma 

glucose and impaired glucose tolerance. Patients often need oral antidiabetic medication or 

have to administer exogenous insulin. A badly controlled diabetes is the major cause for 

macroangiopathy, retinopathy, nephropathy and neuropathy.  

Since dysregulated posttranslational modifications of IRS proteins are a hallmark in the de-

velopment of insulin resistance and diabetes, the study of these is expected to deepen the 

understanding of the development insulin resistance. The final goal in the future would be to 

identify pharmacological agents that modulate certain phosphorylations to overcome insulin 

resistance. 

 

1.4 Aims of the thesis 

 

As outlined in the previous sections, IRS-2 has been recognized as a crucial mediator of he-

patic and pancreatic insulin signaling and complementary rather than interchangeable func-



Introduction 27 

tions with IRS-1 are described. The study of posttranslational modifications, particularly of 

serine/threonine phosphorylations, is needed to deepen the understanding of IRS-2 regula-

tion. 

In vitro kinase assays with PKC isoforms and subsequent mass spectroscopic analysis were 

conducted in the Division of Pathobiochemistry and Clinical Chemistry of the Department of 

Internal Medicine, University of Tübingen to identify phosphorylated serine/threonine residues 

of IRS-2. Based on these data, together with the bioinformatical evaluation (143;218;219) of 

the IRS-2 amino acid sequence 20 potential serine/threonine phosphorylation sites were se-

lected and phospho-site specific monoclonal antibodies were generated in cooperation with 

Dr. E. Kremmer, Helmholtz Zentrum München, Germany.  

The first aim of this thesis was to screen these monoclonal antibodies for their specificity and 

sensitivity to detect site specific serine/threonine phosphorylations of IRS-2. The antibodies 

were generated against peptides of 10 amino acids surrounding the potential phosphorylation 

site, exemplarily shown in Figure 6. Antibodies for 5 out of 20 potential phospho-sites were 

positive in the initial screening and the corresponding clones chosen and propagated. Two 

previously unknown phosphorylation sites, Ser 675 and Ser 907, where chosen for further 

analysis, since both serine residues are located in close proximity to two functional tyrosine 

residues: Ser 675 lies within the IRS-2 specific kinase regulatory loop binding (KRLB) domain 

and is adjacent to a PI-3 kinase binding motif (pY671MPM), Ser 907 is adjacent to the Grb2 

binding domain of IRS-2 (pY911INI) (100;220). In a further testing the antibodies were evalu-

ated for their phospho-site specificity using alanine mutants, for their specificity towards IRS-2 

compared to IRS-1 and recognition of IRS-2 from different species.  

The second part of the thesis was aimed to identify the kinases responsible for phosphorylat-

ing Ser 675 and Ser 907 and to study the function and biological relevance of these IRS-2 

phosphorylation sites. Finally, the IRS-2 serine phosphorylations were investigated in vivo in 

mice.  

670 DYMPMSPTSVS 680

902 PTEPKSPGEYI 912

 

Figure 6 Phosphopeptides (corresponding to mouse IRS-2 amino acid sequence) used for the genera-
tion of phospho-site specific monoclonal antibodies. The bold and underlined serine indicates the 
phosphorylated residue.  
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2 Materials 

2.1 Chemicals 

 

12-O-tetradecanoylphorbol 13-acetate (TPA) Merck, Darmstadt, Germany  

Acetic acid, 100%, waterfree Sigma, München, Germany 

Acrylamid 30 (37.5:1)   Roth, Karlsruhe, Germany 

Agarose, peqgold Universal Peqlab, Erlangen, Germany 

Ammonium persulfate (APS) Sigma, München, Germany 

Anisomycin Sigma, München, Germany 

BES (N,N-Bis(2-hydroxyethyl)-2-
aminoethanesulfonic acid) 

Sigma, München, Germany 

Biorad Protein Assay  Biorad, München, Germany 

�-Glycerophosphate Sigma, München, Germany 

�-Mercaptoethanol Sigma, München, Germany 

Bromophenolblue  Sigma, München, Germany 

BSA (bovine serum albumin)  Roche, Mannheim, Germany 

CaCl2 Sigma, München, Germany 

Cycloheximide Sigma, München, Germany 

Developer Agfa Healthcare GmbH, Berlin, Germany 

Complete Roche, Mannheim, Germany 

DMSO (dimethylsulfoxide)  Roth, Karlsruhe, Germany 

EDTA Sigma, München, Germany 

EGTA  Sigma, München, Germany 

Ethanol p.A.   Merck, Darmstadt, Germany 

Ethidium bromide Sigma, München, Germany 

Gelatine Merck, Darmstadt, Germany 

Glycerol Merck, Darmstadt, Germany 

Glycine Roth, Karlsruhe, Germany 

H2O, HPLC-grade  Merck, Darmstadt, Germany 

HEPES (4-(2-Hydroxyethyl)piperazine-1- 
ethanesulfonic acid) 

Roth, Karlsruhe, Germany 

H2O2  Merck, Darmstadt, Germany 

HCl AppliChem, Darmstadt, Germany 

Insulin, human recombinant Sigma, München, Germany 
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Ketamin-ratiopharm injectable solution Ratiopharm GmbH, Ulm, Germany 

KCl  Sigma, München, Germany 

Lactacystin Calbiochem, Schwabach, Germany 

Lipofectamine 2000 Invitrogen, Karlsruhe, Germany 

Luminol (3-Aminophthalhydrazide) Sigma, München, Germany 

LY294002 Sigma, München, Germany 

NaCl Merck, Darmstadt, Germany 

NaF Sigma, München, Germany 

Na4P2O7 Sigma, München, Germany 

Na-Pyrophosphate Sigma, München, Germany 

Na-Orthovanadate Sigma, München, Germany 

Methanol Normapur VWR, Darmstadt, Germany 

MgCl2 Sigma, München, Germany 

MgSO4  Sigma, München, Germany 

PEG 3350 Sigma, München, Germany 

PD98059 Calbiochem, Schwabach, Germany 

p-Iodophenole Sigma, München, Germany 

Ponceau S-Solution AppliChem, Darmstadt, Germany 

Propidium iodide Sigma, München, Germany 

Protein-A-Sepharose (suspension) GE Healthcare, München, Germany 

Rapamycin Sigma, München, Germany 

Rapid fixer Agfa Healthcare GmbH, Berlin, Germany 

Ribonuclease A Serva Electrophoresis, Heidelberg, Germany 

SDS (sodium dodecyl sulfate) Biorad, München, Germany 

Sepharose G-50 Superfine GE Healthcare, München, Germany 

Sequencing Buffer 5X Applied Biosystems, Foster City, CA, USA 

SP600125 Sigma, München, Germany 

SuRE/Cut Buffer B for restriciton enzymes  Roche, Mannheim, Germany 

TE-buffer, sterile, pH 8.0 Sigma, München, Germany 

TEMED (N,N,N�,N�-
Tetramethylethylenediamine) 

Roth, Karlsruhe, Germany 

TNFα, human recombinant R&D Systems, Wiesbaden-Nordenstadt, 
Germany 

Triton-X-100   Sigma, München, Germany 

TRIS, Ultra Pure (for ECL) MP Biomedicals Inc., Solon, OH, USA 

Trizma base (TRIS) Sigma, München, Germany 

Wortmannin Calbiochem, Schwabach,  Germany 
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2.2 Buffers and solutions 

 

All buffers and solutions were prepared with aquadest.  

 

HEPES 50 mM 

NaCl  150 mM 

MgCl2 1.5 mM 

EGTA 1 mM 

glycerol 10% 

Triton-X-100 1% 

NaF  100 mM 

Cell lysis buffer (pH 7.5)  
(store at 4°C)  

Na4P2O7 10 mM 

 

Shortly before use the cell lysis buffer was mixed with 10 X phosphatase inhibitors (see be-

low). 

 

TRIS 50 mM 

NaCl 150 mM 

Tissue lysis buffer (pH 7.6)  
(store at 4°C)  

Triton-X-100 1% 

 

Shortly before use the tissue lysis buffer was mixed with 10 X phosphatase inhibitors (see 

below) and 25 X Complete protease inhibitor. 

 

TRIS 50 mM 

NaCl 150 mM 

Triton-X-100 1% 

Cell lysis buffer for λPP treatment   
(store at 4°C)  

glycerol  10% 

                

HEPES 20 mM 

NaF 10 mM 

NaCl  150 mM 

Triton-X-100 0.1% 

HNTG-buffer (pH 7.5) 
(store at 4°C)  

glycerol 10% 
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NaF  10 mM 

Na-pyrophosphate 5 mM 

Na-orthovanadate 10 mM 

10 X Phosphatase inhibitors 
(store at -20°C) 

�-glycerophosphate 10 mM 

                 

Bradford assay solution 

To obtain the working solution of the Biorad Protein Assay the solution was diluted 1:5 with 

water and filtered through filter papers. The solution was kept at room temperature, protected 

from light and it was stable for 1 week. 

 

TRIS   60 mM 

glycerol 25% 

SDS  2% 

�-mercaptoethanol 5% 

5 X Laemmli sample buffer (pH 6.8) 
(store at 4°C) 

bromophenolblue 0,1% 

 

TRIS  0.5 M Stacking gel buffer (pH 6.8) 
(store at room temperature)  SDS  2% 

 

TRIS  1.5 M Separation gel buffer (pH 8.8) 
(store at room temperature)  SDS  2% 

 

TRIS 250 mM 

glycine  2 M 

 10 X Electrophoresis buffer 
(store at 4°C)  

SDS 1% 

  

TRIS 480 mM 

glycine   390 mM 

10 X Blotting buffer 
(store at room temperature) 

SDS 0.4% 

 

10 X Blotting buffer 10% 

methanol 20% 

1 X Blotting buffer 
(store at room temperature) 

H2O 70% 
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TRIS 66 mM 

�-mercaptoethanol 0.5% 

Stripping buffer (pH 6.8) 
(store at room temperature) 

SDS 2% 

  

gelatine  2.5% 

NaCl  1.5 M 

EDTA 50 mM 

TRIS  500 mM 

10 X NET-G 
(store at 4°C) 

Triton-X-100 0.5% 

 

10 X NET-G was diluted 1:10 with water and the pH was adjusted to 7.4 using 37% HCl to 

obtain 1 X NET-G. 

 

Enhanced chemiluminiscence (ECL) solutions 

TRIS, Ultra Pure 0.1 M 

luminol  4.4 mM (in DMSO) 

Solution A (pH 9.35) 
(store at 4°C)  

p-jodophenol 4.4 mM (in DMSO) 

 

TRIS, Ultra Pure 0.1 M Solution B (pH 9.35) 
(store at 4°C) H2O2 (30%) 0.4% 

Shortly before use solution A and B were mixed 1:1. 

 

TRIS 1.25 M 

acetic acid 625 mM 

50 X TAE buffer (pH 8) 
(store at room temperature) 

EDTA 50 mM 

          

bromophenolblue 0.1% 

xylenecyanole  0.1% 

glycerol 60% 

10 X Sample buffer for DNA 
(store at 4°C) 

50 X TAE 20% 

                          

KCl   0.5 M  

CaCl2  0.09 M 

5 X KCM 
(store at -20°C) 

MgCl2  0.25 M 
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LB-medium 50% 

MgCl2 10 mM 

MgSO4 10 mM 

PEG 3350 10% 

TSB 
(freshly prepared) 

H2O 40% 

 

FCS 90% Cryomedium for cells 
(freshly prepared) DMSO  10% 

 

BES 50 mM 

NaCl 280 mM 

2 X BBS (pH 6.96) 
(store at -20°C) 

Na2HPO4 1.5 mM 

               

2.3 Gels 

 

H2O 7.05 mL 

stacking gel buffer 2.55 mL 

acrylamid 30 (37.5:1) 1.35 mL 

TEMED  15 �L 

Stacking gel  
(11.08 mL) 

APS (10%) 112.5 �L 

    

H2O 20 mL 

separation gel buffer 10 mL 

acrylamid 30 (37.5:1) 10 mL 

TEMED  66 �L 

Separation gel 7.5%  
(40.4 mL) 

APS (10%) 270 �L 

       

H2O 23.4 mL 

separation gel buffer 10 mL 

acrylamid 30 (37.5:1) 6.66 mL 

TEMED  66 �L 

Separation gel 5%  
(40.4 mL) 

APS (10%) 270 �L 
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Gradient gel 5 -->15%  

The gradient gel was made by pouring the gel into the gelchamber while mixing the heavy 

(15%) and the light (5%) gel in a gradient maker. 

 

H2O 10.5 mL 

separation gel buffer 5 mL 

acrylamid 30 (37.5:1) 2.8 mL 

TEMED  33 �L 

Separation gel 5%  
(18.5 mL) 

APS (10%) 135 �L 

 

H2O 3.1 mL 

separation gel buffer 5 mL 

glycerol 2 mL 

acrylamid 30 (37.5:1) 8.1 mL 

TEMED  33 �L 

Separation gel 15%  
(18.5 mL) 

APS (10%) 135 �L 

 

Agarose gel (1%, 2%) 

Agarose gels were prepared by dissolving agarose in 1 X TAE buffer to obtain 1% or 2% gels. 

 

2.4 Culture media and supplements 

 

RPMI 1640 with 2 g/L glucose Lonza, Basel, Switzerland 

DMEM with 1 g/L glucose Lonza, Basel, Switzerland 

DMEM with 4.5 g/L glucose Lonza, Basel, Switzerland 

Hepatocyte maintenance medium Provitro, Berlin, Germany 

OptiMEM Invitrogen, Karlsruhe, Germany 

L-Glutamine  Lonza, Basel, Switzerland 

Sodium-pyruvate Lonza, Basel, Switzerland 

Non essential amino acids Lonza, Basel, Switzerland 

Penicillin/ Streptomycin Lonza, Basel, Switzerland 

G418 BC Sulfate Biochrom AG, Berlin, Germany 

Fetal Calf Serum (FCS) Invitrogen, Karlsruhe, Germany 

DPBS  Lonza, Basel, Switzerland 
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Trypsin/EDTA Lonza, Basel, Switzerland 

Collagen CSP Pentapharm, Basel, Switzerland 

Luria Broth, Millers LB broth Sigma, München, Germany 

LB Agar Sigma, München, Germany 

Ampicillin Sigma, München, Germany 

     

2.5 Kits 

 

Big Dye Terminator v1.1 Cycle Sequencing 
Kit 

Applied Biosystems, Foster City, CA, USA 

QIA Prep Spin Miniprep kit Qiagen, Hilden, Germany 

Qiagen Plasmid Maxi Kit Qiagen, Hilden, Germany 

QIA Quick PCR Purification   Qiagen, Hilden, Germany 

MinElute PCR Purification Kit Qiagen, Hilden, Germany 

QuickChange XL Site Directed Mutagenesis 
Kit  

Stratagene, La Jolla, CA, USA 
 

Immobilon Western HRP Substrate Luminol 
Reagent 

Millipore, Schwalbach, Germany 

  

2.6 Enzymes and molecular markers 

 

Hind III  (10 U/µL)  Roche, Mannheim, Germany 

Xba I (10 U/µL) Roche, Mannheim, Germany 

SDS-PAGE molecular weight standard, high 
range 

Biorad, München, Germany 

Precision Plus Protein standard Biorad, München, Germany 

Quickload 1 kb DNA ladder New England BioLabs, Beverly MA, USA 

    

2.7 Consumables 

 

Gel blotting paper  VWR, Darmstadt, Germany 

Nitrocellulose Transfer Membrane, BA 85, 
0.45 �m 

VWR, Darmstadt, Germany 



Materials 37 

Amersham Hyperfilm ECL GE Healthcare, München, Germany 

Filterpapers MN 615 ¼ Machery-Nagel GmbH Co KG Germany 

Transparency film Lyreco, Impega, Barsinghausen, Germany 

Costar 150 mm TC-treated culture dish Corning B.V. Life Sciences, Amsterdam, 
Netherlands 

Costar TC-treated 6-well plates Corning B.V. Life Sciences, Amsterdam, 
Netherlands 

Tissue Culture Dishes 87 mm and 137 mm TPP, Trasadingen, Switzerland 

Tissue Cluture Test Plates (6-well, 12-well)  TPP, Trasadingen, Switzerland 

Cryocups 

 

Greiner Bio-One GmbH, Frickenhausen, 
Germany 

96-well ELISA Microplate,PS, flat bottom Greiner Bio-One GmbH, Frickenhausen, 
Germany 

Cell Scraper Corning B.V. Life Sciences, Amsterdam, 
Netherlands 

Centri Sep Spin Columns Applied Biosystems, Foster City, CA, USA 

4 mm cuvettes for electroporation Peqlab, Erlangen, Germany 

Dounce homogenizer for 2 mL Sartorius, Göttingen, Germany 

Plunger for  dounce homogenizer, size S Sartorius, Göttingen, Germany 

Inoculation loop Sarstedt, Nümbrecht, Germany 

Drigalski applicator Neolab, Heidelberg, Germany 

    

2.8 Laboratory equipment 

 

Electrophoresis chamber for SDS-PAGE Selfmade 

Semi dry blotting chamber Hölzel, Wörth, Germany 

Table shaker Hecht Assistent, Sondheim, Germany 

Shaker incubator Edmund Bühler GmbH, Hechingen, Germa-
ny 

Heating block Thermostat Plus Eppendorf, Hamburg, Germany 

Magnetic stirrer IKAMAG RCT IKA Labortechnik, Staufen, Germany 

Hera Safe Hood Thermo Fisher Scientific, Schwerte, Ger-
many 

Precision scale ALJI60-4NM Gottl. Kern & Sohn GmbH, Balingen, Ger-
many 

Laboratory balance BL1500 Sartorius, Göttingen, Germany 

Waterbath  Memmert, Schwabach, Germany 

Incubator for cells Cytoperm Heraeus, Hanau, Germany 



Materials 38 

Incubator for bacteria Heraeus, Hanau, Germany 

ELISA reader Model 680 Biorad, München, Germany 

Biophotometer Eppendorf, Hamburg, Germany 

Vortex Genie 2  Scientific industries, USA 

Microscope Axiovert 40 Zeiss, Oberkochen, Germany 

Neubauer chamber Paul Marienfeld GmbH & Co KG, Lauda-
Königshofen, Germany 

Centrifuge Heraeus Pico 17 Thermo Fisher Scientific, Schwerte, Ger-
many 

Centrifuge Biofuge Fresco Heraeus, Hanau, Germany 

Centrifuge Hettich Rotana RPC Andreas Hettich GmbH & Co KG, Tuttlingen, 
Germany 

Powersupply Consort E 802 Consort nv, Turnhout, Belgium 

Agarosegel chamber Midi Harnischmacher Labortechnik, Kassel, Ger-
many 

UV-Transilluminator 254 nm LTF Labortechnik gmbH & Co KG, Wasser-
burg, Germany 

Camera Powershot A710IS Canon, Krefeld, Germany 

Printer Selphy CP510 Canon, Krefeld, Germany 

Developer machine  Agfa Curix 60 Agfa Healthcare GmbH, Berlin, Germany 

Gradient maker Pharmacia LKB Biotechnology AB, Bromma, 
Sweden 

Lightcycler 480 system Roche, Mannheim, Germany 

Thermocycler Progene Techne, Dexford-Cambridge, UK 

Thermocycler Mastercycler 5330 Eppendorf, Hamburg, Germany 

Autoclave Systec DX-65 Systec, Wettenberg, Germany 

Gene Pulser II with capacitance extender Biorad, München, Germany 

Rotator Grünewald GmbH & Co. KG PSI Medizin-
technik, Laudenbach, Germany 

HP scanjet 4670 Hewlett-Packard GmbH, Berlin, Germany 

2.9 Software 

 

Gelscan Professional V5.1 BioSciTec GmbH, Frankfurt, Germany 

SPSS for Windows V15.0.1 SPSS GmbH Software, München, Germany 

Lightcycler 480 Software V1.5.0.39 Roche, Mannheim, Germany 

Netphos2   http://www.cbs.dtu.dk/services/NetPhos/ 

Scansite http://scansite.mit.edu/ 

Human Protein Reference Database  http://www.hprd.org/PhosphoMotif_finder 
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2.10 Primers and siRNA oligonucleotides 

 

2.10.1 Primers for real time PCR 

 

sense  AGC CAT GTA CGT AGC CAT CC rat � -actin 

antisense  CTC TCA GCT GTG GTG GTG AA 

TIB Molbiol, Berlin, Germany  

rat IRS-2   Rn_IRS2_1_SG
  

QuantiTect Primer assay Qiagen, Hilden,  

Germany 

 

2.10.2 Primers for PCR-mutagenesis 

 

All primers were from Invitrogen, Karlsruhe, Germany. 

Mutated triplets are presented bold and underlined. 

Ser 675 --> Ala 675   

sense      5' CAA GAG CGA TGA CTA CAT GCC CAT GGC CCC CAC AAG CGT GTC TGC TC 3' 

antisense  5’ GA GCA GAC ACG CTT GTG GGG GCC ATG GGC ATG TAG TCA TCG CTC TTG 3’ 

 

Ser 675 --> Glu 675   

sense   5’ C AAG AGC GAT GAC TAC ATG CCC ATG GAA CCC ACA AGC GTG TCT GCT C 3' 

antisense 5’ G AGC AGA CAC GCT TGT GGG TTC CAT GGG CAT GTA GTC ATC GCT CTT G 3’ 

Ser 907 --> Ala 907  

sense  5’ CCT CTA CCC ACA GAG CCC AAG GCC CCT GGC GAG TAC ATC AAC ATT GAC 3' 

antisense  5’ GTC AAT GTT GAT GTA CTC GCC AGG GGC CTT GGG CTC TGT GGG TAG AGG 3’ 

Ser 907 --> Glu 907  

sense  5’ CCT CTA CCC ACA GAG CCC AAG GAA CCT GGC GAG TAC ATC AAC ATT GAC 3’ 

antisense 5’ GTC AAT GTT GAT GTA CTC GCC AGG TTC CTT GGG CTC TGT GGG TAG AGG 3’ 
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2.10.3 Sequencing primers 

 

For sequencing the following primers were used. Primers were obtained from TIB Molbiol, 

Berlin, Germany. 

 

Position 675: 5’ CTT ACC CAG AGG ACT ATG GAG 3’ 

Position 907: 5’ GCC TTC CTC CAT GCG GCC GAG 3’ 

 

2.10.4 siRNA oligonucleotides 

 

All siRNA oligonucleotides were designed, synthesized and annealed at Dharmacon Re-

search (Lafayette, CO, USA). 

 

Gene target sequences 

rat mTOR/FRAP1 (NM_019906) CAA GAA UGG UGC CGA AAG U 

 GCG GAU GGC UCC UGA CUA U 

 GAA GAA GAC CCU UUG AUU U 

 GGC AUA UGG UCG AGA UUU A 

rat RPS6KB1 (NM_031985) GAA CAG UCA CGC ACA CAU UUU 

 CGG AGA ACA UCA UGC UUA AUU 

 CCG AUC GCC UCG AAG AUU UUU 

 GCG CCU GAC UUC CGA CAC AUU 

rat MAPK3 (ERK1) (NM_017347) CAA CCA CAU UCU AGG UAU A 

 UAC AGU CUC UGC CCU CUA A 

 CCC AAG AGG ACC UAA AUU G 

 CAU GAA UUC CCU AAA CUA C 

rat MAPK1 (ERK2) (NM_053842) ACA CUA AUC UCU CGU ACA U 

 AAA AUA AGG UGC CGU GGA A 

 UAU ACC AAG UCC AUU GAU A 

 UCG AGU UGC UAU CAA GAA A 
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2.11 Antibodies 

 

2.11.1 Primary antibodies 

 

Antibody  Dilution Manufacturer 

Grb2 for IP - Abcam, Cambrigde, UK 

IRS-1 1:500 Millipore, Schwalbach, Germany 

IRS-2 (also for IP) 1:1000  Millipore, Schwalbach, Germany 

phospho-IRS-2 S-675 Clone 
5E4 

1:20 Dr. E. Kremmer, Helmholtz center, Mün-
chen, Germany 

phospho-IRS-2 S-907 Clone 
9B12 

1:20 Dr. E. Kremmer, Helmholtz center, Mün-
chen, Germany 

phospho-IRS-1 S-1101 1:1000   Cell Signaling Technology, Frankfurt,  

Germany 

Akt/PKB 1:1000 BD Transduction laboratories Erembode-
gem, Belgium 

phospho Akt/PKB T-308  1:1000 Cell Signaling Technology, Frankfurt,  

Germany 

phospho Akt/PKB S-473 1:1000 Cell Signaling Technology, Frankfurt,  

Germany 

� -actin 1:1000  Cell Signaling Technology, Frankfurt,  

Germany 

GSK-3�  1:1000  Cell Signaling Technology, Frankfurt,  

Germany 

phospho-GSK-3α/� S-9/ 21 1:1000 Cell Signaling Technology, Frankfurt,  

Germany 

Insulin receptor � 1:1000 Santa Cruz Biotechnology  

Inc., Santa Cruz, CA, USA 

IGF-1 receptor 1:1000 Santa Cruz Biotechnology  

Inc., Santa Cruz, CA, USA 

JNK 1:1000 BD Transduction laboratories Erembode-
gem, Belgium 

phospho-JNK  1:1000 Cell Signaling Technology, Frankfurt,  

Germany 

mTOR/FRAP1 1:1000 Santa Cruz Biotechnology  

Inc., Santa Cruz, CA, USA 

p44/42 (ERK1/2) 1:1000  Cell Signaling Technology, Frankfurt,  

Germany 
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phospho-p44/42 (ERK1/2) 1:1000  Cell Signaling Technology, Frankfurt,  

Germany 

p85 1:1000 Millipore, Schwalbach, Germany 

PKC δ  1:1000   BD Transduction laboratories,  

Erembodegem, Belgium 

p70 S6K 1:1000  Cell Signaling Technology, Frankfurt, 
Germany 

phospho-p70 S6K T-389 1:1000 Cell Signaling Technology, Frankfurt, 
Germany 

phospho-tyrosine 1:1000 Cell Signaling Technology, Frankfurt, 
Germany 

Ubiquitin   1:1000  Santa Cruz Biotechnology Inc., Santa 
Cruz, CA, USA 

           

2.11.2 Secondary antibodies 

 

Antibody  Dilution Manufacturer 

goat anti mouse IgG-HRP 1:3000 to 
1:10,000 

Santa Cruz Biotechnology  

Inc., Santa Cruz, CA, USA 

goat anti rabbit IgG-HRP 1:3000 to 
1:10,000 

Santa Cruz Biotechnology  

Inc., Santa Cruz, CA, USA 

goat anti rat HRP 1:1500 Dianova, Hamburg, Germany 

 

2.12 Plasmids 

 

Plasmid pRK5 IRS-2 DNA  (mouse)  lab internal tool 

Plasmid pRK5 IRS-1 DNA  (rat)  lab internal tool 

Plasmid pRK5 IRS-2 DNA (human)  Prof. Calum Sutherland, Ninewells Hospital,  
Dundee, Scotland 

Plasmid pRK5  lab interal tool 

Plasmid pRK5 insulin receptor B (human) lab internal tool 
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2.13 Cells, bacterial strains and animals 

 

2.13.1 Cells 

 

Fao rat hepatoma cells ECACC, Salisbury, UK 

Baby hamster kidney (BHK) cells  ECACC, Salisbury, UK 

Human embryonic kidney (HEK293) cells ATCC, Wesel, Germany 

Human hepatoma (Huh-7) Riken Cell Bank, Tsukuba, Japan 

Primary human hepatocytes Dr. Martin Schenk, University Hospital Tübin-
gen, Germany 

 

2.13.2 Bacteria Strains 

 

Competent E. coli - XL1 Blue for transformation 
(store at -80°C) 

Novagen, Madison, USA 

 

2.13.3 Animals 

 

 

Male C57/Bl6 mice, age 4 weeks Charles River Laboratories, Sulzfeld, Germany 
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3 Methods 

 

3.1 Cell culture 

 

3.1.1 Cultivation, passaging and seeding for experiments 

 

All cells were maintained in an incubator at a temperature of 37°C and in an atmosphere of 

95% humidity and 5% CO2. Every work step with cells was carried out under sterile conditions 

using a cell culture bench (sterile hood). To dissociate cells from the cell culture dish (diame-

ter 150 mm), cells were washed once with 10 mL DPBS and treated with 5 mL trypsin EDTA 

for 5 to 10 minutes in the cell incubator. The trypsination was stopped with 10 mL growth me-

dium containing 10% FCS. The cells were then centrifuged at 100 X g for 4 minutes at room 

temperature and the supernatant was removed. The cell pellet was resuspended in 1 mL 

growth medium and the volume was increased to 10 mL with growth medium. The cell count 

was determined using a Neubauer chamber. 

Fao cells were grown in RPMI 1640 medium supplemented with 10% FCS and 100 U/ml  

penicillin and 100 �g/ml streptomycin. Confluent cells were passaged weekly and seeded at a 

density of 10,000 cells per cm2 for the next passage. For experiments 1x106 cells were 

seeded in 2 mL growth medium in a 6-well plate and grown for 36 h. The cells were then se-

rum-starved in RPMI 1640 without supplements for 16 h. Immediately before any experiment 

the starvation medium was changed and the cells were treated with various substances, 

chemicals, kinase activators and kinase inhibitors as described in the results part. 

HEK293 cells, BHK and Huh-7 cells were kept in DMEM with 4.5 g/L glucose supplemented 

with 10% FCS, 100 U/ml  penicillin and 100 �g/ml streptomycin, 2 mM glutamine, 1 mM so-

dium pyruvate and 0.1 mM non essential amino acids. Confluent cells were passaged weekly 

and seeded at a density of 1000 cells per cm2 for the next passage. For transfection both cell 

lines were seeded to 4x106 cells per well of a 6-well plate in 2 mL growth medium. After 24 h 

the cells were either transfected transiently or stably (see section transfection) in a growth 

medium without antibiotics. For experiments cells were serum-starved in DMEM with 1 g/L 

glucose, supplemented with 2 mM glutamine, 1 mM sodium pyruvate and 0.1 mM non essen-
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tial amino acids for 16 h. The cells were treated in freshly added starvation medium as de-

scribed in results. 

Primary human hepatocytes were isolated in the group of Dr. M. Schenk. Briefly, the cells 

were isolated from liver tissue obtained from therapeutic hepatectomies using a two-step col-

lagenase perfusion protocol as described in (221). The cells were plated onto collagen CSP, 

cultured in Hepatocyte Maintenance Medium and stimulated in serum-free DMEM with 4.5 g/L 

glucose supplemented with 2 mM glutamine, 1 mM sodium pyruvate and 0.1 mM non essen-

tial amino acids. 

 

3.1.2 Cryopreservation of cell lines 

 

To cryopreserve cells confluent 15 cm dishes were trypsinated. After centrifugation the cell 

pellet was resuspended in 1 mL cryomedium and another 4 mL of cryomedium was added. 

This suspension was immediately aliquoted into 5 cryocups and frozen at -140°C. 

 

3.1.3 Electroporation of Fao cells with siRNA 

 

Confluent cells were trypsinated and counted as described above. After a second centrifuga-

tion step 3.5x106 cells were resuspended in 200 µL RPMI 1640 supplemented with 1% FCS 

and 100 nM siRNA oligonucleotides were added. The mix was transferred into 4 mm cuvettes 

and the cells were electroporated in a Gene Pulser II with capacitance extender at 290 mV 

and 450 µF according to the manufacturer’s instructions. The electroporated cells were trans-

ferred into 2 mL of Fao growth medium without antibiotics. After 24 h medium was changed to 

normal growth medium. After 36 h cells were serum starved for 16 h and treated in fresh star-

vation medium as described in the results part. 
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3.1.4 Transient transfection 

 

3.1.4.1 Lipofection of BHK cells 

 

BHK cells were seeded at a density of 4x106 cells per well of a 6-well plate. 24 h after seeding 

the cells were transfected with either the empty pRK5 vector as control or the plasmids ac-

cording to the specific experiment. At first, the medium was changed towards transfection 

medium (HEK293/BHK growth medium without antibiotics). Next, the transfection mix was 

prepared: 

tube 1: 48 µL OptiMEM + 2 µg DNA (c= 1µg/µL) 

tube 2: 46 µL OptiMEM + 4 µL Lipofectamine 2000 

 

Both tubes were incubated at room temperature for 5 minutes and then combined, mixed by 

tapping the tube gently and incubated again at room temperature for 20 minutes. The com-

plete transfection mix was transferred onto one well of a 6-well plate.  

36 h after transfection cells were serum-starved for 16 h and treated in fresh starvation me-

dium as described in the results part. 

 

3.1.4.2 Calcium phosphate transfection of HEK293 and Huh-7 cells 

 

HEK293 cells were transfected using a standard calcium phosphate transfection protocol 

(222). The cells were seeded at a density of 4x106 cells per well of a 6-well plate. 24 h after 

seeding the cells were transfected with either the empty pRK5 vector as control or the plas-

mids according to the specific experiment. After medium change to transfection medium (see 

3.1.4.1),  the transfection mix was prepared:  

 

96 µL 0.25 M CaCl2 

4 µL DNA (c= 1 µg/µL) 

100 µL 2 X BBS 
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The transfection mix was vigorously mixed by tapping the tube, followed by incubation at 

room temperature for 20 minutes. The complete transfection mix was transferred onto one 

well of a 6-well plate.  

36 h after transfection cells were serum-starved for 16 h and treated in fresh starvation me-

dium as described in the results part. 

 

3.1.5 Generation of HEK293 and Huh-7 cells stably expressing IRS-2 mutants  

 

HEK293 cells were stably transfected to express IRS-2 wildtype (wt) + IR or the IRS-2 675 

Ala mutant + IR or the IRS-2 907 Ala mutant + IR. Huh-7 cells were stably transfected to ex-

press the IRS-2 wt only. To achieve resistance against the selecting agent G418 (geneticin) 

the cells were also co-transfected with a plasmid coding for the neomycin resistance gene, 

pSVneo. 

HEK293 and Huh-7 cells were seeded at a density of 4x106 cells per well of a 6-well plate. 24 

h after seeding the medium was exchanged towards transfection medium and the following 

transfection mixes were prepared and pipetted onto the cells: 

 

HEK293 Control  HEK 293 IRS-2 wt + IR 

96 µL 0.25 M CaCl2  96 µL 0.25 M CaCl2 

3.2 µL pRK5 (c=1 µg/µL)  1.6 µL IRS-2 wt (c=1µg/µL) 

0.8 µL pSV neo (c=1µg/µL)  1.6 µL IR (c=1µg/µL) 

100 µL 2 X BBS  0.8 µL pSV neo (c=1µg/µL) 

   100 µL 2 X BBS 

 

HEK293 IRS-2 675 Ala + IR  HEK293 IRS-2 907 Ala + IR 

96 µL 0.25 M CaCl2  96 µL 0.25 M CaCl2 

1.6 µL IRS-2 675 Ala (c=1µg/µL)  1.6 µL IRS-2 907 Ala (c=1µg/µL) 

1.6 µL IR (c=1µg/µL)  1.6 µL IR (c=1µg/µL) 

0.8 µL pSV neo (c=1µg/µL)  0.8 µL pSV neo (c=1µg/µL) 

100 µL 2 X BBS  100 µL 2 X BBS 
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Huh-7 IRS-2   

96 µL 0.25 M CaCl2    

3.2 µL IRS-2 wt (c=1 µg/µL)    

0.8 µL pSV neo (c=1µg/µL)    

100 µL 2 X BBS    

 

24 h after transfection all cells of one 6-well were seeded onto 12 wells of a 12-well plate in 

transfection medium. On the next day the selection process was initiated by adding 1 % of 

G418 to the transfection medium. Over the next 14 days the medium was changed every 2 to 

3 days against fresh transfection medium containing 1 % G418. Selected clones were finally 

transferred into new 6-well plates and propagated in normal growth medium. The stable 

clones were tested for IRS-2 and IR expression.  

 

3.2 Animal studies 

 

Four-week old male C57Bl/6 wt mice were maintained on a normal 12 hour light/dark cycle 

and kept on a standard chow diet for 8 weeks. For in vivo stimulation, the mice were fasted 

overnight. After induction of anesthesia with Ketamin (150 mg/kg bodyweight), the abdomen 

was opened and a bolus of human insulin (2 IU/mouse for 10 minutes) was injected into the 

vena cava inferior. Controls received a comparable amount of diluent. The mice were then 

sacrificed by decapitation and the liver was immediately extracted and processed as de-

scribed below in section 3.3.2. 

For fasting experiments, 11-14-week-old wt mice were either fasted over 16 h or had free 

access to standard lab animal chow. In a fasting/refeeding experiment 13-week old wt mice 

were fasted over 16 h and afterwards had access to chow for 5 h. The control animals were 

killed immediately after the fasting period. 

 

 

 

 



Methods 50 

3.3 Protein biochemical methods 

 

3.3.1 Cell lysis 

 

After completion of each experiment cells were washed once with cold DPBS and then lysed 

at 4°C on a table shaker for 15 minutes (BHK, HEK293) or 30 minutes (Fao) with either 175 

µL or 300 µL (for immunoprecipitation) cell lysis buffer which contained 1 X phosphatase in-

hibitors. All following steps were carried out on ice. The lysed cells were collected from the 

plate using a cell scraper and transferred into 1.5 mL tubes. The lysate was centrifuged at 

4°C for 5 minutes at 16,000 X g and the supernatant containing the proteins was pipetted into 

a new tube. The lysates were mixed with 5 X Laemmli buffer (223) and incubated at 95°C for 

5 minutes. The denatured lysates were loaded onto a SDS-PAGE gel. 

 

3.3.2 Liver tissue lysis 

 

After sacrification of mice, the liver was quickly removed and a piece of approximately 50 mg 

was transferred into a precooled cylinder of a 2 mL dounce homogenizer containing 1 mL of 

tissue lysis buffer with phosphatase inhibitor and Complete protease inhibitor. The liver tissue 

was gently homogenized using a plunger (size S) with approximately 10 strokes. The ho-

mogenates were transferred into a 1.5 mL tube and incubated on ice for 30 minutes. The ho-

mogenates were then clarified by three subsequent centrifugation steps at 4°C for 10 minutes 

at 16000 X g. The protein concentration of the supernatant was measured and the lysates 

were immediately used for immunoprecipitation (3.3.4) or stored at -80°C for further analysis.  

 

3.3.3 Protein assay for determination of protein concentration (Bradford assay) 

 

The protein concentration of cell and liver tissue lysates was determined using the standard 

procedure from Bradford (224). Cell and liver tissue lysates were diluted with HPLC-grade 

water: cell lysates 1:20 and liver tissue lysates 1:100. A calibration curve was made with BSA 

(c=1 mg/mL) according to the following table: 
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Table 1 Calibration curve for Bradford assay 

No 
BSA (c=mg/mL) 

( µ µ µ µL) 
H2O ( µ µ µ µL) 

final concentration 

(mg/mL) 

1 0 40 0 

2 2 38 0,05 

3 4 36 0,1 

4 8 32 0,2 

5 12 28 0,3 

6 16 24 0,4 

7 20 20 0,5 

 

10 µL of diluted sample and standards were pipetted directly into one well of a 96-well mi-

croplate and 200 µL of diluted Bradford solution was added. The samples and standards were 

measured in triplicate. After 5 minutes of incubation at room temperature the extinction was 

measured at 595 nm in an ELISA reader.  

 

3.3.4 Immunoprecipitation (IP)  

 

Co-IP was used to demonstrate the interaction of IRS-2 with Grb2 and p85. Furthermore, 

IRS-2 was immunoprecipitated to specifically demonstrate the phosphorylation of IRS-2. 150 

µg of protein from cell or liver tissue lysates were mixed with 30 µL protein A sepharose and 2 

µL of antibody. If necessary, the total volume was adjusted to 400 µL with HTNG-buffer con-

taining phosphatase inhibitor. The (co-) IP mix was continuously mixed for 4 h at 4°C using a 

rotating wheel with a rotation of 15 rpm. Afterwards the tubes were centrifuged at 4°C for 30 

seconds at 4000 x g and the pellet was washed with 250 µL HNTG-buffer containing phos-

phatase inhibitors. Centrifugation and washing was repeated 2 times. The last centrifugation 

step was performed at 2000 x g for 1 minute at 4°C and the supernatant was completely re-

moved by aspiration. 25 µL of 5 X Laemmli-buffer were added to the pellet and incubated for 

5 minutes at 95°C. After a quick spin the complete supernatant was loaded onto a SDS-

PAGE gel. 
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3.3.5 SDS-PAGE 

 

The SDS-PAGE technique (223) was used for the separation of proteins according to their 

size. After assembly of the glass casket, the separation gel was poured until approximately 

80% of the casket were filled. The separation gel was then covered with a layer of water. Af-

ter polymerization the water was decanted and the stacking gel was poured on top of the 

separation gel and the comb for the formation of the gel pockets was inserted. After polymeri-

zation the comb was removed and the glass casket was fixed into the gel electrophoresis 

chamber. Two separate reservoirs on top and bottom of the gel were filled with 1 X running 

buffer and the samples were loaded onto the gel. One gel pocket was used for the molecular 

marker. The electrophoresis was carried out overnight at 50 mV. 

 

3.3.6 Western blotting 

 

The SDS-PAGE gel, the gel blotting paper and the nitrocellulose membrane were soaked with 

1 X blotting buffer and the proteins were transferred with 0.8 mA / cm2 for 2 h onto the nitro-

cellulose membrane (225) using a semidry blotting system. The membrane was stained with 

Ponceau S solution to examine the quality of the blot and to mark the standard bands. 

 

3.3.7 Immunodetection 

 

For immunodetection the membranes with the blotted proteins  were blocked with 1 X NET-G 

(3 times for 15 minutes) and subsequently incubated with the specific primary antibodies 

overnight on a table shaker at 4°C. On the next day the membranes were washed with three 

changes of 1 X NET-G and then incubated with the secondary antibodies that were coupled 

to horseraddish peroxidase (HRP) for 45 minutes at room temperature. Finally the mem-

branes were washed again in 1 X NET-G and then transferred into the complete ECL-solution 

(see 2.2) for 3 minutes. The membranes were placed between two sheets of transparency 

film and autoradiographs on Hyperfilm ECL films were taken. The films were developed in an 

Agfa Curix 60 developer machine. 
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3.3.8 Stripping of membranes 

 

After the detection of phosphorylated proteins with phospho-specific antibodies it was neces-

sary to reprobe the membrane with the corresponding protein antibody. For this purpose the 

membrane was stripped off the initial antibody by incubating it in stripping buffer at 56°C (wa-

terbath) for 30 minutes. After the stripping the membranes had to be blocked again with  1 X 

NET-G. 

 

3.4 Generation of monoclonal phospho-specific antibodies 

 

The generation of phospho-specific antibodies was conducted in the group of Dr. E. Kremmer 

(Helmholtz Zentrum München, Germany). Phosphopeptides corresponding to amino acid 

residues 670 - 680 and 902 - 912 (Figure 6) of mouse IRS-2  with the phosphorylation of ser-

ine residues Ser 675 and Ser 907 were synthesized (NMI, Reutlingen, Germany) and coupled 

to bovine serum albumin and ovalbumin by cystein linkage at the N-terminus. The non-

phosphorylated peptides were synthesized as controls and coupled to ovalbumin. Lou/c rats 

were immunized with 50 µg of phosphopeptide, IFA (Freund’s adjuvant, incomplete), and 

CpG 2006 as adjuvant and received a boost with another 50 µg of coupled phosphopeptides 

and CpG after 6 weeks (Dr. E. Kremmer, Helmholtz Zentrum München, Germany). Three 

days later, hyperimmune spleen cells were fused with the mouse myeloma cell line 

P3X63Ag8.653 to generate hybridoma cell lines using standard procedures (226). Super-

natants were first screened in a differential ELISA with the phospho- and the corresponding 

unphosphorylated peptide to select phospho-specific monoclonal antibodies. Bound mono-

clonal antibodies were detected using a cocktail of biotinylated mouse monoclonal antibodies 

against rat IgG heavy chains (a-IgG1, a-IgG2a, a-IgG2b and a-IgG2c) thus avoiding detection 

of monoclonal antibodies of the IgM class. The biotinylated antibodies were visualized with 

peroxidase-labeled avidin (Alexis, Grünberg, Germany) and o-phenylenediamine as chro-

mogen in the peroxidase reaction. Positive cell lines were frozen and the monoclonal antibod-

ies were tested in a first prescreening step as described in section 4.1.  
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3.5 Molecular methods 

 

All work was carried out with PCR-grade water. 

3.5.1 PCR-mutagenesis and DpnI digestion 

 

PCR-mutagenesis was performed to generate IRS-2 mutants which represent the unphos-

phorylated (alanine residue) and the constantly phosphorylated state (glutamate residue). 

The mutagenesis was performed with the QuickChange XL mutagenesis kit and self designed 

primers (see section 2.10.2). The following PCR mix in a total volume of 25 µL was prepared: 

 

2.5 µL 10 X reaction buffer 

5 ng IRS-2 plasmid 

3.6 µL sense primer (c=1 pmol/L) 

3.6 µL antisense primer (c=1 pmol/L) 

0.5 µL dNTP-mix 

1.5 µL quicksolution 

12.7 µL H2O 

0.5 µL Pfu ultra polymerase (2.5 U/µL) 

  

The PCR reaction was carried out in the Techne-thermocycler from Progene, which per-

formed the program outlined in Table 2:  

 

Table 2 PCR mutagenesis thermocycler program 

Step Temperature Time Iteration 

denaturation 95°C  1 min  1x 

denaturation 95°C  50 sec 

annealing 65°C  50 sec  

elongation 68°C 10 min  

18x 

proofreading 68°C  7 min 1x 

cool 4°C hold  

   

For the elimination of methylated and hemimethylated DNA the following mix was prepared:  
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20 µL PCR product 

0.5 µL DpnI (10 U/ µL) 

 

The mix was incubated for 1 hour at 37°C. 

As control 5 µL of the undigested PCR product was mixed with 15 µL H2O. The digested and 

the undigested PCR products were then purified using the QIA Quick PCR Purification kit 

according to the manufacturer’s instructions. The purified DNA was eluted with 50 µL TE-

buffer. 

 

3.5.2 Transformation 

 

Plasmid-DNA was transformed into competent E. coli - XL1 bacteria using the KCM-method. 

For transformation of purified PCR product the following mix with a total volume of 100 µL 

was prepared: 

  

50 µL purified PCR product 

20 µL 5 X KCM    

30 µL H2O 

 

For transformation of plasmid DNA for a Maxi preparation 1 µg of DNA was used and the vol-

ume of water was adjusted accordingly. This mix was vortexed and incubated on ice for 5 

minutes. 100 µL of E. coli bacteria was thawed and the mix was pipetted into the bacteria-

tube and vortexed for 3 seconds. The tube was placed on ice for 15 minutes followed by the 

temperature shock at 42°C (waterbath) for 2 minutes. The mix was then pipetted into 1 mL 

LB-medium, incubated at 37°C for 30 minutes and subsequently centrifuged for 2 minutes at 

2000 x g. The supernatant was discarded and the pellet was resuspended in 50 µL LB me-

dium and plated with a Drigalski applicator onto prewarmed LB-agar petri dishes containing 

0.1 mg/mL ampicillin. The petri dishes were incubated at 37°C overnight and formation of 

single colonies was monitored. 
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3.5.3 Miniprep/Maxiprep for the isolation of plasmid-DNA from transformed E. 
coli 

 

Single colonies were picked with an inoculation loop and grown in 2 mL LB-medium with 0.1 

mg/mL ampicillin either overnight (Miniprep) or 6 h in 2 mL LB-medium with 0.1 mg/mL am-

picillin with subsequent transfer into 100 mL LB-medium with 0.1 mg/mL ampicillin and incu-

bation overnight (Maxiprep) in a shaker incubator at 37°C at 125 rpm. On the following day 

the Miniprep and Maxiprep was carried out according to the manufacturer’s instructions. 

 

3.5.4 Sequencing of plasmid-DNA 

 

The sequencing of plasmid-DNA was carried out using a commercially available kit for se-

quencing-PCR. The following reaction mix in a total volume of 10 µL was pipetted: 

 

0.5 µL Miniprep- or Maxiprep-eluate 

1 µL sequencing primer (c=10 pmol/µL) 

2 µL sequencing mix 

1 µL 5 X sequencing buffer 

5.5 µL H2O 

 

The PCR reaction was carried out in the Mastercycler-thermocycler from Eppendorf, which 

performed the program outlined in Table 3 :  

 

Table 3 Sequencing PCR thermocycler program 

Step Temperature Time Iteration 

denaturation 96°C 1 min 1x 

denaturation 96°C 10 sec 

annealing 50°C 10 sec  

elongation 60°C  4 min 

24x 

cool 15°C  hold  
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The PCR products were subsequently purified. Spin columns were prepared by pipetting 750 

µL 5% well swelled sephadex (room temperature) into mini spin columns and centrifuging 

them at room temperature for 3 minutes at 2400 x g. 10 µL of water were added to the PCR 

mix and it was transferred onto the spin columns. The columns were centrifuged again at 

room temperature for 3 minutes at 2400 x g. The eluates were sequenced by the Genotyping 

Facility Tübingen (University Hospital Tübingen, Department of Internal Medicine IV). 

 

3.5.5 Digestion with restriction enzymes and separation of DNA fragments with 
agarose gel 

 

To verify that the correct plasmid had been amplified with Miniprep or Maxiprep a control di-

gestion with restriction enzymes was performed. The following reaction mixes with a total 

volume of 10 µL were pipetted: 

 

8 µL Miniprep-eluate 

0.5 µL Hind III (10 U/µL) 

0.5 µL Xba I (10 U/µL) 

1 µL SuRE/Cut buffer B 

     

1 µL original IRS-2 plasmid (c=1µg/µL) 

0.5 µL Hind III (10 U/µL) 

0.5 µL Xba I (10 U/µL) 

1 µL SuRE/Cut buffer B 

7 µL H2O 

     

The mixes were incubated for 1 hour at 37°C and then mixed with DNA sample buffer and 

loaded onto a 1% agarose gel. Electrophoresis was conducted for approximately 45 minutes 

at 100 mV. Figure 7 shows exemplarily the pattern of the digested IRS-2 plasmids.  



Methods 58 

m IRS-2
wt

675
Ala

675
Glu

907 
Ala

3 kb

2 kb

8 kb

907 
Glu

 

Figure 7 Digestion of IRS-2 wildtype (wt) and IRS-2 mutant plasmids with restriction enzymes HindIII 
and XbaI. 

3.5.6 Generation of competent E. coli 

 

100 µL of original competent E. coli bacteria were incubated in 2 mL LB medium overnight at 

37°C in a shaker incubator. 150 mL LB-medium were inoculated with 1 mL of the bacterial 

suspension and again incubated at 37°C for 2.5 to 3.5 h until the optical density at 600 nm 

(OD600) was 0.6. The bacteria were centrifuged at  2150 x g  for 10 minutes at room tempera-

ture and the pellet was resuspended in 15 mL TSB with 5 % DMSO on ice. The suspension 

was incubated on ice for 10 minutes and then aliquoted and stored at -80°C. 

 

3.5.7 RNA extraction from cultured cells  

 

RNA was extracted using the RNeasy Mini kit according to the manufacturer’s instructions. 

Briefly, cells were lysed in 350 µL RLT-buffer containing 10 µL �-mercaptoethanol per mL. 

The emerging slurry was transferred into QIA shredder mini spin columns and centrifuged at 

17,000 x g for 2 minutes at room temperature. The eluate was mixed with 350 µL 70% etha-

nol and transferred onto the mini spin columns provided in the RNeasy Mini kit and centri-

fuged for 15 seconds at 17,000 x g at room temperature. All following washing steps were 

carried out at these centrifuging conditions. The RNA which adhered to the column was 

washed once with 350 µL RW1 buffer and then incubated for 20 minutes with RNAse-Free 

DNAse. Another washing step with 350 µL RW1 buffer was conducted and then the mini spin 

column was washed twice with 500 µL RPE-buffer. The last centrifugation step was carried 
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out for 2 minutes. The RNA was finally eluted with 50 µL RNAse-free water and the concen-

tration was measured in the Biophotometer from Eppendorf. 

 

3.5.8 Reverse transcriptase (RT)-reaction 

 

RNA was transcribed into cDNA using the Transcriptor First Strand cDNA Synthesis kit ac-

cording to the manufacturer’s instructions. First, the concentration of RNA was adjusted to 1 

µg/µL with water. 11 µL of adjusted RNA were mixed with 2 µL random hexamer primer (600 

pmol/µL) and the template-primer mixture was denatured at 65 °C for 10 minutes in the Mas-

tercycler-thermocycler from Eppendorf. Then the following components were added to the 

mix: 

 

4 µL 5 X reaction buffer 

2 µL dNTP mix (c=10 mM each nucleotide) 

0.5 µL RNase inhibitor (40 U/µL) 

0.5 µL reverse transcritase (20 U/µL) 

 

The program outlined in Table 4 was performed in the Mastercycler: 

 

Table 4 RT reaction thermocycler program  

Step Temperature Time 

annealing 25°C 10 min 

transcription 55°C 30 min 

inactivation of reverse transcriptase 85°C 5 min 

cool 4°C hold 

 

Finally, the cDNA was aliquoted into to 2 µL aliquots and stored at -20 °C 

 

 

 



Methods 60 

3.5.9 Real time quantitative PCR on Lightcycler 480 

 

For the quantitative analysis of mRNA-expression the real time PCR technique was used 

which facilitates the detection of the  PCR product via the intercalating agent SYBR Green  in 

real time in contrast to endpoint detection which is used in the older northern blot technique. 

SYBR Green is a fluorescent dye which is excited with light at 494 nm and whose emission 

maximum is 521 nm. For this work two different kit systems were used. Rat IRS-2 was meas-

ured using QuantiFast SYBR Green PCR kit from Qiagen and rat �-actin was measured with 

FastStart DNA Master SYBR Green I from Roche. The following PCR mixes were prepared: 

 

Qiagen protocol 

2 µL cDNA 

2 µL QuantiTect Primer Assay 

10 µL 2 X QuantiFast SYBR Green  

6 µL H2O 

 

Roche protocol 

2 µL cDNA 

0.5 µL primer sense (c=20 µM) 

0.5 µL  primer antisense (c=20 µM) 

1.6 µL MgCl2 (c=50 mM) 

13.6 µL H2O 

2 µL FastStart DNA Master SYBR Green I 

 

The complete mixes was transferred onto a LC480 Multiwell plate and the following programs 

were performed in the Lightcycler 480 System from Roche: 
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Table 5 Qiagen protocol LC 480 program for rat IRS-2 

Step Temperature Time Iteration 

denaturation 95 °C 3 min 1 X 

denaturation 95°C  3 sec 

combined an-
nealing and 
elongation 

60°C 30 sec 40 X 

denaturation 95°C 5 sec 1 X 

melting curve 62°C --> 98°C continuous 1 X 

cool 40°C 10 sec  

 

Table 6 Roche protocol LC 480 program for rat β-actin 

Step Temperature Time Iteration 

denaturation 95 °C 10 min 1 X 

denaturation 95°C  15 sec 

annealing 67°C 10 sec 

elongation 72°C 11 sec 

40 X 

denaturation 95°C 5 sec 1 X 

melting curve 69°C --> 98°C continuous 1 X 

cool 40°C 30 sec  

 

To quantify the expression of mRNA external standard curves were run for each gene and in 

each experiment. For the establishment of a standard curve the PCR product from a reaction 

conducted under the above described conditions was purified using the MinElute PCR purifi-

cation kit from Qiagen according to the manufacturer’s instructions. The eluted DNA was 

measured with the Biophotometer from Eppendorf and the concentration was adjusted with 

water to 5 ng/µL and aliquots of 5 µL were stored at -20°C. For each experiment the following 

dilution series was pipetted by diluting each dilution 1:10 to achieve the following dilution step. 
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Table 7 Dilution series calibration 

curve for real time quantitative PCR 

Dilution Concentration 

standard stock 5 ng / µl 

1 500 pg / µl 

2 50 pg / µl 

3 5 pg / µl 

4 500 fg / µl 

5 50 fg / µl 

6 5 fg / µl 

7 500 ag / µl 

8 50 ag / µl 

9 5 ag / µl 

 

2 µL of dilutions 3 to 9 were used for the calibration curve and subsequently treated like sam-

ples.  

The mRNA expression was quantified with the Lightcycler 480 software by determination of 

the crossing point (CT) of standards and samples. The crossing point or threshold cycle is 

defined as the cycle at which the amplification plot ( Figure 8A, B) crosses a threshold at 

which there is a significant increase in fluorescence. This CT is determined automatically by 

the software. The standard curve is plotted from the CT of the standards  against the log of 

amount of standard (Figure 8C) and the samples are determined on the basis of the standard 

curve.  
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Figure 8 Quantification of Roche Lightcycler 480 real time PCR. (A) Amplification curves of standards, 
(B) amplification curves of standards and sample and (C) standard curve calculated from CT of stan-
dards against the log of amount of standard. 

3.6 Data analysis 

 

3.6.1 Quantification of immunoblots by scanning densitometry 

 

Films with phospho-protein bands and protein bands were scanned using a HP scanjet 4670. 

The densitometric analyses were carried out using Gelscan Professional V5.1. 

3.6.2 Statistics 

 

Data are presented as mean ± SEM from 3 to 5 independent experiments. Phospho-protein 

values were normalized by the value of the corresponding protein and protein values were 

normalized using �-actin. mRNA expression data of IRS-2 was normalized by �-actin expres-

sion. Statistical analyses were performed with SPSS for Windows (version 15.0.1) using 

Mann-Whitney-U test for not normally distributed variables and the Students t-test for nor-

mally distributed variables. A result was considered significant if p<0.05. 
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4 Results 

 

4.1 Testing of antibodies 

 

4.1.1 Prescreening in Fao rat hepatoma cells 

 

A prescreening of the monoclonal antibodies generated to detect site specific ser-

ine/threonine phosphorylations of IRS-2 was performed in Fao rat hepatoma cells. These 

cells express large amounts of endogenous IR and IRS-2 protein. Fao cells were treated with 

0.5 �M phorbol ester (TPA) for 30 minutes that activate PKC isoforms and further ser-

ine/threonine kinases and cell extracts were separated by 7.5% SDS-PAGE, transferred to 

nitrocellulose membranes and immunoblotted with the monoclonal antibodies. Antibodies that 

gave positive results (data not shown) were retested using untreated Fao cells or cells after 

treatment with 100 nM insulin or TPA. Antibodies were chosen for their ability to recognize 

IRS-2 after treatment with serine/threonine kinase activators insulin and TPA and to give only 

weak signals in untreated cells and the corresponding clones were subcloned and propa-

gated. Antibodies against two previously unknown phosphorylation sites were used in this 

thesis: phospho-Ser 675 and phospho-Ser 907. Both serine residues are particularly interest-

ing since they are located in close proximity to two functional tyrosine residues: Ser 675 lies 

within the IRS-2 specific kinase regulatory loop binding (KRLB) domain and is adjacent to a 

PI-3 kinase binding motif (pY671MPM), Ser 907 is adjacent to the Grb2 binding domain of IRS-

2 (pY911INI) (100;220). 

For phospho-Ser 675 three monoclonal antibodies were chosen for further experiments: hy-

bridoma clones 5E4, 8A8 and 1C4 (Figure 9A). The antibody from clone 5E4 gave the 

strongest signal and was therefore used in the majority of the experiments. In the initial im-

munization round only one clone (2F4) was positive for the detection of phospho-Ser 907 

(Figure 9B), however, this clone could not be stably subcloned and therefore new hybridoma 

cell lines were established. Finally the hybridoma clone 9C12 (Figure 9B) was stable and suf-

ficient amounts of antibody were produced.  
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Figure 9 Detection of IRS-2 using phospho-Ser 675 (A) or phospho-Ser 907 antibodies (B) in Fao cells.  
Cells were serum starved overnight and treated with 100 nM insulin or 0.5 µM TPA for 30 minutes. 
After stimulation cells were lysed and analyzed by 7.5% SDS-PAGE and immunoblotted with different 
monoclonal phospho-site specific Ser 675 (A) or Ser 907 (B) antibodies. The blots were reprobed with 
a polyclonal IRS-2 protein antibody . 

 

4.1.2 Antibody specificity 

 

4.1.2.1 Phospho-site specificity in BHK cells transiently expressing Ala mutants 

 

The specificity of the antibodies towards the phosphorylated serine residues was tested in 

baby hamster kidney (BHK) cells transiently expressing IRS-2 wildtype (IRS-2 wt), IRS-2 675 

Ala (675 Ala) or IRS-2 907 Ala (907 Ala), which could not be phosphorylated on these resi-

dues. The cells were treated with insulin, TPA or anisomycin for 30 minutes and the lysates 

were separated by 7.5% SDS-PAGE. Both antibodies clearly recognized IRS-2 wt in stimu-

lated cells, but only a weak signal was detected in the cells expressing the IRS-2 Ala mutants 

(Figure 10). This demonstrated that the antibodies specifically recognized the phosphorylated 

state of the IRS-2 protein.  
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Figure 10 Antibody specificity in BHK cells transiently overexpressing IRS-2 and IRS-2 675 Ala and 
907 Ala. BHK cells were transiently transfected with empty vector (con), IRS-2, IRS-2 675 Ala or IRS-2 
907 Ala and treated with 100 nM insulin (ins), 0.5 µM TPA or 5 µg/mL anisomycin (aniso) for 30 min-
utes. The blots were probed with phospho-site specific antibodies and reprobed with polyclonal anti-
bodies against IRS-2.   

 

4.1.2.2 IRS-1/2 specificity in Fao cells 

 

IRS-1 and 2 share 36% of overall sequence homology and the amino acid sequences of the 

peptides that were used to raise the antibodies are almost identical for IRS-1 (Figure 11). It 

was therefore necessary to test whether the antibodies would also detect the corresponding 

IRS-1 serine, if phosphorylated. To test the IRS-2 phospho-protein specificity Fao cells were 

left untreated or treated with insulin or TPA and from the cell lysates either IRS-1 or IRS-2 

was immunoprecipitated with polyclonal antibodies and immunoblotted with the phospho-site 

specific antibodies. In this setting only the endogenous IRS-2 but not the endogenous IRS-1 

was detected by the antibodies (Figure 12). 

902 PTEPKSPGEYI 912

882PPEPKSPGEYV 892

mouse IRS-2

mouse IRS-1

670 DYMPMSPTSVS 680

627 DYMPMSPKSVS 637

mouse IRS-2

mouse IRS-1

 

Figure 11 Sequence homology of IRS-1 and IRS-2 surrounding the phosphorylated serine residues 
675 (top) and 907 (bottom). 
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Figure 12 Antibody specificity towards IRS-2. Fao cells were treated with 100 nM insulin or 0.5 µM TPA 
for 30 minutes and IRS-1 and -2 were immunoprecipitated (IP) with polyclonal antibodies and im-
munoblotted (IB) with phospho-site specific monoclonal antibodies. The blots were reprobed for IRS-1 
and IRS-2. 

 

4.1.2.3 IRS-1/2 specificity in HEK293 cells transiently expressing rat IRS-1, mouse 
IRS-2 or human IRS-2 

 

The specificity of the monoclonal antibodies towards IRS-2 was further tested in human em-

bryonic kidney (HEK293) cells transiently overexpressing the IR and either mouse IRS-2, rat 

IRS-1 or human IRS-2 (Figure 13). The antibodies clearly detected the mouse and the human 

IRS-2 in insulin stimulated HEK293 cells and the phospho-Ser 675 antibody did not recognize 

IRS-1. The phospho-Ser 907 antibody detected a faint signal in insulin stimulated cells ex-

pressing IRS-1 (Figure 13B). This signal was very weak when compared to the cells express-

ing the respective IRS-2 protein and this phenomenon was only observed in an IRS-1-

overexpressing system, but nevertheless, it showed that the antibody had some cross-

reactivity towards IRS-1. 

 

4.1.3 IRS-2 phosphorylation in primary human hepatocytes 

 

The antibody against phospho-Ser 675 not only detected overexpressed human IRS-2 in 

HEK293 cells but also phosphorylated endogenous IRS-2 in primary human hepatocytes after 
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treatment with insulin and TPA (Figure 14). Of note, the pronounced IRS-2 shift  due to al-

tered electrophoretic mobility after insulin and TPA stimulation which is detectable in Fao cells 

(see also 4.2.1) and overexpressing cell systems, could not be demonstrated in these cells. 

Unfortunately due to the instability of the original phospho-Ser 907 antibody (clone 2F4) it 

was not possible to test the phosphorylation on Ser 907 in primary human hepatocytes at the 

time when these cells were available. 
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Figure 13 Antibody specificity in HEK293 cells transiently overexpressing rat IRS-1, mouse IRS-2 or 
human IRS-2. (A, B) HEK293 cells were transiently transfected with empty vector (con), IRS-2, IRS-1 
or human IRS-2 and treated with 100 nM insulin for 30 minutes. The blots were probed with phospho-
site specific antibodies and reprobed with polyclonal antibodies against IRS-1 and IRS-2. The arrow 
indicates phospho-Ser 675 after longer exposure time.  
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Figure 14  Ser 675 phosphorylation of endogenous IRS-2 in primary human hepatocytes.  

 

4.1.4 IRS-2 phosphorylation in vivo 

 

After demonstrating that endogenous as well as transiently overexpressed IRS-2 is phos-

phorylated on Ser 675 and Ser 907 in different cell culture models it was studied whether 

these phosphorylations occurred in vivo as well. C57Bl/6 wt mice were treated with insulin 

intravenously for 10 minutes and the liver tissue lysates were immunoprecipitated with IRS-2 

antibody and immunoblotted for phospho-Ser 675 (Figure 15A) and phospho-Ser 907 (Figure 

15B). A clear signal was detected on both phosphorylation sites.   

Furthermore the phosphorylation of both sites was studied in the livers of mice that had been 

fasted overnight and then refed for 5 h (Figure 15C and D). Refeeding induced a significant 

phosphorylation on both sites, demonstrating that not only the rather unphysiological admini-

stration of insulin i.v. but also the physiological process of feeding leads to the phosphoryla-

tion of serine residues of IRS-2. Of note, feeding also induced a pronounced decrease of IRS-

2 protein which has been demonstrated in several studies (90;112) and a clearly reduced 

electrophoretic mobility of the protein. 



Results 71 

ins 

IB: p-S-675

- +    +   

IB: IRS-2

A IP: IRS-2

ins 

IB: p-S-907

- +    +   

IB: IRS-2

IP: IRS-2B

0

0,5

1

1 2

*

p-
S

-9
07

/IR
S

-2

refedfasted

p-S-907

IRS-2

fasted refed
0

0,4

0,8

1,2

1 2

p-S-675

IRS-2

*

refedfasted
p-

S
-6

75
/IR

S
-2

fasted refed

C D

 

Figure 15 IRS-2 serine phosphorylation in vivo. (A) and (B) Male C57/Bl6 mice were fasted overnight 
and injected intravenously with 2 IU insulin. Liver samples were obtained after 10 minutes of insulin 
treatment. Immunoblots of liver extracts obtained from one untreated and two insulin-treated mice are 
shown. (C) and (D) Male C57/Bl6 mice were fasted overnight and refed for 5 h. Liver samples were 
obtained immediately after the refeeding period. Immunoblots for 2 mice of each group are shown. 
Phosphorylation intensity was quantified based on scanning densitometry of immunoblots normalized 
for IRS-2 protein (mean + SEM, n=4; *p<0.05 fasted vs. refed) 

 

4.2 Characterization of IRS-2 phospho-serine sites 

 

4.2.1 Effect of different stimuli on serine phosphorylation in Fao cells 

 

A set of different stimuli and kinase activators was tested for their ability to induce a phos-

phorylation on Ser 675 and Ser 907. For this purpose Fao cells were stimulated for 30 min-

utes with either insulin, IGF-1, TNFα, TPA or anisomycin. TNFα was used because it is asso-

ciated with the induction of insulin resistance and serine-phosphorylation of IRS-1 (227). Ani-

somycin was used to stimulate stress activated protein kinases in general. IGF-1 stimulation 

was examined because IRS-2 is also a substrate of the IGF-1 receptor, which predominantly 

signals into mitogenic pathways. Both IRS-2 serine residues were phosphorylated upon insu-

lin, TPA and anisomycin stimulation (Figure 16) whereas TNFα induced only a weak phos-

phorylation but it neither activated JNK suggesting a missing effect of this cytokine in Fao 
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cells. This phenomenon was not examined further. IGF-1 had a surprisingly small effect on 

the phosphorylation of both serine sites but in Fao cells only weak expression signals of the 

IGF-1 receptor compared to the high protein levels of the IR were detected (Figure 16A). This 

difference of IR and IGF-1 receptor protein levels has also been described earlier in Fao cells 

(228). The small effect of IGF-1 is also reflected by the relatively low activation of PKB/Akt (p-

S-473) in the IGF-1 treated cells (Figure 16A).  

Of note, particularly the stimulation with insulin, IGF-1, TPA and anisomycin resulted in the 

pronounced retardation of the electrophoretic mobility of the IRS-2 protein in SDS-PAGE 

(„shift“). This shift can occur upon tyrosine, serine and threonine phosphorylation and proba-

bly other kinds of posttranslational modification. In all experiments the strongest effect on the 

electrophoretic mobility was produced by treatment of Fao cells with anisomycin (Figure 16) 

resulting in a condensed and retained band of IRS-2 protein on the western blot. Other stimuli 

like insulin and TPA also produced a shift but in these cases the IRS-2 band appeared more 

square-shaped. 
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Figure 16 Effect of different stimuli on IRS-2 serine phosphorylation. Fao cells were treated with either 
100 nM insulin (ins), 50 ng/mL IGF-1, 5 nM TNFα, 0.5 µM TPA or 5 µg/mL anisomycin (aniso) for 30 
minutes. After stimulation cells were lysed and analyzed by 7.5% SDS-PAGE and immunoblotted with 
monoclonal IRS-2 phospho-site specific Ser 675 (A) or Ser 907 (B) antibody. The blots were reprobed 
with a polyclonal IRS-2 antibody. Furthermore phospho-PKB/Akt Ser 473, phospho-JNK Thr 183/Tyr 
185 and protein reblot as well as insulin receptor (IR) and insulin like growth factor (IGF)-1 blots are 
shown (A). 
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4.2.2 Dose response of IRS-2 phosphorylation with different insulin 
concentrations 

 

In Fao cells a dose response of IRS-2 phosphorylation on Ser 675 and Ser 907 to increasing 

levels of insulin was assessed (Figure 17A). In addition different components of the insulin 

signaling pathway were studied as well (Figure 17B). Insulin concentrations as low as 0.1 nM 

were sufficient to trigger a phosphorylation of Ser 675, demonstrating that physiological insu-

lin concentrations are able to induce the phosphorylation at this site. Ser 907 phosphorylation 

on the other hand appeared to increase with higher insulin concentrations (Figure 17A). The 

reduction of electrophoretic mobility of the IRS-2 protein was visible already at 0.1 nM insulin 

and became more pronounced with increasing insulin concentrations.  

The activation of downstream signaling proteins of the insulin signaling pathway as well as 

the tyrosine phosphorylation of IRS-2 was increased with rising insulin concentrations (Figure 

17B) and strongest tyrosine phosphorylation of IRS-2 and phosphorylation of PKB/Akt was 

achieved with 10 to 100 nM insulin. The MAP kinase ERK1/2 was only phosphorylated over 

basal levels with 100 nM insulin. Therefore in all experiments the maximal insulin concentra-

tion of 100 nM was used to induce the strongest possible activation of downstream kinases. 
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Figure 17 Insulin dose response in Fao cells. Fao cells were treated with different insulin concentra-
tions ranging from 0.1 to 100 nM for 30 minutes. (A) and (B) top panel, endogenous IRS-2 was im-
munoprecipitated (IP) using a polyclonal antibody and immunoblotted (IB) with phospho-site specific 
IRS-2 antibodies and a general phospho-tyrosine antibody (B, top panel). Normal lysates were sepa-
rated with 7.5 % SDS-PAGE and immunoblotted with phospho-PKB/Akt and phospho-ERK1/2 and 
reprobed with the respective protein antibody.  
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4.2.3 Phosphorylation kinetics 

 

To record the time course of insulin-induced phosphorylation of Ser 675 and Ser 907 Fao 

cells were treated with insulin for 0 to 240 minutes. Both phospho-sites were phosphorylated  

after 30 to 60 minutes of insulin stimulation and the phosphorylation continued for the rest of 

the experiment (Figure 18). The phosphorylation of Ser 675 was also observed after 8 h of 

insulin treatment (data not shown). This indicates that Ser 675 and Ser 907 are rather late 

events of insulin signaling as opposed to very rapid phosphorylations of IRS-proteins, e.g. 

tyrosine phosphorylations which occur immediately after insulin stimulation (229). 
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Figure 18 Phosphorylation kinetics of IRS-2 Ser 675 (A) and Ser 907 (B). Fao cells were treated with 
100 nM insulin for 0-240 minutes. Cells were lysed and analyzed with 7.5% SDS-PAGE and im-
munoblotted with monoclonal phospho-site specific antibodies. The blots were reprobed for IRS-2 with 
a polyclonal antibody. Quantification was based on scanning densitometry of immunoblots normalized 
for IRS-2 protein (mean + SEM, n=3, * p<0.05 ins vs. control (-)). 
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4.3 Biological regulation and relevance of Serine 675 
phosphorylation 

 

4.3.1 Characterization of kinases 

 

4.3.1.1 In silico amino acid sequence analysis and comparison with IRS-1 

 

Ser 675 is located in a functional relevant region of the IRS-2 protein. It lies within the IRS-2 

specific KRLB domain next to a recruitment site (pY671MPM) for the regulatory subunit p85 of 

the PI-3 kinase (Figure 19A). Position 676 is occupied by a proline residue and the motif 

pS/pTP has been recognized as a mTOR phosphorylation motif (66). Furthermore, the bioin-

formatical tool Human Protein Reference Database (219) suggested that ERK1 and 2 as well 

as GSK3 and cyclin-dependent kinase (CDK)5 could phosphorylate Ser 675.  

The amino acid sequence surrounding Ser 675 is highly conserved in mouse, rat and human 

IRS-2 (Figure 19B) and as shown above the phospho-site specific antibody specifically rec-

ognizes phosphorylated IRS-2 in all three species (Figure 12A, Figure 13A, Figure 14, Figure 

15A, C). 

IRS-2 Ser 675 has a homologous serine residue in IRS-1: Ser 632 (mouse IRS-2 amino acid 

sequence) (Figure 19C) which however is not detected by our phospho-site specific antibod-

ies (Figure 13A) although the sequences in that region are almost identical in IRS-1 and -2. 

They differ only by one amino acid, Thr 677 instead of Lys 634 (Figure 19C). This site along 

with Ser 635 is well studied and it has been shown that mTOR/p70 S6K1 as well as ERK1/2 

phosphorylate Ser 632/635 (134;159). Furthermore, the phosphorylation of Ser 632/635 has 

been shown to reduce the insulin-induced association of IRS-1 with p85 (131). 
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Figure 19 Amino acid sequence of mouse IRS-2 surrounding Ser 675. (A) Phosphorylation and protein 
binding motifs in mouse IRS-2. (B) Comparison of mouse, rat and human IRS-2. (C) Comparison of 
mouse IRS-2 and IRS-1.  

4.3.1.2 Inhibition of insulin-induced phosphorylation by pharmacological inhibitors 

 

To identify the kinase(s) responsible for phosphorylating IRS-2 on Ser 675 first a number of 

inhibitors was used to block specific kinases in insulin treated Fao cells. The inhibition of the 

PI-3 kinase or mTOR by wortmannin or rapamycin respectively resulted in a significantly re-

duced insulin dependent phosphorylation of Ser 675 (Figure 20). In contrast, the inhibition of 

stress inducible JNK by SP600125 and the ERK1/2 activating dual specific MAP kinase ERK 

kinase (MEK)1 by PD98059 had no significant effect on the insulin-induced phosphorylation 

of Ser 675.  
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Figure 20 Inhibition of insulin-induced Ser 675 phosphorylation in Fao cells. Fao cells were treated with 
either 25 nM rapamycin (rapa), 100 nM wortmannin (wort), 10 µM SP600125 (SP) or 50 µM PD98059 
(PD) for 30 minutes and subsequently stimulated with 100 nM insulin (ins) for 60 minutes. Phosphory-
lation intensity was quantified based on scanning densitometry of immunoblots and normalized for IRS-
2 protein (mean + SEM, n=5, * p<0.05 insulin stimulated cells with inhibitor vs. insulin stimulated cells 
without inhibitor) 

 

4.3.1.3 Inhibition of insulin-induced Ser 675 phosphorylation by siRNA targeting 
mTOR 

 

The clear effects of rapamycin on the inhibition of the insulin-induced phosphorylation of Ser 

675 led to the assumption that mTOR or a mTOR-dependent kinase could phosphorylate this 

site. To test this hypothesis Fao cells were electroporated with siRNA oligonucleotides 

against mTOR and stimulated with 100 nM insulin for 60 minutes. This approach led to a pro-

nounced reduction of mTOR protein (Figure 21A) and it resulted in abolished insulin-induced 

phosphorylation of Thr 389 of p70 S6K1, the downstream target of mTOR. The knockdown of 

mTOR resulted in significantly reduced basal and insulin-induced phosphorylation of Ser 675 

on IRS-2 (Figure 21A).  Since the knockdown of mTOR also inhibited the activation of p70 

S6K1 this kinase was knocked down in the same cell system as well (Figure 21B). The silenc-

ing of p70 S6K1 was highly efficient resulting in undetectable protein bands and leading to a 

reduced phosphorylation of Ser 1101 on IRS-1, which has been identified as a p70 S6K1-

dependent phosphorylation site (167). However, the knockdown of p70 S6K1 had no signifi-

cant effect on the insulin-induced Ser 675 phosphorylation of IRS-2 (Figure 21B). These re-

sults led to the conclusion that mTOR is most likely the kinase responsible for phosphorylat-

ing Ser 675. 
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Figure 21 Phosphorylation of IRS-2 Ser 675 after knockdown of mTOR (A) and p70 S6K1 (B) in Fao 
cells. Fao cells were electroporated with siRNA targeting either mTOR (A) or p70 S6K1 (B) and control 
siRNA (con). 48 h after transfection cells were treated with 100 nM insulin (ins) for 30 minutes. Phos-
phorylation of IRS-2 (Ser 675), p70 S6K1 (Thr 389) (A, B) and of IRS-1 (Ser 1011) (B) with the corre-
sponding reblots and total mTOR (A) protein are shown. Phosphorylation intensity of Ser 675 was 
quantified based on scanning densitometry of immunoblots and normalized for IRS-2 protein (mean + 
SEM, n=4, * p<0.05 con ins vs. si mTOR ins). 

The interaction of mTOR with IRS-2 was further confirmed with a co-immunoprecipitation ex-

periment in Fao cells: IRS-2 was immunoprecipitated and at approximately 280 kDa a band 

was detected which was expected to be mTOR (Figure 22A, left panel). The association of 

IRS-2 and mTOR was apparently present at the basal state and was not further influenced by 

insulin or rapamycin. However, rapamycin treatment together with insulin appeared to reduce 

the association of both molecules (Figure 22A, B). The inverse co-immunoprecipitation ex-

periment with the immunoprecipitation of mTOR and subsequent detection of IRS-2 produced 

only a weak IRS-2 signal (data not shown).  
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Figure 22 Co-immunoprecipitation of IRS-2 and mTOR in Fao. (A) Cells were treated with 25 nM ra-
pamycin (rapa) for 30 minutes and subsequently stimulated with 100 nM insulin (ins) for 60 minutes. 
Cells were lysed and IRS-2 was immunoprecipitated (IP) with a polyclonal IRS-2 antibody. IP and lys-
ates were separated by 7.5% SDS-PAGE and immunoblotted for mTOR and IRS-2. (B) Cells were pre-
treated with 25 nM rapamycin for 60 minutes and stimulated with 100 nM insulin for additional 60 min-
utes or were treated with insulin for 0 to 120 minutes without rapamycin. Cells were lysed and IRS-2 
was immunoprecipitated (IP) with a polyclonal IRS-2 antibody. The blots were probed for mTOR and 
IRS-2. 

Interestingly, the inhibition of mTOR with rapamycin completely prevented the insulin-induced 

phosphorylation on Ser 675 and also partially the TPA-induced phosphorylation, but it had no 

effect on the anisomycin-induced phosphorylation (Figure 23), indicating that other mTOR-

independent kinase(s) could also phosphorylate IRS-2 on Ser 675. Except for anisomycin 

treated cells, rapamycin treatment led to a significant increase of IRS-2 mobility  even in the 

basal state, suggesting a reduced overall phosphorylation of IRS-2. Furthermore, a reduced 

electrophoretic mobility of p70 S6K1 was observed after stimulation with either insulin, TPA or 

anisomycin and this mobility was greatly increased when the cells were treated with the in-

hibitor and could not further be influenced by any stimulation (Figure 23). 
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Figure 23 Rapamycin inhibits the insulin-induced but not the TPA- and anisomycin-induced phosphory-
lation of IRS-2 Ser 675. Fao cells were treated with 25 nM rapamycin for 30 minutes and subsequently 
stimulated with 100 nM insulin (ins), 0.5 µM TPA or 5 µg/mL anisomycin (aniso) for 30 minutes. Lys-
ates were separated by 7.5% SDS-PAGE and immunoblotted with phospho-site specific monoclonal 
Ser 675 antibody and phospho p70 S6K1 (Thr 389) antibody. The membranes were reprobed with 
protein antibodies for IRS-2 and p70 S6K1. 

 

4.3.2 Function of Ser 675 

 

To elucidate the functional role of the Ser 675 phosphorylation for insulin signaling the effects 

of the non-phosphorylated 675 Ala mutant and also the 675 Glu mutant, which simulates the 

phosphorylated state, were investigated in different cell culture models. Fao cells were not 

used for two reasons: first, these cells already express high amounts of endogenous IRS-2 

and second, Fao cells can only be efficiently transfected with retroviral methods which how-

ever is not established in the lab and needs a S2-laboratory. It was attempted to transfect Fao 

cells with standard methods (lipofection, calcium phosphate transfection, electroporation) but 

only very low transfection rates were achieved. Therefore, other cell culture models were 

used in this thesis. 

 

 

 



Results 81 

4.3.2.1 Transient transfection of BHK cells 

 

BHK cells were transiently transfected with the empty pRK5 vector as control, with IRS-2 wt, 

675 Ala and 675 Glu mutants and stimulated with insulin for 0 to 120 minutes. Proximal and 

distal insulin signaling was studied by immunoblotting. Insulin-induced a strong tyrosine 

phosphorylation of all IRS-2 proteins, with slightly different kinetics for the Ala and the Glu 

mutant (Figure 24A). The IRS-2 wt protein was strongly phosphorylated after 10 minutes. This 

phosphorylation decreased significantly after 60 minutes of insulin stimulation and increased 

again after 120 minutes similarly as it has been shown for IRS-1 (184). The 675 Ala mutant 

was constantly tyrosine phosphorylated upon insulin treatment whereas in the 675 Glu mutant 

the tyrosine phosphorylation tended to decrease. However, effect did not reach statistical 

significance (Figure 24A). Insulin also activated the PI-3 kinase and the MAP kinase signaling 

cascades as monitored by the phosphorylation of PKB/Akt, GSK3α and ERK1/2 (Figure 24B). 

The phosphorylation states of all these members of the signaling cascades were not different 

between the control, the IRS-2 wt expressing cells and the two 675 mutants. These results 

suggest that phosphorylation of Ser 675 does not influence insulin signal transduction in this 

cell culture model after transient transfection, but also that the introduction of IRS-2 into the 

cells had no effect on downstream insulin signaling events.  

 

4.3.2.2 Stable transfection of HEK293 cells 

 

To avoid the problem of acutely induced cellular stress by the ectopic overexpression of a 

distinct protein and to circumvent the necessity of repeated transfection experiments with 

variable transfection efficiencies, clones of HEK293 cells were made that stably express ei-

ther the pRK5 vector as control or IRS-2 wt + IR or the IRS-2 675 Ala mutant + IR. The IRS-2 

wt and the 675 Ala expressing cells had about similar amounts of IRS-2 and IR (Figure 25A 

and B). These cells were stimulated with insulin for 0 to 120 minutes and several steps of the 

insulin signaling cascade were investigated. Insulin-induced a strong tyrosine phosphorylation 

of IRS-2 wt and 675 Ala alike and promoted the association of both IRS-2 variants with p85, 

the regulatory subunit of the PI-3 kinase (Figure 25A). The activation of the PKB/Akt and of 

the MAP kinase pathway, evidenced by the phosphorylation of PKB/Akt and ERK1/2  was 

increased in both cell lines equally (Figure 25B) indicating that there was no effect of Ser 675 

phosphorylation neither on the proximal nor distal insulin signaling. 
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Figure 24 Function of IRS-2 Ser 675 in BHK cells. (A, B) Cells were transiently transfected with empty 
vector as control (con), IRS-2 wildtype (wt), IRS-2 675 Ala or IRS-2 675 Glu (E) and treated with 100 
nM insulin (ins) for 0-120 minutes. Lysates were analyzed by 7.5% SDS-Page. (A) IRS-2 was immuno-
precipitated (IP) with a polyclonal IRS-2 antibody and the blot was probed for phospho-tyrosine (pY) 
and reprobed for IRS-2 protein. Quantification of IRS-2 tyrosine phosphorylation was based on scan-
ning densitometry of immunoblots and normalized for IRS-2 protein (mean + SEM, n=5). (B) Represen-
tative immunoblots for IRS-2 protein, phospho-PKB/Akt Thr 308, phospho-GSKα Ser 21 and phospho-
ERK1/2 Thr 202/ Tyr 204 with the corresponding reblots for total protein are shown. * p<0.05 wt 10’ vs. 
wt 60’ 
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Figure 25 Effect of Ser 675 phosphorylation on proximal and distal insulin signaling in HEK293 cells. 
(A, B) Cells were stably transfected with either empty vector as control (con), IRS-2 wildtype (wt) and 
insulin receptor (IR) or IRS-2 675 Ala + IR and treated with 100 nM insulin (ins) for 0-120 minutes. Lys-
ates were analyzed by 7.5% SDS-Page. (A) IRS-2 was immunoprecipitated (IP) with a polyclonal IRS-2 
antibody and the blot was probed for phospho-tyrosine (pY) (upper panel) and p85 (lower panel) and 
reprobed for IRS-2 protein (middle panel). (B) Representative immunoblots for IRS-2 and IR protein, 
phospho-PKB/Akt Thr 308 and Ser 473 and phospho-ERK1/2 Thr 202/ Tyr 204 with the corresponding 
reblots for total protein are shown. 
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4.3.3 Degradation 

 

It has been shown, that IRS-1 can be translocated and degraded upon insulin stimulation. In 

both processes, mTOR seems to have an important function since the inhibition of this kinase 

leads to impaired degradation of IRS-1. It has been hypothesized that mTOR’s role for IRS-1 

regulation is mainly to phosphorylate IRS-1 on different Ser residues leading to increased 

ubiquitination and degradation or altered subcellular localization (125;164). Since the preced-

ing experiments showed that Ser 675 is phosphorylated by mTOR the question arose 

whether the phosphorylation on this site also influences the degradation of IRS-2.  

 

4.3.3.1 Degradation of hepatic IRS-2 in vivo 

 

Degradation is an important feature of IRS-2 and constitutes an important regulatory mecha-

nism. Hepatic IRS-1 and -2 are differentially regulated during fasting and feeding, a state in 

which high insulin levels occur. As shown in section 4.1.4 IRS-2 is degraded in vivo after the 

onset of refeeding (Figure 15). In line with these data, IRS-2 levels in livers of fed and fasted 

wt mice differed extremely while the protein amount of IRS-1 remained unchanged (Figure 

26). 
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Figure 26 Degradation of hepatic IRS-2 and IRS-1 in fed wt mice. C57 Bl/6 wt mice were either fasted 
for 16 h or had free access to chow. After sacrification the livers were removed and homogenized im-
mediately. Liver lysates of 6 animals were separated with 7.5% SDS-PAGE and immunoblotted for 
IRS-2 and IRS-1 protein. 
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4.3.3.2 Degradation of endogenous IRS-2  

 

The degradation of IRS-2 was further studied in Fao cells. Insulin-induced a visible decline of 

endogenous IRS-2 protein after 120 minutes of treatment (Figure 27A) which was paralleled 

by a decrease of IRS-2 mRNA (Figure 27B). The insulin-induced decrease of IRS-2 protein 

could be prevented by lactacystin, a specific inhibitor of the proteasome and also by rapamy-

cin, thus by inhibition of mTOR (Figure 27A). Both treatments however, had no effect on the 

insulin-induced decrease of IRS-2 mRNA (Figure 27B) indicating that the decrease of protein 

and the decrease of mRNA are distinct processes. Since inhibition of the proteasome resulted 

in abolished insulin-induced protein decrease it was assumed that the IRS-2 protein was de-

creased via degradation. The apparent difference of IRS-2 protein levels in untreated cells 

and that observed after 10 minutes of insulin treatment was a quite consistent phenomenon 

throughout all experiments in Fao cells. This could be due to a different subcellular distribu-

tion and thus accessibility to cell lysis treatment, but experiments designed to clarify that ob-

servation failed. 

An additional observation was made on the electrophoretic mobility of the IRS-2 protein which 

was reduced with prolonged insulin stimulation as shown numerous times before, while in the 

rapamycin treated cells the IRS-2-shift was almost completely abrogated. On the other hand 

lactacystin treated IRS-2 was not discernible from control regarding the electrophoretic mobil-

ity.  

0‘ 10‘ 60‘ 120‘

con rapa lacta

min ins 0‘ 10‘ 60‘ 120‘ 0‘ 10‘ 60‘ 120‘

IRS-2

�-actin

IR
S

-2
/�

-a
ct

in

0

50

100

150

0 30 60 90 120 150 180 210 240

w/o inhibitor

rapamycin

lactacystin

insulin stimulation (min)

IRS-2 mRNA expression
A B

 

Figure 27 Degradation of endogenous IRS-2 in Fao cells. Cells were treated with either 25 nM rapamy-
cin (rapa) or 10 µM lactacystin (lacta) 30 minutes prior to stimulation with 100 nM insulin (ins) for 0 to 
120 (A) or 0 to 240 minutes (B). (A) After stimulation cells were lysed and analyzed with 7.5% SDS-
PAGE. A representative immunoblot for IRS-2 is shown. (B) mRNA expression of endogenous IRS-2 
normalized to �-actin (mean ± SEM, n=3). Expression in untreated cells was set as 100%. 
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4.3.3.3 Degradation of ectopically expressed IRS-2 

 

To study the possible involvement of Ser 675 in the insulin-induced IRS-2 protein degradation 

it was necessary to establish an adequate cell culture model. Since Fao cells could not be 

used it was attempted to visualize IRS-2 degradation in HEK293 cells stably expressing IRS-

2 and the IR. These cells were treated with insulin for 0 to 240 minutes but the IRS-2 protein 

amount was not reduced (Figure 28A). To exclude that the IRS-2 degradation might be liver 

tissue dependent the human hepatoma cell line Huh-7 was used. Initially, IRS-2 was tran-

siently transfected into Huh-7 cells and the insulin-induced degradation was studied. As 

shown in Figure 28B IRS-2 was well expressed, but insulin treatment had no effect on the 

stability of the protein. To exclude the possibility that the transient transfection was masking 

certain insulin effects, clones of Huh-7 cells which stably express IRS-2 wt were generated 

and studied but similar to the other IRS-2-overexpressing cell culture models insulin could not 

induce IRS-2 protein degradation (Figure 28C).  
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Figure 28 Degradation of ectopically expressed IRS-2 protein. (A) HEK293 cells were stably trans-
fected to express IRS-2 wt and the insulin receptor (IR) and stimulated with 100 nM insulin for 0 to 240 
minutes. The lysates were separated by 7.5% SDS-PAGE and immunoblotted for IRS-2 protein. (B) 
Huh-7 cells were transiently transfected with empty vector control (con) or IRS-2 wt and stimulated with 
100 nM insulin (ins) for 0 to 120 minutes. (C)  Huh-7 cells were stably transfected to express IRS-2 wt 
and treated with 100 nM insulin for 0 to 240 minutes. 
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Based on the results of these experiments it was assumed, that protein degradation of ec-

topically expressed IRS-2 cannot be visualized due to unregulated overexpression of the pro-

tein which is under control of the potent CMV promotor in the expression vectors used in this 

thesis. To circumvent this problem, cycloheximide (CHX) was used to inhibit protein synthesis 

and this approach enabled the visualization of IRS-2 degradation. In contrast to Fao cells 

insulin treatment of HEK293 cells stably expressing IRS-2 + IR or IRS-2 675Ala + IR did not 

further reduce the half-life of the wt protein (Figure 29A), but the disappearance of IRS-2 was 

clearly delayed when Ser 675 was mutated to Ala with a comparable reduction after 360 min-

utes (Figure 29B), supporting the hypothesis that phosphorylation of Ser 675 might be in-

volved in the degradation of the protein.  
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Figure 29 The phosphorylation of Ser 675 influences the degradation of IRS-2. HEK293 cells were 
stably transfected to express either IRS-2 wildtype (wt) and the insulin receptor (IR) or IRS-2 675 Ala + 
IR. The cells were treated with 100 nM insulin (ins) and 25 µg/mL cycloheximide (CHX) for the indi-
cated times. (A) After stimulation cells were lysed and analyzed by 7.5% SDS-PAGE. A representative 
immunoblot for IRS-2 and �-actin is shown. (B) IRS-2 protein was quantified based on scanning densi-
tometry of immunoblots normalized for �-actin (mean ± SEM, n=4, * p<0.05 wt ins vs. 675A ins). 
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4.3.4 Ubiquitination of IRS-2 

 

Ubiquitination is an important posttranslational modification of proteins which are thereby la-

beled for proteasomal degradation. As described above insulin induced the proteasomal deg-

radation of endogenous IRS-2 in Fao cells (section 4.3.3.2) and it was therefore attempted to 

demonstrate an increased ubiquitination of IRS-2. Fao cells were treated 30 minutes with 

lactacystin followed by insulin stimulation for different time periods and cell lysates were 

separated by SDS-PAGE and immunoblotted with an antibody against ubiquitin (Figure 30A). 

Insulin alone did not increase the ubiquitination status of cellular proteins. An increase of 

ubiquitination was only visible after inhibition of the proteasome by lactacystin and in contrast 

to previously published data (138) insulin treatment did not increase the ubiquitination status 

of Fao cells further. To specifically study the ubiquitination of IRS-2 the protein was immuno-

precipitated from Fao cells pretreated with lactacystin and stimulated with insulin for 60 min-

utes. The immunoprecipitates were separated by 7.5% SDS-PAGE and immunoblotted for 

ubiquitin. Lactacystin clearly enhanced the signal of ubiquitinated IRS-2, but insulin had no 

additional effect (Figure 30B).  

Finally, it was attempted to demonstrate the ubiquitination of ectopically expressed IRS-2 and 

IRS-2 675 Ala in HEK293 cells to study the effect of Ser 675 phosphorylation on the ubiquiti-

nation status of IRS-2. However, this approach failed (data not shown).  
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Figure 30 Ubiquitination of IRS-2. (A) Fao cells were pretreated with 10 µM lactacystin (lacta) for 30 
minutes and then stimulated with 100 nM insulin (ins) for 0 to 240 minutes. Cells were lysed and ana-
lyzed by 7.5% SDS-PAGE and immunoblotted for ubiquitin (Ubi). (B) Fao cells were treated with 10 µM 
lactacystin for 30 minutes and 100 nM insulin for 60 minutes. Lysates were immunoprecipitated with a 
polyclonal IRS-2 antibody and immunoblotted for ubiquitin. The blot was reprobed for IRS-2.  
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4.4 Biological regulation and relevance of Serine 907 
phosphorylation 

 

4.4.1 Characterization of kinases 

 

4.4.1.1 In silico amino acid sequence analysis 

 

Ser 907 is located in the C-terminal part of the IRS-2 protein, 4 amino acid residues apart 

from the only Grb2-binding site of IRS-2 Tyr 911 (Figure 31A). Ser 907 is positioned in a con-

sensus MAP kinase phosphorylation site (PXpS/pTP) (230) and the analysis with human pro-

tein reference database indicated that this serine residue could be indeed a target of ERK1/2, 

but also of GSK-3 or of CDK5.  

Ser 907 is a conserved site in human, mouse and rat IRS-2 and in accordance to that the 

phospho-site specific antibody detected phospho-Ser 907 in IRS-2 of all three species (Figure 

9B, Figure 13B).  

IRS-2 Ser 907 has a homologous serine residue in IRS-1, Ser 887 (mouse IRS-1 amino acid 

sequence), which has been identified using mass spectrometric analysis of insulin treated 

HEK293 cells (197) and human muscle biopsies (231) but is otherwise not further character-

ized. Probably due to the high homology of IRS-1 and -2 in this region, the phospho-site spe-

cific Ser 907 antibody also weakly recognized ectopically overexpressed IRS-1 (Figure 13B). 
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Figure 31 Amino acid sequence of mouse IRS-2 surrounding Ser 907. (A) Phosphorylation and protein 
binding motifs in mouse IRS-2. (B) Comparison of mouse, rat and human IRS-2. (C) Comparison of 
mouse IRS-2 and IRS-1. 

4.4.1.2 Inhibition of insulin-induced phosphorylation of Ser 907 by pharmacological 
inhibitors 

 

In order to identify the Ser 907-kinase different pharmacological kinase inhibitors were used. 

Figure 32A shows the effects of rapamycin, wortmannin and SP600125 on the insulin-

induced phosphorylation of Ser 907: neither the inhibition of mTOR, of PI-3 kinase nor JNK 

had any significant effect on the phosphorylation.  

Since short term treatment with TPA produced a Ser 907 phosphorylation similar to insulin 

(Figure 16B) it was assumed that classical or novel PKC isoforms, which are activated by 

TPA, could also be involved in the insulin-induced phosphorylation of this site. To test this, 

Fao cells were treated with 0.1 µM TPA for 24 h to deplete these PKC isoforms (232) and 

subsequently stimulated with insulin for 0 to 240 minutes. Figure 32B shows exemplarily the 

protein amount of PKC δ (a novel PKC isoform) which was clearly diminished after the long-

term TPA treatment, however, this had no effect on the insulin-induced Ser 907 phosphoryla-

tion, arguing against the involvement of PKCs.  
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Since the sequence analysis (4.4.1.1) revealed that the MAP kinases ERK1 and 2 could po-

tentially phosphorylate Ser 907 the MEK1 specific inhibitor PD98059 was used to prevent 

ERK1/2 activation. The inhibition of MEK1 resulted in abolished insulin-induced ERK1/2 acti-

vation (Figure 32B) and reduced the phosphorylation of Ser 907 clearly. 
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Figure 32 Inhibition of insulin-induced Ser 907 phosphorylation in Fao cells. (A) Cells were treated with 
either 25 nM rapamycin (rapa), 100 nM wortmannin (wort) or 10 µM SP600125 (SP) for 30 minutes and 
subsequently stimulated with 100 nM insulin (ins) for 60 minutes. Cells were lysed and analyzed by 
7.5% SDS-PAGE and immunoblotted with phospho-site specific Ser 907 antibody and reprobed with 
IRS-2 protein antibody. (B) Fao cells were pretreated with either 0.1 µM TPA for 24 h or 20 µM 
PD98059 (PD) for 30 minutes and subsequently stimulated with 100 nM insulin (ins) fro 0 to 240 min-
utes. Representative immunoblots with site specific Ser 907 antibody, reblot with IRS-2 antibody, PKCδ 
protein antibody, phospho-ERK 1/2 Thr 202/Tyr 204 antibody and reblot with ERK 1/2 antibody are 
shown.  

4.4.1.3 Inhibition of insulin-induced phosphorylation of Ser 907 by targeting ERK1/2 
with siRNA 

 

To investigate the role of ERK1 and 2 more closely, both kinases were knocked down in Fao 

cells using siRNA oligonucleotides. ERK1 expression could be efficiently reduced but ERK2 

protein levels were only decreased by approximately 50% as determined by western blotting 
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(Figure 33). The knockdown of both kinases resulted in a statistically significant impaired in-

sulin-induced Ser 907 phosphorylation, despite the incomplete knockdown of ERK2. These 

results indicate that ERK1 and 2 are Ser 907 kinases.  
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Figure 33 Phosphorylation of IRS-2 Ser 907 after knockdown of ERK1/2 in Fao cells. Cells were elec-
troporated with siRNA targeting either ERK1, ERK2 or both and control siRNA (con). 48 h after trans-
fection cells were treated with 100 nM insulin (ins) for 30 minutes. Phosphorylation of IRS-2 (Ser 907) 
with the IRS-2 reblot and total ERK1/2 are shown. Phosphorylation intensity of Ser 907 was quantified 
based on scanning densitometry of immunoblots and normalized for IRS-2 protein (mean + SEM, n=4, 
* p<0.05 con ins vs. si ERK1/2 ins). 

4.4.2 Function of Ser 907 

 

To study the function of phospho-serine 907 IRS-2 mutants with an amino acid exchange on 

position 907 generating either a Ser to Ala or a Ser to Glu mutation were made. In different 

sets of experiments these mutants were transiently or stably transfected in different cell lines.  
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4.4.2.1 Transient transfection of BHK cells 

 

In a first step, BHK cells were used to investigate the effects of the IRS-2 907 mutants on the 

proximal and distal insulin signaling. BHK cells were transiently transfected with IRS-2 wt, 

IRS-2 907 Ala or IRS-2 907 Glu mutants and stimulated with insulin for 10, 60 and 120 min-

utes (Figure 34). The tyrosine phosphorylation of IRS-2 was not affected by the 907 Ala mu-

tant, but the Glu mutant, simulating the phosphorylated state, diminished the insulin-induced 

tyrosine phosphorylation. This effect was statistically significant for time point 10 and 120. 

However, both mutants had no effect on the distal insulin signaling evidenced by similar 

phosphorylation patterns of PKB/Akt, GSK-3α and ERK1/2. Only 907 Ala appeared to slightly 

increase PKB/Akt phosphorylation but this effect never reached statistical significance. Of 

note, downstream insulin signaling was not affected by the introduction of IRS-2 when com-

pared to the empty vector transfected controls (Figure 34B). This general lack of an IRS-2 

mediated effect, as it has already been demonstrated in experiments with Ser 675 (Figure 

24), indicated that this cell model was not appropriate to study the function of Ser 907 and 

therefore stably transfected HEK293 cells were used for further experiments. 
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Figure 34 Function of IRS-2 Ser 907 in BHK cells. (A, B) Cells were transiently transfected with empty 
vector as control (con), IRS-2 wildtype (wt), IRS-2 907 Ala or IRS-2 907 Glu (E) and treated with 100 
nM insulin (ins) for 0 to 120 minutes. Lysates were analyzed by 7.5% SDS-Page. (A) IRS-2 was im-
munoprecipitated (IP) with a polyclonal IRS-2 antibody and the blot was probed for phospho-tyrosine 
(pY) and reprobed for IRS-2 protein. Quantification of IRS-2 tyrosine phosphorylation was based on 
scanning densitometry of immunoblots and normalized for IRS-2 protein (mean + SEM, n=5). (B) Rep-
resentative immunoblots for IRS-2 protein, phospho-PKB/Akt Thr 308, phospho-GSKα Ser 21 and 
phospho-ERK1/2 Thr 202/ Tyr 204 with the corresponding reblots for total protein are shown. 
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4.4.2.2 Effect of Ser 907 on insulin signaling in HEK293 cells stably overexpressing 
IRS-2 wildtype and 907 Ala mutant 

 

Since Ser 907 is located in close proximity to Tyr 911, which binds Grb2 after phosphoryla-

tion, it was hypothesized that the phosphorylation of Ser 907 could influence the interaction of 

IRS-2 with Grb2 and probably the activation of ERK1/2 as well. To study the effect of Ser 907 

on MAP kinase signaling HEK293 clones were generated which stably express the empty 

pRK5 vector as control, IRS-2 wt + IR and IRS-2 907 Ala + IR. In addition HEK293 cells 

which stably express IRS-2 with an amino acid exchange of 911 tyrosine to phenylalanine 

(911 Phe), which cannot become phosphorylated, were investigated. For the experiments 2 

different clones of each cell line expressing IRS-2 wt and IRS-2 mutants were used.  

To test whether Ser 907 is influencing the interaction of Grb2 with IRS-2 stable HEK293 

clones were treated with insulin and the lysates were immunoprecipitated with a Grb2 anti-

body and immunoblotted for IRS-2. The association of IRS-2 with Grb2 was clearly and sig-

nificantly induced by insulin treatment in wt and 907 Ala expressing cells but this interaction 

was greatly diminished in IRS-2 911 Phe expressing cells (Figure 35A,B). The insulin-induced 

Grb2 binding to IRS-2 was not different between wt and 907 Ala expressing cells. Of note, the 

reduced Grb2 binding in 907 Ala clone 3B15 was caused by smaller IRS-2 protein content 

(Figure 35A). 

In the same cells the activation of the MAP kinase pathway was studied. Except for the con-

trol cells insulin induced in all cells an ERK1/2 phosphorylation but surprisingly the 911 Phe 

mutant had no effect on the activation (Figure 35B) despite the clearly reduced IRS-2/Grb2 

interaction (Figure 35A). Similarly in 907 Ala expressing cells the ERK1/2 phosphorylation 

was unaffected indicating that the activation of the MAP kinase pathway was independent of 

IRS-2. Since in all cells, apart from the controls, the IR was also stably overexpressed it was 

speculated, that the insulin-induced activation of ERK1/2 was solely dependent on the IR. 

Furthermore the insulin-induced IRS-2 tyrosine phosphorylation and association with p85 was 

investigated. IRS-2 wt and all mutants were tyrosine-phosphorylated to the same extent and 

the binding of p85 was not different (Figure 36). Of note, the abrogation of one single tyrosine 

phosphorylation site (Tyr 911) by mutation to phenylalanine had no effect on the overall tyro-

sine phosphorylation status of the IRS-2 protein (Figure 36). The phosphorylation of PKB/Akt 

and of its downstream target GSK-3 as well as the activation of p70 S6K1 were also investi-

gated in these HEK293 clones but the results did not indicate a significant effect of the 907 

Ala or 911 Phe mutation on these pathways (data not shown).  
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Figure 35 Effect of Ser 907 phosphorylation on insulin-induced activation of the MAP kinase pathway in 
HEK293 cells. Cells were stably transfected with either empty vector as control (con), IRS-2 wildtype 
(wt) and insulin receptor (IR), IRS-2 907 Ala + IR or IRS-2 911 Phe (F) + IR and treated with 100 nM 
insulin (ins) for 10 minutes. (A) Grb2 was immunoprecipitated (IP) with a monoclonal Grb2 antibody 
and the blot was probed for IRS-2 protein (upper panel). Lysates from the same experiment were addi-
tionally separated by 7.5% SDS-PAGE and probed for total IRS-2 protein (lower panel). (B) Quantifica-
tion of IRS-2 from Grb2 IP with 2 different clones for each cell line. Amount of co-immunoprecipitated 
IRS-2 was quantified based on scanning densitometry of immunoblots and normalized for IRS-2 pro-
tein from lysates (mean + SEM, n=4, * p<0.05 con vs. ins, # p<0.05 wt ins vs. 911F ins, NS not signifi-
cant). (C) Lysates were analyzed by 7.5% SDS-Page and representative immunoblots for IRS-2 and IR 
protein, phospho-ERK1/2 Thr 202/ Tyr 204 with the corresponding reblot for total ERK1/2 are shown.  
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Figure 36 Effect of Ser 907 phosphorylation on insulin-induced tyrosine phosphorylation of IRS-2 in 
HEK293 cells. Cells were stably transfected with either empty vector as control (con), IRS-2 wildtype 
(wt) and insulin receptor (IR), IRS-2 907 Ala + IR or IRS-2 911 Phe (F) + IR and treated with 100 nM 
insulin (ins) for 10 minutes. IRS-2 was immunoprecipitated with a polyclonal IRS-2 antibody and the 
blot was probed for phospho-tyrosine (pY) (upper panel) and p85 (lower panel) and reprobed for IRS-2 
protein (middle panel). 

The finding that ERK1/2 activation is apparently independent of IRS-2 protein expression but 

probably dependent on the IR expression was supported by a number of HEK293 cell lines, 

which stably overexpress the IR alone or together with IRS-2 wt or the 907 Ala mutant. In 

these cell lines IRS-2 wt, 907 Ala and IR were stably transfected with different levels of effi-

ciency (Figure 37A, two top panels) leading to pronounced differences in the expression level. 

Because of this apparent problem these cell lines were not used for further studies. Of note, 

the problem of uneven expression levels was not encountered with the 675 Ala clone, which 

had the same expression level of IRS-2 and IR as the wt (Figure 25B).  

In these HEK293 cells, the insulin-induced activation of ERK1/2 was completely dependent 

on the expression of the IR (Figure 37A). Furthermore, ERK1/2 activation was independent of 

IRS-2 co-expression as in cells that only expressed the IR a strong insulin-induced ERK1/2 

phosphorylation was observed (Figure 37A, clone IR11). Of note, HEK293 cells express low 

levels of IR, but due to short exposure time of the ECL-developed membranes to films, the 

endogenous IR is not visible.  

The reduced electrophoretic mobility, constantly observed in IRS-2 after insulin treatment, 

was absent in cells without ectopically expressed IR (Figure 37A, clone 3B15), indicating a 

reduced or even missing posttranslational modification of the protein. The insulin-induced 

tyrosine phosphorylation of IRS-2 was only detectable in cells that expressed IRS-2 together 

with the IR (data not shown).  
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The IR-effect on ERK1/2-activation was further studied in HEK293 cells transiently trans-

fected with different amounts of plasmid-DNA (Figure 37B). 0.25 µg and 2 µg IR plasmid DNA 

were transfected and the stimulation with insulin led to a strong ERK1/2 phosphorylation 

comparable to results obtained in stable HEK293 clones. Transfection efficiency was very 

high and even the small amount of transfected IR plasmid DNA was sufficient to produce high 

levels of IR protein (Figure 37B, compare lanes 2, 3, 4 and 5). Transfecting the cells with IRS-

2 alone had no effect on ERK1/2 activation, only in combination with the IR a robust phos-

phorylation was observed (Figure 37B, last 4 lanes). 

To summarize these data, Grb2 associates with IRS-2 via phospho-tyrosine 911 upon insulin 

stimulation but this does not affect the activation of the MAP kinase pathway, which is regu-

lated IR-dependently but IRS-2-independently in HEK293 cells. 
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Figure 37 Effect of stable (A) and transient (B) transfection of insulin receptor (IR) on ERK1/2 activation 
in HEK293 cells. (A) Cells were stably transfected with either empty vector as control (con), IR, IRS-2 
wildtype (wt) and/or IRS-2 907 Ala generating several clones and treated with 100 nM insulin (ins) for 
10 minutes. Lysates were analyzed by 7.5% SDS-Page and the blot was probed for IRS-2, IR, phos-
pho-ERK1/2 Thr 202/ Tyr 204 and reprobed for ERK1/2 total protein (B) Cells were transiently trans-
fected with IR and or IRS-2 and treated with 100 nM insulin for 10 minutes. 
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5 Discussion 

 

Numerous studies have shown that IRS-1 serine/threonine phosphorylation is one major 

regulatory mechanism of insulin and IGF-1 signal transduction. The pathophysiological dys-

regulation of these phosphorylation events and its connection to the development of insulin 

resistance and type II diabetes mellitus is well accepted (142). In contrast to IRS-1, only a few 

serine phosphorylation sites have been identified and characterized in IRS-2 (186;187). In 

this thesis two novel serine phosphorylation sites were described and their function was stud-

ied. To accomplish this task, phospho-site specific monoclonal antibodies have been gener-

ated and tested for their specificity. The regulation of these insulin-induced phosphorylations 

was determined in several cell culture models and in vivo. Finally, the potential functions of 

Ser 675 and Ser 907 were studied in detail. 

 

5.1 Suitability of monoclonal phospho-site specific antibodies 

 

In order to study novel serine/threonine phosphorylation sites of IRS-2 phospho-site specific 

antibodies had to be generated and tested. The antibodies used in this thesis for the detec-

tion of novel phosphorylation sites Ser 675 and Ser 907 were highly suitable because they 

could only recognize the phosphorylated but not the unphosphorylated respective serine of 

IRS-2 as demonstrated with the corresponding 675 and 907 alanine mutants (Figure 10). Fur-

thermore, it was shown that the antibodies detect rat (Figure 12), mouse (Figure 15) and hu-

man IRS-2 (Figure 14). The p-S-675 antibody showed no cross reactivity with endogenous 

IRS-1 in Fao cells, despite a high sequence homology in the surrounding region of Ser 675 

(Figure 12). And although the antibody for p-S-907 weakly recognized IRS-1 in insulin treated 

cells, this occurred only in an IRS-1 overexpressing cell model (Figure 13). In contrast, en-

dogenous IRS-1 was not detected by the p-S-907 antibody. From these data it was concluded 

that the antibodies used in this thesis are highly suitable for the investigation of IRS-2 serine 

phosphorylation. 

Monoclonal antibodies were used in this thesis because they have a number of advantages 

over polyclonal antibodies. Once the monoclonal antibody-producing hybridoma cell line is 

established and the properties of the antibody is characterized the antibody can be produced 

unlimited and with constant quality. In contrast, polyclonal antibodies are produced once and 
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after the host animal is sacrificed the amount of antibody is limited. Furthermore monoclonal 

antibodies are specific for one epitope whereas the antisera of immunized host animal con-

tain a mixture of different antibodies which recognize various antigens. This has been dem-

onstrated with the p-S-675 and p-S-907 antibodies used in this thesis, which would not rec-

ognize IRS-1 despite a very high sequence homology (Figure 19C and Figure 31C) differing 

only in one amino acid residue. However, the production of monoclonal antibodies is expen-

sive, time consuming and possibly more laborious than that of polyclonal antibodies but the 

high and constant quality of monoclonal antibodies render them superior over polyclonal anti-

bodies. 

 

5.2 Serine 675 

 

5.2.1 Phosphorylation of Ser 675 

 

The present data show that IRS-2 is phosphorylated on Ser 675 by a number of different 

stimuli i.e. insulin, TPA and anisomycin. Insulin is known to activate a large number of ser-

ine/threonine kinases including members of the PI-3 kinase/PKB/GSK pathway, the MAP 

kinase pathway and the mTOR/p70 S6K1 pathway. In addition several PKC isoforms are ac-

tivated by insulin. TPA is best known as an activator of classical and novel PKC isoforms 

(233) and also other kinases, e.g. ERK1/2 (234). Anisomycin induces stress activated kinases 

(SAPK/JNK1-3) (235). All these kinases are known to be involved in the phosphorylation of 

different serine/threonine residues of IRS-1 (144) and a role for all of these kinases for IRS-2 

phosphorylation is very likely.  

The phosphorylation of Ser 675 was observed in Fao and BHK cells transiently transfected 

with mouse and human IRS-2. In addition, the insulin- and TPA-induced phosphorylation was 

demonstrated in primary human hepatocytes which are an excellent model for in vivo condi-

tions since they don’t have the constraints of an immortalized cell line. Ser 675 was also 

strongly phosphorylated in the livers of insulin treated mice, demonstrating the existence of 

this phosphorylation in vivo. Ser 675 phosphorylation was observed in different species (rat, 

mouse and human) and the insulin-induced phosphorylation of Ser 675 was maximal with 1 

nM of insulin, well within the physiological range of insulin concentration suggesting a func-

tional role of this phosphorylation site in vivo, which was further demonstrated with feeding-

induced phosphorylation of hepatic IRS-2 in wt mice (Figure 15B). The consistent occurrence 
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of Ser 675 phosphorylation across different species and models suggests a physiological 

relevance of this site.  

To identify the kinase responsible for phosphorylating Ser 675 under physiological conditions 

the focus was set on insulin as a physiologically relevant stimulus. The inhibition of the PI-3 

kinase by wortmannin and of mTOR by rapamycin resulted in a pronounced decrease of insu-

lin-induced Ser 675 phosphorylation indicating a role of the PI-3 kinase/mTOR pathway. The 

nutrient sensitive kinase mTOR is known as an essential controller of cell growth which inte-

grates insulin/growth factor signals (236) and nutrient signaling (237). mTOR protein is down-

regulated in livers of fasted mice (238) and the activity of the mTOR/p70 S6K1 pathway is 

increased in livers of obese rats (134). Via PKB/Akt insulin induces a phosphorylation of 

mTOR on Ser 2448 which is associated with increased kinase activity (239). Only mTORC1, 

which is a multiprotein complex consisting of mTOR, raptor, GβL and possibly other mem-

bers, is sensitive to the inhibition with rapamycin. The mechanism by which rapamycin acts 

on mTORC1 is not completely understood but it has been proposed that it precludes the 

complex of mTOR and raptor thus uncoupling mTORC1 from its substrates, without affecting 

mTOR’s intrinsic catalytical activity (240;241). Rapamycin has no effect on the function of 

mTORC2, a complex comprised of mTOR, Gβl, rictor and Sin1. This second mTOR complex 

is involved in the regulation of actin remodeling and has been identified as PDK2, which 

phosphorylates PKB/Akt on Ser 473 (52). mTORC1 phosphorylates and activates p70 S6K1 

and inhibits 4E-binding protein 1 (4E-BP1), the repressor of eukaryotic translation initiation 

factor 4E. The phosphorylation of both mTOR targets results in the initiation of mRNA transla-

tion (237) and by that mechanism insulin stimulates cell growth and proliferation.  

The strong effect of rapamycin on the insulin-induced phosphorylation of Ser 675 indicates a 

role for mTORC1 or a mTORC1-dependent kinase for the phosphorylation of this site. Fur-

thermore, Ser 675 is located in a mTOR phosphorylation motif (pS/pTP) (66). The involve-

ment of mTOR was further proved by the knock down of mTOR in Fao cells which resulted in 

impaired insulin-induced phosphorylation of Ser 675. Of note, the silencing of mTOR should 

have affected the activity of the mTORC2 complex as well, but since the phosphorylation of 

Ser 675 was highly sensitive to rapamycin treatment, which only affects mTORC1 (242), it 

could be concluded that mTOR in the mTORC1 complex but not mTORC2 is responsible for 

the phosphorylation this site.  

Furthermore, an actual co-localization of IRS-2 and mTOR in Fao cells could be demon-

strated with co-immunoprecipitation experiments (Figure 22). It was demonstrated that mTOR 

does not directly associate with IRS-2 but is directed to its substrate via raptor which binds a 

region upstream of Ser 675, termed Shc and IRS-1 NPXY binding (SAIN) domain, which is 

actually the PTB domain (243;244). The association of mTOR with IRS-2 was constitutive and 
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the same has been demonstrated for the association of mTOR with IRS-1 in 3T3-L1 adipo-

cytes (160) and myotubes (130). The concomitant stimulation of Fao cells with insulin and 

rapamycin seemed to decrease the association of IRS-2 and mTOR (Figure 22) probably due 

to inhibition of the association of raptor and mTOR leading to dissociation of mTOR from IRS-

2. However, this does not explain the association of mTOR and IRS-2 still present in rapamy-

cin treated cells particularly in the absence of insulin. It could be speculated that insulin in-

duces other regulatory mechanisms that lead to the reduced association of mTOR and IRS-2 

in rapamycin treated cells, maybe via mTOR phosphorylation on Ser 2448 or other phos-

phorylation sites but this hypothesis needs further clarification. 

Insulin activates mTOR and this leads to protein synthesis and cell growth but this kinase also 

exerts a physiological feedback regulation on the level of the IRS-proteins by increasing the 

phosphorylation of serine/threonine residues and increasing the degradation of these proteins 

thus turning off the insulin signal (245). In hyperinsulinemic, insulin resistant states however 

the pathological increased activation of mTOR/p70 S6K1 is frequently associated with insulin 

resistance by inhibition of IRS protein function via serine phosphorylation (132;160;163;246), 

translocation (247) and degradation (123;125;164;165). Especially Ser 632 which is the ho-

mologous Ser residue of IRS-1 to Ser 675 of IRS-2, has been shown to be a target of mTOR 

(130;131;160;244) and the chronic inhibition of mTOR with rapamycin in rats results in re-

duced hepatic IRS-1 Ser 632 phosphorylation after refeeding (248).  

Ser 632 of IRS-1 is not only a target of mTOR  but could also be phosphorylated by the acti-

vation of p70 S6K1 (161;164) and of the MAP kinases (159). However, the involvement of 

p70 S6K1 in Ser 675 phosphorylation is not likely, since the knock down of this kinase in Fao 

cells had no effect on the insulin-induced phosphorylation of this site and Ser 675 is not lo-

cated in a p70 S6K1 consensus phosphorylation motif (RXRXXpS) (249). Nevertheless, ex-

periments with anisomycin in conjunction with inhibition of mTOR by rapamycin showed, that 

IRS-2 Ser 675 is also phosphorylated independently of mTOR, indicating a role of other 

kinases (Figure 23). This finding was further demonstrated by the inability of rapamycin to 

affect the electrophoretic mobility of IRS-2 in anisomycin treated cells proving that pathways 

other than the mTOR/p70 S6K1 pathway lead to phosphorylation of Ser 675. A likely candi-

date for another Ser 675 kinase are the JNK isoforms, which are activated by TNFα and ani-

somycin. Despite the lack of a TNFα effect on Ser 675 phosphorylation in Fao cells, which for 

unknown reasons did also not activate JNK, it could be speculated, that under circumstances 

that activate these kinases a phosphorylation of Ser 675 might be observed. This is particu-

larly important as TNFα is connected to insulin resistance by serine/threonine hyperphos-

phorylation of IRS-1 (151;250) and the strong anisomycin effect on Ser 675 phosphorylation 

could indicate that in insulin resistant states Ser 675 might also be phosphorylated. The effect 

of TNFα  should be investigated in a suitable model in the future. 
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Of note, other stimuli like hyperglycemia (131) and high concentrations of amino acids in 

combination with hyperinsulinemia (251) have been shown to be involved in mTOR-

dependent phosphorylation of mouse IRS-1 Ser 632. Nutrient excess and obesity are con-

nected to insulin resistance and type II diabetes mellitus (252) and indeed, the phosphoryla-

tion of human IRS-1 at Ser 636 is upregulated in primary culture of skeletal muscle cells from 

type II diabetic patients (159) and in livers of mice fed a high fat diet (161). Furthermore, the 

overactivation of the mTOR/p70 S6K1 pathway in liver and muscle of high fat diet fed rats has 

been linked with increased Ser 636 phosphorylation (134). The role of nutrient excess for the 

phosphorylation of IRS-2 Ser 675 has not been addressed in the course of this thesis but 

could be investigated in vivo in the future, for instance in a model of high fat diet-fed mice. 

The phosphorylation of Ser 675 was shown to be a late event of insulin signaling occurring 

after 30 to 60 minutes of Fao cell stimulation (Figure 18A). This kind of phosphorylation ki-

netic has been described for several serine sites of IRS-1: Ser 636 of human IRS-1 is phos-

phorylated maximally after 30 minutes of insulin stimulation in CHO cells overexpressing the 

IR and IRS-1 (182). The phosphorylation of IRS-1 Ser 307 was maximal after 15 to 30 min-

utes in 32D cells expressing the IR and IRS-1 protein (174), in 3T3-L1 adipocytes (160) and 

in L6 myotubes (185). These phosphorylation kinetics are in contrast to the rapid phosphory-

lation of IRS-1 and -2 on tyrosine residues, which occurs within 2 minutes after insulin stimu-

lation (37;77;104;229;253) and which is the prerequisite for downstream signal transduction. 

Ser 302, a phosphorylation site associated with positive regulation of insulin signaling, is al-

ready strongly phosphorylated 5 minutes after insulin treatment (185). In general, early IRS-

phosphorylation events might therefore be associated with positive regulation while a late 

phosphorylation of serine residues might rather indicate negative regulation. Accordingly, the 

late phosphorylation of Ser 675 could imply this site as a negative regulator of insulin signal-

ing.  

 

5.2.2 Degradation of IRS-2 and potential involvement of Ser 675 

 

The findings in this thesis suggest that Ser 675 phosphorylation might be involved in IRS-2 

degradation, which is an important feature of IRS-2 regulation. The fast degradation of IRS-2 

protein in the liver after the onset of refeeding has been described in mice (90) and it has 

been speculated that this is the prerequisite to shift the insulin signaling towards IRS-1, which 

is suspected to be dominant for the hepatic nutrient homeostasis in the postprandial state 

(91) and in this context IRS-2 downregulation via degradation seems to be essential. More-

over, the IRS proteins show diminished protein expression in liver and muscle in different 
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animal models of obesity, insulin resistance and diabetes (134;254-256). It is therefore of 

great interest to understand and possibly modulate the mechanisms responsible for the insu-

lin-induced degradation of the IRS proteins.  

The present data show that Ser 675 is phosphorylated by mTOR and the inhibition of this 

kinase led to abolished insulin-induced proteasomal degradation of endogenous IRS-2 in Fao 

cells (Figure 27) and (138)). Furthermore, in livers of refed mice a robust Ser 675 phosphory-

lation was observed concomitantly with a pronounced IRS-2 protein decrease possibly sug-

gesting the relevance of this site for degradation. To investigate the precise function of Ser 

675 in IRS-2 degradation the insulin-induced degradation of wt IRS-2 and the non phosphory-

latable 675 Ala mutant was investigated in transiently and stably transfected cell models. This 

proved to be difficult due to the strong and unregulated expression of ectopic IRS-2, which 

was under the control of the CMV promotor. To circumvent this problem cycloheximide was 

used to monitor the half life and insulin-dependent IRS-2 degradation. Wildtype IRS-2 was 

reduced by about 50% after 180 minutes, similar to data obtained for IRS-1 (137), but an ad-

ditional effect of insulin was not visible. However, under these conditions the IRS-2 675 Ala 

mutant had a prolonged half life (Figure 29), indicating a role of Ser 675 for the stability of 

IRS-2.  

In order to degrade proteins by the proteasome they need to be labeled with ubiquitin, a small 

8.5 kDa protein (257;258). Ubiquitination is a three step process: The ubiquitin-activating en-

zyme E1 activates the C-terminal glycine of the ubiquitin molecule. Following activation, an 

enzyme from the E2 ubiquitin-conjugating enzyme family transfers the ubiquitin molecule to a 

member of the ubiquitin-protein ligase family (E3) which specifically binds the substrate pro-

tein. E3 catalyzes the covalent attachment of ubiquitin to its substrate. Ubiquitin is bound to 

the ε-NH2 group of a lysine residue of the target protein to form an isopeptide bond. The 26-S 

proteasome recognizes poly-ubiquitinated proteins for degradation, therefore the attachment 

of more ubiquitin molecules to lysine 48 of the previously conjugated ubiquitin molecule is 

catalyzed. Suppressor of cytokine signaling (SOCS) 1 and 3, which are involved in negative 

feedback regulation of Janus kinase (Jak)/signal transducer and activator of transcription 

(STAT) signaling, have been shown to facilitate the binding of IRS-1 and -2 to elongin BC 

ubiquitin ligase, a member of the large family of E3 ubiquitin ligases and are thereby involved 

in the degradation of IRS-1 and IRS-2 (129). Another E3-ubiquitin ligase is Cul7, which spe-

cifically targets serine phosphorylated IRS-1 (137) for proteasomal degradation. The involve-

ment of the mTOR/p70 S6K1 pathway for this IRS-1 phosphorylation was demonstrated, in 

particular the combined phosphorylation of serine residues 307, 312, 527 and 636/639 (cor-

responding to human IRS-1) (137).  
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 A sequence scan of IRS-2 with UBPred, a software for the prediction of ubiquitination sites 

(259), indicated that two lysines (Lys 667 and Lys 683) flanking Ser 675 have a probability for 

ubiquitination. It can be speculated that the phosphorylation of IRS-2 on Ser 675 is a prereq-

uisite for the ubiquitination of either or both of these lysine residues thus facilitating the pro-

teasomal degradation. The prerequisite of phosphorylation for subsequent ubiquitination has 

been suggested for IRS-1 (125;260) (261) and reported for other proteins (262;263). An at-

tempt to demonstrate a differential ubiquitination pattern of wt IRS-2 and 675 Ala in stably 

transfected HEK293 cells failed, however, a literature screening showed, that ubiquitination is 

usually demonstrated by co-expression of the protein of interest together with ubiquitin (129) 

and therefore, it might be necessary to co-express ubiquitin to demonstrate the regulation of 

IRS-2-ubiquitination.  

Studies that aimed to prove the relevance of the phosphorylation of the homologous Ser 632 

(mouse numbering) for IRS-1 degradation failed (131;137), while the importance of mTOR 

and mTOR-dependent, but also mTOR-independent serine phosphorylation could be demon-

strated (125;164;248;264;265), namely the involvement of Ser 307 (266). Therefore, it can be 

suggested that the mTOR-dependent phosphorylation of other yet unknown residues of IRS-2 

and further mTOR dependent effects despite serine phosphorylation of IRS-2 are also impor-

tant for the degradation of IRS-2 protein. This hypothesis is supported by the drastic effects of 

rapamycin on the electrophoretic mobility of IRS-2 (Figure 27A): mTOR inhibition not only 

inhibits proteasomal degradation but almost completely prevents the IRS-2 shift usually seen 

with insulin treatment, thus mTOR inhibition leads to reduced posttranslational modification of 

IRS-2, most likely serine/threonine phosphorylation of several other sites, which remain yet to 

be identified.  

Of note, the investigation of IRS-2 phosphorylations in other insulin responsive tissues was 

beyond the scope of this thesis but a relevance of Ser 675 in other tissues is very likely. IRS-

2 is of great importance for the survival of β-cells, shown by the diabetic whole body IRS-2 

knock out mouse in which β-cell hyperplasia in response to insulin resistance is abrogated 

(79). The diabetes of these IRS-2 knock out mice could be cured by transgenic islets express-

ing IRS-2 (81). Agents that improve the expression or stability of IRS-2 should therefore be 

beneficial for the survival of β-cells in diabetic patients and inhibition of Ser 675 phosphoryla-

tion could aid in the stability of IRS-2 protein. 
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5.2.3 Effect of Ser 675 on the IRS-2-association with IR and PI-3 kinase 

 

The serine/threonine phosphorylations of IRS-1 have been shown to exert hindrance effects 

on the association of IRS-1 and the IR and of IRS-1 and p85 respectively. The phosphoryla-

tion of Ser 24 in the PH domain of IRS-1 was shown to influence the association with the IR 

negatively (267). And the phosphorylations on Ser 302/307/612 have been shown to nega-

tively influence the association of IRS-1 with p85 (268). Since Ser 675 is adjacent to a p85 

binding motif (pY671MPM), an interaction with the binding of p85 appears likely. For the ho-

mologous Ser 632 and the neighboring Ser 635 of IRS-1 the reduced binding of p85 has been 

previously described (131). However, the association of p85 and IRS-2 was not affected in 

IRS-2 675 Ala expressing cells (Figure 25A) despite the close proximity of Ser 675 to Tyr 671. 

Moreover, the phosphorylation of Ser 675 appeared not to influence the association of IRS-2 

with the IR as determined by IRS-2 tyrosine phosphorylation, despite the localization of Ser 

675 in the KRLB domain. However, the region of the KRLB domain which binds directly to the 

IR (residues 602-637) (100) is not in close proximity to Ser 675 and phosphorylation of Ser 

675 might therefore have no direct effect on the IRS-2-IR interaction.  

In conclusion, the phosphorylation of Ser 675 does not appear to have direct effects on insu-

lin signal transduction, but might play a role in the degradation of the protein. 

 

5.3 Serine 907 

 

5.3.1 Phosphorylation of Ser 907 

 

The phosphorylation of Ser 907 was induced in cell culture by insulin, TPA and anisomycin 

indicating a potential involvement of kinases of the PI-3 kinase- and the MAP kinase pathway 

but also of PKC isoforms and stress activated kinases. The intensity of the Ser 907 phos-

phorylation was dependent on the insulin concentration and 100 nM of insulin induced a 

maximal response in Fao cells. This is in contrast to Ser 675, which was phosphorylated al-

ready at low nM insulin concentrations. Nevertheless, Ser 907 was also phosphorylated in 

vivo after insulin treatment and, more importantly, after refeeding as well. The phosphoryla-

tion after 5 hours of refeeding was not as pronounced as that of Ser 675 but statistically sig-

nificant (Figure 15), indicating a physiological relevance of the Ser 907 phosphorylation.  
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As for Ser 675, the insulin-induced phosphorylation proved to be a late event of insulin signal-

ing, occurring after 60 minutes of insulin treatment of Fao cells. As discussed for Ser 675 in 

section 5.2.1 this late phosphorylation could indicate a role in negative regulation of insulin 

signaling.  

To identify the kinase which phosphorylates Ser 907 upon insulin treatment several kinase 

inhibitors were used. The phosphorylation was abrogated in cells treated with the MEK1 in-

hibitor PD98059, suggesting ERK1/2 (or an ERK1/2-dependent kinase) as a likely candidate. 

Despite an incomplete knock down of ERK2 using siRNA oligonucleotides, the insulin-

dependent Ser 907 phosphorylation was clearly impaired after the silencing of both ERK-

isoforms. Moreover, since Ser 907 is located in an ERK1/2 consensus phosphorylation motif 

(PXpS/pTP (230)), it was concluded that this is indeed the kinase responsible for the phos-

phorylation Ser 907 after insulin treatment.  

The possible involvement of other insulin-activated kinases could not be demonstrated with 

the pharmacological inhibitors used in this thesis. GSK-3 was proposed by the human protein 

reference database (219) but the involvement of this kinase is not very likely, since it phos-

phorylates the motif pSXXXpS (269) in which the serine in position +5 needs prior phosphory-

lation by a priming kinase. However, Ser 907 is not located in such a  motif.   

Anisomycin treatment strongly phosphorylated Ser 907 suggesting a role for SAPK/JNK. 

However, these kinases were only weakly activated in response to insulin and the inhibition of 

JNK with SP600125 did not interfere with the insulin dependent phosphorylation of Ser 907. 

The focus of this thesis was to identify the kinase responsible for phosphorylation of Ser 907 

after insulin stimulation, which is the physiological stimulus, therefore the possible involve-

ment of JNK, which is frequently activated in pathological states like insulin resistance (151) 

was not studied further.  

The serine kinase ERK1/2 has been recognized as an IRS-1 kinase as it phosphorylates Ser 

612 (160;270) and has been shown to phosphorylate Ser 632 in primary human skeletal 

muscle cells of type 2 diabetic patients (159). The ERK1/2-dependent IRS-1 phosphorylation 

has been involved in negative regulation of insulin signaling and in the context of insulin resis-

tance the phosphorylation of Ser 612 is increased in skeletal muscle of mice fed a high fat 

diet compared to control  animals (268). The activation of the MAP kinase pathway has been 

shown to facilitate the negative feedback regulation of insulin signaling on the level of IRS-1 

serine phosphorylation (156;270-272). 
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5.3.2 Function of Ser 907 

 

IRS-2 has been shown to be crucial for the transduction of the insulin signal into the MAP 

kinase pathway in different tissues. In L6 myotubes (273) and human myotubes (274) insulin 

signals predominantly through IRS-2 into the MAP kinase pathway as the silencing of IRS-2 

in these cells resulted in ablated insulin-induced ERK1/2 activation. In the �-cells IRS-2 has 

been shown to be crucial for development and proliferation (84) and IGF-1 signaling into the 

MAP kinase pathway was restored in IRS-2 overexpressing �-cells from IRS-2 knock out 

mice (81). In the liver a tissue specific knock out of IRS-2 in mice strongly reduced insulin-

induced ERK1/2 phosphorylation (87), while a liver specific knock down of IRS-2 by only 70% 

had no effect on the MAP kinase signaling (88) suggesting that the remaining IRS-2 protein 

levels are sufficient to maintain downstream signaling. These studies showed that IRS-2 is an 

important mediator of the insulin/IGF-1 signal into the MAP kinase pathway in different tis-

sues.  

Tyr 911 of IRS-2 is part of a consensus Grb2 binding site (pYI/VN (24)) and in contrast to the 

numerous possible p85 binding sites of IRS-2 it is the only one for Grb2. Although there are 

no reports on the actual role of Tyr 911 of IRS-2 on the association with Grb2 the binding of 

Grb2 to IRS-1 is facilitated solely via Tyr 891 (mouse IRS-1 amino acid sequence), which is 

the homologous tyrosine residue in IRS-1 (275). Since Ser 907 is located in close proximity to 

Tyr 911 it was hypothesized that phosphorylation of this serine residue influences the interac-

tion of IRS-2 with Grb2 and/or the phosphorylation of Tyr 911. ERK1/2 dependent phosphory-

lation of activators of the MAP kinase pathway has been shown to exert negative feedback 

control: Grb2 associated binder 2 (Gab2) phosphorylation downregulates its interaction with 

SHP-2, which is a component of the MAP kinase activating pathway induced by IL-2 in T-

lymphocytes (276) and ERK1/2 is also involved in the negative regulation of Grb2 and Sos 

association (277). Furthermore, the close proximity of phospho-serines to SH2-domain bind-

ing motifs has been shown to negatively modulate the interaction of SH2 domain-containing 

proteins with phospho-tyrosine residues (131;168;270). Therefore it would be possible that 

phosphorylation of Ser 907 reduces the binding of Grb2 to the phosphorylated Tyr 911 motif 

of IRS-2 thus leading to an attenuation of the insulin-induced activation of the MAP kinase 

pathway. 

The functional role of Ser 907 was studied in stably transfected HEK293 cells. Experiments 

with different clones revealed that the co-expression of the IR and IRS-2 was necessary for 

the insulin-induced tyrosine phosphorylation of IRS-2 (Figure 36). Surprisingly, the strong 

insulin-induced activation of the MAP kinase pathway was only dependent on the expression 

of IR (either transiently or stably (Figure 37)) but not on the presence of IRS-2 which had no 
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effect whatsoever on this pathway, suggesting that the IR is the limiting factor for the activa-

tion of the MAP kinase pathway. This finding could be explained by studies showing that Shc 

is the predominant adapter protein for the IR --> MAP kinase signal transduction in rat fibro-

blasts (278). Shc competes with IRS proteins for binding of the Grb2-Sos complex (279). 

While IRS-2 possesses only one Grb2-binding site (pY911INI), Shc has at least two 

(pY317VNV, pYpY239/240NDF) with Tyr 317 being of major importance for the interaction with 

Grb2 (280). Shc has therefore more possibilities to associate with Grb2 molecules from a 

limited pool than IRS-2. Furthermore, Shc and IRS-2 not only compete for Grb2 but also for 

the activated IR, since they both bind to the same NPEpY960 motif in the juxtamembrane re-

gion of the IR (Figure 38) (281;282). In the experimental setting used in this thesis however 

ectopic IRS-2 was greatly overexpressed and the number of IRS-2 molecules should exceed 

the number of Shc molecules by far and a displacement of Shc by IRS-2 would be expected. 

This was apparently not the case as IRS-2 did not influence MAP kinase activation. An expla-

nation of this finding could be that the HEK293 cells are of human origin as is the ectopically 

co-expressed IR, but the co-expressed IRS-2 was of murine origin. The IR might therefore 

preferably bind human Shc than IRS-2 of mouse origin. However arguing against this hy-

pothesis is the high homology of human and murine IR and the strong IRS-2 tyrosine phos-

phorylation observed after insulin treatment (Figure 36). The decision whether the insulin sig-

nal is transduced into the MAP kinase pathway via IR --> Shc or IR --> IRS might also be tis-

sue dependent.  

Another possible explanation for the apparently IRS-2-independent signaling into the MAP 

kinase pathway is provided by another substrate of the IR: Gab1 (Figure 38). This molecule 

shares structural homology with the IRS-proteins, especially in the PH domain (25), which is 

essential for its localization to the plasma membrane where it becomes phosphorylated on 

several tyrosine residues in the C-terminal part by the activated IR (45). Gab1 does not pos-

sess a PTB domain, therefore a direct binding to the IR is not likely, at least not via IR Tyr 

960. A number of phosphorylated tyrosine residues facilitate the binding to SH2-domain con-

taining proteins, most notably SHP-2 (45). Several studies demonstrated that Gab1 acts via 

SHP-2 to control the activation of ERK1/2 (283;284), however, the precise molecular events 

that lead to the ERK1/2 activation exerted by the phosphatase/adapter protein SHP-2 are not 

completely dissolved (49). Nevertheless, the IR-->Gab1-->SHP-2 pathway provides an alter-

native to the IR-->Shc--> or the IR-->IRS pathway for the activation of ERK1/2 (Figure 38). 

The importance of Gab1 for the activation of ERK1/2 was shown by the liver specific knock 

out of this adapter protein in mice causing an abolished insulin-induced ERK1/2 phosphoryla-

tion (271). The involvement of Gab1 provides an explanation for the IR-dependent but IRS-2-

independent activation of the MAP kinase pathway observed in stable HEK293 clones. 

 



Discussion 110 

Grb2 pY960 Gab1
PH

pY627

plasma membrane

ERK1/2

MEK1

Raf

Ras

S
H

2

Sos
SHP-2S

H
2

2

pY960

Shc

P
TB

pY239/240

Gab1
PHIRS-2

P
TBpY911

PH

pY627

plasma membrane

IR

1

pY317

Shc

P
TB

pY239/240

pY317

IRS-2pY911

PH

IR

 

Figure 38 IR-dependent activation of the MAP kinase pathway. 1 Phospho-Tyr 960 of the activated IR 
is bound by IRS-2 and Shc via their PTB domains. IRS-2 and Gab1 associate with their PH domains on 
the plasma membrane in close proximity of the IR. After appropriate localization and binding of adapter 
molecules the IR phosphorylated several Tyr residues of IRS-2, Shc and Gab1. 2 These phospho-Tyr 
residues are now recognized and bound by Grb2 or SHP-2 via SH2 domains. This interaction leads 
subsequently to the activation of the Ras� Raf� MEK1�ERK1/2 signaling cascade. Abbreviations: 
Gab1, Grb2 associated binder 1; Grb2, growth factor receptor bound 2; PH, pleckstrin homology; PTB, 
phosphotyrosine binding; pY, phospho-tyrosine; SH2, src homology 2; bold arrows indicate binding of 
domains; dashed arrows indicate phosphorylation; thin arrows indicate activation. 
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Nevertheless, IRS-2 does associate with Grb2 in cell culture (Figure 35A) and in vivo (77) and 

the interaction was clearly abrogated in IRS-2 911 Phe expressing HEK293 cells (Figure 35A, 

B). However the introduction of the 907 Ala mutant had no effect on the Grb2-IRS-2 interac-

tion demonstrating no role of this site for the interaction of IRS-2 with Grb2 in the cell culture 

model used in this thesis. It was also attempted to specifically study the effect of the Ser 907 

phosphorylation on the phosphorylation of Tyr 911, but the commercial antibody against the 

homologous phospho-Tyr 891 of IRS-1 was not specific for phospho-Tyr 911 of IRS-2 as 

tested with IRS-2 911 Phe mutant despite the high homology of these two sites (data not 

shown). 

From the data obtained with IRS-2 907 Ala + IR transfected cells it is evident that the phos-

phorylation of Ser 907 has no effect on the association of IRS-2 with Grb2. The role of IRS-2 

for the insulin-induced activation of the MAP kinase pathway appears to be dependent on 

several determinants such as the cell culture model and the expression levels of the partici-

pating signaling proteins.  

 

5.4 Limitations of cell culture models used in this thesis 

 

In this thesis the phosphorylation of IRS-2 on serine residues 675 and 907 has been clearly 

demonstrated in different cell culture models and primary hepatocytes. The phosphorylations 

occurred in livers of refed as well as insulin treated mice and both phosphorylations were ob-

served in different species. In order to elucidate the responsible IRS-2 kinases and the func-

tion of both sites by alanine mutants studies had to be performed in cell culture. Unfortunately 

each of the used model systems had certain limitations.  

The BHK cells were easily transfectable and showed appropriate responses to insulin stimu-

lation, however an IRS-2 effect on downstream insulin signaling was not observed. Only a 

weak effect of both phospho-sites on IRS-2 tyrosine phosphorylation was noted, which how-

ever did not confer to downstream signaling events.  

A very good cell culture model of liver metabolism is the Fao rat hepatoma cell line. These 

cells express large amounts of IR and IRS-1 and -2 (Figure 16) and therefore respond well to 

physiological concentrations of insulin (107). Furthermore Fao cells could be used for meta-

bolic studies, for instance regulation of gluconeogenesis (112;285-287) and lipid metabolism 

(288;289). However, the large endogenous IRS-2 protein amount hinders the study of ectopi-

cally expressed mutant IRS-2 proteins as they would likely derange insulin signaling and a 

discrimination between effects of wt and mutant IRS-2 might not be possible. In addition, Fao 
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cells express little amounts of IGF-1 receptor thus precluding the study of this effector of IRS 

protein dependent signaling. 

The Huh-7 cell line was used as an alternative for the Fao cell line. These cells were easily 

transfectable but due to the problem of unregulated IRS-2 overexpression and failure to dem-

onstrate IRS-2 degradation the work with these cells was discontinued.  

HEK293 cells are a widely used cell line since they can be transfected with high efficiency 

and the establishment of clones stably overexpressing the protein of interest is easy. There-

fore HEK293 cells were used to study the effects of IRS-2 mutants on proximal and distal 

insulin signaling. In the course of this thesis it became evident that the effect of IRS-2 on the 

MAP kinase pathway could not be studied due to solely IR-dependent activation of this path-

way. However, the insulin-induced degradation of IRS-2 was demonstrated clearly by use of 

cycloheximide. 

All models presented limitations making it difficult to draw absolute conclusions from the ob-

tained data. The findings of this thesis should be ideally confirmed with adequate in vivo 

models, namely by use of transgenic mice bearing IRS-2 mutants with alanine substitutions of 

Ser 675 and Ser 907. The usage of such transgenic mouse models expressing IRS-1 mutants 

have been recently described (177;268). The transgenic muscle-specific overexpression of 

skeletal muscle IRS-1 with mutations of serine residues 302, 307 and 612 to alanine resulted 

in partial protection against high fat diet induced muscular insulin resistance by improved IRS-

1 tyrosine phosphorylation (268). The effect was not attributed to the overexpression of IRS-1 

which was shown by control animals with muscular IRS-1 wt overexpression. From this study 

it was concluded that the phosphorylation of these three serine residues per se mediate mus-

cular insulin resistance and that these phosphorylation are not a mere side-effect of this 

pathological condition. However, this model is somewhat problematic as it used the alanine 

mutant of Ser 302, a site which is actually connected to positive regulation of insulin signaling 

(179) but the effect of Ser 302 might have been superimposed by the other two phospho-

sites. Another transgenic mouse model investigated the effect of Ser 307 on whole body insu-

lin signaling. These mice expressed IRS-1 with a mutation of Ser 307 to alanine instead of wt 

IRS-1 and the animals exhibited a very surprising phenotype. In contrast to data frequently 

obtained in cell culture (151;152;170;174) which place Ser 307 as a negative feedback regu-

lator of insulin signaling and connect it to insulin resistance due to its phosphorylation by JNK, 

a kinase strongly upregulated in insulin resistant states, these mice were not protected 

against high fat diet-induced insulin resistance and showed defective insulin signaling in mus-

cle and cultured primary hepatocytes. The Ala 307 expressing mice developed an even more 

severe insulin resistance, indicating that Ser 307 in mice is a positive regulatory site. This 

surprising result shows that it is crucial to confirm all in vitro data with appropriate in vivo 

models. 
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Creating such a transgenic mouse is difficult and time consuming. An attractive alternative to 

a transgenic in vivo model could be the use of primary mouse hepatocytes from the existing 

IRS-2 knock out mouse (79) and the transfection with the IRS-2 alanine mutants as it has 

been shown with the reconstitution of IRS-2 in such an primary hepatocyte culture (290). This 

would give valueable information about the effect of the serine phosphorylation sites on he-

patic metabolism and insulin signaling. An even more elegant approach is the transfection of 

the IRS-2 knock out mouse with the desired IRS-2 mutants. This is possible via tail vein injec-

tion of “naked DNA”, which leads to expression in the liver (291) or even liver tissue-specific 

adenoviruses carrying the plasmids of interest (292). 

Furthermore, it should be kept in mind that phosphorylation of single serine residues is not a 

unique event, but activation of insulin-regulated kinases rather result in an array of multiple 

serine/threonine phosphorylations, which may even be phosphorylated interdependently 

(185). It is possible that Ser 907 has a function together with other yet undefined ser-

ine/threonine residues for instance other sites that are phosphorylated in the late phase of 

insulin signaling as Ser 907 itself. The investigations of such “phosphorylation-arrays” is chal-

lenging, particularly in vivo and to date only one report studied the in vivo phosphorylation 

pattern of IRS-1 after insulin infusion using mass spectrometric analysis methods (231). With 

this method the detection of many more serine/threonine site of IRS-2 is very likely and might 

provide the basis for understanding and treatment of insulin resistance. To elucidate the regu-

lation of insulin signal transduction by these phosphorylation patterns however is even more 

challenging and appears not to be possible in vivo in the near future. 

 

5.5 Conclusion 

 

The understanding of insulin signal regulation and its dysregulation in pathological states is 

crucial for the development of therapeutical strategies to treat insulin resistance and type 2 

diabetes. Hyperphosphorylation of serine/threonine residues of IRS-1 has been recognized 

as possible drug target (293) and the same could be expected for IRS-2. Therefore the thor-

ough investigation of novel serine/threonine phosphorylation sites like the ones presented in 

this thesis is of great importance. The modulation of certain IRS-Ser/Thr kinases and the inhi-

bition of IRS phosphatases (294) has been investigated in regard to the improvement of insu-

lin signaling. The use of salicylates has been shown to protect IRS-1 from Ser/Thr phosphory-

lation in TNFα treated cells (149) and the downregulation of JNK has been shown to improve 

hepatic glucose tolerance in obese db/db mice (295). However, the mere inhibition of single 

kinases in vivo might have undesirable effects like it has been recently demonstrated with 
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chronic inhibition of mTOR by rapamycin in rats which resulted in insulin resistance despite 

an improved activation of the IRS/PI-3 kinase/PKB axis (248). This was due to previously 

unknown inhibitory effects of mTOR on the hepatic gluconeogenesis which were abrogated 

under rapamycin treatment. In conclusion, an exact understanding of IRS-1 and -2 ser-

ine/threonine phosphorylation and the regulation and function of the responsible kinases but 

also of the complex interplay of these phosphorylation sites is needed to obtain new treat-

ment options for insulin resistance and type 2 diabetes mellitus. For this purpose the present 

work, providing a thorough study on the phosphorylation of two novel serine phospho-sites of 

IRS-2, is a next step in this direction indicating similarities but also distinct regulatory mecha-

nisms for IRS-1 and IRS-2. The basic understanding of phosphorylation of Ser 675 and Ser 

907 is the prerequisite for further investigations regarding the function of both sites in vivo for 

normal and pathologically impaired insulin signaling. 
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6 Summary 

 

Insulin receptor substrate (IRS) proteins are major transducers of the insulin and IGF-1 signal 

into the PI-3 kinase/PKB and the MAP kinase pathway. In addition to tyrosine phosphoryla-

tion, a large number of serine/threonine phosphorylation sites enable the IRS proteins to inte-

grate different extra- and intracellular stimuli resulting in positive and negative modulation of 

the insulin and IGF-1 signal. Chronic hyperphosphorylation of serine/threonine sites of IRS-1 

is involved in the development of insulin resistance. IRS-2 is of great importance for β-cell 

survival and for the regulation of hepatic metabolism. The study of serine/threonine phos-

phorylations is required to understand the physiological and pathophysiological regulation of 

this important mediator of insulin signaling. In this thesis two novel IRS-2 serine phosphoryla-

tion sites  have been identified and characterized (mouse amino acid numbering): Ser 675, 

which is located in the kinase regulatory loop binding (KRLB) domain unique to IRS-2 and Ser 

907, which is adjacent to the Grb2 binding site Tyr 911. Using phospho-site specific antibod-

ies both sites were demonstrated to be phosphorylated upon insulin, phorbol ester and ani-

somycin treatment in Fao rat hepatoma cells. The phosphorylation was also detected in pri-

mary human hepatocytes and in liver tissue of insulin treated or refed mice.  

The insulin-induced phosphorylation of Ser 907 was mediated by the MAP kinase ERK1/2. 

Simulation of a permanent phosphorylation of this site in BHK cells expressing IRS-2 Glu 907 

led to a slight decrease of IRS-2 tyrosine phosphorylation with no apparent effect on insulin 

downstream signaling. The insulin-induced association of IRS-2 with Grb2 in HEK293 cells 

was abrogated by mutation of the adjacent Tyr 911 to Phe, but not influenced by mutation of 

Ser 907 to Ala. Of note, the activation of MAP kinase signaling was not impaired in HEK293 

cells expressing IRS-2 Phe 911 and not regulated by the expression level of IRS-2 wildtype, 

but completely dependent on IR expression, indicating the importance of an alternative, IRS-

2-Grb2-independent pathway for the activation of MAP kinase signaling in these cells.  

The insulin-induced phosphorylation of Ser 675 was dependent on mTOR, but not on the 

downstream kinase p70 S6K1. Prevention of this phosphorylation in BHK cells or HEK293 

cells expressing IRS-2 Ala 675 had no effect on proximal or distal insulin signal transduction. 

But compared with IRS-2 wildtype, the mutated IRS-2 protein Ala 675 showed increased half 

life in cycloheximide-treated HEK293 cells. Thus, phosphorylation of Ser 675 could have a 

similar function as its homologous site Ser 632 in IRS-1 and could be involved in the regula-

tion of mTOR-dependent IRS-2 proteasom-mediated protein degradation.  
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7 Zusammenfassung 

 

Die Insulin Rezeptor Substrate (IRS) sind bedeutende Vermittler des Insulin- und des IGF-1-

Signales in den PI-3 Kinase- und den MAP Kinase-Signaltransduktionsweg. Zusätzlich zu 

Tyrosinphosphorylierungen ermöglichen eine große Anzahl an Serine/Threonin-

Phosphorylierungsstellen der IRS-Proteine die Integration von verschiedenen extra- und in-

trazellulären Stimuli was zu einer positiven und negativen Modulation des Insulin- und IGF-1 

Signales führt. Chronische Hyperphosphorylierungen der Serin/Threonin-Reste des IRS-1 

sind an der Entstehung von Insulinresistenz beteiligt. IRS-2 hat eine besondere Bedeutung 

für das Überleben der β-Zellen sowie für die Regulation des hepatischen Metabolismus. Die 

Untersuchung der Serin/Threonin-Phosphorylierungen ist die Voraussetzung um die physio-

logische und pathophysiologische Regulation dieses wichtigen Vermittlers des Insulinsignales 

zu verstehen. In dieser Doktorarbeit wurden zwei neue IRS-2 Phosphorylierungsstellen identi-

fiziert und charakterisiert (Maus IRS-2 Aminosäure Nummerierung): Ser 675, das in der IRS-

2-spezifischen kinase regulatory loop binding (KRLB) Domäne liegt und Ser 907, das in der 

Nähe eines Grb2-Bindungsmotives (Tyr 911) liegt. Mit phospho-site-spezifischen Antikörpern 

wurden beide Phosphorylierungen in Fao Ratten Hepatoma-Zellen nach Insulin-, Phorbo-

lester- und Anisomycinstimulation nachgewiesen. Die Phosphorylierungen wurden auch in 

primären humanen Hepatocyten sowie in Lebergewebe von insulinbehandelten oder gefütter-

ten Mäusen detektiert. 

Die insulininduzierte Phosphorylierung von Ser 907 wurde durch die MAP Kinase ERK1/2 

vermittelt. Die Simulation einer permanenten Phosphorylierung dieses Serinrestes in BHK-

Zellen, die IRS-2 Glu 907 transient exprimierten, führte zu einer leichten Abnahme der IRS-2-

Tyrosinphosphorylierung hatte aber keinen offensichtlichen Einfluss auf die nachgeordneten 

Insulin-Signaltransduktionskaskaden. Die insulininduzierte Bindung von Grb2 an IRS-2 war in 

HEK293 Zellen durch Mutation des benachbarten Tyrosin 911 zu Phenylalanin aufgehoben, 

wurde jedoch durch eine Mutation von Serin 907 zu Alanin nicht beeinflusst. Die Aktivierung 

des MAP Kinase Signalweges in IRS-2 Phe 911-überexprimierenden HEK293 Zellen war 

jedoch nicht beeinträchtigt und war auch nicht induziert durch die Überexpression des Wildtyp 

IRS-2. Allerdings war die Aktivierung dieses Signalweges vollständig abhängig von der Höhe 

der Insulinrezeptor-Expression, was auf einen alternativen, IRS-2-Grb2-unabhängigen Sig-

nalweg bei der Aktivierung der MAP Kinase hindeutet. 

Die insulininduzierte Phosphorylierung von Ser 675 war abhängig von mTOR, jedoch nicht 

von seiner nachgeschalteten Kinase p70 S6K1. Die nicht-phosphorylierbare Ser 675 Ala 
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Mutante, exprimiert in BHK und HEK293 Zellen, hatte keinen Einfluss auf die proximale oder 

distale Insulin-Signalweiterleitung. Allerdings hatte das mutierte IRS-2 675 Ala Protein eine 

verlängerte Halbwertszeit in Cycloheximid-behandelten HEK293 Zellen. Die Phosphorylie-

rung von Ser 675 könnte daher eine ähnlich Funktion haben wie das homologe Ser 632 im 

IRS-1 und an der mTOR-abhängigen proteasomalen IRS-2 Proteindegradation beteiligt sein. 
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9 Supplement 

 

9.1 Abbreviations 

 

A     alanine 

Ala     alanine 

APS    adapter protein with a PH and SH2 domain 

ATF3    activating transcription factor 3 

BHK    baby hamster kidney cells 

BSA    bovine serum albumin 

cAMP    cyclic adenosine-monophosphate 

CAP    Cbl associated protein 

Cbl     Casitas b-lineage lymphoma 

cFOS    FBJ murine osteosarcoma viral oncogene homolog 

CHX    cycloheximide 

CREBP   cAMP response element binding protein 

CT     crossing point 

CMV    cytomegalie virus 

DNA    desoxyribonucleic acid 

DPBS    Dulbecco’s phosphate buffered saline 

E     glutamine 

ECL    enhanced chemiluminescence 

EDTA    ethylenediaminetetraacetic acid 

EGTA    ethylene glycol-bis(2-aminoethylether)-N,N,N’,N’-tetraacetic acid 

ELISA    enzyme linked immunosorbent assay 

ERK1/2   extracellular signal-regulated protein kinase 1/2 

F     Phenylalanine 

FAS    fatty acid synthase 

FCS    fetal calf serum 
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FFA    free fatty acids 

FoxO1/A2   forkhead box O1/ A2 

G6Pase   glucose-6-phosphatase 

Gab1    Grb associated binder-1 

GAP    GTPase activating protein 

GDP    guanosine-diphosphate 

GIP    glucose dependent insulinotropic polypeptide 

Glu     glutamate 

GLP    glucagon-like peptide 

GLUT4    glucose transporter 4 

Grb2    growth receptor bound 2 

GS     glycogen synthase 

GSK    glycogen synthase kinase    

GTP    guanosine-triphosphate 

h     hour(s) 

HEK293   human embryonal kidney cells 

HPLC    high pressure liquid chromatography 

HRP    horseraddish peroxidase 

IGF    insulin-like growth factor 

INFγ    interferon γ 

IP     immunoprecipitation 

IR     insulin receptor 

IRE    insulin response element 

IRS    insulin receptor substrate 

i.v.     intravenous 

JM     juxtamembrane  

JNK    c-jun-N-terminal kinase 

KRLB    kinase regulatory loop binding 

Lys     lysine 

MAP kinase  mitogen activated protein kinase 

MEK1    MAP kinase-ERK kinase 1 

mTOR    mammalian target of rapamycin 
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mTORC1/2  mTOR complex 1/2 

NFκB    nuclear factor κB 

O-GlcNAc   O-linked β-N-acetylglucosamine 

p     phospho 

PCR    polymerase chain reaction 

PDGF    platelet derived growth factor 

PDK    Phosphoinositide-dependent protein kinase 

PEG    polyethylene glycol 

PEPCK   phosphoenolpyruvate carboxykinase 

PH        pleckstrin homology 

Phe    phenylalanine 

PIP2    phosphatidylinositol (4,5)-bisphosphate 

PIP3    phosphatidylinositol (3,4,5)-trisphosphate  

PI-3 kinase  phosphatidylinositol-3 kinase 

PKB    protein kinase B 

PKC    protein kinase C  

PLC    phospho-lipase C 

PTB    phosphotyrosine binding  

RT     reverse transcriptase 

S     serine 

S6K 1    S6 ribosomal protein kinase 1 

SAPK    stress activated protein kinase 

SCD    stearoyl-CoA desaturase 

SDS-PAGE  sodium dodecylsulfate  - polyacrylamide gel electrophoresis 

Ser     serine 

SH2    Src homology 2 

Shc    Src homology s/α-collagen-related protein 

SHIP2    SH2-containing inositol phosphatase 2 

SOCS    suppressor of cytokine signaling 

SREBP   sterol regulatory element binding protein 

T     threonine 

TEMED   N,N,N�,N�-Tetramethylethylenediamine 
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TF     transcription factor 

TFE3    transcription factor E3 

Thr     threonine 

TNFα    tumor necrosis factor α 

TSC    tuberous sclerosis complex 

Tyr     tyrosine 

TPA    12-O-tetradecanoylphorbol 13-acetate 

Y     tyrosine 
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