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I. General Introduction 
 

I.1. Constituents of plastic materials 

The packaging of food and beverages composes about 60% of the European 

packaging market and seems to be growing.1,2 The principal intrinsic requirements for 

food packaging materials are a control over transfer of moisture and other 

gases/vapours, a wide temperature range in storage and use, low cost and the 

absence of toxic constitutents.3 The packaging of food is needed to prevent the food 

of unintentional changes. It protects from mechanical damage, microbiological 

interference and chemical degradation such as oxidation, moisture transfer, and 

ultraviolet light. Furthermore it is used to transport information that concerns 

consumers, food industry and plastic recycling industry.  

I.1.a. Polymers 

Plastics primarily consist of polymers, in which each molecule represents a 

long chain or a network of repeating units, depending on the monomers. In terms of 

chemical composition, there are the homopolymers and the heteropolymers. The 

former exist of the same repeating block and the latter are polymers with different 

building-block units, regulary or irregulary distributed throughout their lengh. 

Copolymers, as an example for heteropolymers, possess exactly two different 

monomers which are polymerised together. Furthermore plastic polymers can be 

divided into two groups: i) polymers which are linear and extend in one dimension 

and ii) into cross-linked polymers that built more dimensional giant molecules. 

Different production parameters also influence the polymer molecule. Low density 

polyethylene, e.g., is processed between 1-3*105 kPa and 100-300 ºC and therefore 

contains chain branches of different length. Contrary in high density polyethylene 

chain branches are inexistent. All these parameters influence the physical properties 

of the polymer.4  

I.1.b. Non polymeric constituents 

Other constituents of plastics may derive from the production process like 

polymerisation residues including monomers, oligomers, catalysts, solvents, 
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emulsifiers and wetting agents, or can be raw material impurities, plant contaminants, 

inhibitors, decomposition and side reaction products. In order to change 

characteristics of polymers and to optimise production processes, additives are 

added. These additives can be subdivided into different groups which provide 

different efforts: 

 

Nucleating agents are added to trigger a heterogeneous nucleation of the 

plastic melt and to give crystals of regular size. They can be organic compounds like 

salts of organophosphates or benzoic and phthalic acid, but also inorganic 

compounds like silica for example, used as finely ground filler. Utilisation is practiced 

in amounts 0.1-0.3% in polypropylene (PP), polyamide (PA) and polyethylene 

terephthalate (PET).5  

 

Lubricants affect the melt rheology and facilitate processing due to decrease 

of internal and external friction. The former improves the polymeric chain movements 

and the latter the friction between the plastic surface and the processing equipment. 

Typical lubricants are fatty alcohols C12-C22, fatty acids C14-C18 and their esters with 

fatty alcohols, glycerol or pentaerythritol, amides or diamides and other similar 

molecules. They may be used in all plastics, except PA and PET in concentrations up 

to 1.5%.5 

 

By use of friction or rubbing of polymeric surfaces against each other, static 

electricity can be generated. Antistatic agents reduce the chargeability of plastic 

material because they form a conducting layer through the absorption of atmospheric 

moisture on the surface.4 They can be applied on the plastic’s surface or into the 

plastic mass during the processing.5 If an “internal antistatic” is used and the plastic’s 

surface is cleaned, the inner antistatic agent may migrate onto the plastic material’s 

surface and build a film similar to the former one.6 Typical external antistatic agents 

are cationic- and anionic active substances like quaterny ammonium or sulfonium 

salts of hydrocarbons C10 and typical internal antistatic agents are non-ionic agents 

like ethoxylated fatty alkylamines. Their content in mostly all plastics is about 0.1 to 

2%.5 
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Blowing or foaming agents can mainly be used in polyvinyl chloride (PVC) and 

polystyrene (PS). They reduce consumption of raw materials, improve moisture 

transfer properties of the plastic material and provide cushioning effects. Depending 

on the processing physical foaming agents like carbon dioxide, nitrogen or 

hydrocarbons C4-C5 are common. Due to global warming, ozone depletion and the 

Montreal Protocol chlorinated and fluorinated hydrocarbons should no longer be 

used.7,8 There exist also various chemical foaming agents that generate inert gases 

and are mixed into the plastic mass during the processing, like e.g. 

azodicarbonamide, sodium carbonate and diisopropylhydrazodicarboxylate. 

 

 Plasticisers are the probably most known additives. They improve 

processibility, flexability and stretchability of the polymer and are used in PA and 

PVC.5 Plasticisers divide into two groups, the internal and the external plasticisers. 

Internal plasticisers are held in polymer systems by chemical bonds, while external 

plasticisers maintain their molecular identity in the polymer system and their 

comparability with it by hydrogen bonding and Van der Waals attraction. Well known 

plasticisers are phthalic acid esters, di-(ethylhexyl)adipate, and epoxidized soy bean 

oil.9-11 As PVC may contain plasticisers up to 50%, low molecular weight plasticisers 

became its most problematic additives. 

 

Plastics have to be stabilised to withstand chemical and physical stress during 

processing, storage and application. Therefore stabilisers defend from deteriorating 

agents like oxygen, high-energy radiations and heat. According their mechanisms, 

they can be subdivided into antioxidants, photoantioxidants, photostabilisers, heat 

stabilisers and antiacids. Other kinds of stabilisers like metal deactivators, 

antiozonants, fire retardants and biostabilisers are not used in food contact 

materials.5 By use of thermal processing or triggered by UV-radiation, radicals are 

produced in the polymer. These macroradicals form alkylperoxyls which abstract an 

H-atom from another molecule, therefore forms another macroradical and turns into a 

hydroperoxide. The hydroperoxide also decomposes into radicals which may 

continue the typical radical chain reactions or release smaller molecules via ß-

scission.12 In order to prevent these reactions, there are so called primary or chain 

breaking antioxidants which are suitable to stabilise radicals, like steric hindered 

phenols and aromatic amines.13 The concentration is up to 0.3% in plastic.5 
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Secondary or hydroperoxide decomposing antioxidants reduce hydroperoxides to 

alcohols. Usual secondary antioxidants possess a thioether or a phosphit group that 

will get oxidised during hydroperoxide decomposing.13 Substances which provide 

similar functionality, but additionally are more photostable than common antioxidants, 

are the photoantioxidants. These are hindered amine stabilisers which often posses 

a 2,2,6,6-tetramethylpiperidine moiety. Photoantioxidants known to be very effective 

are oligomeric molecules, which are used in a concentration range from 0.2 to 

0.5%.14-16 Chromophores which are often impurities in plastic material, may trigger 

the photodegradation by the formation of singlet oxygen and acceleration of 

hydroperoxide decomposition. To prevent, UV absorbers which absorb from 

wavelenghs of 200 up 400 nm are used. In these molecules, like for example 

benzophenone, the energy of the absorbed light leads to mesomeric changing of the 

molecule and finally to radiationless transition of the molecule to the ground state. UV 

absorbers are used in a range of 0.25 to 0.5 %.5,17 Antioxidants are used in almost all 

kinds of plastics. Antiacids neutralise acids arising from residues of catalysts or from 

thermodegradation of PVC and therefore are used especially in polyolefines or PVC. 

They can be for example zinc or calcium salts of weak organic acids or fatty acids, 

epoxidised oils and inorganic salts.18  

 

If products with high water content are packed, small water droplets may 

condensate on the inside surface of the plastic film and becloud bright packagings. 

Antifogging agents are used to prevent a clear view of the packaging. They are non-

ionic ethoxylates or hydrophilic fatty acid esters like sorbitol stearate and are applied 

internally or on the surface of the packaging material in ranges from 0.5 to 4%.4,5  

 

Otherwise there are packaging materials that should not be clear, but possess 

other optical properties. Therefore dyes and pigments are applied. Pigments include 

a wide range of both organic and inorganic products, and are dispersed into a 

polymer in its liquid phase. After the polymer solidifies, the dispersed pigment 

particles are retained physically within the solid polymer matrix. In contrast, dyes are 

exclusively coloured organic compounds and are dissolved more or less completely 

in a polymeric mass and are usually retained as a result of intermolecular forces. 

Additionally there exists also fluorescent or so called optical brightening or whitening 

agents which are used for white coloured plastics. White plastics possess commonly 
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a strong absorption band in the UV region of the absorption spectrum which tails into 

the visible region, leading to a yellowish impression. Whitening agents absorb UV 

radiation and re-emit the energy by means of fluorescence in the blue to blue-violet 

region of the visible spectrum and therefore cause brilliant white plastics with a bluish 

impression.4,5,19 

I.2. Regulation of plastic food contact materials by the European 
Union 

I.2.a. General regulations 

Generally, food contact materials (FCM) are regulated by the so called 

“Framework Regulation” of the European Parliament and of the Council of 27 

October 2004 on materials and articles intended to come into contact with food.20 Its 

purpose is to ensure functioning of the internal market, whilst a high level of health 

protection and the interests of consumers are maintained. Therefore, article 3 forces 

the general requirements “that materials and articles, including active and intelligent 

materials and articles, shall be manufactured in compliance with good manufacturing 

practice so that, under normal or foreseeable conditions of use, they do not transfer 

their constituents to food in quantities which could endanger human health; or bring 

about an unacceptable change in the composition of the food; or bring about a 

deterioration in the organoleptic characteristics thereof”. Very important for plastic 

material also is article 5, which enables specific measures for a list of substances 

and their purity for use in the manufacturing of materials and articles. It authorizes 

the use of specific migration limits (SMLs) and overall migration limits (OMLs) and the 

promulgation of rules to check on compliance, for example for sample collection and 

the methods for analysis. In absence of these specific measures, article 6 allows 

national provisions in these terms, provided they comply with the rules of the treaty.  

 

In order to define “good manufacturing practice” the regulation 2023/2006 

forces an effective quality assurance and control system at all sectors and stages of 

the manufacturing, processing, and distribution of FCM, except for the production of 

starting substances.21 The term “starting substance” is defined according the 

Commission as any substance, regardless of its chemical nature (e.g. compound, 

mixture, monomer, oligomer, prepolymer natural or synthetic macromolecules), that 
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is used in any type of polymerisation process including the modification of natural or 

synthetic substances.22  

 

Several measures for plastic FCM have been released in the Commission 

directive 2002/72/EC in its actual amended version.23-28 This directive covers mono- 

and multilayer materials and articles exclusively made of plastics, but does not cover 

those composed of two or more layers, of which one or more does not exclusively 

consist of plastics, even if the one intended to come into direct contact with food does 

consist of plastics. For this case, one exception is given for plastic layers that form 

gaskets in lids. Article 2 of 2002/72/EC declares an OML of 60 mg kg-1 or 10 mg dm-2 

surface, depending on the product. Furthermore the use of starting substances and 

additives is limited by force of article 3 and 4 to only those substances listed in this 

directive with the requirement that given SMLs are maintained. This implements the 

idea of a positive list of substances, which exclusively have to be used in the 

manufacturing process. This idea was created 1972, but not implemented into 

legislative until 2008, but will get into force on 1st January 2010 and therefore can be 

regarded as a milestone.29 The directive 2002/72/EC also applies in articles 3 and 8 

rules for the verification of the compliance with the migration limits and therefore 

refers to its annex I and the directives 82/711/EEC and 85/572/EEC, in which rules 

for migration testing are given.30-33 Regulations for layers which are not in direct 

contact with food and are separated from the food by a functional barrier are given 

additionally in article 7a. 

I.2.b. Regulations covering specific substances 

Beneath the already mentioned regulation and directives, there are some 

regulations covering specific substances. Directive 78/142/EEC limits the presence of 

vinyl chloride monomer to 1 mg kg-1 in materials and articles prepared with vinyl 

chloride polymers or copolymers and to a not detectable migration in food, defined as 

0.01 mg kg-1.34 Methods for its analysis in plastics and in food are given in the 

directives 80/766/EEC and 81/432/EEC.35,36  

 

The use of the epoxy derivatives bis(hydroxyphenyl)methane bis(2,3-

epoxypropyl)ether (BFDGE) and other novolac glycidyl ethers (NOGE) is not allowed 

in food contact materials, and SMLs are given for 2,2-bis(4-hydroxyphenyl) 
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propane bis(2,3-epoxypropyl) ether (BADGE) and its water and hydrochlorine 

adducts in the Commission regulation (EC) no. 1895/2005.37 

 

In order to provide time for the lid producing industry to solve migration 

problems of additives in fatty food, the regulation no. 372/2007 in its amended form 

lays down transitional SMLs until 30 April 2009 for plasticisers in gaskets of lids.38,39  

 

The use of recycled plastic material in the manufacturing process of FCM and 

especially conditions and applications for the authorisation of such a process are 

treated in the regulation no. 282/2008.40 

 

As a future scope the Commission directive 2002/72/EC should be changed in 

the terms of regulating also plastic layers in multi-material multi-layer materials and 

articles.41 Authorised substances for the manufacturing process shall be presented 

including their functions and limitations in the food contact material. Also the 

guidelines on migration testing will be more concrete and adapted to the actual level 

of knowledge. For some food, e.g. dried products, the corresponding food simulant 

will be a blend of poly(p-phenylene oxide) with polystyrene, traded under the name 

Tenax®.42  

 

In the case of Germany, the implementations of the directives mentioned 

above into national legislation are made by the Bedarfsgegenständeverordnung.43 

I.3. Substance transfer into food and its impact on human health 

I.3.a. Migration 

To provide a cost-effective production and wide functionality, the packaging 

industry increased its portfolio over the last decades. As a consequence of an 

increasing number of substances used for food packaging and efforts in the analysis 

of food contact materials, concerns with regard to harmful substances in FCM have 

also arisen in the last decades.44 They rely on the fact that there is a possibility for 

substances to leave the packaging material and diffuse into the foodstuff. This 

process of food contamination is called migration and may alter organoleptic and 

toxicological properties of the foodstuff.5,22,45-47  
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Migration occurs as foreseeable physical process and can be divided into two 

parts: i) diffusion inside the polymer, followed by ii) a partition of the migrant in the 

two phase system food and polymer. The diffusion follows in most cases the Fick’s 

laws.48 As a consequence the process of migration can be mathematically modelled 

in complex equitations. The migrated amount of a substance through the contact 

surface depends on the initial migrant concentration in the packaging material, the 

volume and density of packaging material and food, the diffusion coefficient of the 

migrant in the packaging material and the partition coefficient of the migrant between 

the FCM and the food.49 The partition coefficient drastically may depend on 

temperature, chemical groups and the molecular size and structure of the migrant as 

well as the fat content of food and the degree of crystallinity of the food structure.50 In 

case of multilayer materials, additionally the diffusion coefficients, density and 

thickness of each layer and partition coefficients of the migrant between adjacent 

layers have to be considered.49 Comparisons between analysed and calculated data 

of migration proved in general a good correlation between the two methods, but 

sometimes also large deviations, like for example a predicted migration of 57 µg kg-1, 

but measured to be 157 µg kg-1.51,52 Therefore, the European legislation allows in 

article 8 of the directive 2002/72/EC migration modelling to prove compliance, but not 

to demonstrate non-compliance.53  

 

In order to prevent substances of the packaging from migrating into food, 

functional barriers can be incorporated into food contact materials, lowering diffusion 

of migrants.54 But even in case of absolute powerful functional barriers, a 

contamination via the set-off procedure is possible.55 The set-off can be defined as 

the unintentional transfer of substances, which derive from the external surface, to 

the inner food-contact surface. Possible mechanisms in this process are blocking, 

rubbing, peeling and migration by diffusion.56 By use of these mechanism even 

substances that are separated via an effective functional barrier can contaminate 

food, like 2-isopropylthioxanthone deriving from the outside of multilayer cartons, for 

example.57  
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I.3.b. Risk exposure 

The migration of toxic substances from packaging into food may harm human 

health. This risk can mathematically be described as following: Risk = hazard 

(toxicity) • exposure.49  

 

The exposure of a migrant depends on the sum of the products that contain 

the migrant, of the concentration of the migrant in eaten foods and the amount of 

each eaten food. The daily dose of an individual can be expressed as following: 

∑
=

=
)k(n

1l
jkljkljk cw

Wj
1DD , 

where DDjk is the daily dose for an individual j on day k consuming up to n(k) items 

on that day. Wj is the weight of the individual j and cjkl is the concentration of the 

migrant in the food item l, whilst wjkl denotes the weight of item l on day k eaten by 

the individual j.58  

 

To judge toxicity hazards, acceptable daily intake (ADI) or tolerable daily 

intake (TDI) values are used, which have been released by the Scientific Committee 

on Food and the European Food Save Authority (EFSA). ADI or TDI values generally 

derive from the dose at which adverse effects are not observed in toxicity tests 

(NOAEL) for residues and contaminats, respectively. The NOAEL is divided by a 

safety factor, usually 100, to get the ADI or TDI value.59 In order to create specific 

migration limits, the ADI and TDI values are multiplied with a factor of 60. This factor 

is derived from the convention that a person of 60 kg daily could ingest up to 1 kg of 

the contaminated foodstuff.22 In some cases of migrants in fatty food, fat reducing 

factors (FRF), which result in higher SML values, were released. They consider that 

the total daily fat consumption by European adults does not exceed 200 g of fat per 

person per day.60 

I.4. Plastic food contact material analysis 

First of all potential migrants and their toxicological potency have to be 

identified in food contact materials. In case of toxicological outcomes, the migrants 

have to be determined in foods which have been in contact with the packaging. The 

literature on migrants’ analysis is scant. There is more emphasis concerning 



Chapter I 10
 

 

migrations into food simulants than into food itself and analytical methods are still in 

the research and development stage.61 The analytical procedures typically involve 

sample preparation, extraction, clean up and a final determination step. For the 

analysis in polymer materials solvents are used that extract the migrant or dissolve 

the polymer and migrant, followed by precipitation of the polymer.62 In foodstuffs 

extraction is also done by solvents, but often solid phase extraction (SPE) or size 

exclusion or gel permeation chromatography (SEC or GPC) as cleaning step is 

necessary.61 For determination most applied instruments nowadays are gas or liquid 

chromatography coupled with mass spectrometry (GC/MS or LC/MS).47,63  

I.4.a. Targeted analysis  

As food additives extremely vary in their physical and chemical properties, a 

“multi method” to determine all additives does not exist. An actual example for the 

efforts that have to be made to analyse regulated substances is the analysis of 

gaskets in lids of metal twist closures for glass jars. The gaskets usually are made of 

PVC that contains plasticisers, stabilisers, slipping and blowing agents and pigments. 

Only focussed on plasticisers that migrate into food and possess an SML, 1,2-

cyclohexane-dicarboxylic acid,1,2-diisononyl ester (DINCH), bis(2-ethylhexyl) adipate 

(DEHA), dibutyl sebacate (DBS), tributyl O-acetylcitrate (ATBC), and the phthalic 

acid esters benzyl butyl phthalate (BBP), bis(2-ethylhexyl) phthalate (DEHP), dibutyl 

phthalate (DBP), di-''isodecyl'' phthalate (DIDP), di-''isononyl'' phthalate (DINP) and 

dioctyl phthalate (DNOP), acetylated mono- and diglycerides of fatty acids (AcPG), 

epoxidized soybean oil (ESBO) and polyadipates (PAD) are specific regulated and 

have to be checked.38,64 Phthalic acid esters, DEHA, ATBC and DBS mainly are 

extracted from food, cleaned via GPC or SPE and determined via GC/FID or GC/MS, 

if available by use of stable isotope dilution assay.65-70 There also exist multi methods 

that determine phthalates, DBS, DEHA and ATBC together or more special methods 

that use injector-internal thermal desorption GC/MS or headspace solid-phase 

microextraction.71-75 AcPG can be a mixture of different compounds or a single 

substance like octadecanoic acid-12-(acetyloxy)-2,3-bis(acetyloxy)propyl ester and 

can be determined in food by injector-internal thermal desorption GC/MS or by food 

extraction, subsequent GPC and GC/MS analysis.76,77 Since soy bean oil mainly 

consists of triglycerides of linolenic, linoleic, oleic, stearic and palmitic acid, there is a 

vast variety of different triglycerides in ESBO and its analysis is more difficult.78 

Beneath one method that proposes extraction and direct analysis by use of liquid 
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chromatography- electrospray ionisation- tandem mass spectrometry (HPLC/ESI-

MS/MS), GC methods seem to be preferred.79 Thus for use of GC separation, a 

transesterification step is necessary, followed by different processing depending on 

the instrumental setup.80-82 Additionally, it should be controlled via an analysis of the 

fatty acids composition, that ESBO was determined and not epoxidised line seed oil, 

because the latter is not covered by Commission directive 2002/72/EC. The exact 

analysis of PAD is a challenge. After isolation of the part of PAD below 1000 Da by 

SEC, the extract needs to be transesterified and determined by use of GC/MS. 

Afterwards the amount of migrated PAD has to be calculated by use of a conversion 

factor (CF) which depends on the used PAD and takes into account the relation of 

the different molecular weight of the transesterification product and the original 

PAD.83 The CF therefore has to be analysed separately, which was not considered in 

previous released methods.84,85 To put it in a nutshell, for the analysis of the 

regulated plasticisers of gaskets which migrated into food, strenuous efforts have to 

be made. In spite of these efforts, the results do not consider impurities of the 

additives nor decomposition and reaction products. Regarding ESBO, for example, 

structural and toxicological reaction products are formed in toxicological possibly 

relevant amounts, especially during heating of PVC, which were impossible to 

identify until now and actually are not regulated.86,87 This leads to the more 

complicated kind of analysis, the identification of health hazards deriving from 

migrants.  

I.4.b. Non targeted analysis 

First of all the sensivity of an analysis method has to be considered. For this 

purpose, the US Food and Drug Administration established 1995 the threshold of 

regulation, which allows migrants whose dietary concentrations are up to 0.5 µg kg-1 

with the reserve, that carcinogens or substances that may be carcinogens are 

excluded from this regulation.88 On base of the works of Kroes et al., a task force of 

the International Life Sciences Institute released a threshold of toxicological concern 

that depends on the structure of the substance and is applicable to chemicals with 

low mass and known structure, but does not cover allergenicity, accumulation and 

endocrine disruption.89,90 Therefore, a substance whose intake does not exceed 

1.5 µg day-1 and whose structure does not raise concerns for potentional genotoxicity 

would not be expected to be a safety concern. In case of genotoxic related doubts, 

there is a negligible risk if the daily intake does not exceed 0.15 µg and the 
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substance is not an essential metal or metal containing compound, polyhalogenated 

dibenzodioxin, dibenzofuran or biphenyl, or an aflatoxin-like, azoxy or N-nitroso 

compound.90 According the principles for establishing an SML, these values 

correspond to SMLs of 90 µg kg-1 and 9 µg kg-1 respectively. The European 

Commission regulates in directive 2002/72/EC in its actual form, article 7a a SML of 

10 µg kg-1 for a migrant that is not covered by the positive list, but also excludes from 

this regulation substances that are classified as proved or suspect 

‘carcinogenic’,‘mutagenic’ or ‘toxic to reproduction’ according Annex I or VI of Council 

Directive 67/548/EEC.53,91 The SML of 10 µg kg-1 also applies to a group of 

compounds, if they are structurally and toxicologically related, in particular isomers or 

compounds with the same relevant functional group, which drastically may lower the 

SML for a specific substance that belongs to such a group. To put it in a nutshell, the 

limit for unregulated substances is very low and therefore a very high sensivity is 

demanded for the identification of health hazards deriving from migrants.  

 

Analysis is complicated in addition by the huge amount of additives used for 

production of plastic FCM and the fact, that compositions of raw materials are treated 

by the suppliers as industrial secrets. The Synoptic Document lists all monomers and 

additives notified to the European Commission in view of their use for FCM.92 It 

includes about 3000 substances, while aids to polymerisation, colorants, inks, 

adhesives and solvents are not mentioned in principle, and the list only presents the 

notified auxiliary material. Additionally there can also be impurities in additives or 

possible degradation products. So comprehensive analysis of migrates from food 

packaging materials is a real challenge.  

 

In order to analyse the toxicological potential of migrants, some different 

approaches have been released. Short-term toxicity tests can be used, but generally 

they do not provide the necessary sensivity.93,94 Another approach is to mark the 

specific structures of substances, which are responsible for the toxicological 

properties. However, until now this method does not apply owing to a general lack of 

known suitable markers and a barely specificity of existing derivatisation reagents.95 

The more classic analytical approach is to fractionate migrants with a molecular 

mass below 1000 D via GPC or SEC, in order to remove toxically insignificant 

substances whose absorptions by the human gastrointestinal tract are negligible and 
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also to clean the migrate from matrix.22,96 Afterwards the extract has to be analysed 

by LC/MS or GC/MS. In this case, the operator is often challenged with the 

identification of a forest of unknown peaks followed by toxicological assessment. The 

substance identification only by use of mass spectra databases can be considered as 

critical.63 Also the limits of detection reported so far, e.g. 20 μg kg-1 for compounds in 

the very unproblematic matrix water, determined after enrichment by solid-phase 

extraction.97 Another critical part can be the toxicological assessment due to missing 

data information. 

I.5. An actual example for alarming migrants deriving from one 
product 

There have been a number of alarming findings that caused an increase of 

research. Lids of glass jars got into analysts’ focus in the last years and will now be 

explained as an example for such processes. In 2003, semicarbazide (SEM, 

Figure 1, 1), suspected to be genotoxic and carcinogenic, has been discovered in 

different kinds of food that were packed in glass jars closed with metal lids.98  
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Figure 1: Chemical structures of SEM (1), ADC (2) and 2-EHA (3) 

 
Further investigations identified SEM as a minor thermal decomposition 

product of the blowing agent azodicarbonamide (ADC, Figure 1, 2), that was used in 

the plastic gasket of the lids for over 20 years.99,100 Although extended research 

showed that FCM are not the only source for food contaminations with SEM, lids that 

were foamed with ADC were banned in the European Community.101,102 One year 

after the discovering of SEM in food, 2-ethylhexanoic acid (2-EHA, Figure 1, 3), a 

substance supposed to be teratogenic, was found in baby foods and fruit juices.103 

Salts of 2-EHA are used as a stabiliser in PVC.104 A survey from 2007 of 63 samples 

from 15 different countries in Europe showed that the intake of 2-EHA deriving from 

contaminated baby food generally does not exceed the TDI for infants of 6–12 

months, and in most cases, the levels of 2-EHA were at 13-fold below the TDI.77  
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Figure 2: Chemical Structure of the major component in ESBO 

 
In the meantime in 2005 recent publications showed that the analysed content 

of the plasticiser and stabiliser epoxidised soy bean oil (ESBO, Figure 2) in fatty food 

far exceeded the levels which had been found before and only two of 86 products 

complied with the limit of 60 mg kg-1 with amounts of ESBO in food up to 

580 mg kg-1.105-107 As a consequence of the non compliance of lids with the SML of 

ESBO, further investigations on other plasticisers were made. They proved a high 

migration potential manifold exceeding legal limits for DEHA, phthalic acid esters and 

their substitution product DINCH. An analysis survey which was published 2006 

showed, that DINP and DIDP, both with an SML of 9 mg kg-1, migrated up to 

270 mg kg-1 and 740 mg kg-1, and DEHP up to 825 mg kg-1 (SML 1.5 mg kg-1), 

respectively.76 The migration of DINCH and DEHA also exceeded the limits of 

60 mg kg-1 and 18 mg kg-1 with 710 mg kg-1 and 180 mg kg-1, respectively. As the lid 

industry was alarmed and more research on lids showed ways to reduce the 

contamination, the analysed values decreased, but still lots of lids did not comply with 

the legal limits.108-110 In order to give the lid industry a chance to investigate for 

solutions of these problems, the European Commission slackened the restrictions of 

the SMLs until 30 April 2009.39 Newer approaches showed, that the migration of PAD 

is many times lower than that of other PVC plasticisers and that migration decreases 

with increasing molecular mass.111 The use of high molecular weight PAD in gaskets 

of PVC or a change of the polymer type itself may be possible solutions for the 

future.111  

 

As this actual example shows, there is a lot of research needed to safeguard 

FCM and respectively the consumers.  
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I.6. Phthalic acid esters - a transferable problem for toys made of 
plastic materials 

Phthalic acid esters (PAEs) are plasticisers in food contact materials, but their 

applications also cover a wider scope. They are constituents of foils, floor coverings, 

tubes, cables, dyes, lacquers, cosmetics and even additives in 

pharmaceuticals.112,113 As they can be considered an environmental contaminant 

they also occur in food not due to packaging but other processes or in mother’s 

milk.114 An important source for the PAE exposure of children can be the mouthing of 

soft plastic material.115,116 For example mouthing actually is responsible for 90% of 

the exposure of European infants and toddlers with di-isononyl phthalate (DINP) 

whereas the daily exposure is about 1 µg kg-1 body-weight.117 The Commission 

Directive 2005/84/EC prohibits to place toys and childcare on the market, that contain 

bis (2-ethylhexyl) phthalate, dibutyl phthalate or benzyl butyl phthalate at 

concentrations of more than 0.1% by mass of the material. It is equivalent for DINP, 

di-isodecyl phthalate or di-n-octyl phthalate, if the articles can be placed in the mouth 

by children.118 This directive is implemented like the others directives mentioned 

above into the German legislation via the “Bedarfsgegenständeverordnung”. 

According the European Union rapid alert system for all dangerous consumer 

products (RAPEX), 140 toys or childcare products were withdrawn from the market 

during the year 2008 due to their contents of PAEs, which did not comply with the 

legislation.119 As analysis of PAEs in toys and childcare is also a time consuming 

process which includes extraction with organic solvents and evaporation steps 

followed by the analysis with GC, HPLC or HPTLC, a fast and reliable method to 

identify PAEs in toys and childcare may ease analysis and therefore guarantee a 

higher level of health security for children.120-123 

I.7. Aims of the study 

Experts rightfully consider the use of packaging materials as the largest and 

least controlled source of food contaminations with organic materials in Europe.124 

Since the analysis of contaminants deriving from packaging material is faced to 

multiple difficulties, as for example the generally unknown formulation of material in 

combination with the chemical variety and huge number of additives, methods to 

identify sensitively contaminants deriving from FCMs and to measure substances in 
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food have to be created. In order to exclude human health hazards the analysis 

should be focussed on the identification of harmful substances.  

 

New methods should be as easy as possible and applicable for the majority of 

analysts with standard instruments in order to improve the situation. The health of 

consumers has also to be safeguarded in similar respects, like the exposure of 

children and toddlers with phthalic acid esters. 

 

Beneath these general objectives, the specific aims were: 

1. To develop an improved GC/MS method to identify substances in food contact 

materials that may migrate into food followed by an evaluation of these 

substances. 

2. To develop a method that enables to get an overview of the use of 

2-Isopropythioxanthone in food packaging materials, well suited for routine 

surveillance.  

3. To evaluate, if a rapid identification of the complex additives in lids of glass jars is 

possible by Direct Analysis in Real Time- Mass Spectrometry. 

4. To develop a facilitated gaschromatographic method that enables the analysis of 

epoxidised soy bean oil in fatty food and children’s food. 

5. To prove if Direct Analysis in Real Time- Mass spectrometry may be a tool for a 

rapid identification of phthalic acid ester plasticisers in toys and childcare products 

of polyvinylchloride. 
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II.1. Abstract 

Plastic packaging materials may release compounds into packed foodstuffs. 

To identify potential migrants of toxicological concern, resins and multilayer foils 

(mainly polyethylene), intended for the production of food contact materials, were 

extracted and analysed by gas chromatography - mass spectrometry (GC/MS). To 

identify even compounds of low concentrations, the software AMDIS was used and 

data evaluation was safeguarded by the Kovats Retention Index (RI) system. By this 

way, 46 compounds were identified as possible migrants. The expert structure-

activity relationship software DEREK for Windows™ (DfW) was utilized to evaluate all 

identified substances in terms of carcinogenicity, genotoxicity, thyroid toxicity and 

miscellaneous endpoints for humans. Additionally a literature search for these 

compounds was carried out with Sci-Finder®, but relevant data were missing for 28 

substances. Summarized seven compounds with adverse toxicological effects were 

                                                 
§ Present adress: Institut für Lebensmittelchemie, Universität Hohenheim, Germany 
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identified. In addition, the RIs of 24 commercial additive standards, measured with a 

GC capillary column of middle polarity, are given. 

 

II.2. Introduction 

Huge sectors of plastic materials are food packagings. During the contact of 

packaging with food, components deriving from the plastic material can be 

transferred into the food.  

 

The transferred components, so called migrants, are part of the polymer and 

can be additives, catalysts, impurities of monomers and additives, oligomers and 

monomers of the core polymer or from polymeric additives.1 Depending on the 

processing, there are additional possibilities for the carry-over of possible food 

contaminations. During storage of packaging, for example, substances like printing 

ink components can be transferred via offset from the non- food contact material side 

to the food contact material (FCM) side and subsequently migrate into the foodstuff.2 

Possible degradation products of any migrant have also to be respected.3,4 

 

To overview the number of substances used for the production of FCM, the 

European Synoptic Document (SD) or the U.S.-American List of “Indirect” Additives 

Used in Food Contact Substances (LIA) can be used.5,6 The SD lists all monomers 

and additives notified to the European Commission in view of their use for the 

manufacturing of plastics and coatings that will later be FCMs and includes about 

3000 substances, while aids to polymerisation, colorants, inks, adhesives and 

solvents are not mentioned in principle. The list only presents the notified auxiliary 

materials. Quite the same number of substances used for food material production 

are listed by LIA, but this list is not limited to plastic and coating materials. It deals 

with substances used in food-contact articles, called “indirect food additives”, and 

includes adhesives and components of coatings, paper and paperboard components, 

polymers, adjuvants and production aids. In conclusion there is a vast variety of 

possible and unknown contaminants deriving from FCM.  
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To evaluate health risks of a migrating substance, its toxicological properties 

and the concentration in the food in conjunction with the average daily food intake 

have to be considered. According to the structure-based threshold of toxicological 

concern risk assessment tool for application to substances present at low levels in 

the diet by Kroes et al., the intake of a toxicological and structural unknown and 

therefore possible genotoxic substance should not exceed 0.15 μg per day, if it is 

excluded that the substance is not an non-essential metal or metal containing 

compound, polyhalogenated dibenzodioxin, dibenzofuran or biphenyl, or an aflatoxin-

like, azoxy or N-nitroso compound.7 In United States there is a substance-

independent threshold of regulation tolerated by the U.S. Food and Drug 

Administration of 0.5 µg  kg-1 foodstuff.8 Obviously, the determination of the 

toxicological potential of a big variety of probably unknown substances at trace levels 

is the claim. 

 

There are different general approaches of late to face this analytical claim, but 

a striking solution has not been found. From the toxicological point of view, FCM 

migrates can be characterized by short-term toxicity tests.9 The application to 

migrants of can coatings proved this concept as principally possible, but due to lack 

of sensivity not generally usable.10 Heading to the analytical viewpoint, specific 

compound classes known for toxic effects are determined by, e.g., gas 

chromatography (GC). However, this method does not apply owing to i) a general 

lack of known suitable reagents for derivatization and ii) a barely specificity, as 

evaluated, e.g., for the GC analysis of aromatic amines with pentafluorobenzyl 

chloride derivatization and mass spectrometric detection (GC/MS).11 Fundamentally, 

the ranges of instrumental applications have to be considered, in case of GC analysis 

primarily the vapor pressure and thermal stability of analytes. In spite of this, GC/MS 

screening analysis actually is the most applied analytical method for unknown 

migrants. In this case, the operator is challenged with the identification of a forest of 

unknown peaks followed by toxicological assessment. Critical points are substance 

identification only by use of mass spectra databases12 and insufficient limits of 

detection for compounds in food simulants or food, e.g 20 μg kg-1 as reported for 

compounds in water, determined after enrichment by solid-phase extraction.13  
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The toxicological assessment as a subsequent step of the screening analysis 

is a part of the whole evaluation, which is as important as the analysis. Salts of 

2-ethylhexanoic acid (2-EHA) used as a stabilizer for polyvinylchloride (PVC), for 

example, were identified as a main migrant of PVC in 1997,3 but toxicological 

concerns for 2-EHA in food were not published before 2004.14 Due to the fact that 

generally not every compound identified as a potential migrant will be listed in 

national legislation, a time-consuming literature database search for toxic properties 

is required, often resulting in imperfect or negative results. A more effective way 

could be the use of structure-activity relationship software. To improve the overall 

accuracy and specificity of toxicological predictions, a multiple combination of 

software is proposed,15 but for evaluation of the method presented here, the use of 

one software seems to be sufficient. DEREK (Deductive Estimation of Risk from 

Existing Knowledge) for WindowsTM (DfW), for example, is one of the most widely 

used commercial toxicity prediction programs. It contains expert knowledge rules in 

toxicology and predicts toxic properties for substances on the base of their molecular 

structure.16 DfW is a well suited toxicological screening tool ranging in the lower price 

region and best predicting mutagenicity and carcinogenicity as compared to other 

software systems.17 

 

The aim of this study was to establish an improved GC/MS screening method 

including toxic interpretation of identified substances. To improve and safeguard the 

data interpretation in view of correct substance identification, the software AMDIS 

(Automated Mass Spectral Deconvolution and Identification System) from the 

National Institute of Standards and Technology (NIST, U.S.A.) should be 

implemented, because it provides efforts in the identification of substances at trace 

levels, as proved for pesticides.18-20 AMDIS additionally offers an integrated Kovats 

Retention Index (RI) system, to support correct peak identification.21 Subsequent the 

toxic evaluation should be done by DfW. Due to contaminations in the range of 

traces, the polymer instead of migrates should be investigated to achieve better 

sensitivity. In the case of positive findings, however, the migrations of harmful 

substances into food or food-simulants have to be checked by specific analysis, 

depending on the food intended for packaging. For this new approach, several 

resins, foils and multilayer foils, intended for the production of FCM, were screened. 
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The experiments were focused mainly on polyethylene, because it is the mostly used 

material for food packaging.  

 

II.3. Materials and methods 

Chemicals and reagents 
1,1,1,3,3,3-Hexafluoro-2-propanol (HFIP), 2-(2-butoxyethoxy) ethanol, 

benzophenone, octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 2-ethyl-

hexanoic acid, oleamide, 2-phenoxyethanol, bis(2-ethylhexyl) phthalate, dioctyl 

phthalate, (Z)-docos-13-enamide, 2,6-di-tert-butyl-p-cresol, octabenzone and the 

alkanes for the alkane standard mixture C16-C38 (n-hexadecane, n-octadecane, n-

eicosane, n-docosane, n-tetracosane, n-hexacosane, n-octacosane, n-triacontane, n-

dotriacontane, n-tetratriacontane, n-hexatriacontane and n-octatriacontane) were 

purchased from Sigma-Aldrich (Taufkirchen, Germany). Methanol, ethanol, toluene, 

2-ethylhexyl 4-methoxycinnamate, ε-caprolactam, bis(2-ethylhexyl) adipate, 

triacetine, diisobutyl phthalate, dimethyl heptanedioate, phthalic anhydride, α-

tocopherolacetate, isooctane, tributyl phosphate, dibutyl phthalate, tris(2-ethylhexyl) 

phosphate and 4-methyl-m-phenylenediamine were from Merck (Darmstadt, 

Germany). Methanol, ethanol, isooctane, toluene and HFIP were distilled before use. 

 

Samples 
Eighteen polymeric resins, two single-layer foils and four multi-layer foils, all 

intended for the production of food contact materials, were provided from different 

fabricators. The resins 1-12 were made of low-density polyethylene (LDPE), the 

resins 13-15 of linear low density polyethylene (LLDPE), resins 16 and 17 of 

polyamide (PA), and resin 18 of 1,2-polybutadiene (PB). Foil 1 was made of 

polyethylene terephthalate (PET), foil 2 of amorphous polyethylene terephthalate 

(APET), foil 3 was a multilayer foil made of APET, PE and polyethylene vinyl acetate 

(EVA), foil 4 a multilayer foil made of metalized PET, PE and PA, foil 5 a multilayer 

foil made of APET and PE, and foil 6 a multilayer foil made of PA and PE. 
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Sample preparation 
The foils were cut into pieces smaller than 0.16 cm2. Samples of foil or resin 

pieces (0.1 g) were refluxed in 4 mL HFIP (APET, PET and PA) or toluene (PE and 

PB) until the plastic material was dissolved. For multilayer foils HFIP as well as 

toluene was used. Afterwards, 15 mL of methanol (PET, PA) or ethanol (PE, PB) 

were added and the suspension was filtered. The extracts were evaporated by a 

gentle stream of nitrogen. The residue was taken up in 1 mL isooctane, 10 μL of 

dodecane in isooctane (c=2 g L-1) were added and the solution was analysed by 

GC/MS. To identify contaminations of solvents and instruments, blanks were 

prepared and analysed the same way. 

 

GC/MS  
A Thermo Finnigan Trace Gas Chromatograph with a straight splitless liner 

containing a small packing of deactivated glass wool at its bottom, a Phenomenex 

ZB50 column (30 m length, 0.25 mm id., 0.25 µm film) and a 0.7 m uncoated and 

deactivated retention gap, coupled with a Thermo Finnigan Polaris QE 230 Ion Trap 

Mass Spectrometer was used. While helium was used with a flow of 1 mL/min, 1 μL 

was injected at 300°C for one minute splitless. Then the split was changed to 1/30. 

The oven temperature gradient was 50°C(5min)/100°C(10°C/min)/ 

300°C(15°C/min)/300°C(10min). The transfer line was at 330°C and electron impact 

ionization at 70 eV and a scan range from m/z 33-600 in positive detection mode 

were used. 

 

Determination of RI and target list compounds 
The alkane standard mixture C16-C38 (each hydrocarbon at a concentration of 

100 mg L-1 in isooctane) was injected to obtain the RI calibration data and to assure 

the GC/MS instrument supports analysis of substances with low vapor pressure.  

 

To obtain the RI of 2-(2-butoxyethoxy)ethanol, 2,6-di-tert-butyl-p-cresol, 2-

ethyl-hexanoic acid, 2-ethylhexyl 4-methoxycinnamate, 2-phenoxyethanol, 4-methyl-

m-phenylenediamine, benzophenone, bis(2-ethylhexyl) adipate, bis(2-ethylhexyl) 

phthalate, bis(2-methoxyethyl) phthalate, dibutyl phthalate, diisobutyl phthalate, 

dimethyl heptanedioate, dioctyl phthalate, ε-caprolactam, (Z)-docos-13-enamide, 

octabenzone, octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate, oleamide, 
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phthalic anhydride, triacetine, tributyl phosphate, tris(2-ethylhexyl) phosphate and α-

tocopheryl acetate, each component was dissolved in isooctane in the concentration 

range of 20-50 mg L-1 and measured by GC/MS under conditions as described above 

for the samples, except a Varian VF-17ms column without precolumn was used. The 

obtained data were processed with AMDIS to set up a target list.  

 

Software tools 
AMDIS (version 2.62, NIST, U.S.A.)22 was used to automatically detect peaks 

in chromatograms, deconvolute the centroided mass spectra and calculate the RIs. 

The adjacent peak subtraction was set to two, resolution, sensivity and shape 

requirements each to low. 

 

Detected peaks were target-list searched and afterwards batch processed with 

NIST MS Search 2.0 (version 2.0 d) and the NIST/EPA/NIH Mass Spectral Library 

(Version NIST 05).23  

 

Compound identification was on base of the mass spectra and its database 

search results in combination with the RI. 

 

For the toxicological evaluation, the molecular structure of the identified 

substance was transferred from NIST MS Search 2.0 to DfW (software version 

9.0.0)24 via copy and paste. Then the structures were processed with DfW regarding 

carcinogenicity, genotoxicity, thyroid toxicity and miscellaneous endpoints for 

humans, the function “perceive tautomers” was enabled.  

 

To evaluate identified substances by literature search, SciFinder® scholar 

(version 2006)25 was used. First the substance was located via the substance 

identifier, followed by a search for references associated with adverse effects, 

including toxicity. If the title of the reference and the summary fit to the question of 

toxicological evaluation concerning carcinogenicity or genotoxicity, the literature was 

obtained and the toxicological data were extracted. 
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II.4. Results and discussion 

The GC/MS screening analysis of the studied resins and foils provided 

chromatograms with a lot of peaks; an example is given in Figure 1.  

 

 
Figure 1. Total Ion Current of the GC/MS chromatogram of the extract of resin 5. The chromatogram 

is zoomed in on the range of 10.7-12.8 min to pick the peak identified as 2-(2-butoxyethoxy)-ethanol. 

 

Comparable to the results of Veiga-Rial et al. these “peak forests” were mainly 

constitutional isomers of alkenes or saturated and unsaturated alcohols.12 They could 

not exactly be characterized by GC/MS in combination with NIST due to missing 

database information. In spite of this, 46 different compounds were identified 

(Table 1). 

 



Chapter II 39
 

 

Table 1. Substances identified in foils and resins including the measured RI (averaged if determined in more than one matrix), the RI predicted by NIST, the 

specific legislation according Commission Directive 2002/72/EC, additional toxicological information obtained by literature and the toxicology for humans 

according the prediction of the software DfW. Substances whose corresponding peak in the total ion current chromatogram possessed a low signal were marked 

with “traces”, see Figure 1.  

substance found in  CAS measure
d RI [i.u.]

RI 
predicted 

[i.u.] 
(NIST) 

specific legislation, 
additional toxicological 

information* 

toxicology 
prediction by DfW# 

1,8-diazacyclotetradecane-
2,9-dione (addition product of 

two ε-caprolactam 
molecules) 

resin 17 5776-79-4 2889 2005 nsl, nati  -- 

11-(Z)-eicosenamide resin 11 10436-08-5 2917 2427 oml -- 
2-(2-butoxyethoxy)ethanol, 

traces 
resin 5, 9, 10, 

14, 15 
112-34-5 1393-

1394 
1211 SD-, nati -- 

2,4,6-trimethylpyridine foil 2 108-75-8 1110 1014 SD-, no cytotoxic activity 
found by in vitro tests27 

-- 

2,4,6-tri-tert-butylphenol resin 4 732-26-3 2135 1882 nsl, nati -- 
2,4-di-tert-butylphenol in 

traces 
resin 4, 15, 

17, foil 2 
96-76-4 1691 1555 SD-, nati -- 

2,6-di-tert-butyl-p-cresol resin 1, 7 128-37-0 1682 1501 SML 3 mg kg-1 -- 
2-ethylhexyl 4-

methoxycinnamate 
resin 3, foil 2 5466-77-3 2680 2088 SD-, nati but estrogenic 

activity towards the 
estrogen receptor ERα28 

-- 
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substance found in  CAS measure
d RI [i.u.]

RI 
predicted 

[i.u.] 
(NIST) 

specific legislation, 
additional toxicological 

information* 

toxicology 
prediction by DfW# 

2-ethylhexyltrans-4-
methoxycinnamate 

resin 8, 17, foil 
1  

83834-59-7 2681 2088 nsl, nati peroxisome 
proliferation in 

human is 
improbable  

2-methyl-m-phenylene 
diisocyanate 

foil 6 91-08-7 1562 - QM(T)=1mg kg-1 (calc. as 
NCO) 

mutagenicity in vitro 
in human is open 

chromosome 
damage in vitro in 
human is plausible 

2-phenoxyethanol foil 2, 3, 5, 6 122-99-6 1495 1212 SD-, nati peroxisome 
proliferation in 

human is 
improbable 

3,5-di-tert-butyl-4-
hydroxybenzaldehyde in 

traces 

resin 4 1620-98-0 2052 1856 nsl, nati -- 

4,4-dimethyl-2-
cyclopentenone 

foil 1, 2, 4 22748-16-9 1246 888 nsl, nati chromosome 
damage in vitro in 
human is plausible  

4-hydroxy-4-methylpentan-2-
one 

foil 2, 3 123-42-2 783 845 SD-, nati --4 
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substance found in  CAS measure
d RI [i.u.]

RI 
predicted 

[i.u.] 
(NIST) 

specific legislation, 
additional toxicological 

information* 

toxicology 
prediction by DfW# 

4-methyl-m-phenylene 
diisocyanate 

foil 6 584-84-9 1555 - QM(T)=1mg kg-1 (calc. as 
NCO) 

mutagenicity in vitro 
in human is open 

chromosome 
damage in vitro in 
human is plausible 

4-methyl-m-
phenylenediamine 

foil 6 95-80-7 1494 1417 nsl, genotoxic29 carcinogenicity in 
human is plausible 

mutagenicity in vitro 
in human is open 

7,9-di-tert-butyl-1-oxaspiro-
(4,5) deca-6,9-diene-2,8-

dione 

resin 4 82304-66-3 2230 2081 nsl, nati chromosome 
damage in vitro in 
human is plausible 

all-trans-Squalene 
(2,6,10,15,19,23-

hexamethyltetracosa-
2,6,10,14,18,22-hexaene) 

resin 6, 12, 17 111-02-4 2997 2914 nsl, nati -- 

bis(2-ethylhexyl) adipate resin 1, 8, foil 
3, 4 

103-23-1 2586 2414 SML 18 mg kg-1 peroxisome 
proliferation in 

human is 
improbable 

bis(2-ethylhexyl) phthalate resin 6, 16, 17 117-81-7 2864 2704 SML 1.5 mg kg-1 peroxisome 
proliferation in 

human is 
improbable 
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substance found in  CAS measure
d RI [i.u.]

RI 
predicted 

[i.u.] 
(NIST) 

specific legislation, 
additional toxicological 

information* 

toxicology 
prediction by DfW# 

diisobutyl phthalate resin 2, 6-10, 
13, 14, 18, 

foil 5 

84-69-5 2169 1908 SD-, DNA-damaging 
impact of DiBP in human 

lymphocytes30 

-- 

dimethyl terephthalate resin 1 120-61-6 1790 1440 oml -- 
docosane resin 10, 13 629-97-0 2195 2208 nsl, nati -- 

ε-caprolactam resin 13, 16, 
17, foil 4, 6 

105-60-2 1590 1003 SML (T) 15mg kg-1 -- 

(Z)-docos-13-enamide resin 1, 5, 7, 
11, 16, foil 6 

112-84-5 3134 2625 oml -- 

glycerol trioctanoate foil 2, 3 538-23-8 3360 3143 -, mutagenic in vitro, 
cancerogenic in rats31,32 

-- 

hexacosane resin 10 630-01-3 2595 2606 nsl, nati -- 
hexadecane resin 10, 13 544-76-3 1598 1612 nsl, nati -- 

hexadecyl 2-ethylhexanoate resin 1, 3 13, 
14 

59130-69-7 2563 2510 nsl, nati peroxisome 
proliferation in 

human is 
improbable  

teratogenicity in 
human is plausible  

icosane resin 10, 12, 
foil 6 

112-95-8 1995 2009 nsl, nati -- 

isopropyl laurate resin 9, 15, foil 
1, 2 

10233-13-3 1716 1613 nsl, nati -- 
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substance found in  CAS measure
d RI [i.u.]

RI 
predicted 

[i.u.] 
(NIST) 

specific legislation, 
additional toxicological 

information* 

toxicology 
prediction by DfW# 

isopropyl myristate resin 10 110-27-0 1905 1814 nsl, nati -- 
isopropyl palmitate resin 1, 11 142-91-6 2131 2013 nsl, nati -- 

methyl 3-(3,5-di-tert-butyl-4-
hydroxyphenyl) propionate 

(irganox 1300) 

resin 2, 4, 7, 
8, 10, 11, 13, 

foil 3, 4 

6386-38-5 2217 2134 nsl, nati -- 

methyl palmitate resin 18 112-39-0 2040 1878 SD-, nati -- 
naphthalene resin 13 91-20-3 1430 1231 nsl, known to cause 

cancer33 
-- 

octacosane resin 10, foil 6 630-02-4 2794 2804 nsl, nati -- 
octadecane resin 10, 12, 

13 
593-45-3 1795 1810 nsl, nati -- 

octadecyl 2-ethylhexanoate resin 1, 3, 17, 
foil 2, 3 

59130-70-0 2765 2709 nsl, nati peroxisome 
proliferation in 

human is 
improbable  

teratogenicity in 
human is plausible  

octadecyl 3-(3,5-di-tert-butyl-
4-hydroxyphenyl) propionate 

(Irganox 1076) 

resin 2, 7-10, 
13, 15, foil 4, 6

2082-79-3 3931 3823 SML 6 mg kg-1 -- 

oleamide  resin 5, 8, 11 301-02-0 2697 2228 oml -- 
palmitic acid resin 3 57-10-3 2113 1967 oml -- 
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substance found in  CAS measure
d RI [i.u.]

RI 
predicted 

[i.u.] 
(NIST) 

specific legislation, 
additional toxicological 

information* 

toxicology 
prediction by DfW# 

tetracosane resin 10, 13, 
foil 3, 6 

646-31-1 2394 2407 nsl, nati -- 

tris(2,4-di-tert-butylphenyl) 
phosphate (suggested 
Irgafos 168 oxidation 

product)  

resin 4, 5, 11, 
15 

95906-11-9 4040 Not in 
NIST 

nsl, nati -- 

tris(2,4-di-tert-butylphenyl) 
phosphite (Irgafos 168) 

resin 4, 11, 
15, foil 6 

31570-04-4 3693 Not in 
NIST 

oml -- 

α-tocopheryl acetate resin 3 58-95-7 3506 3308 nsl, nati -- 
 

* The specific legislation is according the EC (Commission Directive 2002/72/EC). If a substance is mentioned in the Commission Directive 2002/72/EC, the 

specific migration limit (SML) is given. If there is no SML, the migration of the substance should fulfill the overall migration limit according article 2 of the directive 

and in this case it is marked with “oml”. If no specific legislation exists, the substance is marked with “nsl”. If the substance is not specially regulated, but cited in 

the Synoptic Document without specific toxicological data, it is marked with a “SD-“ instead of “nsl”. In case of no obtainable additional information about 

genotoxicity and mutagenicity literature search, the substance is marked with “nati”. 
# If the structure of the molecule does not possess a toxicophore regarding carcinogenicity, genotoxicity, thyroid toxicity and miscellaneous endpoints for humans, 

DfW does not suppose toxicological health effects and the substance is marked with “--“. The uncertainty terms used in DfW are as following: “Plausible” means 

that the weight of evidence supports the proposition, “improbable” that there is at least one strong argument that the proposition is false and there are no 

arguments that it is true and “open” that there is no evidence that supports or opposes the proposition 16. 
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The structural majority of them are hydrocarbons (7 compounds) and fatty acid 

esters (9 compounds). Some are known additives for plastic materials like the 

antioxidants α-tocopheryl acetate, methyl 3-(3,5-di-tert-butyl-4-

hydroxyphenyl)propionate, tris(2,4-di-tert-butylphenyl) phosphite and octadecyl 3-

(3,5-di-tert-butyl-4-hydroxyphenyl) propionate, the slipping agents (Z)-docos-13-

enamide and oleamide and the derivates of the phthalates and bis(2-ethylhexyl) 

adipate, used as plasticisers. Some other identified compounds are not known 

additives, but have been found in earlier publications as contaminants of FCM, like 2-

phenoxyethanol for example found in coating material of cookware products.26 

Caprolactam and its dimers were found as migrants from polyamide cooking utensils 

and 2,4-di-tert-butylphenol, a degradation product of irgafos antioxidants, as a 

migrant of polyolefin bottles.13 Nevertheless, still 19 compounds are remaining, which 

are not expected to be in food contact materials. Concerning the toxic evaluation of 

the identified compounds, all 46 compounds were checked, because known additives 

or contaminants can also possess health risks. Of all these substances, only 13 

compounds were regulated by the Commission Directive 2002/72/EC and eight are 

mentioned in the Synoptic Document without sufficient toxicological data. These eight 

substances should be reviewed by the European Food Safety Authority (EFSA) in the 

forthcoming years.  

 

Therefore 33 identified compounds had to be evaluated, so the required level 

of own initiative was very high. Using SciFinder®, it took about five hours, but 

toxicological data comparable to an acceptable daily intake dose in the diet were not 

found for all substances. Only for five compounds, there was access to toxicologically 

relevant data like cytotoxic activity or genotoxicity. Therefore the SciFinder® search 

did not satisfy and left a great level of uncertainty for 28 substances. In contrast to 

this, the evaluation with DfW on base of the structure quickly gave results for each 

compound. For 26 of the 33 compounds to be evaluated negative effects were not 

predicted by DfW. For 2-ethylhexyl-(trans)-4-methoxycinnamate and 2-

phenoxyethanol, a peroxisome proliferation in human is improbable, but not 

excluded. Thus, there could be the possibility that these compounds may lead to 

oxidative stress in the human body. DfW predicts for five compounds that they 

plausibly possess more negative health effects: 7,9-di-tert-butyl-1-oxaspiro(4,5)deca-

6,9-diene-2,8-dione and 4,4-dimethyl-2-cyclopentenone damage human 
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chromosomes, 4-methyl-m-phenylenediamine is carcinogenic and hexadecyl 2-

ethylhexanoate and octadecyl 2-ethylhexanoate are teratogenic for humans. In 

comparison to the evaluation via SciFinder® search, on the one hand, these adverse 

effects predicted by DfW have not been found in literature, except the carcinogenicity 

for 4-methyl-m-phenylenediamine.29 On the other hand, naphthalene and surprisingly 

glycerol trioctanoate, too, are both reported as mutagenic31-33 and diisobutyl 

phthalate possesses a DNA damaging impact in human lymphocytes according to 

the literature,30 but DfW did not calculate a risk.  

 

Regarding our data evaluation and the report of Dagan et al.,20 the use of 

AMDIS saved time, because it automatically i) calculates the RIs for all detected 

peaks, ii) deconvolutes their mass spectra, iii) compares the data with the target list 

and iv) allows to search automatically for matches of the deconvoluted mass spectra 

in NIST. Although AMDIS featured fast processing, it sometimes excluded 

characteristic mass peaks of the spectrum of a compound. Therefore, to assure 

correct identification results, the deconvoluted mass spectrum of a compound was 

also manually compared with the native recorded mass spectrum as well as with the 

spectrum of the substances that were high-match proposed by the NIST library by an 

experienced GC/MS operator, who finally made the identification decision. Figure 1 

illustrates a peak identified as 2-(2-butoxyethoxy)-ethanol to give an example for a 

substance which is found “in traces”. The mass spectrum of exactly this peak was 

treated with different kinds of data evaluation and compared to the mass spectrum of 

2-(2-butoxyethoxy)-ethanol of the NIST database. Figure 2 demonstrates the 

reduction of the background by use of conventional background correction and 

deconvolution. The NIST database search, which can be considered as an important 

step of the method, gave no valueable results for the untreated spectrum. In case of 

the conventional background correction the database search delivered on the first 

position 2-(2-butoxyethoxy)ethyl thiocyanate, on the second position 17,20:20,21-

bis[methylenebis(oxy)]-,cyclic 3-(1,2-ethanediyl acetal)pregn-5-ene-3,11-dione and 

on the third position with a probability of 2.2% the correct identification of 2-(2-

butoxyethoxy)-ethanol. The search with the deconvoluted mass spectrum yielded a 

probability of 15.0% for the target compound in the first position. In this example, it is 

obvious that AMDIS improved correct substance identification significantly compared 

to the conventional data evaluation. 
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Figure 2. Three different processed mass spectra of the peak identified as 2-(2-butoxyethoxy) ethanol 

(see Figure 1) in a head to tail view. Each view allows comparing the obtained data in the head with 

the mass spectrum of the NIST database in the tail. Above is the unmodified scan, in the middle the 

scan with the subtracted background on both sides of the peak and below the scan extracted with 

AMDIS. 

 

If the same substance was identified in different samples, the measured RIs of 

the substance varied up to ± 6, if the RI was over 3000 i.u., under there was less 

deviation. To carry out additional safeguarding, the RIs of substances, which were 

identified by their mass spectra, were compared with those provided by NIST 

(Table 1). It is significant that most of the measured RIs of the identified substances 

were higher than those listed by NIST. This is related to the use of a column of 

middle polarity for the analysis, which generally provides a better separation power 

than a column of low polarity, but NIST’s structure-based RI estimates for a nonpolar 

column. The amount of the resulting ∆RIs, expressed in index units (i.u.), can be 
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judged according published group retention factors.34 Table 2 shows the RI and ∆RI 

values for the standard compounds (target list compounds).  

 
Table 2. RIs of measured standard compounds compared with the RIs predicted by NIST. The ∆RI is 

the difference of the predicted RI and the measured RI (the measured RI was set to 100%). 

substance CAS RI 
[i.u.] 

RI 
predicted 

[i.u.] 

∆RI 
[i.u.] 

∆RI 
[%]

2-(2-butoxyethoxy)ethanol 112-34-5 1313 1211 102 8 
2,6-di-tert-butyl-p-cresol 128-37-0 1673 1668 5 11 

2-ethyl-hexanoic acid 149-57-5 1210 1109 101 8 
2-ethylhexyl 4-

methoxycinnamate 
5466-77-3 2655 2088 567 21 

2-phenoxyethanol 122-99-6 1450 1212 238 16 
4-methyl-m-phenylenediamine 95-80-7 1750 1417 333 19 

benzophenone 119-61-9 1986 1603 383 19 
bis(2-ethylhexyl) adipate 103-23-1 2567 2414 153 6 

bis(2-ethylhexyl) phthalate 117-81-7 2858 2704 154 5 
bis(2-methoxyethyl) phthalate 117-82-8 2450 1990 460 19 

dibutyl phthalate 84-74-2 2292 2037 255 11 
diisobutyl phthalate 84-69-5 2147 1908 239 11 

dimethyl heptanedioate 1732-08-7 1550 1250 300 19 
dioctyl phthalate 117-84-0 3064 2832 232 8 
ε-caprolactam 105-60-2 1578 1003 575 36 

(Z)-docos-13-enamide 112-84-5 3149 2629 520 17 
octabenzone 1843-05-6 3273 2708 565 17 

octadecyl 3-(3,5-di-tert-butyl-4-
hydroxy-phenyl)propionate 

(Irganox 1076) 

2082-79-3 3935 3823 112 3 

oleamide 301-02-0 2708 2228 480 18 
phthalic anhydride 85-44-9 1654 1443 211 13 

triacetine 102-76-1 1494 1354 140 9 
tributyl phosphate 126-73-8 1843 1620 223 12 

tris(2-ethylhexyl) phosphate 78-42-2 2598 2463 135 5 
α-tocopheryl acetate 7695-91-2 3479 3308 171 5 

 

The data reveals that percental ∆RIs are low for compounds only containing 

few functional groups related to the number of non-polar groups, like for example 

Irganox 1070 (∆RI 3%) and di-ethylhexyl-phthalate (∆RI 5%). ∆RIs are increasing for 

substances with increasing functionality, like in the case of 2-ethylhexyl 4-

methoxycinnamate (∆RI 21%). The highest ∆RI value was found for ε-caprolactam 

(36%). This corresponds very well with the findings of Peng et al.34, who showed that 
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the monosubstituted acid amido group possesses one of the largest group-retaining 

factor for polar columns.  

 

Finally, there was left a question of the source of the identified compounds 

evaluated as toxicologically relevant. Di-tert-butyl-1-oxaspiro-(4,5) deca-6,9-diene-

2,8-dione, that probably will cause a chromosome damage in humans, is a 

degradation product of Irganox 1010 (pentaerythritol tetrakis(3-(3,5-di-tert-butyl-4-

hydroxyphenyl) propionate))35 and has also been found in extracts of FCM before.13 

The same adverse effects possesses 4,4-dimethyl-2-cyclopentenone. It was found 

before in minor quantities in extrudates of food,36 but is not known to be a FCM 

contaminant. The two isocyanates 2-methyl-m-phenylene diisocyanate and 4-methyl-

m-phenylene diisocyanate were only detected in one multilayer foil and possibly 

derive from the glue between the layers. Another compound only found in the same 

multilayer foil is 4-methyl-m-phenylenediamine. It is also carcinogenic according DfW 

and supposably also derived from the glue, because it can be used as raw material 

for 4-methyl-m-phenylene diisocyanate and additionally is a degradation product of 

the hydrolyzed diisocyanate. Glycerol trioctanoate was found before as a lubricant in 

FCM37 and should surprisingly be considered as mutagenic and genotoxic according 

to literature.31,32 Naphthalene was found before in coating material of cookware 

products26 and is described in literature to be carcinogenic.32,33  

 

II.5. Conclusion 

The method described allows a sensitive analysis of compounds in plastic 

materials accompanied by safeguarded identification via mass spectrometry and 

retention index system. Furthermore every resulting substance can be toxicologically 

evaluated in seconds and expeditiously data processing is implemented in the whole 

process. With regard to a forthcoming process of recycling in FCM production, the 

range of substances that possibly contaminate packed food may expand in the 

future. According to the opinion of the authors, the challenge of the identification of 

hazardous substances in the diet should be persecuted in the future on a larger 

scale. The use of the method described is an important aspect to resolve this hurdle.  
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III.1. Abstract 

To elucidate the occurrence of the photo-initiator 2-isopropylthioxanthone 

(2-ITX), more than 100 food products on the German market, packed in cartons, 

plastic cups and foils, were investigated. For this, a rapid method to detect 2-ITX in 

food packaging materials was established. In case of positive findings the 

accompanying foodstuffs were analysed in a subsequent step using different 

extraction methods, depending on the fat content of the food. Determination of the 

photo-initiator was done by high performance liquid chromatography with diode array 

and fluorescence detection (HPLC-DAD/FLD). The recoveries ranged between 94 

and 106% for non-fatty (RSD ≤ 1.1) and between 80 and 105% for fatty foods 

(RSD ≤ 8.5). The limit of detection and the limit of quantification were determined to 2 

and 5 µg L-1. 2-ITX was detected in 36 out of 137 packages (26%) and significant 

migration occurred in 75% of the packaging materials tested positive. The amounts of 

2-ITX ranged up to 357 µg kg-1 in orange juice. 

 

III.2. Introduction 

In September 2005 the Italian authorities informed the European Commission 

by a notification transmitted through the Rapid Alert System for Food and Feed 
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(RASFF) that they found baby milk contaminated with a substance called 

2-isopropylthioxanthone (2-ITX, Figure 1).1 

 

UV-curing inks are usually made of multifunctional acrylates, acrylated 

oligomers and pigments. Photo-initiators like 2-ITX are used to trigger the radical 

polymerization of the acrylic component of such inks and thus causing the liquid ink 

film to dry.2 Compared to solvent based inks, UV-curing seemed a good alternative 

because the packaging material was no longer able to contaminate food with 

residues of organic solvents of the printing process. Nevertheless, there are new, 

possible contaminants in the packaging material, particularly with regard to acrylates 

and photo-initiators.3 Generally, 2-ITX can migrate from the packaging into the foods. 

As intermediate layers of aluminium do not allow ink components to pass through 

packaging material, it was assumed that, in this particular case, 2-ITX got into the 

food by the so-called set-off effect. When the printed material is rolled on spools (e.g. 

carton-based packaging materials) or stacked (e.g. plastic cups), the external layer 

comes into contact with the internal layer. During this storage 2-ITX is transferred to 

the surface intended to come into contact with food and, consequently, can migrate 

into the foodstuff after packaging. At the beginning of this study 2-ITX was detected 

only in food packed in cartons. It is unknown if food packed in materials other than 

cartons can be affected. To assess the contamination of food by this photo-initiator, it 

is necessary to investigate food in cartons, as well as in other packaging materials 

like plastic cups or foils. 

 

 
Figure 1. Chemical structures of the photo-initiators 2 ITX (1) and 2,4 DTX (2) 

 

According to the opinion No 044/2005 of the German Federal Institute of Risk 

Assessment (BfR) of the 25th November 2005 and the press statement of the 

European Food Safety Authority (EFSA) on the 9th December 2005, toxicological 

data of 2-ITX is inadequate.4,5 Existing in vivo genotoxicity studies do not indicate a 
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genotoxic potential for 2-ITX and, at a maximum migration level of 50 µg kg-1 food, 

2-ITX appears unlikely to pose a health risk.4,5  

 

Inks applied to the outer surface of food packaging materials are not covered 

by specific European legislation. One exception is Commission Directive 93/10/EEC  

According to this directive, the printed surfaces of regenerated cellulose film must not 

come into contact with the foodstuffs.6 However, the only actual European legislation 

concerning 2-ITX in food and packaging materials, other than regenerated cellulose 

film, are the Framework Regulation (EC) No 1935/2004, Regulation (EEC) No 315/93 

and the Regulation (EC) No 178/2002.7-9 Pursuant to article 3 of Regulation (EC) 

No. 1935/2004, materials and articles intended to come into contact with food shall 

not transfer their constituents in food in quantities which could endanger human 

health or bring about unacceptable changes in composition or characteristics of 

foodstuffs. Following article 14 of Regulation (EC) No 178/2002, the food itself must 

not be placed on the market if it is injurious to health or unfit for human consumption, 

whether by extraneous matter or otherwise. 

 

Another document concerning printing inks is the Resolution ResAP(2005)2 

on packaging inks applied to the non-food contact surface of food-packaging 

materials and articles intended to come into contact with foodstuffs of the Council of 

Europe.10 This resolution is not a legal norm, but it is assumed that the general 

requirements of article 3 of Regulation (EC) No. 1935/2004 for food contact materials 

are fulfilled if the packaging inks are in accordance with the requirements made. 

 

Manufacturers of food packaging materials are responsible for ensuring that 

their products comply with the abovementioned regulations and that, from a 

technological viewpoint, they are suitable for the use for which they are intended. 

Therefore, the European Printing Ink Association (EuPIA) defined a guideline on 

printing inks.11 According to this guideline, if only insufficient toxicological data are 

available, a substance is acceptable if its specific migration does not exceed 

10 µg kg-1. If three negative mutagenicity tests as requested by the EFSA-Guidelines 

are available, as in the case of 2-ITX, the specific migration limit is raised to 

50 µg kg-1.To assess the migration of 2-ITX into food, several methods have been 

developed. With respect to UV-curing inks and the determination of major acrylates 
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and widely used photo-initiators migrating into simulating solvents, gas 

chromatography coupled to a mass selective detector (GC-MS) was applied 

successfully with a recovery rate of 70-100%, depending on the simulant used.3 In 

milk, yoghurt and fat 2-ITX was determined using accelerated solvent extraction and 

high performance thin layer chromatography (HPTLC)– fluorescence detection. 

Confirmation of the results was done by HPTLC-mass spectrometry.12 The 

recoveries of this method ranged between 6-70%, corrected by internal standard up 

to 70-130%, with a limit of detection of 1 μg kg-1 in butter. A method to determine 2-

ITX in fruit juices using pressurized liquid extraction and high performance liquid 

chromatography (HPLC) coupled to a single quadrupole, ion trap, or triple 

quadrupole MS detection systems gave recoveries of ~70% and detection limits up to 

0.05 μg L-1.13 

 

Here, a fast and reliable method to determine 2-ITX in food and food contact 

materials, to enable an effective, routine surveillance of commodities on the German 

market, is described. Due to the UV-activity of photo-initiators it is possible to 

determine these compounds via their characteristic UV-spectra and fluorescence 

activity. Therefore, a method based on HPLC coupled to a diode array (DAD) and a 

fluorescence detector (FLD) for the quantitation of 2-ITX and other photo-initiators 

(Figure 1) was developed. Following a stepwise procedure, identification was done 

initially in food contact materials (multilayer cartons, plastic cups, and foil) and in 

case of positive findings, analysis was carried out on the wrapped foodstuffs. 

 

III.3. Experimental 

Chemicals 
HPLC grade acetonitrile was purchased from Mallinckrodt Chemicals 

(Griesheim, Germany) and hexafluoro-2-propanol from Sigma-Aldrich (Taufkirchen, 

Germany). All further solvents were of gradient grade or distilled prior to use. Distilled 

water was produced by a Milli-Q water purification system (Millipore, Schwalbach, 

Germany). The sorbent used for the cleanup Bondesil-PSA (40 µm) came from 

Varian (Darmstadt, Germany). Analytical standard of 2-isopropylthioxanthone (2-ITX, 

purity 98%) was provided by IGM Resins (Krefeld, Germany) and 
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2,4-diethylthioxanthone (2,4-DTX, Figure 1) as internal standard (purity 98%) by 

Sigma-Aldrich (Taufkirchen, Germany). All further chemicals were at least analytical 

quality. 

 

For preparation of 0.1 M citrate phosphate buffer (pH 6.0) 21 g citric acid 

monohydrate and 14.2 g disodium hydrogen phosphate are dissolved in 

approximately 900 mL water. After adjusting to pH 6.0 with sodium hydroxide, the 

solution is diluted up to 1000 ml with water. Solutions of 2-ITX and 2,4-DTX were 

prepared in acetonitrile and stored at 4°C in the dark. 

 

Samples 
A total of 137 samples of fatty and non-fatty food were collected randomly 

from October 2005 until April 2006 on the German retail market or partly direct from 

the food manufacturer. Following a stepwise procedure, the food contact materials 

were tested for 2-ITX initially while storing the homogenized fillings at -18 °C for 

further analysis. 

 

Sample preparation 
Food contact material. After separation of the food contact material from the 

filling approximately 4 cm2 of the printed packaging material were cut into small 

pieces and extracted with 1 mL hexafluoro-2-propanol (EU DG XII Research 

Programm AIR 941025 (1994-1997) 1997) in an ultrasonic bath for 45 min. Then 

4 mL ethanol were added and the mixture shaken intensively for 1 min. The 

precipitate is removed by filtration prior to HPLC analysis. 

 

If 2,4-DTX was found originally in food packaging materials, no internal 

standard was added during the sample preparation (as described below) and both 

photo-initiators were determined by external standard calculation. 

 

Non-fatty foods (e.g. juices, tomato puree). Sample preparation for non-fatty 

foods was based on the QuEChERS-method.14 To 10 g of the homogenized sample 

material 10 mL acetonitrile are added. Extraction was done by shaking intensively for 

1 min. Then 4 g magnesium sulphate and 1 g sodium chloride were added and the 

mixture was shaken intensively for 1 min. After addition of the internal standard and 
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gently shaking for 30 s, the mixture was centrifuged for 5 min at 3000 rpm. An 8 mL 

aliquot of the supernatant was mixed with 1.2 g anhydrous magnesium sulphate and 

200 mg PSA. After shaking intensively for 30 s, the mixture was centrifuged for 1 min 

at 5300 rpm. The supernatant was directly subjected to HPLC analysis. 

 

Fatty foods (e.g. yogurt, milk, sausage). To approximately 5 g of homogenized 

fatty food 5 mL 0.1 M buffer solution (pH 6.0) was added and the sample was 

extracted by shaking intensively for 1 min. After addition of the internal standard and 

30 mL acetonitrile, the mixture was shaken for 10 min and quantitatively filtered 

through filter paper. Flask and filter paper were rinsed with 10 mL acetonitrile/water 

(3/1 v/v). After addition of 1.5 g sodium chloride and intensively shaking for 30 s, the 

filtrate was mixed with 20 mL tert.-butyl methyl ether/isohexane (80/20, v/v) before 

shaking gently again. The lower aqueous phase was discarded. The organic layer 

was washed two times with 20 mL water. After addition of 10 mL tert.-butyl methyl 

ether/isohexane (50/50 v/v) and, if necessary, separation of the aqueous phase, the 

organic layer was dried over anhydrous sodium sulphate. The solution was 

evaporated to dryness under vacuum. Finally, the residue was dissolved in 1 mL 

acetonitrile and directly subjected to HPLC analysis. 

 

High performance liquid chromatography with diode array and fluorescence 
detection (HPLC-DAD/FLD) 

Analysis was performed on a Agilent 1100 high performance liquid 

chromatograph (Agilent, Waldbronn, Germany) equipped with a LC-PAH Supelcosil 

(250 mm; 4.6 mm ID; 5 µm) column (Sigma-Aldrich, Taufkirchen, Germany) coupled 

to a diode array (260 nm; spectra recorded from 200 up to 500 nm) and a 

fluorescence detector (excitation 272 nm/emission 440 nm) connected in series. The 

system was run at 40 °C (stop time 10 min) in isocratic mode (dist. water/acetonitrile 

15/85 v/v) with a flow rate of 1 mL min-1 and an injection volume set to 10 µL. 

 

Limit of detection and quantitation (2-ITX), as well as the linearity range (2-ITX 

and 2,4-DTX), were determined by HPLC-FLD analysis of solutions of the photo-

initiators in acetonitrile in the absence of matrix interferences according to DIN 

standard 32645 (DIN 1994). 
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Spiking procedure 
Spiking of homogenized blank samples was performed by adding 2-ITX 

standard solution directly into the matrix. The spiked matrices were shaken briefly 

and left to stand 2 min before extraction to enable dispersion of the photo-initiator. 

For non fatty foods, recovery tests were conducted on blank homogenized orange 

and vegetable juice by spiking (five times each matrix and level) with 0.05 and 

0.5 mg kg-1. For fatty foods, blank homogenized milk and oil was spiked (six times 

each matrix and level) with 0.1 mg kg-1 of 2-ITX (Table 1). 

 

III.4. Results and discussion 

Validation of the method 
Limits of detection and quantitation. The method for the determination of 2-ITX 

with HPLC-DAD/FLD (Figure 2) in acetonitrile was linear in the range 6-120 µg L-1 

(Mandel test of linearity) for the FLD-signal, with a correlation coefficient of 0.9995. 

Due similarities in molecular structure and chemical properties 2,4-DTX was used as 

internal standard (linearity 5 up to 100 µg L-1). According to DIN standard 32645, the 

limit of detection and quantification by fluorescence detection were determined to 2 

and 5 µg L-1 2-ITX in acetonitrile, respectively.15 Confirmation of 2-ITX by its UV-

spectrum could be achieved above 12 µg l-1. The results of the samples analysed 

were only accepted, if the presence of the photo-initiator was approved by its 

characteristic UV spectrum (Figure 2). 

 



Chapter III 62
 

 

 
Figure 2. HPLC separation of an olive oil extract spiked with about 300 µg kg-1 2 ITX (1) and 

2,4 DTX (2). The DAD (a) and FLD Signal (b) are shown as well as the characteristic UV spectrum (c) 

of 2 ITX 

 

Recoveries. For non fatty foods the recovery rates were >85% (data not 

shown). By application of the 2,4-DTX internal standard, the recovery rates were 

raised to 94-106% with a relative standard deviation (RSD) < 1.1% (Table I). For fatty 

foods, the signal of the internal standard showed partial interference. Therefore 

determination of 2-ITX in fatty foods was done by external calibration (Table 1). 

 

 

 

 



Chapter III 63
 

 

Table 1. Recoveries rates and relative standard deviations (RSDs) from food samples spiked with 

2-ITX. 

food fortification level 
[mg kg-1] 

replicates recovery rates 
[%] 

mean 
[%] 

RSD
[%] 

orange juice 0.05 5 95, 96, 96, 95, 95 95 0.4 
 0.50 5 104, 104, 105, 103, 104 104 0.6 

vegetable juice 0.05 5 94, 97, 95, 97, 97 96 1.1 
 0.50 5 104, 105, 106, 105, 106 105 0.8 

milk 0.10 6 80, 105, 93, 94, 100, 94 94 8.5 
oil 0.10 6 95, 95, 90, 94, 95, 94 94 2.0 

 

 
Figure 3. HPLC chromatograms of a real sample (yoghurt) showing 2 ITX (1) and 2,4 DTX (2). The 

DAD (a) and FLD Signal (b) are shown as well as the match of the UV spectra of 2 ITX (c) and 

2,3 DTX (d) with the spectra deriving from standard solutions. 
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Analysis of real samples 

Until now, 137 samples from the German market have been analysed for 

2-ITX by the method developed (Figure 3). Most of the samples were packed in 

multilayer cartons and plastic cups, but also in plastic foil for butter and sausages. 

The results of the foodstuffs analysed are shown in Table 2. Of all the packages 

analysed, 2-ITX was detected in 36 samples (26%, Figure 4). In 27 of 36 positive 

tested food packaging materials (75%), significant migration of 2-ITX into the food 

could be observed with highest levels of 2-ITX found in orange juice (357 µg kg-1) 

and baby food (208 µg kg-1). In 13 samples (10%) the recommended migration level 

of 50 µg kg-1 was exceeded. 

 

 
Figure 4. Overview of 2-ITX detected in food packaging materials. 

 

Furthermore, the migration of 2-ITX into food was not only limited to printed 

multilayer cartons but also occured in food packed in printed plastic cups and foils 

(Figure 4). However, in these fillings analysed, the migration levels were always 

below 50 µg kg-1 food, at which level 2-ITX is not likely to pose a health risk.4 

 

Latest results showed that 2,4-DTX the internal standard used in this study 

can be found in food packaging materials also, e.g. in plastic cups of yoghurt. The 

concentration of this contaminant in yoghurts was determined to be in the range of 

15-48 µg kg-1 without addition of the internal standard, as described in the 

experimental section. Like 2-ITX, complete toxicological data about 2,4-DTX is not 

yet available. 
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Table 2. 2-ITX contents found in foods packed in multilayer cartons, plastic foils and cups. 

number of 

food packaging samplespackaging 
positive 

food 
positive

food 
>50 µg kg-1 

2-ITX 

range of 
2-ITX 

[µg kg-1]

fruit juice and 
nectar 

multilayer 
cartons 

31 6 5 5 48 – 357

vegetable 
juices 

multilayer 
cartons 

12 2 1 0 20 

baby food multilayer 
cartons 

12 5 5 5 86 – 208

milk and 
cream 

multilayer 
cartons 

17 2 2 2 83 – 115

wine and 
other 

alcoholic 
beverages 

multilayer 
cartons 

15 0 0 0 - 

tomato puree multilayer 
cartons 

5 0 0 0 - 

sausages plastic foil 5 2 1 0 9 
yoghurt plastic cup 19 17 11 0 7 – 40 
butter plastic foil 8 0 0 0 - 
others various 13 2 2 1 39 – 61 
sum  137 36(26%) 27(20%) 13(10%)  

 

III.5. Conclusion 

The method presented is fast and reliable for the determination of 2-ITX, as 

well as 2,4-DTX, in various food packaging materials and foods. With the strategy 

chosen to analyse the wrappings initially and, only in case of positive findings, the 

corresponding fillings, a rapid throughput could be achieved on a routine basis. The 

recovery rates of 2-ITX in food ranged between 94 and 105% with a relative standard 

deviation between 0.4 and 8.5%. In practice, the limit of quantitation for 2-ITX was 

below 50 µg kg-1 and, thus, allowed effective control of the maximum migration level 

of 50 µg kg-1 recommended by the German Federal Institute of Risk Assessment.4 

 

Significant migration of 2-ITX from packaging materials into foodstuff was 

detected in 20% of the samples from the German market - up to 357 µg kg-1 in 

orange juice and 208µg kg-1 in baby food. 
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The occurrence of 2-ITX and 2,4-DTX in various food packaging materials, not 

limited to multilayer cartons, should direct the industry to utilize other, less-migrating 

photo-initiators. Moreover, the implementation of legislative standards for good 

manufacturing practice, with a positive list for printing inks and maximum migration 

limits, especially for substances with incomplete toxicological assessment, is 

essential. 
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IV.1. Abstract 

Gaskets for lids of glass jars usually consist of polyvinyl chloride (PVC) 

containing plasticisers and additional additives, which may migrate into packed 

foodstuffs. Concerning legal regulations, migration has to be determined analytically, 

which is a big challenge due to the huge chemical variety of additives in use. 

Therefore, a rapid screening method by means of direct analysis in real time 

ionisation and single quadrupole mass spectrometry (DART™−MS) was developed. 

Introducing a plastisol sample into the DART™ interface, additives revealed 

protonated molecules and ammonium adducts as the typical ionisation products, and 

cleavages of ester bonds as typical fragmentation processes. Generally, additives 

present in the range of 1% could directly and easily be identified if ion suppressive 

effects deriving from specific molecules did not occur. These effects could be 

avoided by measuring toluene extracts of plastisol samples, which also improved the 

sensivity. Using this method, it was possible to identify phthalates, fatty acid amides, 

tributyl O-acetylcitrate, dibutyl sebacate, bis(2-ethylhexyl) adipate, 1,2-diisononyl 1,2-

cyclohexanedicarboxylate, and even more complex additives like acetylated mono- 

and diacylglycerides, epoxidized soybean oil, and polyadipates with a limit of 

detection of ≤1% in PVC plastisols. Only in the case of epoxidized linseed oil were 
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levels ≥ 5% required for identification. The detection of azodicarbonamide as foaming 

agent within the manufacturing process was principally possible, but was not highly 

reproducible due to very low concentrations in plastisols. 

 

IV.2. Introduction 

Gaskets of metal twist closures for glass jars usually are manufactured from 

polyvinyl chloride (PVC) containing different additives, i.e., plasticisers, stabilisers, 

and slipping and blowing agents,1 altogether also called a plastisol. The 

concentration of plasticisers is mainly 15% or more.1,2 If packed foodstuff comes into 

direct contact with plastisols, additives or their reaction/degradation products can 

migrate into the foodstuff.3 Hence, in the recent years food packed in glass jars were 

frequently found to be contaminated by additives, exceeding the limits of European 

food law.2-11 Typically used additives are summarized in Table 1, divided into low and 

high molecular weight compounds. Due to different physicochemical and chemical 

properties, diverse analytical methods are required to analyse them. Commonly, the 

low molecular weight additives are extracted from foodstuffs followed by clean-up 

and concentration steps and analysed by gas chromatography with flame ionisation 

(GC/FID) or mass spectrometric detection (GC/MS), or by high performance liquid 

chromatography−mass spectrometry (LC/MS).12-14 Acetylated mono- and diglycerides 

of fatty acids (AcPG) can be mixtures of different compounds or defined single 

substances, like 2,3-diacetoxy-propyl 12-acetoxystearate (APAS), which is the 

acetylated monoacylglyceride of hydrogenated ricinoleic acid, for example. According 

to the literature, mixtures of AcPGs can only be determined in food by injector-

internal thermal desorption GC/MS, a method also suitable for other plasticisers, 

whereas APAS can be isolated from food extracts by gel permeation chromatography 

and determined by GC/MS.3,15 For the epoxidized vegetable oils ESBO and ELO, 

extraction and direct determination by liquid chromatography/ electrospray 

ionisation−tandem mass spectrometry (LC/ESI-MS/MS) was reported,16 whereas for 

GC analysis a transesterification step is mandatory and, depending on the method, 

an additional derivatisation reaction has to be used.17-20 Polyadipates (PADs) are 

polyesters of 1,2-propanediol, 1,3- or 1,4-butanediol, or polypropyleneglycol with 

adipic acid, also end-capped with acetic acid, fatty acids (C12-C18), n-octanol or n-

decanol.21 As these units are also used in different mixtures, PADs represent a very 
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complex case of additives.22 The analysis in food samples requires size exclusion 

chromatography, transesterification and the determination of dibutyl adipate as 

marker of PADs, followed by the analysis of the PAD in the gasket to calculate the 

amount of migrated PAD by use of a conversion factor, which is specific for different 

PADs.23 To put it in a nutshell, for the analysis of the known plastisol additives in food 

samples, strenuous efforts have to be undertaken requiring different derivatization 

and clean-up steps as well as powerful and efficient instrumental setup. In order to 

optimize this workflow and especially to decide, if the distinct analysis of certain 

additives in food is necessary, a rapid and simple screening method for the 

identification of additives present in plastisols of gaskets of lids is desirable.  

 

Until now only one method to determine additives in plastisols with focus on 

lids for glass jars was published.1 The plastisol was dissolved in tetrahydrofuran, the 

PVC precipitated by ethanol, and the supernatant analysed by GC/FID or GC/MS. A 

second analysis including an additional transesterification step was necessary to 

detect the additives of higher molecular weight. Therefore, this method does not fulfill 

the requirements of being rapid and easy. Recently, it was mentioned that it might be 

possible to distinguish lids containing ESBO as the principal plasticiser from those 

containing phthalates as main plasticisers by means of Fourier transform infrared 

spectroscopy, but concrete results were not presented.10 

 
Table 1. Known additives in PVC gaskets of lids. 

compound abbreviation CAS function 
low molecular weight additives 

(Z)-docos-13-enamide 
(erucylamide) 

EA 112-84-5 slipping 
agent 

oleylamide OA 301-02-0 slipping 
agent 

azodicarbonamide ADC 123-77-3 foaming 
agent 

1,2-diisononyl 1,2-
cyclohexanedicarboxylate 

DINCH 166412-78-8 plasticiser 

acetylated mono- and 
diglycerides of fatty acids  

AcPG  plasticiser 

benzyl butyl phthalate BBP 85-68-7 plasticiser 
bis(2-ethylhexyl) adipate DEHA 103-23-1 plasticiser 

bis(2-ethylhexyl) 
phthalate 

DEHP 117-81-7 plasticiser 

dibutyl phthalate DBP 84-74-2 plasticiser 
dibutyl sebacate DBS 109-43-3 plasticiser 
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compound abbreviation CAS function 
diisodecyl phthalate DIDP 26761-40-0 plasticiser 
diisononyl phthalate DINP 28553-12-0 plasticiser 

dioctyl phthalate DNOP 117-84-0 plasticiser 
tributyl O-acetylcitrate ATBC 77-90-7 plasticiser 

high molecular weight additives 
epoxidized linseed oil ELO 8016-11-3 plasticiser 

epoxidized soybean oil ESBO 8013-07-8 plasticiser 
polyadipates PAD  plasticiser 

 

The direct analysis in real time (DART™) ion source provides surface 

desorption and soft ionisation of sample molecules on the basis of proton transfer 

reactions and, as an open atmospheric pressure interface, allows to directly 

introduce solid samples.24,25 As recently shown, it is possible to identify phthalic acid 

esters in PVC toys down to 0.1% by DART™–MS as a rapid screening tool.26 

Therefore, it also should be possible to apply this technique to gaskets for lids of 

glass jars, but in contrast to toys, besides phthalates additional and more complex 

plasticisers have to be expected. Thus, the aim of the present study was to evaluate, 

if a rapid screening of typically used additives and especially plasticisers in plastisols 

can be performed by DART™–MS. Therefore, the formation of characteristic additive 

ions from standard solutions as compared directly from plastisols was studied, and 

limits of detection for the additives in plastisols were evaluated.  

IV.3. Experimental 

Chemicals and reagents 
The following chemicals were of analytical grade unless otherwise specified. 

Toluene and dichloromethane were purchased from Roth (Karlsruhe, Germany), 

tetrahydrofuran, benzyl butyl phthalate (BBP) and sodium carbonate (anhydrous) 

from Merck (Darmstadt, Germany), and dibutyl phthalate (DBP), dioctyl phthalate 

(DNOP), dibutyl sebacate (DBS), diethyl phthalate (DEP), methyl stearate, methyl 

oleate, glycerol tristearate, glycerol trioleate, glycerol tripalmitate and glycerol 

trioctanoate from Sigma-Aldrich (Taufkirchen, Germany). Bis(2-ethylhexyl) phthalate 

(DEHP), diisononyl phthalate (DINP), diisodecyl phthalate (DIDP), diisononyl 1,2-

cyclohexanedicarboxylate (DINCH), tributyl O-acetylcitrate, bis(2-ethylhexyl) adipate 

(ATBC), polyadipates (PAD), acetylated mono- and diglycerides of fatty acids 

(AcPG), epoxidized soybean oil (ESBO), epoxidized linseed oil (ELO), oleamide 
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(OA), (Z)-docos-13-enamide (erucamide, EA), polydimethyldisiloxane, titanium 

dioxide and zinc dioctanoate were of industrial grade and provided by a lid producing 

company together with plastisol samples. Vinnolit P 70 was a gift of Vinnolit GmbH & 

Co. KG, Wacker Chemie AG (Burghausen, Germany). 

 
Additive standard solutions and plastisol samples 

To record the mass spectra of the additives, the respective standards were 

dissolved in toluene in a concentration of 0.1 g L-1, in case of ESBO, ELO, the PADs 

and AcPGs 1 g L-1.  

 

Plastisols (numbered P1-P14, Table 2) were specially produced for this study 

by the pilot plant of a lid manufacturer. The formula of the plastisols generally 

contained the common additives at their typical concentrations, and the content of 

plasticisers in each plastisol was set to 40%. Additionally, P1 and P2 were foamed 

with ADC. In cases of AcPG and PAD, two different products deriving from different 

manufactures were used.  

 

Additional plastisols were prepared with the standard composition of 2% 

polydimethyldisiloxane, 0.7% titanium dioxide, 0.05% zinc dioctanoate , 0.25% 

sodium carbonate, 55% PVC (Vinnolit P 70), 1% EA, 1% OA, and 40% plasticiser. In 

case of PAD containing plastisols, the PAD concentration was 0, 1, 2.5, and 5% with 

diethyl phthalate at 40, 39, 37.5, and 35%, respectively. For the preparation of 

plastisols, 200 mg of PVC and the additives were mixed in a 10-mL glass beaker with 

a spatula until a homogenous and colorless paste was obtained. The paste was 

coated on an aluminum foil, which was held at 200 ºC on a heating plate. After one 

minute, the aluminum foil was removed and the plastisol was allowed to cool off.  

 

Extraction 
About 20 mg plastisol were weighed into a 1.3-mL glass vial and 0.3 mL 

toluene was added. After 30 min extraction time at ambient temperature, the toluene 

extract was transferred into a second 1.3-mL vial by use of a disposable glass 

pipette. 
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Table 2. Composition of plasticisers in plastisols P1-P14 in mass percentages [%]. The general formula of the plastisols was 2% polydimethyldisiloxane, 

0.7% titanum dioxide, 0.05% zinc octoate, 55% PVC, 1% EA and OA, and plasticisers and foaming agents according this table.  

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 
DBP 0 0 0 1 2.5 0.5 0.1 0.05 0 0.1 0 0 0 0 
BBP 0 0 0 1 2.5 0.5 0.1 0.05 0 0.01 0 0 0 0 

DEHP 2.5 15 0 1 0 0.5 0 0.05 0 0.01 0 0.1 0 5 
DNOP 0 0 0 0 1 0 0.5 0 0.05 0 0.01 0 0.1 5 
DINP 2.5 0 0 1 0 0.5 0.1 0.05 0 0.01 0 0 0 0 
DIDP 2.5 0 0 1 0 0.5 0.1 0.05 0 0.01 0 0 0 0 
DEHA 2.5 0 22.5 1 13 0.5 30.9 0.05 36.85 39.65 39.69 38.4 38.4 10 
ATBC 17.5 0 2.5 17 1 28.5 0.5 36.65 0.1 0 0 0 0 0 
DBS 0 0 0 1 5 0.5 0.1 0 0 0 0 0 0 0 

DINCH 2.5 0 0 1 0 0.5 0.1 0.05 0 0 0 0 0 0 
ELO 10 0 0 5 0 2.5 0 1 0 0.1 0 0.5 0 10 

ESBO 0 10 0 0 5 0 2.5 0 1 0 0.1 0 0.5 10 
PAD1 0 10 0 0 5 0 2.5 0 1 0 0.1 0 0.5 0 
PAD2 0 0 10 5 0 2.5 0 1 0 0.1 0 0.5 0 0 

AcPG1 0 5 0 5 0 2.5 0 1 0 0.1 0 0.5 0 0 
AcPG2 0 0 5 0 5 0 2.5 0 1 0 0.1 0 0.5 0 
ADC 0.25 0.25 0 0 0 0 0 0 0 0 0 0 0 0 

Na2CO3 0 0 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 
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DART–MS 
An Ion Sense DART™ 100 (KR Analytical, Sandbach, UK) with Vapur API-

Interface and DART™-Control software (Version 2.19) coupled to a G1956B MSD 

single quadrupole mass spectrometer with ChemStation B.02.01 SR2 software 

(Agilent Technologies, Waldbronn, Germany) was used. The DART™’s needle 

voltage was set to 4000 V, discharge and grid electrode were operated at 280 V. For 

the DART™ helium 5.0 (purity > 99.999%) was set to a temperature of 250 ºC and 

used with a flow of 5-6 L min-1, checked with a GFM 17 flowmeter (Analyt-MTC, 

Müllheim, Germany). The MSD was operated in positive fast-scan mode m/z 144-800 

with a step size of 0.1 amu, a cycle time of 0.79 s cycle-1, a capillary voltage of 

6000 V, a fragmentor voltage of 50 V, a gain of 1.00 and a threshold of 0. Plastisol 

pieces of about 2 x 0.2 cm were held for about 45 s with the help of tweezers directly 

into the DART™ gas stream and solutions by means of DIP-it Liquid Samplers (KR 

Analytical, Sandbach, UK). Replication measurements of plastisols were generally 

taken from the same spot. The gap between the DART™ gas outlet and the Vapur 

API Interface inlet was 1.1 cm, the lengh of the ceramic tube 3.9 cm and the 

sampling point in the middle of the gap. 

 

For measuring ESBO and ELO, the DART™ helium was set to 450 ºC and the 

mass scan range to m/z 800-1050. In case of ADC identification, the settings were 

150 ºC for the helium temperature and m/z 70-300 for the scan range. Generally, 

each sample was measured six times, consecutively. 

 

For high resolution mass spectrometry experiments, the DART™ interface 

was mounted onto an Orbitrap XL mass spectrometer (Thermo Scientific, Bremen, 

Germany) operated by XCalibur 2.0.7 software. The system was used in positive 

scan mode from m/z 140-1050 with a capillary temperature of 200 °C, a resolution of 

60,000 and a scan time of one microscan with a maximum injection time of 0.5 s. 

 

Concerning data evaluation, the set of obtained mass spectra over the whole 

time of a TIC current was averaged. To avoid false positive signals deriving from 

atmospheric conditions, the manual background correction of the MS software was 

used, and scans both ahead and behind the ‘peak’ were defined as background. This 

background correction securely prevented false positive identifications of additives. 
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Signal to noise ratios (S/N) for specific ions were calculated from the obtained mass 

spectra. The noise values of two different m/z ranges free of signals were averaged 

and related to the mass signal of interest. An ion was identified, if i) the S/N was >3 

and ii) this occurred at least in four of six consecutive measurements. 

 

IV.4. Results and discussion 

Mass spectra of additive standards dissolved in toluene 
The phthalic acid esters generally provided the protonated molecule, the 

corresponding [M+18]+ signal and characteristic fragmentation products by DART™ 

ionisation as recently reported.26 Similarly, the mass spectra of the slipping agents 

oleylamide (OA) and erucylamide (EA) were predominated by the protonated 

molecule at m/z 282.3 and 338.3, respectively, accompanied by an [M+18]+ peak, but 

poor in fragments. 

 

Since the other plasticisers under study more or less are fatty acid esters and 

partly rather complex in composition, methyl stearate, glycerol tristearate, glycerol 

trioleate, glycerol tripalmitate, and glycerol trioctanoate as model substances were 

firstly analysed by DART™–MS to experience ionisation principles. In all mass 

spectra, the [M+18]+ was obtained as base peak, whereas the protonated molecule 

was below 50%, especially low for glycerol tristearate (5%). All triglycerides showed 

a fragment with an intensity of about 50%, to be explained by neutral loss of a fatty 

acid. In the case of, e.g., glycerol trioleate, it was recorded at m/z 603.5, and can be 

calculated as 885.8 amu ([M+H]+ minus 282.3 amu for the loss of oleic acid). 

Therefore it can be concluded that the loss of an acid group from the protonated 

molecule under DART™ conditions is a typical fragmentation process for glycerides. 

Concerning the found [M+18]+ signals, ammonium adducts are reported in literature 

and were especially observed, when a bottle of dilute ammonium hydroxide solution 

was opened nearby the DART™ source.24 To prove the [M+18]+ ions as products of 

environmental ammonia, solutions of EA and glycerol tristearate were analysed by 

DART™ coupled to an Orbitrap XL high resolution mass spectrometer. For EA, the 

protonated molecule at m/z 338.3407 (calculated 338.3417) and an [M+18]+ at 

m/z 355.3672 (calculated 355.3683 amu) were obtained. In case of glycerol 
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tristearate, m/z 908.8618 for the [M+18]+ (calculated 908.8641 amu) and m/z 

607.5641 ([M+H]+ minus stearic acid, calculated 607.5660 amu) were the dominant 

peaks in the mass spectrum. With deviations of about 3 ppm from the theoretical 

values, the accurate masses do support the important formation of ammonium 

adducts for esters and amides, even though an ammonium hydroxide solution was 

not used to trigger adduct formation.  

 

Diisononyl 1,2-cyclohexanedicarboxylate (DINCH) and tributyl O-acetylcitrate 

(ATBC) offered the protonated molecule as base peak ion, but a more intense 

[M+18]+ as compared to the phthalates, which was in the range of 20-40%. In the 

mass spectruma of dibutyl sebacate (DBS) and di(2-ethylhexyl) adipate (DEHA), the 

[M+18]+ signal even reached 70-90% of the [M+H]+ base peaks. As dimers, mainly 

[2M+18]+ ions were found, whose intensities were about tenfold as compared to the 

[2M+H]+ ions. This effect has also been shown before for DINP and DINCH.26 
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Figure 1. DART™–MS spectra of ESBO (left) and ELO (right). 

 

Epoxidized soy bean oil (ESBO) and epoxidized linseed oil (ELO) mainly 

consist of epoxidized triglycerides (eTGs) of linolenic (Ln), linoleic (L), oleic (O), 

stearic (S) and palmitic (P) acid,27 thus a couple of different eTGs have to be 

expected. Additionally, different eTGs have the same molecular formula or their 

masses only differ slightly as, for example, 77 ppm for the eTGs PLnLn and OLO. 

With intensities >80%, the mass spectrum of ESBO provided signals at m/z 936.7, 

964.8, 978.7, and 992.7 (Figure 2), which were assigned to the [M+NH4]+ of eTGs 

PLL & POLn, OLO & SLL & SLnO, LLO & OLnO & LnLS, and LLL & LnOL & SLnLn, 

respectively. Due to the higher Ln content of linseed oil, ELO additionally showed two 

signals of a higher intensity at m/z 1020.7 and 1034.7 (Figure 1), which can be 

assigned to the ammonium adducts of epoxidized LnLnL and LnLnLn, respectively. 
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The ion at m/z 1034.7 did not appear in the spectrum of ESBO and is the only marker 

for ELO. 

 

The mass spectrum of the acetylated mono-/diglyceride AcPG1 provided 

about 12 significant peaks (Figure 2). The base peak was found at m/z 376.2, and 

the second most intense peak was m/z 299.2 (50%). The first one was assigned to 

[M+NH4]+ of diacetoxypropyl dodecanoate, (APD), the second one to [M+H -acetic 

acid]+. Measurements on the DART–OrbitrapXL system, resulting in m/z 376.2687 

(calculated 376.2699) and m/z 299.2212 (calculated 299.2222), confirmed the 

assignments. The protonated APD and the ammonium adduct of dimeric APD 

yielded m/z 359.2 and 734.5, respectively. The signals of the main component APD 

are accompanied by the ammonium adducts of homologue C8, C10, C14, C16, and 

C18 fatty acid esters (Figure 2), including fragments formed by losses of a fatty acid 

or acetic acid. The analysis of AcPG2 resulted in a mass spectrum containing m/z 

518.3 as base peak, m/z 501.3 with an intensity of 80%, m/z 441.3 (25%) and 

m/z 381.2, which were assigned to the [M+NH4]+, the [M+H]+ and a fragmentation 

products formed by loss of one or two acetic acid moieties of 2,3-diacetoxypropyl 12-

acetoxystearate as the main component of AcPG2. The by-product 2,3-

diacetoxypropyl stearate is responsible for m/z 460.3 ([M+NH4]+, 10%). 
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Figure 2. DART™–MS spectra of AcPG1 (left) and PAD1 (right) 

 

As compared to the former plasticisers, the mass spectra of both polyadipates, 

PAD1 and PAD2, were highly complex and showed more than 40 peaks, exemplarily 

shown for PAD1 in Figure 2. In spite of this, the spectra of both PADs revealed 

m/z 373.1 (base peak), 390.2 and 745.3, which were assigned to the [M+H]+, the 

[M+NH4]+ and the [2M+H]+ of the cyclic adipate oligomer containing two adipate (A) 
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and two 1,2-propanediol (P) units. This PAD component was described as cy(A-P)2 

and identified in 7 of 14 commercially available PADs by Biedermann et al.22. 

DART™–MS signals at m/z 187.0 and m/z 204.1 were also significant for both PADs, 

which correspond to the [M+H]+ and [M+NH4]+ of a cyclic 1,2-propanediol adipate 

(cy(A-P), which was identified by Biedermann et al. in the same PADs), but they also 

found m/z 187 as a very stable fragment of cy(A-P)2 during GC/MS studies. The 

former assignments were confirmed by high resolution mass spectrometry resulting 

in signals at m/z 373.1847, 390.2113, 745.3624, 187.0959, and 204.1224, all of 

which with a deviation of about 2.5 ppm from the calculated exact masses. Besides 

the common signals, there also were differences in the mass spectra of PAD1 and 

PAD2. Signals, for example, at m/z 585.4, 602.4, 771.5, and 788.5 were only 

recorded in case of PAD1. The first two are assigned to the [M+NH4]+ and [M+H]+, 

respectively, of an oligomer consisting of two A and one P, endcapped with decanol 

(D) and octanol (O), i.e., O-A-P-A-D, according to the nomenclature of Biedermann et 

al.,22 whereas the latter two ions correspond to the respective adducts of O-A-P-A-P-

A-D. High resolution mass spectrometry delivered m/z 585.4346, 602.4610, 

771.5236, and 788.5519, which are in agreement with the calculated exact masses 

with a deviation of about 2.5 ppm. These two components were identified by 

Biedermann et al. in only one of the 14 investigated PADs. Therefore, the DART™–

MS method should be suitable for rapid identification of a specific PAD deriving from 

a well known and characterized pool of PADs.  

 

Data obtained from plastisol analysis 
From the MS data obtained, the characteristic ions summarized in Table 3 

were selected and used for the identification of additives in plastisols by DART™–

MS. 
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Table 3. Selected ions and limits of detection for the identification of additives in plastisols by 

DART™–MS. If an ion was not detectable at a given percentage, the next higher detectable 

concentration present in a plastisol is added in parenthesis. For ions of ESBO, ELO, the PADs and 

AcPG 1, the LODs of the toluene extracts were additionally added. 

additive chemical formula 
of the 

characteristic 
molecule 

m/z adduc
t 

LOD (%) in plastisols / 
LOD (%) in toluene 

extracts 

DBP C16H22O4 279.2 H+ 1 
  296.2 NH4

+ 2.5 
BBP C19H20O4 313.1 H+ 1 

  330.2 NH4
+ 2.5 

DEHP C24H38O4 391.3 H+ 1 
  408.3 NH4

+ n.d. at 2.5% (15%) 
DNOP C24H38O4 391.3 H+ 0.5 

  408.3 NH4
+ n.d. at 1% 

DINP C26H42O4 419.3 H+ 0.5 
  436.3 NH4

+ n.d. at 2.5% 
DIDP C28H46O4 447.3 H+ 0.5 

  464.3 NH4
+ n.d. at 2.5% 

DEHA C22H42O4 371.3 H+ 1 
  388.3 NH4

+ n.d. at 2.5% (10%) 
ATBC C20H34O8 403.2 H+ 0.5 

  420.2 NH4
+ n.d. at 2.5% (17%) 

DBS C18H34O4 315.3 H+ 1 
  332.3 NH4

+ 1 
DINCH C26H48O4 425.4 H+ 0.5 

  442.4 NH4+ n.d. at 2.5% 
ESBO C55H98O10 936.7 NH4+ n.d. at 40% / 1 

 C57H102O10 964.8 NH4
+ n.d. at 40% / 1 

 C57H100O11 978.8 NH4
+ n.d. at 40% / 1 

 C57H98O12 992.7 NH4
+ n.d. at 40% / 1 

ELO C55H98O10 936.7 NH4
+ n.d. at 10% / 5 

 C57H102O10 964.8 NH4
+ n.d. at 10% / 2.5 

 C57H100O11 978.8 NH4
+ n.d. at 10% / 2.5 

 C57H98O12 992.7 NH4
+ n.d. at 10% / 2.5 

 C57H92O15 1034.7 NH4
+ n.d. at 10% / 5 

PAD1 C18H28O8 373.2 H+ n.d. at 5% (10%) / 2.5 
  390.2 NH4

+ 2.5 / 5 
 C33H60O8 585.4 H+ 5 / 1 
 C42H74O12 771.5 H+ n.d. at 10% / 5 

PAD2 C18H28O8 373.2 H+ n.d.at 5% / 1 
  390.2 NH4

+ 2.5 / 5 
AcPG1 C19H34O6 359.2 H+ n.d. at 5% / 5 

  376.2 NH4
+ 2.5 / 1 

AcPG2 C27H48O8 501.3 H+ 0.5 
  518.3 NH4

+ 0.1 
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Concerning data recording, the software provides curves representing the total 

or selected ion currents, respectively, according to the experiment time (Figure 3). 

Generally, the higher concentrated an additive is present in the plastisol, the higher 

the expected signal of the corresponding selected ion current is. However, the 

obtained ‘peaks’ did not repeatedly result in the same shape and intensity, although 

the plastisol samples were introduced into the DART™ interface in the same manner, 

as well as manually possible. Additionally, different additives obviously ionize with 

different latencies, for example EA and DIDP (Figure 3). This partly held true for 

different adducts of the same additive as shown for the [M+H]+ and [M+NH4]+ of 

ATBC. If plastisol samples of highly concentrated and easily ionizable additives, e.g. 

15% DEHA, are measured, possible memory effects may be suspected, resulting in a 

mass spectrometric background containing ions of the respective additives during the 

measurement of forthcoming samples. However, false positive signals were generally 

not observed, as exemplarily shown for the extracted ion counts of ATBC and DIDP 

during the analysis of the second plastisol (Figure 3).  

 

2.5 5.0 7.5 10.0 12.5 minutes

1000

3000

kCounts

0
100
200

0
50

100

0
100
200

0

20

0

100

TIC

m/z 403.2

m/z 420.2

m/z 391.3

m/z 338.3

m/z 447.3

2.5 5.0 7.5 10.0 12.5 minutes

1000

3000

kCounts

0
100
200

0
50

100

0
100
200

0

20

0

100

TIC

m/z 403.2

m/z 420.2

m/z 391.3

m/z 338.3

m/z 447.3

 
Figure 3. Total and selected ion currents (SICs) obtained during DART™–MS of plastisols: 0–1.25 

min, blank (atmospheric situation); 1.25–11.5 min, P1 measured six times; 11.5– 14.0 min, P2 

measured once; beginning of each measurement is indicated by a vertical line (SICs: m/z 403.2 and 

420.2, [M+H]+ and [M+NH4]+ of ATBC; m/z 391.3, [M+H]+ of DEHP; m/z 338.3, [M+H]+ of EA; m/z 

447.3, [M+H]+ of DIDP). 
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Identification of additives in the standardized plastisols P1-P14 
The phthalic acid esters, DINCH, ATBC, AcPG, DBS and DEHA showed the 

same mass signals deriving from different plastisols as they were obtained from the 

toluene solutions. Identification of PAD1 and PAD2 through m/z 373.2 and m/z 390.2 

was generally possible, but the signals may coincide with the M+2 satellites of DEHA, 

if it is present in high concentrations.  

 

EA and OA, present at 1% in plastisols, were generally detectable through 

their protonated molecules at the defined LOD of S/N>3. The identification was 

significantly enhanced by measuring the toluene extracts, when both slipping agents 

provided clear signals with a S/N ratio of 20.  

 

ESBO and ELO surprisingly were not detectable in the plastisols P1-P14. An 

additionally prepared plastisol with 40% ESBO showed the same result. Instead of 

the typical ESBO signals, only m/z 989.8, 1009.8, 1022.8 and 1042.7 (base peak) 

were detected within the relevant mass range in intensities that had been expected 

for ESBO signals. Further experiments showed that EA and OA, i) in combination 

and ii) both at a concentration of only 1%, strongly gave rise to ion suppressive 

effects according to ESBO ions. To avoid these effects, an extraction of ESBO with 

organic solvents was tested. Therefore, about 20 mg plastisol were extracted by 

0.3 mL tetrahydrofuran, dichloromethane and toluene for 30 min and 12 h, 

respectively. Tetrahydrofuran dissolved the plastisol during both extraction times, but 

decrease of the ion suppressive effects did not occur. The same effects were 

observed for the 12-h extraction with dichloromethane. In case of the 12-h extraction 

with toluene and the 30-min extractions with both dichloromethane and toluene, the 

plastisol was not completely dissolved, and ESBO was well detectable. To avoid 

halogenated solvents, the 30 min extraction with toluene was preferred. Figure 4 

exemplarily demonstrates the success of extraction as compared to direct 

measurement of plastisols; all used plasticisers were clearly identified. As the 

extraction procedure takes about half an hour and direct measuring of the plastisol 

including data evaluation can be performed during the extraction, the whole 

procedure of a plastisol analysis will only take approximately 45 min.  
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Additional efforts have been undertaken to differentiate ELO from ESBO in 

plastisols. On base of the different eTGs distribution of ESBO and ELO, peak height 

ratios should be indicators for the used additive. For example, the ratio of the TGs 

LLL & LnLO & SLnLn (epoxidized form in ESBO or ELO is identified by m/z 992.7) 

and PLL & POLn (epoxidized form in ESBO or ELO is identified by m/z 936.7) is 

reported as 1.7 and 8.0 for soy bean oil and linseed oil, respectively.28  
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Figure 4. DART™–MS spectra of plastisol P1 directly measured (left) and after  toluene extraction 

(right): DEHA (371.3), DEHP (391.2), ATBC (403.2, 420.2, 822.4 as [2M+NH4]+), DINP (419.2, on the 

right spectrum attaching to 420.2), DINCH (425.3), DIDP (433.2), ELO (936.7, 950.7, 964.7, 978.7, 

992.7, 1006.6, 1020.6, 1034.6), impurities of DIDP or DINP (447.3, 461.3). 

 

In six measurements of toluene extracts of the plastisols P1 (10% ESBO) and 

P2 (10% ELO), the averaged peak height ratio was 1.7 (± 0.5) for ESBO and 2.4 (± 

1.4) for ELO, respectively. Thus, the obtained ratio was higher for ELO than for 

ESBO, but the expected strong difference was not found. If the cited ratios hold true 

for the respective plant oils, including natural variations, differences in response of 

eTGs under DART™ conditions may explain the discrepancy. Therefore, the best 

way to distinguish between ESBO and ELO is the identification of the eTG LnLnLn 

(m/z 1034.7), which was absent in any mass spectrum of ESBO, and, as compared 

to ESBO, the highly abundant m/z 1006.7.  

 

Detection of azodicarbonamide 
Due to the release of semicarbazide, a minor thermal decomposition product 

of the blowing agent azodicarbonamide (ADC), the use of ADC in the manufacturing 

process of gaskets for lids is forbidden in the European Community.6,29 During heat 
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treatment of the plastisol’s production process, ADC decomposes into gaseous 

products (34%) and the solid residues hydrazodicarbonamide (HDC, 34%) and 

urazole (27%).30 As recorded DART™–MS spectra of plastisols showed intense 

signals in the mass range below 150 Da due to fragment and atmospheric ions, the 

former DART™ parameters used for additive identification could not be used. 

Therefore, the helium temperature was set to 150 ºC to i) decrease ionisation of high 

mass molecules and ii) to lower fragmentations. Additionally, the scan range was 

reduced to m/z 70-300. As a result, the total ion current surprisingly zeroed, when 

plastisol samples were introduced into the interface (Figure 5). Obviously, the 

ionisation of atmospheric molecules was suppressed by additives deriving from the 

plastisol sample. With respect to the scan range, however, the additive ions were not 

recorded resulting in a total ion current of nearly zero. Under these conditions, not 

ADC itself, but its main gaseous decomposition product hydroazodicarbonamide 

(HDC) was detectable through the protonated molecule at m/z 119 in the background 

corrected mass spectrum and also resulted in a small peak in case of the selected 

ion current (Figure 5). To avoid a decrease in concentration, the success of 

detectability was checked by introducing a new sample piece for repeated 

measurements. During a series of six replicates of plastisol P2, the HDC peak only 

was clearly detectable in three cases. However, in P3 foamed by Na2CO3, HDC 

could never be detected. Therefore, this method for the detection of an ADC usage 

principally worked, but was not sufficiently reproducible due to rather low 

concentrations.  
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Figure 5. Left: Identification of HDC in plastisols; total ion (top) and selected ion (m/z 119) (bottom) 

current. Right: background corrected mass spectrum at 1.8 min. 
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Limits of detection 
Considering the defined data evaluation method, the obtained results for the 

plastisols P1-P14 were interpreted to establish LODs for significant ions used for the 

identification of the additives. On basis of at least one characteristic ion, DNOP, 

DINP, DINCH, ATBC, and AcPG2 were detectable in concentrations of ≥0.5% in 

plastisols, whereas for DBP, BBP, DEHP, DBS, and DEHA, the LOD was 1% 

(Table 3). Detectability was also given at lower concentrations, but then only 

occurred in less than four of six consecutive measurements. Compared to the LODs 

of phthalic acid esters in plastisols that only contained DINCH as additional 

plasticizer,26 the present results of more complex plastisols showed higher LODs. 

This may be due to ion suppression effects and the increased gas temperature, 

which enhanced fragmentation of molecular ions, as shown for DHEP and DNOP.26 

In the case of AcPG1, direct identification in the plastisol was only possible, if the 

concentration was above 2.5%; extraction with toluene resulted in an LOD of 1%. As 

the plastisols P1-P14 almost had high concentrations of interfering DEHA, additional 

plastisols were prepared at levels of 0–5% PAD1 or PAD2, respectively. DART™–

MS measurements showed that m/z 373.3 ([M+H]+ of cy(A-P)2) was not detectable, 

but the ion at m/z 390.2 ([M+NH4]+ of cy(A-P)2) of both PADs at a level of 2.5%, and 

m/z 585.4 of PAD1 at 5%. For some characteristic ions of the PADs, LODs were also 

lowered by toluene extraction (Table 3). The epoxidized vegetable oils were only 

detectable in toluene extracts; the resulting LODs were 1% for the characteristic 

ESBO ions, and 2.5% as well as 5% for typical ELO ions (Table 3). Significant 

identification of ELO is limited to 5% and does not cover mixtures of ESBO and ELO.  

 

IV.5. Conclusion 

The method presented shows great possibilities to identify additives in 

plastisols very easily and rapidly, compared to already published methods. As more 

clarity is brought into the results of ionisation and fragmentation processes, this 

method may be transferred easily to other applications dealing with similar subjects. 

DART™-MS may also be very useful to rapidly identify complex plasticisers as, for 

example, to distinguish between different kinds of PADs used in a plastisol. 
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V.1. Abstract 

PVC lids of glass jars often contain epoxidized soybean oil (ESBO), able to 

migrate and contaminate food. To establish a stable isotope dilution assay (SIDA), 

the 13C18 labelled internal standard ethyl 9,10,12,13-diepoxyoctadecanoate 

(13C(18:2E)Et) was synthesized, providing after sample preparation the same 

retention time as methyl 9,10,12,13-diepoxyoctadecanoate ((18:2E)Me), commonly 

used as marker for ESBO in GC analysis. For eleven different food matrices, the GC 

capillary columns VF-17ms, DB1701 and DB1 were tested with single quadrupole 

(GC-MS) as well as tandem mass spectrometric detection (GC-MS/MS). Overall, the 

VF-17ms column coupled with MS/MS detection showed the best results in terms of 

separation and sensitivity. The method validation for the matrix spiked olive oil 

resulted in a LOD of 5 mg kg-1, a LOQ of 11 mg kg-1, a mean recovery (n=5, 

c=106.5 mg kg-1) of 99.7±5.5 % with a repeatability (within-run precision) of 6.0 %. By 

means of GC-MS a LOQ of 21 mg kg-1 and a mean recovery (n=5, c=106.5 mg kg-1) 

of 103.3±0.8 % with a repeatability of 0.9 % were determined. 

 

                                                 
§ Present adress: Institut für Lebensmittelchemie, Universität Hohenheim 

mailto:wschwack@uni-hohenheim.de�
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V.2. Introduction 

Epoxidized soybean oil (ESBO, CAS Registry Number 8013-07-8) is used as 

plasticiser and stabilizer for PVC, employed e.g. for closure gaskets of glas jars’ 

metal lids. In 64 % of 158 lids collected at the Swiss market in June 2005, ESBO was 

the principal plasticiser in the gaskets with an average concentration of 35 to 40 % of 

the formulation weight.1  

 

If food packed in glass jars comes into contact with the gasket, the plasticiser 

is able to migrate and contaminate the food. According to the Scientific Committee on 

Food (SCF), the tolerable daily intake (TDI) for ESBO is 1 mg kg-1 b.w.2 The 

European specific migration limit (SML) was set to 60 mg kg-1 for food and 30 mg kg-1 

for baby and infant food by the European Commission Directive 2005/79/EC.3 The 

average weight of the gasket material of a lid coming into food contact is 228 mg, so 

with 35 % ESBO in the PVC of the lid for a 100 g jar, a maximum amount of 

800 mg kg-1 plasticiser potentially migrating into the food can be estimated.4 Former 

investigations showed ESBO contaminations of up to 580 mg kg-1 in food and 

135 mg kg-1 in baby food.4-7 

 
Using liquid chromatography tandem mass spectrometry, ESBO was 

determined in food sauces directly after extraction by dichloromethane. By selected 

reaction monitoring five signals, representing approximately 90 % of ESBO’s 

triglycerides, were used for quantification.8  

 

Concerning the analytical procedure of gas chromatography (GC), ESBO is 

determined as methyl 9,10,12,13-diepoxyoctadecanoate ((18:2E)Me) after 

transesterification. According to the Prileschajew reaction, complete epoxidation of 

linoleic acid, the main fatty acid of soy bean oil, results in four stereoisomers 

(Figure 1), due to the retained cis configuration of the reaction’s transition state.9 

During GC analysis of the methyl esters, two peaks are obtained likely representing 

two pairs of enantiomers (structures 1/2 and 3/4, Figure 1). Regarding the detection 

order in GC analysis the corresponding substance pairs are named (18:2E)Me(1) 

and (18:2E)Me(2). Because the content of (18:2E)Me(1) in ESBO is about twofold as 

compared to (18:2E)Me(2), the former is used for quantification.10 
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Figure 1. Structure formulae of the four possible stereoisomers (1 - 4) for (18:2E)Me, resulting from 

complete epoxidation of methyl linoleate. The capital letters (R, S) refer to the absolute configuration 

according to the Cahn-Ingold-Prelog rules. 

 
If (18:2E)Me(1) is used as a marker, it must be guaranteed that its presence 

does not differ depending on both the origin of the soy bean oil used for the 

production of ESBO and the process. To prove the suitability of this marker for 

ESBO, the mean content of 77 lids was analysed to 33.0±1.9 % (18:2E)Me(1).7  

 

The common GC analysis of ESBO in food was done by the use of ethyl 

11,12,14,15-diepoxyeicosanoate as internal standard, trans-methylation of the lipids 

extracted from a sample, reaction of (18:2E)Me with cyclopentanone yielding 1,3-

dioxolanes and GC-(EI)MS analysis.11 The dioxolanes provide stability of the 

epoxidized compounds, optimize the gas chromatographic separation from fatty acid 

methyl esters, and shift the mass spectra to higher and more selective masses.  

 

According to more time saving analysis, after addition of methyl 11,12,14,15-

diepoxyeicosanoate as internal standard, ESBO was directly transmethylated in the 

food without prior fat extraction.12 Additionally, (18:2E)Me(1) was directly determined 

without the transformation into dioxolanes by on-line liquid chromatography - gas 

chromatography with flame ionisation detection (LC-GC/FID).7  

 

Using the same fast sample preparation, very recently a GC analysis was 

performed on polar stationary phases with FID detection for most food matrices, but 

in case of difficult matrices chemical ionisation with ammonia and mass 



Chapter V 93
 

 

spectrometric detection was favoured.13 However, the GC-FID method requires 

tenfold extract concentration before GC analysis, to achieve a detection limit of 20 

mg kg-1, and LC/GC-FID or GC-MS with chemical ionisation with ammonia, 

respectively, are not common equipments of food control laboratories. Therefore, 

regarding the advantages of fast sample preparation, it was the aim of the present 

study to use GC-MS and GC-MS/MS instruments with 70 eV electron impact 

ionisation for quantification of (18:2E)Me(1). For optimized analysis, 13C18-labelled 

ethyl 9,10,12,13-diepoxyoctadecanoate (13C(18:2E)Et) was introduced as internal 

standard, providing stable isotope dilution assay (SIDA) features after 

transesterification into the corresponding methyl ester. Furthermore, the 

chromatographic separation power of three different GC capillary columns was 

checked for eleven different food matrices by means of mass spectrometric detection 

in the selected ion monitoring (SIM) and the single reaction monitoring (SRM) mode.  

 

V.3. Materials and Methods 

Chemicals and reagents 
All chemicals were of analytical grade unless otherwise specified. ESBO 

(Edenol D82) was a gift of the Official Food Control Authority of the Canton of Zürich 

(Switzerland) and originally came from Vernicolor (Switzerland). 

3-Chloroperoxybenzoic acid and methyl linoleate were purchased from Sigma-Aldrich 

(Seelze, Germany), [1-18-13C]-ethyl linoleate from Euriso-Top GmbH (Saarbrücken, 

Germany), sodium methoxide (30 % in methanol), all salts and solvents from Merck 

(Darmstadt, Germany). 

 

Preparation of 13C(18:2E)Et, 13C(18:2E)Me and (18:2E)Me 
According to the method described by Castle et al.,11 solutions of 

3-chloroperoxybenzoic acid (50.4 mg / 1 mL chloroform) and 13C18-ethyl linoleate 

(25.5 mg / 1 mL chloroform) were mixed in an 15 mL test screw capped tube and 

kept at ambient temperature overnight. Thereafter extraction was performed three 

times by 5 mL sodium sulfite (10 % in water), 5 mL sodium hydrogen carbonate 

(10 % in water) and 5 mL water. The organic phase was diluted with 10 mL isooctane 

and filtered over 5 g of anhydrous sodium sulphate into a 50 mL volumetric flask. The 
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test tube was rinsed with 20 mL isooctane given over the filter into the flask, which 

was finally filled up to mark, to obtain the stock solution of the internal standard. By 

dilution (2 mL / 15 mL) the internal standard working solution was obtained and 

stored at -20 ºC. 

 

To prepare 13C(18:2E)Me and get solution S(13C(18:2E)Me) for recording the 

mass spectrum, 1 mL of the above stock solution was diluted with 4 mL 

tetrahydrofuran (THF), and the transesterification was performed as described for the 

sample preparation procedure, but without adding any more THF.  

 

Following the same protocol, (18:2E)Me was synthesized starting from 

unlabelled methyl linoleate. For GC-MS, 100 μL of the prepared (18:2E)Me stock 

solution were filled up with isooctane to 10 mL, to obtain solution S((18:2E)Me). 

 

Samples 
The following samples were purchased from local grocerys, all packed in glass 

jars: three pesto a la Genovese, two pesto rosso, one surrogate of salmon in oil, one 

garlic in oil and four baby food (vegetable with chicken, potatoes with carrots and 

meat, spaghetti with vegetables and meat, potatoes with beans and meat); olive oil 

for validation purposes (packed in a glass bottle with a closure made of metal and 

polyethylene). 

 

Validation 
For the on-matrix calibration, 21.3 mg ESBO were dissolved in 20 mL dioxane 

and suitably diluted with dioxane to spike olive oil at the following levels: 1.1, 5.3, 

10.7, 21.3, 32.0, 42.6, 53.3, 106.5, 159.8, 213.0, 266.3, 319.5, 372.8, 426.0, 479.3 

and 532.5 mg kg-1. After addition of the ESBO solution the samples were 

homogenized by thorough agitation with a glass bar. All samples were used to create 

a calibration curve. To determine the limits of detection (LODs) and quantification 

(LOQs), the signal to noise ratios of (18:2E)Me(1) were determined with the MS 

Workstation software integrated tool (the noise was calculated as root mean square 

(rms)) and manually to obtain values qualified through expertise. For the LODs a 

manually determined signal to noise base of leastwise S/N = 3 and for the LOQs 

S/N = 9, respectively, was decisive. The repeatability (within-run precision) and 
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recovery were calculated on the base of five separately spiked olive oil samples of 

106.5 mg kg-1. 

 

Sample preparation 
The pestos and baby food samples, including the food adhering to the lid, 

were transferred into a beaker and homogenized with a ESGE Zauberstab (Unold 

AG, Hockenheim, Germany). In case of products in oil, only the oil was used for the 

analysis. Oil (100 mg), pesto (500 mg) or baby food (500 mg) samples were weighed 

into a 50 mL screw capped vial, 100 μL internal standard solution and 4 mL THF 

were added and mixed together. After the addition of 5 mL sodium methoxide 

solution (6 % in methanol) the vial was shaken vigorously for 90 s. Extraction was 

performed by the addition of 10 mL n-hexane and 10 mL disodium hydrogencitrate 

(15 % in water), and the organic phase was used for GC analysis.  

 

Spiked olive oil samples (53, 107, 213, and 426 mg kg-1) were prepared and 

used for a four-point calibration to determine ESBO in samples.  

 

GC columns and oven temperatures for the analysis in food 
(i) Varian (Darmstadt, Germany) VF-17ms (30 m lengh, 0.25 mm id., 0.25 µm 

film thickness), oven temperature gradient: 80°C (2 min) / 200°C (15°C min-1) / 280°C 

(8°C min-1) / 320°C (15°C min-1) / 320°C (2 min). 

(ii) J & W Scientific (Agilent, Waldbronn, Germany) DB 1701 (30 m lengh, 

0.25 mm id., 0.25 µm film thickness), oven temperature gradient: 80°C (2 min) / 

200°C (15 C min-1) / 280°C (8°C min-1) / 300°C (15°C min-1) / 300°C (2 min). 

(iii) J & W Scientific (Agilent, Waldbronn, Germany) DB 1 (30 m length, 0.25 

mm id., 0.25 µm film thickness), oven temperature gradient: 80°C (2 min) / 320°C 

(15°C min-1) / 320°C (2 min). 

 

Gas chromatography- mass spectrometry (single and triple quadrupole 
conditions) 

A Varian (Darmstadt, Germany) CP-3800 gas chromatograph with a 

GERSTEL (Mülheim an der Ruhr, Germany) KAS 3 split/ splitless injector coupled to 

a Varian 1200 triple quadrupole mass spectrometer was used with electron impact 

(EI) ionization at 70 eV in the positive-ion mode. Data acquisition and analysis were 
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performed using standard software supplied by the manufacturer (Varian, MS 

Workstation 6.2). The injection volume was 1 μL splitless. The injector started at a 

temperature of 80°C, increased by 12°C s-1 to 320°C and hold this temperature for 

10 min. The ion source and transferline temperature were 300 and 350°C, 

respectively. Helium was used as carrier gas with a column head pressure of 

117 kPa. 

 

By using the MS in single quadrupole mode (GC-MS) the mass spectra of 

(18:2E)Me(1) (with solution S((18:2E)Me) and 13C(18:2E)Me(1) (with solution 

S(13C(18:2E)Me) were recorded from m/z 33-600 at a scan time of 0.5 scans s-1. 

Product ion scans (PIS) were based on collision-induced dissociation (CID) occurring 

in the collision cell of the tandem quadrupole. A peak width of 1.0 atomic mass units 

(amu) was chosen for the precursor ions and the collision cell was operated with 

argon (pressure 0.27 Pa) and a collision energy of -10 V. The PIS for (18:2E)Me(1) 

scanned the precursor ions of m/z 155 in the range m/z 10-150 and for 
13C(18:2E)Me(1) the precursor ions of m/z 164 in the range m/z 8-170 with a scan 

time 0.2 scans s-1, respectively.  

 

For quantification by GC-MS, the SIM mode was used for m/z 155 

[(18:2E)Me(1)] and 164 [13C(18:2E)Me(1)], respectively, with a scan time of 0.2 

scans s-1 and a peak width of 1.0 amu. The GC-MS/MS was run in SRM mode with 

the same scan time, a peak width of 1.5 amu for the transitions m/z 155 → 67 and 

m/z 164 → 72, respectively. For fragmentation the collision cell contained argon at a 

pressure of 0.20 Pa, and the collision energy was set to -10 V. 

 

Gas chromatography- mass spectrometry (ion trap conditions) 
Additional GC-MS2 analyses were performed with a 3400 Saturn4D ion trap 

system (Varian, Darmstadt, Germany) in 70 eV electron impact ionization mode with 

a CID time of 20 ms, a CID amplitude of 1 V and a CID rf storage level of m/z 35. The 

carrier gas (helium) was used at a constant pressure of 22.5 PSI with a HP-5 

(Agilent, Waldbronn, Germany) column (50 m length, 0.32 mm id., 0.17 μm film 

thickness), the oven temperature gradient of 80°C (2 min) / 300°C (10°C min-1) / 

300°C (2 min) and a transferline temperature of 300°C. For recording the mass 

spectra, 1 μL of S(13C(18:2E)Me) and S((18:2E)Me) were injected in splitless mode. 
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The precursors m/z 109 for (18:2E)Me and m/z 117 for 13C(18:2E)Me, respectively, 

were scanned from m/z 30-170. 

 

V.4. Results and discussion 

There are two great advantages of using 13C18-labelled ethyl diepoxyocta-

decanoate (13C(18:2E)Et) instead of the common internal standard methyl diepoxy-

eicosanate (20:2E)Me.7,13 During sample preparation, 13C(18:2E)Et is also 

transesterified, together with the ESBO triglycerides, yielding the corresponding 

methyl ester 13C(18:2E)Me as shown in the chromatograms of Figure 3. Therefore, 

controlling of the transesterification process as important and sensible part of sample 

preparation is enabled, which was also achieved by Castle et al.,11 using ethyl 

diepoxyeicosanate as internal standard. However furthermore, the signals of the 
13C(18:2E)Me and the analyte are obtained under absolute identical instrumental 

conditions, regarding matrix effects. The chromatograms of the full scan GC-MS 

analysis, recorded with the VF-17ms column, of (18:2E)Me and 13C(18:2E)Me 

provide peaks at the same retention time of 17.7 min representing (18:2)Me(1) and 
13C(18:2)Me(1), thus additionally providing the tools of SIDA. 

 

The spectra of the full scan analysis show base peaks at m/z 155 and 164 for 

(18:2E)Me(1) and 13C(18:2E)Me(1), respectively (Figure 2). Besides the base peak 

both mass spectra look rather similar in terms peak pattern as comparable 

fragmentation is to be expected. The significant fragment of (18:2E)Me(1) at m/z 155 

was also found in the 70 eV spectra of both methyl 9,10-epoxyoctadecanoate and 

methyl 9,10-epoxyoctadec-12-enoate,14 and in the spectra of dimeric fatty acids 

formed by heating of methyl 9,10-epoxyoctadecanoate, methyl 9,10-

epoxyhexadecanoate, and methyl 9,10-epoxytetradecanoate.15 Therefore, it can be 

concluded that m/z 155 is not only characteristic for (18:2E)Me, but generally typical 

for 9,10-epoxidized fatty acid esters or 9-ether bridged fatty acid ester dimers. By 

means of tandem mass spectrometry, the product ion scan (PIS) of m/z 155 

((18:2E)Me(1)) gave m/z 109 (base peak) and m/z 67 as most abundant product ions 

(Figure 2), whereas the PIS of m/z 164 (13C(18:2E)Me(1)) provided m/z 117 (base 

peak) and m/z 72.  
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Figure 2. Mass spectra (EI, 70 eV) and product ion spectra (also 70 eV EI) of the precursor ions m/z 

155 for (18:2E)Me(1) and m/z 164 for 13C(18:2E)Me(1). 

 
The spectra of the full scan analysis show base peaks at m/z 155 and 164 for 

(18:2E)Me(1) and 13C(18:2E)Me(1), respectively (Figure 2). Besides the base peak 

both mass spectra look rather similar in terms peak pattern as comparable 

fragmentation is to be expected. The significant fragment of (18:2E)Me(1) at m/z 155 

was also found in the 70 eV spectra of both methyl 9,10-epoxyoctadecanoate and 

methyl 9,10-epoxyoctadec-12-enoate,14 and in the spectra of dimeric fatty acids 

formed by heating of methyl 9,10-epoxyoctadecanoate, methyl 9,10-

epoxyhexadecanoate, and methyl 9,10-epoxytetradecanoate.15 Therefore, it can be 

concluded that m/z 155 is not only characteristic for (18:2E)Me, but generally typical 

for 9,10-epoxidized fatty acid esters or 9-ether bridged fatty acid ester dimers. By 

means of tandem mass spectrometry, the product ion scan (PIS) of m/z 155 

((18:2E)Me(1)) gave m/z 109 (base peak) and m/z 67 as most abundant product ions 

(Figure 2), whereas the PIS of m/z 164 (13C(18:2E)Me(1)) provided m/z 117 (base 

peak) and m/z 72.  
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Figure 3. Chromatograms of the analysis of pesto rosso 1 obtained by GC-MS and GC-MS/MS with 

different capillary columns (VF-17ms, DB1701, DB1). The peaks of (18:2E)Me(1) and 13C(18:2E)Me(1) 

are coloured black and signed by an asterisk or a number sign, respectively.  

 
Additional GC-MS experiments, carried out with an ion trap system, proved the 

fragment at m/z 67 of (18:2E)Me(1) as product ion of m/z 109, and likewise identified 

m/z 72 as product ion of m/z 117 for 13C(18:2E)Me(1). Further analyses showed that 

the mass spectra of 13C(18:2E)Me and 13C(18:2E)Et are identical (data not shown), 

proving that the alcohol rest is not included in the precursor ion m/z 164. Taking this 

observations and also the expected identical fragmentation of (18:2E)Me(1) and 
13C(18:2E)Me(1) into account, the number of carbons available in the fragments 

m/z 155, 109, and 67 for (18:2E)Me(1) and m/z 164, 117, and 72 for 
13C(18:2E)Me(1), respectively, can be calculated to nine, eight and five. Because the 

mass spectra of both methyl 6,7-epoxyoctadecanoate and methyl 11,12-

epoxyoctadecanoate dimers do not provide a fragment of m/z 15515 and under the 

assumption that the molecules providing m/z 155 resulting from both dimeric 9,10-

epoxydized fatty acid esters and (18:2E)Me (molecular formula C19H34O4) are of 

identical composition, m/z 155 should possess the molecular formula C9H15O2 (loss 

of CH3OH and C9H15O, Figure 4). Further neutral loss of H2O and CO yields m/z 109 

(C8H13) finally resulting in m/z 67 (C5H7) by loss of propene.  
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Figure 4. Proposed mass spectrometric fragmentation resulting in the most abundant fragments of 

m/z 155, 109 and 67 of (18:2E)Me(1). 

 
By using the selected reaction monitoring (SRM) mode for detection in 

samples, selection of m/z 155 → 67 and 164 → 72 for (18:2E)Me(1) and 
13C(18:2E)Me(1), respectively, resulted in peak areas about two times larger than the 

transitions of m/z 155 → 109 and 164 → 117, respectively (data not shown). 

Therefore, monitoring of m/z 155 → 67 and 164 → 72 were preferentially used for the 

GC-MS/MS determination of ESBO in sample matrix. 

 
According to recently released GC-MS methods, polar columns and on column 

injections of up to 5 μL were chosen.13 Due to more stable column conditions for a 

period of analysis, only 1 μL was splitless injected into midpolar and unpolar columns 

providing temperature limits of 300 °C and higher. Gas chromatograms obtained for 

the determination of ESBO in a pesto rosso sample are exemplarily presented in 

Figure 3. It is visible, that chromatograms measured in SIM mode are almost noisier 

and show more interfering peaks than in the SRM mode. With regard to the number 

of detected peaks next to (18:2E)Me(1) and 13C(18:2E)Me(1), a midpolar column like 

the VF-17ms (50% phenyl-, 50% dimethylpolysiloxane) or DB1701 ((14 %-

cyanopropyl-phenyl)-methylpolysiloxane) gave the best results in terms of resolution. 

Concerning the MS detection mode, SRM is to be favoured over SIM, because peak 

interferences by matrix compounds are observable to a lesser extend for each tested 

column. 

 

To evaluate the suitability of the columns for different food matrices, samples 

were prepared according the sample preparation and analysed by the use of the 

different GC columns. The results obtained should be identical, if there is no 

dependency on the used column or MS mode, respectively. Comparability between 

the different techniques is expressed by the relative standard deviation (RSD), which 

was only calculated in the case of similar and outliers free results (Table 1). Low rsds 
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minor 9 % were found in SRM mode for the samples pestos a la Genovese 1 and 2, 

garlic in oil and pesto rosso 1. High deviations of the results depending upon the 

used column were found in SRM mode with the DB 1 for pesto a la Genovese 3, 

pesto rosso 2 and baby food composed of vegetables with chicken, thus this column 

is not appropriate for these matrices. Respecting the results, the DB1701 was more 

usable, but in the chromatograms of pesto a la Genovese 2, pesto rosso 2 and garlic 

in oil co-elutions of (18:2E)Me(1) with matrix were observed. Concerning co-elution 

with matrix compounds, best results in SRM mode were obtained by means of the 

VF-17ms.  

 

In SIM mode the determined sample values generally exhibit higher deviations 

than in SRM mode, and some samples could not be analysed because of high 

background noise interfering with 13C(18:2E)Me (1). Therefore, a generally favoured 

column for pesto or oil matrices could not be proposed.  

 

Concerning the limits of contamination, all oil and food sauce samples far 

exceeded the limit of 60 mg kg-1 ESBO, whereas one of the four baby food samples 

was above the limit of 30 mg kg-1.  

 
Table 1. Results of ESBO determination in different food samples by GC-MS (SIM mode) and GC-

MS/MS (SRM mode) on different capillary columns (VF-17ms, DB1701, DB1). 

 VF-
17ms 

DB1701 DB1 rsd 
[%] 

VF-
17ms 

DB1701 DB1 

 Contents [mg/kg] SRM mode Contents [mg/kg] SIM 
mode 

pesto a la Genovese 1 214 199 214 4.1 111 n.d. 192 
pesto a la Genovese 2 224 230 220 2.2 144 370 165 
pesto a la Genovese 3 130 115 257 - 126 n.d. 107 

pesto rosso 1 160 171 154 5.3 71 176 136 

pesto rosso 2 332 298 247 14.6 107 162 n.d. 

oil of garlic in oil 347 390 328 8.9 410 >532 379 
vegetable with 

chicken* 122 132 89 19.7 104 152 141 

oil of surrogate of 
salmon in oil >532 >532 >532 - >532 >532 >532
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 VF-
17ms 

DB1701 DB1 rsd 
[%] 

VF-
17ms 

DB1701 DB1 

 Contents [mg/kg] SRM mode Contents [mg/kg] SIM 
mode 

potatoes with carrots 
and meat* <5 <5 <5 - <5 <5 <5 

spaghetti with 
vegetables and meat* <5 <5 <5 - <5 <5 <5 

potatoes with beans 
and meat* <5 <5 <5 - <5 <5 <5 

n.d.: not determinable because of high background noise interfering with the peak of 13C(18:2E)Me(1). 
* baby food 

 
To evaluate the presented methods of ESBO determination, an in-house 

validation by using the VF-17ms column both in SRM and SIM mode was performed 

for spiked olive oil, a difficult matrix because of its high content of unsaturated fatty 

acids. Since high contents of ESBO were found in food, a wide calibration range from 

the limit of quantification (LOQ) up to 530 mg kg-1 was tested. An ESBO 

concentration in the range of 100 mg kg-1 was chosen to determine the repeatability 

for this matrix, because for oily food the limit of 60 mg kg-1 often is exceeded.  

 

 
Figure 5. Calibration curves of ESBO in spiked olive oil by means of the SIM(●) and SRM(▲) 

detection mode. 

 
The linearity test of the calibration curves (Figure 5) according Mandel16 gave 

0.27 for the SRM and 8.55 for the SIM mode, respectively. The critical value for the 

Mandel linearity test with a level of confidence of 99 % is 9.64. Therefore the linear 
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calibration for both modes is proved within a range of up to 530 mg kg-1. The 

coefficients of correlation (R2) were absolutely satisfying.  

 
Table 2. Mean recovery and repeatability (within-run precision) for spiked olive oil and signal to noise 

ratios of (18:2E)Me(1) in the chromatograms of spiked olive oil (c=5, 11 and 21 mg kg-1) obtained 

manually and from the MS software tool (all results obtained by means of the column VF-17ms). 

 
mean recovery 

(n=5, c=106.5 mg 
ESBO kg-1) 

repeatability 
(n=5, 

c=106.5 mg 
ESBO kg-1) 

S/N ratio 
determined 
manually for 
c=5/11/21 
mg kg-1 

S/N ratio (rms#) 
determined by 
software for 

c=5/11/21 mg kg-
1 

SRM 
mode  99.7 ± 5.5 % 6.0 % 4.2/11.6/31.5 31/37/100 

SIM-
mode  103.3 ± 0.8 % 0.9 % 5.6/7.2/14.2 23/48/65 

# Noise was calculated as root mean square (rms) 

 
Based on the more severe and manually determined signal to noise ratios 

(Table 2), the limits of detection (LODs) and quantification (LOQs) resulted in LODs 

of about 5 mg kg-1 for both detection modes. However, the LOQs were quite different 

with 11 and 21 mg kg-1 in the SRM and SIM mode, respectively. Regarding the SML 

of 60 mg kg-1 recommended by the Commission Directive 2005/79/EC, both MS 

detection modes fulfil the analytical requirements for the determination of ESBO.3 

The mean recovery and repeatability (within-run precision) were also excellent and 

sufficient in every respect (Table 2).  

 

V.5. Conclusion 

Based on the latest experiences of ESBO’s fast sample preparation for GC 

analysis without both prior fat extraction and derivation of ESBO’s fatty acid methyl 

esters into dioxolanes, 13C(18:2E)Et as internal standard successfully provides 

standardization of the transmethylation process and additionally allows SIDA. 

However, to reap these benefits, a matrix interference free chromatography is 

required, which was optimally achieved by means of a VF-17ms GC column coupled 

with tandem mass spectrometric detection in the SRM mode. The validation for the 

difficult matrix olive oil offered very well scored results. 
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VI.1. Abstract 

In the European Community, selected phthalic acid esters (PAE) are restricted 

in their use for the manufacturing of toys and childcare articles to a content of 0.1% 

by weight. As they are mainly used as plasticisers for polyvinyl chloride (PVC), a 

rapid screening method for PVC samples with direct analysis in real time ionisation 

and single quadrupole mass spectrometry (DART™–MS) was developed. Using the 

most intensive protonated molecules, a limit of detection (LOD) of 0.05% was 

obtained for benzyl butyl phthalate, bis(2-ethylhexyl) phthalate and di-isononyl 

phthalate, while for dibutyl phthalate, di-n-octyl phthalate and di-isodecyl phthalate 

the LOD was 0.1%. Validation of identification by ammonium adducts and 

characteristic fragments was possible to a content of ≥1% for all PAEs, except for 

benzyl butyl phthalate (≥5%). Based on fragmentation products, bis(2-ethylhexyl) 

phthalate clearly could be distinguished from di-n-octyl phthalate, if the 

concentrations were ≥5% and ≥1% at measured DART™ helium temperatures of 130 

and 310 ºC, respectively. The complete analysis of one sample only took about 8 

minutes. At the generally used gas temperature of 130 ºC, most toy and childcare 

samples did not sustain damage if their shape fitted into the DART™ source.  
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VI.2. Introduction 

Phthalic acid esters (PAE) represent an important group of plasticisers for 

polyvinyl chloride (PVC), which also were used since many years for the fabrication 

of toys and childcare articles made from PVC. Since in 1999 several European 

Member States expressed concerns about the risk of adverse effects of phthalates 

on the health of children,1 six PAE in toys and childcare articles were temporarily 

banned from the European market. The facts that i) the toxicology of all phthalates in 

humans was not totally clarified, ii) especially bis(2-ethylhexyl) phthalate (DEHP) 

clearly showed adverse effects on the development and reproduction of laboratory 

animals,2,3 and iii) a high level of health protection, especially for children, was 

demanded, led to a permanent regulation for phthalates.4 Actual results show that 

different PAE act on the same target organ, but they individually possess complex 

modes of action.5 Therefore, the council directive 76/769/EEC of the European 

Commission in its actual form prohibits to place toys and childcare articles on the 

market, which contain bis(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP) or 

benzyl butyl phthalate (BBP) at concentrations of more than 0.1% by mass of the 

material. This is equivalent for di-isononyl phthalate (DINP), diisodecyl phthalate 

(DIDP) or di-n-octyl phthalate (DNOP), if the articles can be taken into the mouth by 

children.6  

 
According to a survey of 72 toys made from PVC and purchased in 17 

different countries, nearly all toys or at least their PVC subsections contained PAE, 

mainly in the range 10-40% by weight.7 More actual data were obtained from the 

European Union rapid alert system for all dangerous consumer products (RAPEX),8 

in which toys or childcare products are named together with the reason of 

hazardousness. A search for the phrase ‘phthalate’ in the notifications of 2008 

resulted in 143 hits, but cosmetics, clothing and stationery products were also 

included herein, and the search result only represented those entries, in which a 

nomenclature was used that contained the term ‘phthalate’. Entries that used a 

nomenclature like e.g. ‘* phthalic acid ester’ did not result in a hit. A closer look at 

each alert of 2008 identified 140 toys or childcare products having been withdrawn 

from the market due to PAE violations. In seven samples, the PAE content was 

below 3%, and in nine samples just an analysis result of >0.1% was given. Vice 

versa, 95% of the notified samples revealed PAE at 3% or more.  
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For the determination of PAE in plastic toys according published methods, 

about 1 g of the sample is directly soxhlet extracted with dichloromethane for 16 h9 or 

is finely grounded and extracted twice by sonication in hexane for 30 min.7 The 

extracted phthalates are determined by gas chromatography with flame ionisation or 

mass spectrometric detection. Extraction of PVC by accelerated solvent extraction 

also led to good results.10 Another approach for the analysis of PAE in PVC consists 

in completely dissolving the plastic in tetrahydrofuran and precipitating PVC by the 

addition of methanol. Determination was performed by high performance liquid 

chromatography or high performance thin-layer chromatography (HPTLC).11 HPTLC 

was especially used to facilitate quantification of the isoalkyl PAE DINP and DIDP, 

which both are mixtures of several compounds, resulting in a sharply separated 

HPTLC zone instead of a hump during HPLC for both DINP and DIDP.  

 
As toys or childcare products contain alternative plasticisers substituting PAE, 

the analysis of PAE is possibly done to no avail. To avoid wasting of solvents, 

instrumental measuring and human working time, rapid identification methods are 

worthwhile to check the presence of phthalates in the specimens prior to exact 

determination. As PAEs are regulated differentially by authorities, the method should 

be at least able to distinguish DEHP, DBP and BBP from DIDP, DINP and DNOP. 

Following this objective, different pure phthalates were measured by fourier transform 

Raman spectroscopy (FTRS), but an identification in PVC was successfully 

demonstrated only for DEHP.12 However, due to similarities in the spectra of the 

common dialkyl phthalates it is doubtful, whether it would be possible to qualitatively 

determine the exact kind of phthalate ester present in a sample containing a mix of 

phthalates. 

 

Therefore, the aim of the present study was to evaluate, if a rapid screening 

test for PAE in PVC materials can be developed by using direct analysis in real time–

mass spectrometry (DART™–MS), with an open interface allowing to directly insert 

solid specimens.13,14 DART™-MS was successfully employed for the analysis of 

different compounds in almost solid samples, like strobilurin fungicides in wheat,15 

flavors in perfumery raw materials,16 and isopropylthioxanthone17 or lubricant 

additives18 from HPTLC plates.  
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As DART™ is a rather new ionisation technique, characteristic ions of 

phthalates as standards and in PVC plastics containing additives (also called 

plastisols) had to be identified, the sensivity of identification to be evaluated, and the 

applicability to toy samples of known PAE concentrations to be shown. 

 

VI.3. Experimental 

Chemicals and reagents 
The following chemicals were of analytical grade unless otherwise specified. 

Toluene was from Roth (Karlsruhe, Germany) benzyl butyl phthalate (BBP) from 

Merck (Darmstadt, Germany), dibutyl phthalate (DBP) and dioctyl phthalate (DNOP) 

from Sigma-Aldrich (Taufkirchen, Germany). Bis(2-ethylhexyl) phthalate (DEHP), 

diisodecyl phthalate (DIDP), diisononyl phthalate (DINP), and 1,2-

cyclohexanedicarboxylic acid 1,2-diisononyl ester (DINCH) were of technical grade 

and were provided by a plastisol producing company. Vinnolit P 70 was used as PVC 

material and was provided by Vinnolit GmbH & Co. KG, Wacker Chemie AG 

(Burghausen, Germany). 

 
Plastisol samples 

Twenty five different plastisols of three different types containing a) DBP & 

DINP, b) DEHP & DIDP and c) BBP & DNOP at mass percentages of 0%, 0.05%, 

0.01%, 0.5%, 1%, 5%, 10%, 15%, and 25% were prepared. Generally, plastisols 

contained 60% PVC and the respective PAE, which were filled up to 40% with 

DINCH. In case of the plastisols with 25% PAE, PVC was only present at 50%, and 

DINCH was not used. To prepare the plastisols, about 0.5-1 g of the PVC and the 

platicisers were mixed with a metal spatula in a 10 mL glass beaker until the mixture 

was a homogenous and colourless paste. Then, it was coated with about 1 mm 

thickness on a heating plate covered by aluminum foil at 200ºC. After one minute, the 

aluminum foil was removed from the plate to cool off the plastisol. 

 
Toy samples 

Five toys made from PVC and containing PAE or DINCH were provided by 

Chemisches und Veterinäruntersuchungsamt Stuttgart (Germany) and were already 

analysed for plasticisers: a horror mask (42.6% DEHP), childrens’ swimming aids 
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(16.2% DEHP and 23.0% DINP), 2 heads of puppets (containing 22.0% DINP or 

35.4% DINCH, respectively), and a fish (30.8% DINCH). Additionally, three about 25 

year old toys with unknown content of PAEs were used for analysis: one lizard, one 

bicycle driver and one squeaky toy. 

 
DART™–MS 

An Ion Sense DART™ 100 with Vapur API-Interface, DART™ control software 

version 2.19 (KR Analytical, Sandbach, UK) and a G1956B MSD single quadrupole 

mass spectrometer with ChemStation B.02.01 SR2 software (Agilent Technologies, 

Waldbronn, Germany) were used. The DART™’s needle voltage was 4000 V, 

discharge and grid electrode were each at 280 V. DART™ was operated at 200 °C 

with helium 5.0 (purity > 99.999%) at a flow rate of 5–6 L min-1, controlled by a GFM 

17 flowmeter (Analyt-MTC, Müllheim, Germany). The MSD was operated in positive 

fast-scan mode m/z 140-920 with a step size of 0.1 amu, a cycle time of 

0.79 s cycle-1, a capillary voltage of 6000 V, a fragmentor voltage of 200 V, a gain of 

1.00 and a threshold of 0. The data were recorded in profile mode.  

 

Mass spectra of the target PAE were obtained by dissolving the substances in 

toluene (0.1–1 g L-1) and introducing the samples by means of DIP-it liquid samplers 

(KR Analytical) under the same MS conditions as described above. Plastisol 

specimens of about 2 x 0.2 cm were manually introduced into the DART™ gas 

stream by use of tweezers. Replicate measurements of plastisols were performed 

from the same spot, when a depletion of the signals was not observed. The gap 

between the DART™ gas outlet and the Vapur API Interface inlet was 1.1 cm, the 

lengh of the ceramic tube 3.9 cm and the sampling point in the middle of the gap 

(Figure 1). Each sample was measured six times, consecutively, while keeping it in 

the same position in the helium stream for about 30 seconds. When the sample was 

inserted, the signal increased in a split second, remained at a constant level and, 

after sample removal, generally decreased within several seconds, depending on the 

PAE content. In replicate measurements, the signal heights showed deviations 

concerning the intensity.  

 

For data evaluation, the set of mass spectra recorded during the measuring 

time (30 s) and resulting in a total ion current ‘peak’ was averaged. Background 
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correction was performed manually by subtracting scans both ahead and behind the 

peak.  

 

Concerning limits of detection for a specific ion of the known plastisol samples, 

a signal to noise (S/N) ratio of 3, referring to the height of the mass signal, was taken 

as a basis, having been fulfilled for at least four of the six measurements, whereat an 

averaged noise value of two different regions in the background corrected mass 

spectrum was used.  

 

 
Figure 1. Positioning of a sample in the DART™ source 

 
Gas chromatography- mass spectrometry (GC/MS) 

A Fisons (Manchester, UK) GC-8000 gas chromatograph with a split/ splitless 

injector coupled to a Fisons MD800 quadrupole mass spectrometer was used with 

electron ionization (EI) at 70 eV in the positive-ion mode. Data acquisition and 

analysis were performed using standard software supplied by the manufacturer 

(Mass Lab software version. 1.3). The injection volume was 1 μL splitless. The GC 

oven started at a temperature of 80°C, increased by 12°C s-1 to 300°C and hold this 

temperature for 10 min. The ion source and transferline temperature were 200 and 

300°C, respectively. Helium was used as carrier gas with a column head pressure of 

70 kPa with a Phenomenex (Aschaffenburg, Germany) ZB50 column (30 m length, 

0.25 mm id., 0.25 µm film) and a 0.7 m uncoated and deactivated retention gap. The 

MS was operated with a scan range from m/z 50-420 with a scan time of 

0.6 scans s-1. 
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VI.4. Results and discussion 

DART–MS spectra of phthalic acid esters 
The phthalic acid esters generally provided the protonated molecule as base 

peak and an [M+18]+ peak in different intensities of about 10-40%, which was 

assigned to the respective ammonium adduct (Figure 2 and 3). Additionally, proton 

and ammonium adducts of dimer PAE could be detected, especially if solutions of 

>100 mg L-1 were measured. Fragmentation products of m/z 149 and 167 were 

obtained in low intensities for all PAE, to be interpreted by consecutive neutral losses 

of alcohol and alkene moieties (Figure 4).  
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Figure 2. Typical DART™–MS spectra obtained from PAE disolved in toluene, exemplarily shown for 

DINP (top), DIDP (middle) and DBP (bottom). The proton and ammonium adducts are marked with an 

asterisk. 

 
Since technical grade PAE are used in fabrication processes, impurities have 

also to be respected, which easily can be made visible by DART™–MS as shown for 
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DINP and DIDP (Figure 2). Additional ions ([M+H]+) with intensities of 5–20% 

surround the main protonated molecules at distances of 14 and 28 mass units 

accompanied by the respective ammonium adducts. Obviously, the technical 

alcohols used for PAE preparation significantly had impurities of homologues.  
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Figure 3. DART™-MS spectra of DEHP (left) and DNOP (right), both at a concentration of 1 g L-1 in 

toluene. The proton and ammonium adducts are marked with an asterisk. 

 

From the couple of characteristic PAE ions obtained by DART™–MS 

(Table 1), the protonated molecules of highest intensities were selected for 

identification of the respective PAE in PVC samples, and the ammonium adducts 

were used as additional qualifiers. 

 

Differentiation of DEHP and DNOP 
Interestingly, there is a great chance to differentiate between the isomers 

DEHP and DNOP, which may be important due to different treatment by the 

European legislation. Both DEHP and DNOP offer fragments at m/z 261 and 279, but 

in clearly reversed ratios of intensity (Figure 3). As the loss of octanol from the 

protonated molecule is favored by DNOP, DEHP preferably eliminates 2-ethyl-1-

hexene (Figure 4). By (ESI)MS/MS experiments, it could be shown that a loss of 

water from m/z 279, also resulting in m/z 261, does not occur (data not shown). 

Similar experiences were made during GC/(EI)MS analyses, when the fragment at 

m/z 261 was more stable deriving from DNOP than from DEHP (Figure 5). Thus, the 
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results strongly support the proposed fragmentation processes (Figure 4) and the 

possibility to certainly differentiate DEHP from DNOP. 
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Figure 4. Proposed fragmentation processes of phthalic acid esters, especially shown for the 

differentiation of DEHP and DNOP. 

 

 
 

In DNOP containing plastisols, m/z 261 could be detected in a concentration 

range of 5–25%, but m/z 279 only at 25%. In the case of DEHP, both fragments were 

detectable at concentrations ≥5% in plastisol samples. It was possible to increase the 

sensitivity by increasing the DART™ helium setting to 450°C, which resulted in 

detectability of the characteristic fragments at concentrations of 1% in plastisols for 

both DEHP and DNOP.  
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Figure 5. GC/70eV-EI-MS spectra of DEHP (top) and DNOP (bottom), both at a concentration of 0.01 

g L-1 in toluene. 

 
Since there also is the possibility of a DBP impurity with the protonated 

molecule at m/z 279 in DNOP and DEHP, it had to be checked that m/z 279 just is a 

fragment of DNOP and DEHP. A GC/MS analysis proved a DBP content below 0.5% 

for both PAE (data not shown).  

 
Limits of detection and blank values 

Since toy samples have to be manually introduced into the DART™ interface 

expectedly associated with low repeatability and since there is no chance to apply 

internal standards, calibration and quantification is complicated. Therefore, PVC 

plastisols with different concentrations of PAE (0–25%) were prepared to derive limits 

of detection (LOD) from the obtained MS signals. Diisononyl 1,2-

cyclohexanedicarboxylate (DINCH) was additionally used to provide a plasticiser 

level of at least 40% in all samples. To largely overcome the variations by manual 

operation, samples were generally measured six times, consecutively. The LOD was 

defined, if the signal to noise ratio (s/n) for a specific ion of the background corrected 

mass spectrum (Figure 6) was ≥3 for at least four of the six recordings. As six 
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measurements took 3 minutes, the analysis time mainly depends on the data 

analysis. Calculating this with 5 min, screening a sample takes about 8 min.  
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Figure 6. DART™-MS spectrum of a PVC sample containing 5% DEHP, 5% DIDP and 30% DINCH. 

DEHP: m/z 261.1, 279.1, 391.2 [M+H]+, 408.2 [M+NH4]+, 781.6 [2M+H]+, 798.6 [2M+NH4]+; DIDP: m/z 

447.3 [M+H]+, 464.3 [M+NH4]+; DINCH: 425.3 [M+H]+, 442.3 [M+NH4]+, 849.6 [2M+H]+, 866.7 

[2M+NH4]+. 

 
The LODs determined by this procedure were ≤0.1%, if the most intensive 

signal of the protonated molecules were used (Table 1). Therefore, the DART™-MS 

method is able to identify PAE in PVC down to the actual limit of the council directive 

76/769/EEC.6 A validation of identification by using the ammonium adducts was 

possible for four of the tested PAE, if the concentration was ≥1% (Table 1). In the 

case of BBP and DEHP, validation was only possible with the next higher 

concentration tested. The protonated dimers almost were only detectable at higher 

concentrations of 5–10%. 
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Figure 7. Calibration curve exemplarily obtained from plastisol samples containing DEHP in the range 

0–1%. 

 
Despite the complications to be expected, a surprising linear correlation was 

obtained in the low concentration range of most interests, if the mean of six replicates 

was plotted versus the noise corrected height of the ion signal (Figure 7). 

 
Concerning blank values for PAE, the method of direct sample measurement 

excludes contaminations from solvents or vessels. In spite of this, there exist 

atmospheric sources for PAE detectable by DART™-MS, if, for example, the flooring 

consists of PVC (Figure 8). Working with an open interface as DART, such 

background signals have generally to be kept in mind, demanding for a careful 

background correction to avoid false positive identifications. To check this concept, a 

sample only containing DINCH as plasticiser was analysed, at which no PAE signals 

were detectable.  
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Figure 8. DART™-MS spectra of the laboratory atmosphere (top) and a piece of flooring (bottom), 

both showing ions of DEHP. The proton and ammonium adducts are marked with an asterisk. 

 
 
Table 1. Characteristic DART™-MS ions (calculated) of phthalic acid esters with corresponding LODs 

given in mass percentages. 

 DBP BBP DEHP DNOP DINP DIDP 
molecular 
formula C16H22O4 C19H20O4 C24H38O4 C24H38O4 C26H42O4 C28H46O4

m/z 
[M+H]+ 279.2 313.1 391.3 391.3 419.3 447.3 

LOD of 
[M+H]+ 0.1% 0.05% 0.05% 0.1% 0.05% 0.1% 

m/z 
[M+NH4]+ 

296.2 330.2 408.3 408.3 436.3 464.4 

LOD of 
[M+NH4]+ 

1% 5% 5% 1% 1% 1% 

m/z 
[2M+H]+ 557.3 625.3 781.6 781.6 837.6 893.7 

LOD of 
[2M+H]+ 5% 10% 1% 5% 10% 10% 
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Analysis of real samples and destructiveness of the method 
Five toy samples pre-analysed by GC/MS were applied to the DART™-MS 

method. The mass spectra of a horror mask provided m/z 391 as base peak, the 

corresponding ammonium adduct and the dimeric ions, including the typical PAE 

fragments at m/z 149 and 167 (Figure 9). The signal ratio of m/z 261 and 279 proved 

the presence of DEHP instead of DNOP. A childrens’ swimming aids provided the 

same mass signals characteristic for DEHP, but additionally showed the protonated 

molecule (m/z 419) and the ammonium adduct (m/z 436) of DINP (Figure 9). The 

mass spectra of a puppet head containing DINP only exhibited the corresponding 

signals of the protonated molecule and the ammonium adduct. Additionally, the 

[2M+NH4]+ was present with 10% intensity, but the [2M+H]+ was missing. Similar 

results were obtained for another puppet head (Figure 9) and a fish, both only 

containing DINCH. Besides the protonated molecule and the ammonium adduct, the 

[2M+NH4]+ abundance at m/z 867 strongly predominated over the protonated dimer 

at m/z 850. Three further 25 years old toy samples (lizard, bike driver, squeaky toy) 

not analysed by GC/MS all provided ions clearly proving just the presence of DEHP.  

 

Generally, the DART™ helium was set to 200 ºC, but the temperature 

measured at the point of sampling was measured to 130 ºC. Under these conditions, 

all studied samples did not sustain visible damages, except the 25 years old squeaky 

toy, which started to melt. To increase the sensitivity for PAE, the temperature was 

set to 450 ºC (measured 310 ºC), but most samples decomposed. Consequently, the 

operation conditions are limited, if the DART™-MS screening shall be used for 

nondestructive controls. As to be expected, however, there is another limit for a 

nondestructive analysis. Concerning the sample size, the shape of a toy had to be at 

least a cone of 5 cm in height and below 3 cm in diameter to easily be introduced into 

the DART™ source. If these shape requirements are not fulfilled, cutting into proper 

subsamples is essential. However, new designs of the DART™ ion source like the 

DART™-ET may allow wider sample shapes.  
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Figure 9. DART™-MS spectra of a horror mask containing 42.6% DEHP (top), childrens’ swimming 

aids with 16.2% DEHP and 23.0% DINP (middle) and a puppet head containing 35.4% DINCH 

(bottom). The proton and ammonium adducts are marked with an asterisk. 

 

VI.5. Conclusions 

The presented DART™–MS method enables rapid identification of PAEs in 

PVC samples as toys and childcare articles at the limits actually fixed by European 

regulations. Validation of a positive finding based on the protonated molecule does 

work for a concentration of 1% for all PAE, except for BBP. As 95% of toys and 

childcare articles submitted in 2008 to RAPEX had more than 3% PAE, the obtained 

sensivity for validation is sufficient for most of the samples. Since for the present 

study just a single-quadrupole mass spectrometer was available, there expectedly 

will be the chance to increase the sensivity with a triple-quadrupole system. 
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Concludingly, DART™–MS provides a powerful up-to-date screening tool, well suited 

for surveillance purposes to screen with a high sample throughput. 
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VII. Summary 
Food packaging is an important part of today’s lifestyle. Its applications cover 

a wide different range which still is growing and plastic packaging plays a very 

important role at this. In order to enable diverse functions a widespread range of 

substances is used, covering most diverse chemical and physical characteristics. 

Therefore additives are used in the manufacturing process of polymers, fulfilling a lot 

of different functions. Most of the additives are not covalently bounded to the polymer 

and therefore are able to move inside the plastic material and also to break through 

the contact surface between polymer and food. These processes are called migration 

and can be ascribed to different and foreseeable physical processes. As migration of 

toxic substances from packaging into food may harm human health, the European 

legislation lays down rules to ensure consumers’ safety. Beneath general regulations 

there are also specific regulations for plastic food contact material covering for 

example migration of substances into food and methods of analysis. Specific 

migration limits are established mainly on base of toxicological evaluations and 

consumers’ consumption habits.  

 
The analyst’s work is to ensure the compliance of packaging material with the 

European legislation, especially in terms of health safety. The huge variety of used 

additives and their reaction and degradation products in combination with their 

different physical and chemical properties and in particular the fact that the used 

additives are only known to specific links of the packaging material producing chain 

set severe requirements to the analysis. Even today only a part of used additives is 

known to the European Community. Therefore an important part of the analysis 

primarily is the identification of hazardous substances, a non targeted analysis which 

can be considered as an analytical challenge and should be followed by toxicological 

evaluations. Chapter II deals with the non-targeted multi-component analytical 

screening of plastic food contact materials using fast interpretation of deliverables via 

expert structure-activity relationship software. To identify potential migrants of 

toxicological concern, resins and multilayer foils which were intended for the 

production of food contact materials were extracted and analysed by gas 

chromatography - mass spectrometry (GC-MS). In order to identify even compounds 

of low concentrations, the software AMDIS was used and data evaluation was 
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safeguarded by the Kovats Retention Index system. By this way, 46 compounds 

were identified as possible migrants. The expert structure-activity relationship 

software DEREK for WindowsTM was utilized to evaluate all identified substances in 

terms of carcinogenicity, genotoxicity, thyroid toxicity and miscellaneous endpoints 

for humans. Additionally a literature search for these compounds was carried out with 

Sci-Finder®, but relevant data were missing for 28 substances. Summarized seven 

compounds with adverse toxicological effects were identified. In addition, the RIs of 

24 commercial additive standards, measured with a GC capillary column of middle 

polarity, were given. Chapter II provides a valuable method to practically and 

efficiently identify substances of toxicological concern in food contact materials.  

 
The analysis of specific substances can often be considered as challenging, 

too, due to lack of existing methods and the complexity of target substances and 

matrices. Actual examples like semicarbazide, a decomposition product of the 

foaming agent azodicarbonamide used for the gaskets of lids for glass jars and 

suspected to be genotoxic and carcinogenic, or 2-isopropylthioxanthone (ITX), a 

photo initiator for UV-curing inks which occurred in baby food, show that food can be 

seriously contaminated by packaging materials. Chapter III describes a survey that 

was made after the first findings of ITX in food have become public. In order to 

elucidate the occurrence of ITX in products on the German market more than 100 

foods packed in cartons as well as in plastic cups and foils were investigated. For 

this, a fast method to detect ITX in food packaging materials was established. In case 

of positive findings the accompanying foodstuffs were analysed in a subsequent step 

using different extraction methods, depending on the fat content of the food. 

Determination of the photo-initiator was done by high performance liquid 

chromatography with diode array and fluorescence detection with recoveries 

between 94 and 106% for non-fatty foods with a relative standard deviation value 

(RSD) smaller than 1.2. For fatty foods the recoveries were between 80 and 105% 

with a rsd ≤ 8.5, respectively. The limit of detection (LOD) and the limit of 

quantification (LOQ) were determined to 2 and 5 µg L-1. ITX was detected in 36 out of 

137 packages (26%) and significant migration occurred in 75% of the packaging 

materials tested positive with amounts ranging up to 357 µg kg-1 in orange juice and 

208 mg kg-1 in baby food. In this survey of chapter III, 2,4 diethylthioxanthone, mainly 

used as a substitution product for ITX, was also found. 
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Other examples for food which is seriously contaminated by packaging 

materials are plasticisers in oily food migrating from the gaskets of lids for glass jars 

and exceeding manifold legislative migration limits. Generally the first step for the 

analysis of plasticisers in food, whose source might be the gasket of glass jars, is the 

identification of additives in gaskets, which also requires considerable efforts. 

Chapter IV shows how up to date instrumental equipment can be very helpful in the 

rapid identification of substances in plastics with direct analysis in real time ionisation 

and single quadrupole mass spectrometry (DART™-MS), using the example of 

additives in gaskets for lids made of polyvinylchloride (PVC). In chapter IV it is shown 

that solutions of substances measured with DART™-MS showed the [M+H]+ and 

[M+NH4]+ as typical ionisation and the cleavage of ester bonds as typical 

fragmentation products of the molecules. The additives were identified rapidly and 

easily via DART™-MS generally in the range of 1% (wt), if ion suppressive effects did 

not occur. It was shown that in order to avoid these effects deriving from specific 

molecules, extracts of a plastic with appropriate organic solvents can improve 

sensivity. By use of this method it was possible to identify fatty acid amides, 

phthalates, tributyl O-acetylcitrate, dibutyl sebacate, bis(2-ethylhexyl) adipate, 1,2-

cyclohexanedicarboxylic acid 1,2-diisononyl ester and even more complex additives 

like acetylated mono- and diglycerides of fatty acids, epoxidised soybean oil and 

polyadipates in ranges up to a content of 1% or better in plastic material. Epoxidised 

linseed oil could also be identified if contained at 5% or higher and false positive 

identifications only occurred for di-isononyl phthalate. The detection of the use of 

azodicarbonamide as foaming agent in the manufacturing process showed 

possibilities, but failed due to missing robustness. A great value of the method 

presented in chapter IV is the complete analysis time of about 45 minutes for very 

complex plastic samples. As more clarity was brought into the results of ionisation 

and fragmentation processes of DART™-MS, this method may be transferred easily 

to other applications dealing with similar subjects. 

 

Experts consider the use of packaging materials as the largest and least 

controlled source of food contaminations with organic materials in Europe and 

improvements in the analysis of food contaminations deriving from packaging 

materials are an imperative exigence. The plasticiser epoxidised soy bean oil (ESBO) 

was also a substance which contaminated especially oily food and baby food, in 
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amounts several fold exceeding European specific migration limits. In chapter V the 

determination of ESBO in food by GC-MS and gas chromatography- tandem mass 

spectrometry (GC-MS/MS) stable isotope dilution assay (SIDA) is evaluated. To 

establish a SIDA, the 13C18 labelled internal standard ethyl 9,10,12,13-

diepoxyoctadecanoate was synthesized, providing after sample preparation the same 

retention time as methyl 9,10,12,13-diepoxyoctadecanoate, commonly used as 

marker for ESBO in GC analysis. For eleven different food matrices, the GC capillary 

columns VF-17ms, DB1701 and DB1 were tested with GC-MS as well as GC-MS/MS 

detection. Overall, the VF-17ms column coupled with MS/MS detection showed the 

best results in terms of separation and sensitivity. The method validation for the 

matrix spiked olive oil resulted in a LOD of 5 mg kg-1, a LOQ of 11 mg kg-1, a mean 

recovery (n=5, c=106.5 mg kg-1) of 99.7±5.5 % with a repeatability of 6.0 %. By 

means of GC-MS a LOQ of 21 mg kg-1 and a mean recovery (n=5, c=106.5 mg kg-1) 

of 103.3±0.8 % with a repeatability of 0.9 % were determined. The method provided 

in chapter V shows that a very fast sample preparation for GC analysis is even 

possible, if on-line liquid chromatography - gas chromatography with flame ionisation 

detection or GC-MS with chemical ionisation with ammonia is absent in the 

laboratory equipment.  

 

There exist also other sources of the exposure of hazardous substances than 

food consumption. In case of babies, toddlers and children mouthing is responsible 

for the intake of phthalic acid esters (PAEs) in amounts higher than generally 

presumed. For toys and childcare it actually is responsible for 90% of the exposure of 

European infants and toddlers with di-isononyl phthalate (DINP), for example. For 

these products analysis is german to one of packaging material, fast and easy 

methods are lacking and improvements in this area have to be made. Chapter VI 

describes a rapid and nondestructive analysis for phthalic acid esters in PVC by use 

of DART™-MS. LODs for the [M+H]+ ion for benzyl butyl phthalate (BBP), bis (2-

ethylhexyl) phthalate (DEHP) and DINP was 0.05% (wt) and 0.1% for dibutyl 

phthalate, di-n-octyl phthalate (DNOP) and di-isodecyl phthalate, respectively. 

Safeguarding of the identification with other characteristic ions was possible to a 

contentent of 1% (wt) or higher for all PAEs, except for benzyl butyl phthalate (5%). 

Distinction of bis (2-ethylhexyl) phthalate and di-n-octyl phthalate on base of 

fragmentation products was successful at concentrations of 5% or higher, by use of a 
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gas temperature of 310 ºC even at 1%. As the generally used gas temperature was 

131ºC, most toy and childcare samples do not get destroyed. The analysis of one 

sample generally took between 10 and 15 minutes. Summarised the method 

described in chapter VI is a powerful and up to date screening tool allowing a fast 

identification of PAEs in PVC up to the legislative European limits. It is very well 

suited for surveillance purposes in order to screen with a high sample throughput. 
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VIII. Zusammenfassung 
Lebensmittelverpackungen sind ein wichtiger Teil des momentanen 

Lebensstils. Sie werden in einem weiten, sich stets vergrößernden Bereich 

angewendet und Verpackungen aus Kunststoff spielen hierbei eine sehr wichtige 

Rolle. Um unterschiedlichste Funktionen zu gewährleisten wird eine breitgefächerte 

Auswahl an Stoffen, welche mannigfachste chemische und physikalische 

Eigenschaften aufweisen, verwendet. Aus diesem Grund werden Additive, die 

diverse Funktionen erfüllen in der Produktion von Kunststoffen eingesetzt. Da die 

meisten Additive nicht kovalent an das Kunststoffpolymer gebunden sind, können sie 

im Kunststoff diffundieren und sogar die Grenzschicht zwischen Kunststoff und 

Lebensmittel überwinden. Diese Vorgänge können unterschiedlichen und 

vorhersehbaren physikalischen Prozessen zugeordnet werden und werden fachlich 

Migration genannt. Da die Migration von toxischen Stoffen aus 

Kunststoffverpackungen in Lebensmittel gesundheitsgefährdend sein kann, hat die 

europäische Gesetzgebung Normen erlassen um die Sicherheit der Verbraucher zu 

gewährleisten. Neben allgemeinen Normen gibt es auch sehr spezielle Regelungen, 

die zum Beispiel von der Migration von Stoffen in Lebensmittel und von 

Analysenmethoden handeln. Überwiegend auf der Basis von toxikologischen 

Untersuchungen und Verzehrsgewohnheiten von Verbrauchern wurden spezifische 

Migrationsgrenzwerte erlassen.  

 
Analytiker überprüfen, ob Verpackungsmaterial den europäischen 

gesetzlichen Vorschriften und insbesondere der gesundheitlichen Unbedenklichkeit 

entspricht. Die große Anzahl an verwendeten Additiven sowie deren Reaktions- und 

Abbauprodukte zusammen mit ihren unterschiedlichen physikalischen und 

chemischen Eigenschaften, und insbesondere die Tatsache, dass die benutzten 

Additive nur einzelnen Gliedern der Kette des Herstellungsprozesses bekannt sind, 

wirken sich als sehr hohe Anforderungen für die Analytik aus. Momentan ist nur ein 

Teil der benutzten Additive der Europäischen Gemeinschaft bekannt. Deshalb spielt 

die Identifizierung von gesundheitsgefährdenden Substanzen als erster Schritt eine 

wichtige Rolle. Die sogenannte nicht zielgerichtete Analyse, welche als analytische 

Herausforderung betrachtet werden kann, sollte eine toxikologische Bewertung nach 

sich ziehen. Kapitel II handelt von der nicht zielgerichteten Analyse von 
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Lebensmittelverpackungen aus Kunststoff, indem die Ergebnisse rasch mittels einer 

Software gesundheitlich aufgrund von Struktur- Aktivitätsbeziehungen bewertet 

werden. Um toxikologisch bedenkliche, mögliche Migranten zu identifizieren, wurden 

Kunststoffgranulate und Mehrschichtfolien, die zur Lebensmittelverpackungs-

herstellung benutzt werden, extrahiert und mittels Gaschromatographie gekoppelt mit 

Massenspektrometrie (GC-MS) untersucht. Damit auch Komponenten geringer 

Konzentration identifiziert werden können wurde die Software AMDIS benutzt, und 

zusätzlich wurde die Auswertung durch das Kovats- Retentionsindexsystem 

abgesichert. Auf diese Art und Weise wurden 46 Stoffe als mögliche Migranten 

identifiziert. Die Struktur- Aktivitätsbeziehungs- Software DEREK for Windows™ 

wurde eingesetzt um alle identifizierten Stoffe bezüglich Kanzerogenität, 

Genotoxizität, Schilddrüsentoxizität und sonstigen Endpunkten, die für Menschen 

relevant sind, zu beurteilen. Zusätzlich wurde eine Literaturrecherche mit SciFinder® 

durchgeführt, die jedoch in den zu untersuchenden Bereichen für 28 Substanzen 

erfolglos blieb. Zusammengefasst wurden sieben gesundheitsgefährdende Stoffe 

identifiziert. Zusätzlich wurde von 24 kommerziell verwendeten Additiven der Kovats- 

Retentionsindex, der mit einer mittelpolaren GC-Säule bestimmt wurde, gegeben. 

Kapitel II übermittelt eine wertvolle Methode um praktisch und effizient toxikologisch 

bedenkliche Stoffe in Lebensmittelbedarfsgegenständen zu identifizieren. 

 
Da weder analytische Methoden existieren und Zielanalyten, sowie deren 

Matrix sehr komplex sind, kann auch die Analyse von speziellen Analyten häufig als 

Herausforderung betrachtet werden. Aktuelle Beispiele wie Semicarbazid, ein 

Abbauprodukt von dem Treibmittel Azodicarbonamid, welches für die 

Dichtungsmasse von Gläschendeckel verwendet und im Verdacht steht genotoxisch 

und karzinogen zu sein, oder 2-Isopropylthioxanton (ITX), ein Fotoinitiator für UV- 

härtende Druckfarben, welcher in Babynahrung auftrat, zeigen, dass Lebensmittel 

von Verpackungen schwerwiegend kontaminiert werden können. Kapitel III beinhaltet 

eine Erhebung, die gemacht wurde nachdem erste ITX Funde in Lebensmitteln 

veröffentlicht wurden. Um das Vorhandensein von ITX in deutschen Produkten 

aufzuklären wurden über 100 Lebensmittel, die in sowohl in Kartonverpackungen, als 

auch in Kunststoffbechern und Folien verpackt waren, untersucht. Um dies 

durchzuführen wurde eine Schnellmethode entwickelt, die ITX in 

Lebensmittelverpackungen detektiert, Wurde ITX identifiziert, so wurde auch 

nachfolgend das entsprechende Lebensmittel untersucht, wobei entsprechend 



Chapter VIII 131
 

 

dessen Fettgehalt unterschiedliche Extraktionsmethoden angewendet wurden. Die 

Bestimmung des Fotoinitiators wurde mittels Hochleistungsflüssigkeits-

chromatographie mit Diodenarray- und Fluoreszenzdetektion und 

Wiederfindungsraten für nicht fetthaltige Lebensmittel zwischen 94 und 106% mit 

einer relativen Standardabweichung (RSD) kleiner als 1,2 durchgeführt. Für 

fetthaltige Lebensmittel waren entsprechend die Wiederfindungsraten zwischen 80 

und 105% mit einer RSD kleiner oder gleich 8,5. Die Erfassungsgrenze wurde zu 

2 µg/L und die Bestimmungsgrenze zu 5 µg/L bestimmt. ITX wurde in 36 von 137 

Lebensmitteln identifiziert, dies entspricht einer Trefferquote von 26%. Eine 

signifikante Migration fand in 75% der positiv getesteten Verpackungen statt, mit 

Gehalten bis zu 357 µg/kg in Orangensaft und 208 µg/kg in Babynahrung. In dieser 

Erhebung von Kapitel III wurde auch 2,4-Diethylthioxanthon gefunden, welches 

überwiegend als Ersatzprodukt für ITX eingesetzt wurde.  

 
Andere Beispiele, bei denen Lebensmittel schwerwiegend durch 

Lebensmittelverpackungen kontaminiert wurden, sind Weichmacher, die aus der 

Dichtungsmasse von Gläschendeckel migrierten und gesetzliche Grenzwerte 

mehrfach überschritten. Im Allgemeinen ist der erste Schritt der Analyse von 

verpackungsbedingeten Weichmachern in Lebensmitteln die Analyse der 

Weichmacher in der Dichtungsmasse, welche auch beträchtlichen Aufwand erfordert. 

Kapitel IV zeigt, wie modernes Equipment sehr hilfreich bei der schnellen 

Identifizierung von Substanzen in Kunststoffen mittels der direkten Echtzeitionisation 

gekoppelt mit der Einfachquadrupolmassenspektrometrie (DART™-MS), am Beispiel 

von Additiven in Dichtmassen für Gläschendeckel aus Polyvinylchlorid (PVC), sein 

kann. Kapitel IV führt aus, dass Lösungen von Stoffen, die mit DART™-MS 

gemessen werden, die Ionen [M+H]+ und [M+NH4]+ als typische Ionisationsprodukte 

und eine Spaltung der Esterbindung als typische Zerfallsprodukte der Moleküle 

zeigen. Die Additive wurden schnell und einfach mit DART™-MS identifiziert, im 

Allgemeinen im Bereich von einem Massenprozent falls keine ionensuppresiven 

Effekte auftraten. Da diese Effekte von bestimmten Molekülen verursacht werden, 

konnte gezeigt werden, dass Extrakte von einem Kunststoff mit dem entsprechend 

geeigneten organischen Lösungsmittel die Nachweisempfindlichkeit erhöhen können. 

Mit dieser Methodik war es möglich Fettsäureamide, Phthalate, Tributyl-O-

acetylcitrat, Dibutylsebacat, Bis(2-ethylhexyl)adipat, 1,2-Cyclohexanedicarboxyl-

säure, 1,2-diisononyl ester und sogar komplexere Additive wie acetylierte Mono- und 
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Diglyceride von Fettsäureestern, Epoxidieres Sojaöl und Polyadipate bis zu einem 

Prozent oder geringer im Kunststoff nachzuweisen. Epoxidiertes Leinsamenöl konnte 

auch als solches ab einem Gehalt von 5% identifiziert werden und falsch positive 

Identifizierungen traten nur für Diisononylphthalat auf. Der Nachweis, ob 

Azodicarbonamid im Herstellungsprozess benutzt wurde zeigte Möglichkeiten auf, 

war aber nicht sehr robust. Ein sehr großer Nutzen der Methode, die in Kapitel IV 

vorgestellt wird, ist die Analysenzeit von ungefähr 45 Minuten für sehr komplexe 

Kunststoffproben. Nachdem mehr Gewissheit in die Ionisierungs- und 

Zerfallsprodukte der DART™-MS gebracht wurde, kann diese Methode auch auf 

andere Anwendungen, die von ähnlichen Fragestellungen handeln, übertragen 

werden. 

 
Experten betrachten die Verwendung von Verpackungsmaterial als größte und 

am wenigsten kontrollierte Quelle für die Lebensmittel-kontamination mit organischen 

Stoffen in Europa, deshalb ist die Verbesserung von Analysenmethoden für 

Lebensmittelkontaminationen, die durch Verpackungen verursacht werden, eine 

zwingend erforderliche Notwendigkeit. Der Weichmacher Epoxidiertes Sojaöl (ESBO) 

war auch ein Stoff, welche insbesondere ölhaltige Lebensmittel und 

Babynahrungsmittel kontaminierte, und zwar in einem Umfang welcher europäische 

spezifische Migrationsgrenzwerte um ein mehrfaches überschritt. Kapitel V erforscht 

die Bestimmung von Epoxidiertem Sojaöl in Lebensmitteln mit der GC-MS und der 

Gaschromatographie gekoppelt mit der Dreifachquadrupolmassen-spektrometrie 

(GC-MS/MS)- Stabilisotopverdünnungsanalyse (SIDA). Um eine SIDA zu entwickeln 

wurde der 13C18- markierte interne Standard Ethyl 9,10,12,13-diepoxyoctadecanoat 

synthetisiert, welcher nach der Probenaufarbeitung dieselbe Retentionszeit wie 

Methyl 9,10,12,13-diepoxyoctadecanoat, das allgemein in der Gaschromatographie 

als Marker für ESBO genutzt wird, besitzt. Die Gaschromatographiekapillarsäulen 

VF-17ms, DB1701 und DB1 wurden für elf unterschiedliche Lebensmittelmatrixe 

mittels GC-MS und GC-MS/MS getestet. Bezüglich Trennleistung und 

Empfindlichkeit zeigte vor allem die VF-17ms-Säule mit MS/MS Detektion die besten 

Ergebnisse. Eine Methodenvalidierung für die Matrix Olivenöl ergab eine LOD von 

5 mg kg-1, eine LOQ von 11 mg kg-1, eine mittlere Wiederfindung (n=5, 

c=106,6 mg/kg) von 99,7±5,5% mit einer Wiederholbarkeit von 6,0%. Unter 

Verwendung von GC-MS wurde das LOQ zu 21 mg/kg und eine mittlere 

Wiederfindung (n=5, c=106,6 mg/kg) von 103,3±0,8% mit einer Wiederholbarkeit von 
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0,9% bestimmt. Die Methode welche in Kapitel V vorgestellt wird zeigt, dass selbst 

wenn im Analysenlabor keine onlinegekoppelte Hochleistungsflüssigkeits-

chromatographie online gekoppelt mit Gaschromatographie mit Flammenionisations-

detektion, oder GC-MS mit chemischer Ionisierung mit Ammoniak, zu Verfügung 

stehen, eine sehr schnelle Probenaufarbeitung für die gaschromatographische 

Analyse möglich ist. 

 
Neben der Nahrung gibt es auch andere Aufnahmewege für 

gesundheitsgefährdende Stoffe. Bei Babys, Kleinkindern und Kindern ist das in den 

Mundnehmen von Dingen für die Aufnahme von Phathalaten verantwortlicher als es 

allgemein angenommen wird. Im Fall von Spielzeug und Babyartikel verursacht es 

zum Beispiel momentan bei Babys und Kleinkindern 90 % der Belastung mit Di-

isononylphthalat (DINP). Für solche Produkte sind Analysenmethoden eng verwandt 

mit denen von Packungsmaterialien, schnelle und einfache Methoden fehlen jedoch 

und Verbesserungen in diesem Bereich sind notwendig. Kapitel VI beschreibt eine 

schnelle und zerstörungsfreie Analysenmethode für Phthalsäureester in PVC mittels 

der DART™-MS. Die Nachweisgrenzen für das [M+H]+-Ion für Benzylbutylphthalat 

(BBP), Di-(2-ethylhexyl)phthalat (DEHP) und DINP waren 0,05 Gew-% und 

entsprechend 0,1 Gew-% für Dibutylphthalat, Di-n-octylphthalat (DNOP) und Di-

isodecylphthalat. Eine Absicherung der Identifizierung mittels anderer 

charakteristischen Ionen war für alle Phthalate mit einem Gehalt von einem Gew.-% 

oder höher möglich, außer für BBP (5 Gew.-%). Die Unterscheidung von DEHP und 

DNOP mittels ihrer ionisierten Zerfallsprodukte war ab einer Konzentration von 

5 Gew.-% erfolgreich. Wurde die Gastemperatur auf 310ºC erhöht, dann sogar ab 

einem Gew.-%. Da üblicherweise aber mit 131ºC gearbeitet wurde, wurden die 

meisten Spielzeug und Babyartikel nicht beschädigt. Die Analyse einer Probe nahm 

generell etwa zehn bis fünfzehn Minuten in Anspruch. Kurz und bündig ist die in 

Kapitel VI vorgestellte Methode ein mächtiges und zeitgemäßes Mittel für eine 

Übersichtsanalyse, welche eine schnelle Identifizierung der Phthalsäureester in PVC 

bis zu den Grenzwerten der europäischen Gesetzgebung erlaubt. Es ist für 

Überwachungszwecke sehr gut geeignet, um mit einem hohen Probendurchsatz 

Übersichtsanalysen durchzuführen. 
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