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1 Introduction  

1.1 Importance of oil crops 

Oil seed crops are one of the most valuable and widely traded agricultural commodities 

because of their nutritional and economic importance. Oilseed crops have been grown 

since time immemorial and are grouped as conventional and non-conventional. The 

conventional oilseeds include rapeseed/mustard, groundnut, linseed, castor seed and 

sesame. The non-conventional oilseeds are canola, sunflower, soybean and safflower. 

Cotton, though a fibre crop is an important source of edible oil. Corn also yields edible 

oil as a by-product. Oil palm, olive, jojoba and salicornia are also edible oil crops. 

Oil crops have many other uses beside food and feed purposes. According to the United 

State of Agriculture Department (USDA, 2007) the total world production of major 

vegetable oils in 2007 was over 400 million tonnes. A part of the total supply was used 

by the oleochemical industry as starting material for range of industrial products. Some 

was used also in the animal feed but the vast majority of vegetable oils were used for 

edible commodities, such as margarines, cooking oils, and processed foods. For many 

years it has been assumed that the produced oils and fats were used for food, feed, and 

oleochemical industry in the ratio 80:6:14 but this is changing, mainly through the rapidly 

growing demand for biodiesel. At the end of 2007 it was probably close to 74:6:20 and it 

has been suggested that by 2020, it could be 68:6:26. This ratio does not mean that 

less will be consumed as food but that this will represent a smaller portion of a larger 

total. In 2008/09 one half of the year’s additional supply will be probably be used for 

non-food purposes (mainly biodiesel) and the other half for food purposes.  

1.2 Genetically modified plants 

Biotechnology has allowed the targeted modification of the genetic composition of plants 

resulting in organisms with novel traits. The new crop varieties produced by modern 

biotechnology are called genetically modified (GM) plants or transgenic plants (Gao 

2004). The tools of modern biotechnology allow plant breeders to select single genes 

that produce desired traits and move genes from one plant or organism to another.  
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During the period 1996 to 2007, the proportion of the global area of GM crops grown by 

developing countries had increased consistently. In 2007, 43% of the global biotech 

crop area, (up from 40% in 2006), was in developing countries. The growth between 

2006 and 2007 was substantially higher in developing countries (8.5 million hectares or 

21% growth) than industrial countries (3.8 million hectares or 6% growth) (James 2008).  

The previous information shows that the genetically engineered food and feed-grade 

varieties being currently cultivated at commercial scale. GM crops were conceived to 

show enhanced agronomic properties in term of herbicide tolerance and/or insect 

resistance. The introduction of these traits has resulted in a restrained use of herbicides 

and insecticides, simplifying agricultural practice and reducing the costs for production 

of agricultural commodities. 

Subsequent genetic engineering applications have been additionally focused on 

enhancement of wide variety of quality traits in agricultural products and derivatives. 

Biotechnological engineering in plants can be categorized in several groups including 

improvement of important characteristics, the enhancement of content, composition or 

bioavailability of nutrients, increasing the nutrition value of food and enhancing 

processing properties and modified structures composition (Christau and Klee 2004). 

1.2.1 Engineering of crops for improving agronomic traits 

Important properties of agricultural products have been improved by mean genetic 

engineering. The best known examples of herbicide resistance are soya, maize, cotton 

and canola. Commercial crop resistance has been achieved with four different classes 

of herbicides such as glyphosate, glufosinate, bromoxynil, and the group of herbicides 

that include sulfonylureas imidazolinones (Christou and Klee 2004). Even in industrial 

countries, a major percentage of crop harvests are lost because of pests and diseases. 

Within this context, transgenic crops have played an important role delivering new 

strategies for management of pest and disease control measures. The best known 

example is the production of transgenic plants that express the insecticidal δ-endotoxins  
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produced by different strains of Bacillus thuringiensis. Bt toxin has been shown to act 

highly on a wide range of target organisms. A number of genes encoding for δ-

endotoxins have been successfully introduced into maize, making crops resistant to 

corn borers and corn root worms (Thomson, 2006). 

1.2.2 Quality and yield traits 

Genetic engineering to modify the contents composition or bioavailability of macro- and 

micronutrients in food-grade crops address specific metabolites such as lipids, 

carbohydrates, proteins, and amino acids. For most major oilseed crop species, 

methods for genetic transformation are available. This opens up many opportunities to 

selectively modify their lipid composition and nutritional value by genetic engineering. 

These modifications aim at the modulation of chain length and the degree of saturation 

of fatty acids, as well as the production of oils containing a particular fatty acid in high 

proportions, such as high-stearate oil, high–oleic oil or accumulation of very long-chain 

polyunsaturated fatty acids (Christau and Klee, 2004). 

1.3 Genetically modified Bt plants 

Bacillus thuringiensis is a naturally occurring soil bacterium that produces proteins, 

called Bt proteins that are toxic to certain insects (Schnepf et al., 1998). Over 40 

varieties of these proteins have been identified. For instance some of Bt toxin target 

larval forms of lepidoterans (butterflies and moths), dipterans (flies and mosquitoes) and 

others cleopterans (beetles). Bt proteins cause little or no harm to most non-target 

organisms, including humans and wildlife. They have been used in sprays in 

conventional and organic agriculture for decades with a little or no ill effects on 

environment or human health. Thus, Bt toxins are considered environmentally friendly 

alternatives to broad spectrum insecticides. Also, these and other insecticide sprays are 

rather effective against pests that burrow into plant tissues (Thomson 2006). 

1.4 Genetically modified Bt corn  

The Bt crops contain a toxin derived from Bacillus thuringiensis. Corporations have 

genetically inserted the gene for this toxin into crops to function as an insecticide 
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against harmful insects, such as the European corn borer and the Colorado potato 

beetle (Mendelsohn et al., 2003). However, Bt crops also kill and adversely effect 

beneficial insects, like monarch butterflies, bumblebees, and lacewings.  

One of the most popular types of genetically engineered corn is an insecticide producing 

corn called Bt corn MON810 maize with a trade name YieldGard, produced by 

Monsanto. It was genetically engineered to resist European corn borer by producing a 

truncated version of the insecticidal protein Cry1Ab, derived from Bacillus thuringiensis 

(Holck et al., 2002). The Cry1Ab protein produced by MON810 is insecticidal only to 

Lepidopteran insects. This specificity of action is directly attributable to the presence of 

specific binding sites in the target insects. 

The native Cry1Ab protein has molecular weight 131 kD while the plant expressed 

Cry1Ab codes a protein 91 kD (Brandt 2004). After activation of the protoxin by 

solubilization of the toxin by insect midgut proteases or by trypsin, the protoxin becomes 

the active toxin. Commercially available Bt- expressing maize is shown in Table 1 (EPA 

2008).  

1.5 Mode of action of Cry toxins 

The toxin that Bacillus thuringiensis produces is called Cry protein. Different strains of 

the bacterium produce different versions of the toxin; these versions are classified into 

groups CryI, CryII, CryIII, and CryIV. Each group was subdivided further into subgroups 

A, B, C, etc  

Bravo et al., (2007) reported that, Bacillus thuringiensis crystals are first solubilized in 

the midgut of susceptible insects, followed by activation of the protoxin to active toxins 

by the midgut protease. The activated toxin then binds to insect midgut membrane 

receptors, insert into the apical membrane and form pores. Formation of the pores 

causes loss of osmotic regulation, and eventually leads to cell lyses, which is thought to 

be responsible for insect death. 
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Table 1:  Registered Bt maize for Lepidopteran-resistance (LR) and coleopteran-
resistance (CR). 

Plant-Incorporated 
Protectant  

Insecticidal 
proteins  

Traits  Companies  Date 
Registered  

Trade name  

Bt corn Event 176 a Cry1Ab LR, PATb Mycogen Aug.,1995 NtureGuard 
Bt corn Event 176 a Cry1Ab LR, PATb Ciba Seeds Aug.,1995 KnockOut 
Bt corn Event BT11  Cry1Ab LR, PAT Northup King Aug.,1996  Agrisure CB 
Bt Corn Event 
MON810  

Cry1Ab LR Monsanto  Dec.,1996 YieldGard 

DBT418 a Cry1Ac LR, PAT DeKalb 
Genetics 

Mar.,1997 Bt-Extra 

Bt corn Event BT11 
(sweet corn) 

Cry1Ab 
 

LR, PAT Novartis Seeds Feb.,1998 Attribute 

Bt CornCBH351a,c  Cry9C LR, PAT Plant Genetics 
systems 

May, 1998 StarLink 

Bt corn Event 
TC1507  

Cry1F LR, PAT DowAgroScienc
es/Pioneer Hi-
Bred 

May, 2001 Herculex I  

Bt corn Event 
MON863  

Cry3Bb1 CR Monsanto  Feb.,2003 YieldGard 
RW 

Bt corn stalk Events 
MON863+MON81d  

Cry3Bb1 + 
Cry1Ab 

CR, LR Monsanto Oct., 2003 YieldGard 
Plus 

Bt corn event DAS-
59122-7  

Cry34Ab1 + 
Cry35Ab1 

CR, PAT Dow Agro 
Sciences/ 
Pioneer Hi-Bred 

Aug.,2005 Herculex 
RW 

Bt corn Events 
DAS-59122-7 d + 
TC1507  

Cry34Ab1 + 
Cry351Ab1 + 
Cry1F 

LR, CR, 
PAT 

Dow 
AgroSciences / 
Pioneer Hi-Bred 

Oct., 2005 Herculex 
Xtra 

Bt corn Event 
MON88017  

Cry3Bb1 CR, 
EPSPS e 

Monsanto  Dec.,2005 YieldGard 
VT RW 

Bt corn Events 
MON88017 d+  
MON810   

Cry3Bb1 + 
Cry1Ab 

LR, CR, 
EPSPS 

Monsanto  Dec.,2005 YieldGard 
VT Triple 

Bt Corn Events MIR 
604 

modified 
Cry3A 

CR Syngenta Oct., 2006 Agrisure RW 

Bt Corn Events MIR 
604 d + BT11 
(Agrisure CB/RW) 

Modified 
Cry3A + 
Cry1Ab 

LR, CR, 
PAT 

Syngenta  Jan., 2007 Agrisure 
CB/RW 

a No longer registered 
bPAT, phosphinothricin-N-Acetyltransferase, which allows use of herbicide glufosinate 
ammonium (e.g., Liberty®) 
c Registered for animal feed and non-food use 
dStacks formed from conventional crossed  
eEpsps, 5-enolpyruvylshikimate-3-phosphate synthase, which allows use of herbicide 
glyphosate (e.g. Roundup®) 

1.6 Activation of Cry protoxins  

A hallmark of Bt crystal proteins is their extreme insolubility. Endotoxins typically are 

protoxins, which need a proteolytic processing event to aid solubility and activate the 
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toxic component (Andrews et al., 1985). Crystal solubilization is facilitated by an alkaline 

pH of susceptible insects; the typical midgut pH is between pH 9-11 in insect midgut 

(Milne and Kaplan 1993). Cry1A toxins are fully soluble at pH 9.5 (Bietlot et al., 1989). 

Activation of Cry1 protoxins by protease according to Choma and Kaplan (1990) are 

shown in figure 1. As shown in the process of activation, it appears to resemble that 

mammalian gut proteases such as trypsinogen pepsinogen in that 25-30 amino acids 

from N-terminal peptide is removed and approximately half of the remaining protein from 

the C-terminus. The role of the C-terminal extension to the active toxin is believed to be 

in the formation of crystalline inclusion bodies within the bacterium and is dispensable 

for toxicity (Choma and Kaplan, 1990 and 1991, Bravo et al., 2002).  

However, in case of protoxin activation, there are no internal cleavages generated with 

the toxic moiety during cleavage. It appears that conformation changes occurring during 

activation are rather subtle, affecting the tertiary structure but not the secondary 

structure of proteins.  

1.7 Potential alternation in toxicity of plants aft er genetic modification 

The insertion of a new gene results in either the production of either one or two of new 

substances in the plant or change in synthesis of existing substances. The effect can be 

direct and intentional. The introduced genes directly produce proteins or enzymes, 

which in turn results in the change of other substances in the plants. The introduction of 

new genes may increase or decrease the expression of existing protein or enzyme. 

Hence, GM products should be tested for levels of natural toxins and any change of 

other substances (Parekh 2004). As the expression of wild-type Bt genes in plants is 

suboptimal due to differences between bacterial and plant genomes (De Maagd et al., 

1999), these genes were modified to enhance the quality and toxicity of Cry toxins 

(Perlak et al., 1991). 
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Figure 1 : Scheme for activation of Cry protoxins.  
Stippled region, removed by cutting with protease.  

1.8 Economic and human health impacts of Bt crops 

The proportion of the economic benefits that accrue to the farmer, the consumer and the 

technology company vary among countries depending on the degree of the protection 

provided for intellectual property rights and the degree of government control over 

commodity price. Direct health benefits accrue from the reduction in insecticide use on 

Bt crop, as a result of lower pesticide residues in food and water, and the reduced 
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exposure of farm workers during pesticide applications. These benefits are especially 

great in developing countries, where pesticide regulation is weak, the education level of 

farmers is generally low and pesticides are applied manually (Romeis et al., 2008). 

1.9 Methods for the detection of GMOs  

GMOs research includes the development of transgenic plants as well as the 

characterization and detection of GMOs in plants and plant-derived materials. Last 

years, GMO research was focused mainly on development and optimization of 

strategies and methodologies for the control and analysis of GMOs. 

The use of GMOs -their release into the environment, cultivation, importation and 

particularly, their utilization as food or food ingredients - is regulated in the European 

Union (EU) by a broad legislative framework. EU Regulations require critical measures 

such as access to validated methods and technical guidance documents for the 

detection of GMO. The European Commission's Joint Research Centre (JRC), acting 

via the Institute of Health and Consumer Protection (IHCP), and more particularly the 

"Biotechnology and GMOs Unit" is legally mandated under Article 32 and the Annex of 

Regulation No 1829/2003 on genetically modified food and feed to operate as the 

Community Reference Laboratory for GM Food and Feed (CRL-GMFF). The role of the 

CRL-GMFF in the process of authorization for placing on the market a GMO for food or 

feed is to validate the method for the detection and identification of the transformation 

event. Results of the validation are transmitted to the European Food and Safety 

Authority (EFSA) and are included in the Authority’s overall opinion. The activities of the 

CRL-GMFF are carried out in collaboration with the European Network of GMO 

Laboratories (ENGL). ENGL is a unique platform of EU experts that play an eminent 

role in the development, assessment and standardization of means and methods for 

sampling, detection, identification and quantification of GMOs or derived products in a 

wide variety of seeds, grains, food, feed and environmental samples (Mazzara et al., 

2007).  
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1.9.1 DNA based methods 

The DNA that has been engineered into a crop consists of several elements that govern 

its functioning. Although several DNA based techniques are available, two are 

commonly used: Southern blot and particularly PCR analyses (Ahmed 1995; Sambrook 

and Russel 2000). The sensitivity of these DNA methods is extremely high for 

genetically modified crops and processed foodstuffs being able to detect traces of DNA 

(Schreiber, 1999). 

1.9.2 Protein based methods 

Immunoassay technologies with antibodies are ideal for qualitative and quantitative 

detection of many types of proteins in complex matrices when the target analyte is 

known (Brett et al., 1999). Both monoclonal (highly specific) and polyclonal (often more 

sensitive) antibodies can be used depending on the amounts needed and the specificity 

of the detection system (e.g. antibodies to whole protein or specific peptide sequences), 

depending on the particular application, time allotted for testing and cost. On the basis 

of typical concentrations of transgenic material in plant tissue (>10 µg per tissue), the 

detection limits of protein immunoassays can predict the presence of modified proteins 

in the range of 1% GMOs (Stave, 1999). Various methods based on the recognition of 

recombinant proteins have been developed. The most common test formats were 

sandwich ELISA and sandwich-type immunochromatographic (lateral flow) strip tests 

(Stave 2002). They are suitable for detection of bivalent or polyvalent antigens on the 

basis of direct double antibody binding strategy (sandwich). The analyte is trapped 

between a solid phase antibody and a labeled secondary antibody. Such methods are 

available for the protein expression in the most important GM crops, including insect–

resistant maize, potato, cotton or herbicide-resistant maize, potatoes, cotton, soybean 

and canola (Lipp et al., 2000).  

1.10 Protein Identification by Mass Spectrometry 

Mass spectrometry is entirely different from the other sequencing techniques and offers 

several advantages such as the analysis of peptides within mixtures or of peptides that 
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are blocked on the N-terminal side or post translational modifications. Mass 

spectrometry is thus complementary to other existing methods. 

Recent examples from the literature indicate that MS might also be viably applied for the 

analysis of protoxins produced by B. thuringiensis strains (Ranasinghe and Akhurst 

2002; Lee et al., 2006). There are two major methods that are widely used for protein 

identification by mass spectrometry: MALDI-TOF based protein fingerprinting and LC-

MS/MS based peptide sequencing. Traditionally, proteomic analysis of complex protein 

samples involves the resolution of proteins using gel electrophoresis, followed by the 

identification of resolved proteins by mass spectrometry. 

1.11 MALDI-TOF based protein fingerprinting 

MALDI provides a high sensitivity and a broad mass range. MALDI-TOF MS has been 

widely used to study different classes of biomolecules such as proteins, 

oligonucleotides, polysaccharides and polymers (Feistner et al., 1995; Karas et al., 

1995; Papac et al., 1996). Compared to the traditional techniques, such as sodium 

dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), MALDI-TOF MS has 

several advantages in the determination of protein molecular weight (Mr), peptide 

mapping, and purity (Guo-Hua et al., 1999).  

In the MALDI-TOF based protein fingerprinting method, a sample is digested with 

certain proteolytic enzyme (usually trypsin) and an MS spectrum is acquired which 

generates the masses of all peptides. These masses are used as a fingerprint to search 

proteins in a database. The hits are ranked by a scoring method. A candidate protein 

that contains more proteolytic peptides, which can match measured masses, has a high 

score. Protein identification based on MALDI-TOF MS is a rapid method for protein 

mass fingerprinting. 

1.12 LC-MS/MS peptide based sequencing 

Liquid chromatography combined with tandem mass spectrometry has become a widely 

used technique for protein analysis. Reversed-phase (RP) LC is a preferred mode of 
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separation for LC−MS/MS due to its high separation power and compatibility of the 

mobile phases with ionization techniques such as electrospray ionization (ESI) (Fournier 

et al., 2007; Motoyama and Yates, 2008). 

In protein identification by LC-MS/MS peptide sequencing, each MS/MS spectrum 

(corresponding a specific peptide sequence) is used to search protein database for 

matched peptides. A protein hit is often identified by multiple independently sequenced 

peptides from the same protein. However, there are two major factors that make the LC-

MS/MS a superior platform for protein identification: sensitivity and reliability.  

Since mass spectrometry detection is concentration-dependent, such concentration 

increase is effectively translated into the increase of MS signal. Consequently, it can 

dramatically increase real sensitivity in identifying proteins. On the other hand protein 

identification by LC-MS/MS is based on independent sequencing of peptides. 

Theoretically, an LC-MS/MS can identify a thousand protein mixture with the same 

reliability as that in identifying one protein. 

1.13 Genetically modified Oilseeds  

Because of the difficulties in domesticating wild plants greater effort has been directed 

to the modifying of plants that are already grown and harvested on commercial scale 

and where good agronomic products are already well developed. The oilseeds have 

economic and nutrition values, because of that the genetic modification of oilseeds was 

demonstrated to enhance the properties of oilseed crops. The changes to be sought are 

partly agronomic change in fatty acid composition, triacylglycerol composition, and in 

levels of minor components. These changes must be achieved without sacrifice of yield 

and must be biologically stable from season to season. Such changes may be brought 

about by conventional seed breeding or by newer procedures of genetic engineering 

(Christau and Klee, 2004).  

Change of fatty acid composition which have been sought include: reducing levels of 

saturated acids for nutritional reasons, reducing levels of linolenic acid and/or higher 

levels of saturated acids to avoid hydrogenation (with consequent production of 

undesirable trans acids), and higher levels of oleic acid. One important and exciting 
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possibility is to develop plant systems that will produce long-chain polyunsaturated fatty 

acids such as arachidonic acid (12:4), EPA (20:5 ), and DHA (22:6) (Frank, 2008). 

In view of the high demand for oils and fats for food and non-food purposes it is 

important to increase supplies. This may be achieved by seed breeding to give higher 

oil yields, or higher seed yield which are more drought resistant and will so give better 

yields under adverse conditions, and seeds which will grow under harsher conditions of 

climate (lower temperature or shorter growing seasons) or of soil (high salinity) 

(Christau and Klee, 2004). 

1.14 The effect of genetic modification on chemical  composition of plants 

The use of genetic engineering in agriculture and food production has effects not only 

on the environment and for biodiversity, but also on human health, because genetic 

engineering introduces new genes, genetic information and constituents into the cell of 

food-producing organisms. These new proteins could cause allergies or be toxic (Taylor 

1997). Alternatively they could alter the cellular metabolism of the food-producing 

organisms in unintended and unanticipated ways, and in turn, these alternations in 

metabolism could cause allergens or toxins to be produced in food. 

Another possibility is that, as a result of these alterations in metabolism, the food-

producing organism might fail to make some important vitamins or nutrients. 

Consequently, the genetically engineered food would lack important nutrients that are 

normally present in corresponding non-genetically engineered food. These unexpected 

and unintended adverse changes in composition or character of foods, food ingredients 

and food additives may cause foods to be unsafe and damaging to health (Stave, 2002). 

Therefore, how different genetic modifications can impact on the chemical composition 

of these products is of great interest. In this regard, studies which assess the safety 

equivalence between transgenic and parental non- transgenic organisms are important, 

including field investigations, animal nutrition, and basic chemical composition (National 

Research Council 2004). Moreover, the mentioned strategies devised to study the 

nutritional, safety assessment, and chemical composition of the first GMOs generation  
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will be much more difficult to apply to the coming new generation of GMOs, in which 

significant changes in other constituents have been deliberately introduced (e.g., 

increased fatty acids or amino acid content, polyphenols, vitamins, and reduced 

undesirable constituents), requiring the development of more powerful and 

informative analytical procedures (Flachowsky et al., 2005; Simo et al., 2005).  

1.15 Oil content and oil quality  

Oils have important physico-chemical and nutritional properties, and these have to 

be brought into appropriate balance. This is not always an easy task. Nutritionists 

may indicate a recommended quantity and quality of fat. Seed producers, farmers 

and those in the agricultural and food businesses may strive to produce material to 

meet these targets. It remains only for the consumer to fellow the advice. This is 

often the major difficulty (Gunstone 2008). Analysis of oil composition is an essential 

step which specifies the nature of occurring constituents and their relative quantities 

(Karleskind 1996). The characterization of oil composition of newly produced or 

uncharacterized genetically modified oil is still having a great interest. Among this oil 

composition are fatty acids, sterols, tocopherols and phospholipids. 

1.15.1 Fatty acids 

The composition of oleic, linoleic and linolenic acids in oil affect the oxidative stability 

(Min and Boff 2001; Nawar 1996). Sunflower oil has approximately 70% linoleic acid 

(Meydani et al. 1991) and is highly susceptible to lipid oxidation (Jeleń et al., 2000). 

Heating speeds up the oxidative reactions, which is a major concern for deep fat-

frying operations (Muik et al., 2005). Ashton et al., 2001 reported that high-oleic 

sunflower oil may decrease the risk of coronary heart disease by decreasing 

susceptibility of low density lipoprotein (LDL) cholesterol to oxidation.  

1.15.2 Phytosterols 

Phytosterols have received attention recently due to their ability to block cholesterol 

levels (Gylling and Miettinen 2005). In addition to their cholesterol-lowering 

properties, some phytosterols have also been investigated for antioxidant or anti-

polymerization activity during the high temperature heating of oils (Sims et al., 1971; 

Gordon and Magos, 1983; White and Armstrong, 1986; Lampi et al., 1999). It has 
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been observed that sterols with an ethylidene group in their side-chain, such as ∆5- 

and ∆7-avenasterol, and citrostadienol, seem to have antioxidant or anti-

polymerization activity, while others, such as sitosterol, stigmasterol, and 

campesterol had either no effect or a slightly prooxidant effect (Sims et al., 1971; 

Gordon and Magos 1983; White and Armstrong 1986; Lampi et al., 1999). 

The US Food and Drug Administration recently approved a health claim for certain 

foods containing at least 0.65 g or 1.7 g/serving of plant steryl or plant stanyl esters, 

respectively (United States Food and Drug Administration 2006). Phytosteryl and 

phytostanyl esters have been added to vegetable oil-based spreads, margarines, and 

salad oils, and new products are continually being developed (Ohr 2006).  

1.15.3 Tocopherols 

Tocopherols are well recognized as effective antioxidants both endogenously and as 

additives. Jung reported that optimum concentrations of tocopherol homologues 

were 100, 250, and 500 ppm for α-, γ-, and δ-tocopherols, respectively (Jung and 

Min 1990). However, if these compounds are in too high concentrations, they can act 

as pro-oxidants. Satue et al., 1995 found that if α-tocopherol was more than 250 ppm 

in olive oil, it acted as a pro-oxidant as measured by peroxide values. In addition, 

Jung found that 500 ppm of added α-tocopherol in soybean oil was a pro-oxidant by 

peroxide formation (Jung and Min 1990). The difference between these two findings 

might be due to differences in naturally occurring antioxidants and/or in fatty acid 

compositions of the oils used. Other researchers have also reported that fatty acid 

composition may not be the only determinant of oil quality (Kamal-Eldin and 

Andersson 1997; Yanishlieva and Marinova 2001). 

1.15.4 Phospholipids 

The stability and quality of vegetable oils are influenced by the presence of minor 

constituents, such as phosphatides. Phospholipids may act as antioxidants, the 

antioxidative activity being attributed to their synergistic action, their metal 

scavenging activity, and their catalytic activity to decompose hydroperoxides 

(Pokorny et al., 1982; Koga and Terao 1994). 
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Measurement of phospholipid components also can be used to evaluate the quality 

of crude oil from oilseeds that have been damaged due to environmental conditions 

in the field and/or improper handling, storage, and transportation (Mounts and Nash 

1990). The major phospholipids in sunflower seed oil are phosphatidylcholine (PC), 

phosphatidylethanolamine (PE), phosphatidylinositol (PI) and phosphatidic acid (PA), 

with a total concentration lower than 1.2% (Padley et al., 1994). Most of these 

phospholipids are hydratable and can be removed from the crude oil by using a 

water-degumming process. (Holló et al., 1993). 

1.16 Sunflower oil 

Sunflower oil is good in taste, light in appearance and supplies more vitamin E than 

any other vegetable oil. It is a combination of monounsaturated and polyunsaturated 

fats with low saturated fat levels. Sunflower oil is valued for its light taste, frying 

performance and health benefits. Sunflower oil with high-oleic acid content is coming 

more into the focus of interest since the fatty acid composition is more comparable to 

rapeseed and olive oil. The linoleic acid content is negatively correlated with the oleic 

acid content (Marquard 1977), resulting in seeds that are either rich in linoleic acid or 

oleic acid. In regular sunflower oil linoleic acid is the predominant fatty acid 

comprising about 60%, while high-oleic sorts with a high content of oleic acid (80%) 

and only low amounts of linoleic acid (less than 10%) (Rass et al., 2008) In addition 

sunflower oil is gaining more and more importance. Sunflower oil also contains about 

8–15% saturated fatty acids, mainly palmitic and stearic acid. 

Another important aspect is that the high content of oleic acid results in a high 

oxidative stability, making this oil interesting for a wide range of applications (Rass et 

al., 2008).  

1.17 Corn oil 

Corn is the second crop after soybean in global GM modified crops area (James, 

2008). The first GM maize was planted in USA in 1996 and accounted for 0.3 million 

hectares. There are several types of maize planted by farmers around the world 

(Tomson 2006). Corn oil is widely used as an all-purpose cooking oil and for 

margarine because of its unique flavour attributes and because it is more stable to 
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oxidation than linolenate containing oils, such as soybean or canola (Warner and 

Nelsen 1996). 

1.18 The future of the genetically modified oil cro ps  

The question of vegetable oils derived from genetically modified seeds is still an 

issue in Europe and in some other countries. Over one half (and increasing) of 

soybean oil comes from genetically modified seeds in both North and South America 

and also increasing proportions of canola. Non-GM material must be sourced from 

appropriate areas and be identity preserved. The first GM oilseeds were modified to 

be resistance to certain herbicides and to pests leading to more efficient farming. 

The second generation of GM oilseeds have been modified to have a different fatty 

acid composition and/or enhanced levels of minor components. There may be 

pressure for EU to accept oil from GM plants for industrial (biodiesel) purposes 

(Denis and Murphy 1999). 

The challenge for researchers in the coming years will be to produce oil crops with 

higher yields to satisfy increased demands and also to increase the spectrum of 

useful products, whether for edible or industrial use, that can be derived from these 

crops. To date, the vast majority of research and development activities have 

focused on improving existing crops. More recently, there has been considerable 

interest in using recombinant DNA technology to transfer genes from other oil 

producing plants (Christau and Klee 2004). 

1.19 Objectives of the study 

Despite MON810 being one of the major genetically modified maize crops, no 

studies have characterized Cry1Ab, the toxic protein which is produced in MON810. 

Several methods of purification of bacterial Bt toxin had been described using HPLC 

and GPC. The Bt is much more difficult to separate from transgenic plants because 

of the low concentration of toxic protein (Wu et al., 2001). In additional, plants 

contain a large number of proteins that make the separation of the toxin by traditional 

chromatographic methods more difficult. Therefore the purification of the target Bt 

protein needs a highly specific purification method.  
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Since safety assessment studies should be achieved on the product that the people 

actually consume (EPA 2003), our study focussed on the characterization of the Bt 

toxic protein that is purified from GM corn and characterized by specific sensitive MS 

chromatographic methods, which only could be achieved by using a highly specific 

purified toxic protein.  

The characterization of the oil content is of great interest for researchers because of 

the nutritional and economical values of oils. The study of the effect of genetic 

modification on oil composition is a target of this investigation. The GM corn and 

genetically modified sunflower oils are among the most important genetically 

modified crops to be investigated compared with conventional traits. 

The main purpose of this study was to develop a method of purification and 

characterization of Cry1Ab purified from MON810 genetically modified maize. The 

second object was to study the effect of the genetic modification of MON810 and 

high-oleic sunflower on the oil composition. Therefore, the objectives of the thesis 

were as follows: 

(1) Quantification of Cry1Ab toxin in different corn plant parts. 

(2) Development of a suitable method for purification of Cry1Ab from genetically 

modified corn. 

(3) Establishment of characterization method of Cry1Ab by MS with regard to high 

recovery. 

(4) Evaluation of the effect of genetic modification on the oil composition compared 

with the conventional traits. 

To achieve these goals, two genetically modified crops were used MON810 

genetically modified corn and high-oleic sunflower. Different purification and 

characterization methods for obtaining highly purified characterized toxin were used, 

as well as the oil composition (fatty acid, sterols, tocopherols and phospholipids) of 

genetically modified corn and sunflower were evaluated comparing with the 

conventional plants. 
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2 Materials and Methods 

2.1 Materials 

2.1.1 Plant Material 

MON810 maize samples were kindly provided by Bayerische Landesanstalt für 

Landwirtschaft (LFL) Schwarzbau-Bayern, Germany. As a control maize KYS was 

taken from Institute of Plant Breeding, Seed Science and Population Genetics, 

University of Hohenheim, Germany. High-oleic sunflower (DEKALB MH4310) was 

kindly provided by Monsanto GmbH, Germany. Conventional (Regular) variety was 

purchased from Ministry of Agriculture, Agricultural Research Centre, Giza, Egypt. 

2.1.2 Bacterial toxin   

Cry1Ab-protoxin was kindly provided by Dr. Hang Nguyen Thu, Georg-August 

University, Göttingen, Germany. 

2.1.3 Insecticides 

XenTari 10.3% Bacillus thuringiensis sub sp. Aizawai was purchased from Bayer, 

North Chicago, USA. 

2.1.4 Antibodies 

Secondary antibody horseradish peroxidase was purchased from Dianova 

(Hamburg, Germany). The δ-endotoxin antiserum was provided by Dr. Markus 

Lacorn, Institute of Animal Husbandry and Animal Breeding, University of 

Hohenheim, Germany.  

2.1.5 Chemicals 

Substance Manufacturer 

Acetic acid VWR International GmbH. Darmstadt 
Acetone Technical grade, distilled before use 
Acetonitrile Technical grade, distilled before use 
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Substance Manufacturer 

Acrylamide VWR International GmbH. Darmstadt 
Ammonium bicarbonate Fluka, Steinheim,Germany 
Ammonium hydroxide solution 28% Fluka, Steinheim,Germany 
Ammonium persulfate Fluka, Steinheim,Germany 
Ammonium sulfate VWR International GmbH. Darmstadt 
Bovine serum albumin Sigma, Steinheim,Germany 
Butanol Technical grade, distilled before use 
Citric acid Roth, Karlsruhe, Germany 
Coomassie Blue G-250 Serva, Heidelberg, Germany 
3-Cyclohexylamino-1-propanesulfonic 
acid (CAPS) 

Sigma,Steinheim, Germany 

Cytochrom Sigma, Steinheim,Germany 
Diethyl ether Technical grade, distilled before use 
Dithiothreitol (DTT) Sigma,Steinheim, Germany  
Ethylenediaminetetraaceticb acid 
(EDTA) 

VWR International GmbH. Darmstadt 

Fluorescamine  Sigma, Steinheim, Germany 
Glycine Sigma, Steinheim, Germany 
Magnesium chloride VWR International GmbH. Darmstadt 

Methanol Technical grade, distilled before use 
Mercaptoethanol Sigma, Steinheim,Germany 
Milk powder Roth, Karlsruhe, Germany 
n- Hexane Technical grade, distilled before use 
N,N,N',N'-Tetramethylethylenediamine 
(TEMED) 

Fluka, Steinheim,Germany 

Ovalbumin Sigma, Steinheim,Germany 
Phosphoric acid VWR International GmbH. Darmstadt 

Premulin Sigma, Steinheim,Germany 
2-propanol Technical grade, distilled before use 
Pyridine Sigma, Steinheim,Germany 
Sodium azide VWR International GmbH. Darmstadt 
Sodium carbonate VWR International GmbH. Darmstadt 
Sodium chloride VWR International GmbH. Darmstadt 
Sodium phosphate VWR International GmbH. Darmstadt 
SDS Roth, Karlsruhe, Germany 
Tetrahydrofuran (THF) Fluka, Steinheim, Germany 
Triethylamine VWR International GmbH. Darmstadt 
Trifluoroacetic acid (TFA )99% Sigma, Steinheim, Germany 
Tris (hydroxymethyl) aminomethane 
hydrochloride (Tris–Cl) 

Roth, Karlsruhe, Germany 

Trypsine Sigma, Steinheim, Germany 
Tween® 20 Sigma, Steinheim, Germany 

All other standard chemicals were purchased as analytical grade from Sigma-Aldrich, 

Steinheim, or otherwise mentioned. Ultra pure water was obtained by a Synergy 

System (Millipore, Schwalbach, Germany) was used for the preparation of solutions. 
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2.1.6 Consumables  

Material Manufacturer 

Bottles Schott Duran ®, Germany 

Films AGFA, Cologne, Germany 

Nitrocellulose membrane Pharmacia Biotech, Freiburg, Germany 

Parafilm  
 

American National Can, Chicago, IL 

60631, USA 

Pipette tips Eppendorf, Hamburg, Germany 

Tubes 
 

0.5, 1.5, 2.0 ml Eppendorf, Hamburg, Germany 

Filteration devices 
 

 

Steriflip_Gp filters, 0.22µm, Centrifugal  Millipore, Eschborn, Germany 

filter devices with a cut off 30 and 50 kDa Millipore, Eschborn, Germany 

Sterilize filters, 0.2 Macherey-Nagel, Düren, Germany 

Filter paper Schleicher&Schuell, Dassel, Germany 

Remaining expendable materials were purchased from Eppendorf and Roth. 

2.1.7 Apparatus 

Equipment and supplies Manufacturer 

Balances Scaltec Instruments GmbH, Göttingen, 

Germany 

Centrifuges  

Biofuge Primo R  Heraeus, Osterode, Germany 

Biofuge Pico Heraeus, Osterode, Germany 

Electrophoresis 

 

Owl Separation Systems, Portsmouth, 

NH, USA. 

 

Capillary electrophoresis 

 

Agilent CE system (Model HP3D CE; 

Agilent Technologies) 
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Equipment and supplies Manufacturer 

Freezer mill 6800 SPEX CertiPrep  

 

SPEX Industries GmbH, Grasbrunn, 

Germany 

Gas chromatography GC PE 8600  PerkinElmer, Überlingen, Germany 

Gel permeation chromatography GPC GILSON, Germany 

High performance Liquid Chromatography 

HPLC Series HP 1100 (Hewlett-Packard, 

Waldbronn) with diode array detector 

software version Rev.A.04.02 

Agilent Technologies, Germany 

Heater magnetic stirrer Heidolph, Schwabach, Germany 

Horizontal shaker Model M-1000  MedTec Inc., Chapel Hill, NC, USA 

Incubator WTB Binder Labortechnik GmbH, 

Germany 

pH Meter pH 526 with temperature sensors 

TFK 150 (WTW, Weilheim) and electrode 

CAT® Inode  

Gamma analysen-Technik, 

Bremerhaven, Germany 

Pipettes Eppendorf, Hamburg, Germany 

Soxtherm (Extraction of oil) Gerhardt, Germany 

Mass Spectrometry 

Autoflex III MALDI-TOF-TOF  

mass spectrometer 

Acquity nano-UPLC system  

LTQ-Orbitrap XL hybrid mass spectrometer  

 

Bruker Daltonics, Bremen, Germany 

 

Waters, Milford, USA 

Thermo Fisher, Bremen, Germany 

High performance thin-layer  
chromatography (HPTLC)  
 
Application Automatic TLC sampler ATS 4  

 

 

CAMAG, Muttenz, Switzerland. 

Automatic developing chamber  CAMAG, Muttenz, Switzerland 

Scanning TLC Scanner 3 CAMAG, Muttenz, Switzerland 

Dipping Chromatogram immersion device CAMAG, Muttenz, Switzerland 

DigiStore2 documentation system CAMAG, Muttenz, Switzerland  

ProteoChrom HPTLC silica gel 60 F245s Merck KGaA Darmstadt, Germany 
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Equipment and supplies Manufacturer 

HPTLC Software  All instruments were controlled via the 

software platform winCats 1.4.1 

Planar Chromatography Manager 

(CAMAG). 

Ultra filtration  

Stir unit model 8050 with ultra filtration 

membrane XM 50 cutoff 50kDa  

 

Amicon, Germany 

2.1.8 Kits 

Kits Manufacturer 

ELISA Cry1Ab/Cry1Ac Microtiter Plate Kit Abraxis L.L.C., Warminste, PA, USA 

Protease inhibitor cocktail complete Roche, Germany 

Protein concentration, BCA protein assay kit Pierce, Germany 

Western blot detection ECLplus detection 

reagent 

GE Healthcare Bio-Sciences, Germany 

2.1.9 Buffers and solutions 

Buffer Solutions 

Antibody purification 

 

 

Sodium azide 0.05% 

Coupling buffer pH 8.3: 

200 mM sodium carbonate, and 500 

mM sodium chloride 

Preparation of antigen-bound column 

 

50mM Tris buffer pH 7.4. 

100 mM glycine pH 2.5 

neutralization buffer NB : 

1ml Tris-HCl pH 8, 1.5 M NaCl, 1mM 

EDTA, and 0.5% sodium azide 

Immuno-Affinity purification Solutions  
 
 
 

 
0.5M CAPS buffer, pH10.5. 

20mM sodium phosphate buffer pH 

7.2. 
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Buffer  Solutions 

loading buffer pH 7.0: 

20mM sodium phosphate, 0.5 M NaCl, 

and 0.5% tween20. 

MacIIvaine buffer pH 3.0: 

0.1M citric acid: 0.2 M disodium 

hydrogen phosphate. 

20 mM citric acid. 

Capillary electrophoresis 

(CE) 

1M NaOH, 125 mM borate buffer pH 

9.2 containing 25 mM SDS. 

Carbonate/NaCl buffer pH 10.7. 

Extraction buffer for Cry1Ab from corn 

leaves  

50 mM CAPS containing 100 mM 

NaCl, 2 mM EDTA, and 2 mM DTT pH 

10.8 

ELISA PBS-buffer: 

0.136 M NaCl, 8.1 mM Na2HPO4, 

2.7mM KCL and 1.5mM KH2PO4. 

Coating Buffer: 

0.05 M NaHCO3. 

 

 

 

 

 

 

 

 

 

Wash buffer: 

10% PBS-buffer and 0.05% Tween20. 

Blocking buffer: 

0.12 M NaCl, 0.02 M Na2HPO4, 0.01 M 

EDTA, 

0.1 % Gelatine, 0.05 % Tween 20, 

0.002 % Phenol red, 0.005 % 

Chlorhexidindigluconat. 

Substrate buffer: 

0.1 M Na-Acetate*3H2O. 

Substrate solution: 

35 ml substrate buffer 
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Buffer 

 

 

Solutions 

571 µl TMB in DMSO (9 mg/1.5 ml 

DMSO) 

143 µl 1% H2O2 in water. 

HPLC 

 

Solvent A: 10 mM Tris PH 9.8. 

Solvent B: 10 mM Tris containing 0.18 

M NaCl PH 9.8. 

Gel permeation chromatography 

(GPC) 

50 mM Tris-HCl buffer pH 8.0 

containing 1 mM-EDTA and 0.1 % 2-

mercaptoethanol 

Electrode buffer pH 8.3: 

25 mM Tris, 192 mM glycine, and 0.1% 

(w/v) SDS  

Sample buffer: 

62.5 mM Tris-HCl, pH 6.8, 2% SDS, 

10% glycerol, 5% Mercaptoethanol, 

and 0.001%(w/v) bromophenol blue 

Separating gel buffer: 

1.5 M Tris-HCl, pH 8.8, and 0.1% (w/v) 

SDS 

SDS-PAGE running buffer: 

50 mM Tris-HCl, pH 8.3, 384 mM 

Glycine, and 0.1% (w/v) SDS 

Stacking gel buffer: 

1 M Tris-HCl, pH 6.8, and 0.1% (w/v) 

SDS 

SDS-PAGE 

 

 

 

 

Blue silver micellar Dye in aqueous 

solution: 

0.12%(w/v)  Coomassie Blue G-250, 

10% (w/v) ammonium sulfate, 10% 

(v/v) phosphoric acid, and 20%(v/v) 

methanol 
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Buffer 

Western blot  

 

Solutions 

1x transfer buffer: 

25 mM Tris, 250 mM Glycine, and 15% 

(v/v) methanol 

TBS-T buffer pH 7.6: 

150 mM NaCl, 50 mM Tris base, and 

0.05% Tween 20 

2.2 Methods 

2.2.1 Characterization of Cry1Ab 

2.2.1.1 Quantification of Bt endotoxin in plant tis sue by ELISA 

Bt endotoxin concentrations were determined in MON810 maize tissues. The 

expression of the Cry1Ab toxin was examined in the plant tissue using the 

commercially available ELISA Bt Cry1Ab/Cry1Ac Microtiter Plate kit, Abraxis. This 

rapid and simple method is based on recognization of the toxin by specific 

antibodies. For ELISA screening, maize tissues (Leaf, seeds and stalks) were 

ground under liquid nitrogen until they were completely pulverized. 100 mg of the 

grounded maize tissue sample was transferred to an eppendorf tube. Each sample 

was extracted by 5 ml of sample extraction buffer provided in the kit by incubation 30 

min. Three extracts were prepared from each sample. The extracted samples were 

centrifuged at 15.000g for 5 min and diluted 10 fold (if necessary, the samples could 

be diluted 50 fold to have a final concentration of nearly 4 ng) with the extraction 

buffer before applying to the ELISA plate .The diluted extractions at 100 µl per well 

were added to Cry1Ab/Cry1Ac antibody coated ELISA plate wells. Five 

concentrations (0, 0.25, 1.0, 2.0, 4.0 ng/ml) of Bt standard were used for the 

calibration. The plate was moved in a rapid circular motion for 30 sec to mix the vial 

contents. The plate was covered and incubated at room temperature for 30 min 

allowing the antibody to bind to the Cry1Ab toxin. After incubation, the ELISA plate 

was washed three times by microplate washer using 300 µl of wash buffer, then 100 

µl of horse radish peroxidase-labelled goat anti-rabbit enzyme conjugate was added, 

mixed and further incubated for 30 min. After incubation the plate was washed by the 

buffer, and 100 µl of color solution was added to the wells and incubated for 30 min. 
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The stop solution of diluted acid was added to the wells at 50 µl per well and read at 

450 nm. Three replicates were measured for each sample.  

2.2.1.2 Extraction of Bt toxin from insecticides 

The Bt (Cry1C) toxin was extracted from the insecticide powder (from pesticide 

XenTari, Bacillus thuringiensis aizawai) at 2 mg/ml ratio in a buffer which consisted 

of 50 mM CAPS with constant stirring for 30 min. 1 mg/ml trypsin was added to the 

supernatant. The mixture was stirred for 60 min. and centrifuged in a centrifugal filter 

devices with a cut off 50 kDa (Millipore, Germany), according to the procedure 

reported by Masson et. al., 1998. 

2.2.1.3 Gel permeation chromatography GPC 

For purification of Cry toxin from both the insecticidal toxin extract (from pesticide 

XenTari, Bacillus thuringiensis aizawai) and from MON810 maize leaf extract, the 

extract was loaded to 29x260 mm Sephadex G-100 gel glass column. The elution 

was made with 50mM Tris-HCl buffer containing 1mM EDTA and 1% 

mercaptoethanol, pH 8 through a UV detector at 280 nm. The column was calibrated 

with bovine serum albumin (66 kDa), Ovalbumin (45 kDa), and Cytochrom (12.4 

kDa). The flow rate of 1 ml/min was used for the fraction, 10-40 min for the pesticidal 

extract and 15-40 min for leaf extract. The purified fractions were collected and 

stored at –20oC until further use. 

2.2.1.4 Cry1Ab purification and HPLC analysis 

Applied to an HPLC system equipped with ProSwift WAX-IS (Dionex) DEAE weak 

anion exchange column, the separation of the toxin was achieved using the mobile 

phase of solvent A, 10 mM Tris PH 9.8 and solvent B, 10 mM Tris containing 0.18 M 

NaCl pH 9.8. Gradient elution was used, 0-20 min 0-45%B, 20-60 min 45-55%B and 

60-90% B, Flow rate 0.5 ml/min. The detection was at 215 nm. The peaks were 

collected and tested with ELISA Cry1Ab/ Cry1Ac kit to recognize the desired peak of 

Cry1Ab. 
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2.2.1.5 Development of Cry1C antisera   

Antisera (blood serum containing polyclonal antibodies), was prepared by using 0.5 

mg of the pre- purified insecticidal Bt toxin. The antibodies developed in rabbits. 

2.2.1.6 Indirect  ELISA test for the activity of Cry1C antisera again st activated 
insecticidal Cry1Ab 

The assay was performed in transparent 96-well microtiter plates as follows: For 

coating of microtiter plates, 100 µl activated Cry1Ab insecticidal toxin was diluted 

with coating buffer at a concentration of 5 ng/100 µl, then added to the wells and 

incubated overnight at 4ºC. The solution was then removed and the plate was 

blocked with blocking buffer 300 µl per well for 50 min at 25ºC. After the incubation 

the plate was washed three times with 300 µl washing buffer. 

Primary incubation was carried out with 100 µl of different dilutions of the Bt-

antiserum 1:1000 to 1:582000. The antiserum was diluted in blocking buffer (test 

buffer) for 3 h, and then the plate was washed twice with 300 µl washing buffer. 

For second incubation, secondary antibody 100 µl (HRP) diluted 1:1000 in blocking 

buffer was added for 1 h. The wells were washed again three times with washing 

buffer. 

For colorimetric detection 100 µl of substrate solution was added and  after 

incubation for 40 min, the reaction was stopped by diluted by 100 µl 1M HCL to give 

yellow color and the intensities were measured at 450 nm. All the incubation steps 

performed at 25°C. 

2.2.1.7 Purification of Cry1 antibodies 

The Cry1 (Cry1C) antibody was purified by preparation of Antigen (Cry1Ab) bound 

column, then the bound column was used for capturing the Cry1 Ig Gs from antisera. 

The purified antibodies were eluted, concentrated and used for the purification of 

Cry1Ab from the MON810 maize leaf tissue. 
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2.2.1.7.1 Preparation of antigen-bound column 

The protoxin Cry1Ab was activated by incubation with trypsin. The trypsin: protoxin 

ratio was 1:50 w/w for 2 h at room temperature. 4 mg of activated Cry1Ab was 

dissolved in the coupling buffer and applied on 1 ml HiTrap NHS-activated column, 

(GE Healthcare, Germany). Coupling of Cry1Ab protein was performed at 4ºC for 4 h 

with calculated efficiency of approximately 90 %. After deactivation of the excess 

amino groups, which did not couple to the ligand, column was ready for use. 

Coupling of Cry1Ab to the column was done following GE Healthcare 

recommendations.  

2.2.1.7.2 Preparation of purified anti-Cry1Ab antib ody  

Preparation of the sera: Sera that exhibited a strong immunogenic response were 

tested for the antibody IgG concentration by BCA protein assay kit (Pierce). The 

frozen antiserum was thawed overnight at 4ºC. Sodium azide was added at a 

concentration of 0.05%, and centrifuged at 15000 g for 5 min. After that the purified 

antiserum was filtered by Steriflip_Gp filters (0.22µm). 

Removing of the anti-Cry1Ab antibodies from the serum: Serum was diluted 1:1 with 

50 mM Tris buffer, pH 7.4 and recirculated in the antigen-bound HiTrap NHS-

activated column several times to allow efficient binding of Cry1Ab-specific 

antibodies. Specific, anti-Cry1Ab antibodies were eluted using 100 mM glycine pH 

2.5.The elution was performed in 1.5 ml previously prepared tubes containing 100 µl 

neutralization buffer (NB) per 1 ml of the collected fraction. Each 1 ml fraction was 

mixed immediately and placed on ice before collecting the next fraction. The column 

was equilibrated and ready for the next run. Finally, the total IgGs concentration was 

determined in the combined fraction by BCA protein assay kit as Pierce 

recommended. 

2.2.1.8 Extraction of Cry1Ab from corn leaf tissue 

Corn leafs (MON810 and regular) were ground and extracted with constant stirring in 

a 1:3 (w:v) ratio in a buffer  which consisted of 50 mM CAPS (3-cyclohexylamino-1-

propanesulfonic acid) pH 10.8, 100 mM NaCl, 2mM EDTA (ethylenediaminetetra- 

acetic acid), 2mM DTT (dithiothreitol), 20 µl/ml Protease inhibitor cocktail (complete, 
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Roche, 1tablet/ml). The mixture was incubated for 30 min on ice and filtered through 

two layers of cheese cloth and then centrifuged for 10 min at 15.000g at 5°C. The 

concentration of the protein was determined according BCA protein assay kit. 

2.2.1.9 Immuno-Affinity purification of Cry1Ab from  corn extract 

The purification of Cry1Ab from MON810 corn leaf extract was carried out according 

to the method of Gao et al. (2006). The purification was performed by coupling of 

highly purified antibodies with CNBr 4 fast flow activated sepharose media (GE 

Healthcare, Germany). The antibody density was 8 mg/ml of the media, which 

backed in disposable syringe like plastic column. The lyophilized GM corn extract 

(2.5% of the column volume) was dissolved in 0.5 M CAPS buffer pH 10.5 and then 

centrifuged 5 min at 13.000 g. The pH of the supernatant was adjusted to 7.0 with 20 

mM citric acid and mixed with 20 mM sodium phosphate buffer pH 7.2 in a 1:1(v/v). 

The column was equilibrated by three column volume of loading buffer pH 7.0. After 

that the sample was loaded and recirculated in the Vislprep (Supelco, North Harrison 

road, USA) system for three times, the column was washed by three column volume 

of loading buffer and the elution was done with three column volume MacIIvaine 

buffer pH 3.0. The fractions were collected in 1.5 ml tubes containing neutralization 

buffer as 100µl/1ml of the fraction. Finally, the fractions were concentrated and 

desalted using centrifugal filter devices with a cut off 30 kDa and use SDS-PAGE 

and western blot analysis. 

2.2.1.10 Gel preparation 

Gels were sandwiched between 1.0-mm-thick glass plates approximately 10 cm 

wide, 10 cm long and formed with thin (0.5 mm) spacers to facilitate cooling. Combs 

with eight 8-mm-wide teeth (2 mm between teeth) are typically used to form loading 

wells. These items can be prepared by a, or similar sized plates, spacers, and combs 

purchased from gel electrophoresis manufacturers. Gels should be cooled to 

approximately 12°C during electrophoresis. Table  2 shows the components and 

volumes for preparing cast and stacking gels. 
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Table 2:  Volume (ml) of components required to cast gel and stacking gel 

Cast gel Sticking gel Components 

10% 5% 
H2O 5.9 3.4 
30% acrylamide mix 5.0   0.83 
1.5 M Tris (pH8.8) 3.8 - 
1 M Tris (pH6.8) -   0.63 
10%SDS   0.15   0.05 
10% ammonium persulfate   0.15   0.05 
TEMED     0.006     0.005 
Total volume   15  5.0 

2.2.1.10.1 SDS-PAGE, and in-gel digestion of protei ns  

SDS-PAGE was performed on 10% polyacrylamide gels using the system of 

Laemmli (1970) and protein bands were visualized by colloidal Coomassie blue 

(Candiano et al., 2004). Proteins were in-gel-digested using trypsin (Roche, 

Penzberg, Germany) according to (Shevchenko et al., 1996). After the tryptic 

digestion the supernatant was removed and transferred to a new tube. The gel 

pieces were extracted with 50% acetonitrile (ACN)/50% 0.1% formic acid (FA) (v/v) 

for 15 min. After incubation, the supernatant was collected and the gel pieces were 

covered with 5% FA for 15 min before the same volume of ACN was added. After 

incubation for 10 min the supernatant was collected. The pooled supernatants were 

then lyophilized in a vacuum centrifuge and stored at -20ºC. 

2.2.1.10.2 Preparation of blue silver micellar solu tion 

The SDS-PAGE gel staining was achieved according to the method of Candiano et 

al. (2004). The final concentrations adopted in the working colloidal “blue silver“ 

solution were: 0.12% dye, 10% ammonium sulfate, 10% phosphoric acid, and 20% 

methanol. This produced a dark green dye solution, which turned to a deep blue 

when adsorbed onto the polypeptide chains fixed in the polyacrylamide gel, or 

blotted onto membranes. The dye solution was prepared as follows, by sequentially 

adding the various ingredients as here indicated: to a water solution (1/10 of the final 

volume) the desired amount of phosphoric acid was added, so that, in the final 

volume, its concentration would be 10%; to this, the required amount of ammonium 

sulfate (in powder) was added, calculated to obtain a final concentration of 10%. 

When the ammonium sulfate has dissolved, enough Coomassie Blue G-250 (in 
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powder) added to obtain a final concentration of 0.12%. When all solids have 

dissolved, the water added to 80% of the final volume. To this solution, under stirring, 

anhydrous methanol had been added to reach a 20% final concentration. This stock 

dye solution should be kept in a brown bottle and was stable at room temperature for 

6 months. 

2.2.1.11 Western blot analysis 

2.2.1.11.1 Semi dry transfer of proteins onto an im mobilon-p PVDF membrane 

For the specific detection of particular proteins, proteins were separated by SDS-

PAGE and transferred to nitrocellulose membranes using Western Blot technique. At 

least twenty minutes prior to blotting, six pieces of electrode paper (Whatman, 3 

mm), same size as the PAGE gel, were incubated in 1x transfer buffer for 10 min, the 

PVDF membrane was wetted in methanol for 15 seconds and then transferred to a 

container filled with ddH2O for 5 min. The membrane was then soaked in 1x transfer 

buffer for 10 min and a sandwich of buffer papers and gel nitrocellulose membrane 

was made as shown in Figure 2, Transfer was performed at 8 Ampere per blot for 30 

min. 

 
 
Figure 2: Schematic assembly of Western blot appara tus. 

2.2.1.11.2 Immuno-detection of the proteins with sp ecific antibodies 

The efficiency of blotting was determined by visualization of the protein by 0.2% 

Ponceau-S prestaining solution on the nitrocellulose membrane. The membrane was 

washed three times for 5 minutes in 1xTBS-T buffer. The non-specific protein-binding 

capacity of the membrane was blocked by incubation with non-fat dried milk (5% w/v 

in 1x PBS-T) for 2 h with continuous shaking (100 rpm) at room temperature. The 

Cathode 

3 pices of filter paper 

Acrylamide gel 

Nitrocellulose membrane 

3 pices of filter paper 

Anode 
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blocked membrane was washed three times with 1x TBS-T buffer for 5 min. The 

membrane was incubated with the primary antibody (diluted 1:1000 a solution of 5% 

w/v non-fat dried milk dissolved in1x TBS-T) over-night at 4°C under continuous 

gentle agitation. The membrane was washed three times with 1x TBS-T buffer for 5 

min. The membrane was incubated for 2 h with the secondary antibody horseradish 

peroxidas (Dianova, Hamburg, Germany), diluted 1:5000 in a solution of  5% w/v 

non-fat dried milk dissolved in1x TBS-T. The membrane was washed three times with 

1 x TBS-T for 5 min. Western blotting was developed by using ECLplus detection 

reagent, the western blot image developed in (Fuji film). 

2.2.1.12 Characterization of Cry1Ab by mass spectro metry  

Lyophilized peptides from tryptic digests were dissolved in 20 µl of 0.1% TFA and 

desalted by reversed phase chromatography on µC18 ZipTips (Millipore, 

Schwalbach, Germany) following the manufacturer’s protocols. Peptides were eluted 

directly onto a stainless steel target using 1 µl of a CHCA matrix solution (5 mg/ml in 

50% ACN/ 50% 0.1% TFA, v/v). Identification of the purified Cry1Ab protein by 

peptide mass fingerprint was performed on an Autoflex III MALDI-TOF-TOF mass 

spectrometer. Peptide mass fingerprint data were recorded in positive ion reflector 

mode using an accelerating voltage of 21 kV and 2000 laser shots per sample to 

ensure good S/N quality. Flex Analysis 3.0 and Bio-Tools 3.0 software (Bruker 

Daltonics, Bremen, Germany) were used for data processing.  

Nano-LC-ESI-MS/MS experiments were performed on an Acquity nano-UPLC system 

(Waters, Milford, USA) directly coupled to a LTQ-Orbitrap XL hybrid mass 

spectrometer (Thermo Fisher, Bremen, Germany). Tryptic digests of Cry1Ab were 

concentrated and desalted on a precolumn (2 cm x 180 µm, Symmetry C18, 5 µm 

particle size, Waters, Milford, USA) and separated on a 20 cm x 75 µm BEH 130 C18 

reversed phase column (1.7 µm particle size, Waters, Milford, USA). Gradient elution 

was performed from 1% ACN to 50% ACN in 0.1% FA within 1 hr. The LTQ-Orbitrap 

was operated under the control of XCalibur 2.0.7 software. Survey spectra (m/z = 

250-1800) were detected in the Orbitrap at a resolution of 60.000 at m/z = 400. Data 

dependent tandem mass spectra were generated for the five most abundant peptide 

precursors in the linear ion trap. For all measurements using the Orbitrap Detector 

internal calibration was performed using lock-mass ions from ambient air as 

described in Olsen et al. (2005). 
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MascotTM 2.2 software (Matrix Science, London, UK) was used for protein 

identification. Spectra were searched against the NCBI protein sequence database  

ftp://ftp.ncbi.nih.gov/blast/db/FASTA/nr.gz. Search parameters specified trypsin as 

cleaving enzyme allowing two missed cleavages, a 3 ppm mass tolerance for peptide 

precursors and a 0.6 Da tolerance for fragment ions. Carbamidomethylation of 

cysteine residues was set as fixed modification and S,T,Y phosphorylation, 

methionine oxidation and N-terminal acetylation of proteins were allowed as variable 

modifications. 

2.2.1.13 Capillary zone electrophoresis (CZC) 

Capillary electrophoresis has a very good sensitivity based on mass detection. This 

application is important when the sample size is very limited, thus a minute amount 

of sample is sufficient for analysis (Flachowsky et al., 2005). 

Capillary zone electrophoresis was performed on Agilent CE system (Model HP3D 

CE; Agilent Technologies). Fused silica capillary, 57 cm long with effective length 47 

cm, was conditioned for use by flushing the capillary with 1M NaOH, rinsing with de-

ionized water followed by conditioning with buffer to equilibrate the capillary. The 

separation was carried out by 125 mM borate buffer pH 9.2 containing 25mM SDS. 

Purified desalted Cry1Ab was diluted to the concentrations of 0.3 mg/ml, 0.15 mg/ml, 

0.07mg/ml and 0.035mg/ml in Carbonate/NaCl buffer, pH 10.7,  at 25°C and voltage 

of 20 kV (Simo et al., 2005). 

2.2.1.14 HPTLC for Cry1Ab peptide identification 

The HPTLC plates ProteoChrom HPTLC silica gel 60 F245s (Merck KGaA Darmstadt, 

Germany) were washed (pre-chromatography) with methanol and dried for 15 min at 

120oC. Samples were applied with the Automatic TLC Sampler. The following 

settings were used: band length 6 mm, distance from left plate edge 10 mm and from 

the lower plate edge 10 mm, from each edge in the left corner of the HPTLC sheet, 

dosage velocity 120 nl/s, as sample application volumes 50 µL of Cry1Ab digest 0.3 

µg /µl dissolved in 25 mM ammonium bicarbonate buffer. This gave a total of 15 µg 

protein per band. The samples plates were developed in automatic developing 

chamber 20 cm × 10 cm, up to a migration distance of 60 mm (from the lower plate 

edge) using a mixture of 2-butanol/pyridine/ammonia/water (39:34:10:26) as mobile 
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phase. The plate was dried for 10 min at room temperature. The detection of the 

peptides was carried out by two solutions: Solution A; 0.02%fluorscamin in acetone 

and Solution B; 10% triethylamine in acetone. The plates were dipped using 

chromatogram immersion device, in solution A for 1 s. and dried at room temperature 

for 10 min, and solution B for 1 sec and dried at room temperature for 10 min before 

UV detection at 366 nm by scanner. Wavelength detection was performed by TLC 

Scanner with a slit dimension of 4 mm × 0.2 mm and a scanning speed of 100 mm/s.  

All instruments were controlled via the software platform winCats 1.4.1 Planar 

Chromatography Manager. 

2.2.2 Oil analysis 

2.2.2.1 Extraction of the seed oil 

The seeds were finely ground, by freezer mill, the seed powder was extracted by n- 

Hexan by means of soxtherm solvent extractor equipped with 6 soxhelt posts. After 

the extraction process the extract was evaporated on a rotary evaporator at 40ºC. 

The residual lipids were weighed to determine the total yield and stored at 4ºC before 

further analysis. 

2.2.2.2 GLC/FID analysis of fatty acids 

Fatty acids were transesterified into, fatty acids methyl esters (FAME) by heating in 

boron trifluoride according to the procedure reported by Metcalfe et al., 1966. FAME 

was identified using flame ionization detector (FID). The flow rate of the carrier gas 

hydrogen was 45 ml/min. A sample of 1µL was injected on a 25 m x 0.53 mm x 0.5 

µm film onto a J&W’s DB 23-Megabore-capillary column (50% Cynopropyl, 50% 

Methylsilicon). The injector and FID temperature was set at 250ºC. The initial column 

temperature was 100ºC (2 min) programmed by15ºC/min until 180ºC and by7 ºC/min 

until 220 and then kept 8 min at 220ºC. A comparison between the retention times of 

the samples with those of authentic standards (C16:0, C16:1, C18:0, C18:1, C18:2, 

C18:3, C20:0, C20:1 and C22:0 methyl esters) purchased from Sigma (St. Louis, MO, 

USA), was made to facilitate identification. 
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2.2.2.3 GLC/FID analysis of phytosterols  

2.2.2.3.1 The saponification process 

Characterization of sterols was performed after saponification of the total lipids. The 

separation of sterols was done according to the method described by the Official 

Journal of European Communities (European union commission, 1991). The 

samples (250 mg) were saponified by refluxing with 5 ml ethanolic solution of 2 M 

potassium hydroxide solution for 60 min with bumbing granules. After cooling to 

room temperature, 100 ml water was added. The unsaponifiable matter was 

separated in separation funnel, and the aqueous phase was washed three times 

with10 ml diethyl ether. The diethyl ether fraction was collected, washed with water, 

dried with anhydrous sodium sulphate and filtered. The extract was evaporated in 

rotary evaporator at 25 ºC under reduced pressure, and the residual ether was 

evaporated under nitrogen. The sterols were analyzed as described below. 

2.2.2.3.2 GLC/ FID analysis 

Analyses were carried out using an Auto system XL, equipped with FID. The 

following parameters were used; GLC column: DB 5, packed with 5% 

phenylmethylpolysiloxan (J&W scientific, Falsom, CA, USA), 60 m length, 0.25 mm 

internal diameter, 1.0 µm film thickness; carrier-gas (hydrogen) flow rate 45 mL/min. 

Detector and injector were maintained at 270ºC. The oven temperature was kept 

constant at 300ºC and injection volume was 1 µL. Phytosterols were identified by 

comparison of their retention times (relative to 5 α-cholestane) with retention times of 

commercially available standards, stigmasterol (95%), β-sitosterol (95%), 

campesterol (98%) and sitostanol (96.7%) purchased from Sigma Chemical Co. (St. 

Louis, MO, USA). Phytosterols without commercially available standard such as ∆5-

Avenasterol and ∆7-Avenasterol were identified by their relative retention time as 

available in the literature (Winkler et al., 2007) and calculated according to the 

method of Brufau et al. (2006). 

2.2.2.4 HPLC analysis of tocopherols  

Normal-phase liquid chromatography analysis of tocopherols was performed with a 

HP 1100 HPLC equipped with diode array detector. The column was stainless steel 
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with dimension of 250x3 mm, packed with silica 5 µm (YMC Europe GmbH, 

Germany). The solvent flow rate was maintained at 1 ml/min. The solvent system 

was hexane/THF/acetic acid (97/3/0.25), column temperature was 30ºC, and the 

detection wavelength was 295 nm. The seed oil was diluted 5-100 mg/ml in the 

selected mobile phase and 50 µl directly injected onto the HPLC column. In the case 

of highly concentrated or cloudy solution, it was filtered (25 mm syringe filter, 0.45 

µm membrane Macherey-Nagel, Düren, Germany). Each sample was prepared three 

times and analysed twice.Tocopherols were separated isocratically within 20 min. 

2.2.2.4.1 Preparation of standard curves 

Standard solutions were prepared by serial dilution of approximately 0.1- 2 mg/l of 

tocopherols, 20 µl were injected onto the HPLC column, and peak areas were 

determined to generate standard curve data. Slope of standard curves (9 

concentrations levels) was obtained by linear regression. 

2.2.2.5 Solid phase extraction of phospholipids 

Solid phase extraction was used for the fractionation of lipids. The procedure of 

Kaluzny et al. (1985) was modified to separate the neutral lipids (NL), fatty acids and 

phospholipids. Discovery DSC-NH2 (Supelco, North Harrison road, USA), 6 mL 

tubes, 1 gram were used, instead of Bond Elut aminopropyl column (500mg), The oil 

extract 200- 500 mg was dissolved in chloroform to minimize volume. The column 

was placed on Vislprep (Supelco, North Harrison road, USA) and pre-washed by two 

volumes of 4 ml of hexane. The vacuum applied at 7.5 mm Hg after the column 

activation. The lipid classes were recovered by sequential elution as followes: 8 ml of 

chloroform:2-propanol 2:1 (w:w) was used for elution of neutral lipids, 8 ml of solution 

of 2% acetic acid in diethyl ether was used for elution of fatty acids, while 

phospholipids were eluted by 8 ml ethanol. Samples fractions were dried under 

nitrogen and stored at 4ºC for subsequent analysis. 

2.2.2.6 HPTLC  

For calibration, phospholipids standards, L-α phosphatidylcholine (PC) L-α 

phosphatidylethanolamine (PE), 3-sn-lysophosphatidylethanolamine (LPE), 

phosphatidic acid sodium salt (PA) (Sigma, Germany), and phosphatidylinositol 

sodium salt (PI) (Fluka, Germany) were dissolved in chloroform-methanol 2:1. 
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Standard phospholipids were oversprayed in five concentrations 0.03 to 4.8 µg/band 

range (Table 3). Samples fractions (regular maize oil, MON810 maize oil, high-oleic 

sunflower oil and regular sunflower oil) extracted by solid phase extraction were 

dissolved in 10 ml chloroform-methanol 2:1, 20 µl were applied of each sample.  

HPTLC glass plates were washed (pre-chromatography) with methanol and dried for 

15 min at 120°C. Standards and samples were applied  with the automatic TLC 

Sampler 4 using the following settings: band length 6 mm, distance from left plate 

edge 10 mm and from the lower plate edge 10 mm, dosage velocity 120 nl/s. 

Plates were developed in the Automatic Developing Chamber 2 (ADC2) with a 

mobile phase consisting of chloroform/methanol/2-propanol/triethylamine/0.25% KCl 

(30:9:25:18:6) to a migration distance of 60 mm (from the lower plate edge). Plate 

activity was adjusted to 33% relative humidity by saturated aqueous magnesium 

chloride (MgCl2 x 6 H2O). The plate was dried for 10 min at ambient temperature. 

The plate was dipped in premulin (100mg in 200 ml acetone/H2O 1:4) for 1 sec using 

the TLC Immersion Device III at dipping speed of 1 cm/s, following by drying for 5 

min. Wavelength detection was performed by TLC Scanner 3 at 366 nm with a slit 

dimension of 4 mm × 0.45 mm and a scanning speed of 10 mm/s via peak area. The 

data obtained were processed with winCATS software, version 1.3.2 (CAMAG).  

Table 3:  Standard phospholipids amount applied for determination of phospholipids 
by HPTLC 

Phospholipids Standard                   Amount µg/spot  

PC 
LPE 
PA 
PI 
PE 

0.15 
0.03 
0.05 
0.05 
0.30 

0.30 
0.06 
0.10 
0.10 
0.60 

0.60 
0.12 
0.20 
0.20 
1.20 

1.20 
0.24 
0.40 
0.40 
2.40 

2.40 
0.48 
0.80 
0.80 
4.80 

2.2.2.7 Statistical analysis 

All experiments were performed in replicates. Data were estimated as the 

percentage as well as mean and its standard deviation of the different traits. The 

calculations were done using Microsoft Excel 2000 Program.  
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3. Results and Discussion 

3.1 Characterization of Cry1Ab endotoxin expressed in transgenic corn 
plants MON810 

Characterization of the newly introduced protein(s) in genetically modified plants is a 

critical component for the food, feed, and environmental safety assessment. Large 

quantities (tens to hundreds of grams) of the transgenic proteins are required to 

perform toxicological and other safety oriented studies (Gao et al., 2004). Ideally, the 

protein to be used in safety tests would be directly purified from the transgenic plants. 

However, in many cases, it is technically impossible to obtain sufficient quantities of 

the subject protein in high purity from the transgenic plants due to the low expression 

levels. The National Academy of Science, the Scientific Advisory Panel (SAP) Bt 

plant-Pesticides and other experts recommend use of plant product protein that 

people actual consume rather than bacterial product for safety testing, because 

bacterial and plant product protein can have significant differences (Freese 2001). 

Many Cry proteins were previously purified, and characterized. The SDS-PAGE and 

western blot analysis were the most used methods for characterization of Bt toxins 

like Cry1Ab (Miranda et al., 2001, Díaz-Mendoza et al., 2007). Increasingly, Mass 

spectrometry is being used as a rapid and sensitive method for screening and 

identification of Cry proteins. Peptide mass fingerprint (PMF) and mass sequencing 

were employed for characterization of Cry proteins such as Cry1F, Cry34Ab1, and 

Cry35Ab1 (Gao et al., 2004, Gao et al., 2006) and Cry1D, Cry1H, Cry9A and Cry9B 

(Ranasinghe and Akhurst 2002). Although MON810 maize with the trade name 

YieldGard produced by Monsanto, is one of the major GM maize crops, the 

properties of truncated Cry1Ab expressed in MON810 remain uncharacterized 

(Freese, 2004). 

In our knowledge, this investigation produced the first PMF and mass sequencing 

study of Cry1Ab characterize the Cry1Ab expressed in transgenic maize MON810.  

In this investigation, the Cry1Ab expressed in transgenic corn plants was 

characterized by the Cry1Ab ELISA, Molecular mass by SDS-PAGE and western blot  

analysis, HPLC, peptide mass fingerprinting and peptide sequencing by matrix 

assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF) and liquid 

 



Results and Discussion  39 

 

chromatography-electrospray-ion trap mass spectrometry (LC-MS/MS). Additionally 

the Cry1Ab was examined for glycosilation. For the successful characterization of 

Cry1Ab, high efficiency purification methods have been used. The specifically purified 

antibody against recombinant Cry1A, purified by antigen-bound column, proofed their 

usefulness in the purification process of Cry1Ab from leaf tissue extract of MON810. 

The Cry1Ab characterization data are presented in this part. 

3.1.1 Quantification of Cry1Ab in MON810 by ELISA 

ELISA technique is widely used for screening of Cry1Ab/Cry1Ac protein, to determine 

the express levels of Cry protein (Palm et al., 1994, Zwahlen et al., 2003). Since 

fresh weight measurements depends on the water concentration of the plants, local, 

seasonal concentration, and on irrigation of fields, it becomes difficult to compare the 

data from different studies. So in our study we determined the Bt concentration for 

the dry weight (dw) (Table 4). 

Table 4:  Concentration of Cry1Ab protein in tissues of transgenic MON810 Bt maize 
(dw) 

Plant tissue  Cry1Ab Concentration µg/g dw  

Leaf 26.82 ± 0.28 
Stalk 1.52 ±  0.26 
Grain 1.02 ± 0.09 

Cry1Ab protein concentrations were determined by quantitative enzyme-linked 
immunosorbent assay (ELISA). Values are means of three sub samples from a homogenized 
powder of ten leaves each from a different plant. As well as three sub samples from ten 
grams of homogenized powder of grains and Stalks, each gram from a different plant. 

The commercial ELISA kit was recommended to detect and quantify the Bt in corn 

and cotton leaf tissue, single seed and bulk grain. The concentration in general of 

corn plant was 26.82 µg/g dw for leaves, and 1.52, and 1.02 µg/g for stalks and 

grains respectively (Table 4). The Bt content in dry weight of leaf tissue in our 

samples was on average about 2.7 to 5.5 times higher than that in fresh weight 

determined by Monsanto product safety description (2002), and for dried grains was 

higher on average about 1.1-3.4 times.  

To compare the results from different studies, the authors related the Bt 

concentration of fresh weight to the dry weight of the samples. The Bt concentration 
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for dry weight was only given in the study of Lorch and Then (2007). The Bt content 

in leaves of in our study was about six times higher than in the authors study. 

Additionally, there are no available data for the dry weight content of Bt in stalk and 

grain plant parts that we could compare with our results. 

The considerable variability and differences of up to hundred-fold in Bt concentration 

(0.1 and 10µg Bt/g fw) challenge the significance of trends and average Bt levels 

published in different studies (Lorch and Then, 2007). 

ELISA is a method widely used for screening purposes with a high throughput 

capacity that allows rapid, preliminary testing and is easy to handle. However, it is not 

a suitable method for drawing definitive conclusions, as it does not provide 

information on the chemical structure. To comply with legal requirements according 

to the Commission of the European Communities (93/256/EEC), an identifying 

analytical procedure, which consists of a suitable combination of cleanup, 

chromatographic separation, and spectrometric or immunochemical detection is 

recommended. 

3.1.2 Extraction and purification of Cry1C from Bt pesticide  

The results from SDS-PAGE indicate that the purity of protein obtained by gel 

permeation chromatography of Cry1C pesticide was high. There was only one protein 

band visible (Figure 3) indicating a purity of Cry1C greater than 90% and this was 

considered sufficient to be used directly as an immunogen for producing antibodies. 

 

 

 

 

 

 

Figure 3: SDS-PAGE for partially purified pesticide by GPC.  
Lane 1: partially purified Cry1C from pesticide extract Lane 2: protein molecular 
weight marker. 
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3.1.3 Preparation of antisera 

Antibodies from rabbits immunized by Cry1C protein were applied for ELISA test for 

studying the cross reactivity of Cry1C antibodies against Cry1Ab protein. 

3.1.4 Indirect  ELISA test for the cross reactivity of Bt Cry1C ant isera against 

activated insecticidal Cry1Ab 

To evaluate the reactivity of Cry1C antisera against Cry1Ab endotoxin, indirect ELISA 

was employed. The purpose of studying the reactivity of Cry1C antibodies against 

Cry1Ab was for evaluating the suitability of Cry1C antibodies for isolation of Cry1Ab 

protein from transgenic plants.  

Though many ELISAs described in the literature have been developed for the 

determination of Bt Cry toxins, the proteins of Bt Cry1A or Bt Cry1Ab toxins were 

obtained from bacterial Bt HD-1. (Tapp and Stotzky1995; Sims and Berberich 1996; 

Takahashi et al., 1998; Hori et al., 2000) However, there are no reports on the usage 

of protein of Bt Cry1C which was isolated from pesticides for detection of Cry1Ab. 

Cry1Ab Insecticidal toxin was diluted in coating buffer to the concentrations of 5 

ng/100 µl, while Bt-antisera was diluted to the ratio of 1:5000 to 1:3200000. The 

antisera showed a high reactivity against Cry1Ab up to a concentration of 1:80000. 

Wang et al., (2007) studied the cross reactivity of Cry1Ac antisera with five different 

Cry proteins (Cry1C, Cry2A, Cry3A, Cry3Bb1, Cry9C) by sandwich ELISA. They 

found that there was no cross reactivity for the tested protein except the cross 

reactivity of Cry3A.The cry genes are classified cry1 to cryV1 based on amino acid 

sequence homology and insecticidal activity (Hoefte and Whiteley 1989; Feitelson et 

al., 1992) The cross reactivity of different kinds of Cry proteins was not unexpected, 

since the amino acid sequence in the same class are resembled. 
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3.1.5 Separation and purification of Cry1Ab from tr ansgenic maize by liquid 
chromatography 

Several methods of purifying Bt toxin from extracts of various strains of Bt or Bacillus 

thuringiensis genetically engineered bacteria by HPLC have been reported 

(Yamamoto 1983, Masson et al., 1998). However, compared with Bt strains or Bt 

engineering bacteria, the Bt transgenic plants have a very low concentration of toxic 

proteins in their tissues. For this reason, it is much more difficult to separate the Bt 

toxic proteins from Bt transgenic plants than from Bt strains and engineered bacteria 

(Wu et al., 2001).  

In the present investigation, a high amount of corn leaf extract was used. Size 

exclusion chromatography was employed for partial purification of Cry1Ab from 

transgenic maize extract. The column was calibrated with bovine serum albumin 

(66kDa), ovalbumin (45kDa), and cytochrom (12.4kDa). The peaks were eluted at 24, 

33 and 40 ml elution volume. The appearent molecular masses of the fractions were 

determined by comparing their elution volumes to those of known molecular masses. 

Since the SDS-PAGE and western blot analysis refered to MW 65-70 kDa Cry1Ab in 

corn leaf extract, the eluted fraction was collected 25-45 ml. The concentrated 

fraction was applied to HPLC. 

Wu et al., 2001 developed and evaluated a separation method for Bt toxic protein 

from Bt transgenic rice containing Cry1Ab. The separation achieved by HPLC, 

employed two separation steps, anion exchange chromatography and cation 

exchange chromatography for separation of Cry1Ab. The isolated peaks tested for 

production of Cry1Ab by engaging ELISA. The previous investigation did not use 

further test for the positive produced peak by another chromatographic analysis such 

as MS methods to characterize and test the Cry1Ab purity. 

Separation by HPLC was achieved by DEAE weak anion exchange column HPLC 

under operating conditions described in the methods, gave a chromatogram as seen 

in Figure 4. To identify peaks, ELISA was engaged. The collected fractions of 

candidate peaks were checked by Cry1Ab/Cry1Ac plate kit. 
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The ELISA results showed that fractions of peak 5 contained Cry1Ab toxin. 

Chromatographic separations were employed for preparation and purification of Bt 

toxin from Bt transgenic plant two. Firstly, using the size exclusion chromatography 

(SEC) was used for partial purification of the fraction, secondly weak anion exchange 

chromatography was used to obtain more purified fraction. However, the separation 

was poor, that could be due to the fraction containing large number of maize proteins, 

additionally, the peak five was isolated, concentrated, and after trypsin digestion, 

applied to the MALDI-TOF to examine the purity of Cry1Ab. 

 

Figure 4: Chromatogram of anion-exchange separation of Cry1Ab toxic protein from 
transgenic maize.  

3.1.6 Tryptic mass fingerprint of Cry1Ab separated by HPLC 

Peptide mapping by MALDI-TOF following trypsin digestion is a powerful tool for 

protein identification. The Cry1Ab peak isolated by HPLC was concentrated and 

subjected to heat denaturation and digested by trypsin. The resulting peptide mixture 

was anayzed by MALDI-TOF and LC-MS/MS. The masses of detectable peptides 

were compared to those deduced from databases. 

The result showed that, in the digest of HPLC peak there was a mixture of two 

proteins, β-D-glucosidase (Zea mays) and of Cry1Ab. Figure 5 shows the LC-MS/MS 

spectrum of β-D-glucosidase (Zea mays) precursur from transgenic MON810 maize, 

22 β-D glucosidase peptides were identified and 13 peptide of Cry1Ab. The major 

component of the mixture was β-D-glucosidase, which may be due to inefficient 

purification and separation of Cry1Ab by GPC and HPLC. 

The molecular mass of β-D-glucosidase was previously estimated to be 60 kDa by  
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SDS-PAGE (Esen and Cokmus1990). The PI of the Enzyme was 6.4 (Cuevas et al. 

1992), while the active Cry1Ab mass was 60-70 kDa and the isoelectric point was 6.5 

(Lung et al., 2004). 

In anion exchange chromatography, negatively charged molecules are attracted to a 

positively charged solid support. The binding on anion-exchangers is achieved mostly 

through interaction with functional groups on the surface of the beads. However, the 

glucosidase enzyme and Cry1Ab had isoelectric point (pI) of 6.4, and 6.5 

respectively, therefore, when run at pH 9.2 the overall charges on the protein and the 

enzyme being negative, it was highly problematic to be separated by ion exchange. 

In fact, the pore separation of two substances by DEAE column could be related to 

the relative net charge in the enzyme and the protein. 

In order to separate and characterize Cry1Ab from MON810 leaf extract, a high 

efficiency purification method should be followed. In our investigation we followed a 

specific immuno-affinity purification to get a highly purified Cry1Ab. 

Abs. int 1000 

 

Figure 5:  MS/MS Spectrum of β-D-glucosidase precursur from transgenic MON810 
maize. 
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3.1.7 Immuno-Affinity purification of the protein C ry1Ab from plants   

For the successful characterization of Cry1Ab, we followed a high efficiency 

purification method. The specifically purified antibodies against recombinant Cry1A 

proofed their usefulness in the purification process of Cry1Ab from leaf tissue extract 

of MON810. The eluted fraction (1ml) was collected from elution effluent and 

concentrated to 200 µl. The SDS-PAGE examination of the fraction showed that the 

fraction had a major band at approximately of 69 kDa while the protein profile of 

Cry1Ab crude leaf extract of transgenic and non transgenic were indistinguishable on 

SDS-PAGE. Further characterization by western blot confirmed that the Cry1Ab 

protein band was immunoreactive to the specific antibody against Cry1Ab, since the 

truncated core was detected in transgenic plant extract as well as in the purified 

Cry1Ab (Figure 6). 

 

Figure 6 : SDS-PAGE and Western blot of Cry1Ab protein.  
Lane 1: Cry1Ab purified from transgenic maize leaf extract MON810. Lane 2: 
Transgenic Maize leaf extract. Lane 3: Non transgenic maize leaf extract. 

3.1.8 Truncation of Cry1Ab   

The expected molecular weight of Cry1Ab is 92 kDa, since MON810 contains a 

truncated Cry1Ab coding sequence, that introduce the  N-terminal fragment of the full 

length Cry1Ab protein (130 kDa) of B. thuringiensis ssp. kurstaki strain HD1. Western 

blot analysis showed that the Cry1Ab which produced by MON810 had a molecular 
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weight of 69 kDa (Figure7, lane2). This Cry1Ab protein band was cut from SDS gel, 

digested with trypsin, and purified by zip-Tip column. Because of the limitation of 

SDS-PAGE in determining accurate MW of proteins, the purified Cry1Ab was 

digested and subjected to MALDI-TOF to measure the MW of the MON810 Cry1Ab 

band. On the basis of expected amino acid sequence of Cry1Ab, the MW was 

calculated to 68.9 kDa. These results refers that the Cry1Ab (92 kDa) is subjected to 

truncation by the plant cell proteases. Indeed, the truncated core toxin was detected 

in maize concentrated extract by western blot analysis which had the same MW of 

Cry1Ab of purified Cry1Ab protein. These results suggest that on exposing of Cry1Ab 

(92 kDa) to plant proteases, truncation occurs. It had been well documented that 

Cry1 toxins, such as Cry1Ab and Cry1Ac, are synthesisted as inactive toxins 130 

kDa (Schnepf et al., 1998). The crystal protoxin is activated by proteases in the 

susceptible insect gut through removal of N-terminal peptide consisting of 25-30 

amino acids. The removal involves domain I α1 of N-terminus, and cleavage of 

approximately half of the sequence from C-terminus (Gill and Cowles 1992, Schnepf 

et al., 1998, Bravo et al. 2002). The role of the C-terminus to the active toxin is 

believed to be in the crystalline inclusion bodies within Bt bacterium (Park et al., 

2000). Bravo et al., (2002) reported that the removal of the N-terminal peptide is 

essential before the Cry1Ac toxin becomes fully active. Miranda et al. (2001) 

previously reported that the activation of Cry1A is commonly achieved by commercial 

enzymes such as trypsin, usually at low concentration or by cleavage by proteases in 

the susceptible insect guts producing 60-70 kDa toxin fragment. The removal of N-

terminal and C-terminal peptides is the result of enzymatic cleavage by proteases in 

the susceptible insect guts. The major proteases in the insect midgut are trypsin-like 

or chymotrypsin-like proteases. On the basis of the results, the removal of N-terminal 

and C-terminal peptides could also happened in transgenic Bt cells, which was not 

unexpected since similar serine proteases are present in plants. 

3.1.9 Tryptic peptide mass fingerprinting  

The Cry proteins had been previously characterized by MALDI-TOF for many toxins, 

like Cry1F, Cry34Ab1, and Cry35Ab1 with sequence coverage of 40-53% (Gao et al., 

2004, Gao et al., 2006). On the other hand, there are reports, which refer to MALDI-

TOF as a tool of characterization of novel Bt toxins (Cry1D, Cry1H, Cry9A and 

Cry9B), but the coverage of the sequence was low relating the lack of data which 
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was available in databases (Ranasinghe and Akhurst 2002). The Cry1Ab endotoxin 

derived from transgenic maize was subjected to denaturation by heating, the band 

related to Cry1Ab protein (69 kDa) was cut out of the gel, and in gel digested before 

applying to the MALDI-TOF fingerprinting characterization. The masses of the 

digested protein peptides were performed and the m/z values between 750 and 3500 

Da were compared to theoretically predicted values, based on protein sequence in 

databases (Figure 7). The results showed the digest of Cry1Ab has 26 peptides 

matching the theoretically mass of Cry1Ab synthetic protein (synpro) (Table 5). These 

peptides covered 41% of the Cry1Ab (synpro) protein masses. In general, a protein 

identification made by peptide mass fingerprint is considered to be reliable if the 

measured coverage is 15% or higher with minimum five peptide matches (Jensen et 

al., 1997). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7:  Tryptic peptide mass fingerprint spectrum of proteolytic fragments from 
transgenic maize MON810. 
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Table 5 : Mass fingerprinting and sequences of a tryptic peptide of Cry1Ab isolated 
from MON810. 

Theoretical 
mass m/z 

Mass m/z 
observed 

Identified peptide sequence  Amino acid 
range 

763.38 764.38 YNDLTR 88 -   93 
780.36 781.37 TVSQLTR 193 - 198 
803.43 804.44 VWGPDSR 259 - 265 
815.38 816.39 DVSVFGQR 218 - 224 
906.44 907.44 TLSSTLYR 174 - 181 
939.48 940.49 LSHVSMFR 361 - 368 
975.48 976.49 LSHVSMFR 430 - 437 
991.47 992.48 WYNTGLER 430 - 437 

1037.48 1038.49 TSPGQISTLR 210 - 217 
1058.56 1059.57 GSAQGIEGSIR 503 - 512 
1073.53 1074.54 GPGFTGGDILR 282 - 292 
1088.55 1089.56 VNITAPLSQR 491 - 501 
1097.61 1098.61 VNITAPLSQR 513 - 522 
1143.55 1144.56 APMFSWIHR 450 - 458 
1159.55 1160.56 APMFSWIHR 450 - 458 
1202.67 1203.68 IVAQLGQGVYR 350 - 360 
1214.67 1215.67 RTSPGQISTLR 502 - 512 
1236.59 1237.60 WGFDAATINSR 182 - 192 
1252.64 1253.65 SGFSNSSVSIIR 438 - 449 
1257.65 1258.66 LIGNYTDHAVR 199 - 209 
1397.66 1398.67 EWEADPTNPALR 116 - 127 
1899.89 1900.90 EIYTNPVLENFDGSFR 266 - 281 
1942.88 1943.89 EWEADPTNPALREEMR 116 - 131 
2148.04 2149.05 SGTVDSLDEIPPQNNNVPPR 404 - 423 
2210.09 2211.10 LSHVSMFRSGFSNSSVSIIR 430 - 449 
2276.1491 2277.15 SGTVDSLDEIPPQNNNVPPR 403 - 423 

3.1.10 Liquid chromatography-electrospray-ion trap mass spectrometry 

HPLC and LC coupled to ESI-MS/MS have become the methods of choice for the 

identification of proteins by tandem mass spectrometry and database searching. In 

reality, the identification of proteins by LC−ESI-MS/MS is based on the characteristic 

MS/MS spectra and not on the retention times of the peptides. Moreover, it provides 

extremely high degree of reproducibility. 

ESI-MS/MS had been successfully used in peptide identification of Cry proteins for 

determination of selected peptide ion from a Cry protein digest. The use of this 

technique was to prove the equivalence of bacterial Cry proteins and genetically 

modified Cry protein from plant source (Gao et al., 2004, Gao et al., 2006). In the 

current study, the peptide mixture of trypsin-digested Cry1Ab from MON810 maize 
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was analyzed, full scan mass spectra of the sample were acquired and used to 

identify the protein.  

The sequence coverage was 73% which is rather high compared with MALDI-TOF 

coverage. Due to many factors 100% sequence coverage with single enzyme digest 

is not feasible for most proteins. These factors include the frequency of specific 

cleavage sites in the sequence, conditions of digestion, peptide recovery from post 

digestion purification, and the response of mass spectrometer. The analyzed 

peptides by LC−ESI-MS/MS produced signals that differ by the masses of individual 

amino acid residues; therefore it has been successfully used in peptide sequencing. 

The high coverage of ESI-MS/MS is related to the use of a reversed phase C18 

column which effectively concentrates the peptides 50-200 fold before MS detection, 

which can increase the sensitivity in identifying the target protein, since mass 

spectrometry detection is a concentration dependent method. 

3.1.11 Lack of glycosylation 

The purified Cry1Ab was examined for glycosylation by a glycoprotein staining kit. 

The separation of purified Cry1Ab was performed by SDS-PAGE. Horse radish 

peroxidise was used as a positive control as shown in Figure 8. The staining method 

is able to detect 0.16 µg of horseradish peroxidase (Pierce technical information of 

the test kit). 

The 1 µg Cry1Ab was loaded on the gel. That means, the applied amount was 6 fold 

of the detection limit of the horseradish peroxidase. The results refered to that the 

Cry1Ab had no detectable glycosides. 

The results demonstrate that the Cry1Ab protein produced by MON810 transgenic 

maize plants could be truncated by the plant host proteases into core toxin with 

approximately 69 kDa, which corresponds to core fragment of the Cry1Ab toxin 

generated by commercial enzymes such as trypsin, or by cleavage by proteases in 

the susceptible insect gut. The truncation occurred by removal of 25-30 amino acids 

in the N-terminal peptide and approximately half of the remaining protein from the C-

terminus. MALDI-TOF analysis could be a useful component for screening of Cry1Ab. 

Using of LC-ESI MS/MS produced higher sequence coverage of Cry1Ab peptide 

digest compared to MALDI-TOF analysis. Since the LC-ESI MS/MS is highly efficient 

in the identification of Cry proteins, it can be used also as a final step to identify Bt 
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strains that produce Cry proteins which have not been characterized. In addition it 

can be used for the detection and identification of novel Cry proteins. 

 

 

 

 

 

 

 

Figure 8 : SDS-PAGE gel stained by pirce gelcode glycoprotein staining kit.  
Lane1, HRP (positive control of glycoproteins); Lane2, Soybean trypsin inhibitor 
(negative control); Lane 3, immunoaffinity- purified corn Cry1Ab. 

3.1.12 Capillary electrophoresis 

Recent case studies screening Cry proteins and Cry1Ab content in GMOs and food 

stuffs were reported (Ezequiel et al., 2006, Lorch and Then 2007, Nguyen and Jehle 

2007). These studies revealed the Cry proteins content with ELISA. 

ELISA is a method widely used for screening purposes with a high throughput 

capacity that allows rapid, preliminary testing and is easy to handle. However, it is not 

a suitable method for drawing definitive conclusions, since it does not provide 

information on the chemical structure. Lutz et al., 2005 found that the antibody used 

in ELISA recognized fragmented yet immunoactive parts of Cry1Ab protein, while the 

immunoblotting assays with polyclonal and monoclonal antibodies against epitopes of 

the Cry1Ab protein showed that the full length protein active core was absent or at 

least below the detection limit of the immunoblotting assay in the bovine 

gastrointestinal tract samples. It means that ELISA technique not only recognizes the 

full length Cry proteins but also reacts with fragmented yet immunoactive epitopes of 

Cry1Ab. 

3 2 1 
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However, to ensure adequate measurements and to confirm the presence of the full-

length Cry1Ab protein, the use of an alternative method, for example capillary 

electrophoresis (CE) was advisable. Capillary electrophoresis was used for analysis 

of Bt endotoxin. Liu and Tzeng (2001) used the CE for quantitative determination of 

solubilised crystal δ-endotoxins from Bacillus thuringiensis. Lung et al. (2004) found 

that CE technique is able to identify three similar Bt toxins, Cry1Aa, Cry1Ab and 

Cry1Ac derived from bacteria. In our investigation, we determined Cry1Ab derived 

from MON810 transgenic maize by CE. The choice of CE for determination of Cry1Ab 

purified from MON810 for many factors include; its speed, efficiency, reproducibility, 

low consumption of solvent, easy removal of contaminants and ultra small sample 

volume, especially since the purification of a high amount of Cry1Ab from transgenic 

maize was difficult. For this reason we had to minimize the volume of analyzed 

sample. Samples obtained directly from the immuno-affinity columns were not 

sufficient; therefore it was necessary to concentrate the samples by centrifugal filter 

tubes. The samples were prepared in carbonate/NaCl buffer, pH 10.7. Proteins are 

polyelectrolytes and adsorption often occurs because of Coulombic attractions 

between the negatively charged capillary wall and the positive charges on the protein 

molecule. Therefore, separation was performed at high pH, above the isoelectric 

point of the toxins to minimize their adsorption onto the capillary surface, which were 

mainly due to electrostatic interaction. Above the isoelectric point of the protein, the 

protein molecule would be repelled from the negatively charged capillary surface due 

to its net charge. 

The high pH borate buffer has been used for protein analysis with excellent resolution 

and repeatable results because it can provide the repulsion force between negatively 

charged proteins and fused silica surface of the capillary, and prevent the protein 

from adhering to the surface of capillary. At the same time SDS offered better 

resolution. Figure 9 shows that Cry1Ab had a migration time of nearly 26-27 min. The 

purified protein Cry1Ab was investigated by CE. Samples which containing 0.3, 0.15, 

0.07, and 0.03 mg/ml were determined (Figure 10). Linearity observed in peak area 

mode (Figure 11a). The linearity also could be observed from peak height (Figure 

11b). The correlation coefficient (R2) for the peak width mode was 0.999 and the 

slope was 607.94, with intercept at 4.5618 of y axis (y =607.94x + 4.5618). Amount of 

the Cry1Ab toxin in the solution could be assayed by the linear regression equation. 

In other words, from the resultant electrophorograms, either peak area or peak height 
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could be used for determination of Cry1Ab by the equation. Detection limit was 0.03 

mg/ml. According to the detection results using CE method, concentrations lower 

than, 0.03 mg/ml were not detectable. Therefore the calibration curve consisted of 

four points only.  
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Figure 9: Electropherogram of purified Cry1Ab.  

The 125mM borate buffer (pH 9.2) contained 25mM SDS. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 10:  Standard electropherogram using different concentrations of purified 
Cry1Ab. 
The 0.3, 0.15 and 0.07 mg/ml Cry1Ab which separated by 125mM borate 
buffer pH 9.2 containing 25mM SDS were used. 
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Figure 11:  Plot of quantified Cry1Ab analyzed by capillary electrophoresis.  

(a) Peak area (b) peak height. 

In brief, capillary electrophoresis technique using SDS was a good tool for 

determination of Cry1Ab purified from Mon810 transgenic corn. The toxin complexed 

with SDS and migrated against the electroosmotic flow and this counter current 

electrophoretic mobility broadened the CE window and more effectively made it a 

good tool for determination of Cry1Ab. Capillary electrophoresis proved to be a 

suitable method for determination of the Cry1Ab isolated from MON810 genetically 

modified maize, but it did not meet the requirement of determination of very low 

quantities (lower than 30µg/ml was not detectable). 
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3.1.13 Peptide mapping 

Using thin-layer chromatography (TLC) for peptide mapping is a commercial, efficient 

and rapid method. In this investigation we compared two methods of peptide 

mapping, capillary electrophoresis as an ideal method for peptide mapping of 

proteins digest and high-performance thin-layer chromatography (HPTLC) using 

relatively new plates (Proteo Chrom) for peptide mapping of Cry1Ab purified from 

transgenic corn.  

3.1.13.1 Peptide mapping by capillary electrophores is 

Peptide mapping is one of the most powerful and successful tool for protein 

identification and characterization, it is a method for comparing protein primary 

structures. The similarity of proteins can be determined by evaluating the likeness of 

peptides generated by endopeptidic cleavage. Figure 12 shows the separation of 

Cry1Ab protein digests from trypsin. Since the peptides are amphoteric, they are 

ideally suited for the characterization by electrophoresis. The separation of peptides 

at intermediate pHs, partly ionized termini, and side chain residues allow optimization 

of the peptide separation. At pH<2, all ionizable groups of peptides would be 

protonated. The number of basic residues in the peptide chain would determine the 

overall charged state of the molecule. At pH>10, all ionizable groups will be 

deprotonated, resulting in a negatively charged peptide. At these extreme pH 

conditions, the separation of peptides could not be adjusted. The use of buffer of pH 

9.2 for the separation of the peptides gave a good selectivity of peptide map of 

Cry1Ab by CE. Mapping by CE can done within 30 min, whereas up to 19 peptides 

were resolved. 

In general, peptide mapping by capillary electrophoresis provided a powerful 

approach for detailed characterization of Cry1Ab purified from MON810 transgenic 

corn, and the use of capillary electrophoresis for a high-throughput, low-cost peptide 

mapping was demonstrated in the analysis of Cry1Ab. 

 



Results and Discussion  55 

 

-2

8

18

28

38

48

58

0 5 10 15 20 25 30 35

M ig rat ion t ime ( min)

A
bs

or
ba

nc
e(

21
4)

 

Figure 12:  Electropherogram showing peptide maps of Cry1Ab digest.  

3.1.13.2 Peptide mapping by HPTLC  

Some advantages to the use of HPTLC include the ability to separate many samples 

in parallel, save/store the separation on the TLC plate, and to detect small and 

hydrophobic peptides. (Van Berkel and Kertesz, 2006) 

HPTLC peptide mapping of proteins was successfully used (Van Berkel and Kertesz 

2006, Pasilis et al., 2008). In our investigation, the efficiency of HPTLC in the 

separation of purified digested Cry1Ab was studied. 

The relatively new type of plates used in the experiment utilize an extra thin 

separation phase (100 µm) enabling highly efficient separation of peptides compared 

with commonly used HPTLC layers of 200 µm. 

The developed HTLC plate was screened directly by TLC Scanner in the 

fluorescence mode (366 nm). HPTLC method was found to be simple, rapid, and 

could be routinely used to analyse a large number of samples. In fact, it requires a 

simple approach and a short analysis time. The protein digest was purified through 

Zip-Tip tips C18 for sample preparation. As shown in Figure13 a 1D separation of  
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Cry1Ab protein digest was achieved on ProteoChrom HPTLC silica gel 60 F 254s 

plates. After the separation, the resolved peptides were detected by dipping in 

fluorescamine and triethylamine. The scan of the plate showed that the HPTLC could 

resolve 13 peptides, according to manufacturers of ProteoChrom silica gel plates, the 

detection system by fluorescamine and triethylamine was very sensitive (Figure13 b). 

It was able to detect 0.1-5 ng. Based on the results presented, we can conclude that, 

although the capillary electrophoresis peptide mapping gave a relatively better 

resolution than HPTLC, the use of HPTLC in peptide mapping could be a convenient 

alternative if considerd that HPTLC is less costly than capillary electrophoresis or 

even HPLC. 

 

 
solvent front 

 

Figure 13: Tryptic digest of Cry1Ab.  
The Cry1Ab was separated on ProteoChrom HPTLC silica gel 60 F245s (a) and 
scan (at 366 nm) showing of the separated peptides (b). 

 

 

 

a 
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3.2 Oil analysis 

Over the past ten years, a number of biotechnology-derived products have been 

introduced into the market place (Ridley et al., 2002, George and Ridley 2004). All 

plant breeding procedures can produce unexpected effect. Because of this, novel 

food research on how the different genetic modifications can effect on the oil 

composition have great interest. At the same time, evaluation of oil composition of 

GMOs has been reported previously (El-Sanhoty et al., 2006, Normand et al., 2006, 

Smith et al., 2007, Merrill et al., 2008). These studies were investigated on 

genetically modified maize Bt-176, sunflower, canola and soybean oil composition. 

Although genetically modified MON810 is one of the major GM maize crops, to our 

knowledge no data are available to compare or screen the sterol, phospholipid and 

tocopherol composition. 

In general, this study evaluated whether the oil content extracted from genetically 

modified oilseeds are compositionally equivalent to conventional oil extracted from 

regular oilseeds. We determined and compared the fatty acid, sterol, tocopherol and 

phospholipid distribution as well as total unsaponifiable levels in two major of 

genetically modified oilseeds, GM maize to regular maize as well as GM high-oleic 

sunflower to regular sunflower . 

3.2.1 Fatty acid composition of oils 

The distributions of maize fatty acids are summarized in Table 6. The results showed 

that levels of lipid components in the grain of genetically modified maize (MON810) 

were relatively comparable to those in grain of the control maize. The lipids in maize 

grain were 3.1%-3.3% of dry mass. The genetic modification caused a slight change 

in total lipid content. The level of total lipid in modified maize was approximately 0.2% 

lower than the control sample. The levels of ten fatty acids in Bt MON810 were 

relatively comparable to those in control maize. Linoleic acid was the predominant 

fatty acid with a range 62.1%-62.3% of total fatty acids. These values were within the 

range of those determined from previous studies on maize. 

The total lipids of high-oleic sunflower (HOSF) and regular sunflower (SF) were 39.1 

and 25.5 respectively. The total lipids in high-oleic sunflower was higher than in 

conventional sunflower. 
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Table 6: Fatty acid compositions (%) of Bt MON810 maize and regular maize.  

Variable Bt-Mon810 regular Maize 
Total lipids% 3.08 3.28 

Fatty acid composition %    
C16:0 10.82 ± 0.28 11.89 ± 0.5 
C16:1   0.14 ± 0.1   0.17 ± 0.01 
C18:0   1.72 ± 0.04   1.29 ± 0.05 
C18:1 23.44 ± 0.86 22.60 ± 0.64 
C18:2 62.31 ± 1.23 62.11 ± 1.20 
C18:3   1.08 ± 0.1   1.23 ± 0.03 
C20:0   0.14 ± 0.01   0.31 ± 0.03 
C20:1   0.21 ± 0.09   0.25 ± 0.01 
C22:0   0.14 ± 0.01   0.15 ± 0.08 

Values are expressed as mean ± standard deviation SD (n=3). 

The fatty acid composition of HOSF and SF is listed in Table 7. Genetically modified 

high-oleic sunflower contained 84.8% oleic acid, about 62% more than conventional 

sunflower oil, and 3.9% linoleic acid which is about 58% less than conventional 

sunflower. These data were within the range of values determined from previous 

studies on sunflower (Normand et al., 2006, Merril et al., 2008). 

Table 7: Fatty acid compositions of high-oleic acid sunflower and regular sunflower. 

Variable High-oleic sunflower regular Sunflower 
Total lipids% 39,07 25,49 

Fatty acid composition 
% 

  

C16:0   3.71 ± 0.1   6.96 ± 0.67 
C16:1   0.02 ± 0.02   0.08 ± 0.04 
C18:0   3.45 ± 0.05   3.39 ± 0.59 
C18:1 84.78 ± 0.07 23.02 ± 0.29 
C18:2   3.91 ± 0.5 62.35 ± 0.25 
C18:3   1.51 ± 0.50   0.36 ± 0.47 
C20:0   1.48 ± 0.72   2.59 ± 0.06 
C20:1   1.09 ± 0.11   1.20 ± 0.02 
C22:0   0.05 ± 0.02   0.05 ± 0.03 

Values are expressed as mean ± standard deviation SD (n=3).  

3.2.2 Phytosterol content of oils 

Sterols comprise the bulk of unsaponifiable matter in many oils. They are of interest 

due to antioxidant activity and impact on health (Dutta et al., 1994). Moreover, 

analysis of sterols provides a powerful tool for quality control of vegetable oils 
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otherwise not recognized by the fatty acid profile. The phytosterol content of 

genetically modified oils and regular oils is summarized in Tables 8 and 9. It showed 

that levels of unsaponifiables were relatively higher in modified maize (2.8%) than 

conventional maize (2.2%), while the unsaponifiables for HOSF and SF samples 

were (1.5 and 1.8%) respectively. When considering the sterol distribution, five 

components were detected (campsterol, stigmasterol, β-sitosterol, ∆5-avenasterol, 

∆7-avenasterol). Since β-sitosterol was the most abundant sterol in corn oil and SF 

oil samples, our data was in agreement with the studies reported by Phillips et al. 

(2002) and Normén et al. (2007). β-sitosterol comprised 70 % of total sterols in 

MON810 maize while it was 74 % of the total sterols in conventional maize. 

Table 8:  Unsaponifiable matter and phytosterol content of Bt MON810 maize and 
regular maize. 

Variable Bt-Mon810 Regular Maize 

Unsap. Matter( % total lipids) 2.83 2.21 

Phytosterol content mg/100g oil   
Campsterol   349.12 ± 1.70 213.05  ± 1.68 
Stigmasterol     87.59 ± 1.5    51.82 ± 1.48 
β- sitosterol  1218.58 ± 2.8  925.14 ± 7.24 
∆5Avenasterol   36.153 ± 5.12    26.00 ± 1.5 
∆7Avenasterol     47.14 ± 14.5    32.07 ± 1.75 

All values are mean ± standard deviation (n=3). 

Table 9:  Unsaponifiable matter and phytosterol content of high-oleic acid sunflower 
and regular sunflower. 

Variable  High-oleic Sunflower  Regular sunflower 
Unsap. matter (% total lipids) 1.51 1.83 

Phytosterol content mg/100g 
oil 

  

Campsterol   49.13 ± 1.52   34.41 ± 1.52 
Stigmasterol   20.23 ±  0.85   22.02 ± 0.27 
β- sitosterol 260.12 ±  4.36 271.62 ± 8.70 
∆5Avenasterol   15.50 ± 1.25   13.76 ± 0.17 
∆7Avenasterol   10.11 ±  1.81   10.32 ± 1.23 

Values are expressed as mean ± standard deviation SD (n=3)  
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On the other hand sitosterol consisted of 75.2 and 73.4 % in HOSF and SF, 

respectively. Winkler et al. (2007) reported that total sterols in corn oil are higher than 

in sunflower oil. In our study, regular maize had 3.5 times total phytosterols as 

compared to regular sunflower. Sterol content of corn oil was higher than that 

determined by Winkler et al. (2007) and in agreement with the results reported by 

Verleyen et al., 2002. The sterol distribution in the lipid fraction of modified maize was 

similar as in the unmodified samples. The values determined for HOSF and regular 

SF demonstrate that the phytosterol distributions were in the range of the study 

reported by Codex (2005). 

3.2.3 Tocopherols content of oils  

Tocopherols and tocotrienols, together abbreviated as tocols and also termed as 

vitamin E, are a group of fat soluble antioxidants with a chromane ring and 

hydrophobic side shain. 

Many studies published have made direct analysis of tocopherols after diluting the oil 

in an organic solvent (Pocklington and Dieffenbacher, 1988, Warner and Mounts, 

1990). Saponification causes pronounced losses of tocopherols even in protective 

conditions such as darkness and high nitrogen (Rupérez et al., 1998). However, 

direct analysis after dilution, unlike saponification and extraction, simplifies the 

procedure and shortens the analysis. Moreover, many oil samples can be analyzed 

several times without altering the chromatographic efficiency or the column efficiency, 

which remains high. Normal phase HPLC has been found capable of separating 

isocratically all the tocopherols in seed oils (Brubacher et al., 1985) which involves 

dissolving the oils in hexane for injection on to a silica column. Muralidharan and 

Husain (1985) reported that both reversed and normal phase HPLC is used for 

tocopherol analysis, the latter is, however, more suitable for separating different 

tocopherols. The present study was, therefore, initiated to evaluate the quality of 

different seed oils for their tocopherol contents by an HPLC assay with a silica 

column and n-hexane/THF/acetic acid as eluent mixture. 

The distributions of individual tocopherols in assessed corn oils are reported in Table 

10. Consistent with published data (Syväoja et al., 1986, Bonvehi et al., 2000), which 

reported that α- and γ-tocopherols proved to be the major tocopherols in vegetable 

oils and fats. MON810 corn oil had a higher tocopherol content (886.7 mg/kg) than 
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regular maize (679.4 mg/kg). γ-Tocopherol consisted of 77.4% of total MON810 

tocopherols, while it was 64.5% of total tocopherols in conventional maize. α-

Tocopherol was the second most abundant tocopherol consisting of 12.6-26.5% of 

total tocopherols. Generally γ-and α-tocopherol were the major components in both 

types of maize. The results of the conventional maize were in the range of previous 

studies (El-Sanhoty et al., 2006, codex, 2005).  

Table 10:  Tocopherols in Bt MON810 maize and regular maize. 

Tocopherols (mg/kg) Bt-Mon810  Conventional maize  
α-Tocopherol 111.76 ± 0.05 180.18 ± 1.18 
β-Tocopherol   46.41 ± 0.85   32.80 ± 0.57 
γ- Tocopherol 686.39 ± 0.77 438.55 ± 0.13 
δ- Tocopherol   42.14 ± 0.36   27.87 ± 0.06 

Values are expressed as mean ± standard deviation SD (n=3).  

Table 11:  Tocopherols in high-oleic acid sunflower and regular sunflower. 

Tocopherols (mg/kg) High-oleic Sunflower  regular sunflower  
α-Tocopherol 641.77 ± 5.74 708.11 ± 0.06 
β-Tocopherol   31.59 ± 0.88   40.95 ± 0.09 
γ- Tocopherol   18.69 ± 0.56   11.42 ± 0.35 
δ- Tocopherol     8.23 ± 0.21     6.88 ± 0.01 

Values are expressed as mean ± standard deviation SD (n=3)  

The sunflower samples were in agreement with the values reported for sunflower oils 

in the Codex (2005). SF had much higher tocopherol content (767.4 mg/kg) than in 

maize samples. The α-isomer was the predominant tocopherol present with 94% in 

HOSF and 92% in SF of total tocopherols. The δ-isomer only accounted 0.8-0.9% of 

total tocopherols. The results obtained referred that the tocopherol distribution of 

HOSF and SF had no significant differences between the two oils. The concentration 

of δ-Tocopherol in all oils was not higher than 43 mg/kg (Table 11).  

3.2.4 Phospholipid content of oils 

Phospholipids are components of foods and have antioxidant effects (Rathjent and 

Steinhart, 1997). Spectrophotometric methods have been employed to determine the 

concentration of phospholipids and phosphorus in vegetable and animal tissues 

(Keenan et al., 1968, Zhukov and Vereshchagin, 1976 and AOCS, 1994). However, 

many of these methods are tedious and inaccurate. There are a number of high-

performance liquid chromatographic (HPLC) methods available for the analysis of 
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phospholipids in vegetable oils (Mounts and Nash, 1990, Singleton and Stikeleather, 

1995, Helmerich and Koehler, 2003). Thin-layer chromatography (TLC) provides a 

quick separation and identification of a variety of compounds with differing polarities. 

A limitation is the accurate quantification of separated species, which could be done 

by a scanning method. An advantage of this technique is its ability to analyze the 

whole TLC plate at once, hence making it a rapid method for routine work.  

In order to determine the phospholipid composition of oil samples, solid phase 

extraction was employed. Standard conditions were used for detection, immersing 

the HPTLC plate into the detection reagent premulin was achieved according to the 

method of Ramesha and Pickett (1987) with regular distribution of the reagent. With 

the premulin reagent, phospholipids emitted blue fluorescence if inspected under UV 

366 nm. The detection limits were 0.06-0.43 µg/band (Table 12). Detection limits of 

the phospholipid classes were 2-5 times lower than in previous studies (Du Plessis 

and Pretorius 1983; Helmrich and Koehler, 2003). The low detection limit of the 

phospholipids fraction could be due to the different method of visualization (premulin 

reagent system).  

Great linearity was achieved over the calibration range with correlation coefficients of 

0.9880-0.9996. HPTLC was shown to give a good separation of phospholipids. 

Helmrich and Koehler (2003) compared the methods: TLC, HPLC and nuclear 

magnetic response spectroscopy (NMR) for the determination of phospholipids 

lecithins and flour improvers. They found that HPTLC gave the best separation of 

phospholipids.  

Table 12:  Determination coefficient R2of calibration curves of major phospholipid 
classes and detection limits.  

Phospholipid classes R 2 Detection limit µg/band 
PC 0.9978 0.19 
PE 0.9948 0.43 
PI 0.9880 0.09 
PA 0.9958 0.11 
LPE 0.9996 0.06 

Determination coefficient R2of calibration curves of major phospholipid classes and detection 
limits were determined with authentic mixture of phospholipid references. 
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In figure 14, the HPTLC separation of the phospholipids of regular maize and 

transgenic maize is shown. The fluorescence measurements in corn oil samples are 

shown in Figure 15. Typical Rf values were PC 0.12; LPE 0.23; PA 0.33; PI 0.39 and 

PE 0.44, the different Rf values refer to that phospholipid classes were well 

separated (Figure 16). Sunflower oil phospholipids in plate image (Figure 17) and 

fluorescence measurement (Figure 18) showed similar separation as in the maize oil 

phospholipids.  

 

 

Figure 14: High-performance thin-layer chromatography plate image under UV (366 
nm) obtained during determination of maize phospholipids.  
Lanes1-3 regular maize phospholipids; Lanes 4-8 phospholid standards; 9-11Bt 
MON810 maize phospholipids. 

 

PC 

 

PA 

 LPE 

 

PE 

 PI 

 

1 2 4 3 5 6 7 8 9 11 10 

 



Results and Discussion  64 

 

 

 

Figure 15:  HPTLC-fluorescence measurement of maize phospholipids at UV (366 
nm).  

Tracks 1-3 conventional maize; Tracks 4-8 phospholid standards; 9-11Bt 
MON810 maize. 

 
Figure 16:  HPTLC-separation of phospholipids of conventional maize 
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Figure 17:  High-performance thin-layer chromatography plate image at UV (366 nm) 
obtained during determination of sunflower phospholipids.  
Lanes1-3 conventional sunflower; Lanes 4-8 phospholid standards; 9-11high-
oleic sunflower phospholipids. 

 

 

 

Figure 18:  HPTLC-fluorescence measurement of sunflower phospholipids at UV 
(366 nm). Tracks 1-3 conventional sunflower. Tracks 4-8 phospholid 
standards; 9-11 high-oleic sunflower phospholipids. 
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major phospholipid was PC, (57.5-61.8%), followed by PI (19.8-14.5%) and PA (3.8-

5.7%). According to the previous studies, the major phospholipid was PC (>50%). In 

our study, the second major PL was PE and the lowest amount of the phospholipids 

was PI, while, in previous investigations, the major PL was PA or PI. Bt MON810 had 

higher amount of total phospholipids (8.2 mg/g oil) while it was 5.1 mg/g oil in regular 

maize. 

Table13:  Phospholipid composition of Bt MON810 maize and regular maize. 

Oil 
 

 Bt-Mon810  Regular Maize  
Phospholipid mg/g oil RSD 

(% n=3) 
% PL 
composition 

 mg/g 
oil 

RSD 
(% n=3) 

% PL 
composition 

PE 1.76 5.5 21.4 1.02 6.2 20.1 
PA 1.82 4.4 22.0 0.76 3.4 14.9 
LPE + - + + - + 
PI 0.92 2.9 11.2 0.72 2.8 14.1 
PC 3.74 4.0 45.4 2.59 7.1 50.9 
Total 8.24   5.09   

The phospholipids composition of sunflower showed that PC (50.5%) was the major 

phospholipids and PA (7.5%) was the lowest (Table 14). The results of regular 

sunflower PL were in agreement with Du Plesses and Pretorius (1983). LPE was the 

only minor component and the detected quantity was under the limit of detection in all 

oils. The total amount of phospholipids in both high-oleic sunflower and conventional 

sunflower were resembled (4.7 and 5.2 mg/g oil, respectively). The RSD ranged from 

2-8.8% (n=3). 

Table 14: Phospholipid composition of high-oleic acid sunflower and regular 
sunflower.  

Oil 
 

 High-oleic Sunflower  Regular sunflower  
Phospholipid mg/g oil RSD 

(% n=3) 
% PL 
composition 

mg/g 
oil 

RSD 
(% n=3) 

% PL 
composition 

PE 1.49 2.0 32.1 1.64 2.6 31.3 
PA 0.46 8.7 9.8 0.39 8.0 7.5 
LPE + - + + - + 
PI 0.50 5.8 10.7 0.56 4.2 10.7 
PC 2.21 8.8 47.4 2.65 4.7 50.5 
Total 4.66   5.24   
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The results of the present investigation indicated that the HPTLC method was highly 

useful for analysis of phospholipids from vegetable oils. A great advantage is that the 

separation plate is only used once, and the matrix fixed at the starting region does 

not matter. In our study the determination of sixteen samples at the same time was 

achieved for comparing the phospholipid content of studied oils. The determination of 

these samples was performed in 65 min (10 min for application, 45 min for 

separation, and 10 min for detection). Thus the HPTLC method can be useful in the 

determination of phospholipids on a large scale in laboratories.  

The results of oil composition analysis generate from corn oils demonstrate that the 

corn oil of MON810 is comparable with the regular corn hybrids. Along with the safety 

evaluations concluded on proteins of genetically modified crops (Harrison et al. 1996, 

Leach et al. 2001) and the studies produced for evaluation of products containing 

those proteins (Ridley et al., 2002, George et al. 2004, MacCann et al. 2007), this 

study further demonstrated MON810 oil is as safe as conventional hybrid oil on the 

market today. On the other hand the sunflower high-oleic oil modification did not 

produce unexpected effects on the oil composition. 
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4 Summary 

The main purpose of this study was to develop a method of purification and 

characterization of Cry1Ab isolated from MON810 genetically modified maize. The 

second object was to study the effect of the genetic modification of MON810 and 

high-oleic sunflower on the oil composition. Therefore, the following investigations 

were performed: 

(1) Quantification of Cry1Ab toxin in different corn plant parts. 

(2) Development of a suitable method for purification of Cry1Ab from MON810.  

(3) Establishment of characterization method for Cry1Ab by mass spectrometry 

with regard to high peptide sequence coverage. 

(4) Evaluation of the effect of genetic modification on the oil composition 

compared with the conventional traits. 

The following results were obtained: 

Screening of Cry1Ab by ELISA is the most predominant technique for determination 

of Cry toxin content in plants. The determination of the toxin concentration resulted in 

highest levels for leaves (26.8 µg/g dry matter), while it was 1.5, and 1.0 µg/g for 

stalks and grains respectively. In our study, toxin content in leaves was about six 

times higher than in a previous study. There are no data available for the dry weight 

content of Bt toxins in stalk and grain, which could be compared to the obtained 

results. 

Although MON810 maize is one of the major genetically modified crops, informations 

on the character of the Cry1Ab purified from the MON810 maize is still limited, 

although such data are important for safety assessment studies. To my best 

knowledge, this study is the first investigation charactizing Cry1Ab toxin isolated from 

MON810 maize. 

The results of the present investigation indicated that the separation of the Cry1Ab 

protein from MON810 leaf extracts by HPLC techniques was not efficient. MALDI-

TOF analyses showed that the major component separated with Cry1Ab was β-D 

glucosidase, which may be due to resembled isoelectric points.  
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However, immuno-affinity purification using self-prepared affinity columns was very 

efficient to isolate pure Cry1Ab from MON810. The characterization of purified 

Cry1Ab was successfully done by SDS-PAGE, Western blot analysis and MS 

techniques. 

MALDI-TOF MS analyses were useful for component screening of Cry1Ab. Results 

showed that Cry1Ab is subjected to truncation by plant proteases into a core toxin 

with approximately 69 kDa. LC(ESI)-MS/MS gave a higher sequencing coverage of 

Cry1Ab (73 % of peptide sequence) compared to MALDI-TOF analysis (41% of 

peptide sequence). Further studies revealed that Cry1Ab had no detectable potential 

carbohydrates which might be covalently linked to the protein. 

The capillary electrophoresis technique was used for determination of the Cry1Ab 

purified from MON810 maize and proved to be a suitable method for determination of 

the Cry1Ab, but it was not successful for the detection of very low quantities (less 

than 0.03 mg/ml).  

Peptide mapping is one of the most powerful tools for protein identification and 

characterization. The use of HPTLC with the relatively new plates (ProteoChrom) was 

identified as a convenient tool for peptide mapping as compared to capillary 

electrophoresis, especially if put into consideration that HPTLC is less costly than 

capillary electrophoresis. The HPTLC method was able to resolve 13 peptides, while 

capillary electrophoresis resolved 19 peptides, obtained from the digested Cry1Ab 

toxin. 

Concerning lipid analyses, fatty acids and sterols were determined by gas 

chromatography, tocopherols by HPLC. For the determination of phospholipids, an 

HPTLC method was developed, resulting in lower detection limits than reported in 

previous studies.  

The present study proved that the genetic modification did not significantly affect the 

contents of fatty acids, sterols, tocopherols and phospholipids in transgenic maize oil. 

Apart from the increased amount of oleic acid in high-oleic sunflower oil, the genetic 

modification in sunflower did not produce unexpected effects on the oil composition. 

Therefore, with regard to the oil composition, both oils from genetically modified 

plants will be as safe as conventional oil types.  
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5 Zusammenfassung 

Das Hauptziel dieser Arbeit war es, ein Verfahren zur Aufreinigung und 

Charakterisierung des Toxins Cry1Ab in dem gentechnisch modifiziertem Mais  

MON810 zu entwickeln. Weiterhin war es das Ziel, die Auswirkungen der 

genetischen Veränderung von MON810 und high-oleic Sonnenblumen auf die Lipid-

Zusammensetzung zu studieren. Daher wurden folgenden Untersuchungen 

durchgeführt:  

(1) Quantifizierung des Cry1Ab-Toxins in verschiedenen Teilen der Maispflanze.  

(2) Entwicklung einer geeigneten Methode zur Reinigung von Cry1Ab aus MON810.  

(3) Charakterisierung von Cry1Ab mit Hilfe der Massenspektrometrie.  

(4) Chemische Analyse der Öl-Zusammensetzung von MON810 Maisöl und high-

oleic Sonnenblumenöl im Vergleich zu konventionellen Ölen. 

Folgende Resultate wurden erzielt: 

Die Bestimmung von Cry1Ab in MON810 Mais mittels ELISA ergab die höchsten 

Konzentrationen in Blättern (26,8 µg/g Trockenmasse), während die Gehalte im 

Stengel und im Korn deutlich niedriger ausfielen (1,5 bzw. 1,0 µg/g Trockenmasse). 

Die in den Blättern bestimmten Gehalte waren etwa sechsfach höher als in einer 

früheren Literaturstudies. Für Stengel und Korn gibt es keine Vergleichsdaten in der 

verfügbaren Literatur.  

Obwohl MON810 Mais eine der wichtigsten gentechnisch veränderten Nutzpflanzen 

ist, sind proteinchemische Informationen zu Cry1Ab begrenzt, eine wesentliche 

Voraussetzung für Sicherheitsbewertungen. Nach meinem besten Wissen liefert die 

vorliegende Arbeit die ersten Ergebnisse zur Charakterisierung des Cry1Ab-Toxins 

aus MON810 Mais.  

Die durchgeführten Untersuchungen zeigten, dass die Aufreinigung des Toxins aus 

Blattextrakten mittels HPLC nicht effizient war. MALDI-TOF-Analysen ergaben, dass 

die isolierte Hauptkomponente insbesondere mit dem Enzym β-D-Glucosidase 

verunreinigt war, wahrscheinlich auf ähnliche isoelektrische Punkte zurückzuführen.  
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Dagegen erwies sich die Immuno-Affinitätsextraktion an selbst hergestellten Immuno-

Affinitätssäulen als sehr effizient und erlaubte die Untersuchungen rein vorliegenden 

Cry1Ab mittels SDS-PAGE, Western-Blot-Analyse und MS-Techniken. 

Die Charakterisierung durch MALDI-TOF-Analysen zeigte, dass Cry1Ab durch 

pflanzliche Proteasen auf ein Kernprotein von etwa 69 kDa zugeschnitten wird. Mit 

Hilfe der LC(ESI)-MS/MS konnte eine höhere Abdeckung von Cry1Ab-Peptiden (73% 

der Peptid-Sequenz) im Vergleich zur MALDI-TOF-Analyse (41% der Peptid-

Sequenz) erreicht werden. Weitere Studien zeigten, dass Cry1Ab keine potenziell 

nachweisbaren Kohlenhydrate aufwies, die kovalent an das Toxin gebunden sind. 

Die Capillarelektrophorese erwies sich als eine geeignete Methode zur Bestimmung 

von Cry1Ab, isoliert aus MON810, leider aber eignete sie sich nicht zur Bestimmung 

sehr geringer Mengen (weniger als 0,03 mg/ml).  

Peptid-Mapping ist eine der besten Methoden zur Protein-Identifizierung und 

Charakterisierung. Im Vergleich zur Capillarelektrophorese oder HPLC stellte die 

HPTLC auf speziellen ProteoChrom-Schichten eine preisgünstige und schnelle 

Alternative zum Peptid-Mapping dar. Mit der HPTLC-Methode konnten 13 Peptide 

aufgetrennt werden, während die Capillarelektrophorese Signale für 19 Peptide nach 

tryptischem Verdau von Cry1Ab lieferte. 

Im Rahmen der Lipidanalytik wurden die Fettsäure- und Sterinverteilung mittels 

Gaschromatographie, das Tocopherolmuster mittels HPLC untersucht. Zur 

Bestimmung der Phospholipide wurde eine HPTLC-Methode entwickelt, mit der 

geringere Nachweisgrenzen erreicht wurden als in den beschriebenen Methoden.  

Die erhaltenen Ergebnisse zu MON810 Maisöl zeigten keine Unterschiede zu 

konventionellem Maisöl. Abgesehen vom höheren Ölsäuregehalt konnten auch beim 

high-oleic Sonnenblumenöl keine Differenzen zu konventionellem Sonnenblumenöl 

aufgedeckt werden. Insofern kann es hinsichtlich der Lipidzusammensetzung keine 

Sicherheitsbedenken bei den beiden Ölen aus getechnisch modifizierten Pflanzen 

geben. 
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