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Abstract

I estimate a Gaussian two-factor affine term structure model of bond yields

for three countries, the United States, the United Kingdom and Germany. I find

a considerable time-varying component of excess returns in the data. They are

positively correlated with the slope of the term structure and negatively with the

short-term policy rate. In addition, the panel clearly indicates to co-movements in

the same directions on an international level. When testing the estimated model for

the expectations puzzle of the the term structure, at least at one end of the yield

curve, this puzzle can be resolved when applying risk-adjusted yield changes.
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1 Introduction

In recent years, the concept of term premia has become a focus of attention for academics,

policy makers as well as the investment community. This heightened interest was initially

triggered by the puzzling behavior of long-term interest rates in the Unites States and in

other industrialized countries (Greenspan, 2005). The interest-rate conundrum manifested

itself in stable and even falling long-term bond yields despite a reversal in the short-

term fed funds cycle. Over the period between June 2004 and February 2005, the FED

decided to increase the target rate by over 120 basis points. Over the same time, the 10-

year treasury rate lost temporarily over 100 basis points. Among the global saving glut,

declining inflation expectations, reduced global macroeconomic and financial uncertainty

that were cited as explanations attempts, shrinking bond term premia were the most

promising fact to capture the conundrum within a coherent macroeconomic framework

(Backus and Wright, 2007; Rudebusch et al., 2006; Kim and Wright, 2005).

The financial crisis, starting in the middle of 2007 and evoking distressing parallels to

the Great Depression in the 1930s, serves as further indication for the increased sensitivity

for overall risk attitudes. In particular, the explicit mentioning of risk and term premia has

become commonplace in policy discussion, within central banks and its communication

with the public.1 In this respect, policy makers agree on an overall assessment of the

causes of the crisis as being triggered by an heightened risk tolerance and appetite of

market participants.2 An environment of low interest rates promoted banks and other

financial intermediaries to invest in more risky positions in ‘search for yields’ across a

wider class of assets by making on the carry. In particular, the whole financial industry

imitated the traditional banking model of ‘maturity transformation’ and expanded it to

the ‘originate and distribute’ version of banking in which loans are pooled, tranched

1 See, for instance, Kohn (2005); Bernanke (2006); Plosser (2007); Trichet (2008) among others for
the United States and the euro area.

2 For example, the Bundesbank identifies four main channels through which the financial crisis spread:
(i) recklessness in securitization (ii) low risk perception (iii) slack lending standards and (iv) high
credit expansion in the aftermath of 2003 (Zeitler, 2009).
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and resold via securitization. The outcome could be documented in highly leveraged

borrowing, in soaring asset prices and diminishing required risk premia on part of the

market participants across the whole set of asset classes (Adrian and Shin, 2008).

The interest in term premia also coincides with developments in academia. By im-

proving on the estimation and modeling of bond yields and corresponding term premia

in asset markets, progress has been made in combining methods in financial and mone-

tary economics in order to disentangle the structural macro sources of time-varying term

premia. Since term premia have a great deal to do with private-sector’s expectations of

the future risk-neutral payoff of securities, identifying them relies on a model according

to which agents can form these expectations. However, there is still no consensus how

to measure or even define term premia since the latter heavily relies on model specifica-

tion criteria and estimation techniques (Swanson, 2007). Still, measures of term premia

provide many macroeconomic linkages. For instance, they seem to be counter-cyclical so

that they can be used to predict changes in real economic activity (Hamilton and Kim,

2002; Favero et al., 2005; Ang et al., 2006).

In what follows, this paper concentrates on a term premium concept stemming solely

from interest-rate risk. It originates from the uncertain path of future interest rates and,

thus, risky payoffs provoke risk-averse investors to demand higher expected returns due to

the danger of capital losses during the investment horizon. This sort of risk is the major

concern when trading government securities. Liquidity risk and default risk are important

extensions to interest-rate risk; they have showed up in particular in the aftermath of the

financial crisis of 2007/08 and even in international government bonds markets. Still, I

abstract from these issues and model overall interest-rate.

In order to review recent dynamics of international term premia, I build a two-factor

affine term structure model that allows to estimate interest-rate risk premia and to

forecast future interest rates along the yield curve. The focus is on three countries -

the United States, United Kingdom and Germany covering the quarterly sample period

1970Q1:2008Q3. In contrast to most other research on term structure estimation, I use
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a model specification that holds across all three countries to make comparisons of the

estimation results easier.

The decomposition of international yield curves confirms the presence of a large time-

varying component of term premia. The latter are positively correlated with the slope of

the term structure and negatively with the short-term policy instrument of the central

bank (provided that the one-quarter rate is regarded as the policy rate). Moreover, they

exhibit considerable co-movements in the same directions on an international level.

Tests of the expectations hypothesis of the term structure within the estimated models

confirm the negative relationship between bond yield changes and the slope of the yield

curve in the presence of large and time-varying term premia. If risk-adjusted yield changes

are regressed onto the yield spread, the expectational puzzle of Campbell and Shiller

(1991) can be to a large extend resolved.

The paper is structured as follows; Chapter 2 introduces the main idea of risk-neutral

asset pricing that enables to separate term premia from observable bond yields. In a next,

step I present the two-factor affine term structure model and how excess returns can be

analytically derived from the model-implied yields. In Chapter 3, I estimate the model

and provide results for the observed countries. Chapter 4 concludes.

2 Affine Term Structure Representations

2.1 General Set-up

The basic problem in term structure modeling is that market expectations about the path

of interest rates are not observable. The future market might be seen as a good proxy but

term premia might distort the information content of expectations. Separating expected

interest rates from term premia is the main requirement for any yield curve model that

tries to impose economically important no-arbitrage restrictions on the cross-movements

of interest rates. Other yield curve specifications such as the Nelson-Siegel model are able
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to deliver a good fit as well as promising forecasting performances but they lack sound

economic restrictions. One successful approach that stems from the finance literature

and that has been growing very rapidly in recent years, are no-arbitrage term structure

models. They rely on the general proposition that movements in the cross section of

bonds yields are closely tied together.

The absence of arbitrage says that it is not possible to design a risk-free self-financing

portfolio that yields more than the instantaneously return of the risk-free (short) rate

within a time interval. Expected excess returns, then, are the result of explicit risk-

taking. This means that arbitrage opportunities exists unless long-term bond yields are

equal to risk-adjusted expectations of future short-term yields. The assumption of ab-

sence of arbitrage opportunities seems quite logical in bond markets in which arbitrage

opportunities are traded away immediately and markets can be characterized as highly

liquid. The so called affine dynamic term structure models (ATSM) are the most popular

among the class of no-arbitrage term structure models. They are best tractable since

they assume bond yields to be affine functions of a set of risk factors driving the whole

yield curve. They enable to get closed-form solutions for interest rates and such models

are maximally flexible to reproduce the moments of bond yields and excess returns. The

pioneering work by Vasicek (1977) and Cox et al. (1985) consists of a particular simple

form of an affine term structure model where the short-term interest rate is the single

factor that drives the whole yield curve at one moment in time and where it describes

comovements of bond yields of different maturities.

An equilibrium in such an affine framework requires that bond yields equal the path

of expected risk-adjusted short rates. The most important implication of the absence of

arbitrage is the existence of a positive stochastic process, with which all future payoffs

are valued (Cochrane, 2001). The main task of modeling the term structure of interest

rates is to find the evolution of the stochastic discount factor (SDF)- also called the

pricing kernel- that allows to separate EH-consistent bond yields from term premia. The

finance literature basically offers two ways how to specify the evolution of the SDF over
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time. They give the same functional form of the pricing kernel and for bond yields. If

constructed appropriately, they should be equivalent to each other. The first way involves

a direct specification of the evolution of the pricing kernel over time. Having pinned down

the short-rate process and the market price of risk, it becomes possible to solve for the

whole set zero-coupon bonds to construct the term structure of interest rates. The market

price of risk describes the required excess return per unit of risk. It should be the same

for all bonds and independent of time to maturity (Maes, 2004).

The second well established equivalent to the explicit specification of the pricing kernel

in terms of its drift (short rate) and its volatility (market price of risk) is the concept

of risk-neutral pricing. Central to this approach is that an asset’s payoffs over its life

are discounted by the uncertain future path of the riskless rate (the numéraire) where

expectations are built as if agents are neutral towards financial risk. This implies that

under this risk-neutral measure Q, discounted bond price processes follow a martingale,

i.e. EQ
t [Pn−T,t+TP1,t+T ] = Pn,tP1,t for all T < n so that they are not predictable over time.

The same is true for expected returns. What lies between expectations under the artificial,

risk-neutral measure and the historical, data-generating measure3 is again a specification

for the market price of risk that captures agents’ attitude towards risk. Deriving the

pricing kernel with the help of the risk-neutral measure reveals that risk preferences of

agents are implicit embedded in the pricing kernel as function of the state variables and

in the change of the probability measure from the risk-neutral to the true measure (see

for example Singleton, 2006, p.203).

The easiest and most intuitive way of thinking about risk-neutral evaluation is to recall

the basic no-arbitrage asset pricing equation

1 + EP
t [Rn,t+1] = (1 + Rf,t) −

covt(Rn,t+1, Mt+1)

Et[Mt+1]

3 This measure is also referred to as the physical, true or actual measure.
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which states that for any risky asset the expected return under the historical P measure

equals the short rate plus a term that captures the covariance between the asset’s return

and the SDF. The risk-adjusted return of the bond with maturity n can be written as

1 + EP
t [Rn,t+1] +

covt(Rn,t+1, Mt+1)

Et[Mt+1]
= (1 + Rf,t)

1 + EQ
t [Rn,t+1] = (1 + Rf,t). (1)

Taking the risk-neutral distribution for one-period returns basically means to shift the

true distribution to the left. As a result, the risk-neutral pricing approach guarantees

that all expected returns are equal to the risk-free return and agents price bonds as if

they were risk-neutral due to zero expected excess returns. If so, risk-neutral pricing

translates the distribution of the discounted asset price process to a martingale (random

walk) by removing the predictable drift (mean).

The construction of a dynamic term structure models relies on several functional re-

lations which allow to adequately price all bonds along the yield curve. These primary

ingredients are (i) the risk-neutral time-series process of the state variables or risk factors,

(ii) the historical time-series process for the state variables and (iii) the mapping between

these risk factors and the short-term interest rate (Singleton, 2006). Together with an

affine functional relationship between bond prices for any maturity n and the state vari-

ables, maturity-dependent parameter restrictions guarantee the absence of arbitrage. The

parameter restrictions comprehend the parameters governing the relations between the

state variables under both the physical and risk-neutral measure as well as the short rate

equation. If these restrictions can be chosen to fulfill the basic asset pricing equation

(1), then the guess for the solution function of bond prices has been correct. In fact,

the guess-and-verify strategy of the parameter restrictions for bond yields ist actually

the same method used in modeling the rational expectations equilibrium for difference

equations in monetary economics. The method of undetermined coefficients suggests to
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guess a function of the state variables and to solve it according to the minimum state

variable solution (McCallum, 1983).

In order to produce time-varying term premia, the literature basically works with two

strategies which result both in a heteroscedastic model of the pricing kernel. Without this

requirement, i.e. in case of a constant variance of the pricing kernel, the term structure

would only produce constant excess returns. The first strategy allows for heteroscedastic

risk factors (stochastic volatility). The conditional variance of theses factors are then

mostly characterized by a square-root process of the factor themselves and translated

into the pricing kernel.

The second way of modeling prices of risk is to generate time-varying term premia

through state-dependent risk price parameters which are not driven by the conditional

variance of the risk factors but by the state of the economy. The general formulation of

Duffee (2002) and its division in a set of subfamilies introduced by Dai and Singleton

(2003) include both strategies. It turns out that from an empirical perspective, constant

volatility factors and stochastic prices of risk parameters perform best in fitting historical

yield curve dynamics (Dai and Singleton, 2002, 2003).

The basic question is how to convert the risk-neutral measure to the historical measure

(et vice versa). The finance literature shows this with Girsanov’s Theorem in continuous

time.4 Following the work of Ang and Piazzesi (2003) and Singleton (2006), I rather

specify the change of measure and the corresponding pricing kernel in discrete time. The

starting point is the fact that future payoffs follow a stochastic process. Investors must

form expectations and assign probabilities to the set of all possible events. In general,

the density functions of a random variable under the risk-neutral and historical measure

are fQ
t (Zt+1) and fP

t (Zt+1) respectively. The Radon-Nikodym derivative ξt+1 of the Q

measure with respect to the P measure satisfies

dQ

dP
= ξt+1 =

fQ
t (Zt+1)

fP
t (Zt+1)

.

4 See for instance Baxter and Rennie (1996); Bingham and Kiesel (2004).
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Since the random variable Zt+1 is a stochastic process over time, so must be the Radon-

Nikodym derivative. If one wants to know the risk-neutral expectations at time t of a

random variable in t + 1, then the amount of change of measure during this time interval

is just ξt+1/ξt so that the transformation between Q and P can be written as

EQ
t (Zt+1) = EP

t (ξt+1Zt+1)ξ
−1
t

and ξt+1 follows a log-normal process

ξt+1 = ξt exp(−0.5λ⊤
t λt − λ⊤

t εt+1). (2)

The Novikov condition5, implying that the variation in λt is finite, makes the derivative a

strictly positive exponential martingale, i.e. it behaves like a random walk (see Appendix

D Duffie, 2003). Q is an equivalent martingale measure of P since ξt+1 is a martingale

and so is Zt+1 under Q. The conversion form the physical to the risk-neutral measure

guarantees that under the risk-neutral measure, all expected asset prices and returns are

not predictable. This is the basic assertion if investors are risk-neutral.

With this expectations relation in mind, the fundamental asset pricing theory shows

that any zero-coupon bond is the presented value, discounted by the expected path of

the risk-free interest rate under the risk-neutral measure Q. Recall the basic asset pricing

equation for n-period bonds, especially for a one-period bond

Pn,t = EP
t [Mt+1Pn−1,t+1]

P1,t = EP
t [Mt+1].

5 This condition formally states that (0.5
∏

T

t=1
λ⊤

t λt < ∞).
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The pricing kernel is the essential variable for pricing the sequence of bonds along the

yield curve. In particular, if investors are risk-neutral, the pricing kernel is simply the

negative exponent of the continuously compounded risk-free interest rate

Mt+1 = e−i1,t . (3)

For risk-averse investors, however, the pricing kernel is modified according to

Mt+1 = e−i1,t
ξt+1

ξt
(4)

Substituting (2) in (4) gives

Mt+1 = e−i1,te−0.5λ⊤
t λt−λ⊤

t εt+1. (5)

The pricing kernel is the negative of the short rate and its variance is the negative of the

market price of risk, i.e. vart(M) = −λ⊤
t . If λt is constant over time, the pricing kernel

is homoscedastic and expected excess returns of n-period bonds are constant. Instead, if

λt varies over time, bonds may exhibit changing expected excess returns.

Since the right-hand side of (5) is log-normally distributed with εt+1 ∼ N(0, I), the

pricing kernel for t + 1 always equals the short rate so that

log EP
t [Mt+1] = EP

t [log Mt+1] + 0.5vart(log Mt+1)

= −i1,t − 0.5λ⊤
t λt + 0.5λ⊤

t Iλt.

Hence,

EP [Mt+1] = e−i1,t
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and there is no source of uncertainty (risk) in the pricing kernel. Again, the risk-free asset

does not load any risk since it is perfectly correlated with the SDF and its covariance is

zero. Typically, an instantaneously maturing bond carries such an interest since there are

no uncertain (stochastic) payoffs in the immediate next time interval. However, note, that

short-term yields are random variables from the vantage point of date t, and i1,t+i(i > 0)

might be correlated with the payoff stream, an asset generates. Risk-averse agents want

to get compensated via market prices of risk λt if there is covariation between the path

of expected short rates and future prices of zero-coupon bonds.

Any term structure model under the historical measure can be then expressed as

Pn,t = EP
t

[

ξt+1

ξt

exp(−i1,t)Pn−1,t+1

]

and using the recursion argument as

Pn,t = EP
t

[

dQ

dP
exp

(

n−1
∑

i=0

−i1,t+i

)]

. (6)

Similarly, under the risk-neutral measure, bond prices follow

Pn,t = EQ
t [exp(−i1,t)Pn−1,t+1]

and

Pn,t = EQ
t

[

exp

(

n−1
∑

i=0

−i1,t+i

)]

. (7)

This section introduces the class of discrete affine term structure models (ATSMs)

which have become increasingly popular among monetary economists.6 It typically starts

with a parametrization of the factor dynamics under the historical probability measure.

6 See for instance, Ang and Piazzesi (2003); Rudebusch et al. (2007); Bekaert et al. (2006); Hordahl
et al. (2006) among others.
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Thereby, N factors follow a VAR process with stochastic volatilities of innovations. State

vector dynamics [X1,t, X2,t, .., Xn,t]
⊤ can be expressed

Xt = µ + φXt−1 + ΣStεt (8)

where Σ is a N × N constant, St is a diagonal matrix (“volatility matrix”) describing

the conditional variance of the factors and εt ∼ (0, I) are sources of risk. This general

formulation allows the state vector to be homoscedastic or heteroscedastic. Dai and

Singleton (2000) uniquely categorize the family of N -factor ATSMs into N +1 subfamilies

AM(N) with N factors and M number of factors that are present in the conditional factor

variances.

Evaluating (5), the law of motion of the short rate and the market prices of risk specify

the pricing kernel. The short-term interest rate is given by

i1,t = δ0 + δ⊤1 Xt (9)

so that it simply depends on a constant term and it is linear in the state variables. The

parameter vector δ⊤1 with size N ×1 represents the loadings on these unobservable factors

Xt.

Now, I highly reduce the complexity of the model and present an A0(N) that is mostly

applied in monetary economics.7 It has the convenient feature that it works with constant

volatility of risk factor dynamics, i.e. M = 0 and St = IN×N , but introduces time-varying

excess returns via changing market prices of risk. The market price of risk vector is given

by

λt = λ0 + λ1Xt. (10)

7 Ang and Piazzesi (2003); Ang et al. (2007); Dai and Philippon (2005); Rudebusch and Wu (2004).

12



Taking equation (5) as the nominal pricing kernel which prices all bonds in the economy,

the total gross return of any bond n satisfies EP
t [(1+Rn,t+1)Mt+1] = 1 so that bond prices

can be derived recursively as

Pn+1,t = EP
t [Mt+1Pn,t+1]. (11)

The state dynamics of (8) together with (5) form an essentially affine Gaussian term

structure model where bond prices are given by

Pn,t = exp (An + B⊤
n Xt) (12)

and the bond specific factor loadings follow the recursions

An = An−1 + B⊤
n−1(µ − Σλ0) +

1

2
B⊤

n−1ΣΣ⊤Bn−1 − δ0

B⊤
n = B⊤

n−1(φ − Σλ1) − δ1 (13)

with A1 = −δ0 and B1 = −δ1. These difference equations can be derived by induction as

described in Appendix 1.

Since continuously-compounded interest rates are related to the logarithm of bond

prices, in,t is given by

in,t = −n−1 log(Pn,t)

= n−1(−An − B⊤
n Xt)

= an + b⊤n Xt (14)

with an = −An/n and bn = −Bn/n (Ang and Piazzesi, 2003). Interest rates are also

affine functions of the state vector where the loadings bn describe how much variation in

the state dynamics is translated into the term structure of interest rates.
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Since interest rates take an affine form, expected returns are also affine in the state

variables. Recall, that the holding-period return on an n-period zero-coupon bond for τ

periods in excess of the return on a τ -period bond is given by

xrn,t+τ = pn−τ,t+τ − pτ,t − τi1,t = An−τ + B⊤
n−τXt+τ − An − B⊤

n + Aτ + B⊤
τ Xt.

Conditional expected returns can be computed using

EP
t [xrn,t+τ ] = Axr

n + Bxr⊤
n Xt

where Axr
n = An−τ − An + Aτ and Bxr⊤

n = B⊤
n−τφ

τ + B⊤
τ − B⊤

n . The slope coefficients on

expected excess returns can be written as

Bxr⊤
n = B⊤

n−τ [φ
τ − (φ − Σλ1)

⊤]

so that the one-period expected excess return follows

EP
t [xrn,t+1] = Axr

n + Bxr⊤
n Xt

= B⊤
n−1Σλ0 − 0.5B⊤

n−1ΣΣ⊤Bn−1 + B⊤
n−1Σλ1Xt. (15)

Expected excess returns compromises three terms (i) a Jensen’s inequality term

−0.5B⊤
n−1ΣΣ⊤Bn−1, (ii) a constant term premium B⊤

n−1Σλ0 and (iii) a time-varying term

premium B⊤
n−1Σλ1Xt.

8 As previously discussed, the term premium is governed by the

vector λt. A negative sign leads to positive expected excess returns. If a positive shock

εt+1 hits one of the state variables, according to equation (12), this lowers (expected) bond

prices and triggers declining holding-period returns. When λt is negative, the shock drives

8 The difference between the pure form of the expectations hypothesis (PEH, no constant part at
all) and general risk-neutrality is obvious. If investors are risk-neutral, they still price Jensen’s
inequality as apposed to the PEH. To bo conrete, Jensen’s inequality needs not to be interpreted as
a ‘risk premium’ since it does not compensate for explicit risk-taking but its existence only allows
the expectations hypothesis (EH, constant part included) to hold.
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up the logarithm of the pricing kernel so that the realized negative correlation between

returns and the SDF leads to a positiv pricing kernel. Such a dynamic is consistent

with risk-averse investors. In order to afford a positively sloped yield curve, at least one

parameter in the vector of market prices of risk must be significantly negative. In contrast,

when λt is positive, this works like a hedge, since the shock drives down the pricing kernel

so that bond returns are positively correlated with the pricing kernel. In sum, risk premia

are negative.

The A0(N) model of the yield curve reveals that a non-zero λt vector affects the long-

run mean of the term structure so that on average, it can be upward-sloping as confirmed

by the stylized facts. The pure expectations hypothesis (PEH) is a contradiction to this

observation as it would postulate an economic environment in which investors on average

expect rising short-term interest rates. In fact, the PEH predicts a mean yield curve

that is flat or even slightly falling due to Jensen’s inequality. If λ0 6= 0 and λ1 = 0, the

expectations hypothesis (EH) holds. Time-varying market prices of risk λ1 6= 0 can be

understood as a rejection of the EH so that yield spreads do not necessarily predict future

changes in interest rates but rather time-varying dynamics of term premia.

2.2 A Two-Factor Affine Term Structure Model

The first question in estimating an ATSM surrounds the choice on the general model -

whether it is Gaussian with constant variance of the state variables or whether it can be

described as a stochastic volatility model in a CIR-style format. This basically means to

ask wether observed excess returns and the failure of the EH is produced by stochastic

market prices of risk or by stochastic interest rate volatility. Dai and Singleton (2002)

clearly argue for the former force. Furthermore, the number of risk factors (state variables)

driving the underlying interest rates must be determined. According to the level, slope

and curvature evidence of Litterman and Scheinkmann (1991) it is reasonable to work

with two or three factors in order to adequately fit bond yields and so, most research
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follows this line. It must also be evaluated whether these factors are treated as latent

or observable factors. Initially, ATSMs have been estimated with pure latent variables

but the attempt to combine macroeconomic and finance topics in coherent models breed

the inclusion of observable macro variables (Ang and Piazzesi, 2003; Dai and Philippon,

2005, among many other work). This strand of literature helps in exploring the linkages

between interest rate behavior and the business cycle.

The choice of the number and form of risk factors is not the only preselection for the

estimation. Any sensible parametrization of ATSMs must be theoretically admissible and

econometrically identified. The theoretical model is admissible if it rules out negative

conditional variances and negative short-term interest rates. From a statistical point

of view, factor models need to be specified in a sense that one cannot find a ‘rotation’

of the risk factors that leaves bond yields unchanged. An ATSM is said to be in its

canonical form if finding restrictions on the state-space system makes it possible to get it

econometrically identified (Dai and Singleton, 2000).9

A second estimation question mainly deals with the set of bond prices or yields with

which one can estimate an ATSM. The frequency of interest rates typically ranges from

weekly up to quarterly observations depending on the aim what the yield curve model

tries to capture. It may be reasonable to use CIR-models on a weekly basis since stochas-

tic volatility emerges mainly at short frequencies. Quarterly data may be applied in a

Gaussian setting. This is more likely the case in the macro-finance literature in which the

macroeconomic model anyway works with constant variances of its state variables. The

estimation can become quite difficult if the sample on interest rate data is too short to

accurately provide reliable information about the data-generating dynamics of the risk

factors. Due to highly persistent interest rates, the sample may suffer from a sufficient

9 The problem is that specific numerical values of the underlying parameters give rise to the same
term structure. In this respect, invariant transformations of the original ATSM by restricting and
normalizing specific parameter constellations before the estimation is a procedure to guarantee iden-
tification of the model and to present it in its canonical form. Dai and Singleton (2000) show that
if one restricts a specific set of parameters, this allows to treat the more ‘interesting’ parameters to
the econometrician as free parameters.

16



number of mean-reversion observations so that estimates on long-term expectations of the

short rate might get distorted. To overcome this problem, some studies include survey

information on the expected path of the short rate that support to pin down the estimated

parameters of the data-generating drift of the state variables (Kim and Orphanides, 2005).

The following model to be estimated applies the sketch of Section (2.1) with the A0(N)

workhorse among the no-arbitrage models as mostly adopted by monetary economists.

The motivation of estimating the Gaussian model specification results from previous stud-

ies that document the overwhelmingly success in fitting historical behavior of bond yields

and basic diagnostics on the observed empirical puzzles when testing the expectations

hypothesis within single-equations regressions. Many studies on these countries differ in

model specification, data selection and the use of survey data which make a comparison

of cross-country results awkward. Moreover, some studies simplify the model so as to al-

low only for constant risk premia if estimated jointly with a DSGE model whose solution

only produces homoscedatic pricing kernels.10 Therefore, I restrict the estimations of the

ATSMs for the US, UK and Germany to the two-factor Gaussian term structure model

A0(2) for each country.

For estimation, the theoretical model is cast into state-space form where the transi-

tion equation and the measurement equation are built in accordance with the theoretical

model. I repeat the basic equations of the ATSM as discussed in Section (2.1) and link

them to the state-space from. The transition equation consists of two latent factors which

follow a simple VAR(1) process with Xt = [X1,t, X2,t]
⊤ and

Xt = φXt−1 + Σεt (16)

10 Most work on affine term structure models rely on US data. See for instance, Adrian and Wu (2009);
Bolder (2006); D’Amico et al. (2008); Dai and Singleton (2002); Duffee (2002); Dai and Philippon
(2005) as well as Kim and Orphanides (2005); Kim and Wright (2005); Lemke (2006); Pericoli and
Taboga (2008); Rudebusch and Wu (2007). For Germany, studies have been carried out by Cassola
and Lúıs (2003); Fendel and Frenkel (2005) and for the UK Bianchi et al. (2009).
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where φ is upper-triangular, Σ is a 2 × 2 constant with diagonal elements and the distri-

bution of the factor innovations is εt ∼ (0, I2). Following Dai and Philippon (2005), the

means of the risk factors are normalized to zero (µ = [0, 0]⊤) and the short rate is given

by

i1,t = δ0 + δ⊤1 Xt (17)

where δ1 takes on the value [1, 1]⊤. To price all bonds, the stochastic discount factor takes

the form:

Mt+1 = exp
(

−i1,t − 0.5λ⊤
t λt − λ⊤

t εt+1

)

(18)

and the vector of market prices is

λt = λ0 + λ1Xt. (19)

Bond yields satisfy

in,t = an + b⊤n Xt (20)

with initial conditions a0 = b0 = 0 and a1 = δ0 and b1 = δ1. Since Equation (20) represents

the measurement equation, we may add a measurement error so that we get

ĩn,t = an + b⊤n Xt + ut (21)

with the simple specification that

ut ∼ (0, h2In).
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This means that the difference between the theoretical and observed yields has the same

variance for all maturities.11

The empirical analysis uses quarterly data for the US, UK and Germany (see Table 1

and the specification of the observation vector). Since interest rates are annualized but

the model defines the length of a period as unit of time, the measurement equation has

to be multiplied by 400. It implies that the model parameters are those corresponding

to quarterly continuously-compounded yields and so are the time-series dynamics of the

state variables but the measurement error is in annualized terms. As pointed by Lemke

(2006), this strategy circumvents possible numerical difficulties for the estimation of the

measurement error that would be otherwise very low when working with quarterly and

not with annualized yields.

Table 1: Data for Estimation A0(2)-model

USA GER UK

Yields Nelson-Siegel Nelson-Siegel Spline

Short Rate LIBOR FIBOR Spline

Source FED BuBa BoE

Sample 1972Q1:2008Q3 1973Q1:2008Q3 1970Q1:2008Q3

Measurement equation

n⊤ (1, 4, 12, 20, 28, 40)⊤ (1, 4, 8, 20, 28, 40)⊤ (1, 4, 8, 12, 20, 28, 40)⊤

Before estimating the A0(2)-model with maximum likelihood and the Kalman filter,

some last technical comments are in order.12 The parameters to be estimated are stacked

into the vector θ =
{

vec(φ), vec(Σ), λ⊤
0 , vec(λ1), h

2
}⊤

. To assure that some parame-

ters fulfil admissability conditions in numerical optimization, the likelihood function is

11 I normalize the model by imposing the following restriction: (i) φ is upper-triangular, (ii) Σ is
diagonal, (iii) the mean µ of the latent factors are zero and (iv) the loadings δ1 on the short rate are
each set to one. I further set δ0 to the long-run mean of the short rate before estimation in order to
reduce the number of parameters to be estimated.

12 See Appendix 2 for details on the estimation.
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reparameterized with the help of auxiliary parameters.13 To begin the maximization pro-

cedure, the initial vector of starting values is based on a VAR(1) estimation with the

40-quarter yield and the difference between the 1-quarter yield and the 40-quarter yield

taken as state variables. The VAR allows to load the initial matrices of the transition

equation. Maximization of the likelihood is performed with Matlab in a two-stage maxi-

mization routine: first, the numerical Simplex routine fminsearch with a maximum of 3000

iterations is carried out; after this round, taking the parameters of the Simplex as initial

vector, the derivative-based optimizer fminunc refines the parameters estimates.14 Stan-

dard errors are computed in line with the quasi-maximum likelihood variance-covariance

matrix of the estimated parameters as described in Hamilton (1994, section 5.8).15

3 Evidence on International Term Premia

Table (2) contains the maximum likelihood estimates of the parameters and associated t-

statistics for the three countries subject to the cross-equations restrictions implied by the

no-arbitrage assumption. An inspection of the state equation dynamics reveals that the

first factor is highly persistent for all countries. In particular, in the UK, it nearly hits the

boundary condition of 1 which might indicate to a non-stationary time-series property.

The persistence of the second risk factor is smaller, though the low mean-reverting feature

is apparent, too. This observation is basically the main result of all factor-based yield

curve models, e.g. models based on principal component analysis or the dynamic Nelson-

Siegel model (Diebold and Li, 2006). To this end, the variance structure confirms that

the second factor is more volatile than the first one so that we can speak about the first

variable as describing level movements of bond yields; whereas the second factor causes

13 Especially, the diagonal elements of φ need to be smaller than 1 for stationarity. This is guaranteed
by introducing φaux

ii
= − log(.999/φii − 1). In addition, the covariance matrix Σ needs to be strictly

positive which is derived by setting Σaux

ii
= log(Σii). Converting the two auxiliary matrices back in

its original form reveals that the true values always fulfil the admissibility restrictions.
14 A similar but much more intensive hands-on procedure is proposed by Duffee (2009). The written

Matlab code is available on request.
15 The Matlab function to calculate the standard errors is partly provided by Piazzesi and Schneider

(2007) and Eric Jondeau on their websites.
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the term structure to flip. The stationary assumption of the risk factors imposed in the

underlying model may exhibit one decisive weakness. For a sufficiently long horizon,

expected short-term interest rates must inevitably converge to its long-run mean, i.e. the

constant part of the short rate equation δ0. Thus, movements of forward rates with long

maturity are always the reflex of time-varying forward premia. Some ATSMs modify

the short rate process with the help of shifting endpoints so that long-run forecasts do

not necessarily coincide with the constant term δ0 (see Kozicki and Tinsley, 2001). This

is mainly justified by varying inflation perceptions on part of market participants. The

estimated models for Germany, US and UK reveal that the short rate does not asymptote

at the considering maturities so that this potential drawback does not hold.16

Since affine yield curve models are able to extract term premia from observed bond

prices, a special focus lies on the derived market prices of risk. As expected, the constant

term λ0 is negative at least for one entry in the USA, GER and UK so that the yield curve is

on average upward sloping. In contrast to the time-varying components of the state prices,

estimated parameters of the constant price term are rather small. This suggests that risk

premia are driven by an important time-varying component as displayed by the λ1 values

in absolute terms. However, estimated standard errors and corresponding t-statistics

indicate to econometrically insignificance for some individual parameters so that inference

based on individual estimates should be exercised wit caution.17 It is for that reason to

abstract from an economic interpretation of single risk prices parameters. However, as

pointed out by many other studies, it is hard to pin down the single parameters of market

prices of risk so that lack of significance does not necessarily indicate to a poor model

fit; they are rather essential to fit the data (Ang and Piazzesi, 2003; Hordahl et al., 2006;

Moench, 2008).

16 I also modified the log-likelihood function in line with Chernov and Mueller (2008) by adding a term
premium component to the log-likelihood function. It introduces an additional burden and uses term
premia as a last resort in fitting yields. It basically means that the model first tries to fit yields via
the expectations hypothesis. If this does not work, it let term premia to do it. It turned out that
the penalty did not alter the results at all.

17 One line of technical defense is that standard errors calculated with Matlab tend to be higher than
with other software programs such as Fortran (Duffee, 2009).
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Table 2: Maximum Likelihood Parameter Estimates for A0(2)

USA GER UK

φ1n
0.960 0.070 0.967 0.038 0.998 -0.012

(151.74) (2.97) (50.60) (1.80) (497.0) (-0.92)

φ2n
0 0.874 0 0.920 0 0.903

(-) (31.60) (-) (31.30) (-) (63.31)

Σ1n × 102 0.16 0 0.10 0 0.14 0

(10.39) (-) (10.72) (-) (13.72) (-)

Σ2n × 102 0 0.15 0 0.15 0 0.20

(-) (6.49) (-) (5.92) (-) (9.53)

δ0 0.015 0.014 0.021

(-) (-) (-)

λ01
-0.125 -0.144 -0.079

(-2.73) (-4.47) (-3.86)

λ02
-0.260 0.014 -0.014

(-2.16) (0.10) (-0.14)

λ1(1n)
-22.821 73.282 -28.661 75.997 -6.271 -0.460

(-6.88) (10.96) (-1.50) (2.94) (-6.44) (-2.522)

λ1(2n)
-26.129 25.269 -20.418 65.072 2.530 27.673

(-6.48) (3.25) (-2.85) (11.73) (1.99) (256.6)

h2 0.267 0.260 0.231

(16.98) (8.06) (20.30)

LR-Test: 36.63 2.158 2.003

p-value: 0.00 0.14 0.16

Notes: Parameter estimates of the A0(2) model based on ML and Kalman fil-

ter with t-statistics in parentheses. The parameters for which the t-statistic

is not reported have been either restricted for admissability or estimated in

advance to reduce the number of parameters to be estimated.
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To see this, Figure (1) exemplary provides a plot of selected model-implied yields and

its observed counterparts for Germany. The model fits the data well which should not

come as a surprise due to its flexibel specification. The measurement error is quite small

and quantified with 26 basis points in annual terms for Germany. Similar results are

obtained for the US and UK.

Figure 1: Fitted and Observed Yields for Germany
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Notes: Model-implied yields are calculated with the individual yield loadings of the measurement

equation.

To further reveal the deep characteristics of the estimated model, fitted yields can be

decomposed to ask at any point in time, how much of the bond yield and forward rate

corresponds to expected future interest rates and how much to yield- and forward term

premia, respectively? Appendix 1 describes how to extract the different term premia

concepts, risk-neutral yields and forward rates as well as model-implied expected one-
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period short-term interest rates. Figure (2) pictures the loadings of the German yield

curve to one-standard deviation of shocks to the factors in basis points. The first factor

is the level factor that induces an equal change in yields of all maturities (b1n); whereas

the second factor induces the curve to rotate (b2n). When decomposing these responses

into the two components of interest rate determination, i.e. the average expected short

rate and the yield term premium, interest rates at the short end are mainly driven by the

expectational part brn
1n of the first factor. At longer maturities, yield changes are mainly

dominated by the growing term premium component of the first factor (btp
1n). As regards

changes in the second risk factor, rotating yield curve dynamics are mainly caused by

the increasing term premium component and not by the expectational part. This means

that the presence of a normally sloped term structure indicates only partly to increasing

short-term interest rate expectations. The main effect comes from the high btp
2n component

at the long end relatively to the short end. Note that, in times of a normal spread, the

second risk factor takes on negative values which triggers bond yields to rise due to the

term premium loading.

The decomposition can also be displayed from a time-series perspective. The upper left

panel of Figure (3) displays the 10-year yield and the decomposition into its risk-neutral

level and the yield term premium. As can be seen, there is ample evidence for the time-

varying component of the yield premium, although the latter only partly contributes to the

run-up in bond yields through the early 1980s or 1990s for Germany. In the US, we rather

see a mixture picture, where indeed both risk premia and risk-neutral yields account for

the high interest rate levels.18 What is eye-catching for all three countries is that after any

one yield peak, short-rate expectations as imbedded in risk-neutral yields fell much faster

than observed long-term yields indicating to an important premium component after the

peaks. The lower left part of Figure (3) presents a decomposition for the 5-year forward

rate. There is a sharp divergence between the time series of forward rates and expected

18 The US yield curve decomposition is not reported here but a similar result can be found in Rudebusch
et al. (2007) for comparison.
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Figure 2: Instantaneous Yield Curve Response for Germany
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for the German A0(2) model. Bond yields are decomposed as in,t =

n−1
∑n−1

j=0 Et[it+j ] + φn,t.

future interest rates. The expected one-period rate in 5 years tracks the current short rate

through the four policy-induced rate declines much more better in terms of dynamics and

time of reversals. It confirms the finding that the (expected) short rate process follows

a ‘random-walk’ pattern with the best estimate closely linked to the current level of the

short rate, in particular for shorter maturities (Mankiw and Miron, 1986). Moreover,

Cochrane and Piazzesi (2008) find for the US that expected future rates decline even

faster than current rates.19 Market participants know that in times of rate cutes, these

will likely to continue to fall. With forward rates remaining unchanged, extra returns can

be earned on buying the forward contracts. The opposite holds in an increasing expected

short-rate environment where forward premia are rapidly eliminated. The term structure

models basically recommend to ‘get out’ after the bottom of the short rate is reached.

19 The authors build a modified affine term structure model based on monthly data. Their findings
can be hardly captured in the quarterly frequency of the estimated model in this section.
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To summarize, both forward premia and yield premia derived by the affine model show

considerable dynamics with a secular decline starting at the beginning of the mid 1990s

(upper and lower right panel of Figure 3). The analysis clearly shows that interest-rate

risk premia are positively correlated with the term spread and negatively with short-term

interest rates. In an environment of rising (expected) short rates, there are two effects

in opposite directions: first, with fixed risk premia, long-term bond prices may fall; and

second, a falling risk premium induces bond prices to rise and long-term yields to decline.

The evidence shows that the second effect tends to dominate the first. For that reason, the

slope of the yield curve falls as interest rates are rising, leading to a positive correlation

between the spread and expected excess returns. This is exactly the story what the

expectational puzzle in its reduced regression form of Campbell and Shiller (1991) tells

about.

Figure 3: Decomposing the German Yield Curve
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Further characteristics of international risk premia are sketched out in the upper left

graph of Figure (4). The mean of the term structure of yield premia is rising with time

to maturity for all three countries, with the USA averaging at 1.7 per cent for a 10-year

bond, followed by Germany with 1.4 an UK with 1.0 per cent over the sample period

1973Q1:2008Q3. As already observed for Germany, these have generally tended to trend

downwards over time. The average forward term premia for 5 up to 10 year forward

contracts for all three countries have been in a range between −1 to +2 percentage

points in the last ten years of the sample. In addition, the panel clearly indicates to

co-movements in the same directions on an international level.20 Still, for the UK, the

time-varying component of term premia are much more smaller than for the US and

Germany.

What can also be read from the data is the considerable fall of UK term premia in

1997 that were accompanied by falling long-term bond yields. This fact coincides with

two major decisions in UK monetary policy, i.e. the given operational independence of

the Bank of England in May 1997 and the Monetary Policy Committee’s announcement

of a symmetric inflation target of 2.5 percentage points for annual RPIX inflation in June

1997. These events have altered the shape of the yield curve considerably; they allow for

a straightforward economic interpretation: inflationary risk seems to drive risk premia at

the long end of the yield curve. Piazzesi and Schneider (2006) find that the UK real yield

curve is on average downward sloped, while the nominal yield curve slopes up. In May and

June 1997, the two curves behaved differently, with the real curve remaining unchanged

and the nominal curve declining and flattening. This picture presumably reflects the effect

of falling inflation expectations and lower inflation risk premia as estimated by the A0(2)

for the UK.

According to the expectations hypothesis (EH), the yield on a n-period bond should

increase one-to-one when the term spread widens. Evidence, however, reports the opposite

20 These findings are supported by Diebold et al. (2008). The authors identify a significant ‘global’
yield curve factor that accounts for much of the variation in international yield curve dynamics.
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Figure 4: International Risk Premia
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with a negative relationship between bond yield changes and the slope of the yield curve in

the presence of large and time-varying term premia.21 On this regard, Dai and Singleton

(2002) have proposed to run two diagnostics for estimated ATSMs to test the ability

of the model at its maximized parameter values to reproduce the stylized facts on the

expectational puzzle. The first test asks whether the model shares the property that the

pattern of the sample coefficient of fitted yields from an regression of yield changes onto

the scaled yield spread matches the CS-regression of actual yield data - the authors call it

the LPY(i) test. Matching LPY(i) means that the ATSM describes the historical behavior

of yields und der the P-measure. In addition, the authors suggest to run a second kind

of test -LPY(ii)- to concentrate on realized risk premia. If the model captures the risk-

neutral dynamics well, a CS-regression with risk-adjusted yields changes onto the scaled

yield spread should give a coefficient of unity.

In Figure (5), I plot the results for the three countries. As in Campbell (1995), the

graphs confirm that the historical coefficients are significantly lower than one and de-

creasing with time to maturity. The results for the UK build an exception with a small

hump at a maturity of 20 quarters. Moreover, for the US and Germany, the coefficients of

21 See the extensive literature on the failure of the expectations hypothesis: Mankiw and Miron (1986),
Campbell and Shiller (1984, 1991), Hardouvelis (1994), Rudebusch (1995), Tzavalis and Wickens
(1997), Rudebusch and Wu (2007), Bekaert et al. (1997), Bekaert and Hodrick (2001), Bekaert et al.
(2002), Cuthbertson and Nitzsche (2006).
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Figure 5: Yield Curve Fitting Diagnostics
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Notes: Regression coefficients of (adjusted) yield changes on the scaled yield spread. Model

implied expected excess returns are calculated as en−h,t+h = EP
t [pn−h,t+h − pn,t + ph,t] with

regression diagnostics LPY(i): in−h,t+h − in,t = αn + βfith(in,t − i1,t)/(n − h) and LPY(ii):

in−h,t+h − in,t + 1/(n − h)en−h,t+h = αn + βadjh(in,t − i1,t)/(n − h). The diagnostic tests are carried

out for a holding period of one year (h = 4 in the quarterly model). The stars (β) are the coefficients

of the original data, the solid line (βfit) are the coefficients for model-implied yields, βadj represent

the results for risk-adjusted yield changes and βEH is the EH-benchmark.

the model-implied yields follow closely the coefficients of the original data set with down-

ward sloping features. The results for the UK are somehow mixed where model-implied

coefficients coincide with β only from 5-year bond yields onward to longer maturities.

Whether the model matches the LPY(ii) test mainly relies on the ability to generate

highly persistent market risk premia. If this is so, risk-adjusted yield changes regressed

on the scaled slope should result in a horizontal line with parameter values of 1. The grey

lines βadj display the model-implied coefficients. What we can observe is that the risk
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premium goes always in the right direction towards the EH-consistent line. Especially

for Germany and UK, the test of LPY(ii) is positive and significant for longer maturities;

meanwhile the opposite holds for the US where the risk-adjusted line converges to βEH

at shorter maturities.

To comprehend the findings, some further considerations are in order. The relatively

high success of LPY(i) and LPY(ii) depends on the modeling assumptions, in particular

on the flexible prices of risk that vary with the level of the sources of risk. If not modeled in

this way, the test diagnostic would be rather disappointing.22 Moreover, the assumption

of a zero factor correlation (φ =diag) performs poor in matching LPY(i) and LPY(ii)

although a conventional likelihood ratio test would not reject the restriction of zero-factor

correlation for Germany and the UK.23 It is therefore the combination of market prices of

risk and factor correlation that allows to make LPY positive (see also Dai and Singleton,

2002, for this result).

To this end, the fact that only one end of the risk-adjusted coefficients along the

yield curve successfully lies within the EH-range, may be due to the inability of the

A0(2) to reproduce all dynamics within the yield curve. For instance, money markets

are regularly exposed to non-continuous distortions stemming from ‘flight to quality’ or

regulatory issues. This lack can be rectified by the inclusion of a third or even a fourth

risk factor as outlined by Dai and Singleton (2002) among others. It can be assumed

that this modification might support the risk-adjusted coefficient line to fall within the

EH-theoretical line across all maturities.

4 Final Remarks

Affine term structure models are a powerful tool to extract bond premia from observable

bond prices. I have estimated a two factor Gaussian term structure model for three

22 If I estimate the model with the assumption that λ1 has zero entries in its off-diagonal elements or
if it is even empty, the risk-adjusted coefficients would not lie near βEH .

23 The restricted model implies a diagonal matrix of φ. The LR statistic is χ2 with 1 degree of freedom.
The 5 and 1 percent critical values are 3.84 and 6.64.
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countries, the Unites Stated, the United Kingdom and Germany. Despite the well-known

burden of estimating such models, I obtain compelling results: there is a clear downward

trend of international excess returns earned on holding long-term government bonds. The

empirical analysis reveals that the Gaussian subclass of ATSMs with correlated factors

and flexible risk parameters can to a large extent help resolving the expectational puzzles

surrounding the expectations hypothesis at least at one end of the yield curve. The

decomposition of international yield curve confirms the presence of a large time-varying

component of term premia. The latter are positively correlated with the slope of the

term structure and negatively with the short-term policy instrument of the central banks

(provided that the 1 quarter rate is regarded as the policy rate).

Although the model does not capture any macroeconomic content in terms of the con-

duct of monetary policy or the impact of inflation and output on yield curve dynamics,

the UK case in 1997 reveals that to a large extend inflation expectations as well as infla-

tionary risk drive the long end of the yield curve. In this respect, Gürkaynak et al. (2006)

point out that ‘inflation targeters’ such as the Bank of England with a credible inflation

target successfully help to anchor market-participants views regarding the distribution of

long-run inflation outcomes. The opposite can be found in the US where despite a clear

downward trend of risk premia, the time-varying component is still much higher compared

to the UK.

The estimated model with only latent factors is incapable to explain the interactions

between monetary policy and the yield. Fortunately, a bulk of papers have began to

explore the links between the long end of the yield curve and the macroeconomy in an

integrated macro-finance framework.24 What these paper do is to derive standard macro

models and explore their term structure implications. However, they typically do not

model feedback effects running from long-term yields to the macroeconomy. They lack

an important transmission mechanism which needs to explored, in particular against the

24 See Rudebusch et al. (2006); Ang et al. (2007); Rudebusch and Swanson (2008); Kato and Hisata
(2008); Ang et al. (2008).
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background of rising long-term yields in an environment of very low short-term interest

rates which is a challenge for effectiveness of monetary policy.
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Apppendix 1

The derivation of the difference equations follow the guess-and-verify strategy similar to

the method of undetermined coefficients supposed by McCallum (1983). For convenience,

the relevant starting equations are

Xt = µ + φXt−1 + Σεt

Pn,t = EP
t [Mt+1Pn−1,t+1]

Mt+1 = exp(−i1,t − 0.5λ⊤
t λt − λ⊤

t εt+1)

ii,t = δ0 + δ1Xt

Duffie and Kan (1996) guess a solution for bond prices as

Pn,t = exp (An + BnXt).

For a one-period bond, it can be easily shown that

P1,t = exp(−i1,t) = exp(−δ0 − δ1Xt). (22)

Matching coefficients yields A1 = −δ0 and B1 = −δ1. Recursive solving and matching

coefficients can also be applied to a n-period bond:

Pn,t = EP
t [Mt+1Pn−1,t+1]

= EP
t

[

exp(−i1,t − 0.5λ⊤
t λt − λ⊤

t εt+1) exp(An−1 + B⊤
n−1Xt+1)

]

= EP
t

[

exp(−δ0 − δ1Xt − 0.5λ⊤
t λt − λ⊤

t εt+1) exp(An−1 + B⊤
n−1(µ + φXt + Σεt+1))

]

= exp(−δ0 − δ1Xt − 0.5λ⊤
t λt + An−1 + B⊤

n−1µ + B⊤
n−1φXt)E

P
t

[

exp((B⊤
n−1Σ − λ⊤

t )εt+1)
]

.
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The sources of uncertainty εt+1 are assumed to be log-normal distributed with mean zero

and variance IN×N so that E(ebε) = exp(0.5bIb⊤). This result makes it possible to modify

the expectations term of the recursive solution:

Pn,t = exp(−δ0 − δ1Xt − 0.5λ⊤
t λt + An−1 + B⊤

n−1µ + B⊤
n−1φXt) . . .

exp((B⊤
n−1Σ − λ⊤

t )vart(ε)(B
⊤
n−1Σ − λ⊤

t )⊤

= exp(−δ0 − δ1Xt − 0.5λ⊤
t λt + An−1 + B⊤

n−1µ + B⊤
n−1φXt) . . .

exp(0.5B⊤
n−1Σ

⊤ΣBn−1 − B⊤
n−1Σλt + 0.5λ⊤

t λt).

Substituting λt = λ0 + λ1Xt and netting out gives

= exp(−δ0 − δ1Xt + An−1 + B⊤
n−1µ + B⊤

n−1φXt) . . .

0.5B⊤
n−1Σ

⊤ΣBn−1 − B⊤
n−1Σ(λ0 + λ1Xt)

To this end, matching coefficients yields

exp(An + BnXt) = exp(An−1 + B⊤
n−1(µ − Σλ0) +

1

2
B⊤

n−1ΣΣ⊤Bn−1 − δ0

+ B⊤
n−1(φ − Σλ1)Xt − δ1Xt)

so that scalar An and vectors Bn with size N × 1 follow complex difference equations

An = An−1 + B⊤
n−1(µ − Σλ0) +

1

2
B⊤

n−1ΣΣ⊤Bn−1 − δ0

B⊤
n = B⊤

n−1(φ − Σλ1) − δ1.
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Continuously-compounded interest rates then follow

in,t = −n−1 log(Pn,t)

= n−1(−An − B⊤
n Xt)

= an + b⊤n Xt

with an = −An/n and bn = −Bn/n.

It is straightforward to calculate model-implied forward rates. Since forward rates are

defined as

fn,t = pn+1,t − pn,t

they can be easily computed as

fn,t = (An+1 − An) + (B⊤
n+1 − B⊤

n )Xt.

Risk-neutral yields and forward rates can be defined as those that would prevail if investors

did not price risk (λt) and all other parameters remain unchanged. The simple recursions

for deriving risk-neutral rates can be defined as

Arn
n = Arn

n−1 + Brn,⊤
n−1 µ +

1

2
Brn,⊤

n−1 ΣΣ⊤Brn
n−1 − δ0

Brn,⊤
n = Brn,⊤

n−1 φ − δ1.

Bond risk premia are therefore computed as the difference between the model-implied

yields and forwards and its artificial counterparts derived as if investors were risk-neutral.

φin,t = in,t − irn
n,t

φfn,t = fn,t − f rn
n,t.
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If we want to impose the pure form of the expectations hypothesis (PEH), not only are

investors insensitive to risk, but interest rates need to be deterministic. This is achieved

by setting the variance-covariance matrix of the state variables equal to zero. Expected

interest rates then follow

Et[i1,t+n] = f rnc
n,t

where f rnc
n,t is the risk-neutral forward rate minus the convexity effect due to Jensen’s

inequality.

Appendix 2

This appendix introduces the statistical state-space model. It describes the tools that are

employed for the estimation of various term structure models (see for subsequent work

Harvey, 1990; Hamilton, 1994; Gourieroux and Monfort, 1997; Lemke, 2006).

Structure of the State Space Model

A state-space model is a representation of the joint dynamics of an observable random

vector yt with size N × 1 that can be generally described by an unobservable state vector

αt with size (r × 1). It consists of a measurement equation and a transition equation.

The former governs the evolution of the state vector, the latter specifies the empirical link

between the set of observable variables and the state. Such a model is said to be Gaussian

if the innovation to the state space are normally distributed. The representation can be

written as

αt = c + Tαt−1 + Dηt (23)
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where c is a N ×1 vector T is a N ×N matrix and D is r×g. The measurement equation

is given by

yt = b + Mαt + εt (24)

where M is a n × r matrix and b is an N × 1 vector. The state innovations (g × 1) and

measurement errors (N × 1) are normally distributed with the first two moments given

by







ηt

εt






= N ∼
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Q 0

0 H













so that the disturbances are uncorrelated and independent to each other. The initial

conditions are α0 ∼ (a0, P0) and E(ηtα0), E(εtα0) = 0.

Kalman Filter

The Kalman filter is an algorithm to estimate and extract the evolution of the unobserv-

able state variables given the sequence of observable variables yt via a feedback-control

rule. It calculates linear least square forecasts of the state vector on the basis of data

observed through time t−1. Optimality is achieved by minimizing the mean squared error

(MSE) of the state variables. Thereby, the best a priori estimate of the state variable

vector is Et(at|It−1) and its variance-covariance matrix is Et(Σt|It−1), conditionally on

all information I available at time t − 1 where Σt is the MSE. Since yt has not been yet

observed, the prediction of the observable variables takes the form of Et(ŷt|It−1) and the

error of this forecast is yt− ŷt|t−1 with variance-covariance matrix Ft after the measure has

been observed. Continuing from here, the Kalman filter recursively updates the a priori

estimates of the conditional means and (co)-variances to yield the a posteriori estimates

to get Et(at|It) and Et(Σt|It), respectively.
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The Kalman filter algorithm typically starts in Step 1 with an initialization of the

first two moments of the measurement equation

a0|0 = ā0 Σ0|0 = Σ̄0

The system of prediction equations can be summarized in Step 2 as

at|t−1 = c + Tat−1|t−1

Σt|t−1 = TΣt−1|t−1T
⊤ + DQD⊤

ŷt|t−1 = b + Mat|t−1

vt = ŷt|t−1 − yt

Ft = MΣt|t−1M
⊤ + H. (25)

After Step 2 yt is now observed and the current value of at can be updated. To this,

a coefficient matrix Kt (Kalman gain) is introduced with which the difference between

the a posteriori and the a priori estimate of the variance-covariance matrix of the state

variables can be minimized. It is a weighting matrix that defines to what extend the

difference between the a priori estimate and the observed measure is weighted in the a

posteriori estimate. It is proportional to the mean squared error of the forecast for the

state vector and inversely related to the mean squared error of the observable vector. The

higher Kt the greater is the weight of the observable measure on the a posteriori estimate

of the state equation. The system of updating equation can be documented in Step 3 as

Kt = Σt|t−1M
⊤F−1

t

at|t = at|t−1 + Kt(yt − ŷt|t−1)

Σt|t = Σt|t−1 − KtMΣt|t−1.
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In Step 4, this procedure is repeated by setting t = t + 1 if t < T and one goes back to

Step 2.

The Kalman filter provides the sequence of conditional means and covariances for

the relevant conditional distributions. In estimation, the initial mean and covariance of

the state variables are calculated as their unconditional equivalents (provided that the

transition equation is stationary).25 Thus, a0|0 is chosen as

a0|0 = (I − T )−1c

and the covariance-variance matrix is given in a column vector as

Σ0|0 = vec[I − (T ⊗ T )]−1vec(Q).

Maximum Likelihood Estimation

If the parameters describing the state space are unknown, they can be estimated with

maximum likelihood (ML). For a given distributional assumption of the innovations, the

ML estimate of an unknown parameter set is the value that maximizes the probability

density. For a linear Gaussian model (normality assumption of innovations) with a set of

unknown elements stacked in the vector ϑ, the conditional density function of a simple

VAR(1) process with yt ∼ N(µ, Ω) and dimension N can be written in general as

f(yt|It−1; ϑ) = (2π)−N/2|Ω|−1/2 exp

[

−
1

2
(yt − µ)⊤Ω−1(yt − µ)

]

.

The joint density function from observation t through T satisfies

f(yT |IT−1; ϑ) =
T
∏

t=1

f(yt|It−1; ϑ)

25 See Hamilton (1994, p. 378).
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and the log-likelihood function is given as

lnL(ϑ) = −
NT

2
log(2π) −

T

2
log |Ω| −

1

2

T
∑

t=1

[

(yt − µ)⊤Ω−1(yt − µ)
]

.

The Kalman filter can be used to calculate the sequence of conditional means and (co)-

variances so that for above state-space specification, the distribution of yt conditional on

It−1 is given by (25)

yt|It−1 ∼ N(ŷt|t−1, Ft)

with ŷt|t−1 = b + Mat|t−1. Accordingly, the log-likelihood function becomes

lnL(ϑ) = −
NT

2
log(2π) −

1

2

T
∑

t=1

[

log |Ft| + v⊤
t F−1

t vt

]

.

This function can be maximized with numerical optimization techniques (see Lemke,

2006, p.79): (i) choose an initial value for ϑ = ϑ0, (ii) run the Kalman filter and store

the sequences ϑt and Ft, (iii) use them to compute the log-likelihood and (iv) use an

optimization procedure that repeats steps (i)-(iii) until a maximizer ϑ̂ has been found.

To this end, if the sample size is sufficiently large, the distribution of the maximum

likelihood estimate ϑ̂ can be approximated as

ϑ̂ = N(ϑ0, T
−1I−1)

where I is the information matrix. It can be estimated in two ways. The first way is to

calculate the Hessian to get

IH = −
1

T

[

∂2 lnL(ϑ)

∂ϑ∂ϑ⊤

]

.
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The second way is based on the outer-product estimate

IOP =
1

T

T
∑

t=1

[h(ϑ̂, I)][h(ϑ̂, I)]⊤

where h(.) denotes the the vector of derivatives evaluated at ϑ̂.

According to Hamilton (1994, section 5.8), the variance-covariance matrix for ϑ̂ can

be then given as

Cov(ϑ̂) =
1

T
[IHI−1

OP IH ]−1.
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