

HOHENHEIMER DISKUSSIONSBEITRÄGE

Standard-Setting and Knowledge Dynamics in Innovation Clusters

by

Julian P. Christ and André P. Slowak

Nr.303/2008

Institut für Volkswirtschaftslehre (520) Universität Hohenheim, 70593 Stuttgart

ISSN 0930-8334

STANDARD-SETTING AND KNOWLEDGE DYNAMICS IN INNOVATION CLUSTERS *

Julian P. Christ [‡] and André P. Slowak [§]

Extensive research has been conducted on how firms and regions take advantage of spatially concentrated assets, and also why history matters to regional specialisation patterns. In brief, it seems that innovation clusters as a distinctive regional entity in international business and the geography of innovation are of increasing importance in STI policy, innovation systems and competitiveness studies. Recently, more and more research has contributed to an evolutionary perspective on collaboration in clusters. Nonetheless, the field of cluster or regional innovation systems remains a multidisciplinary field where the state of the art is determined by the individual perspective (key concepts could, for example, be industrial districts, innovative clusters with reference to OECD, regional knowledge production, milieus & sticky knowledge, regional lock-ins & path dependencies, learning regions or sectoral innovation systems).

According to our analysis, the research gap lies in both quantitative, comparative surveys and in-depth concepts of knowledge dynamics and cluster evolution. Therefore this paper emphasises the unchallenged in-depth characteristics of knowledge utilisation within a cluster's collaborative innovation activities. More precisely, it deals with knowledge dynamics in terms of matching different agents' knowledge stocks via knowledge flows, common technology specification (standard-setting), and knowledge spillovers. The means of open innovation and system boundaries for spatially concentrated agents in terms of knowledge opportunities and the capabilities of each agent await clarification. Therefore, our study conceptualises the interplay between firm- and cluster-level activities and externalities for knowledge accumulation but also for the specification of technology. It remains particularly unclear how, why and by whom knowledge is aligned and ascribed to a specific sectoral innovation system.

Empirically, this study contributes with several descriptive calculations of indices, e.g. knowledge stocks, GINI coefficients, Herfindahl indices, and Revealed Patent Advantage (RPA), which clearly underline a high spatial concentration of both mechanical engineering and biotechnology within a European NUTS2 sample for the last two decades. Conceptually, our paper matches the geography of innovation literature, innovation system theory, and new

We owe considerable gratitude to the participants of the *Workshop on Open Innovation*, May 22-23, 2008, Cambridge (UK), Programme on Regional Innovation, The Cambridge-MIT Institute; *European Summer School on Industrial Dynamics* (ESSID 2008), Sept 01-06, 2008, Centro di Studi Micaelici e Garganici, Monte Sant'Angelo, Foggia; *FZID*, CC Innovation & Knowledge, Doctoral Colloquium, July 17, 2008, University of Hohenheim, Stuttgart; and *Knowledge Economy*: Chances and Challenges for SMEs, October 9-10, 2008, ESB Research Institute, Reutlingen.

^{*} Authors contributed equally.

⁺ Dipl. oec. Julian P. Christ, research fellow and teaching assistant. Department of Economics (520H), University of Hohenheim, D-70593 Stuttgart, e-mail: christ@uni-hohenheim.de, Phone: +49 711 459-23113.

[§] Dipl. oec. Dipl.-Kfm. André P. Slowak, research fellow and teaching assistant at the Center for International Management and Innovation. Department of International Management (510K), University of Hohenheim, D-70593 Stuttgart, e-mail: aslowak@uni-hohenheim.de, Phone: +49 711 459-23864.

ideas related to the economics of standards. Therefore, it sheds light on the interplay between knowledge flows and externalities of cluster-specific populations and the agents' use of such knowledge, which is concentrated in space. We find that knowledge creation and standard-setting are cross-fertilising each other: although the spatial concentration of assets and high-skilled labour provides new opportunities to the firm, each firm's knowledge stocks need to be contextualised. The context in terms of 'use case' and 'knowledge biography' makes technologies (as represented in knowledge stocks) available for collaboration, but also clarifies relevance and ownership, in particular intellectual property concerns. Owing to this approach we propose a conceptualisation which contains both areas with inter- and intra-cluster focus. This proposal additionally concludes that spatial and technological proximity benefits standard-setting in high-tech and low-tech industries in very different ways. More precisely, the versatile tension between knowledge stocks, their evolution, and technical specification & implementation requires the conceptualisation and analysis of a non-linear process of standard-setting. Particularly, the use case of technologies is essential. Related to this approach, clusters strongly support the establishment of technology use cases in embryonic high-tech industries. Low-tech industries in contrast rather depend on approved knowledge stocks, whose dynamics provide better and fast accessible knowledge inputs within low-tech clusters.

Keywords: innovation clusters, standard-setting, knowledge externalities and flows, knowledge alignment, mechanical engineering, biotechnology

<u>JEL</u>: D89, L22, M20, O32

1 Introduction

Extensive research has been conducted on how firms and regions take advantage of spatially concentrated assets and also why history matters to regional specialisation patterns. In brief, it seems that innovation clusters as a distinctive regional entity in international business and also the geography of innovation are of increasing importance to STI policy, innovation systems and competitiveness studies.

To put it simply, literature can be separated into qualitative, often appreciative and economic categories respecting the indicator-based research community. In gualitative studies, the phenomenon of a new role of regional and metropolitan settings for competence-building, inter-firm cooperation and excellence within competition has been stressed. For instance, besides the Italian "industrial district" concept, literature has also put emphasis on "technical districts", "innovative milieus" (Groupe de Recherche Européen sur les Milieux Innovateurs), "learning regions",¹ and different cluster approaches.² Moulaert and Sekia (2003) aggregate industrial districts, innovative milieus, new industrial spaces, innovation clusters, learning regions, and regional innovation systems under the collective term 'territorial innovation models'(TIM).³ Unfortunately, attempts to differentiate between these agglomerated phenomena are not sufficient. Additionally, contemporary literature has introduced several expressions such as competence clusters, excellence clusters, competence networks, science parks, technology parks, science cities, technopoles, and many more.⁴ Some expressions are introduced for political purposes without detailed recourse to economic theory, and are STI policy oriented. A prominent group of researchers on Innovation Clusters has established a 'European Cluster Observatory' published by the Stockholm School of Economics (http://www.clusterobservatory.eu/; particularly see the item 'Cluster Mapping').⁵ Furthermore, 'The Cluster Initiative Greenbook' and the so-called new 'Redbook' are published in Stockholm as well (Sölvell et al., 2003; Sölvell, 2008). On clusters & competitiveness in development countries see the so-called 'Bluebook' (Ketels/Lindqvist/Sölvell, 2006).⁶ On clusters & innovation also note OECD (1999a).

Our conceptual approach includes systems of innovation theory, the geography of innovation literature and the economics of standards. Thus, spatially concentrated systems (innovative clusters) are crucial. As literature indicates, economics researchers and economic

¹ Cooke (1998); Asheim (1995); Moulaert/Sekia (2003: 293).

² Asheim/Coenen (2004); Asheim/Isaksen (2002); Cooke (1998); Cooke/Memedovic (2003).

³ Moulaert/Sekia (2003: 291-294).

⁴ Hu (2007: 77).

⁵ "The Observatory offers rich data on geographical patterns of specialisation across cluster categories, national and regional portfolios of clusters, cluster organisations, and national and regional policies and programmes related to innovation and clusters. In addition, a cluster library offers case materials and various articles on clusters, competitiveness and cluster policy." (http://www.clusterobservatory.eu/, European Cluster Observatory)

⁶ Also see http://www.isc.hbs.edu/econ-clusters.htm, Institute for Strategy and Competitiveness at Harvard Business School, Clusters and Cluster Development; and http://www.competitiveness.org/, TCI Network, The Competitiveness Institute, Barcelona.

Christ/Slowak

geographers are deeply involved in both the qualitative and quantitative-orientated research communities. Other disciplines such as economic sociology rather contribute qualitative case findings. Economic prosperity and innovation from strong regions are not necessarily solely a question of R&D intensity and high-tech patents.⁷ Some regions might strive to become global excellence service centres, others to become leading export sites of particular high-tech or high-end products, or at least of low-tech production. The literature on regional economics and sociological literature indicate that strategy is to some extent bounded to regional history: regional opportunities are shaped by beliefs and mental lock-ins of local policymakers, qualifications of the labour pool, and evolved ties between local firms.⁸

In economics, studies on regional innovation systems have highlighted externalities and policy implications of strong regional settings. Besides territorial systems, several sub-groups have contributed to applementation economics and spillovers in different but complementary ways. The concept of technological proximity and externalities is essentially modelled within the literature on Endogenous (New) Growth Theory and contributions to the Knowledge Production Function.⁹ Most contributions, however, refer to the legacy of Marshall (1920), Young (1928), Arrow (1962) and Romer (1986).¹⁰ The assumption of economies external to the firm but internal to the industry finally achieved recognition as 'Marshall-Arrow-Romer-(MAR-) externalities'.¹¹ Numerous studies have applied these MAR externalities, also known as intra-industry advantages, to get a better understanding of industry concentration, industry dynamics and the existence and development of metropolitan cities with specialised industry profiles. We will use spillovers for approaching cluster-specific knowledge dynamics, and thus standard-setting. Although the ICT revolution created new knowledge infrastructures, some economic activities still prefer geographical concentration and agglomerated industries.¹² Moreover, there is still a fruitful debate concerning the influence of geographical, technological, organisational and social proximity. This economic question is discussed in respect of the ongoing tendencies towards interconnected and footloose firms because of the World Wide Web.¹³ It is, however, an accepted and salient phenomenon that increasing spatial distance tends to squeeze the frequency of economic activities and interactions among organisations and individuals. This is essential for our conceptualisation. For this reason, intellectual and innovative activities seem to be heavily influenced by technological and geographical proximity as we assume that spatial proximity favours technological spillovers and knowledge externalities. Thus, firms and entrepreneurial entities within clusters participate from an agglomerated knowledge pool because of geographically

⁷ For instance, based on computations for the aggregation level of German "Länder", Leydesdorff/Fritsch (2006) have shown that the contribution of medium-tech industries provides a good predictor of properties of the innovation system in a given region.

⁸ Iammarino (2005) and Hanusch/Pyka (2007).

⁹ See Christ (2007) and Christ (2009a and 2009b) for a detailed overview and discussion of knowledge externalities, pecuniary externalities and knowledge dynamics in a spatial context.

¹⁰ Hanusch/Pyka (2007: 277).

¹¹ MAR externalities correspond to the contributions of Marshall (1891), Arrow (1968) and Romer (1986, 1990).

¹² Fagerberg (2006: 21); Gertler (2003: 75-99).

¹³ Cooke (2001: 965); Malmberg/Maskell (2005: 1).

bounded knowledge externalities. These knowledge externalities share similarities with club goods in a geographical sense: non-rivalry and excludability.¹⁴ Polanyi (1966) introduced the crucial distinction between tacit (implicit) and codified (explicit) knowledge. This concept offers a feasible explanation of the main differences between spatially concentrated innovation systems.¹⁵ Furthermore, the conceptualisation of tacit knowledge represents a main difference from the concept of national systems of innovation. Additionally, the concept of tacit knowledge is more or less equivalent to the well-established concept of localised knowledge spillovers and externalities within endogenous growth theory.¹⁶

According to our analysis, the research gap lies in both quantitative, but comparative, surveys and in-depth concepts of knowledge dynamics and cluster evolution. It is not the static analysis of agglomeration effects in which we are interested but rather the underlying mechanisms of these effects over time which remain unchallenged. Note, however, that some studies have recently made remarkable contributions to a somewhat dynamic perspective on regional innovation systems respecting innovation clusters.¹⁷ Our study aims to contribute to the emerging dynamics and evolutionary perspective on regional systems of innovation and innovation clusters.¹⁸ Therefore the paper emphasises the unchallenged indepth characteristics of knowledge utilisation within a cluster's collaborative innovation activities. More precisely, it deals with knowledge dynamics in terms of matching different agents' knowledge stocks via knowledge flows, common technology specification (standardsetting), and knowledge spillovers. The means of open innovation and system boundaries for spatially concentrated agents in terms of knowledge opportunities and the capabilities of each agent still remains to be clarified. Therefore, our study conceptualises the interplay between firm- and cluster-level activities and externalities for knowledge accumulation, but also for specification of technology. It remains particularly unclear how, why and by whom knowledge is aligned and ascribed to a specific sectoral innovation system.

The structure of our paper is as follows: first, we illustrate in chapter 2 the spatial concentration of biotechnology and mechanical engineering within European regions. We take patents as indicator for technology assets owned by the clusters' agents and represented by knowledge stocks. Therefore, we conduct a patent count analysis. The chapter gives several descriptive calculations of indices (Appendix A), e.g. knowledge stocks, GINI coefficients, Herfindahl indices, Revealed Patent Advantage (RPA), which clearly underline a high spatial concentration of both mechanical engineering and

¹⁴ Christ (2007) offers a detailed overview of the concept of tacit knowledge and externalities. See also Malmberg/Maskell (1999: 172); Asheim/Gertler (2005: 291); Cooke/Memedovic (2003: 9); DeBruijn/Lagendijk (2005: 1154); Gertler (2003: 75-99); and Audretsch/Feldman (1999: 410).

¹⁵ Lundvall (2007: 103);

¹⁶ Polanyi (1966). For an overview, see additionally Hanusch/Pyka (2007: 282); Senker (1995: 426); Gertler, (2003: 77); Winter (2005: 35); Malmberg/ Maskell (1999: 172); or Malmberg/Maskell (2005: 4).

¹⁷ Brenner (2001); Bröcker et al. (2003); Lagnevik et al. (2003); Nooteboom (2005); Shao et al. (2008).

¹⁸ As the dynamic and evolutionary analysis of innovation clusters is a heterodox, badly-defined field, references provided can only be examples and are incomplete.

biotechnology within a European NUTS2 sample for the last two decades.¹⁹ In order to explain these findings, chapter 3 first introduces different concepts of innovation systems, primarily sectoral and regional innovation systems. Second, we conceptualise new opportunities for firms in innovation clusters in terms of open innovation respecting open systems and also a knowledge production function. New ideas on the in-depth relationship between knowledge and standard-setting dynamics within clusters are presented in chapter 4. Our paper matches the geography of innovation literature with new ideas related to the economics of standards. Chapter 5 draws some conclusions.

2 Dynamics and Spatial Concentration in High- versus Low-technology Industries: Mechanical engineering and Biotechnology in Europe

2.1 Mechanical engineering

With respect to possible structural differences between low- versus high-tech sectors and clusters, we provide both a non-HT (mechanical engineering) and a high-tech (biotechnology) analysis.²⁰ In terms of standard-setting (see chapter 4.3) we argue that mechanical engineering and biotechnology are different as regards the maturity versus novelty question of contextualised knowledge. The extent of novelty shapes both the logics of technology specification and the process of sectoral innovation system evolution or creation. We therefore assume that high-tech agents create technology or create technology new to existing industries, whereas non-high-tech agents advance given technology or create technology new in only a specific industry context. Note that owing to varieties in novelty of the created knowledge and standards, we suggest two different kinds of specification and implementation processes beyond the linear model of standard-setting. Recent literature has often looked at standard-setting cases in information technologies & industries software where given standards are advanced (i.e. MOST25 to 50 to 150)²¹ or where new standards refer to previous standards in order to replace them (i.e. UMTS²², XML²³). Therefore, standard-setting processes in high-tech fields are well known for the combination of new

¹⁹ See Appendix A for detailed classification of empirical indicators and indices. Appendix B highlights the complete NUTS codes.

²⁰ For terminology concerning high versus medium versus low-technology fro instance see Hatzichronoglou (1997).

²¹ FlexRay, AUTOSAR, Media Orientated Systems Transport (MOST), CAN and LIN are standards widely used for field bus technology in automobiles. MOST can be considered as a kind of infotainment backbone which connects consumer electronics and Ethernet in the car. The above standards are established and maintained by industry consortia. Labels 25, 50 and 150 are those of the MOST standard vintages and each vintage adds new bandwidth or features to the standard.

²² Universal Mobile Telecommunications Service (UMTS) builds on the Global System for Mobile (GSM) standards. The technology is also often labelled as 'third-generation' broadband technology. Hence, a UMTS use case for mobile phones was well established from the beginning. For an overview about the UMTS standard, see Rapeli (1995), Dahlman and colleagues (1998) and Halonen and colleagues (2003).

²³ XML can be taken as an evolution of HTML (see Tolksdorf, 1999) but it is now also used for several other documents such as office document types/'docx', component description in productions technologies or Web 2.0 applications. Additionally, see chapter 4.3 where we argue for replication of success mechanisms in low-technology standard-setting.

technology and for approved context and 'use case'²⁴ knowledge. The combinations we look at, namely new technology in combination with new knowledge on the one hand, and given or third industries' technology in combination with approved own knowledge on the other hand, are less focused in standard-setting and standardisation studies. Within this paper, 'standards' will be defined as technical specifications or business agreements about how technologies respecting business will be shaped. A specification of a standard selects one from various implementation alternatives respecting business models. Our paper particularly deals with the collaborative de facto specification of technical industry standards.

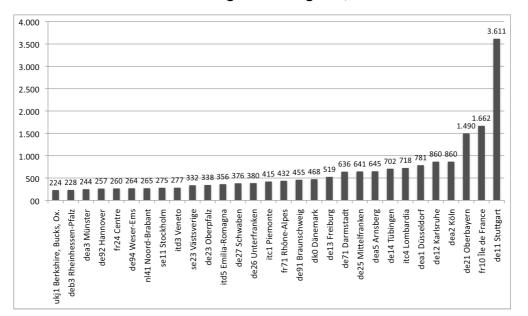
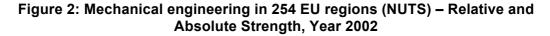
Mechanical engineering and production technologies are non-high-technology industries where high-norm activities and the ability to absorb other sectors' technology and standards are crucial. Briefly, integrators need to coordinate activities to control the innovation system. This has been described in detail by Gerybadze/Slowak (2008). Mechanical engineering is said to be a German strength. Exemplifying, this chapter will analyse how far the German mechanical engineering industry is concentrated in space. Additionally, it shows concentration measures for the European NUTS2 level (Appendix B). EUROSTAT NUTS2 classification will serve as a proxy for regional innovation systems' boundaries, whereas patents signal technology competence. We conduct a sectoral patent count to evidence spatial concentration of technology in geographical space. For this purpose we use EPO patent data of the EUROSTAT REGIO database (NewCronos), especially the recorded patent applications (per million employees and total number). These data have been regionalised to NUTS2 inventor locations (postal code, city name). In our view, the NUTS2 classification of EUROSTAT can be used for a European cluster analysis and patent data observation because of guaranteed data availability and harmonisation - at least for the period between the mid-nineties and today. As this chapter will show, the regions Stuttgart (de11), Rhone-Alpes (fr71), Ile-de-France (fr10), Lombardia (itc4), and Emilia-Romagna (itd5), among others, are important in terms of innovative activity for particular technology segments.²⁵

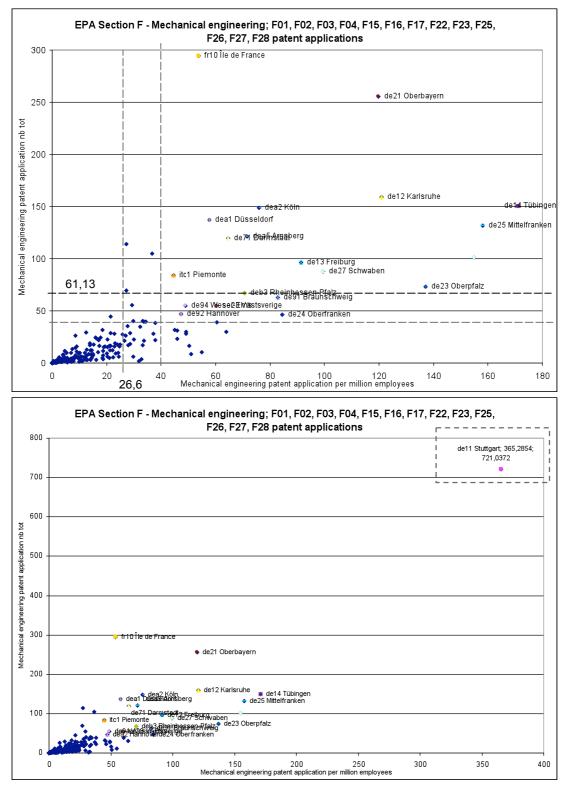
²⁴ For the medium/ low industry of industrial automation, the creation of a use case has been conceptualised as follows:

^{&#}x27;As industrial automation represents a medium/low-tech industry, use cases are well-established. Field buses serve the automation of production processes and motions in factories and process plants. Therefore, in contrast with embryonic/immature industries such as cell cloning, the construction of a meaningful use case is not part of the standard-setting process ... User organisations specify how and why a set of standards shall be used. They create a generic case of industry-specific use and industry-tailored services, but they also integrate third industries' open standards if those deliver new features to industry (creation of use case). For instance, industrial wireless technology / industrial WiFi takes from consumer-IT standards and allows for automation systems where cabling cannot be easily maintained (e.g. reefer vessels). Leading integrator firms such as Siemens therefore sell integrated, industry-specific process plant & factory solutions. The less there is a well-defined business for a standard and the higher the rate of technical change, the more the creation of a use case becomes a crucial part of the standard-setting process itself' (Slowak, 2008).

²⁵ Note that IPC class F addresses not only mechanical engineering but implicitly many other industries as well. Furthermore, niche markets like machinery tools or new segments of mechanical engineering such as 'mechatronics & productronics' may interfere with several other IPC classes. Also note that markets in mechanical engineering technologies interfere with other markets downstream and upstream the particular innovation chain case by case. Finally, cluster data, particularly for emerging new technology fields, differ substantially in terms of depth, public availability and access.

Owing to a high observable unequal distribution of knowledge in the field of mechanical engineering (see following tables and figures) in terms of the spatial distribution of (accumulated) patent applications to the EPO, IPC F, we conclude that this technology field (IPC F) – and consequently the underlying knowledge - is highly concentrated in a few regional NUTS2 entities within the European landscape. Thus, the spatial concentration of this proxy gives some indication about sector-specific knowledge stocks and knowledge dynamics. Figure 1 shows the 30 best-performing regions in the field of mechanical engineering; we accumulated the annual IPC F patent applications (inventor locations) from 1977 to 2003 to control for existing, inter-temporal knowledge stocks.


Figure 1: Accumulated EPO Patent applications IPC F (Mechanical engineering) – 30 Best-Performing NUTS2 regions, 1977-2003

Source: Own calculation and illustration. EUROSTAT database; Regional science and technology statistics, Mechanical engineering patent applications to the EPO by priority year at the regional level (April 2008).

The figure also shows that the best-performing regions are still heterogeneous in terms of their patenting performance. Although the EPO data of EUROSTAT are partially incomplete for the whole period from 1977 until 2003, we still argue that the accumulated value represents an adequate and sufficient proxy for knowledge stocks.²⁶ Thus, the top five regions with the highest rate of application are Stuttgart (de11), Ile-de-France (fr10), Oberbayern (de21), Köln (dea2) and Karlsruhe (de12). Between 1990 and 2003 Düsseldorf (dea1) performed better than Karlsruhe (de12). From this result, we assume a high level of cluster-specific knowledge in mechanical engineering in the observed NUTS2 entities. Additionally, this first simple descriptive analysis underlines the outstanding position of German NUTS2 regions.

²⁶ Data for the best-performing regions were nearly fully available. The chart clearly shows an unequal distribution.

Source: Own calculation and illustration. EUROSTAT database: Regional science and technology statistics; Patent applications to the EPO by priority year at the regional level (February 2008). For section F see Appendix C. Legend: Average number (nb tot): 61,13 patents (2002); average number (pat. appl. per mio employees): 26,68.

Christ/Slowak

Figure 2 centres data points (x,y) for absolute and relative patent applications in mechanical engineering. As is shown, the leading clusters with specialised knowledge pools (represented by patent applications) are located in Germany.

Additionally, Stuttgart (de11) seems to be the leading cluster in mechanical engineering; its absolute (nb tot) and relative (per mio employee) patent applications are outstanding compared with other technologically advanced regions.

If we assume that the intensity of knowledge externalities increases with the (absolute) size of the knowledge stock, leading regions would benefit the most. Chapters 3 and 4 centre on this issue. Thus, we assume geographically concentrated sectoral innovation systems and innovative clusters to be more competitive, if absolute patenting activity exceeds those of other regions. In the above figure, strong patenting activity is given, if patent applications of a spatially concentrated (regional) innovation system exceed the average applications of all regions in the sample (critical mass). The leading regions (de11, de12, de21, fr10, dea1, dea2, de13, itc1, de23, de27, de25) in Figure 2 are determined by absolute and relative strength in IPC F patenting, which is additionally complemented by higher employment shares as highlighted in various descriptive regional analyses.²⁷

Table 1 illustrates two possible scenarios in terms of knowledge stock changes; stability or high dynamics of knowledge accumulation in the field of mechanical engineering. Stuttgart (de11) particularly has always been within the top five groups, but outperformed the previously higher ranked regions IIe-de-France (fr10) and Oberbayern (de21). The German region Mittelfranken (de25) entered the top 20 in 1995 and achieved seventh place in 2002. Other regions like Lombardia (itc4) have always been strong, but their development has been volatile. The region of Inner London (uki1) dramatically fell between 1980 and 1985 (from sixth to eighteenth place). Since 1995 the UK has had no any position in the top 20, which indicates some structural downsizing of patenting in the field of mechanical engineering. The Herfindahl index (HHI), and our calculated GINI coefficients for the top ten and top 20 regions in IPC F patenting show spatially concentrated patenting.

The following Figure 3 and Table 1 show the concentration of patents in mechanical engineering (IPC F) (biotechnology, see next chapter) for 241 European regions according to the EUROSTAT NUTS classification.

²⁷ We do not consider employment structures and other cluster-specific resources in this paper, because the conceptual contribution is essentially related to knowledge stocks and standard-setting.

Table 1: Machinery in Europe: Patent Application Ranking (nb tot); Mechanical engineering - IPC Section F20; 20 Best Performing European NUTS2 Regions

_						
	1980		1985		1990	
	observed regions:	172	observed regions:	183	observed regions:	213
	nb tot applications:	1552,88	nb tot applications:	2479,83	nb tot applications:	3149,82
	average (172):	9,03	average (183):	13,55	average (213):	14,79
	average (top10):	67,44	average (top10):	109,03	average (top10):	135,29
	average (top20):	45,76	average (top20):	73,04	average (top20):	89,61
RANK	Share top 10/172	0,43	Share top 10/183	0,44	Share top 10/213	0,43
	Germany in top 10:	7	Germany in top 10:	7	Germany in top 10:	7
	France in top 10:	2	France in top 10:	2	France in top 10:	2
	HHI (top10)	0,14		0,13	HHI (top10)	0,13 0,08
	HHI (top20) normalized HHI (top20)	0,08 0,03		0,08 0,03	HHI (top20)	0,08
	GINI (top10)	0,03		0,03	normalized HHI (top20) GINI (top10)	0,03
	GINI (top10) GINI (top20)	0,29	GINI (top20)	0,32	GINI (top10) GINI (top20)	0,31
	fr10 Île de France		fr10 Île de France	,	fr10 Île de France	288,65
2		,	de21 Oberbayern		de11 Stuttgart	200,03
3	dea2 Köln		de11 Stuttgart		de21 Oberbayern	223,02
4			dea2 Köln		de71 Darmstadt	129,83
5	dea1 Düsseldorf		dea1 Düsseldorf		dea2 Köln	122,79
6	uki1 Inner London		de71 Darmstadt		dea1 Düsseldorf	113,59
7	de71 Darmstadt	,	de12 Karlsruhe		itc4 Lombardia	82,59
8	fr71 Rhône-Alpes		de14 Tübingen		fr71 Rhône-Alpes	64,04
9			se11 Stockholm		de12 Karlsruhe	63,04
10	3		fr71 Rhône-Alpes		de30 Berlin	52,90
11	de12 Karlsruhe		deb1 Koblenz		de14 Tübingen	51,27
	dk0 Dänemark		de13 Freiburg		itc1 Piemonte	50,23
13	ukg3 West Midlands	26,43	itc1 Piemonte	39,74	se11 Stockholm	44,39
14	ukj2 Surrey, East and West S	25,41	itc4 Lombardia	39,47	dk0 Dänemark	44,00
	ukg1 Herefordshire, Worcest	23,07	itd5 Emilia-Romagna	38,49	de13 Freiburg	43,83
16	se11 Stockholm	22,66	dea5 Arnsberg		ukg1 Herefordshire, Worcest	43,78
17			ukg3 West Midlands		itd5 Emilia-Romagna	42,90
	uki2 Outer London		uki1 Inner London		uki2 Outer London	40,83
	itc4 Lombardia		se12 Östra Mellansverige		fr24 Centre	39,12
20	de13 Freiburg	19,44	uki2 Outer London	31,60	ukh1 East Anglia	39,00
	1995		2000		2002	
	observed regions:				abaan ad ragional	
1	•	213	observed regions:	240	observed regions:	236
1	nb tot applications:	3569,74	nb tot applications:	6035,9	nb tot applications:	6117,88
	•	3569,74 16,76	•	6035,9 25,15	•	6117,88 25,92
RANK	nb tot applications:	3569,74	nb tot applications:	6035,9	nb tot applications:	6117,88
RANK	nb tot applications: average (213):	3569,74 16,76	nb tot applications: average (240):	6035,9 25,15	nb tot applications: average (236):	6117,88 25,92
RANK	nb tot applications: average (213): average (top10):	3569,74 16,76 142,77	nb tot applications: average (240): average (top10):	6035,9 25,15 254,41	nb tot applications: average (236): average (top10):	6117,88 25,92 254,34
RANK	nb tot applications: average (213): average (top10): average (top20):	3569,74 16,76 142,77 98,04	nb tot applications: average (240): average (top10): average (top20):	6035,9 25,15 254,41 171,36	nb tot applications: average (236): average (top10): average (top20):	6117,88 25,92 254,34 175,60
RANK	nb tot applications: average (213): average (top10): average (top20): Share top 10/213 Germany in top 10:	3569,74 16,76 142,77 98,04 0,40	nb tot applications: average (240): average (top10): average (top20): Share top 10/240 Germany in top 10:	6035,9 25,15 254,41 171,36 0,42	nb tot applications: average (236): average (top10): average (top20): Share top 10/236 Germany in top 10:	6117,88 25,92 254,34 175,60 0,42
RANK	nb tot applications: average (213): average (top10): average (top20): Share top 10/213 Germany in top 10: France in top 10:	3569,74 16,76 142,77 98,04 0,40 8 1	nb tot applications: average (240): average (top10): average (top20): Share top 10/240 Germany in top 10: France in top 10:	6035,9 25,15 254,41 171,36 0,42 8 1	nb tot applications: average (236): average (top10): average (top20): Share top 10/236 Germany in top 10: France in top 10:	6117,88 25,92 254,34 175,60 0,42 8 1
RANK	nb tot applications: average (213): average (top10): average (top20): Share top 10/213 Germany in top 10: France in top 10: HHI (top10)	3569,74 16,76 142,77 98,04 0,40 8 1 0,14	nb tot applications: average (240): average (top10): average (top20): Share top 10/240 Germany in top 10: France in top 10: HHI (top10)	6035,9 25,15 254,41 171,36 0,42 8 1 0,15	nb tot applications: average (236): average (top10): average (top20): Share top 10/236 Germany in top 10: France in top 10: HHI (top10)	6117,88 25,92 254,34 175,60 0,42 8 1 0,15
RANK	nb tot applications: average (213): average (top10): average (top20): Share top 10/213 Germany in top 10: France in top 10: HHI (top10) HHI (top20)	3569,74 16,76 142,77 98,04 0,40 8 1 0,14 0,08	nb tot applications: average (240): average (top10): average (top20): Share top 10/240 Germany in top 10: France in top 10: HHI (top10) HHI (top20)	6035,9 25,15 254,41 171,36 0,42 8 1 0,15 0,09	nb tot applications: average (236): average (top10): average (top20): Share top 10/236 Germany in top 10: France in top 10: HHI (top10) HHI (top20)	6117,88 25,92 254,34 175,60 0,42 8 1 0,15 0,09
RANK	nb tot applications: average (213): average (top10): average (top20): Share top 10/213 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20)	3569,74 16,76 142,77 98,04 0,40 8 1 0,14 0,08 0,04	nb tot applications: average (240): average (top10): average (top20): Share top 10/240 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20)	6035,9 25,15 254,41 171,36 0,42 8 1 0,15 0,09 0,04	nb tot applications: average (236): average (top10): average (top20): Share top 10/236 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20)	6117,88 25,92 254,34 175,60 0,42 8 1 0,15 0,09 0,04
RANK	nb tot applications: average (213): average (top10): average (top20): Share top 10/213 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10)	3569,74 16,76 142,77 98,04 0,40 8 1 0,14 0,08 0,04 0,32	nb tot applications: average (240): average (top10): average (top20): Share top 10/240 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10)	6035,9 25,15 254,41 171,36 0,42 8 1 0,15 0,09 0,04 0,31	nb tot applications: average (236): average (top10): average (top20): Share top 10/236 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10)	6117,88 25,92 254,34 175,60 0,42 8 1 0,15 0,09 0,04 0,31
	nb tot applications: average (213): average (top10): average (top20): Share top 10/213 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top20)	3569,74 16,76 142,77 98,04 0,40 8 1 0,14 0,08 0,04 0,32 0,36	nb tot applications: average (240): average (top10): average (top20): Share top 10/240 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top20)	6035,9 25,15 254,41 171,36 0,42 8 1 0,15 0,09 0,04 0,31 0,37	nb tot applications: average (236): average (top10): average (top20): Share top 10/236 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top20)	6117,88 25,92 254,34 175,60 0,42 8 1 0,15 0,09 0,04 0,31 0,35
1	nb tot applications: average (213): average (top10): average (top20): Share top 10/213 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top20) de11 Stuttgart	3569,74 16,76 142,77 98,04 0,40 8 1 0,14 0,08 0,04 0,32 0,36 352,58	nb tot applications: average (240): average (top10): average (top20): Share top 10/240 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top20) de11 Stuttgart	6035,9 25,15 254,41 171,36 0,42 8 1 0,15 0,09 0,04 0,31 0,37 760,87	nb tot applications: average (236): average (top10): average (top20): Share top 10/236 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top20) de11 Stuttgart	6117,88 25,92 254,34 175,60 0,42 8 1 0,15 0,09 0,04 0,31 0,35 760,87
1	nb tot applications: average (213): average (top10): average (top20): Share top 10/213 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France	3569,74 16,76 142,77 98,04 0,40 8 1 0,14 0,04 0,04 0,32 0,36 352,58 285,09	nb tot applications: average (240): average (top10): average (top20): Share top 10/240 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France	6035,9 25,15 254,41 171,36 0,42 8 1 0,15 0,09 0,04 0,31 0,37 760,87 331,21	nb tot applications: average (236): average (top10): average (top20): Share top 10/236 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France	6117,88 25,92 254,34 175,60 0,42 8 1 0,15 0,09 0,04 0,31 0,35 760,87 342,17
1 2 3	nb tot applications: average (213): average (top10): average (top20): Share top 10/213 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern	3569,74 16,76 142,77 98,04 0,40 8 1 0,14 0,08 0,04 0,32 0,36 352,58 285,09 163,00	nb tot applications: average (240): average (top10): average (top20): Share top 10/240 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern	6035,9 25,15 254,41 171,36 0,42 8 1 0,15 0,09 0,04 0,31 0,37 760,87 331,21 319,32	nb tot applications: average (236): average (top10): average (top20): Share top 10/236 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern	6117,88 25,92 254,34 175,60 0,42 8 1 0,15 0,09 0,04 0,31 0,35 760,87 342,17 312,12
1 2 3 4	nb tot applications: average (213): average (top10): average (top20): Share top 10/213 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern dea2 Köln	3569,74 16,76 142,77 98,04 0,40 8 1 0,14 0,08 0,04 0,32 0,36 352,58 285,09 163,00 124,88	nb tot applications: average (240): average (top10): average (top20): Share top 10/240 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern dea2 Köln	6035,9 25,15 254,41 171,36 0,42 8 1 0,15 0,09 0,04 0,31 0,37 760,87 7331,21 319,32 197,33	nb tot applications: average (236): average (top10): average (top20): Share top 10/236 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern de12 Karlsruhe	6117,88 25,92 254,34 175,60 0,42 8 1 0,15 0,09 0,04 0,31 0,35 760,87 342,17 312,12 183,52
1 2 3 4 5	nb tot applications: average (213): average (top10): average (top20): Share top 10/213 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern dea2 Köln dea1 Düsseldorf	3569,74 16,76 142,77 98,04 0,40 8 1 0,14 0,08 0,04 0,32 0,36 352,58 285,09 163,00 124,88 112,58	nb tot applications: average (240): average (top10): average (top20): Share top 10/240 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern dea2 Köln de12 Karlsruhe	6035,9 25,15 254,41 171,36 0,42 8 1 0,15 0,09 0,04 0,31 0,37 760,87 331,21 319,32 197,33 180,73	nb tot applications: average (236): average (top10): average (top20): Share top 10/236 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern de12 Karlsruhe dea1 Düsseldorf	6117,88 25,92 254,34 175,60 0,42 8 1 0,15 0,09 0,04 0,31 0,35 760,87 342,17 312,12 183,52 170,07
1 2 3 4 5 6	nb tot applications: average (213): average (top10): average (top20): Share top 10/213 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern dea2 Köln dea1 Düsseldorf de71 Darmstadt	3569,74 16,76 142,77 98,04 0,40 8 1 0,14 0,08 0,04 0,32 0,36 352,58 285,09 163,00 124,88 112,58 90,60	nb tot applications: average (240): average (top10): average (top20): Share top 10/240 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern dea2 Köln de12 Karlsruhe itc4 Lombardia	6035,9 25,15 254,41 171,36 0,42 8 1 0,15 0,09 0,04 0,31 0,37 760,87 331,21 319,32 197,33 180,73 170,63	nb tot applications: average (236): average (top10): average (top20): Share top 10/236 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern de12 Karlsruhe dea1 Düsseldorf dea2 Köln	6117,88 25,92 254,34 175,60 0,42 8 1 0,15 0,09 0,04 0,31 0,35 760,87 342,17 312,12 183,52 170,07 166,27
1 2 3 4 5 6 7	nb tot applications: average (213): average (top10): average (top20): Share top 10/213 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern dea2 Köln dea1 Düsseldorf de71 Darmstadt de12 Karlsruhe	3569,74 16,76 142,77 98,04 0,40 8 1 0,14 0,04 0,04 0,32 0,36 352,58 285,09 163,00 124,88 212,58 285,09 163,00 124,88 90,60 80,39	nb tot applications: average (240): average (top10): average (top20): Share top 10/240 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern dea2 Köln de12 Karlsruhe itc4 Lombardia dea1 Düsseldorf	6035,9 25,15 254,41 171,36 0,42 8 1 0,15 0,09 0,04 0,31 0,37 760,87 331,21 319,32 197,33 180,73 170,63 163,44	nb tot applications: average (236): average (top10): average (top20): Share top 10/236 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern de12 Karlsruhe dea1 Düsseldorf dea2 Köln de25 Mittelfranken	6117,88 25,92 254,34 175,60 0,42 8 1 0,15 0,09 0,04 0,31 0,35 760,87 342,17 312,12 183,52 170,07 166,27 164,09
1 2 3 4 5 6 7 8	nb tot applications: average (213): average (top10): average (top20): Share top 10/213 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern dea2 Köln dea1 Düsseldorf de71 Darmstadt	3569,74 16,76 142,77 98,04 0,40 8 1 0,14 0,08 0,04 0,32 0,36 352,58 285,09 163,00 124,88 112,58 90,60 80,39 75,91	nb tot applications: average (240): average (top10): average (top20): Share top 10/240 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern dea2 Köln de12 Karlsruhe itc4 Lombardia dea1 Düsseldorf dea5 Arnsberg	6035,9 25,15 254,41 171,36 0,42 8 1 0,15 0,09 0,04 0,31 0,37 760,87 331,21 319,32 197,33 180,73 170,63 163,44 146,69	nb tot applications: average (236): average (top10): average (top20): Share top 10/236 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern de12 Karlsruhe dea1 Düsseldorf dea2 Köln de25 Mittelfranken de14 Tübingen	6117,88 25,92 254,34 175,60 0,42 8 1 0,15 0,09 0,04 0,31 0,35 760,87 342,17 312,12 183,52 170,07 166,27 164,09 156,45
1 2 3 4 5 6 7 8 9	nb tot applications: average (213): average (top10): average (top20): Share top 10/213 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern dea2 Köln dea1 Düsseldorf de71 Darmstadt de12 Karlsruhe de14 Tübingen	3569,74 16,76 142,77 98,04 0,40 8 1 0,14 0,08 0,04 0,32 0,36 352,58 285,09 163,00 124,88 112,58 90,60 80,39 75,91 75,11	nb tot applications: average (240): average (top10): average (top20): Share top 10/240 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern dea2 Köln de12 Karlsruhe itc4 Lombardia dea1 Düsseldorf	6035,9 25,15 254,41 171,36 0,42 8 1 0,15 0,09 0,04 0,31 0,37 760,87 331,21 319,32 197,33 180,73 180,73 163,44 146,69 136,99	nb tot applications: average (236): average (top10): average (top20): Share top 10/236 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern de12 Karlsruhe dea1 Düsseldorf dea2 Köln de25 Mittelfranken	6117,88 25,92 254,34 175,60 0,42 8 1 0,15 0,09 0,04 0,31 0,35 760,87 342,17 312,12 183,52 170,07 166,27 164,09
1 2 3 4 5 6 7 7 8 9 10	nb tot applications: average (213): average (top10): average (top20): Share top 10/213 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern dea2 Köln dea1 Düsseldorf de71 Darmstadt de12 Karlsruhe de14 Tübingen dk0 Dänemark	3569,74 16,76 142,77 98,04 0,40 8 1 0,14 0,08 0,04 0,32 0,36 352,58 325,59 163,00 124,88 112,58 90,60 80,39 75,91 75,11 67,54	nb tot applications: average (240): average (top10): average (top20): Share top 10/240 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern dea2 Köln de12 Karlsruhe itc4 Lombardia dea1 Düsseldorf dea5 Arnsberg de25 Mittelfranken	6035,9 25,15 254,41 171,36 0,42 8 1 0,15 0,09 0,04 0,31 0,37 760,87 331,21 319,32 197,33 180,73 170,63 163,44 146,69 136,99 136,99	nb tot applications: average (236): average (top10): average (top20): Share top 10/236 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern de12 Karlsruhe dea1 Düsseldorf dea2 Köln de25 Mittelfranken de14 Tübingen itc4 Lombardia	6117,88 25,92 254,34 175,60 0,42 8 1 0,15 0,09 0,04 0,31 0,35 760,87 342,17 312,12 183,52 170,07 166,27 164,09 156,45 149,96
1 2 3 4 5 6 7 8 9 10 11	nb tot applications: average (213): average (top10): average (top20): Share top 10/213 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern dea2 Köln dea1 Düsseldorf de71 Darmstadt de12 Karlsruhe de44 Tübingen dk0 Dänemark de25 Mittelfranken	3569,74 16,76 142,77 98,04 0,40 8 1 0,14 0,08 0,04 0,32 0,36 352,58 285,09 163,00 124,88 112,58 90,60 80,39 75,91 75,11 67,54 62,31	nb tot applications: average (240): average (top10): average (top20): Share top 10/240 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern dea2 Köln de12 Karlsruhe itc4 Lombardia dea1 Düsseldorf dea5 Arnsberg de25 Mittelfranken de14 Tübingen	6035,9 25,15 254,41 171,36 0,42 8 1 0,15 0,09 0,04 0,31 0,37 760,87 331,21 319,32 197,33 180,73 170,63 163,44 146,69 136,99 136,90 126,41	nb tot applications: average (236): average (top10): average (top20): Share top 10/236 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern de12 Karlsruhe dea1 Düsseldorf dea2 Köln de25 Mittelfranken de14 Tübingen itc4 Lombardia dea5 Arnsberg	6117,88 25,92 254,34 175,60 0,42 8 1 0,15 0,09 0,04 0,31 0,35 760,87 342,17 312,12 183,52 170,07 166,27 166,27 166,27 166,45 149,96 137,83
1 2 3 4 5 6 7 8 9 10 11 12	nb tot applications: average (213): average (top10): average (top20): Share top 10/213 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern dea2 Köln dea1 Düsseldorf de71 Darmstadt de12 Karlsruhe de14 Tübingen dk0 Dänemark de25 Mittelfranken itc1 Piemonte	3569,74 16,76 142,77 98,04 0,40 8 1 0,14 0,08 0,04 0,32 0,36 352,58 285,09 163,00 124,88 112,58 90,60 80,39 75,91 75,11 67,54 62,31 60,39	nb tot applications: average (240): average (top10): average (top20): Share top 10/240 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern dea2 Köln de12 Karlsruhe itc4 Lombardia dea1 Düsseldorf dea5 Arnsberg de25 Mittelfranken de14 Tübingen de71 Darmstadt	6035,9 25,15 254,41 171,36 0,42 8 1 0,15 0,09 0,04 0,31 0,37 760,87 331,21 319,32 197,33 180,73 170,63 163,44 146,69 136,90 136,90 126,41 97,53	nb tot applications: average (236): average (top10): average (top20): Share top 10/236 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern de12 Karlsruhe dea1 Düsseldorf dea2 Köln de25 Mittelfranken de14 Tübingen itc4 Lombardia dea5 Arnsberg de71 Darmstadt	6117,88 25,92 254,34 175,60 0,42 8 1 0,15 0,09 0,04 0,31 0,35 760,87 342,17 312,12 183,52 170,07 166,27 164,09 156,45 149,96 137,83 127,76
1 2 3 4 5 6 7 8 9 10 11 12 13	nb tot applications: average (213): average (top10): average (top20): Share top 10/213 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern dea1 Düsseldorf de71 Darmstadt de12 Karlsruhe de14 Tübingen dk0 Dänemark de25 Mittelfranken itc1 Piemonte dea5 Arnsberg	3569,74 16,76 142,77 98,04 0,40 8 1 0,14 0,04 0,32 0,36 352,58 285,09 163,00 124,88 112,58 90,60 80,39 75,91 75,11 62,31 60,39 58,90	nb tot applications: average (240): average (top10): average (top20): Share top 10/240 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern dea2 Köln de12 Karlsruhe itc4 Lombardia dea1 Düsseldorf dea5 Arnsberg de25 Mittelfranken de14 Tübingen de71 Darmstadt dk0 Dänemark	6035,9 25,15 254,41 171,36 0,42 8 1 0,15 0,09 0,04 0,31 0,37 760,87 331,21 319,32 197,33 180,73 170,63 163,44 146,69 136,99 136,99 136,99 126,41 97,53 95,25	nb tot applications: average (236): average (top10): average (top20): Share top 10/236 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern de12 Karlsruhe dea1 Düsseldorf dea2 Köln de25 Mittelfranken de14 Tübingen itc4 Lombardia dea5 Arnsberg de71 Darmstadt de13 Freiburg	6117,88 25,92 254,34 175,60 0,42 8 1 0,15 0,09 0,04 0,31 0,35 760,87 342,17 312,12 183,52 170,07 166,27 164,09 156,45 149,96 137,83 127,76 122,36
1 2 3 4 5 6 7 8 9 10 11 12 13 14	nb tot applications: average (213): average (top10): average (top20): Share top 10/213 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern dea2 Köln dea1 Düsseldorf de71 Darmstadt de12 Karlsruhe de14 Tübingen dk0 Dänemark de25 Mittelfranken itc1 Piemonte dea5 Arnsberg fr71 Rhône-Alpes	3569,74 16,76 142,77 98,04 0,40 8 1 0,14 0,08 0,04 0,32 0,36 352,58 285,09 163,00 124,88 112,58 90,60 80,39 75,91 75,11 67,54 62,31 60,39 58,90 57,48	nb tot applications: average (240): average (top10): average (top20): Share top 10/240 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern dea2 Köln de12 Karlsruhe itc4 Lombardia dea1 Düsseldorf dea5 Arnsberg de25 Mittelfranken de14 Tübingen de71 Darmstadt dk0 Dănemark fr71 Rhône-Alpes	6035,9 25,15 254,41 171,36 0,42 8 1 0,15 0,09 0,04 0,31 0,37 760,87 331,21 319,32 197,33 180,73 180,73 160,87 136,99 136,99 136,90 136,90 136,91 197,53 95,25 92,43	nb tot applications: average (236): average (top10): average (top20): Share top 10/236 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern de12 Karlsruhe dea1 Düsseldorf dea2 Köln de25 Mittelfranken de14 Tübingen itc4 Lombardia dea5 Arnsberg de71 Darmstadt de13 Freiburg dk0 Dänemark	6117,88 25,92 254,34 175,60 0,42 8 1 0,15 0,09 0,04 0,31 0,35 760,87 342,17 312,12 183,52 170,07 166,27 164,09 156,45 149,96 137,83 127,76 122,36 115,67 105,39
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	nb tot applications: average (213): average (top10): average (top20): Share top 10/213 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern dea2 Köln dea1 Düsseldorf de71 Darmstadt de12 Karlsruhe de14 Tübingen dk0 Dänemark de25 Mittelfranken itc1 Piemonte dea5 Arnsberg fr71 Rhône-Alpes itc4 Lombardia	3569,74 16,76 142,77 98,04 0,40 8 1 0,14 0,08 0,04 0,32 0,36 352,58 285,09 163,00 124,88 112,58 90,60 80,39 75,91 75,11 67,54 62,31 67,54 62,31 60,39 55,48	nb tot applications: average (240): average (top10): average (top20): Share top 10/240 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern dea2 Köln de12 Karlsruhe itc4 Lombardia dea1 Düsseldorf dea5 Arnsberg de25 Mittelfranken de14 Tübingen de71 Darmstadt dk0 Dänemark fr71 Rhône-Alpes itd5 Emilia-Romagna	6035,9 25,15 254,41 171,36 0,42 8 1 0,15 0,09 0,04 0,31 0,37 760,87 331,21 319,32 197,33 180,73 163,44 146,69 136,99 136,90 126,41 97,53 95,25 92,43 84,59	nb tot applications: average (236): average (top10): average (top20): Share top 10/236 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern de12 Karlsruhe dea1 Düsseldorf dea2 Köln de25 Mittelfranken de14 Tübingen itc4 Lombardia dea5 Arnsberg de71 Darmstadt de13 Freiburg dk0 Dänemark de26 Unterfranken	6117,88 25,92 254,34 175,60 0,42 8 1 0,15 0,09 0,04 0,31 0,35 760,87 342,17 312,12 183,52 170,07 166,27 164,09 156,45 149,96 137,83 312,7,76 122,36 115,67
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	nb tot applications: average (213): average (top10): average (top20): Share top 10/213 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern dea2 Köln dea1 Düsseldorf de71 Darmstadt de12 Karlsruhe de14 Tübingen dk0 Dänemark de25 Mittelfranken itc1 Piemonte dea5 Arnsberg fr71 Rhône-Alpes itc4 Lombardia de13 Freiburg se23 Västsverige fr24 Centre	3569,74 16,76 142,77 98,04 0,40 8 1 0,14 0,08 0,04 0,32 0,36 352,58 285,09 163,00 124,88 112,58 90,60 80,39 75,91 75,91 75,91 75,91 75,91 75,91 67,54 62,31 60,39 58,900 57,48 56,45 55,46 55,08	nb tot applications: average (240): average (top10): average (top20): Share top 10/240 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern dea2 Köln de12 Karlsruhe itc4 Lombardia dea1 Düsseldorf dea5 Arnsberg de25 Mittelfranken de14 Tübingen de71 Darmstadt dk0 Dänemark fr71 Rhône-Alpes itd5 Emilia-Romagna de13 Freiburg de27 Schwaben de91 Braunschweig	6035,9 25,15 254,41 171,36 0,42 8 1 0,15 0,09 0,04 0,31 0,37 760,87 331,21 319,32 197,33 180,73 170,63 180,73 170,63 136,99 136,99 136,99 136,99 136,99 136,99 136,99 136,99 81,87 84,59 81,87 81,39	nb tot applications: average (236): average (top10): average (top20): Share top 10/236 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern de12 Karlsruhe dea1 Düsseldorf dea2 Köln de25 Mittelfranken de14 Tübingen itc4 Lombardia dea5 Arnsberg de71 Darmstadt de13 Freiburg dk0 Dänemark de26 Unterfranken de27 Schwaben itc1 Piemonte fr71 Rhône-Alpes	6117,88 25,92 254,34 175,60 0,42 8 1 0,15 0,09 0,04 0,31 0,35 760,87 342,17 312,12 183,52 170,07 166,27 164,09 156,45 149,96 137,83 127,76 122,36 115,67 105,39 101,30
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18	nb tot applications: average (213): average (top10): average (top20): Share top 10/213 Germany in top 10: France in top 10: HII (top10) HII (top20) normalized HII (top20) GINI (top10) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern dea2 Köln dea1 Düsseldorf de71 Darmstadt de12 Karlsruhe de14 Tübingen dk0 Dänemark de25 Mittelfranken itc1 Piemonte dea5 Arnsberg fr71 Rhône-Alpes itc4 Lombardia de13 Freiburg se23 Västsverige fr24 Centre se12 Östra Mellansverige	3569,74 16,76 142,77 98,04 0,40 8 1 0,14 0,08 0,04 0,32 0,36 352,58 285,09 163,00 124,88 112,58 90,60 80,39 75,91 75,11 67,54 62,31 60,39 58,90 57,48 56,45 55,46 55,08 46,33	nb tot applications: average (240): average (top10): average (top20): Share top 10/240 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern dea2 Köln de12 Karlsruhe itc4 Lombardia dea1 Düsseldorf dea5 Arnsberg de25 Mittelfranken de14 Tübingen de14 Tübingen de71 Darmstadt dk0 Dänemark fr71 Rhône-Alpes itd5 Emilia-Romagna de13 Freiburg de27 Schwaben de91 Braunschweig de26 Unterfranken	6035,9 25,15 254,41 171,36 0,42 8 1 0,15 0,09 0,04 0,31 0,37 760,87 331,21 319,32 197,33 170,63 163,44 146,69 136,99 146,41 197,53 197,53 187,53 187,53 187,53 187,53 197,555 197,555 197,555 197,555 197,555 197,555 197,5555 197,5555 1	nb tot applications: average (236): average (top10): average (top20): Share top 10/236 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern de12 Karlsruhe dea1 Düsseldorf dea2 Köln de25 Mittelfranken de14 Tübingen itc4 Lombardia dea5 Arnsberg de71 Darmstadt de13 Freiburg dk0 Dänemark de26 Unterfranken de27 Schwaben itc1 Piemonte fr71 Rhône-Alpes de23 Oberpfalz	6117,88 25,92 254,34 175,60 0,42 8 1 0,15 0,09 0,04 0,31 0,35 760,87 342,17 342,17 312,12 183,52 170,07 166,27 164,09 156,45 149,96 137,83 127,76 132,36 115,67 105,39 0,93,58 78,59 76,10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 8 9 10 11 12 13 14 15 16 17 18 19	nb tot applications: average (213): average (top10): average (top20): Share top 10/213 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern dea2 Köln dea1 Düsseldorf de71 Darmstadt de12 Karlsruhe de14 Tübingen dk0 Dänemark de25 Mittelfranken itc1 Piemonte dea5 Arnsberg fr71 Rhône-Alpes itc4 Lombardia de13 Freiburg se23 Västsverige fr24 Centre	3569,74 16,76 142,77 98,04 0,40 8 1 0,14 0,08 0,04 0,32 0,36 352,58 285,09 163,00 124,88 112,58 90,60 80,39 75,91 75,11 67,54 62,31 60,39 58,90 57,48 56,45 55,46 55,08 46,33 42,49	nb tot applications: average (240): average (top10): average (top20): Share top 10/240 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern dea2 Köln de12 Karlsruhe itc4 Lombardia dea1 Düsseldorf dea5 Arnsberg de25 Mittelfranken de14 Tübingen de71 Darmstadt dk0 Dänemark fr71 Rhône-Alpes itd5 Emilia-Romagna de13 Freiburg de27 Schwaben de91 Braunschweig	6035,9 25,15 254,41 171,36 0,42 8 1 0,15 0,09 0,04 0,31 0,37 760,87 331,21 319,32 197,33 180,73 170,63 163,44 146,69 136,99 14,97 15,99 15,99 15,99 15,99 16,99 16,99 17,	nb tot applications: average (236): average (top10): average (top20): Share top 10/236 Germany in top 10: France in top 10: HHI (top10) HHI (top20) normalized HHI (top20) GINI (top10) GINI (top20) de11 Stuttgart fr10 Île de France de21 Oberbayern de12 Karlsruhe dea1 Düsseldorf dea2 Köln de25 Mittelfranken de14 Tübingen itc4 Lombardia dea5 Arnsberg de71 Darmstadt de13 Freiburg dk0 Dänemark de26 Unterfranken de27 Schwaben itc1 Piemonte fr71 Rhône-Alpes	6117,88 25,92 254,34 175,60 0,42 8 1 0,15 0,09 0,04 0,31 0,35 760,87 342,17 312,12 183,52 170,07 166,27 164,09 156,45 149,96 137,83 127,76 122,36 115,67 105,39 101,30 98,58 78,59

Source: Own calculation and illustration. EUROSTAT database; Regional science and technology statistics. Patent applications to the EPO by priority year at the regional level (February 2008).

The GINI values (Figure 3) are calculated for the periods 1989 to 1992 (mean, year 1990) and 1999 to 2002 (mean, year 2000). The values clearly show a high concentration of patenting in mechanical engineering; this concentration did not decrease between 1990 and 2000; additional analyses of several years contribute to this result. A total of 4.1% of all 241 observed regions, which are the ten best-performing regions, have contributed on average with 41.5% of all IPC F patents between 1999 and 2002. The top 20 have effected 56.5% of overall patenting. The 1990 average values are rather similar: 42.3% of all patenting was done by the top ten and 55.2% by the top 20 regions. Thus we suggest high externalities and also high potentialities for localised knowledge accumulation and standard-setting in clustered entities. The concentration coefficients are also high for the selected sample; $CC^{1990} = 0.748$; $CC^{2000} = 0.739$.

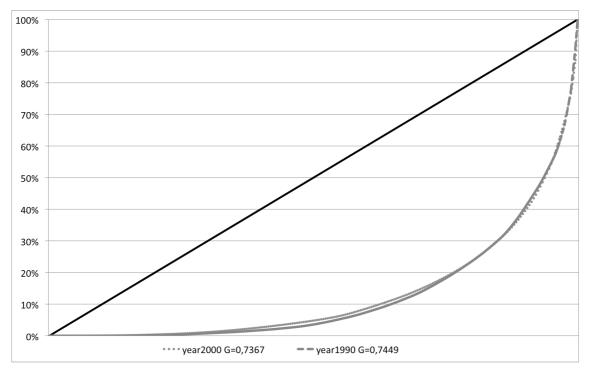


Figure 3: Mechanical engineering – Spatial Distribution of EPO-Patent Applications (nb tot) for 241 European Regions

Source: Own calculation; data from EUROSTAT database; average values and GINI coefficients are computed for 1990 (1989-1992) and 2000 (1999-2002).

In addition to the GINI values as concentration measures of technological knowledge, we calculated the region-specific Revealed Patent Advantage (RPA) for 251 NUTS regions (mostly NUTS2).²⁸ As shown in this table, patent application in mechanical engineering (IPC F) shows heterogeneous RPA values for the analysed sample of European regions. Values range from +94.00 (ee) to -99.99 (fi20).

²⁸ The RPA sample is larger than the GINI sample owing to higher data availability; we calculated the RPA for the year 2002. Other years showed similar structures of technological advantage.

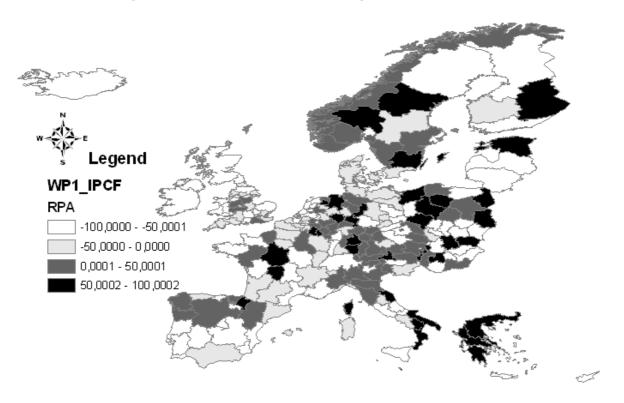
ID	NUTS	RPA_2002	ID	NUTS	RPA_2002	ID	NUTS	RPA_2002	ID	NUTS	RPA_2002
1 be		-35,44	64	def0	-44,90	127	ite3	57,82	190 :		62,83
2	be10	-35,38	65	deg0	-55,63	128	ite4	-71,58	191	sk01	68,78
3	be21	-20,23	66 ee		67,64	129	itf1	-75,83	192	sk02	-87,18
4	be22	7,49	67 ie		-67,93	130	itf2	-99,63	193	sk03	72,93
5	be23	-81,52	68 gr		23,17	131	itf3	-0,64	194	sk04	78,36
6	be24	-92,11	69 70	gr1	70,43	132	itf4	86,01	195		-57,49
7 8	be25 be31	-43,05 -74,75	70 71	gr2	51,24 -1,19	133 134	itf5 itf6	85,05	196 197	fi13 fi18	60,60 -75,14
8 9	be31 be32	-74,75	72	gr3 gr4	-1,19	134	itg1	67,73 -89,91	197	fi19	-75,14
10	be32 be33	44,43	73 es	gra	-31,36	136	itg2	-40,18	199	fi1a	-68,31
11	be34	62,56	75 03	es11	22,54	137 c		-100,00	200	fi20	-100,00
12	be35	-25,95	75	es12	-8,37	138 lv	,	-100,00	201		-11,20
13 cz		-6,30	76	es13	-99,55	139 lt	t	-100,00	202	se11	-58,19
14	cz01	23,62	77	es21	12,13	140 lu	L	59,11	203	se12	20,34
15	cz02	-99,55	78	es22	68,99	141 h	iu	-60,38	204	se21	57,71
16	cz03	-99,55	79	es23	-99,56	142	hu10	-66,82	205	se22	-26,63
17	cz04	-99,55	80	es24	9,60	143	hu21	62,26	206	se23	17,24
18	cz05	3,47	81	es30	-59,61	144	hu22	7,84	207	se31	-13,71
19	cz06	22,40	82	es41	18,46	145	hu23	-99,51	208	se32	56,89
20 21	cz07 cz08	-28,46 -99,54	83 84	es42 es43	-99,56 -99,56	146 147	hu31 hu32	-99,51 -99,51	209 210	se33	-52,26 -43,57
21 22 dk	C208	-16,91	85	es43 es51	-99,30	147	hu32	9,99	210	uk ukc1	-43,37
22 UK 23	dk0	-16,91	86	es51	-59,05	149 n		90,68	212	ukc2	-76,61
24 de	ano	25,01	87	es53	-0,22	150 n		-58,50	213	ukd2	-69,63
25	de11	77,50	88	es61	-11,79	151	 nl11	38,72	214	ukd3	-42,13
26	de12	35,99	89	es62	-99,56	152	nl12	-59,36	215	ukd4	-12,80
27	de13	-5,04	90	es70	-3,37	153	nl13	51,03	216	ukd5	-57,57
28	de14	51,63	91 fr		-16,13	154	nl21	-6,46	217	uke1	-30,51
29	de21	0,14	92	fr10	-0,57	155	nl22	12,48	218	uke2	-83,95
30	de22	-3,67	93	fr21	4,58	156	nl23	-95,66	219	uke3	-17,84
31	de23	37,80	94	fr22	-2,88	157	nl31	-61,40	220	uke4	-25,11
32	de24	26,09	95	fr23	20,38	158	nl32	-60,55	221	ukf1	10,48
33 34	de25 de26	41,23 42,72	96 97	fr24 fr25	52,19 -51,54	159 160	nl33 nl34	-59,15 -67,24	222 223	ukf2 ukg1	-8,01 0,50
35	de20 de27	34,52	98	fr26	-51,54	161	nl41	-07,24	223	ukg1 ukg2	34,28
36	de30	-80,63	99	fr30	-36,14	162	nl42	-64,82	225	ukg2 ukg3	-1,69
37	de41	-44,76		fr41	-30,75	163 a		19,90	226	ukh1	-69,27
38	de42	-57,48	101	fr42	-67,25	164	at11	77,78	227	ukh2	-74,89
39	de50	-67,77	102	fr43	-22,90	165	at12	7,15	228	ukh3	-39,63
40	de60	-44,56	103	fr51	15,90	166	at13	-88,46	229	uki1	-68,37
41	de71	-32,45	104	fr52	-73,78	167	at21	-59,73	230	uki2	-43,27
42	de72	6,94		fr53	-72,70	168	at22	0,97	231	ukj1	-64,97
43	de73	67,77	106	fr61	-12,55	169	at31	44,97	232	ukj2	0,29
44 45	de80 de91	-20,08 55,41	107 108	fr62 fr63	-27,37 55,87	170 171	at32 at33	76,20 39,78	233 234	ukj3 ukj4	-78,87 -42,90
45 46	de91 de92	55,41 17,48		fr63	-29,44	171	at33 at34	39,78 37,20	234 235	ukj4 ukk1	-42,90 -40,24
47	de92	10,63	110	fr72	-92,52	172 173 p		31,88	236	ukk2	-28,68
48	de94	56,35		fr81	-56,52	174	pl11	49,42	237	ukk3	-27,93
49	dea1	-3,85		fr82	-68,08		p112	14,14		ukk4	-8,95
50	dea2	19,91		fr83	86,24		, pl21	-96,85		ukl1	-94,41
51	dea3	-3,62		fr9	-99,99		pl22	-96,85		ukl2	-84,01
52	dea4		115 it		14,03		pl3	78,01	241	ukm	-94,41
53	dea5	52,09		itc1	37,03		pl4	64,03		. ukn0	-57,68
54	deb1	36,95		itc2	-4,57	180	pl5	54,67	243		-63,34
55	deb2	16,86		itc3	-20,20		pl6	58,18			10,87
56 57	deb3	-59,96 43,89		itc4		182 p		-27,73	245	no01	-51,64
57 58	dec0 ded1	43,89 -9,71		itd1 itd2	17,97 -79,63		pt11 pt15	40,80 -89,84		no02 no03	74,87 42,31
58 59	ded1 ded2	-58,39		itd2	10,60		pt15 pt16	-89,84		no04	42,31
60	ded2 ded3	-39,89		itd4	34,63		pt10 pt17	-89,83		no04	28,69
61	dee1	-11,34		itd5	23,12		pt18	-89,76		no06	37,32
62	dee2	-16,58		ite1	12,01		pt10 pt3	-89,84		no07	23,11
63	dee3	6,67		ite2		189 s	•	-14,59			,

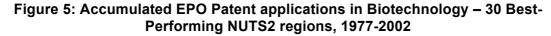
Table 2: Revealed Patent Advantage (RPA) in IPC F

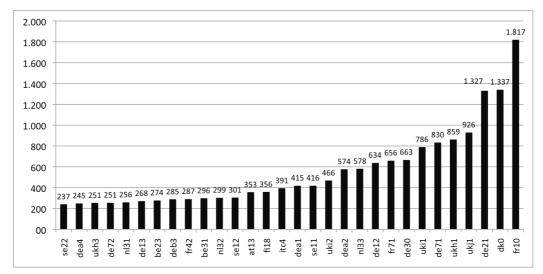
Source: Own calculation and illustration. EUROSTAT database; IPC F patent applications in year 2000; inventor location.

The RPA thus supports our argument that knowledge stocks vary enormously in a spatially disaggregated context; second, the table clearly shows that the national level (NUTS0) suppresses regional innovative performance, e.g. be34 (NUTS2) v. be (NUTS0). The extreme variety exists for nearly every country within the IPC F sample. National RPA values are in general lower than values for leading sub-national regions. Interestingly, some Eastern

European regions hold a high RPA value although overall patenting is at a very low level. Thus, we assume highly specialised knowledge owing to specialised clustering (Table 2 and figure 4).




Figure 4: Revealed Patent Advantage in IPC F, Year 2002


Source: Own illustration; Shape file from EUROSTAT; illustration with ArcGIS

2.2 Biotechnology

During the last twenty years, economists have observed a tremendous increase in patent applications, firm foundation and expansive growth rates, an increase in spin-offs, investment and employment in the field of biotechnology. Besides the overall European development and modifications in European STI policy, we suggest particularly that national and regional initiatives and programmes like the German 'BioRegio' contest, 'BioProfile' and 'BioFuture' initiatives boosted and influenced economic activities in biotechnology. In addition, the 'Kompetenzcluster' and 'Kompetenznetze' initiatives of the German Federal Ministry gradually propelled spatial biotech-concentration and technology competence.

The following Figure 5 highlights the 30 best-performing regions in Europe in the field of biotechnology. EUROSTAT concordance offers aggregated data for biotechnology. Similarly to mechanical engineering, the heterogeneity within the analysed group is very great. Ile-de-France (fr10), Denmark (dk0) and Oberbayern (de21) hold nearly nine to ten times more patents compared with lower ranks within the top 30, e.g. se22, dea4, ukh3. The leading three regions do nearly 30% of overall patenting of the top 30 group, which overall adds up to nearly 56.57% of all 241 regions.

Source: Own calculation and illustration. EUROSTAT database; Regional science and technology statistics, Mechanical engineering patent applications to the EPO (IPC F) by priority year at the regional level (April 2008).

We assume that open innovation determines progress in biotechnology.²⁹ Compared with mechanical engineering, and built upon our argument for cluster-specific knowledge stocks and inter-temporal knowledge externalities, we think that technological externalities are essential for the evolution of biotechnology in a disaggregated spatial context. Whereas specialised production clusters are heavily influenced by MAR externalities and intra-industry knowledge externalities, we rather assume the importance of inter-industry externalities (Jacobian externalities) and knowledge diffusion in the case of biotechnology. Most of the accomplished studies and research projects in the field of (dynamic) knowledge externalities mention the diverse importance of externalities/spillovers and their different effects on (localised) growth, spatial knowledge production, and (localised) knowledge diffusion. This idea is related to place-specific industrial lifecycles. Owing to the fact that biotechnology is a cross-section technology, which is influenced by and influences many different industries and sub-sectors, we suppose that the inter-industry model of spillovers is more adequate than the MAR model. Second, biotechnology represents an embryonic and fast-growing technology/ industry where competition is still very high and the degree and level of standardisation should still be lower than in the case of mechanical engineering. As a consequence, we expect much more competition, a higher rate of invention, shorter technology lifecycles and more venture capital-based funding than for mechanical engineering.

²⁹ Open innovation as a paradigm promotes the exploration and exploitation of many paths to the market. This active search for and advancement of multiple use cases and opportunities of value creation is important in order to establish biotechnology within innovation systems so that the early innovators capture profitable innovation rents.

As Figure 5 shows, biotech patent applications increased considerably between 1977 and 2003. The decrease of the total application number after 2002 is related to lags in the patent database; this effect is visible for all IPC classes.³⁰

Figure 6 builds upon data for the year 2002, and highlights biotechnology patent applications for 232 NUTS geographical entities. The figure shows perfectly that biotechnology is highly concentrated in the European landscape. We divided and separated the regions by a minimum value of 40 patent applications per million employees (per mio empl.) and 40 applications in total number (nb tot), which forms a group of leading regions.

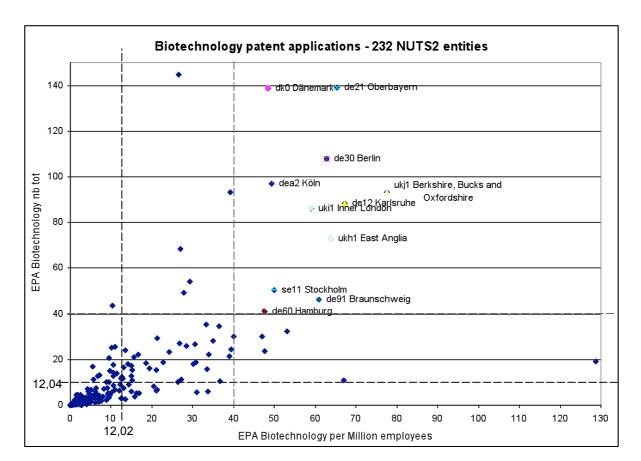


Figure 6: Biotechnology in 232 EU Regions (NUTS2 classification) – Relative and Absolute Knowledge Strength, Year 2002

Source: Own calculation and illustration. EUROSTAT database; Regional science and technology statistics, Biotechnology patent applications to the EPO by priority year at the regional level (February 2008). See Appendix D for a detailed IPC definition of biotechnology. Average number (nb tot): 12,04 patents (2002); average number (pat. appl. per mio employees): 12.02.

Although the accumulated number of patent applications at NUTS2 level shows an unequal distribution, we assume that biotechnology is less concentrated in absolute and relative terms (patenting per mio employees) than mechanical engineering and other medium-highand low-tech industries. Within the top ten and top 20 regions, the GINI values for

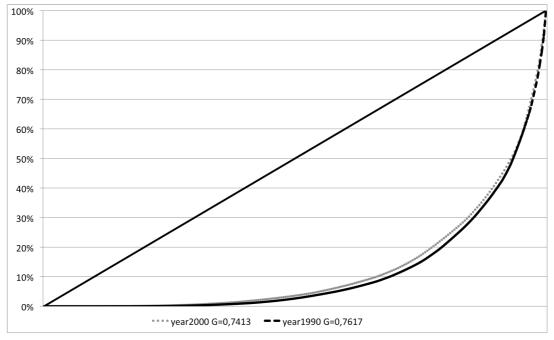
³⁰ EPO biotechnology patents are based upon the OECD biotechnology classification (IPC classification). See Appendix D for further details.

biotechnology show higher changes opposed to patenting in IPC F (Table 3). In addition, the measured stock of patent applications seems to highlight the fact that regional systems of innovation in biotechnology in the observed spatial sample are more dynamic than in the former analysed case of mechanical engineering (Herfindahl indices; GINI coefficients). This result could be because biotechnology resembles a cross-sectoral technology which is still in an embryonic, steep growth stage, influenced by strong market dynamics and STI policy. In our view, it is guite interesting to observe that several German regions could gain within the top ten spatial entities in terms of patent applications. Additionally, Table 3 shows that the average number of patent applications within the top ten performers is eight times higher than the average value within all observed entities. We conclude that the strong position and fast development of German regions is essentially influenced by, for example, the German 'BioRegio' competition and other STI policy initiatives. Our comparison of German NUTS2 regions with leading European regions in Table 3 clearly shows the dramatic catching-up process of German NUTS2 entities, measured by the EPO patent application number with respect to other European regions. If, as we suppose, we can take patent applications as a proxy for cluster-specific knowledge and technology diffusion, we would argue that the observed regions increased their technology competence. Moreover, we assume a quasi (place-specific) knowledge narrowing and cumulative deepening.³¹ The measured absolute (and accumulated) quantity of patent applications (nb tot) resembles in our opinion a good measure of absolute cluster strength, concerning cluster-specific knowledge stocks. When we compare absolute and relative patent application data, we can develop ideas about the absolute and relative strength of the regional areas in inter-regional comparison.

In addition, the top three regions in Table 3 did not change that much in the observed period of 1998 to 2002: Ile-de-France (fr10), Dänemark (dk0) and Oberbayern (de21). We observe higher dynamics in the lower positions, e.g. Braunschweig (de91), Köln (dea2), Essex (ukh3), and Berlin (de30). Additionally, we calculated the Herfidahl Index (HHI) and GINI indices (Table 3), which indicate a high and increasing concentration. Some regions gained in the ranking (Berlin, de30), whereas others dramatically lost position (Essex, ukh3). We are also aware, however, of time lags using patent data (e.g. lag of granting, truncation problems, etc.).

³¹ EPO patent application documents must include patent citations. If we were to analyse EPO patent applications and underlying patent citations, we would get an idea and additional information about the most important and essential patents and their spatial location.

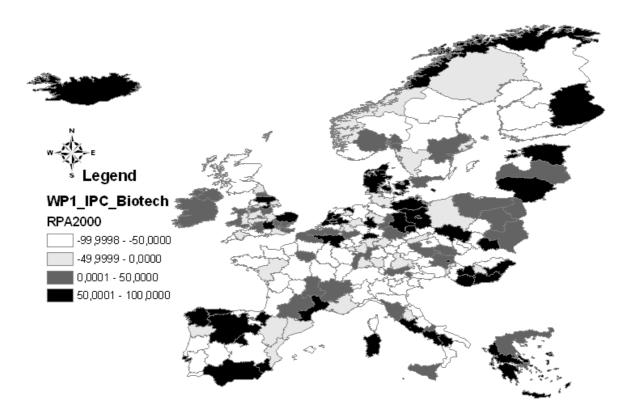
Table 3: Biotechnology in Europe: Patent Application Ranking (nb tot); 50 Best-Performing European NUTS2 Regions


	1985		1990		1995		2000		2002	
	average top10	17,10	average top10	31,09	average top10	48,85	average top10	104,83	average top10	106,11
	average top 20	11,55	average top 20	22,76	average top 20	34,71	average top 20	76,38	average top 20	75,85
	average 50	6,36	average 50	12,39	average 50	20,19	average 50	43,72	average 50	43,87
	applications (50)	318,16	applications (50)	619,52	applications (50)	1009,68	applications (50)	2185,83	applications (50)	2193,75
	share top10 fr:	10%	share top10 fr:	10%	share top10 fr:	20%	share top10 fr:	20%	share top10 fr:	10%
	share top10 de:	50%	share top10 de:	20%	share top10 de:	30%	share top10 de:	40% 30%	share top10 de:	40%
	share top10 uk:	20% 10%	share top10 uk:	40% 0%	share top10 uk:	20% 0%	share top10 uk:	30%	share top10 uk:	30% 0%
	share top10 it: Herfindahl (top50):	0,045	share top10 it: Herfindahl (top50):	0%	share top10 it: Herfindahl (top50):	0%	share top10 it: Herfindahl (top50):	0%	share top10 it: Herfindahl (top50):	0,032
	GINI (top10):	0,045	GINI (top10):	0,038	GINI (top10):	0,035	GINI (top10):	0,034	GINI (top10):	0,032
	GINI (top20):	0,365	GINI (top20):	0,204	GINI (top10):	0,209	GINI (top20):	0,266	GINI (top20):	0,124
	GINI (top50):	0,303	GINI (top50):	0,275	GINI (top50):	0,289	GINI (top20):	0,200	GINI (top50):	0,385
	Conc.C. (top50):	0,470	Conc.C. (top50):	0,449	Conc.C. (top50):	0,401	Conc.C. (top50):	0,402	Conc.C. (top50):	0,393
1	fr10 Île-de-France	37,03			fr10 Île-de-France	89,51		184,33	fr10 Île-de-France	144,81
2	de21 Oberbayern	30,39			dk0 Denmark	71,92		142,81	de21 Oberbayern	139,14
3	de71 Darmstadt		de21 Oberbayern		de21 Oberbayern		de21 Oberbayern	129,38		138,78
4	ukj1 Berkshire, Bu	19,39		32,60		50,30		102,93		107,76
5	dk0 Denmark	18,17		27,50		41,96		96,69		96,82
6	dea2 Köln	11,10		24,61		37,94		83,77		93,20
7	dea1 Düsseldorf	9,07	fi18 Etelä-Suomi	23,00	fr71 Rhône-Alpes	37,88		81,41		93,08
8	uki2 Outer Londoi	7,70	uki1 Inner London	22,75	nl33 Zuid-Holland	36,78	ukj1 Berkshire, Bud	79,09	de12 Karlsruhe	88,38
9	itc4 Lombardia	7,26	nl33 Zuid-Holland	20,30	de12 Karlsruhe	30,30	dea2 Köln	74,06	uki1 Inner London	86,10
10	de30 Berlin	7,14	ukh1 East Anglia	19,99	de71 Darmstadt	28,12	fr71 Rhône-Alpes	73,80	ukh1 East Anglia	73,06
11	de12 Karlsruhe	6,85	itc4 Lombardia	18,79	dea2 Köln	27,27	dea4 Detmold	71,50	fr71 Rhône-Alpes	68,60
12	fr71 Rhône-Alpes	6,50	de30 Berlin	18,48	fi18 Etelä-Suomi	23,76	de12 Karlsruhe	61,57	de71 Darmstadt	54,18
13	ukj2 Surrey, East		dea2 Köln	17,71		22,83		58,88		50,46
14	uki1 Inner Londor		at13 Wien		se11 Stockholm	20,82		50,17		49,37
15	fr62 Midi-Pyrénée		de12 Karlsruhe	15,27		19,77		45,26		46,07
16	se12 Östra Mellan		de11 Stuttgart	12,81			be31 Prov. Brabant	40,42		43,52
17	ukh1 East Anglia	5,76		12,79		18,51		39,48		41,16
18	se11 Stockholm		dea1 Düsseldorf	12,62		18,23		38,71		35,29
19	dea4 Detmold	5,25		10,89		17,76		37,48		34,76
20 21	se22 Sydsverige de11 Stuttgart		se23 Västsverige nl32 Noord-Holland	8,44		17,40	de14 Tübingen itc4 Lombardia	35,97 31,44		32,48 30,12
21	de11 Stuttgart at13 Wien	4,85			se12 Östra Mellansv ite4 Lazio	15,55		31,44		30,12
22	fr42 Alsace		de60 Hamburg	.,	ie0 Irland	13,40	be23 Prov. Oost-Vla	29,15		29,89
24	deb1 Koblenz	4,01		. ,	be24 Prov. Vlaams I	, .	deb3 Rheinhessen-F	26,97		29,69
25	fi18 Etelä-Suomi	, .	nl31 Utrecht	7,86		,	de13 Freibura	25,92		28,08
26	nl33 Zuid-Holland		be23 Prov. Oost-Vla	,	de14 Tübingen	12,19		25,66		26,96
27	be24 Prov. Vlaams	. , .	fr62 Midi-Pyrénées	, -	be31 Prov. Brabant	12,13		25,47		26,83
28	ukg3 West Midland		se12 Östra Mellansv	7,23		12,00		25,32		26,01
29	be21 Prov. Antwer	3,54	ukh2 Bedfordshire,	6,60	de13 Freiburg	11,82	se22 Sydsverige	24,95	uki2 Outer London	25,52
30	ukd3 Greater Man	3,47	itd3 Veneto	5,52	be23 Prov. Oost-Vla	11,66	fr42 Alsace	24,34	es30 Comunidad de	25,01
31	nl32 Noord-Hollar	3,39	ie0 Irland		dea1 Düsseldorf		de11 Stuttgart	23,71		24,36
32	def0 Schleswig-Ho		se22 Sydsverige	5,22			ukh3 Essex	23,53		24,17
33	ukj3 Hampshire a		be21 Prov. Antwerp		de91 Braunschweig	11,12		23,18		23,74
34	nl41 Noord-Braba	2,92		5,06			de92 Hannover	22,64		23,35
35	be10 Région de Br	2,77	ukf1 Derbyshire an	4,99		10,83		22,53		22,27
36	deb3 Rheinhessen	2,68			deb3 Rheinhessen-F		de91 Braunschweig	21,58		22,26
37 38	be31 Prov. Braban se23 Västsverige		de92 Hannover	,	se22 Sydsverige	10,62		21,23		21,48
38 39		2,62		,	be10 Région de Bru	10,20		20,33		21,10
39 40	de72 Gieflen de60 Hamburg	2,58	fr42 Alsace ukf2 Leicestershire		no01 Oslo og Akers uki2 Surrev, East a	10,04	5	19,85 19,51		20,82
40	nl22 Gelderland		de14 Tübingen		ukj2 Surrey, East a de92 Hannover	9,29 9,25		19,51		19,34 18,91
41	be33 Prov. LiËge	2,09	deb3 Rheinhessen-f	4,32			dea3 Münster	18,22		18,91
42	ite1 Toscana	2,07			ukd3 Greater Manch	- /	se23 Västsverige	17,94		18,75
44	fr30 Nord - Pas-d		ukj2 Surrey, East a	4,24		8,13		17,55		18,42
45	ukg1 Herefordshir		nl22 Gelderland	4,14			de72 Gieflen	17,18		18,09
46	fr53 Poitou-Chare	2,04			de11 Stuttgart	7,10	no01 Oslo og Akers	16,56		17,63
47	uke4 West Yorkshi	1,87	def0 Schleswig-Hol	3,99			es30 Comunidad de	16,27		17,37
48	be23 Prov. Oost-V		be31 Prov. Brabant	3,83			dee3 Magdeburg (N	16,11		16,64
49	ukf1 Derbyshire a	1,74	be24 Prov. Vlaams I	3,73		6,61	ukf1 Derbyshire an	16,02		16,22
50	at31 Oberösterrei	1,71	fr81 Languedoc-Ro	3,69	ukh3 Essex	6,54	ukj3 Hampshire an	15,99	be24 Prov. Vlaams I	15,70
-										

Source: Own calculation and illustration. EUROSTAT database; Regional science and technology statistics. Patent applications to the EPO by priority year at the regional level.

The following Figure 7 finally gives some indication about the spatial equality of the patent application distribution within 241 European NUTS2 regions. The figure shows the unequal performance of European regions in the selected field of biotechnology. Similarly to the patent application ranking in Table 3 and the illustrated distribution of biotech patents in Figures 5 and 6, the paper assumes that regional set-ups and competences differ considerably. The top ten regions, which represent 4.14% of the whole sample, account for 38.0% of overall patenting in biotechnology; 8.29% of all regions (top 20) do 53.98% of all patenting. This result clearly shows an ongoing but still smaller concentration in biotechnology than in mechanical engineering. Second, we point to the fact that regional

innovative performance is besides its high dynamics a path-dependent process owing to long-lasting knowledge accumulation; biotechnology shows fast-growing, spatially concentrated knowledge stocks.


Source: Own calculation; data from EUROSTAT REGIO (NewCronos) database; GINI coefficients are calculated for the years 1990 (1989-1992) and 2000 (1999-2002).

As is plainly visible, a GINI near 0.75 for all 24 observed regions indicates a tremendous concentration of biotechnology and thus spatially concentrated knowledge stocks in the analysed technology field. Additionally, the concentration seems stable for a ten-year period of observation: $G^{2000} = 0.74 \text{ v}$. $G^{1990} = 0.76$. The Concentration Coefficient (CC) is also high; $CC^{1990} = 0.765$ and $CC^{2000} = 0.744$. Consequently, three UK regions (ukj1, uki1, ukh1) did around 10% of overall patenting in 2000; four UK regions (ukj1, uki2, ukh1, uki1) contributed with 12.9% in 1990. We argue that these highly concentrated knowledge stocks contribute to localised knowledge diffusion and spatial effects on standard-setting owing to clustered economic valuable knowledge.

Table 4 and figure 8 highlight the RPA values for 2000 and the average value for 2000 to 2002. The following chapter will give some indications about the theoretical treatment of geography, clustering and knowledge.

ID NUTS	RPA 2000	RPA average 2000-2002	iD	NUTS	RPA 2000	RPA average 2000-2002	ID	NUTS	RPA 2000	RPA average 2000-2002
1 at	-3,76	-6,82	77	es51	-40,97	-48,05	153	nl12	-89,90	-88,58
2 at11	-47,42	-23,65	78	es52	-12,19	-19,89	154	nl13	-11,30	-4,95
3 at12	17,10	16,70	79	es53	-64,08	-23,81	155	nl21	-95,95	-95,46
4 at13	83,93	77,95	80	es61	66,42	47,25	156	nl22	57,83	60,73
5 at21	-98,80	-98,83	81	es62	81,55	83,05	157	nl23	87,91	91,50
6 at22	-62,00	-64,07	82		-69,23	-67,45	158	nl31	89,21	89,28
7 at31	-93,81	-93,76	83	fi13	65,68	61,37	159	nl32	52,43	58,04
8 at32	-93,53	-92,61	84		-59,97	-58,33	160	nl33	62,45	63,44
9 at33	13,80	-2,05	85	fi19	-98,25	-98,22	161	nl34	-96,49	-94,44
10 at34	-98,02	-97,63	86	fi1a	-86,23	-81,45	162	nl41	-91,93	-93,88
11 be	53,11	54,34	87		-100,00	-100,00	163	nl42	-30,83	-31,28
12 be1	41,72	44,72	88		-1,12	-2,89	164		-0,18	3,05
	41,72	44,72		fr10	14,17	-2,89			40,07	43,53
13 be2 14 be3	67,77	72,32	89 90		-96,43	-95,87	165 166	no01 no02	-94,47	-93,36
	-64,35	-68,78								
15 cz			91	fr22	-86,96	-86,35	167	no03	1,39	8,69
16 cz01	-13,85	-18,71	92		-91,72	-91,92	168	no04	-90,09	-91,09
17 cz02	-68,75	-90,04	93		-67,66	-61,07	169	no05	-19,15	-20,48
18 cz03	46,56	-88,14	94		-98,60	-98,82	170	no06	-32,32	-24,99
19 cz04	-19,66	5,15	95	fr26	-92,62	-92,68	171	no07	55,88	62,08
20 cz05	-93,90	-93,16	96		48,76	51,10			9,34	-5,37
21 cz06	8,14	7,48	97	fr41	-85,09	-84,92	173	pl11	-99,94	-99,92
22 cz07	-62,69	-54,52	98	fr42	44,68	39,52	174	pl12	43,62	21,02
23 cz08	-94,49	-92,80	99	fr43	-97,93	-97,91	175	pl21	59,50	38,73
24 de	-13,39	-12,79	100	fr51	-10,61	-17,72	176	pl22	-99,87	-99,89
25 de11	-96,96	-97,24	101	fr52	-73,48	-79,20	177	pl3	2,64	-50,98
26 de12	29,71	20,16	102	fr53	-74,90	-66,60	178	pl4	-12,25	-10,01
27 de13	-27,01	-31,85	103	fr61	-66,86	-71,40	179	pl5	86,63	80,60
28 de14	-15,22	-25,39	104	fr62	9,04	5,81	180	pl6	19,49	20,81
29 de21	-3,61	2,79	105	fr63	-77,38	-76,15	181		7,96	15,89
30 de22	-95,38		106	fr71	14,26	6,58	182	pt11	-3,63	17,46
31 de23	-61,57	-58,71	107	fr72	2,01	2,56	183	pt15	-99,22	-99,36
32 de24	-69,17	-69,18	108		73,80	67,94		pt16	-80,95	-74,38
33 de25	-76,25	-76,54	109	fr82	-1,61	1,34	185	pt10 pt17	69,98	62,73
34 de26	-34,90	-36,28	110		-100,00	-99,99	186	pt19	-96,72	-99,78
35 de27	-95,13	-95,17	111		52,15	31,28	187		-18,41	-7,66
36 de30	80,92	82,26	112		43,15	33,02	187		-12,75	3,94
								se11		
37 de4	70,77	67,29	113		57,26	47,61	189	se12	20,21	31,12
38 de50	40,10	40,37	114		35,74	9,26	190	se21	-93,67	-92,66
39 de60	46,58	39,41	115	gr4	92,85	83,10	191	se22	6,35	8,38
40 de71	-8,61	0,22	116		-15,54	-10,34	192	se23	-43,88	-40,16
41 de72	50,17	51,92	117	hu1	-39,64	-33,24	193	se31	-99,81	-99,71
42 de73	-71,26	-72,00	118	hu21	56,03	39,44	194	se32	-99,93	-99,92
43 de80	76,82	78,96	119	hu22	-76,48	-44,75	195	se33	-24,07	-0,83
44 de91	44,95	44,50	120		83,64	81,16	196	uk	33,49	35,27
45 de92	-11,89	-13,55	121	hu31	-84,67	-77,39	197	ukc1	3,59	-22,75
46 de93	-73,60	-72,26	122	hu32	81,48	82,06	198	ukc2	-41,28	-29,42
47 de94	-82,08	-82,44	123	hu33	76,67	55,37	199	ukd2	11,86	9,86
48 dea1	-27,06	-21,51	124	ie	29,88	20,83	200	ukd3	-4,22	-7,61
49 dea2	5,52	7,06	125	is	89,33	89,07	201	ukd4	-58,12	-50,85
50 dea3	-46,87	-43,51	126	it	-57,01	-59,05	202	ukd5	-32,54	-26,47
51 dea4	63,78	64,42	127		-92,05	-93,13		uke1	-17,39	-30,94
52 dea5	-90,89	-89,65	128		-99,85	-99,86		uke2	50,77	50,93
53 deb1	-95,48		129		-67,43	-65,78		uke3	75,42	70,66
54 deb2	-89,79		130		-62,01	-62,15		uke4	-13,33	-3,91
55 deb3	-25,61	-21,38	131	itd1	-94,10	-91,05		ukf1	20,40	19,36
56 dec0	-46,73	-53,64	132		-99,85	-99,86		ukf2	-25,61	-19,38
57 ded1	-98,65	· · ·	133		-96,67	-97,12		ukg1	-48,73	-58,86
58 ded2	-98,03	-79,73	133		-71,05	-97,12		ukg1 ukg2	-48,73	-26,66
58 ded2 59 ded3	-80,02	-79,73 68,29	134		-90,61	-73,00		ukg2 ukg3	-32,13	-20,00 7,54
60 dee	90,65		136		41,98	28,26		ukh1	61,57	59,73
61 def	-16,15	-20,99	137		-3,32	10,41		ukh2	38,64	39,53
62 deg0	4,88	1,96	138		-89,17	-89,53		ukh3	25,64	20,57
63 dk	75,14		139		59,73	60,11		uki1	79,02	80,83
64 ee	92,99	94,00	140		-76,26	-73,91	216	uki2	4,21	11,51
65 es	20,42		141		33,83	8,03		ukj1	63,46	65,27
66 es11	87,18		142		63,59	59,79		ukj2	-16,78	-17,40
67 es12	80,37	82,71	143		-93,42	-94,30	219	ukj3	-57,06	-42,74
68 es13	-99,88		144		86,85	84,57		ukj4	19,36	27,22
69 es21	-96,88		145	itf6	-99,78	-99,87		ukk1	32,22	31,91
70 es22	78,29	68,36	146	itg1	5,20	2,13	222	ukk2	-62,64	-67,09
71 es23	-99,72	-99,92	147	itg2	51,28	54,14		ukk3	-76,46	-67,30
72 es24	-49,05	-56,40	148		90,98	90,84		ukk4	-17,98	-37,08
73 es30	68,28		149		-94,12	-91,42		ukl1	30,98	51,60
74 es41	80,50	78,34	150		0,31	15,10		ukl2	-30,52	-12,06
75 es42	-99,97	-99,96	151		4,35	-1,44		ukm	-71,27	-71,54
76 es43	-88,42	-84,62	152		86,76	85,20		ukn0	49,44	44,61
, 0 6345	55,72	57,02	192		00,70	05,20	220	anno	-77,74	

Source: Own calculation and illustration. EUROSTAT database; IPC Biotech patent applications (inventor location) according to EUROSTAT concordance table; year 2000 and average (2000-2002).

Source: Own illustration; Shape file from EUROSTAT; illustration with ArcGIS

3 Clusters as Systems of Innovation

3.1 Technological and Sectoral Systems of Innovation

As opposed to the original national concept of systems of innovation, current SI conceptualisations conversely foster sectoral analysis, economic geography, agglomeration theory, and industrial specialisation.³²

The emergence of different SI conceptualisations is predominantly based upon different concepts and taxonomies that differentiate, for instance, between tacit and codified knowledge, as we will discuss later. In addition, federal and local governance structures, agglomerative tendencies, and different concepts of economic externalities are conceptualised as the most essential influencers of invention and innovation in localised systems.³³ In conclusion, geographical proximity of economic entities could represent one of the major determinants of the geography of innovation, of localised knowledge diffusion and, as we assume, of de facto technological standardisation.³⁴

³² Moulaert/Sekia (2003: 293); Gregersen/Johnson (1997: 482); Sharif (2006: 753).

 ³³ Feldman (1996: 71); Holbrook/Salazar (2003: 2); Cooke/Memedovic (2003: 1); Scott/Storper (2003: 581);
 Greunz (2005: 468); Simmie (2003: 611); Andersen et al. (2002: 185); Los/Verspagen (2007: 576-578).

³⁴ Lundvall (2007: 103); Carlsson (2006: 62).

Besides the hitherto dominating field of research at the nation-state level, academic literature and the policy sphere both show some really interesting modifications, conceptualisations and co-evolutions with reference to more disaggregated levels of analysis.³⁵ In any case, most contributions to SI underline the fact that national systems of innovation (NSI) are still of high importance and interest.³⁶ We reason, however, that the nation-state level approach is not really applicable and is less useful for cluster analysis and the conceptualisation of knowledge externalities. Additionally, the NSI concept does not really support open innovation and globalised knowledge creation. This drawback is primarily based on the original idea of the NSI conceptualisation in order to deal with problems and targets within the nation-state's borders. Functional boundaries of localised systems and clusters need a different perspective, which we base upon open innovation modelling and an adaptive systemic view. Owing to the hype of cluster studies and spatial modelling, the literature is increasingly enriched by several contributions that mainly focus on the geography of innovation and externalities.³⁷ Spatial innovation clusters like Silicon Valley (CA), Route 128 (MA) or Silicon Alley (NY) represent localised systems, agglomerations, and zones of urbanisation where technological specialisation and elementary causes of geographical agglomeration overlap. As a consequence, it is difficult to draw a clear-cut distinction between industrial and local perspectives.³⁸ As a result, global, continental, national, and sub-national conceptualisations of technological, organisational, institutional and economic determinants increasingly dominate the literature on SI. Some authors explicitly centre the necessity of an essential change of the perspective from a nation-state scale to geographical issues and especially to regional agglomeration appearances.³⁹ Therefore, these complementary SI conceptualisations and analyses represent an established method for elaborating the dynamics of spatial innovative performance, competitiveness and knowledge exchange.40

Several issues that relate to the nation-state level analysis of innovation were soon recognised and challenged within academic circles. Thus, the NSI concept seems to be too broad to explain sectoral and technological processes and industry specialisation.⁴¹

This idea goes back to Bo Carlsson and colleagues who focused to a great extent on *technological systems of innovation (TSI)* by centring on technology fields.⁴² In this regard, most authors refer to their work *Technological Systems and Economic Performance. The Case of Factory Automation* (1993).⁴³ In *Differing Patterns of Industrial Dynamics: New*

³⁵ Lundvall (2007: 100); Sharif (2006: 756).

³⁶ This phenomenon could be explained by the fact that national entities increasingly lose policy tools whereby nation-state policy weakens.

³⁷ Cooke et al. (1997: 476); Scott/Storper (2003: 581). For an additional overview see also Legler et al. (2006); Lundvall (2007: 112); Moulaert/Sekia (2003: 289).

³⁸ Malerba (2005: 400); Scott/Storper (2003: 582); Saxenian (1994: 4).

³⁹ Freeman (1995: 21); Sharif (2006: 756).

⁴⁰ Lundvall (2007: 100); Edquist (2005: 198-199).

⁴¹ Nelson/Rosenberg (1993: 5).

⁴² Carlsson/Jacobsson (1993); Carlsson/Stankiewicz (1991); Carlsson et al. (2002); Carlsson (2006: 58).

⁴³ Carlsson (1996); Carlsson (2006: 56).

Zealand, Ohio, and Sweden, 1978-1994, Carlsson (1996) presents his sectoral cross-country analysis on differing industrial systems results that relate to different circumstances.⁴⁴ Unsurprisingly, even Carlsson and Stankiewicz (1991) mention that technological systems show tendencies to geographical concentration. According to their ideas, agglomerative phenomena such as Route 128 and Silicon Valley represent regional and not national systems. Additionally, technological systems can also be transnational and even global. The boundaries rely on certain circumstances, such as capabilities, relationships, technologies, market requirements, interactions and even technological externalities.⁴⁵

A similar and complementary view within the economic literature represents the *sectoral systems of innovation* (*SSI*) approach, which is mostly related to the publication by Breschi and Malerba (1997). In comparison with the national case, Breschi and Malerba focus on certain groups of firms and organisations, separated by sectoral perspectives. In *Sectoral Innovation Systems, Technological Regimes, Schumpeterian Dynamics, and Spatial Boundaries*, Breschi and Malerba (1997) discuss organisations, especially firms, which co-evolve in specific sectors and which represent sources of new technologies and innovation.⁴⁶ According to their argumentation, sectoral systems have a knowledge base, technologies, inputs, and a (potential or existing) demand.⁴⁷ Malerba characterises these sectoral systems and their dynamics in terms of unique compositions of knowledge and technologies and infering set-ups of actors, networks and institutions. Such elements co-evolve over time and induce processes of change and transformation owing to evolutionary assumptions.⁴⁸

Depending on the respective issue, sub-sectors, industries or broader sectors can be analysed. Furthermore, the dynamics and path-dependent processes within sectoral systems are consequently sector-specific. Malerba himself, however, makes the important assumption that the relationship between national institutions and sectoral systems becomes substantial. The overlap of NSI and SSI is, however, subjective, owing to the flexibility of partial analysis. Identical to NSI, sectoral systems are also country-specific, unique and primarily independent of optimality requests. Finally, the Schumpeter Mark I and II units can also alternate.⁴⁹

3.2 Functional Boundaries and Specialisation Patterns

Despite the heterogeneous variety of research contributions to the field of agglomeration & innovation systems and its differing theoretical assumptions,⁵⁰ some works contributed to a

⁴⁴ Carlsson (1996: 220); Gregersen/Johnson (1997: 482); Carlsson/Stankiewicz (1991: 111).

⁴⁵ Carlsson/Stankiewicz (1991: 111); Sharif (2006: 756); Carlsson (2006: 58). Edquist similarly mentions functional boundaries (2001: 14).

⁴⁶ Edquist (2005: 184); Breschi/Malerba (1997); Malerba (2005: 64); Carlsson (2006: 58); Andersen et al. (2002: 185-186).

⁴⁷ Malerba (2002: 248); Malerba (2005: 64-65).

⁴⁸ Malerba (1999: 4); Malerba (2005: 66); Malerba (2002: 250).

⁴⁹ Malerba (2005: 67-69); Malerba (2002: 253). Malerba also makes the above-mentioned distinction between creative destruction caused by Schumpeter Mark I innovators, and creative accumulation originated by Schumpeter Mark II units (Malerba 2002: 253).

⁵⁰ Cooke (2001b: 23); Cooke/Memedovic (2003: 1-2).

better understanding of the transformation, hierarchy, and order within and between agglomeration appearances. In any case, innovation scholars accentuate several problems owing to the lack of an agreement on appropriate measures of the scale of RSI and clusters.⁵¹ Similarly, Holbrook and Salazar (2003) mention that the differences between RSI and clusters may not be clear at all. According to their definitions, an RSI could also be defined as a 'cluster of clusters'.⁵² In consequence, it requires us to specify what level of analysis we address with the terminus 'innovation cluster'. First, we argue that innovation clusters are entities in space which add value through the agents' geographical proximity. More precisely:

'A cluster is a connection of horizontal, vertical and lateral value adding activities contributed by different actors in proximity to one another which all act in relation to a specific industry. Together the actors are building a value adding web which defines the boundaries of the cluster. Direct and indirect interactions take place between these actors which may be reflected in strong, medium or weak links.' (Brown et al., 2007).

Furthermore, our working definition of innovation clusters respecting regional innovation systems draws both functional and geographical boundaries. Therefore, both Malerba's concept of sectoral innovation systems and Cooke and colleagues' definition of regional innovation systems applies. Sectoral innovation systems determine functional boundaries, whereas the regional innovation system determines the boundaries in space.⁵³ Malerba's concept of agents and resources in a sectoral innovation system is illustrated below.

Knowledge and technologies	 a sector's specific knowledge base technology inputs knowledge base & technologies define the sectoral boundaries which are changing over time
Actors and networks	 heterogeneous agents (organisations and individuals) connected through market and non-market relationships broader interaction than in markets for know-how and licensing or firm alliances & formal networks
Institutions	 'range from those [institutions] that bind or impose enforcements on agents to those that are created by the interaction among agents' national (i.e. patent system) or sectoral (i.e. labour market, financial institutions)

Table 5: Sectoral Systems of Innovation

Source: Malerba (2004: 17ff, own illustration).

'Firms in sectors have commonalities and at the same time are heterogeneous. ... it is proposed that a sectoral system of innovation (and production) is composed of a set of agents carrying out market and non-market interactions for the creation, production and sale of sectoral products. Sectoral systems have a knowledge base, technologies, inputs

⁵¹ Wixted (2006: 9).

⁵² Holbrook/Salazar (2003: 10).

⁵³ Interestingly, according to Malerba (2005), system boundaries are often defined in local terms and consequently the sectoral specialisation defines the specialisation of the whole geographical unit. As a consequence, sectoral specialisation and local agglomeration can overlap in specialised clusters.

and (potential or existing) demand.' (Malerba, 2004: 10)

'In sum, large-scale agglomeration – and its counterpart, regional economic specialization – is a worldwide and historically persistent phenomenon that is identifying greatly at the present time as a consequence of the forces unleashed by globalization. This leads us to claim that national economic development today is likely not to be less but rather more tied up with processes of geographical concentration compared with the past.'⁵⁴ (Scott/ Storper, 2003: 582)

Baptista/Swann (1998: 525) define geographical clusters as 'a strong collection of related companies located in a small geographical area'. Clusters therefore facilitate specialised labour pools, provide intermediate goods, and, most importantly, they create knowledge externalities & spillovers. Furthermore, if such spillovers are geographically bounded, clusters induce regional economic growth (Baptista/Swann, 1998: 525f). Innovation clusters/innovative clusters can also be taken for reduced NIS where system elements 'help stimulate the emergence of specific kinds of innovation in various segments of a national economy' (Bergman et al., 2001: 8).⁵⁵ We will refer to 'regional innovation systems' as follows:⁵⁶

'The notion of RSI has emerged as a territorially-focused perspective of analysis derived from the broader concept of NSI: A RSI may thus be defined as the localised network of actors and institutions in the public and private sectors whose activities and interactions generate, import, modify and diffuse new technologies within and outside the region.'⁵⁷ (lammarino, 2005: 499)

Regions as geographic termini represent large and complex phenomena which consist of different industries and more than one economic cluster.⁵⁸ Thus, finally, 'innovation clusters' stand for a fuzzy concept which includes national policy-induced networks (e.g. German High-tech Strategy), regional patterns of technological excellence (in particular innovation clusters which evolved from industrial districts), but also metropolitan areas (i.e. 'city-economies', cf. Jonas, 2006). Also note that within the literature on national systems and economic activity at the nation-state and sectoral level, major regional phenomena and

⁵⁴ 'The RIS concept, in line with that of the learning region, is the outcome of an intellectual debate at the intersection of two bodies of work, that on the organisation and systemness of innovation on the one hand, and that of spatial agglomeration on the other hand' (De Bruijn/ Lagendijk 2005: 1155).

⁵⁵ For the relationship between clusters and NIS, see also OECD (2001b).

⁵⁶ We take 'innovation clusters' and 'innovative clusters' for synonymous terms, whereas a 'regional innovation system (RIS)' may span more than one cluster. The concept of 'RIS' exclusively indicates an economics or economic geography analysis, whereas the concept of 'innovative clusters' is also used in innovation & technology management studies.

National systems of innovation (NSI)/regional systems of innovation (RSI) and national innovation systems (NIS)/regional innovation systems (RIS) are synonymous pairs.

⁵⁷ In a more detailed form, Asheim (1998) and Asheim and Gertler (2005) distinguish between three types of RSI, similar to Cooke's contribution: 'territorially embedded regional innovation systems', 'regionally networked innovation systems' and 'regionalized national innovation systems'. Nonetheless, the explanatory capability of regional approaches suffers from the lack of a homogeneous and common operationalisation across areas, territories and regions (cf. Crescenzi/Rodríguez-Pose, 2006: 5; Cooke/Memedovic, 2003: 3; DeBrujin/Lagendijk, 2005: 1156; Moulaert/Sekia, 2003: 291).

⁵⁸ Cooke/Memedovic (2003: 3). Some authors prefer the definition of spatially concentrated sectoral systems of innovation (SSI) to RSI.

peculiarities that affect localised innovation seem to be ignored.⁵⁹ As a result, some innovation scholars engage in extending and combining special theories and approaches related to spatial and regional analyses of innovation.⁶⁰

Chapter 4.3 emphasises the opportunity to set standards and to create industries respecting new use cases by clusters. Therefore we take clusters as an arrangement for innovation where agents cooperate and common goals are achieved. Furthermore, these arrangements seem to be history-dependent to some extent. Braczyk/Heidenreich (1998) in particular have illustrated how different types of regional innovation systems evolve from traditional strength and how regional success stories shape future specialisation patterns.⁶¹ For suggestions on how regional technological specialisation may be measured, see Appendix A.

Additionally, Table 6 summarises research on regional specialisation patterns in the course of time. Regional specialisation and the quest of the regions' role in globalisation have, *inter alia*, been studied by sociologists and economic geographers with social sciences background. For instance, researchers who emphasise the importance of regions in globalisation are Braczyk, Giddens or Heidenreich. This sociological research tradition once included debates on the role of the nation state or, more recently, discussions on what is called 'varieties of capitalism'.

⁵⁹ This perspective can be found in Hae Seo (2006: 3); Cantwell (2005: 557); Iammarino (2005: 498); Evangelista et al. (2002: 174); or Holbrook/Salazar (2003: 2).

⁶⁰ See, for instance, Braczyk et al. (1998: 414); Cooke et al. (1997: 475); Holbrook/Salazar (2003: 2); or Carlsson (2006: 58). Furthermore, literature is extended by Evolutionary Economic Geography. This sub-approach combines insights from New Economic Geography and systems of innovation literature (Boschma/Frenken 2007: 635-649).

⁶¹ Therefore some authors refer to a lock-in of regions or path dependencies.

Regional focus	Origins
<i>type 1: knowledge- and service- based</i> new high-tech / high-service ^{a)}	 clusters from mature industries which evolved competence in new industries like logistics or biotechnology (e.g. California) high-tech clusters promoted by state intervention (e.g. Singapore, Midi- Pyrénées)
type 2: industrial cluster formation paired with technological excellence significant improvements of given technology ^{a)}	 strong production clusters traditionally very strong in old industries like steel (e.g. North Rhine-Westphalia), electronics or mechanical engineering (e.g. Baden-Württemberg)
<i>type 3: routine manufacturing</i> cutting costs / increasing output ^{a)}	 regions where industrialisation set in relatively recently or regions that are strongly dependent on others' technological expertise e.g. Catalonia or Ontario.
<i>type 4: technological</i> <i>decoupling and niche</i> <i>production</i> customer knowledge exploitation / high-end / business models ^{a)}	 extensive specialisation in non-high-tech product characteristics, or in particular niches (e.g. Denmark) flexible division of labour

Table 6: Regional Specialisation

Source: Braczyk/Heidenreich (1998, own modification/extension). a) Own conclusions from reading.

Type 1 represents clusters that maintained their strong position in mature industries, but meanwhile gained a lead position in new industries (such like California with computers and biotechnology). Type 1 also covers successful regional specialization in new industries driven by government intervention / strong government support in the background like in the case of Singapore.⁶² Metropolises such like Paris, Hamburg or Brussels have evolved into international service centers;⁶³ their metropolitan areas can also be characterized as clusters of type one. Braczyk/Heidenreich argue that market-driven clusters like California are "primarily orientated to utilizing and further developing the possibilities of a given technology to their fullest extend" (Braczyk/Heidenreich, 1998, p. 426). Weak ties facilitate synergies between different industries, and a business environment that supports entrepreneurs & their business partners (business start-ups, freelancers, and financiers). Type 2 is characterized by "strongly locked" production clusters and industrial branches "closely interwoven through local supply and performance relationships" (Braczyk/Heidenreich, 1998, p. 419f). This type has stabilized regional competence through a high degree of interaction and holds a leading market position in old or mature industries. Type 3 regions are classified as such that occupy

⁶² Braczyk/Heidenreich, 1998, p. 418 and p. 419 Figure 16.1.

⁶³ Heidenreich, 1997, p. 502.

a "subordinate or downstream position in terms of their economically utilized technological capabilities" (Braczyk/Heidenreich, 1998, p. 420). Like as type 2 these clusters occupy a catching-up position in new industries.⁶⁴ Type 4 is characterized by economic success, but decoupling from the "leading edge of the continuing high-tech race" (Braczyk/Heidenreich, 1998, p. 422 and p. 422 Figure 16.4).

4 Opportunities from Open Innovation within Clusters: Knowledge & Standardsetting in Space

4.1 Novel Strategic Options

Previously, we particularly focused on how RIS or Innovation Clusters can be analysed in terms of spatial concentration in space.⁶⁵ This chapter conceptualises how firms and other agents can deploy special concentrated resources for new strategic options, learning processes and spillover effects: innovation clusters provide a market for inter-firm collaboration. The variety of assets and new capabilities emerging from the industrial arena encourage ambitious, collaborative projects, but also collective learning processes. We assume that new-to-the-firm knowledge in innovation clusters can either be based on bundling superior assets or on a collaborative exploration process which unfolds knowledge new to the market and thus may create novel use cases. Another benefit of spatial concentration of valuable resources may be an innovative milieu capable of stimulating dynamic business models and technological change by entrepreneurship and venture capital or consortia-driven product development processes. Positive effects concerning regional high skilled labour pools, unemployment rates or social welfare of regional innovation activities are not taken into account by this paper. Therefore, our paper also excludes any policy implications.

Particularly intensified collaboration, multilateral asset exchange and trading of intellectual property on markets for know-how are subject to open innovation processes and business models. The converse of the traditional mode of closed innovation, open innovation stands for business models and organisational design which takes know-how and ideas for goods which are traded on markets (e.g. trading patents or setting up technology spin-offs) and non-markets (partnerships ,etc.) and allows open access to innovation activities (thus facilities innovation *coram publico*), whereas closed innovation is based on proprietary intellectual property policies and strict access (Gerybadze/Slowak, 2008). 'Semi-open innovation', suggested as a term by Gerybadze, generates a new generic type of innovation where organisation design, access to intellectual property and knowledge are only open in parts and only to particular groups of firms with regard to standard-setting community

⁶⁴ Braczyk/Heidenreich, 1998, p. 421 Figure 16.3.

⁶⁵ For economic literature reviews on spatial phenomena such as industrial districts, innovative milieus, innovative clusters and regional systems of innovation (RSI) and their access to certain resources, see Christ (2007); lammarino (2005: 498); Asheim/Gertler (2005: 294); Cooke (2001: 949); Andersen et al. (2002: 185); Powel/Grodal (2005: 74); Cooke/Memedovic (2003: 10); OECD (1997: 8).

members.⁶⁶ Empirical studies on open innovation in multinational cooperation are offered by OECD (2008).

'The open innovation paradigm can be understood as the antithesis of the traditional vertical integration model where internal R&D activities lead to internally developed products that are then distributed by the firm. If pressed to express its definition in a single sentence, Open Innovation is the use of purposive inflows and outflows of knowledge to accelerate internal innovation, and expand the markets for external use of innovation, respectively. Open Innovation is a paradigm that assumes that firms can and should use external ideas as well as internal ideas, and internal and external paths to market, as they look to advance their technology ... The business model utilizes both external and internal ideas to create value, while defining internal mechanisms to claim some portion of that value.' (Chesbrough, 2006: 1)

Open innovation as a new paradigm claims to use various paths to the market; it is characterised by activities which span intellectual property and knowledge stocks across institutional and formal organisational boundaries.⁶⁷ We argue that regional innovation systems or innovation clusters provide a richer science, technology and innovation base than proprietary firm subsidiary networks can offer. They may embed regional markets, but their spatially concentrated resources may also be deployed in terms of open innovation. Particularly, we suggest that there are two outcomes from inter-firm cooperation within clusters respecting collaborative activities for innovation: first, collaboration leads to learning effects for each partner. It can be explained through intended knowledge flows/knowledge stock exchange, but also through unintended knowledge spillovers between the firms (see chapter 4.2). Second, firms collaborate in order to set strong standards for international markets. The common understanding about dominant use cases creates a basis for value added strategies of the firm (see chapter 4.3). Additionally, strong regional innovation systems create distinctiveness capable of attracting venture capital, highly skilled labour, born globals and multinational firms.⁶⁸ In management studies, such regional business environments (e.g. Silicon Valley) host the multinational firms' centres of global excellence.

'In the proprietary model of innovation, useful knowledge is scarce, hard to find, and hazardous to rely upon ... In Open Innovation, useful knowledge is generally believed to be widely distributed, and of generally high quality. Even the most capable and sophisticated R&D organizations need to be well connected to these external sources of knowledge.' (Chesbrough, 2006: 9)

We conclude that innovative clusters create more strategic options for each agent involved, particularly:

 On a micro-level of analysis, standard-setting and collaborative R&D between the cluster firms implies fewer costs, i.e. in terms of coordination or uncertainty

⁶⁶ The Center for International Management and Innovation, University of Hohenheim, developed a layered organisation concept that allows for a differentiated view on semi-open innovation processes (see Gerybadze, 2008a; König, 2008; Gerybadze/Slowak, 2008). Work in progress by Slowak (2009) looks at understanding the 'open' terminus in markets for technology and what RAND terms mean for the dynamics in the sectoral innovation system of industrial automation.

⁶⁷ Chesbrough (2003, 2006a, b); Gassmann/Enkel (2004); Gassmann (2006).

⁶⁸ 'Innovation clusters' then turn into a policy tool deployed in order to create global lead markets but also attractive locations for global R&D.

about trustworthiness. Furthermore, there are pre-competitive, but distinctive, assets in terms of value added from each firm which evolve better in a sticky, collaborative business environment than in a proprietary R&D laboratory. Such assets are about the use of fundamentally new technology, creating industry standards or coordinating rates of technological change within systemic, complex products and technology-based services.⁶⁹

- On a meso-level of analysis, we find that learning regions occur and that there is more knowledge accessible to the population of firms and other agents concentrated in spatial space.⁷⁰ A concentration of excellent knowledge stocks and specialised labour pools in space creates externalities, but also brings new ideas to the table. The variety and loose coupling in capabilities and approved knowledge could improve absorptive capacities for integrating other industries' standards or implementing technology in a new way as regards creating new kinds of use cases. The possible variety of technology domains of an industry is exemplified in Table 7.⁷¹

⁶⁹ For the term 'stickiness' or clusters as 'slippery' knowledge spaces, see Markusen (1996).

⁷⁰ Literature has also emphasised that we can look at cities or regions in terms of learning entities (e.g. Florida, 1995; Storper, 1995; OECD, 1999b; MacLeod, 2000; OECD, 2001a; for an overview see Rutten/Boekema, 2007). There is also in-depth research on how spatial concentration relates to competitiveness within the globalized economy (i.e. OECD, 2005a, 2006, 2007).

⁷¹ On a macro-level of analysis, we find that clusters are new entities in competition for direct investments, venture capital and social commitment of multinational cooperation and SMEs. From a growth & employment perspective, the clusters are a policy tool, for instance, for creating regional competitiveness or for exploiting excellent regional labour pools. As this addresses innovation policy issues and the role of national innovation systems for regional innovation activities and competitiveness, however, we think that such analysis needs to be described in a separate paper and thus cannot be addressed by our study.

Industry	Contributing Technology Domains / Fields of Expertise
nanotechnology (advanced miniaturisation technical systems) ^{a)}	at nanometer scale: functional materials / novel phenomena & properties (e.g. physical, chemical, biological, mechanical, electrical); composites; molecular electronics & photonics; sensors
biotechnology ^{b)}	 red (health, medical, diagnostics) yellow (food, nutrition science) blue (aquaculture, coastal and marine biotech) green (agricultural, environmental biotechnology) white (gene-based, see also McKelvey, 1996) brown (arid zone and desert biotechnology) gold (bioinformatics, nanobiotechnology) grey (classical fermentation and bioprocess technology)
production technologies: ^{c)} adaptive factories / process plants (intelligent products, learning production systems)	mechanical engineering; factory operation & control; industrial software & operation research for advanced algorithms; consumer market electronics, logistics technologies & IT (in particular, wireless technologies like Wireless Area Network or RFID); new / adaptive materials; semantic web technologies; sociologists & psychologists (re-integration of the human into the adaptive factory); industrial services

Table 7: Variety of Technology in Sectoral Innovation Systems with Respect to Industries

Source: a) Listing derived from NASA, Center for Nanotechnology (http://www.ipt.arc.nasa.gov/nanotechnology.html).

b) Listing taken from DaSilva (2004), slightly modified.

c) This listing is based on qualitative interview series in progress by the Center of International Management and Innovation, University of Hohenheim (particularly A. Slowak).

4.2 Classifying Inter- and Intra-cluster Knowledge Dynamics

For the establishment of our conceptual approach of innovation clusters and standardsetting, we analyse the regional agglomeration of firms in terms of regional 'knowledge capabilities' (existing knowledge stocks), which are explored by open innovation mechanisms and exploited by value added strategies. Clusters are then characterised by localised knowledge spillovers explored and exploited through the firms' dynamic capabilities.⁷²

'Such dynamic capabilities, where present, stimulate knowledge transfer spiralling that is complementary upgrading ... Crucially, research (rather than big institutions) becomes a key asset in knowledge spiralling as is increasingly recognised in firm practices.' (Cooke, 2005: 1130)

The approach is also essentially inspired by New Economic Geography Growth (NEGG) literature, which assumes regional growth differences and core-periphery outcomes owing to localised knowledge diffusion. Baldwin and colleagues (1999) and Baldwin and Martin (2004)

⁷² See Cooke (2005: 1129). He argues that globalisation is evolving from mode 1 (competition between multinational corporations & multilateral trade institutions) to mode 2 ('the quest by multinationals for exploitable knowledge in knowledgeable regions').

assume the spatial agglomeration of innovation and thus new knowledge owing to localised knowledge stocks.⁷³ Christ (2009b) contributes with a detailed NEGG and geography of innovation literature overview. Our conceptualisation builds upon but extends the basic NEGG idea by adding interdependencies between localised knowledge dynamics and standard-setting.

Furthermore, cooperation for better knowledge exploration and exploitation is addressed by various concepts of science-industry-policy interaction; for instance, the 'triple helix' approach.⁷⁴These approaches provide evidence that collaboration between various agents may create or unfold new knowledge, but also increase the efficiency of innovation processes. But they neither explain knowledge dynamics and evolution of technology nor do they sufficiently centre on open innovation mechanisms in regional innovation systems, which matter for functional boundaries of knowledge dynamics. For this reason, this conceptual approach can be considered unique apart from the fact that it sheds light on the tensions between the geography of innovation literature and economics of standardisation and technological standard-setting.

The following figures highlight the dynamics of knowledge creation and diffusion within (Figure 9) and between (Figure 10) innovation clusters; such knowledge dynamics are interlinked with standard-setting.

	0,					
	working for new knowledge (k _i)	working with approved knowledge (stock of knowledge K _i)				
	K1	K2				
knowledge diffusion: intended (flow) D1	knowledge matching and focusing	knowledge deepening				
knowledge diffusion: unintended (spillover/ externality) D2	entrepreneurial spillovers	inter-temporal spillovers (intra-/ inte⊧industry)				

Figure 9: Knowledge Dynamics in Innovation Clusters cluster i with affiliated agents j=1...n

Source: Own illustration.

We assume different constellations, depending on maturity, internationalisation (geography), and consortia structure of firms within and between specialised innovation clusters. We conceptualise four possible constellations (D1, D2, K1, K2) for intra-cluster knowledge

⁷³ Baldwin /Martin (2004); Baldwin et al. (1999). See Christ (2009b) for further details on NEGG.

⁷⁴ See Etzkowitz (2002), Etzkowitz/Leydesdorff (2000), Leydesdorff (2000) and Etkowitz/Leydesdorff (1997).

dynamics. Our approach differentiates between intended and unintended diffusion mechanisms, according to the existing literature. When challenging knowledge production and their externalities, researchers usually differentiate between two essential streams in literature. Essential determinants of our approach are knowledge spillovers, which are widely accepted in literature. As Castellacci (2007) has recently reasoned:

'The general proposition that innovation and inter-sectoral knowledge spillovers are important for the international competitiveness of manufacturing industries is a major point of agreement between new growth theories and evolutionary economics. The two approaches, however, differ substantially in terms of the conceptualization of the innovative process and the analysis of its economic impacts.' (Castellacci 2007: 6)

As a consequence, we introduce spillovers, although being aware that literature is divided into two groups. The first sub-group assumes technological progress and knowledge to be a (pure) public good (D2, unintended diffusion) and hence knowledge spillovers are perfect and not locally bounded. This would mean a broad diffusion of knowledge between and within geographical units or nation-states, which is not entirely useful for our cluster-specific conceptualisation. In contrast with the concept of perfect knowledge externalities (global spillovers), geographical and technological proximity is interlinked with localised intra- and inter-regional knowledge spillovers of tacit (implicit) knowledge.⁷⁵ Accordingly, the second pillar within the literature supports the idea of a costly transmission of knowledge across space. This group emphasises distance decay effects of knowledge diffusion that support these phenomena of spatial concentration and localised knowledge spillover.⁷⁶ We also follow this line of argumentation in our conceptual approach (D2, K1, K2). Furthermore, this stream in literature bifurcates into 'MAR externalities' (D2), which refer to intra-industry specialisation and 'Jacobian externalities' ⁷⁷(D2) which specify inter-industry externalities.⁷⁸ Some authors classify them as common synonyms for 'localization externalities' and 'urbanization externalities'. We do not share this view and classify MAR and Jacobian externalities as dynamic externalities, whereas localisation and urbanisation economies represent pecuniary (and static) externalities. MAR externalities are almost entirely allocated to industrial applomerations, and thus to intra-industry specialisation and decreasing competition. In addition, only firms in the same industry are able to internalise these externalities.⁷⁹ Conversely, Jacobian externalities represent inter-industry knowledge spillovers that originate from diversified knowledge and different local production structures. Thus, knowledge particularly spills between different industries and the existing pools of knowledge can also be applied in different industries.⁸⁰ From our point of view, these arguments and differences in spillover research are primarily interesting when we deal with the relationship between standard-setting and knowledge stock dynamics.

⁷⁵ Holbrook/Salazar (2003: 10); lammarino (2005: 500); Audretsch/Vivarelli (1995: 256).

⁷⁶ Paci/Usai (2000: 3); Malmberg/Maskell (2005: 2).

⁷⁷ Jacobs (1969).

⁷⁸ Döring/Schnellenbach (2004: 2).

⁷⁹ Paci/Usai (2000: 2); Breschi/ Lissoni (2001: 5).

⁸⁰ Jacobs (1969); Glaeser et al. (1992: 1127); Audretsch/Feldman (1999: 410).

Accordingly, our conceptualisation in Figure 9 incorporates a cluster-specific knowledge production function with new knowledge (K1), approved knowledge stocks (K2), knowledge flows (D1, intended) owing to pecuniary linkages, entrepreneurial spillovers (D2, unintended) from recent R&D activities, and inter- and intra-industry externalities (D2, unintended) from already accumulated knowledge. We expect intra-cluster externalities and cluster-specific technological spillovers owing to spatial proximity. Intended knowledge diffusion happens owing to pecuniary linkages and thus is defined as flows of knowledge (collaboration). Figure 9 additionally distinguishes between two types of activities related to knowledge dynamics; firms are either working for new knowledge (k_{ij}) or working with approved knowledge stocks (K_{ij}). Consequently, the intended diffusion of knowledge differentiates between knowledge matching and focusing and knowledge deepening. We conclude that technologies differ tremendously in this regard (see additionally chapter 4.3).

Second, in line with open innovation literature, open system boundaries, and inter-cluster cooperation and competition, Figure 10 (extension of Figure 9) conceptualises knowledge dynamics between innovation clusters, which extends and opens system boundaries owing to flows and spillovers.

Figure 10: Knowledge Dynamics between Innovation Clusters

Source: Own illustration; extension of Figure 9.

We conceptualise several types: inter-cluster collaboration, mobility of brains, and crossfertilisation. The figure also highlights unintended and intended knowledge diffusion mechanisms. The functional boundaries of knowledge diffusion again depend, however, on the technology. Thus, we assume cluster-specific knowledge production functions and their interdependence as follows:

(1)
$$\mathsf{Pat}_{i,t} = \alpha_1 \mathsf{RD}_{i,t} + \alpha_2 \mathsf{K}_{i,t-n} + \mathsf{W}_{ij}\beta_1 \mathsf{RD}_{i,t} + \mathsf{W}_{ij}\beta_2 \mathsf{K}_{i,t-n}$$

Cluster-specific innovative output (technological knowledge) Pat_{i,t} depends on the clusters' own R&D activities RD_{i,t}, and knowledge externalities of clusters' existing stock of approved knowledge K_{i,t(-n)} (with or without time lag). Additionally, Pat_{i,t} is influenced by technological and/ or spatial neighbouring cluster j via RD_{j,t} and K_{j,t} owing to technological and/or spatial proximity, which is captured by a proximity matrix W_{ij}. Note that such a production function can also be defined at the firm level.⁸¹ Additionally, RD_{j,t} could be replaced by W_{ij} μ Pat_{j,t} (W_{ij} μ K_{j,t}) which would represent a spatial autoregressive model/ spatial cross-regressive model with spatial dependence of innovative output (or input).

Within the next chapter, the tension and interdependencies between knowledge dynamics and standard-setting will be conjointly researched. We conclude that the conceptualisation of knowledge spillovers, dynamic externalities and knowledge flows within and between clusters could give important insights into the relationship and potential dependencies between spatial proximity, knowledge diffusion and standard-setting.⁸²

4.3 Collaborative Standard-setting

West (2007) distinguishes four phases of technology diffusion: specification of a technology, implementation, complement phase, and use phase. The first two phases, namely specification and implementation, establish a standard. Implementations and complements enhance and exploit a standard. The specification phase defines the core of a new technology whereas its implementation makes the technology available to the market. Hence, these two phases create the core concept of a new standard. Complementors then create added value respecting complements which build on this standard. Co-operation in the R&D process focuses on standard-setting, whereas market competition is based on complements and advanced functionality in line with the previously established core concept.

The terms behind Figure 11 are to be read as follows (cf. West, 2007: 95ff). 'Implementation' means to create a specification from a technology; its implementation generates products, but it also determines pricing and use policies; and finally, users adopt the implemented specification respecting use the products created if the create utility, i.e. in terms of interoperability. 'Complement providers' search for standards which open up large markets for them. Note that this model implicitly assumes some kind of network effects / markets where different goods interfere via standards.

⁸¹ There exists an increasing research community on KPF and knowledge spillovers. Because of our alternative focus, we do not discuss different knowledge production functions. See Christ (2009b) for further details and literature survey on this issue.

⁸² Audretsch/Vivarelli (1996: 250-256); Breschi/ Lissoni (2001: 1); Cooke/Memedovic (2003: 7); and Scott/Storper (2003: 183). For a detailed differentiation between rent spillover (traded innovative goods via market transaction) and pure knowledge spillovers (knowledge spills without transaction) see Los/Verspagen (2007) and Audretsch (1998).

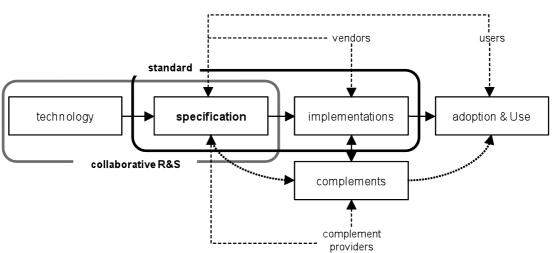


Figure 11: The Linear Standard-setting Process

Source: West (2007: 95, Figure 3.2), modified.

Standards at the same time drive innovation and restrain it. On the one hand, standards encourage the use of new product/specify important aspects of interaction in socio-technical systems, and they also describe usage and implementation of a new technology. On the other hand, they make particular socio-technical alternatives irrelevant (as those are not embedded in the specification/considered by the standard's selection) - standards thus devalue particular knowledge stocks and intellectual property. There are three key arguments which illustrate the economic value of standards. First, standards promote quality and embed know-how.⁸³ Second, firms establish standards in order to create value from technology and industrial knowledge. Firms invest in technologies, which are incompatible or different in their approach to competitors' portfolios. They gain strategic advantages if they can force their competitors to adopt. There is a particularly rich tradition in the analysis of 'standard wars'⁸⁴ and 'markets with network effects' which is continuing in case studies on video, office file and game formats. Third, standards serve as a framework for subsequent innovation and value capturing from technology. Authors who illustrate this point focus on the tension between intellectual property and specification versus implementation phases. The discussion in particular refers to terms such as intellectual property and standard-setting bodies⁸⁵ and the various 'meanings of open [standards]'.⁸⁶ Note that the reading of Simcoe (2006) illustrates that there is a trade-off between openness which accelerates a standard's diffusion (value creation) and the appropriation of innovation rents (value capturing) which mean to 'close' to some degree certain parts of a standard. Standard-setters produce

⁸³ In particular: Blind (2004); Fraunhofer ISI (2007); and DTI (2005). Blind/Jungmittag (2008) give statistical evidence that both national patents and standard stocks serve as an important knowledge pool for economic growth. For analysis of formal standardisation processes, see DeLacey et al. (2006), Blind (2006), Chiao et al. (2005); and Eickhoff/Hartlieb (2002).

⁸⁴ Important contributions for instance are Katz/Shapiro (1994, 1986, 1985); Farrell/Saloner (1986, 1985); Shapiro/Varian (1999b). For a recent summary see Shapiro/Varian (1999a).

⁸⁵ Among others Staniszewski (2007); Updegrove (2007b); Blind/Thumm (2004); Lemley (2002); or Blind et al. (2002). In the American literature intellectual property & antitrust also is an important research theme. For an overview on this topic see American Bar Association (2007).

⁸⁶ For this discussion see Krechmer (2006; 1998); Updegrove (2005a,b; 1995); and West (2004).

standardisation between different possible alternatives by agreements, either on technical documents⁸⁷ or in general⁸⁸. Finally, Swann's (2000) definition of standards turns standards-setting success into a competitive edge: standards are employed to solve problems of incompatibility, quality, variety and information. The technology diffusion process is typically modelled by an s-shaped curve (Geroski, 2000). It can either be taken for a linear process, characterised by path-dependent & evolutionary processes of selection, mental & technical lock-ins and mutation;⁸⁹ or a non-linear process, but representing a function of time.⁹⁰ In either case, firms need to participate within some kind of organisational frames which support their technologies by industry standards and stabilise their market segments.

In terms of knowledge we define the core concept respecting the common set of technology standards of a cluster as established from firm-specific knowledge stocks⁹¹ k_i, representing particular individual firms' knowledge stocks, that in turn represent the cluster-specific knowledge K_i), which the standard-setting partners agree on at the start of a new technology diffusion process. Other competing firm-level knowledge stocks k_m need to be made compatible with firm-specific k_is over time or they are abandoned. Standard-setting is characterised by a choice between different technology alternatives; thus, specification and implementation phases match and focus the portfolio of relevant knowledge stocks. Particular knowledge, however, is deepened in terms of value added by each firm in the market-place. More precisely, the adoption & use phase widens the portfolio of relevant knowledge stocks - firms modify the standards through 'value added' features and technologies at the market-place. Whereas the standard is a common good between the cluster members respecting a club good, market offers embed the standard in a way that allows the sale of something unique again. This transformation of the standard into a proprietary market offer, for instance, an industry solution, can be understood as 'creating value added' for a strong standard with regard to 'collaborating on the standard, but competing on implementation' (this idea is taken from Simcoe, 2006). That being so, the standard-setting process needs to be set in an industry context: value propositions either contribute to common knowledge stocks or create new knowledge and new implementations within an industry. Competing on implementation means that each firm contributes to the common stock of knowledge by collaborative standard-setting and de jure standardisation, but it also creates proprietary knowledge and services beyond this stock. This proprietary domain is the basis for 'value added' strategies at the market.

Our models of standard-setting as provided in the following Figures 12 and 13 extend the linear process by a nonlinear front end of pre-competitive activities related to complementary

⁸⁷ Updegrove, 2006; Geradin, 2006; Blind, 2004.

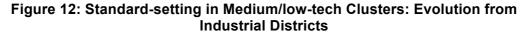
⁸⁸ Borowicz, 2001; Swann, 2000.

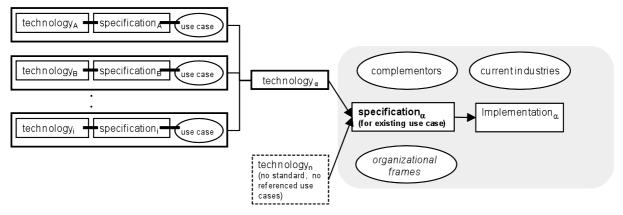
⁸⁹ Carrillo-Hermosilla/Unruh (2006), Arthur (1990), Arthur (1989), and David (1985). These are just examples taken from a rich, but still non-mainstream, research school.

⁹⁰ For literature on technology diffusion see Gerybadze (2004: 128-133); Damsgaard/Henriksen (2004); Rogers (2003); Geroski (2000); Barrell et al. (1999).

⁹¹ Such 'knowledge stocks' include technology assets such as secrets and patents, know-how necessary for implementation, but also competencies regarding the management of nonlinear and collaborative innovation processes.

Christ/Slowak


goods, industry context, creation or modification of a use case and organisational frames. It seems to us that maturity of the use case and complexity of technologies included in a standard (technology – specification – use case) and also the inner logics of organisational frames determine bargaining power in the specification process; the logics also shape intellectual property policies and time-to-standard. Note that there should be more sophisticated frames and that the use case should be more elaborated in non-high-technology industries. This is because the agents of the sectoral innovation system have experience and are familiar with well-established institutions of their activity fields. Conversely, high-technologies may be created for new use cases and demand novel complementary assets. If inventor firms are rather young or new to the sectoral innovation system, organisational frames for collaborative standard-setting are immature or they do not exist.


Particularly, an analysis of the standard-setting process in clusters should take into account the creation of a use case or even a lead market and organisational frames which coordinate standardisation interests among the population's agents. Note that organisational frames can be industry consortia, working groups of industry associations or de iure bodies. Also note that any specification of technology implicitly refers to a use case; the case ascribes artefacts or industrial processes to a technology (e.g. web browser to XML, or high-throughput experimentation to pharmaceutical and drug development or coatings industry). Therefore, our models distinguish between standard-setting in high- versus low-tech industries.

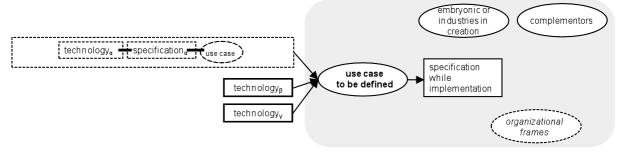
Our standard-setting model for low-tech industries, illustrated in Figure 12, is as follows. There are a well-defined sectoral innovation system, well-defined products & service markets and a well-established use case. Nonetheless, this arrangement is challenged by new technologies from overlapping fields and also from consumer high-technology. Thus the model must account for the capability of integrating other industries' specified technologies or standards (technology includes specification and original use case). These standards need to be coupled with the own industry's stock of technologies and knowledge. Furthermore, they need to be transformed into the use case of the own industry (e.g. consumer WiFi operates in a different context from industrial WiFi). Standards are usually created for current, traditional industries. In the light of the empirical case of industrial automation, Slowak (2008) has described how standard-setting in medium/low-tech industries takes place in standard-setting communities where firms collaborate on standards, but compete on implementations in the market. More precisely, it needs to be explained how firms can both collaborate and compete at the same time. There are dynamic capabilities which somewhat moderate a trade-off between collaboration (collaborative R&D, collaborative standardsetting, collaboration on market offers or sourcing) and proprietary activities (value added strategies), but also between the dimensions of value creation and value capture.

"[...] members of a standard-setting community solve the trade-off between exploitation and exploration (from a process view) respecting value created and value captured (from a knowledge dynamics view) through switching from competition to collaboration on standards. This switch is moderated and maintained by dynamic standard-setting capabilities ... standard-setting communities can be understood as innovation ecosystems or 'semi-open' clubs which specify and promote particular technologies in the context of particular use cases. They are arrangements where firms practice their standard-setting capabilities.' (Slowak, 2008)

'Collaborative standard-setting can be thought of as alignment against challenges from the market field. Standard-setting communities provide an institutional frame for replication of success by new, innovative but backward-compatible standard vintages.' (Slowak, 2008)⁹²

Source: Own illustration. Note that in this case technologies are well-known and innovation thus means to advance given technology. We assume that the use case is well established and that the new standard or new standard vintage refers to previous standards.

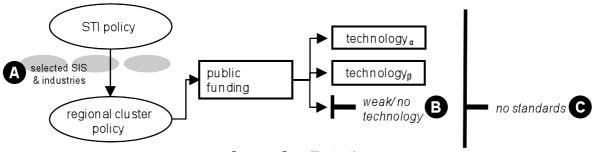
Given the number of technologies to be integrated into a standard and the various contexts (related industries, use cases, well-established organisational frames for standard-setting), innovation clusters in traditional and non-high-technology industries could serve as a place where systemic standards for systemic products⁹³ are created and where RIS and NIS are linked in order to ensure accurate representation of home-based MNEs in international de iure bodies such as the International Electrotechnical Commission for mechanical engineering. It seems that the variety of knowledge within a spatially concentrated innovation ecosystem is a very fruitful basis for synchronisation processes between knowledge stocks from various fields. From our perspective, the agents align firm and cluster strategies both striving for excellence. 'Openness' between the cluster partners within the standard-formation phase respecting technology specification allows for access on a broad variety of assets and capabilities which leverage the individual resources of each firm and – in doing so – promotes technology and knowledge spillovers from collaboration. There may also be positive externalities in terms of an emerging unique industrial atmosphere in the cluster.


⁹² A 'replication of success' implies that history does matter. Thus it could be fruitful to consider concepts such as path dependencies or technological lock-in. In the course of time, standards build on previous vintages which they defend or extend.

⁹³ Systemic products are either characterised by modularisation or by their hybrid mix from goods and services/by product-service bundles. (For a review on modularity in product architectures cf. Sanchez, 2008.) Quality standards guarantee a minimum product and service quality which reduces the search and transaction costs of a customer. They are the basis for most service industries (Swann, 2000a: section 1; additionally see Blind/Jungmittag, 2008). Furthermore, quality standards allow companies to develop new market segments of existing markets (Blind/Jungmittag, 2008).

Standard-setting in low-tech industries could be taken for sophisticated routines linked to the proven industry-specific innovation chain. Innovation clusters provide spatially concentrated resources in geographically bounded space; they are thus arrangements for collaboration, inter alia standard-setting, evolved over time.

Our standard-setting model for high-tech industries, illustrated in Figure 13, is as follows. The sectoral innovation system is not yet stabilised and dominant use cases lack a proper definition. Industries are still in an embryonic stage or they still need to be created. Technical high-tech standards are usually created for new fields or in a new product & service context. Thus, specification evolves while implementation matures. Standard-setting activity in high-tech respecting basically new knowledge and new technological know-how differs significantly from standard-setting in the low-technology case. It does not represent a replication process of success. Rather, standard-setting then is a challenge characterised by uncertainty, by yet unstructured industries or contexts, or sometimes determined by turbulences and changes in the emerging sectoral innovation system. As for innovation, standard-setting for embryonic technologies can be taken for a dynamic, nonlinear process where hierarchies, use cases and meaning have to be established from scratch. Note that there is no value creation without a market, but no market for new technology without a transparent use case, which implies the emergence or existence of standards.


Source: Own illustration. Note that in this case technologies are basically new and innovation also needs to create or stabilise the innovation ecosystem. Particularly, the use case is to be defined and organisational frames are insufficient for technology diffusion. The targeted industry is in an embryonic stage and complementors are just discovering the technology for their purposes.

Given the uncertainty and embryonic stage of the use case, innovation clusters in new technical fields respecting high-technology could serve as a place where new players get together, but also where the economic interests of the emerging sectoral innovation system are aligned and articulated to policymakers (e.g. legal concerns about gene research and cloning in biotechnology). Innovation clusters in high-tech create a context which means to define the sectoral innovation system, industry context and generic logics of implementation with regard to promising use cases.

(2)
$$S_{i,t} = \beta_1 S_{i,t-1} + \beta_2 \Delta \text{Tech}_{i,t} (\text{RD}_{i,t-1} + ... + \text{RD}_{i,t-n}, \text{dc}) + \sum_{j=1}^{N} \beta_j (\text{dc}, \text{IPR})$$

S_{i,t} represents a cluster's standard i created at period t, whereas \triangle Tech_{i,t} accounts for the technological progress relevant to S_{i,t} and created within the cluster at period t. Additionally, dc shall be the dynamic capability as 'ability to' deploy all resources accessible by the cluster. Furthermore, RD_i stands for research & development activities which are relevant to s_i and accessible to cluster members. $\sum \beta_j (dc, IPR)$ represents standards created outside the cluster which are integrated in or referenced to the cluster's standard s_i. Note that the ability to integrate such external standards depends on both dynamic capability (dc) and intellectual property rights given against integration or use by the cluster (IPR). Thus we denote it as *f* (dc, IPR).

Source: Own illustration.

STI policy has not been subject to our analysis for two reasons: first, policymakers could create artificial purposes which are often not necessarily in line with the industry's innovation agenda; and second, we argue that technology and standard-setting dynamics are better understood by leading firms than by regional governments or public funding departments. Nonetheless, if policymakers truly collaborate with leading firms our assumptions may not hold. More precisely, there could be a inefficient selection of sectoral innovation systems by STI policy (see mark A in Figure 14); secondly, cluster initiatives may not strive for ambitious project, they could also rather just seek funding for recent in-house development projects (mark B); and third, initiatives such as the German High-technology Initiative often focus on R&D in global trends such as biotechnology which are not necessarily in line with the standard-setting opportunities of a national innovation system (mark C). For, instance Germany is strong in mechanical engineering but the German High-technology Initiative is biased in favour of American strength such as biotechnology or information technologies.

Note that standard-setting processes differ depending on inter-firm/standard-setting organisation structures and institutions within the sectoral innovation system (see 'organisational frames' in Figures 12 and 13). In recent years, there has been much research conducted on the characteristics of de jure bodies, standardisation working groups in industry associations or on high-technology consortia. However, within the scope of this paper we cannot address 'organisational structure' as an issue.

4.4 The Synthesis of Standard-setting and Knowledge Creation

Standard-setting and knowledge creation activities interfere in space owing to standardsetting deploying knowledge stocks, and knowledge can only be used in a standardised form which allows for mental representation of knowledge, its transfer between teams and firms, and compatibility despite variety. More precisely, technical standards and business standards are inputs in 'working with approved knowledge' (see Figure 9 in chapter 4.2). Behavioural/business standards allow for fair behaviour against partners working for new knowledge; owing to uncertain and unknown outcomes of high-tech research and standardisation firms may not be able to fully negotiate ownership and access to future technology formally in advance. Velocity markets need flexible policies which are to be interpreted in terms of technology and industry dynamics. Note that fixed formal and static policies do not sanction hidden agendas, opportunistic behaviour as conceptualised by principal agent theory or bad faith bargaining in the course of time. Also note that standards are basically 'documents' from specification processes and therefore apply to many fields of economic activity, not only the development and diffusion of technology. In any case, extensive documentation of standards underpins the potentialities of technology-specific knowledge spill-over. Thus, knowledge dynamics and technological specification/alignment are interrelated. Know-how and knowledge represented in technology are crucial inputs of the standard-setting respecting the specification process. Technical standards must bring some functionality or technological advancement to the table in order to replace given standards and to defend their own implementation in the course of time.

5 Implications and Further Research

Our paper offers a complementary view on clusters from a geography of innovation, systems of innovation theory, and economics of standards perspective. We introduced a non-HT case (mechanical engineering) and HT case (biotechnology) for conceptualising technology-specific knowledge dynamics and standard-setting. Chapter 2 highlights a high concentration of patents in both technology fields. For this purpose, we calculated GINI coefficients, RPA values and Herfindahl indices by using EPO patent applications. RIS may be both sectoral innovation systems and settings of spatially concentrated economic activity where firms and other agents, in particular their knowledge stock, co-evolve over time. The explicit implementation of knowledge externalities and flows related to cluster-specific knowledge accumulation and finally the effect on standard-setting is essential.

Mechanical engineering is increasingly modernised by the integration of high-tech knowledge stocks and new technology designs (integrated stocks are both open standards, e.g. Internet technologies and patented technology, e.g. nanotechnology). Innovation is consequently often incremental and patents represent both input and output of knowledge creation. We primarily approach knowledge and patents as an output, which fosters knowledge diffusion by localised and cluster-specific knowledge production functions. Biotechnology in contrast represents a relative new and emerging technology field; processes of innovation are mainly

driven by defining the use case and sectoral innovation system for new high-tech methods (e.g. gene analysis and visual representation). Thus, patents are merely outputs or strategic tools to slow competitors in innovation; knowledge stocks are of a new kind.

Clusters may create strong and enduring standards which accelerate the process of technology diffusion, but also promote full exploration and exploitation of resources within a region. They may also stabilise lead markets at their location or create new market fields for new technologies from new standards and use cases. More precisely, we find that knowledge creation and standard-setting are cross-fertilising each other: Whereas the spatial concentration of assets and high-skilled labour provides new opportunities to the firm, each firm's knowledge stocks need to be contextualised. The context in terms of a use case for technology and 'knowledge biography' makes technologies (as represented in knowledge stocks) available for collaboration, but also clarifies relevance and ownership, in particular intellectual property concerns. Owing to this approach we propose a conceptualisation which contains both areas with inter- and intra-cluster focus. This concept paper additionally concludes that spatial and technological proximity benefit standard-setting in high-tech and low-tech industries in very different ways. More precisely, the versatile tension between knowledge stocks, their evolution, and technical specification & implementation requires the conceptualisation and analysis of nonlinear processes of standard-setting. Particularly, the use case of technologies is essential. Related to this approach, clusters strongly support the establishment of technology use cases in embryonic high-tech industries. Low-tech industries in contrast rather depend on approved knowledge stocks, whose dynamics provide better and fast accessible knowledge inputs within low-tech clusters. In this context, knowledge spillovers play a crucial role in technology diffusion and finally standard-setting.

Table 8 summarises additional lack of research related to our conceptual approach. We distinguish between two essential topics, which are highly dependent and interrelated. Technology competence needs further research in terms of patent and employment analyses. From this perspective, specialisation and localised accumulation of knowledge are of primary interest. Second, standard-setting competence has to be challenged intensively; such competence in innovation clusters particularly concerns the alignment of different partners' but also agglomerated industries' knowledge stocks in order to deepen the common STI base (matching of knowledge stocks). Therefore, the emergence of dominant patent classes and patent trees would be interesting to measure. Standard-setting activities in general could be quantified with respect to time until a momentum for a newly-specified technology has been reached, or also with respect to global high-norm activities.

Research Issue		Method	Suggested Data Base
technology competence	specialisation and level of highly- skilled labour	employment statistics, educational systems	EUROSTAT (NUTS1/2), ILO, OECD
	technological specialisation & technology complexity	patent count, inter-industry patent citations	EUROSTAT (NUTS1/2), PATSTAT, OECD
	competence accumulation (cumulativeness of knowledge stocks)	intra-industry patent citations (industries to be separated by SIC/IPC-USPTO concordances)	national databases incl. EPO (EPO, USPO, JPO), PATSTAT
standard-setting competence	momentum	time to and count of triad patents	OECD Triadic patent database, OECD MSTI (data need to be linked to national databases incl. EPO)
	capability of matching knowledge stocks	deepening of cluster- specific knowledge stocks k _{ij} over time (dominance and depth of patent trees)	national databases incl. EPO (EPO, USPO, JPO)
	global influence on formal standards (high- norm activities)	norm counting (for NIS)	PERINORM

Table 8: Agenda for Further Quantitative Research on Standard-setting &
Knowledge Dynamics in Innovation Clusters

Source: Own illustration.

References

- American Bar Association (2007), Intellectual Property and Antitrust Handbook, Chicago: ABA Section of Antitrust Law.
- Andersen, E. S., Lundvall, B.-Å., and Sorrn-Friese, H. (2002), Editorial. *Research Policy*, 31: 185-190.
- Arrow, K. J. (1962), The Economic Implications of Learning by Doing. *Review of Economic Studies*, 29, 1962: 155-173.
- Asheim, B. T. and Coenen, L. (2004), The Role of Regional Innovation Systems in a Globalising Economy: Comparing Knowledge Bases and Institutional Frameworks of Nordic Clusters, Conference on *Regionalization of Innovation Policy: Options and Experiences*, Jun 4-5, 2004. Berlin: German Institute for Economic Research (DIW).
- Asheim, B. T. and Coenen, L. (2005), Knowledge Bases and Regional Innovation Systems: Comparing Nordic Clusters. *Research Policy*, 34 (8): 1173-1190.
- Asheim, B. T. and Gertler, M. S. (2005), The Geography of Innovation: Regional Innovation Systems. In J. Fagerberg, D. C. Mowery and R. R. Nelson (Eds.), *The Oxford Handbook of Innovation*: 291-317. Oxford & New York: Oxford University Press.
- Asheim, B. T. and Isaksen, A. (2002), Regional Innovation Systems: The Integration of Local Sticky and Global Ubiquitous Knowledge. *Journal of Technology Transfer*, 27, 2002: 77-86.
- Arthur, W. B. (1989), Competing Technologies, Increasing Returns, and Lock-In by Historical Events. *Economic Journal*, 99 (394): 116-31.
- Arthur, W. B. (1990), Positive Feedbacks in the Economy. *Scientific American*, 262 (2): 92-97.
- Audretsch, D. B. (1998), Agglomeration and the Location of Innovative Activity. *Review of Economic Policy*, 14, 1998: 18-29.
- Audretsch, D. B. and Feldman, M. P. (1999), Innovation in Cities: Science-based Diversity, Specialization and Localized Competition. *European Economic Review*, 43, 1999: 409-429.
- Audretsch, D. B. and Vivarelli, M. (1996), Firms Size and R&D Spillovers: Evidence From Italy. *Small Business Economics*, 8, 1996: 249-258.
- Axelrod R., Mitchell, W., Thomas, R. E., Bennett, D. S. and Bruderer, E. (1995), Coalition Formation in Standard-Setting Alliances. *Management Science*, 41 (9): 1493-1508
- Baldwin, R., Braconier, H. and Forslid, R. (1999), Multinationals, Endogenous Growth And Technological Spillovers: Theory and Evidence. *Working Paper Series 519*, Research Institute of Industrial Economics: 1-26.
- Baldwin, R. and Martin, P. (2004), Agglomeration and Regional Growth, in: J. V. Henderson and J. F. Thisse (eds.), *Handbook of Regional and Urban Economics*, 1st Ed., 4 (60), 2004, Elsevier: 2671-2711.
- Baptista, R. and Swann, P. (1998), Do Firms in Clusters Innovate More?. *Research Policy*, 27 (5): 525-540.
- Barrell, R., Pain, N., and Corby, B. (1999), *Innovation, Investment and the Diffusion of Technology in Europe: German Direct Investment and Economic Growth in Postwar Europe.* Cambridge University Press.
- Bathelt, H., Malmberg, A. and Maskell, P. (2004), Clusters and Knowledge: Local Buzz, Global Pipelines and the Process of Knowledge Creation. *Progress in Human Geography*, 28 (1): 31-56.

- Blind, K. (2004), *The Economics of Standards: Theory, Evidence, Policy*. Cheltenham/ Northampton: Edward Elgar.
- Blind, K. (2006), Explanatory Factors for Participation in Formal Standardisation Processes: Empirical Evidence at Firm Level. *Economics of Innovation and New Technology*, 15 (2): 157-170.
- Blind, K., Bierhals, R., Thumm, N., Hossain, K., Sillwood, J., Iversen, E., van Reekum, R. and Rixius, B. (2002), *Study on the Interaction Between Standardisation and Intellectual Property Rights* [final research project report]. Fraunhofer ISI.
- Blind, K. and Jungmittag, A. (2008), The Impact of Patents and Standards on Macroeconomic Growth: A Panel Approach Covering Four Countries and 12 Sectors. *Journal of Productivity Analysis*, 29 (1): 51-60.
- Blind, K. and Thumm, N. (2004), Interrelation Between Patenting and Standardisation Strategies: Empirical Evidence and Policy Implications. *Research Policy*, 33 (10): 1583-1598.
- Bergman, E. M., Charles, D., and den Hertog, P. (2001), In Pursuit of Innovative Clusters. In OECD (Ed.), *Innovative Clusters: Drivers of National Innovation Systems*: 7-18. Book Series on Science & Information Technology, 2001 (21). Paris: OECD.
- BMBF (2006), *The High-Tech Strategy for Germany* (long english version). Bonn (http://www.bmbf.de/pub/bmbf_hts_lang_eng.pdf).
- BMBF (2007a), 38 Bewerber beim Spitzencluster: Wettbewerb des BMBF am Start [press release], Dec 10 (Pressemitteilung 248/2007) (http://www.bmbf.de/press/2194.php, http://www.hightech-strategie.de/_media/spitzencluster_bitv_1207.pdf).
- BMBF (2007b), 38 Cluster gehen an den Start: Die Bewerber im Spitzencluster-Wettbewerb des Bundesministeriums für Bildung und Forschung [applicantslist for the first round], Dec 10 (http://www.spitzencluster.de/pot/download.php/M%3A597+Bewerber+im+ Spitzencluster-Wettbewerb/~/_media/spitzencluster_bewerber_bik.pdf).
- BMBF (2008), Spitzencluster-Wettbewerb: 12 Bewerber sind in der Finalrunde [press release, selected applicants for the second/final round], Mar 11 (Pressemitteilung 047/2008) (http://www.bmbf.de/press/2257.php, http://www.bmbf.de/_media/press/ Spitzencluster-Finalisten.pdf).
- Boschma, R. A. and Frenken, K. (2007), A Theoretical Framework for Evolutionary Economic Geography: Industrial Dynamics and Urban Growth as a Branching Process. *Journal of Economic Geography*, 7, 2007: 635-649.
- Braczyk, H. J., Cooke, Ph. and Heidenreich, M. (1998), *Regional Innovation Systems*. London, UCL-Press.
- Braczyk, H.-J. and Heidenreich, M. (1998), Regional Governance Structures in a Globalized World. In H.-J. Braczyk, Ph. Cooke and M. Heidenreich (Eds.), *Regional Innovation Systems*: 414-440. London: UCL Press.
- Brenner, T. (2001), Simulating the Evolution of Localised Industrial Clusters: An Identification of the Basic Mechanisms. *Journal of Artificial Societies and Social Simulation*, 4 (3) (http://www.soc.surrey.ac.uk/JASSS/4/3/4.html).
- Breschi, S. and Lissoni, F. (2001), Knowledge Spillovers and Local Innovation Systems: a Critical Survey. *Liuc Papers, Serie Economia e Impresa*, 84: 1-30.
- Breschi, S. and Malerba, F. (1997), Sectoral Innovation Systems. In C. Edquist (Ed.), *Systems of Innovation: Technologies, Institutions and Organizations*. London: Pinter Publishers.
- Bröcker, J., Dohse, D. and Soltwedel, R. (2003), *Innovation Clusters and Interregional Competition. Advances in Spatial Sciences.* Berlin: Springer.

- Brown, K., Burgess, J., Festing, M., Royer, S., Steffen, C. and Waterhouse, J. (2007), Towards a New Conceptualisation of Clusters. In R. Chapman (Ed.), *Proceeding of* 21st ANZAM Conference: Managing our Intellectual and Social Capital. Sydney: Promaco Coventions.
- Buchanan, J. M. (1965), An Economic Theory of Clubs. *Economica*, 32, 1965: 1-14.
- Cantwell, J. (2005), Innovation and Competitiveness. In J. Fagerberg, D. C. Mowery and R. R. Nelson (Eds.), *The Oxford Handbook of Innovation*: 543-567. Oxford & New York: Oxford University Press.
- Carlsson, B. (1996), Differing Patterns of Industrial Dynamics: New Zealand, Ohio, and Sweden, 1978-1994. *Small Business Economics*, 8, 1996: 219-234.
- Carlsson, B. (2006), Internationalization of Innovation Systems: A Survey of the Literature. *Research Policy*, 35, 2006: 56-67.
- Carlsson, B. and Jacobsson, S. (1993), Technological Systems and Economic Performance: The Diffusion of Factory Automation in Sweden. In D. Foray and C. Freeman (Eds.), *Technologies and the Wealth of Nations*: 77-92. London & New York: Pinter Publishers.
- Carlsson, B., Jacobsson, S., Holmén, M. and Rickne, A. (2002), Innovation Systems: Analytical and Methodological Issues. *Research Policy*, 31, 2002: 233-245.
- Carlsson, B. and Stankiewicz, R. (1991), On the Nature, Function and Composition of Technological Systems. *Journal of Evolutionary Economics*, 1991, 1: 93-118.
- Carrillo-Hermosilla, J. and Unruh, G. (2006), Technology Stability and Change: An Integrated Evolutionary Approach. *Journal of Economic Issues*, XL (3): 707-742.
- Cerri, D. and Fuggetta, A. (2007), *Open Standards, Open Formats, and Open Source*, Final Draft V5.0
- Chesbrough, H. (2003), The Era of Open Innovation. *MIT Sloan Management Review*, 44 (3): 35-41.
- Chesbrough, H. (2006a), Open Business Models: How to Thrive in the New Innovation Landscape. Boston (MA): Harvard Business School Press.
- Chesbrough, H. (2006b), Open Innovation: A New Paradigm for Understanding Industrial Innovation. In H. Chesbrough, W. Vanhaverbeke and J. West (Eds.), Open Innovation: Researching a New Paradigm: 1–12. Oxford & New York: Oxford University Press. (http://alfonsofuggetta.org/mambo/images/stories/Documents/Papers/openness.pdf).
- Chiao, B., Lerner, J. and Tirole, J. (2005), The Rules of Standard Setting Organizations: An Empirical Analysis. *Harvard NOM Working Paper*, No. 05-05 (http://ssrn.com/abstract=664643).
- Christ, J. P. (2007), Varieties of Systems of Innovation: A Survey of their Evolution in Growth Theory and Economic Geography. *Schriftenreihe des Promotionsschwerpunkts Globalisierung und Beschäftigung*, No. 25/2007. Stuttgart, Oldenburg & Schwerte: University of Hohenheim/Carl von Ossietzky University Oldenburg/Evangelisches Studienwerk.
- Christ, J. P. (2009a), Regional Systems of Innovation and the Geography of Innovative Activity: Knowledge Spillovers, Localized Knowledge Pools and Global Knowledge Pipelines. In H.-P. Baumeister, M. Kramer and S. Seiter (Eds.), *Knowledge Economy. A Multilayer Callenge for European Regions*. Marburg: Metropolis-Verlag (forthcoming).
- Christ, J. P. (2009b), New Economic Geography Reloaded: Localised Knowledge Spillovers and the Geography of Innovation. In FZID Working Paper Series, Forschungszentrum Innovation und Dienstleistung (FZID), 01/2009, University of Hohenheim, Stuttgart (forthcoming).

- Church, J. and Gandal, N. (2004), Platform Competition in Telecommunications. *CEPR Discussion Paper*, No. 4659, Tel Aviv University (http://www.cepr.org/pubs/new-dps/showdp.asp?dpno=4659).
- Cooke, Ph. (1998), Introduction: Origins of the Concept. In H. Braczyk, Ph. Cooke, and M. Heidenreich (Eds.), *Regional Innovation Systems*. London: UCL-Press.
- Cooke, Ph. (2001a), Regional Innovation Systems, Clusters, and the Knowledge Economy. *Industrial and Corporate Change*, 10 (4): 945-974.
- Cooke, Ph. (2001b), From Technopoles to Regional Innovation Systems: The Evolution of Localised Technology Development Policy. *Canadian Journal of Regional Science*, 24 (1): 21-40.
- Cooke, Ph. (2005), Regionally Asymmetric Knowledge Capabilities and Open Innovation: Exploring 'Globalisation 2' – A New Model of Industry Organisation. *Research Policy*, 34 (8): 1128-1149.
- Cooke, Ph. and Memedovic, O. (2003), Strategies for Regional Innovation Systems: Learning Transfer and Applications. *Policy Papers*. Vienna: United Nations Industrial Development Organization (UNIDO).
- Cooke, Ph., Gomez Uranga, M. and Etxebarria, G. (1997), Regional Innovation Systems: Institutional and Organisational Dimensions. *Research Policy*, 26, 1997: 475-491.
- Cornelis, J. and Wynants, M. (2008), *How Open Is the Future?: Economic, Social & Cultural Scenarios Inspired by Free & Open-Source Software*. Brussels: VUBPRESS.
- Crescenzi, R. and Rodríguez-Pose, A. (2006), R&D, Spillovers, Innovation Systems and the Genesis of Regional Growth in Europe. *Bruges European Economic Research Papers* (*BEER*), No. 5.: 1-32.
- Dahl, M. S. and Pedersen, C. Ø. R. (2004), Knowledge Flows through Informal Contacts in Industrial Clusters: Myth or Reality?, *Research Policy*, 33 (10): 1673-1686.
- Dahlman, E., Gudmundson, B., Nilsson, M. and Skold, A. (1998), UMTS/IMT-2000 Based on Wideband CDMA. IEEE Communications Magazine, 36 (9): 70-80.
- Damsgaard, J. and Henriksen, H. Z. (2004), Networked Information Technologies: Diffusion and Adoption, *IFIP International Federation for Information Processing*. Kluwer.
- DaSilva, E. J. (2004). Editorial: The Colours of Biotechnology Science, Development and Humankind. *Electronic Journal of Biotechnology*, 7 (3), Dec 15, 2004 (http://www.ejbiotechnology.info/content/vol7/issue3/editorial.html).
- David, P. A. (1985), Clio and the Economics of QWERTY. *American Economic Review*, 75 (2): 332-337.
- DeBruijn, P. and Lagendijk, A. (2005), Regional Innovation Systems in the Lisbon Strategy. *European Planning Studies*, 13 (8): 1153-1172.
- DeLacey, B. J., Herman, K., Kiron, D. J. and Lerner, J. (2006), Strategic Behavior in Standard-Setting Organizations. *Harvard NOM Working Paper*, Sept 1, 2006 (http://ssrn.com/abstract=903214).
- De la Mothe, J. and Mallory, G. (2003). Industry-Government Relations in a Knowledge-Based Economy: The Role of Constructed Advantage. *PRIME Discussion Paper*: 02-03. University of Ottawa: Research in Innovation Management and Economy.
- Dosi, G. (1988), Institutions and Markets in a Dynamic World. *The Manchester School of Economic and Social Studies*, 56 (2): 119-146.
- Döring, Th. and Schnellenbach, J. (2004), What Do We Know About Geographical Knowledge Spillovers and Regional Growth? A Survey of the Literature. *Deutsche Bank Research Notes,* No. 14, Oct 12, 2004: 1-33.

- DTI (2005): The Empirical Economics of Standards, *Economics Papers*, No. 12 (http://www.bsi-global.com/upload/Standards%20&%20Publications/Government/Empirical_Economics .pdf).
- EC (2006), *Manufuture Strategic Research Agenda: Assuring the future of manufacturing in Europe*. Report of the High-Level Group. Brussels: European Commission.
- Edquist, Ch. (1997), *Systems of Innovation: Technologies, Institutions and Organizations*. London: Pinter Publishers.
- Edquist, Ch. (2001), The Systems of Innovation Approach and Innovation Policy: An Account to the State of the Art. *Lead paper presented at the DRUID Conference*, Aalborg, June 12-15, 2001.
- Edquist, Ch. (2005), Systems of Innovation. Perspectives and Challenges. In J. Fagerberg,D. C. Mowery and R. R. Nelson (Eds.), *The Oxford Handbook of Innovation*. Oxford & New York: Oxford University Press 2005, pp. 181-208.
- Eickhoff, G. and Hartlieb, B. (2002), Einfluss auf Normen-Inhalte: Europäischer und internationaler Fokus. In T. Bahke, U. Blum and G. Eickhoff (Eds.), Normen und Wettbewerb: 172-188. Berlin, Wien & Zürich: Beuth.
- Engel, D. and Oliver H. (2005), Stimuliert der BioRegio-Wettbewerb die Bildung von Biotechnologieclustern in Deutschland? – Ergebnisse einer ökonometrischen Analyse, ZEW Discussion Paper No. 05-54, Mannheim.
- Etzkowitz, H. (2002), The Triple Helix of University Industry Government: Implications for Policy and Evaluation. Working paper 2002-11. Stockholm: The Swedish Institute for Studies in Education and Research (http://www.sister.nu/pdf/wp_11.pdf).
- Etkowitz, H. and Leydesdorff, L. (1997), *Universities and the Global Knowledge Economy*. London: Pinter.
- Etzkowitz, H. and Leydesdorff, L. (2000), The Dynamics of Innovation: From National Systems and "Mode 2" to a Triple Helix of University-Industry-Government Relations. *Research Policy*, 29 (2): 109-123.
- European Commission (2008), EU Industrial R&D Investment Scoreboard. Oct, 2008. (http://iri.jrc.ec.europa.eu/research/scoreboard_2008.htm)
- Evangelista, R., Iammarino, S., Mastrostefano, V. and Silvani, A. (2002), Looking for Regional Systems of Innovation: Evidence from the Italian Innovation Survey. *Regional Studies*, 36 (2): 173-186.
- Fagerberg, J. (2005), Innovation: A Guide to the Literature. In J. Fagerberg, D. C. Mowery and R. R. Nelson (Eds.), *The Oxford Handbook of Innovation*: 1-26. Oxford & New York: Oxford University Press.
- Fagerberg, J. (2006), Innovation, Technology and the Global Knowledge Economy: Challenges for Future Growth, Working Paper, prepared for *"Green Roads to Growth"*, Mar 1-2, 2006. Copenhagen.
- Farrell, J. and Saloner, G. (1985), Standardization, Compatibility, and Innovation. *Rand Journal of Economics*, 16(1): 70-83.
- Farrell, J. and Saloner, G. (1986), Installed Base and Compatibility: Innovation, Product Preannouncements, and Predation. *The American Economic Review*, 76 (5): 940-955.
- Feldman, M. (1994), The Geography of Innovation. *Economics of Science, Technology and Innovation*, Vol. 2. Kluwer Academic Publishers.
- Feldman, M. (1996), Geography and Regional Economic Development: The Role of Technology-Based Small and Medium Sized Firms. *Small Business Economics*, 8, 1996: 71-74.

Florida, R. (1995), Toward the Learning Region, Futures, 27 (5): 527-536.

Fraunhofer ISI (2007), *INTEREST: Integrating Research and Standardisation* [continuing research project]

(http://www.isi.fraunhofer.de/p/Projektbeschreibungen/kb_interest_e.htm).

- Freeman, Ch. (1995), The National System of Innovation in Historical Perspective. *Cambridge Journal of Economics*, 1995, 19: 5-24.
- Gandal, N. (2002), Compatibility, Standardization, and Network Effects: Some Policy Implications. *Oxford Review of Economic Policy*, 18 (1): 80-91.
- Gassmann, O. (2006), Opening up the Innovation Process: Towards an Agenda. *R&D Management*, 36 (3): 223-226.
- Gassmann, O. and Enkel, E. (2004), Towards a Theory of Open Innovation: Three Core Process Archetypes. Paper presented at *R&D Management Conference*. Lisabon (http://www.alexandria.unisg.ch/EXPORT/DL/20417.pdf).
- Geroski, P. A. (2000), Models of technology diffusion. Research Policy, 29 (4-5): 603-625.
- Gertler. M. S. (2003), Tacit Knowledge and the Economic Geography of Context, or the Undefinable Tacitness of Being (there). *Journal of Economic Geography*, 3, 2003: 75-99.
- Gerybadze, A. (2004), Technologie- und Innovationsmanagement: Strategie, Organisation und Implementierung. München: Vahlen.
- Gerybadze, A. (2006), Kreativität und Ideenfindung auf Auslandsmärkten. In T. Sommerlatte,
 G. Beyer and G. Seidel (Eds.), *Innovationskultur und Ideenmanagement: Strategien und praktische Ansätze für mehr Wachstum*. Düsseldorf: Symposion Publishing.
- Gerybadze, A. (2008a). Einsatz von Klugheit im Innovationsprozess: Intelligente neue Formen der Durchsetzung von Standards. In A. Scherzberg (Ed.), *Klugheit: Begriff – Konzepte – Anwendungen*: 113-128, Mohr Siebeck, Tübingen.
- Gerybadze, A. (2008b). Innovationspartnerschaften, Patentpools und Standardsetzungsgemeinschaften: Verteilung und Zuteilung der Rechte und neue Organisationsformen.
 In M. Eifert and W. Hoffmann-Riem (Eds.), *Geistiges Eigentum und Innovation:* Innovation und Recht I: 165-181, Duncker & Humblot, Berlin.
- Gerybadze, A. and Slowak, A., (2008), Standard-setting Competition and Open Innovation in Low and Medium-Tech Industries: Mechanical Engineering and Machinery Standardsetting. In H. Hirsch-Kreinsen, D. Jacobsen (Eds.), *Innovation in Low-Tech Firms and Industries*. Cheltenham: Edward Elgar (in print December 2008).
- Glaeser, Ed. L., Kallal, H. D., Scheinkam, J. A. and Schleifer, A. (1992), Growth of Cities. *Journal of Political Economy*, Vol. 100: 1126-1152.
- Gregersen, B. and Johnson, B. (1997), Learning Economies, Innovation Systems and European Integration. *Regional Studies*, 31 (5): 479-490.
- Greunz, L. (2005), Intra- and Inter-regional Knowledge Spillovers: Evidence from European Regions. *European Planning Studies*, 13 (3): 449-473.
- Grindley, P. (1995), *Standards, Strategy, and Policy: Cases and Stories*. Oxford University Press.
- Grindley, P. (1999), Standards WARS: The Use of Standard Setting as a Means of Facilitating Cartels Third Generation Wireless Telecommunications Standard Setting. International Journal of Communications Law and Policy, 3-1999

(http://www.ijclp.net/3_1999/pdf/ijclp_webdoc_2_3_1999.pdf).

Grodal, S. and Powell, W. W. (2005), Networks of Innovators. In J. Fagerberg, D. C. Mowery and R. R. Nelson (Eds.), *The Oxford Handbook of Innovation*: 56-85. Oxford & New York: Oxford University Press.

- Hae Seo, J. (2006), Regional Innovation System and Industrial Cluster: Its Concept, Policy Issues and Implementation Strategies, Paper for the National Workshop on Subnational Innovation Systems and Technology Capacity Building Policies to Enhance Competitiveness of SMEs, 27-30 October 2006. Beijing, China.
- Halonen, T., Romero, J. and Melero, J. (2003), GSM, GPRS and Edge Performance: Evolution Towards 3G/UMTS, 2nd Ed. Chichester. Wiley & Sons.
- Hanusch, H. and Pyka, A. (2007), Principles of Neo-Schumpeterian Economics. Cambridge Journal of Economics, 31, 2007: 275-289.
- Harrison, B. and Storper, M. (1991), Flexibility, Hierarchy and Regional Development: The Changing Structure of Industrial Production Systems and their Forms of Governance in the 1990s. *Research Policy*, 20, 1991: 407-422.
- Hatzichronoglou, T. (1997), Revision of the High-Technology Sector and Product Classification, OECD Science, Technology and Industry Working Papers, No. 1997/2, OECD Directorate for Science, Technology and Industry. Paris (http://www.sourceoecd.org/10.1787/134337307632).
- Heidenreich, M. 1997. Wirtschaftsregionen im weltweiten Innovationswettbewerb. Kölner Zeitschrift für Soziologie und Sozialpsychologie, 49 (3): 500-527.
- Holbrook, A. and Salazar, M. (2003), Regional Innovation Systems within Federation: Do National Policies Affect All Regions Equally?, *Paper Submitted to the Conference "Knowledge and Economic and Social Change: New Challenges to Innovation Studies"*, Apr 7-9, 2003. Manchester.
- Hu, A. G. (2007), Technology Parks and Regional Economic Growth in China. *Research Policy*, 36 (1): 76-87.
- Iammarino, S. (2005), An Evolutionary Integrated View of Regional Systems of Innovation: Concepts, Measures and Historical Perspectives. *European Planning Studies*, 13 (4): 498-519.
- Jacobs, J. (1969), The Economy of Cities. New York: Vintage.
- Jonas, M. (2006), Brauchen regionale Wirtschaftscluster lebendige ,Kooperation'? Ein Überblick anhand einer Auswahl empirischer Studien zu europäischen Hochtechnologieclustern. *Reihe Soziologie*, 79, Wien: Institut für Höhere Studien (http://www.ihs.ac.at/publications/soc/rs79.pdf).
- Katz, M. L. and Shapiro, C. (1985), Network Externalities, Competition, and Compatibility. *The American Economic Review*, 75 (3): 424-40.
- Katz, M. L. and Shapiro, C. (1986), Technology Adoption in the Presence of Network Externalities. *Journal of Political Economy*, 94 (4): 822-841.
- Katz, M. L. and Shapiro, C. (1994), Systems Competition and Network Effects. *The Journal* of *Economic Perspectives*, 8 (2): 93-115.
- Ketels, C., Lindqvist, G., Sölvell, Ö. (2006), Cluster Initiatives in Developing and Transition Economies. Stockholm.

(http://cluster-research.org/dldocs/ClsDevelopingTransitionMay06.pdf).

König, R. (2008), New Ways of Standard-Setting in Technology-Driven Industries: The Case of Automotive Electronics in Japan and Germany. DRUID-DIME Academy PhD Conference on Economics and Management of Innovation and Organizational Change, Jan 17-19, 2008. Aalborg.

Krechmer, K. (1998), The Principles of Open Standards. Standards Engineering, 50 (6): 1-6

Krechmer, K. (2006), Open Standards Requirements. International Journal of IT Standards and Standardization Research, 4 (1): 43-61.

(http://www.csrstds.com/openstds-old.html).

- Kujath, H. J. 1998. Regionen im globalen Kontext. In H. J. Kujath (Ed.), *Strategien der regionalen Stabilisierung: Wirtschaftliche und politische Antworten auf die Internationalisierung des Raumes*: 13-40. Berlin: Edition sigma.
- Lagnevik, M., Sjoholm, I., Lareke, A. and Ostberg, J. (2003), *The Dynamics of Innovation Clusters: A Study of the Food Industry*. Cheltenham/Northampton: Edward Elgar.
- Layne-Farrar, A., Padilla, A. J. and Schmalensee, R. (2006), Pricing Patents for Licensing in Standard Setting Organisations: Making Sense of FRAND Commitments. *CEMFI Working Paper*, No. 0702. Madrid: Center for Monetary and Financial Studies (CEMFI) (http://ssrn.com/abstract=937930).
- Legler, H., Rammer, Ch. and Schmoch, U. (2006), Technological Performance: Concepts and Practice. In H.Legler, C. Rammer, and U. Schmoch (Eds.), *National Systems of Innovation in Comparison*. Springer.
- Lemley, M. A. (2002), Intellectual Property Rights and Standard-Setting Organizations. *California Law Review*, Vol. 90: 1889-1980.
- Leydesdorff, L. (2000), The Triple Helix: An Evolutionary Model of Innovations. *Research Policy*, 29 (2): 243-255.
- Leydesdorff, L., Fritsch, M. (2006), Measuring the Knowledge Base of Regional Innovation Systems in Germany in Terms of a Triple Helix Dynamics. *Research Policy*, 35 (10): 1538-1553.
- Los, B. and Verspagen, B. (2007), Technology Spillovers and Their Impact on Productivity. In
 H. Hanusch and A. Pyka (Eds.), *Elgar Companion to neo-Schumpeterian Economics*: 574-593. Cheltham: Edward Elgar.
- Lundvall, B.-Å. (2007), National Innovation Systems: Analytical Concept and Development Tool. *Industry and Innovation*, 14 (1): 95-119.
- MacLeod, G. (2000), The Learning Region in an Age of Austerity: Capitalizing on Knowledge, Entrepreneurialism, and Reflexive Capitalism, *Geoforum*, 31 (2): 219-236.
- Malerba, F. (1999), Sectoral Systems of Innovation and Production, *Draft for DRUID Conference on: National Innovation Systems, Industrial Dynamics and Innovation Policy*, Jun 9-12, 1999. Rebild.
- Malerba, F. (2002), Sectoral Systems of Innovation and Production. *Research Policy*, 31, 2002: 247-264.
- Malerba, F. (2004), Sectoral Systems of Innovation: Concepts, Issues and Analyses of Six Major Sectors in Europe. Cambridge: Cambridge University Press.
- Malerba, F. (2005), Sectoral Systems of Innovation: A Framework for Linking Innovation to the Knowledge Base, Structure and Dynamics of Sectors. *Econ. Innov. New Techn.*, 14 (1-2): 63-82.
- Malmberg, A. and Maskell, P. (1999), Localised Learning and Industrial Competitiveness. *Cambridge Journal of Economics*, 23, 1999: 167-186.
- Malmberg, A. and Maskell, P. (2005), Localized Learning Revisited. *DRUID Working Paper*, No. 05-19: 1-19.
- Markusen, A. (1996), Sticky Places in Slippery Space: A Typology of Industrial Districts. *Economic Geography*, 72 (3): 293-313.
- Marshall, A. (1949), *Elements of Economics of Industry*. London: Macmillan.
- McKelvey, M. D. (1996), *Evolutionary Innovations: The Business of Biotechnology*. Oxford & New York: Oxford University Press.
- Miller, J. S. (2007), Standard Setting, Patents, and Access Lock-In: Rand Licensing and the Theory of the Firm. *Indiana Law Review*, 40 (2) (http://ssrn.com/abstract=924883).

- Moulaert, F. and Sekia, F. (2003), Territorial Innovation Models: A Critical Survey. *Regional Studies*, 37 (3): 289-302.
- Münchner Uni Magazin (2008), 02/2008 (http://www.uni-muenchen.de/aktuelles/ publikationen/mum/archiv/2008/mum_02_08.pdf, Münchener Antrag im Spitzencluster-Wettbewerb in der zweiten Bewerbungsrunde).
- Nelson, R. R. (1993), *National Innovation Systems: A Comparative Analysis*. Oxford University Press.
- Nelson, R. R. and Rosenberg, N. (1993), Technical Innovation and National Systems. In R. R. Nelson (Ed.), *National Systems of Innovation: A Comparative Study*. Oxford: Oxford University Press.
- Nooteboom, B. (2005), Innovation, Learning and Cluster Dynamics. Discussion paper no. 44, Tilburg University, Center for Economic Research

(http://ideas.repec.org/p/dgr/kubcen/200544.html).

- OECD (1995), Manual on the Measurement of Human Resources devoted to S&T: 'Canberra Manual'. Paris.
- OECD (1997), National Innovation Systems. Paris.
- OECD (1999a), Boosting Innovation: The Cluster Approach, OECD Proceedings, Science & Information Technology , 1999 (10). Paris.
- OECD (1999b), Economic and Cultural Transition Towards a Learning City: the Case of Jena. Paris.
- OECD (2001a), Cities and Regions in the New Learning Economy. Paris.
- OECD (2001b), Innovative Clusters: Drivers of National Innovation Systems, Enterprise, Industry and Services. Paris.
- OECD (2002), Frascati Manual: Proposed Standard Practice for Surveys on Research and Experimental Development.
- OECD (2005a), Building Competitive Regions: Strategies and Governance.
- OECD (2005b), Oslo Manual: Guidelines for Collecting and Interpreting Innovation Data. *Paris.*
- OECD (2005c), Regions at a Glance. Book series on Governance, 2005 (11). Paris.
- OECD (2006), Competitive Cities in the Global Economy. Territorial Reviews.
- OECD (2007), Globalisation and Regional Economies: Can OECD Regions Compete in Global Industries? *Reviews of Regional Innovation*.
- OECD (2008), Open Innovation in Global Networks. Paris: OECD.
- Paci, R. and Usai, S. (2000), Externalities, Knowledge Spillovers and the Spatial Distribution of Innovation. *CRENoS Papers*. University of Cagliari and Sassari: 1-31
- Penrose, E. (1995), *The Theory of the Growth of the Firm*, 2nd edn. Oxford: Oxford University Press.
- Polanyi, M. (1966), The Tacit Dimension: Garden City. N.Y.: Doubleday & Co..
- Rapeli, J. (1995), UMTS: Targets, System Concept, and Standardization in a Global Framework, *IEEE Personal Communications*, 2 (1): 20-28.
- Rogers, E. M. (2003), Diffusion of Innovations, 5th Ed. Simon & Schuster International.
- Romer, P. (1986), Increasing Returns and Long-Run Growth. *Journal of Political Economy*, 94 (5).
- Rutten, R. and Boekema, F. (2007), *The Learning Region: Foundations, State of the Art, Future*: Foundations, State-of-the-art, Future. Cheltenham/Northampton: Edward Elgar. (AS: dap asst was nicht bitte nachschauen)

- Sanchez, R. (2008), *Modularity, Strategic Flexibility, and Knowledge Management.* Oxford University Press (forthcoming).
- Saxenian, A. (1994), *Regional Advantage: Culture and Competition in Silicon Valley and Route 128.* Cambridge (MA): Harvard University Press.
- Seiter, S. (1997), Der Beitrag Nicholas Kaldors zur Neuen Wachstumstheorie. *Hohenheimer Volkswirtschaftliche Schriften*, 27, 1997.
- Scott, A. J. and Storper, M. (2003), Regions, Globalization, Development. *Regional Studies*, 37 (6/7): 579-593.
- Schumpeter, J. A. (1934), *The Theory of Economic Development*. Cambridge (MA): Harvard University Press.
- Schumpeter, J. A. (1942), *Capitalism, Socialism and Democracy*. New York: Harper and Row.
- Senker, J. (1995), Tacit Knowledge and Models of Innovation. *Industrial and Corporate Change*, 4 (2): 425-447.
- Shao, Y., Chen, S. and Cheng, B. (2008), Analyses on the Dynamic Factors of Cluster Innovation: a Case Study of Chengdu Furniture Industrial Center. *International Management Review*, 4 (1): 51-59 (http://www.usimr.org/IMR-1-2008/v4n108-art6.pdf).
- Shapiro, C. and Varian, H. R. (1999a), *Information Rules: A Strategic Guide to the Network Economy*. Boston: Harvard Business School Press.
- Shapiro, C. and Varian, H. R. (1999b), The Art of Standards Wars. *California Management Review*, 41 (2): 8-32.
- Sharif, N. (2006), Emergence and Development of the National Innovation Systems Concept. *Research Policy*, 35, 2006: 745-766.
- Simcoe, T. (2006), Open Standards and Intellectual Property Rights, In H. Chesbrough, W. Vanhaverbeke and J. West (Eds.), *Open Innovation: Researching a New Paradigm*: 161-183. Oxford & New York: Oxford University Press.
- Simmie, J. (2003), Innovation and Urban Regions as National and International Nodes for the Transfer and Sharing of Knowledge. *Regional Studies*, 37 (6/7): 607-620.
- Slowak, A. (2008), Standard-setting Capabilities in Industrial Automation: A Collaborative Process, *Journal of Innovation Economics*, 2008 (2).
- Slowak, A. (2009), How Open is RAND? Institutional Frames in Standard-setting Communities The Case of Industrial Automation (work in progress).
- Sölvell, Ö. (2008), *Clusters: Balancing Evolutionary and Constructive Forces*, Ivory Tower Publishing, Stockholm (http://cluster-research.org/dldocs/ClustersNov2008.pdf).
- Sölvell, Ö., Lindqvist, G., Ketels, C. (2003), *The Cluster Initiative Greenbook*, Stockholm (http://www.cluster-research.org/dldocs/GreenbookSep03.pdf).
- Staniszewski, P. (2007), The interplay between IP rights and competition law in the context of standardization. *Journal of Intellectual Property Law & Practice*, 2 (10): 666-681.
- Storper, M. (1995), The Resurgence of Regional Economics, Ten Years Later: The Region as a Nexus of Untraded Interdependencies, *European Urban and Regional Studies*, 2 (3): 191-221.
- Swann, G. M. P. (2000a), The Economics of Standardization: Final Report for Standards and Technical Regulations Directorate, *Department of Trade and Industry*. Manchester Business School (http://www.berr.gov.uk/files/file11312.pdf).
- Swann, G. M. P. (2000b), Ökonomie der Normung: Abschlussbericht für die Direktion Normen und technische Vorschriften, Department of Trade and Industry. Manchester Business School (http://www.berr.gov.uk/files/file11315.pdf).

- Tolksdorf, R. (1999), XML und darauf basierende Standards: die neuen Auszeichnungssprachen des Web, *Informatik Spektrum*, 22 (6): 407-421.
- UIS (2005), What do Bibliometric Indicators Tell us about World Scientific Output?, *UIS Bulletin on Science and Technology Statistics*, 2005 (2). Montreal: UNESCO Institute for Statistics (http://www.csiic.ca/PDF/UIS_bulletin_sept2005_EN.pdf).
- Updegrove, A. (1993), Forming, Funding, and Operating Standard-Setting Consortia. *IEEE Micro*, 13 (6): 52-61.
- Updegrove, A. (1995), Standard-setting and Consortium Structures. *StandardView*, 3 (4): 143 147 (http://portal.acm.org/citation.cfm?doid=219596.219601).
- Updegrove, A. (2005a), Open Source vs. Open Standards. *Consortium Standards Bulletin*, IV (3), 10-13 (http://www.consortiuminfo.org/bulletins/pdf/mar05.pdf).
- Updegrove, A. (2005b), The Many Faces of Open. *Consortium Standards Bulletin*, IV (3), 5-9 (http://www.consortiuminfo.org/bulletins/pdf/mar05.pdf).
- Updegrove, A. (2006a), Editorial: Consortium Proliferation Too Much of a Good Thing?. *Consortium Standards Bulletin*, V (10): 4-5

(http://www.consortiuminfo.org/bulletins/pdf/nov06.pdf).

Updegrove, A. (2006b), Forming a Successful Consortium Part I. *Consortium Standards Bulletin*, V (10): 6-18

(http://www.consortiuminfo.org/bulletins/pdf/nov06.pdf).

- Updegrove, A. (2007a), Creating a Successful Consortium Part II. *Consortium Standards Bulletin*, VI (1): 5-19 (http://www.consortiuminfo.org/bulletins/pdf/jan07.pdf)
- Updegrove, A. (2007b), Intellectual Property Rights and Standard Setting. *Consortium Standards Bulletin*, VI (3): 7-24

(http://www.consortiuminfo.org/bulletins/pdf/mar07.pdf).

- Wengel, J. and Shapira, P. (2004), Machine Tools: The Remaking of a Traditional Sectoral Innovation System. In F. Malerba (Ed.), Sectoral Systems of Innovation: Concepts, Issues and Analyses of Six Major Sectors in Europe: 243-286. Cambridge: Cambridge University Press.
- West, J. (2004), What are Open Standards? Implications for Adoption, Competition and Policy. *Paper presented at: Standards and Public Policy conference*. Chicago: Federal Reserve Bank of Chicago

(http://www.chicagofed.org/news_and_conferences/conferences_and_events/files/west .pdf).

- West, J. (2007), The Economic Realities of Open Standards: Black, White, and many Shades of Grey, In S. Greenstein and V. Stango (Eds.), *Standards and Public Policy*: 87-122. Cambridge (UK): Cambridge University Press.
- Wessa, P. (2008), Free Statistics Software, Office for Research Development and Education, version 1.1.23-r3, URL http://www.wessa.net/
- Winter, S. G. (2005), Developing Evolutionary Theory for Economics and Management, *Working Paper 2005-01*. Reginald H. Jones Center.
- Wixted, B. (2006), Cluster Complexes: A Framework for Understanding the Internationalisation of Innovation Systems, *MPRA Paper*, No. 846. Centre for Policy Research on Science and Technology, Simon Fraser University.
- Zeller, Ch. (2001), Cluster Biotech: A Recipe for Success? Spatial Patterns of Growth of Biotechnology in Munich, Rhineland and Hamburg, *Small Business Economics*, 17: 123-41.

Indicator	Index	References
Revealed Technological Advantage (RTA) Revealed Patent Advantage (RPA)	$RTA = \frac{p_{ij} / \sum_{i=1}^{N} p_{ij}}{\sum_{j}^{N} p_{ij} / \sum_{i=1}^{N} p_{ij}}$ $RPA = 100 \ln RTA = 100 (RTA^{2} - 1) / (RTA^{2} + 1)$ $-100 \le RPA \le 100$	OECD (1994); Wessa (2008)
Herfindahl index (HHI)	$HHI = \sum_{i=1}^{N} p_i^2 = \sum_{i=1}^{N} \frac{x_i^2}{X^2} \qquad \qquad \frac{1}{n} \le HHI \le 1$	OECD (1994); Wessa (2008)
GINI coefficient	$G = \left(\frac{2}{n^2 \bar{x}}\right) \sum_{i=1}^{N} \left(\left(i - \frac{n+1}{2}\right) \frac{x_i}{1} \right) 0 \le G \le 1$	OECD (1994); Wessa (2008)
geographic concentration of patents (absolute)	$\sum_{i=1}^{N} p_i - a_i $ where p_i is the patents' share of region i, a_i is the area of region i as a percentage of the country area, N stands for the number of regions and indicates the absolute value. The index lies between 0 (no concentration) and 1 (maximum concentration).	OECD (2005c, p. 194)
bibliometric indicators	share (%) of publications of region X in field Y share (%) of world publications in field Y	UIS (2005)
geographic concentration of highly skilled population	$\sum_{i=1}^{N} \left hs_{i} - a_{i} \right $ where hs_{i} is the share of population with tertiary education of region i, a_{i} is the area of region i as a percentage of the country area, N stands for the number of regions and indicates the absolute value. The index lies between 0 (no concentration) and 1 (maximum concentration).	OECD (2005c, p. 194)

Appendix A: Indices of Regional Technological Specialisation (selected examples)

Source: Own illustration. For methodology concerning data and interpretation within science and technology studies see the Frascati, the Oslo and the Canberra Manual (OECD, 1994, 1995, 2002, 2005b; Wessa, 2008).

AT1 D01'G0TERREICH DEE Sampa Anala GP4 NISA AGADO, NRTII PT1 Note AT11 Burgering Analas DEE DEE SUM (ALSEN) GP4 NISA AGADO, NRTII PT1 Adaptering AT2 BUDDERSIGH DEG Tride SUM (ASSER) PT1 Tride SUM (ASSER) AT2 SUMORTREICH DEG Tride SUM (ASSER) PT1 Response of SUM (ASSER) AT3 SUMORTREICH DEG Tride SUM (ASSER) PT1 Response of SUM (ASSER) AT3 SUMORTREICH DEG Tride SUM (ASSER) PT1 Response of SUM (ASSER) AT3 SUMORTREICH DEG Tride SUM (ASSER) PT1 Response of SUM (A		U						
H110 Despiration (A) DOC TEMPERCI- DEP Solar Element (A) DOC TEMPERCI- PT-3 DOC TEMPERCIE PT-3 DOC TEM			DEE	SACHSEN-ANHALT	GR30			CONTINENTE
Char Macheshaming DEC Exclusion-balance PT-16 Control PT-16 Control ATT Model Section-Section DEC Model Section-Section PT-16 Control ATT Model Section-Section DEC Model Section-Section PT-16 Reside Anticipation ATT Model Section-Section DEC Model Section-Section PT-16 Reside Anticipation ATT Model Section-Secti								
M11 Orient DDB Deck M11								
NT DECO TEUROR FUE MUMARMERSA (MUMARY FUE MUMARY FUE MUMARMERSA								
NELL Description DRI DNMARK HUDD Const May sering PTD Modern is done in		SÜDÖSTERREICH						
ATA END DitAl Trial This Pitter Pitter <td>AT21</td> <td>Kärnten</td> <td>DK</td> <td></td> <td>HU1</td> <td>KOZEP-MAGYARORSZAG</td> <td>PT2</td> <td>Região Autónoma dos AÇORES</td>	AT21	Kärnten	DK		HU1	KOZEP-MAGYARORSZAG	PT2	Região Autónoma dos AÇORES
N11 Development DN2 Separation PLC1 Neep-Journal PLC2 Region Automa Madera AT Overland PRO Security Automa Madera Note Automa M								
NULSE Subservation IDE Non-Non-Non-Non-Non-Non-Non-Non-Non-Non-								
AT33 Tors DOID Methylered HU23 Defaburation BD1 Monthly and the set of the set								
ATM Concentration PACE Pace Sector PACE								
Instrument BELCADUR-SELECY FUNDALIZES CVPLACE EEST / ESTOMA HULD Estom Magnetorization PC/2 Methods BED MACRO CONSULSES CVPLACE EEST / ESTOMA ESTO MACRO CONSULSES CVPLACE PC/2 Methods P								
BE1 BE31 HUZ Exam. Mole HOZ Mocregues els BE31 Prov. Faller, Strand BE3 BE31 Prov. Faller, Strand R03 Mocregues els BE31 Prov. Faller, Strand BE3 Beak and the strand R03 Mocregues els BE31 Prov. Faller, Strand ES1 Galaxie Bi31 Beak and the strand BE31 Prov. Faller, Strand ES3 Galaxie Bi31 Beak and the strand BE31 Prov. Marker, Strand ES3 Constance T T T T Beak And the strand								
BEE VALMAG GENKEST BE BEAMA SPAN BE RELARD NUCL NUCL <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
BE21 Pro-Advergen ED1 NORDSTE ED5 MELAND PR03 Build Monorly and Section of Sec	BE10	Région de Bruxelles-Capitale / Brussels H	EE00	Eesti	HU33	Del-Alfold	RO21	Nord-Est
BE22 Proc. Larborg (B) E31 Desize Basics E81 Proc. Sci. Materia of Weeten PC33 Buscanse in the server BE25 Prov. Larborg (B) E31 Prov. Sci. Materia of Weeten PC33 Buscanse in the server BE35 Prov. Neurol Valanciewen E52 Prov. Neurol Valanciewen PC34 Buscanse in the server BE35 Prov. Neurol Valanciewen E53 Availance E53 Availance BE35 Prov. Neurol Valanciewen F53 La Proje TC3 Laran B11 Basics Avainame BE35 Prov. Neurol Valanciewen F53 Curviciel de Morid TC1 Laran B11 Basics Avainame BE35 Prov. Neurol E53 Curviciel de Morid TC1 Laran B12 Basics Avainame B12 Basics Avainame <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
BE32 Proc. Opti Version ED12 Proc. State State Proc. State State State Proc. State State Proc. State State State State Proc. State								
BE36 Prov. Values Bedomt ED1 Camber IT TRAU TIKY Prod Mass Sector B211 Prov. Index Sector ED2 MCM Sector TO MCM Coll Prod B211 Prov. Index Sector ED3 MCM Sector <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
BESS Prov. Versit Valuer denn ESS NORESTE TC NOREOT R000 NORE BESS Prov. User and the second of the s								
BEB REDID WorkLONE ES1 Pair Maco ITC Warned Pair Maco BE3 Proj. Lóga ES1 Angin ES1 Proj. Lóga SE Proj. Lóga SE S								
Bits 1 Proc. Biobant Yushie. BES 2 Construction Frank Investing Funds Related Automated Funds Related Parameter Science Scie								
BE32 Proc. Isinat ES3 La Roja Proc. Isinat SE1 Desc. BE31 Proc. Lange ES1 Appl. Ap								
BEM Prov. Lumentorug (S) ES3 COMUNITY ITD NORD-EST Strip Strip Out and Management of Management								
BESS Prox. Namu ESD Committed of Model TD1 Provise Autonome BozamoScame SE2 Soins Sorrigon 06 BULACARNA ESA Externmentar TD2 Provise Autonome Process SE2 Soins Sorrigon 06.31 Sistemscamption ESA Externmentar TT2 Final Account SE3 Soins Sorrigon 06.33 Sistemscamption ESA Externmentar TT2 CENTO(I) SE3 Soins Sorrigon 06.34 Sistemscamption ESA Externmentar TT2 CENTO(I) SE3 Soins Sorrigon 06.34 Sigtemscamption ESA Externmentar TT2 CENTO(I) Set Soins Sorrigon 06.34 Vicpacespace ESA Region of Marcina TT2 CENTO(I) Soins Sorrigon 07.04 KYTPOS / IARDINS ESA Cade Autonom of one of Marcina TT3 Cade Autonom of one of Marcina 07.02 KYTPOS / IARDINS ESA Cade Autonom of one of Marcina TT3 Cade Soins Soring Marcina 07.02		Prov. Liège	ES24	Aragón	ITC4	Lombardia	SE11	Stockholm
B9 BULGARA ES4 Cell III Cell Second S								
BB3 Severation ES4 Califiery Left Title Veneto ES2 System of the severation B03 Severation ES3 Califiery Left Title First Amoran Main Severation SE2 Select Amoran Main Severation B03 Severation ES3 Califiery Left First Amoran Main Severation SE3 Califiery Left B04 Vigozovalov ES3 Califiery Left First Amoran Main Severation SE3 Califiery Left B04 Vigozovalov ES3 Califiery Left First Amoran Main Severation SE3 Califiery Left B04 Vigozovaloval Severation ES3 Califiery Left Severation								
Bits Besternsprachen ES43 Castilia-Ja Moncha TD4 Fruit-Versanis Guila SE23 Visite method Bits Besternsprachen ES43 Externation TD5 Bits-Bornagon Bits								
Biolog Severent isentation ES3 Jetermadum ITDS Emilia Romagna SE3 Norts Meinswrige 053 Severent isentation ES3 ESTE TTE Total Norts Meinswrige SE3 Norts Meinswrige 0541 Yuggazehn ES3 Bestern Severent Seve								
BG33 Sevenation-ban ES5 ESTE ITE CPTRO (I) SE31 Norm Meanmange Del V10000/PULN V120PAR TED/INTOL ES5 Communitary Management ES3 Communitary Management ES3 Communitary Management ES3								
BG34 Vuigazzahan ES3 Cakabá TE1 Tacana SE2 Meinta Skortland BG14 Vuigazzahan ES3 Ibe Biston TE3 Macha SE3 Jones Kornland BG14 Vuigazzahan ES3 Ibe Biston TE3 Macha SE3 Jones Kornland CV KYRDOS / KIRRIS ES81 Constructure SE3 Zonos Silveria CV KYRDOS / KIRRIS ES81 Constructure TT1 Aburzo SE3 Silver FIA								
BOA VUIGCZAMDAN LYUGZAMDAN TENTRAL/ESS2 Commission TE2 Untria SE3 Orthogo								
Bit II Yugazapaden ES3 like Balesn TE3 Marche SI SLOVENAA CV Virtheos - KIRANG ES8 Auduka Marcia TIT SU SU <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
CV VFPEOS - KRBRS / CVPRUS ESS1 Adducta ITT SUD SUD SUD CV0 KVPEOS / KRBRS ESS3 Cluid Alconas & Guan ITT Advacas 35 8 GUVENSKA REP. / LOVAKA CV0 KVPEOS / KRBRS ESS3 Cluid Alconas & Guan TTF Advacas CV0 KVPEOS / KRBRS ESS3 Cluid Alconas & Guan TTF SUD CV0 ESS4 Cluid Alconas & Guan TTF SUD Status Status Status CV0 ESS4 Cluid Alconas & Guan TTF Status St		Yugozapaden	ES53		ITE3	Marche	SI	SLOVENIJA / SLOVENIA
CYTO KYPROS / KOBR18 ESS2 Regin da Muncia TT1 Anuzzo St02 Zandom Storming CV2 KODR / Kehn ESS2 Cauda Autoroma de Mellia TT3 Campania St0 SUCVENSA REP / LUXAA CV2 ESS0 Cuada Autoroma de Mellia TT3 Campania St0 SUCVENSA REP / LUXAA CV2 Fanis TT1 Anuzzo St0 SUCVENSA REP / LUXAA St0 SUCVENSA REP / SUCME/ SUCVENSA CV2 Sentory TT1 SUCM TT1 SUCM St0 Sucvensa St0 Sucvensa St0 Sucvensa St0 Sucvensa St0 Sucvensa St0 Sucvensa St0 St								
CYUD Kyrops / Kinis ESS3 Cuida Juktoma de Carla TT2 Moline St BLOVENSA REP./ SLOWAK C2 CESMA REP/UELKAR ESS4 Cuida Juktoma de Mellia TT4 Pagia Str BLOVENSA REP./ SLOWAK C20 ESSA REP/UELKAR ESS7 CAMAGAS TT4 Pagia Str BLOVENSA REP/UELKA C20 Stredit Corty ESS7 CAMAGAS TT4 Pagia Str BLOVENSA REP./ SLOWA C203 Stredit Corty ESS7 CAMAGAS TT6 ISOLE Stredit Str BLOVENSA REP./ SLOWA C203 Stredit Stredit FT1 MANRER/SLOWA TT6 ISOLE Stredit Str BLOVENSA Stredit Stredit Stredit Stredit Stredit Stredit Stredit Stredit UK WICT ISOLE Stredit Stredit								
C2 CESSA REP / CZCH REP. ESS4 Cubad Authoma de Mella TT3 Campania SN0 SUCCENSA REPUBLIKA C20 CESSA REPUBLIKA ES70 Canada TT4 Panla Sk10 Balakashy kraj C20 ESSA REPUBLIKA ES70 Canada TT4 Panla Sk10 Zapadra Sovemako C20 Sk10 Panla MANNER-SUMM TT6 Sk10 Yubors Sovemako C204 Sk10 Yubors Sovemako TT6 Sk10 Yubors Sovemako C205 Severorzapad F113 Balaborn TT6 Sk10 Yubors Sovemako C206 Severorzapad F113 Lanis Sovem TT6 Sk10 Yubors Sovemako UK VIC WK WK </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
C201 CESIA REPUBLICA EST CANARIAS TT4 Pugin Stol Databases (reg) C202 Stredni Cedry F SUMM (FRLAND) TT6 Calabina Stol Sto								
C201 Praha E570 Canatisa ITF5 Basilicata Sk03 Zapadne Sloveniko C203 Subrazapad F11 MANBER-SUDMI TTG IGALE Sk03 Stretaria C203 Subrazapad F11 Balancing TTG IGALE Sk04 Vectories Soveniko C203 Jahoxychod F113 Laiss Soumi TTG IGALE WUK UNPER Soveniko C205 Jahoxychod F114 Laiss Soumi TTG LEUVA LITUNANA UKC2 Nethorina Soveniko C205 Mororukozleszko F12 AAND TTG LEUVA UKC2 Northina Soveniko C205 Mororukozleszko F12 Aand U UKZEMOURG (GRAND DUCHE) UKC2 Northina Soveniko C205 Stretaria F110 Lei korsa UKZEMOURG (GRAND DUCHE) UKC2 Northina Soveniko C205 Adria TTG Marka UKZEMOURG (GRAND DUCHE) UKZE Northina Soveniko C205 Stretaria F12 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
C2U2 Stroch (Cedry) FI SUGM (FIRLAND) ITG Gold (Cedry) Stroch (Cedry) DE1								
C203 Jihozapad FI1 MANBER-SUOMI ITG SOLE SOL4 Vychodm Sigensko C205 Severozapad FI13 Eule Suomi TTG Scila UKC NORTH EAST [ENGLAND] C205 Severozapad FI13 Eule Suomi TTG Scila UKC NORTH EAST [ENGLAND] C205 Morrovstodezsko FI7 ALAND TTG UKD NORTH VEST (ENGLAND) C206 Morrovstodezsko FI7 ALAND ULU UKDEMBOURG (GRAND-DUCHE) UKO Combine C15 Stugmen FI7 FRANCE U/U ULVEMBOURG (GRAND-DUCHE) UKO Combine C16 Teminung FR7 FRANCE U/U ULV UKDE UKO2 Chestine DE11 Stugmen FR7 FRANCE U/U U								
C205 Sevenovychod F118 Eulis Suomi ITG2 Sardegna UKC NORTH EAST (ENCLAND) C207 Stredni Morava F12 Analy Suomi IU LU LEVUA (LTHUANTA UKC2 North WEST (ENCLAND) C207 Stredni Morava F12 Analy Suomi IU UCC2 North WEST (ENCLAND) C208 Moravadoulzako Strema F12 ALAND UU UNC2 North WEST (ENCLAND) C18 Statistic Morava F12 ALAND UU UU Control Contro Contro Contro								
C205 Jihoyobid F119 Line:Suomi LT LTURUVALTHANAN (VCC1 Tes Value) and Durham C208 Moranskoalezáko F12 ALAND LIT ULTURUVALTHANAN (VCC1 Tes Value) and Durham C208 Moranskoalezáko F12 ALAND LIT ULTURUVALTHANAN (VCC1 Tes Value) and Durham C208 Moranskoalezáko F17 ALAND LIT ULTURUVALTHANAN (VCC1 Combine C201 Moranskoalezáko F17 ALAND LIT ULEVALTHANAN (VCC2 Combine C201 Moranskoalezáko F17 ALAND LIT ULEVALTHANAN (VCC2 Combine C201 Moranskoalezáko F17 ALAND LIT ULEVALTHANAN (VCC2 Combine C202 Francine F17 ALAND UC02 ALANDA UC12 Combine UC12 ALANDA UC12 ALANDA UC12 Combine UC12 ALANDA UC12 ALANDA UC12 Combine		Severozapad		Itä-Suomi	ITG1	Sicilia	UK	UNITED KINGDOM
C207 Stradin Marava F11A Probjeci-Suomi LT0 LETU A. UKC2 Monthumber and Market (MARA) DE BADEV-VIGHTEMBERG F12 ALAND LT0 LEtU A. UKD NORTH WEST (FMSLAND) DE1 BADEV-VIGHTEMBERG F18 FARANCE LUL UXEMBOURG (GRAND-DUCHE) UKD NORTH WEST (FMSLAND) DE11 Subgart F11 ILE DE FRANCE LUL UXEMBOURG (GRAND-DUCHE) UKD NORTH WEST (FMSLAND) DE12 Kartinhe F11 ILE DE FRANCE LUL UXEMBOURG (GRAND-DUCHE) UKD NORTH WEST (FMSLAND) DE14 Tisningen F172 Champaging-Ardianne UKD Lainia UKE YORKSHIER AND THE HUMBER DE2 AlerEN F123 Champaging-Ardianne MT0 MALT UKE YORKSHIER AND THE HUMBER DE2 AlerEN F123 Champaging-Ardianne MT0 MALT UKE YORKSHIER AND THE HUMBER DE2 AlerEN F124 Champaging-Ardianne NL1 Final-Ardian UKE YorKSHIER AND THE HUMBER DE2 AlerEN		Severovychod		Etelä-Suomi			UKC	NORTH EAST (ENGLAND)
C208 Moreyskolacezko F12 ALAND LEUX UKO NORTH WEST (ENGLAND) DE DESCHLAND / GERMANY F20 Aland LU LUXEMBOURG (GRAND-DUCHE) UKD Combine DE1 Stutgart FR FRANCE LU LUXEMBOURG (GRAND-DUCHE) UKD Combine DE11 Stutgart FR1 LE DE FRANCE LU LUXEMBOURG (GRAND-DUCHE) UKD Lancabile DE12 Karlstuhe FR1 LE DE FRANCE LV LATVIA1 UKD LC DE Company DE14 Tüngarn FR2 Camtro Stand LV LATVIA1 UKE Earl Vorkhine and Northen Linc DE21 Oberhayem FR28 Basse-Normandie MT MATA UKE Sand Vorkhine UKSI Sand Vorkhine								
DE DEUTSCHLAND (GERMANY) F20 Aund LU LU ULVERMOURG (GRAND-DUCHE) UKC1 Cumbria DE1 BABMWRRTEMBERG FR FRARCE LU LUXEMBOURG (GRAND-DUCHE) UKC3 Graater Manchester DE11 Sufigart FR FRARCE LU0 Lucembourg (GRAND-DUCHE) UKC3 Graater Manchester DE11 Sufigart FR2 DASSIN PARISIEN LV0 LATVIJA / LATVIA UKC4 Lancashie Lancashie DE12 Ministrane FR2 Dassing Parisien UK2 Sufigart Sufigart UK2 Sufigart UK2 Sufigart Sufigart UK2								
DE1 BADEM-WÜRTTENBERG FR FANCE LU0 LUURG (GRAND-DUCHÉ) UKD3 Cheahine DE11 Stragat FR1 LE DE FRANCE LU0 Luxemborg (Grand-Duché) UKD3 Grater Mancheter DE13 Freburg FR2 BASIS NARISIN LV0 LATVLA (ATVLA UKD3 Grater Mancheter DE14 Tübingen FR2 Onamagne-Ardenne LV0 Latvia UKE Ext VORKSHIRE AND THE HUMBE DE21 Ohrdnaven FR2 Placation MT0 MALTA UKE Ext VORKSHIRE AND THE HUMBE DE21 Oberfraven FR2 Baue-Normandie MT0 MALTA UKE2 Statt Vorkshine VORKSHIRE AND DE23 Midefravken FR26 Baugrapin NL1 ND0FD-RADEERLAND UKF2 Ext Vorkshine and Nothinghamshine DE24 Undefravken FR30 Nord- Pas-de-Calais N.11 NORD-RUNDERLAND UKF2 Lacestershine, Rutland, Northam DE24 Undefravken FR41 Loranine N.12 Orefraven								
DE11 Stutgart FRI ILE DE FRANCE LU00 Luenchous (Grand-Duché) UK03 Greater Manchester DE12 Katfarbahe FR2 BASIN PARISIEN LV0 LATVLA / LATVLA / LATVLA UK03 Merseyside DE13 Freiburg FR2 BASIN PARISIEN LV0 LATVLA / LATVLA UKC5 Merseyside DE12 Ochrabyem FR22 Placardie MT MALTA UKC5 Merseyside DE23 Oberghäz FR26 Basse-Mornandie MT0 Malta UKE3 Merseyside DE24 Oberghäz FR26 Basse-Mornandie N.1 NORD-PAS-DE-CALAIS <								
DE12 Karlsmhe FR10 Ib de France IV LATVLALATVIA UICA Lancashire DE13 Freburg FR2 BASIN PARISIN L/00 LatVija UKE Micro Markan DE14 Freburg FR2 Dampagne-Ardenne L/00 LatVija UKE Est VorkShille AA DTHE HUMBE DE2 AvetENN FR23 Haute-Normande MT0 Malta UKE Est VorkShille AA DTHE HUMBE DE22 Noedbayem FR23 Base-Normande MT0 Malta UKE1 Est VorkShille AA Mohme DE23 Noedbayem FR28 Base-Normande MT0 Malta UKE2 StortShille AA Mohme DE24 Oberplaz Oberplaz Nord - Pas-de-Calais N.11 Forestand (NL) UG72 Leiostershille AND Mohme DE26 Uniefranken FR3 Nord - Pas-de-Calais N.12 Forestand UKG2 StropShille and MolinghamShire DE30 Berlin FR4 Est Tanche-Conté N.12 Operipsel UKG2 Verce Stropsel <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
DE13 Freburg FR2 BASSIN PARISEIN LV0 L/YU/LA UKD Merseyside DE14 Toilingen FR2 DRES Champagner-Ardenne UV Latvija UKE YORKSHIEE AND THE HUMBER DE21 Oberbayen FR22 Haule-Normandie MT MALTA UKE2 YORKSHIEE AND THE HUMBER DE23 Oberfaraken FR24 Centre MTO MALTA UKE2 YORKSHIEE AND THE HUMBER DE24 Mederbayen FR25 Bassen-Normande N.N. NEDERLAND NETHERLANDS UKE4 Weet Yorkshire DE24 Mediraken FR3 NR07. PA3-DE-CALJS N.1.1 YORN-NEDERLAND UKF1 Derdyshire and Nothingmashire DE25 MERIMA FR4 Anace N.1.2 Constraint (NL) UKF2 Lesterstingmashire, Ruland, Nothang DE30 Berlin FR4 Anace N.2.1 OverTweenellen.ND UKG2 Stroinshire and Meridorshire as								
DE2 BAYERN FR22 Picartia MT MLTA UKE1 East Yorkshire and Morthern Line DE21 Oberkayern FR24 Centre MTO MLTA UKE2 North Yorkshire DE23 Oberfrankern FR24 Gentre MTO MLTA UKE2 South Yorkshire DE24 Oberfrankern FR26 Bauergogne NL NCDR-NEIDERLAND UKF EAST MULANDS (ENGLAND) DE25 Mittefrankern FR3 NOR1 - PAS-DE-CALLS N.L1 Groningen UKF EAST MULANDS (ENGLAND) DE26 Untefrankern FR3 NOR1 - PAS-DE-CALLS N.L1 Drenhe UKF EAST MULANDS (ENGLAND) DE30 Berlin FR4 EST Overijssel UKG WEST MULANDS (ENGLAND) DE41 Brandenburg - Nordst FR5 OUEST NL32 Ostrijssel UKG WEST MULANDS (ENGLAND) DE42 Brandenburg - Sudwest FR51 Pays de la Loire N.32 Nord-Hale NL42 Bedrotshine and Hertfordshine								
DE21 Oberbayern FR23 Haute-Normanide MT0 MAITA UKE2 North Yorkshire DE22 Noterhayern FR24 Centre ML Norte Status Vertal Weta W	DE14	Tübingen	FR21	Champagne-Ardenne	LV00	Latvija	UKE	YORKSHIRE AND THE HUMBER
DE23 Nederbayem FR24 Centre MT00 Matta UKE3 South Yorkshire DE24 Oberfranken FR26 Basse-Normandie NL NL NCORD-NEDERLAND UKE4 West Yorkshire DE25 Mittel franken FR26 Basse-Normandie NL NL NCORD-NEDERLAND UKF4 EXT MIDLANDS (ENCLAND) DE25 Mittel franken FR3 NCR - PAS-DE-CALAIS NL1 Groingen UKF2 Leicestershire, Ruland, Northam DE30 Berlin FR4 EST NL1 Oreniseand (NL) UKF2 Leicestershire, Ruland, Northam DE41 Branderburg - Nordost FR5 DEST NL2 Gelfertand UKG2 Shorthire (NCCLAND) DE42 Branderburg - Nordost FR5 DEST NL2 Gelfertand UKG2 Shorthire (NCCLAND) DE43 Branderburg - Nordost FR5 DEST NL2 Gelfertand UKG2 Shorthire (NCCLAND) DE44 Branderburg - Nordost FR5 POLOUST NL2		BAYERN		Picardie	MT	MALTA	UKE1	East Yorkshire and Northern Lincolnshire
DE24 Oberplaiz FR25 Basse-Hormandie NL NL DE2FAC UK-F4 West Yorkshire DE24 Oberplaiz Mittefranken FR26 Bourgogne NL NDRD-PAS-DE-CALAIS NL NDRD-PAS-DE-CALAIS NL France NDRD-PAS-DE-CALAIS NL Strance NL NDRD-PAS-DE-CALAIS NDRD-PAS								
DE25 Oberfranken FR26 Bourgogne NL1 GOORD-HEDERLAND UKF EAST MIDLANDS (ENCLAND) DE25 Mitterfranken FR3<								
DE25 Mittefranken FR3 NORD PRA-DBC-2ALAIS NL12 Freisland (NL) UKF1 Derbyshire and Nuthinghamshire DE26 Uterfranken FR4 Loranize Freisland (NL) UKF3 Lincolnshire DE27 Schwaben FR4 EST NL12 Freisland (NL) UKG3 Lincolnshire DE38 BERIN FR41 Loranize NL22 OST-NEDERLAND UKG4 Merefordahire, Worostershire, Wu DE44 Branderburg - Nordost FR43 Franche-Comté NL23 Flevoland UKG3 West Malards DE45 BreMEN FR52 Del31 Nord-Phase-Seconté NL31 Urecht UKH4 East Angla DE56 Bremen FR53 Nolu-Charentes NL32 Zuid-Holand UKH2 Eedfordahire and Staffordahire DE60 HamBurg FR81 Aquitaine NL33 Zuid-Holand UKH1 LonALAND Eedfordahire and Staffordahire DE61 HamBurg FR82 Mola-Charentes NL33 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
DE26 Unterfranken FR3 Nord - Pac-de-Calais NL12 Freestand (NL) UKF2 Leicestershire, Rullard, Northam DE30 Berlin FR44 Lorraine NL2 OST-NEDERLAND UKF3 Licolnshire DE30 Berlin FR44 Lorraine NL21 Overlipsiol UKG1 Herdrodhiru, Nortanos DE41 Branchenburg - Nordott FR54 Piaco NL21 Overlipsiol UKG3 West MILANDS (ENCLAND) DE41 Brandenburg - Nordott FR55 Propy de la Loire NL3 Zwievland UKH1 East Angila DE56 BERMEN FR63 Poltou-Charentes NL3 Zwievland UKH3 Essox DE61 Hamburg FR63 Anutaine NL3 Zwievland UKH3 Essox DE64 Hamburg FR63 Junousin NL41 Zuberland UKH1 Essox DE64 Hamburg FR64 Auutaine NL34 Zuberland UKH3 Essox DE7								
DE27 Schwaben FR4 EST NL 13 Drenthe UKF3 Lincolnshire DE3 BERLIN FR41 Lorranine NL 2 OGST.NEDERLAND UKG WEST MIDLANDS (FR0LAND) DE4 BRANDENBURG FR43 Franche-Comté NL 2 Geldrand UKG3 WEST MIDLANDS (FR0LAND) DE4 BRANDENBURG FR43 Franche-Comté NL 3 Geldrand UKG3 WEST MIDLANDS (KR0LAND) DE4 Brandenburg - Nordost FR5 Difusition NL 3 WEST-NEDERLAND UKH East Anglia DE5 BREMEN FR52 Brandenburg - Nordost FR52 Brandenburg - Nordost UKH EAST Anglia DE50 Bremen FR63 Aguitaine NL 3 Zuid-Holland UKH EAST Anglia DE60 Hamburg FR61 Aguitaine NL 4 Zuid-NeDERLAND UK1 Lincolnshire Midland DE71 Bessen FR62 Midl-Pyrénées NL 4 Zuid-NeDE UK 4 Kort <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
DE3 BERLIN FR4 Lorraine NL2 OOST-NEDBELAND UKG WEST MIDLANDS (ENCLAND) DE4 Brandenburg Subwest FR4 Asace NL21 Overjisel UKG1 Herefordshire, VK DE4 Brandenburg Subwest FR5 OLEST NL23 Flevoland UKG3 West Midlands DE42 Brandenburg Subwest FR5 Pays de la Loire NL3 WEST-NEDERLAND UKG1 KaST OF ENGLAND DE50 Bremen FR83 Polou-Charentes NL3 Utrecht UKH1 East OF ENGLAND DE60 Hamburg FR6 SUD-OUEST NL3 Zuid-Holland UKH3 Eedordshire and Herdordshire DE71 Darmstadt FR82 Midi-Pyrinées NL4 ZUD-NEDERLAND UKI3 UKI3 UKI3 Vectordon DE72 Gielsen FR7 CENTRE-EST NL4 ZUD-NEDERLAND UKI3 Souter London DE73 Kassel FR74 CANTRA-ALEST NL4 ZUD-NEDERLAND UKI3								
DE30 Berlin FR42 Alsace NL22 Overgissel UKG1 Herefordshire, Worcestershire, Morcestershire, Morc								
DE4BRANDENBURGFrad.Frad.ne-CorntéNL22GeldárfandUKG2Shropshire and StaffordshireDE41Brandenburg - NordstFR5OUESTNL23FlevolandUKG3West MidlandsDE42Brandenburg - NordstFR51Payade la LoireNL3WEST-NEDERLANDUKH1East AngliaDE50BremenFR53Polou-CharentesNL32Nord-HollandUKH2Bedfordshire and HertfordshireDE60HamburgFR61AquitaineNL33Zuid-HollandUKH2Bedfordshire and HertfordshireDE60HamburgFR61AquitaineNL34ZeelandUKILONDONDE71DarmstadtFR62Midi-PyrénéesNL4Zulo-HollandUKI2Outer LondonDE72GießenFR7CENTRE-ESTNL42Limburg (NL)UKI2Outer LondonDE73KaselFR71Rhône-AlpesPL POLSKA/ POLANDUKI2Survey, East and West SussexDE80MECKLENBURG-VORPOMMERNFR72AuvergnePL1REGION POLUDNIOWYUKK2Survey, East and West SussexDE91ItamoshweigFR81Languedo-RoussillonPL2MazoleakieUKK4Korth West SussexDE92HanoverFR82GorsePL1MazoleakieUKK4Korth West SussexDE94West-EmsFR92MarcheneePL2MazoleakieUKK4South West SussexDE84Meser-EmsFR82GorsePL2MazoleakieUKK4South W					NL21			Herefordshire, Worcestershire, Warwick.
DE42 Brandenburg - Südwest FR51 Pays de la Loire NL3 WEST-NEDERLAND UKH EAST OF ENCLAND DE5 BREMEN FR62 Bretagne NL31 Utrecht UKH East Anglia DE50 Bremen FR53 Poitou-Charentes NL32 Noord-Holland UKH3 Essex DE60 HAMBURG FR61 Aquitaine NL32 Zuid-Holland UKH3 Essex DE71 Darmstadt FR62 Mid-Pyrénées NL4 ZuiD-NEDERLAND UK1 Inner London DE72 Gießen FR7 CENTRE-EST NL42 Limburg (NL) UK3 SourtH EAST (ENGLAND) DE73 Kassel FR71 Rhône-Alpes PL1 REGIO CENTRALNY UK2 Sourey, East and West Sussex DE9 MECKLENBURG-VORPOMMERN FR72 Auvergne PL1 Lodxie UK2 Surey, East and West Sussex DE9 MEDERSACHSEN FR81 Guadeloupe PL1 Lodxie UK4 Ket DE4 <td></td> <td></td> <td></td> <td></td> <td>NL22</td> <td>Gelderland</td> <td>UKG2</td> <td></td>					NL22	Gelderland	UKG2	
DE5BREMENFR52BretagneNL31UtrechtUKH1East AngliaDE50BrømenFR5Poltou-CharentesNL33Zuid-HollandUKH2Bedfordshire and HertfordshireDE60HamburgFR6SUD-OUESTNL33Zuid-HollandUKH3EssexDE67HESSENFR63Mid-PyreñeesNL4Zuid-NeDERLANDUK11Inner LondonDE71DarmstadtFR63LimousinNL4Zuid-NeDERLANDUK11Inner LondonDE72GießenFR71Rhone-AlpesNL4Limburg (NL)UK12Outer LondonDE73KasselFR71Rhone-AlpesPLPOLSKA/ POLANDUK12Surrey, East and West SussexDE80McKelkLINBURG-VORPOMMERNFR72AuvergnePL1LadzwieUK14Kentive, Euckinghamshire andDE80McKelkDurg VorpommernFR8McDTERRANEEPL11LodzwieUK14Kentive, Euckinghamshire and Isle of WightDE90NIEDERSACHSENFR81CarsePC14LodzwieUK14Kentive, Euckinghamshire and Isle of WightDE91BraunschweigFR82Provence-Alpes-Côte d'AzurPL2REGION POLUDNIOWYUKK2Soures and SomersetDE94NiebersAchSENFR81GuadeloupePL12REGION VSCHODNIUKK2Cornwall and Isles of ScillyDE94NiebersFR95GW2retPL22SaskeUKK1Goucestershire, Wiltshire, BristolDE94NiebersGR1GraterEtee<								
DE50BremenFR53Poliou-CharentesNL32Noord-HollandUKH2Bedford-shire and HertfordshireDE60HAMBURGFR6SUD-OUESTNL33Zuid-HollandUKH3EssexDE60HamburgFR81AquitaineNL34ZeelandUKILONDONDE71DarmstadtFR82Mid-PyrénéesNL4ZUID-NEDERLANDUKILONDONDE72GießenFR72CENTRE-ESTNL42Limburg (NL)UK1SOUTH LAST (ENCLAND)DE73KasselFR71Rh0n-AlpesPLPLSK VPLANDUK13SOUTH LAST (ENCLAND)DE74DaraselFR71Rh0n-AlpesPLLodzikeUK14Berkhire, Buckinghamshira andDE80MECKLENBURG-VORPOMMERNFR72AuvergnePL1REGION CENTRALNYUK12Surrey, East and West SussexDE90IDEDERSACHSENFR81CanseePL1Nactive (NeUK14KentDE91BraunsohweigFR8CorsePL2MacowieckieUK44KentDE34UineburgFR8GuadeloupePL3REGION WSCHODNIUKK2Dorset and SomersetDE44Weser-EmsFR9GuadeloupePL3LibeiskieUKK2Dorset and SomersetDE41DisseldorfFR9GuadeloupePL3Seldon WSCHODNIUKK2East WalesDE41DisseldorfFR9GuadeloupePL3Seldon WSCHODNIUKK4Dorset and SomersetDE41DisseldorfFR9 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
DE6HAMBURGFR6SUD-OUESTNL33Zuid-HollandUKH3EssexDE60HamburgFR61AquitaineNL4ZelandUKILONDONDE7HESSENFR62Midi-PyteñéesNL4ZUD-NEDERLANDUKI1Inner LondonDE71DarmstadtFR63LimousinNL4ZUD-NEDERLANDUKI1Inner LondonDE72GießenFR72CENTRE-ESTNL42Limburg (NL)UKJ3SUTH EAST (ENGLAND)DE73KasselFR71Rhône-AlpesPLPLREGION CENTRALNYUKJ3SUTH EAST (ENGLAND)DE80MecKlenburg-VorpommerFR8MEDITERRANÉEPL11LodzkeUKJ3Hampshire and Isle of VightDE90NIEDERSACHSENFR81Languedoc-RoussillonPL12MazowieckieUKJ4KentDE91BraunschweigFR82OrsrePL21MatoxieUKK4KentDE92HannoverFR83CorsePL21MalopiskieUKK1Gloucestershire, Wiltshire, BristolDE93LineburgFR9DEPARTEMENTS D'OUTRE-MERPL22SlawapackieUKK4Corrwall and Isles of VightDE94Weser-EmsFR91GuadeloupePL3REGION WSCHODNIUKK3Corrwall and Isles of VightDE41DisseldorfFR93GuyanePL3PL6ION POLNCON-ZACHODNIUKK4DevonDE43MisetorGR1Anathik MakedoniaPL42ZabarbackieUKL1West Wales and The Valleys<								
DE60Hamburg DFFR61AquitaineNL34ZeelandUKILONDONDF7HESSENFR62Midi-PyrénéesNL4ZUD-NEDERLANDUKIInner LondonDE71DamstadtFR63LinousinNL41Nord-BrabantUKIOuter LondonDE72GießenFR7CENTRE-ESTNL42Limburg (NL)UKJSOUTH EAST (ENGLAND)DE73KasselFR71Rhône-AlpesPLPLSKA/ POLANDUKJBerkshire, Buckinghamshire andDE8MECKLENBURG-VORPOMMERNFR72AuvergnePL1LdzkieUKJSurrey, East and West SussexDE9INEDERSACHSNFR81Languedoc-RoussilionPL12MazowieckieUKJKKKSOUTH WEST (ENGLAND)DE9IneburgFR82Provence-Alpes-Côte d'AzurPL2REGION POLUDNIOWYUKKSOUTH WEST (ENGLAND)DE34IneburgFR83CorsePL21MalopolskieUKK1Doest and SomersetDE34NORDRHEIN-WESTFALENFR81GuadeloupePL3REGION WSCHODNIUKK2Corrwall and Isles of ScillyDE41DisseldorfFR83GuadeloupePL3REGION POLNOCNO-ZACHODNIUKK4DevonDE43MinsterGR11Anatoliki Makedonia, ThrakiPL4REGION POLNOCNO-ZACHODNIUKK4South Western SocilandDE43MinsterGR14VOREIA ELLADAPL4REGION POLNOCNO-ZACHODNIUKK4South Western SocilandDE43KoblenzGR1VOREI								
DE7HESSENFR62Midi-PyrénéesNL4ZUD-NEDERLANDUKI1Inner LondonDE71DamstadtFR63LimousinNL41Nord-BrabantUKI2Outer LondonDE72GießenFR7CENTRE-ESTNL42Limburg (NL)UKJSOUTH FAST (ENGLAND)DE73KasselFR71Rhône-AlpesPLPCISKA/ POLANDUKJ1Berkshire, Buckinghamshire andDE80Mecklenburg-VorpommernFR8MÉDITERRANÉEPL1LodzkieUKJ3Hampshire and Isle of WightDE91BraunschweigFR81Languedoc-RoussillonPL12MazowieckieUKJ4KentDE93NiEDERSACHSENFR81CorsePL21MalopolskieUKKCortH WEST (ENGLAND)DE93LineburgFR82Provence-Alpes-Côte d'AzurPL22SiaskieUKK2Dorest and SomersetDE94Weser-EmsFR91GuadeloupePL3REGION VSCHODNIUKK3Cornwall and Isles of ScillyDEA4NORDRHEIN-WESTFALENFR92MartiniquePL3REGION VSCHODNIUKLWL1West Wales and The ValleysDEA4DisseldorfFR93GuyanePL3PodkarpackieUKLWL1West Wales and The ValleysDEA4DisseldorfFR94RéunionPL3SwietokrzyskieUKLWL1West Wales and The ValleysDEA4DetmoldGR1VOREIA ELLADAPL4ZachodniopomorskieUKM3SoutH west SoutendDEA5ArnsbergGR14<								
DE71DarmstadtFR63LimousinNL41Noord-BrabantUKI2Outer LondonDE72GießenFR7CENTRE-ESTNL42Limburg (NL)UKJSOUTH EAST (ENGLAND)DE73KasselFR71Rhöne-AlpesPLPDCJSKA/ POLANDUKJSOUTH EAST (ENGLAND)DE8MECKLENBURG-VORPOMMERNFR72AuvergnePL1REGION CENTRALNYUKJ2Surrey, East and West SussexDE80Mecklenburg-VorpommernFR8MÉDITERRANÉÉPL11LodzkieUKJ4KentDE9NIEDERSACHSENFR81Languedoc-RoussillonPL12MacowleckieUKJ4KentDE91BraunschweigFR82Provence-Alpes-Côte d'AzurPL22REGION POLUDNIOWYUKK3Goucestershire, Wiltshire, BristolDE93LineburgFR9DÉPARTEMENTS D'OUTRE-MERPL21MalopolskieUKK2Dorest and SomesetDE34Weser-EmsFR91GuadeloupePL31LubelskieUKK4DevonDEA3NORDRHEIN-WESTFALENFR92MartiniquePL31LubelskieUKL2VakI2DEA3KönsterGR1VOREIA ELLADAPL4REGION POLNCON-ZACHODNIUKK4VeevonDE43MünsterGR14Anatoliki Makedonia, ThrakiPL41WielkopolskieUKM3South Western ScotlandDE44DetmoldGR12Kentriki MakedoniaPL42ZachodniopomorskieUKM5North Eastern ScotlandDE45AmsbergGR14ThesailaPL43								
DE72GießenFR7CENTRE-ESTNL42Limburg (NL)UKJSOUTH EAST (ENGLAND)DE73KasselFR71Rhöne-AlpesPLPL POLSKA/ POLANDUKJ1Berkshire, Buckinghamshire and West SussedDE80MECKLENBURG-VORPOMMERNFR2AuvergnePL1RGGION CENTRALLYYUKJ3Hampshire and Ise of WightDE90NIEDERSACHSENFR81Languedoc-RoussillonPL12MazowieckieUKJ4KentDE91BraunschweigFR81Languedoc-RoussillonPL2MazowieckieUKJ4KentDE92HannoverFR82Provence-Alpes-Côte d'AzurPL2REGION POLUDNIOWYUKK3SOUTH VEST (ENGLAND)DE93LüneburgFR9DÉPARTEMENTS D'OUTRE-MERPL22SlaskieUKK4Goucestershire, Wiltshire, BristolDE94Weser-EmsFR9GuyanePL31LubelskieUKK4DeronDE44Veser-EmsFR93GuyanePL32PodkarpackieUKLWALESDE43WisserGRELADA/ GREECEPL34PodlaskieUKLWest Wales and The ValleysDE44DetmoldGR1Anatoliki MakedoniaPL4ZachodnjopomorskieUKMSCOTLANDDE45KriserGR14Anatoliki MakedoniaPL43LubuskieUKM3South Western ScotlandDE43KölnGR14Anatoliki MakedoniaPL43LubuskieUKM5North Eastern ScotlandDE45KriserGR14NessaliaPL52Opol								
DE73KasselFR71Rhône-AlpesPL POLSKA/ POLANDUK.11Berkshire, Buckinghamshire and UK.22Surrey, East and West SussexDE80MecKLENBURG-VORPOMMERNFR72AuvergnePL1REGION CENTRALNYUK.23Surrey, East and West SussexDE80Mecklenburg-VorpommernFR8MEDITERRANÉEPL1LodzkieUK.34Hampshire and Isle of WightDE91BraunschweigFR82Provence-Alpes-Côte d'AzurPL2REGION POLUDNIOWYUK.4KentDE92HannoverFR83CorsePL2MalopolskieUK.42Dorest and SomersetDE94LüneburgFR9DÉPARTEMENTS D'OUTRE-MERPL2SlaskieUK.42Dorest and SomersetDE44NORDRHEIN-WESTFALENFR91GuyanePL31LubelskieUK.43Cornwall and Isles of ScillyDEA3MünsterFR94RéunionPL32PodkarpackieUK.1Westales and The ValleysDE44DetmoldGR1VOREIA ELLADAPL3PodlaskieUK.1Westales and The ValleysDEA5AmsbergGR14VOREIA ELLADAPL4REGION POLNONCNO-ZACHODNIUKM3South Western ScotlandDE45KoblenzGR12Kentriki MakedoniaPL4WeislopsikieUKM3South Western ScotlandDE45KoblenzGR13Dytiki MakedoniaPL4WeislopsikieUKM3South Western ScotlandDE45KoblenzGR14ThessaliaPL5REGION POLUDINIOVO-ZACHODNIUKM5Nor	DE72	Gießen	FR7	CENTRE-EST	NL42	Limburg (NL)	UKJ	SOUTH EAST (ENGLAND)
DE80 Mecklenburg-Vorpommern FR8 MÉDITERRANÉE PL11 Lodzkie UKJ3 Hampshire and Isle of Wight DE9 NIEDERSACHSEN FR81 Languedoc-Roussillon PL12 Mazowieckie UKJ4 Kent DE91 Braunschweig FR82 Provenoc-Alpes-Côte d'Azur PL2 REGION POLUDNIOWY UKK4 Kent DE92 Hannover FR83 Corse PL21 Malopolskie UKK1 Gloucestershire, Wittshire, Bristol DE93 Weser-Ems FR91 Gudeloupe PL3 REGION WSCHODNI UKK2 Dorest and Somerset DEA1 Düsseldorf FR93 Guyane PL32 Sakite UKL Waltes DEA2 Köln FR94 Réunion PL32 Sokitokrzyskie UKL Waltes Matul DEA3 Münster GR ELADAY GREECE PL34 Podarpackie UKL WL2 East Wales DEA4 Detmold GR1 vantoliki Makedonia, Thraki PL4 REGION POLNOCNO-ZACHODNI							UKJ1	Berkshire, Buckinghamshire and Oxfor.
DE9NIEDERSAČHSENFR81Languedoc-RoussillonPL12MazowieckieUK.J4KentDE91BraunschweigFR82Provence-Alpes-Côte d'AzurPL2REGION POLUDNIOWYUKKSOUTH WEST (ENGLAND)DE92HannoverFR83CorsePL21MalopolskieUKK1Gloucetschire, Witchine, BristolDE93LüneburgFR9DÉPARTEMENTS D'OUTRE-MERPL22SlaskieUKK2Dorset and SomersetDE94Weser-EmsFR91GudeloupePL31REGION WSCHODNIUKK3Cornwall and Isles of ScillyDEANORDRHEIN-WESTFALENFR92MartiniquePL31LubelskieUKK1DevonDEA1DüsseldorfFR94RéguRegionPL32PodkarpackieUKL1West Wales and The ValleysDEA3KünsterGRFR94RéunionPL33SwietokrzyskieUKL1West Wales and The ValleysDEA4DetmoldGR11VOREIA ELLADAPL4REGION POLNOCNO-ZACHODNIUKM3South Western ScotlandDEA5AmsbergGR11VOREIA ELLADAPL4ZachodniopomorskieUKM3South Western ScotlandDEB4KleinexexexGR12Kentriki MakedoniaPL42ZachodniopomorskieUKM3South Western ScotlandDE45AmsbergGR14ThessaliaPL51DolnoslaskieUKM3South Western ScotlandDE45Kablesen-PfalzGR2KENTIKIKI ELLADAPL51DolnoslaskieUKM0North Eastern Scotland <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
DE91BraunschweigFR82Provence-Alpes-Côte d'AzurPL2REGION POLUDNIOWYUKKSOUTH WEST (ENGLAND)DE92HannoverFR83CorsePL21MalopolskieUKK1Gloucestershire, Wiltshire, BristolDE93LüneburgFR9DEPARTEMENTS D'OUTRE-MERPL22SlaskieUKK2Dorset and SomersetDE94Weser-EmsFR91GuadeloupePL31LubelskieUKK3Cornwall and Isles of ScillyDEANORDRHEIN-WESTFALENFR92MartiniquePL31LubelskieUKK4DevonDEA1DüsseldorfFR93GuyanePL32PodkarpackieUKLWast Wales and The ValleysDEA2KöinFR94RéunionPL33SwietokrzyskieUKL1West Wales and The ValleysDEA3MünsterGR1VOREIA ELLADAPL4Peldon POLNOCNO-ZACHODNIUKMScotTLANDDEA4DetmoldGR11Anatoliki MakedoniaPL42ZachodniopomorskieUKM3South Western ScotlandDE54KollenzGR13Dytki MakedoniaPL43LubuskieUKM3South Western ScotlandDE62TrierGR14ThessaliaPL5REGION POLUDNIOWO-ZACHODNIUKM0North Eastern ScotlandDE53Rheinhessen-PfatzGR2KENTRIKI ELLADAPL41UbuskieUKN0North Eastern ScotlandDE64KolenzGR14ThessaliaPL52OpolskieUKN0North Eastern ScotlandDE65SachardGR24KE			I FR8					
DE92 Hannover FR83 Corse PL21 Malopolskie UKK1 Gloucestershire, Wiltshire, Bristol DE93 Lüneburg FR9 DÉPARTEMENTS D'OUTRE-MER PL22 Staskie UKK2 Dorset and Somerset DE94 Weser-Ems FR91 Guadeloupe PL3 REGION WSCHODNI UKK2 Dorset and Somerset DEA4 NORDRHEIN-WESTFALEN FR92 Martinique PL31 Lubelskie UKK4 Devon DEA2 Köln FR94 Réunion PL33 Swietokrzyskie UKL Wales and The Valleys DEA3 Münster GR ELADA/ GREECE PL34 Podlaskie UKL2 East Wales and The Valleys DEA4 Northold GR1 VOREIA ELLADA PL4 REGION POLNOCNO-ZACHODNI UKM2 Eastern Sociand DEA5 Amsberg GR11 Anatoliki Makedonia PL42 Zachodniopomorskie UKM3 South Western Sociand DEB4 Kholnaz GR12 Kentriki Makedonia PL42 Zachodniopomorskie UKM3 South Western Sociand DEA5 Amsberg GR13 Dytiki Makedonia PL42 Scholon POLUDNIOWO-ZACHODNI UKM3 South Western Sociand DEB2 Rheinhessen-Pf		NIEDEDGAGUGEN		Languedoc-Roussilion			UKJ4	
DE33 Lüneburg FR9 DÉPARTEMENTS D'OUTRE-MER PL22 Slaskie UKK2 Dorset and Somerset DE54 Weser-Ems FR91 Guadeloupe PL3 REGION WSCHODNI UKK3 Comwall and Isles of Scilly DEA NORDRHEIN-WESTFALEN FR92 Martinique PL3 REGION WSCHODNI UKK3 Comwall and Isles of Scilly DEA1 Düsseldorf FR92 Martinique PL3 PL30 Podkarpackie UKL WALES DEA3 Kön FR94 Réunion PL3 Swietokrzyskie UKL Wast Wales and The Valleys DEA4 Detmoid GR1 NORELADA/ GREECE PL34 Podkarskie UKL Easter Males DEA5 Amsberg GR11 Anatoliki Makedonia, Thraki PL4 REGION POLNOCNO-ZACHODNI UKM3 South Western Scotland DEB4 Koblenz GR12 Kentriki Makedonia PL4 Zachodniopomorskie UKM3 South Western Scotland DEB3 Rheinhessen-Pfalz GR14 Thessalia PL5 REGION POLUDNIOWO-ZACHODNI UKM0 North Eastern Scotland DEB4 Koblenz GR2 KENTRIKI ELLADA PL51 Dolnoslaskie UKN0 North Eastern Scotland <t< td=""><td></td><td></td><td>FR81</td><td>Provonce Alnee Côt</td><td></td><td></td><td>LIKK</td><td></td></t<>			FR81	Provonce Alnee Côt			LIKK	
DE94 Weser-Ems FR91 Guadeloupe PL3 REGION WSCHODNI UKK3 Cornwall and Isles of Scilly DEA NORDRHEIN-WESTFALEN FR92 Martinique PL31 Lubelskie UKK4 Devon DEA1 Düsseldorf FR93 Guyane PL32 Podkarpackie UKL Watk4 DEA2 Köln FR94 Réunion PL33 Swietokrzyskie UKL Watk Wales and The Valleys DEA3 Münster GR ELADA GREECE PL34 Podlaskie UKL2 East Wales DEA4 Detmold GR1 OREIA ELADA PL4 REGION POLNOCNO-ZACHODNI UKM3 South Western Scotland DEA5 Amsberg GR11 Anatoliki Makedonia PL42 Zachodniopomorskie UKM3 South Western Scotland DEB4 Kollenz GR13 Dytiki Makedonia PL43 Lubuskie UKM3 South Western Scotland DE82 Trier GR14 Thessalia PL5 REGION POLUDNIOWO-ZACHODNI UKM3 South Western Scotland DE84 Kolenz GR24 KENTRIKI ELLADA PL5 Dolnoslaskie UKN0 North Eastern Scotland DE82 Trier GR14 Thessalia PL5<	DE91	Braunschweig	FR81 FR82					
DEANORDRHEIN-WESTFALENFR92MartiniquePL31LubelskieUKK4DevonDEA1DüsseldorfFR93GuyanePL32PodkarpackieUKLWALESDEA2KölnFR94RéunionPL32SwietokrzyskieUKLWaLESDEA3MünsterGRELLADA GREECEPL34PodlaskieUKLWestales and The ValleysDEA4ArmsbergGR1VORIA ELLADAPL4REGION POLNOCNO-ZACHODNIUKMSCOTLANDDEA5ArmsbergGR11Anatoliki Makedonia, ThrakiPL4WielkopolskieUKMScotlandDEA5KrbinzGR13Dytiki MakedoniaPL42ZachodniopomorskieUKM3South Western ScotlandDEB4KoblenzGR13Dytiki MakedoniaPL43LubuskieUKM3South Western ScotlandDEB2TrierGR14ThessaliaPL5REGION POLUDNIOWO-ZACHODNIUKM5North Eastern ScotlandDEB2TrierGR21IperosPL51DolnoslaskieUKNNORTHERN IRELANDDEC0SaarlandGR21IperosPL52OpolskieUKN0Northern IrelandDED1ChemnitzGR24Sterea ElladaPL61Kujawsko-PomorskieUKN0Northern IrelandDED2DeresdenGR25Sterea ElladaPL63PomorskieUKN0Northern IrelandDED2DeresdenGR25Sterea ElladaPL63PomorskieUKN0Northern IrelandDED2Dere	DE91 DE92	Braunschweig Hannover	FR81 FR82 FR83	Corse	PL21	Malopolskie	UKK1	Gloucestershire, Wiltshire, Bristol
DEA1 Düsseldorf FR93 Guyane PL32 Podkarpackie UKL WALES DEA2 Kön FR94 Réunion PL33 Swietokrzyskie UKL West Wales and The Valleys DEA3 Münster GR ELLADA/ GREECE PL34 Podlaskie UKL West Wales and The Valleys DEA4 Detmold GR1 VOREIA ELLADA PL4 REGION POLNOCNO-ZACHODNI UKM SCOTLAND DEA5 Amsberg GR11 Anatoliki Makedonia, Thraki PL4 REGION POLNOCNO-ZACHODNI UKM South Western Scotland DEB RHEINLAND-PFALZ GR12 Kentriki Makedonia PL42 Zachodniopomorskie UKMS North Eastern Scotland DEB2 Trier GR14 Thessalia PL5 REGION POLUDNIOWO-ZACHODNI UKM NORTHERN IRELAND DEC0 SAARLAND GR21 Ipeiros PL52 Opolskie UKN NORTHERN IRELAND DEC0 SACHSEN GR23 Dytiki Hada PL61 Kijawsko-Pomorskie UKN Northern Ireland DE02 Dresden GR24 Sterea Ellada PL61 Warjawsko-Pomorskie UKN Northern Ireland DE02 Dresden GR24 Sterea Ellad	DE91 DE92 DE93	Braunschweig Hannover Lüneburg	FR81 FR82 FR83 FR9	Corse DÉPARTEMENTS D'OUTRE-MER	PL21 PL22	Malopolskie Slaskie	UKK1 UKK2	Gloucestershire, Wiltshire, Bristol Dorset and Somerset
DEA3 Münster GR ELLAD4 GREECE PL34 Podlaskie UKL2 East Wales DEA4 Detmold GR1 VOREIA ELLADA PL4 REGION POLNOCNO-ZACHODNI UKM SCOTLAND DEA5 Amsberg GR11 Anatoliki Makedonia, Thraki PL4 REGION POLNOCNO-ZACHODNI UKM2 Eastern Scotland DEB RHEINLAND-PFALZ GR12 Kentriki Makedonia PL42 Zachodniopomorskie UKM3 South Western Scotland DEB1 Koblenz GR13 Dytki Makedonia PL42 Zachodniopomorskie UKM3 South Western Scotland DEB2 Trier GR14 Thessalia PL5 REGION POLUDNIOVO-ZACHODNI UKM5 North Eastern Scotland DEB2 Trier GR2 KENTRIKI ELLADA PL51 Dolnoslaskie UKM0 North Eastern Scotland DEC0 Saarland GR21 Ipeiros PL52 Opolskie UKN0 Northern Ireland DED1 Chemnitz GR24 Sterea Ellada PL61 Kujawsko-Pomorskie UKN0 Northern Ireland DED1 Chemnitz GR25 Sterea Ellada PL62 Warminsko-Mazurskie UKN0 Northern Ireland DED2 Deresden GR25 <	DE91 DE92 DE93 DE94 DEA	Braunschweig Hannover Lüneburg Weser-Ems	FR81 FR82 FR83 FR9 FR91 FR92	Corse DÉPARTEMENTS D'OUTRE-MER Guadeloupe	PL21 PL22 PL3 PL31	Malopolskie Slaskie REGION WSCHODNI	UKK1 UKK2 UKK3 UKK4	Gloucestershire, Wiltshire, Bristol Dorset and Somerset Cornwall and Isles of Scilly Devon
DEA4 Detmold GR1 VOREIA ELLADA PL4 REGION POLNOCNO-ZACHODNI UKM SCOTLAND DEA5 Amsberg GR11 Anatoliki Makedonia, Thraki PL41 Wielkopolskie UKM2 Eastern Scotland DEB RHEINLAND-PFALZ GR12 Kentriki Makedonia PL42 Zachodniopomorskie UKM3 South Western Scotland DEB1 Koblenz GR13 Dytki Makedonia PL42 Zachodniopomorskie UKM3 North Eastern Scotland DEB2 Trier GR14 Thessalia PL5 REGION POLUDNIOWO-ZACHODNI UKM6 Highlands and Islands DEB3 Rheinhessen-Pfalz GR2 KENTRIKI ELLADA PL51 Dolnoslaskie UKN NORTHERN IRELAND DEC0 SAARLAND GR21 Ipeiros PL51 Dolnoslaskie UKN0 Northern Ireland DEC0 SACHSEN GR22 Ionia Nisia PL6 REGION POLNOCNY VLN0 Northern Ireland DED1 Chemnitz GR24 Sterae Ellada PL62 Warminsko-Phazenskie VLN0 Verter Ve	DE91 DE92 DE93 DE94 DEA DEA	Braunschweig Hannover Lüneburg Weser-Ems NORDRHEIN-WESTFALEN Düsseldorf	FR81 FR82 FR83 FR9 FR91 FR92 FR93	Corse DÉPARTEMENTS D'OUTRE-MER Guadeloupe Martinique Guyane	PL21 PL22 PL3 PL31 PL32	Malopolskie Slaskie REGION WSCHODNI Lubelskie Podkarpackie	UKK1 UKK2 UKK3 UKK4 UKL	Gloucestershire, Wiltshire, Bristol Dorset and Somerset Cornwall and Isles of Scilly Devon WALES
DEA5 Arnsberg GR11 Anatoliki Makedonia, Thraki PL41 Wielkopolskie UKM2 Eastern Scotland DEB KHEINLAND-PFALZ GR12 Kentriki Makedonia PL42 Zachodniopomorskie UKM3 South Western Scotland DEB1 Koblenz GR13 Dytki Makedonia PL43 Lubuskie UKM3 South Western Scotland DEB2 Trier GR14 Thessalia PL5 REGION POLUDNIOWO-ZACHODNI UKM6 Highlands and Islands DEB3 Rheinhessen-Pfalz GR2 KENTRIKI ELLADA PL51 Dolnoslaskie UKN NORTHERN IRELAND DEC0 Saarland GR21 Ipeiros PL61 Kijawsko-Pomorskie UKN0 Norther Ireland DED1 Chemnitz GR23 Dytki Ellada PL61 Kijawsko-Pomorskie VK10 Norther Ireland DED2 Dresden GR24 Sterea Ellada PL63 Warminsko-Mazurskie VK10 VK10 VK10	DE91 DE92 DE93 DE94 DEA DEA1 DEA2	Braunschweig Hannover Lüneburg Weser-Ems NORDRHEIN-WESTFALEN Düsseldorf Köln	FR81 FR82 FR83 FR9 FR91 FR92 FR93 FR94	Corse DÉPARTEMENTS D'OUTRE-MER Guadeloupe Martinique Guyane Réunion	PL21 PL22 PL3 PL31 PL32 PL32 PL33	Malopolskie Slaskie REGION WSCHODNI Lubelskie Podkarpackie Swietokrzyskie	UKK1 UKK2 UKK3 UKK4 UKL UKL1	Gloucestershire, Wiltshire, Bristol Dorset and Somerset Cornwall and Isles of Scilly Devon WALES West Wales and The Valleys
DEB RHEINLAND-PFALZ GR12 Kentriki Makedonia PL42 Zachodniopomorskie UKM3 South Western Scotland DEB1 Koblenz GR13 Dytki Makedonia PL43 Lubuskie UKM5 North Eastern Scotland DEB2 Trier GR14 Thessalia PL5 REGION POLUDNIOWO-ZACHODNI UKM5 North Eastern Scotland DEB3 Rheinhessen-Pfatz GR2 KENTRIKI ELLADA PL51 Dolnoslaskie UKN NORTHERN IRELAND DEC SAARLAND GR21 Ipeiros PL52 Opolskie UKN Northern Ireland DEC0 Saarfand GR23 Dytki Ellada PL61 Kijawako-Pomorskie UKN Northern Ireland DED1 Chemnitz GR24 Sterea Ellada PL63 Pomrskie VE14	DE91 DE92 DE93 DE94 DEA DEA1 DEA2 DEA3	Braunschweig Hannover Lüneburg Weser-Ems NORDRHEIN-WESTFALEN Düsseldorf Köln Münster	FR81 FR82 FR9 FR91 FR92 FR93 FR94 GR	Corse DÉPARTEMENTS D'OUTRE-MER Guadeloupe Martinique Guyane Réunion ELLADA/ GREECE	PL21 PL22 PL3 PL31 PL32 PL33 PL34	Malopolskie Slaskie REGION WSCHODNI Lubelskie Podkarpackie Swietokrzyskie Podlaskie	UKK1 UKK2 UKK3 UKK4 UKL UKL1 UKL2	Gloucestershire, Wiltshire, Bristol Dorset and Somerset Cornwall and Isles of Scilly Devon WALES West Wales and The Valleys East Wales
DEB1 Koblenz GR13 Dytiki Makedonia PL43 Lubuskie UKM5 North Eastern Scotland DEB2 Trier GR14 Thessalia PL5 REGION POLUDNIOWO-ZACHODNI UKM6 Highlands and Islands DEB3 Rheinhessen-Pfalz GR2 KENTRIKI ELLADA PL51 Dolnoslaskie UKM NORTHERN IRELAND DEC SAARLAND GR21 Iperos PL52 Opolskie UKN Northern Ireland DEC0 Saarland GR22 Ionia Nisia PL6 REGION POLNOCNY UKN Northern Ireland DED1 SACHSEN GR24 Sterea Ellada PL62 Warminsko-Pomorskie High Plands High Plands High Plands DED2 Dresden GR25 Peloponnisos PL63 Pomorskie High Plands High Plands	DE91 DE92 DE93 DE94 DEA DEA1 DEA2 DEA3 DEA4	Braunschweig Hannover Lüneburg Weser-Ems NORDRHEIN-WESTFALEN Düsseldorf Köln Münster Detmold	FR81 FR82 FR93 FR91 FR92 FR93 FR94 GR1	Corse DÉPARTEMENTS D'OUTRE-MER Guadeloupe Martinique Guyane Réurion ELLADA (REECE VOREIA ELLADA	PL21 PL22 PL3 PL31 PL32 PL33 PL34 PL4	Malopolskie Slaskie REGION WSCHODNI Lubelskie Podkarpackie Swietokrzyskie Podlaskie REGION POLNOCNO-ZACHODNI	UKK1 UKK2 UKK3 UKL4 UKL1 UKL1 UKL2 UKM	Gloucestershire, Wiltshire, Bristol Dorset and Somerset Cornwall and Isles of Scilly Devon WALES West Wales and The Valleys East Wales SCOTLAND
DEB2 Trier GR14 Thessalia PL5 REGION POLUDNIOWO-ZACHODNI UKM6 Highlands and Islands DEB3 Rheinhessen-Pfalz GR2 KENTRIK ELLADA PL51 Dolnoslaskie UKN NORTHERN IRELAND DEC SARLAND GR21 Ipeiros PL52 Opolsia UKN NORTHERN IRELAND DEC0 Saarland GR22 Ionia Nisia PL6 REGION POLNOCNY UKN Northern Ireland DED0 SACHSEN GR23 Dytiki Ellada PL61 Kujawsko-Pomorskie VKN0 Northern Ireland DED1 Chemnitz GR24 Sterea Ellada PL62 Warminsko-Mazurskie VKN0 VHF DE02 Dresden GR25 Peloponnisos PL63 Pomorskie VHF VHF	DE91 DE92 DE93 DE94 DEA DEA1 DEA2 DEA3 DEA4 DEA5	Braunschweig Hannover Lüneburg Weser-Ems NORDRHEIN-WESTFALEN Düsseldorf Köln Münster Detmold Amsberg	FR81 FR82 FR9 FR91 FR92 FR93 FR94 GR1 GR11	Corse DÉPARTEMENTS D'OUTRE-MER Guadeloupe Martinique Guyane Réunion ELLADA/GREECE VOREIA ELLADA Anatoliki Makedonia, Thraki	PL21 PL22 PL3 PL31 PL32 PL33 PL34 PL4 PL4	Malopolskie Slaskie REGION WSCHODNI Lubelskie Podkarpackie Swietokrzyskie Podlaskie REGION POLNOCNO-ZACHODNI Wielkopolskie	UKK1 UKK2 UKK3 UKL UKL1 UKL2 UKM UKM2	Gloucestershire, Wiltshire, Bristol Dorset and Somerset Cornwall and Isles of Scilly Devon WALES West Wales and The Valleys East Wales SCOTLAND Eastern Scotland
DEB3 Rheinhessen-Pfalz GR2 KENTRIKI ELLADA PL51 Dolnoslaskie UKN NÖRTHERN IRELAND DEC SAARLAND GR21 Ipeiros PL52 Opolskie UKN Nörthern Ireland DEC0 Saarland GR22 Ionia Nisia PL6 REGION POLNOCNY UKN Northern Ireland DED SACHSEN GR23 Dytki Ellada PL61 Kujawsko-Pomorskie UKN Northern Ireland DED1 Chemnitz GR24 Sterea Ellada PL62 Warminsko-Mazurskie UKN Vertical Sterea DED2 Dresden GR25 Peloponnisos PL63 Pomorskie UKN Vertical Sterea	DE91 DE92 DE93 DE94 DEA DEA1 DEA2 DEA3 DEA4 DEA5 DEB	Braunschweig Hannover Lüneburg Weser-Ems NORDRHEIN-WESTFALEN Düsseldorf Köln Münster Detmold Amsberg RHEINLAND-PFALZ	FR81 FR82 FR93 FR91 FR92 FR93 FR94 GR1 GR11 GR12	Corse DÉPARTEMENTS D'OUTRE-MER Guadeloupe Martinique Guyane Réunion ELLADA/ GREECE VOREIA ELLADA Anatoliki Makedonia, Thraki Kentriki Makedonia	PL21 PL22 PL3 PL31 PL32 PL33 PL34 PL4 PL41 PL42	Malopolskie Slaskie REGION WSCHODNI Lubelskie Podkarpackie Podlaskie REGION POLNOCNO-ZACHODNI Wielkopolskie Zachodniopomorskie	UKK1 UKK2 UKK3 UKK4 UKL UKL1 UKL2 UKM UKM2 UKM3	Gloucestershire, Wiltshire, Bristol Dorset and Somerset Cornwall and Isles of Scilly Devon WALES West Wales and The Valleys East Wales SCOTLAND Eastern Scotland South Western Scotland
DEC SAARLAND GR21 lpeiros PL52 Opolskie UKN0 Northern Ireland DEC0 Saarland GR22 Ionia Nisia PL6 REGION POLNOCNY DED SACHSEN GR23 Dytki Ellada PL61 Kujawsko-Pomorskie DED1 Chemnitz GR24 Sterea Ellada PL63 Warminsko-Mazurskie DED2 Dresden GR25 Peloponnisos PL63 Pomorskie	DE91 DE92 DE93 DE94 DEA1 DEA2 DEA3 DEA4 DEA5 DEB DEB1	Braunschweig Hannover Lüneburg Weser-Ems NORDRHEIN-WESTFALEN Düsseldorf Köln Münster Detmold Arnsberg RHEINLAND-PFALZ Koblenz	FR81 FR82 FR9 FR91 FR92 FR93 FR94 GR1 GR11 GR12 GR13	Corse DÉPARTEMENTS D'OUTRE-MER Guadeloupe Martinique Guyane EkunDA (REECE VOREIA ELLADA VOREIA ELLADA Anatoliki Makedonia, Thraki Kentriki Makedonia Dytiki Makedonia	PL21 PL22 PL3 PL31 PL32 PL33 PL34 PL4 PL41 PL42 PL43	Malopolskie Slaskie REGION WSCHODNI Lubelskie Podkarpackie Swietokrzyskie Podlaskie REGION POLNOCNO-ZACHODNI Wielkopolskie Zachodniopomorskie Lubuskie	UKK1 UKK2 UKK3 UKK4 UKL UKL1 UKL2 UKM2 UKM2 UKM3 UKM5	Gloucestershire, Wiltshire, Bristol Dorset and Somerset Cornwall and Isles of Scilly Devon WALES West Wales and The Valleys East Wales SCOTLAND Eastern Scotland South Western Scotland North Eastern Scotland
DEC0 Saarland GR22 Ionia Nisia PL6 REGION POLNOCNY DED SACHSEN GR23 Dytki Ellada PL61 Kujawsko-Pomorskie DED1 Chemnitz GR24 Sterea Ellada PL62 Warminsko-Mazurskie DED2 Dresden GR25 Peloponnisos PL63 Pomorskie	DE91 DE92 DE93 DE94 DEA1 DEA2 DEA3 DEA4 DEA5 DEB DEB1 DEB1 DEB2	Braunschweig Hannover Lüneburg Weser-Ems NORDRHEIN-WESTFALEN Düsseldorf Köln Münster Detmold Amsberg RHEINLAND-PFALZ Koblenz Trier	FR81 FR82 FR9 FR91 FR92 FR93 FR94 GR1 GR11 GR11 GR12 GR13 GR14	Corse DÉPARTEMENTS D'OUTRE-MER Guadeloupe Martinique Guyane Réunion ELLADA/ GREECE VOREIA ELLADA Anatoliki Makedonia, Thraki Kentriki Makedonia Dytiki Makedonia Thessalia	PL21 PL22 PL3 PL31 PL32 PL33 PL34 PL4 PL41 PL42 PL43 PL5	Malopolskie Slaskie REGION WSCHODNI Lubelskie Podkarpackie Swietokrzyskie Podlaskie REGION POLNOCNO-ZACHODNI Wielkopolskie Zachodniopomorskie Lubuskie REGION POLUDNIOWO-ZACHODNI	UKK1 UKK2 UKK3 UKK4 UKL1 UKL2 UKM2 UKM2 UKM3 UKM5 UKM6	Gloucestershire, Wiltshire, Bristol Dorset and Somerset Cornwall and Isles of Scilly Devon WALES West Wales and The Valleys East Wales SCOTLAND Eastern Scotland South Western Scotland North Eastern Scotland Highlands and Islands
DED SACHSEN GR23 Dytiki Ellada PL61 Kujawsko-Pomorskie DED1 Chemnitz GR24 Sterea Ellada PL62 Warminsko-Mazurskie DED2 Dresden GR25 Peloponnisos PL63 Pomorskie	DE91 DE92 DE93 DE94 DEA1 DEA1 DEA2 DEA3 DEA4 DEA5 DEB1 DEB1 DEB1 DEB2 DEB3	Braunschweig Hannover Lüneburg Weser-Ems NORDRHEIN-WESTFALEN Düsseldorf Köln Münster Detmold Amsberg RHEINLAND-PFALZ Koblenz Trier Rheinhessen-Pfalz	FR81 FR82 FR93 FR91 FR92 FR93 FR94 GR1 GR11 GR12 GR13 GR14 GR2	Corse DÉPARTEMENTS D'OUTRE-MER Guadeloupe Martinique Guyane Réunion ELLADA/ GREECE VOREIA ELLADA Anatoliki Makedonia, Thraki Kentriki Makedonia Dytiki Makedonia Thessalia KENTRIKI ELLADA	PL21 PL22 PL31 PL32 PL32 PL33 PL34 PL44 PL41 PL42 PL43 PL43 PL5 PL51	Malopolskie Slaskie REGION WSCHODNI Lubelskie Podkarpackie Podlaskie Podlaskie REGION POLNOCNO-ZACHODNI Wielkopolskie Zachodniopomorskie Lubuskie REGION POLUDNIOWO-ZACHODNI Dolnoslaskie	UKK1 UKK2 UKK3 UKK4 UKL1 UKL2 UKM2 UKM2 UKM3 UKM5 UKM6 UKN	Gloucestershire, Wiltshire, Bristol Dorset and Somerset Cornwall and Isles of Scilly Devon WALES West Wales and The Valleys East Wales SCOTLAND Eastern Scotland South Western Scotland North Eastern Scotland Highlands and Islands NORTHERN IRELAND
DED2 Dresden GR25 Peloponnisos <u>PL63 Pomorskie</u>	DE91 DE92 DE93 DE4 DEA DEA1 DEA2 DEA3 DEA4 DEA5 DEB DEB1 DEB1 DEB2 DEB3 DEC	Braunschweig Hannover Lüneburg Weser-Ems NORDRHEIN-WESTFALEN Düsseldorf Köln Münster Detmold Armsberg RHEINLAND-PFALZ Koblenz Trier Rheinhessen-Pfalz SAARLAND	FR81 FR82 FR93 FR91 FR92 FR94 GR11 GR11 GR12 GR13 GR14 GR2 GR21	Corse DÉPARTEMENTS D'OUTRE-MER Guadeloupe Martinique Guyane ELADA/ GREECE VOREIA ELLADA Anatoliki Makedonia, Thraki Kentriki Makedonia Dytiki Makedonia Thessalia KENTRIKI ELLADA Ipeiros	PL21 PL22 PL3 PL32 PL32 PL33 PL34 PL4 PL41 PL42 PL42 PL43 PL5 PL51 PL52	Malopolskie Slaskie REGION WSCHODNI Lubelskie Podkarpackie Swietokrzyskie Podlaskie REGION POLNOCNO-ZACHODNI Wielkopolskie Zachodniopomorskie Lubuskie REGION POLUDNIOWO-ZACHODNI Dolnoslaskie Opolskie	UKK1 UKK2 UKK3 UKK4 UKL1 UKL2 UKM2 UKM2 UKM3 UKM5 UKM6 UKN	Gloucestershire, Wiltshire, Bristol Dorset and Somerset Cornwall and Isles of Scilly Devon WALES West Wales and The Valleys East Wales SCOTLAND Eastern Scotland South Western Scotland North Eastern Scotland Highlands and Islands NORTHERN IRELAND
	DE91 DE92 DE93 DE94 DEA1 DEA2 DEA3 DEA3 DEA4 DEA5 DEB1 DEB2 DEB1 DEB2 DEB2 DEB2 DEC0 DEC0 DED	Braunschweig Hannover Lüneburg Weser-Ems NORDRHEIN-WESTFALEN Düsseldorf Köln Münster Detmold Amsberg RHEINLAND-PFALZ Koblenz Trier Rheinhessen-Pfalz SAARLAND Saarland SACHSEN	FR81 FR82 FR83 FR9 FR92 FR93 FR94 GR1 GR11 GR12 GR12 GR14 GR21 GR21 GR22 GR22 GR23	Corse DÉPARTEMENTS D'OUTRE-MER Guadeloupe Martinique Guyane Réunion ELLADA/ GREECE VOREIA ELLADA Anatoliki Makedonia Thraki Kentriki Makedonia Dytiki Makedonia Dytiki Makedonia KENTRIKI ELLADA Ipeiros Ionia Nisia Dytiki Ellada	PL21 PL22 PL3 PL31 PL32 PL32 PL32 PL43 PL42 PL42 PL42 PL42 PL43 PL51 PL52 PL51 PL52 PL61	Malopolskie Slaskie REGION WSCHODNI Lubelskie Podkarpackie Podlaskie REGION POLNOCNO-ZACHODNI Wielkopolskie Zachodniopomorskie Lubuskie REGION POLUDNIOWO-ZACHODNI Dolnoslaskie Opolskie REGION POLUDNIOWO-ZACHODNI Dolnostaskie	UKK1 UKK2 UKK3 UKK4 UKL1 UKL2 UKM2 UKM2 UKM3 UKM5 UKM6 UKN	Gloucestershire, Wiltshire, Bristol Dorset and Somerset Cornwall and Isles of Scilly Devon WALES West Wales and The Valleys East Wales SCOTLAND Eastern Scotland South Western Scotland North Eastern Scotland Highlands and Islands NORTHERN IRELAND
	DE91 DE92 DE93 DE94 DEA1 DEA2 DEA3 DEA4 DEA5 DEB DEB2 DEB2 DEB2 DEB2 DEC0 DEC0 DEC0 DEC0	Braunschweig Hannover Lüneburg Weser-Ems NORDRHEIN-WESTFALEN Düsseldorf Köln Münster Detmold Armsberg RHEINLAND-PFALZ Koblenz Trier Rheinhessen-Pfalz SAARLAND Saarland SACHSEN Chemnitz	FR81 FR82 FR9 FR91 FR92 FR93 FR94 GR11 GR12 GR12 GR13 GR14 GR2 GR21 GR22 GR22 GR23 GR24	Corse DÉPARTEMENTS D'OUTRE-MER Guadeloupe Martinique Guyane Réunion ELLADA/ GREECE VOREIA ELLADA Anatoliki Makedonia, Thraki Kentriki Makedonia Dytiki Makedonia Dytiki Makedonia Thessalia KENTRIKI ELLADA Ipeiros Ionia Nisia Dytiki Ellada	PL21 PL22 PL3 PL31 PL32 PL33 PL34 PL44 PL41 PL42 PL43 PL52 PL51 PL52 PL61 PL61 PL62	Malopolskie Slaskie REGION WSCHODNI Lubelskie Podkarpackie Swietokrzyskie Podlaskie REGION POLNOCNO-ZACHODNI Wielkopolskie Zachodniopomorskie Lubuskie REGION POLUDNIOWO-ZACHODNI Dolnoslaskie Opolskie REGION POLNOCNY Kujawsko-Pomorskie	UKK1 UKK2 UKK3 UKK4 UKL1 UKL2 UKM2 UKM2 UKM3 UKM5 UKM6 UKN	Gloucestershire, Wiltshire, Bristol Dorset and Somerset Cornwall and Isles of Scilly Devon WALES West Wales and The Valleys East Wales SCOTLAND Eastern Scotland South Western Scotland North Eastern Scotland Highlands and Islands NORTHERN IRELAND
	DE91 DE92 DE93 DE94 DEA1 DEA2 DEA3 DEA3 DEA4 DEA5 DEB DEB1 DEB2 DEC0 DED DED1 DED2	Braunschweig Hannover Lüneburg Weser-Ems NORDRHEIN-WESTFALEN Düsseldorf Köln Münster Detmold Arnsberg RHEINLAND-PFALZ Koblenz Trier Rheinbessen-Pfalz SAARLAND Saarland SACHSEN Chemnitz Dresden	FR81 FR82 FR9 FR91 FR92 FR93 FR94 GR11 GR12 GR13 GR14 GR21 GR21 GR22 GR22 GR23 GR24 GR25	Corse DÉPARTEMENTS D'OUTRE-MER Guadeloupe Martinique Guyane Réunion ELLADA/ GREECE VOREIA ELLADA Anatoliki Makedonia, Thraki Kentriki Makedonia Dytiki Makedonia Dytiki Makedonia KENTRIKI ELLADA Ipeiros Ionia Nisia Dytiki Ellada Sterea Ellada Peloponnisos	PL21 PL22 PL3 PL31 PL32 PL34 PL34 PL41 PL42 PL43 PL43 PL52 PL52 PL52 PL52 PL52 PL52 PL52 PL52	Malopolskie Slaskie REGION WSCHODNI Lubelskie Podkarpackie Swietokrzyskie Podlaskie REGION POLNOCNO-ZACHODNI Wielkopolskie Zachodniopomorskie Lubuskie REGION POLUDNIOWO-ZACHODNI DoInoslaskie Opolskie REGION POLUDNIOWO-ZACHODNI REGION POLNOCNY Kujawsko-Pomorskie Warminsko-Mazurskie Pomorskie	UKK1 UKK2 UKK3 UKK4 UKL1 UKL2 UKM2 UKM2 UKM3 UKM5 UKM6 UKN	Gloucestershire, Wiltshire, Bristol Dorset and Somerset Cornwall and Isles of Scilly Devon WALES West Wales and The Valleys East Wales SCOTLAND Eastern Scotland South Western Scotland North Eastern Scotland Highlands and Islands NORTHERN IRELAND

Source: Own illustration based on EUROSTAT.

Appendix C: Classification of Mechanical Engineering in IPC

F	Section F - Mechanical engineering; lighting; heating; weapons; blasting
F01	Machines or engines in general; engine plants in general; steam engines
F02	Combustion engines; hot-gas or combustion-product engine plants
F03	
	Machines or engines for liquids; wind, spring, weight, or miscellaneous motors; producing mechanical power or a reactive propulsive thrust, not otherwise provided for
F04	Positive-displacement machines for liquids; pumps for liquids or elastic fluids
F15	Fluid-pressure actuators; hydraulics or pneumatics in general
F16	Engineering elements or units; general measures for producing and maintaining effective functioning of machines or installations; thermal insulation in general
F17	Storing or distributing gases or liquids
F23	Combustion apparatus; combustion processes
F25	Refrigeration or cooling; combined heating and refrigeration systems; heat pump systems; manufacture or storage of ice; liquefaction or solidification of gases
F26	Drying
F27	Furnaces; kilns; ovens; retorts
F28	Heat exchange in general

Source: Own illustration based on EUROSTAT (selected IPC of F classes only).

Appendix D:	Classification	of Biotechnolo	gy in IPC
-------------	----------------	----------------	-----------

A01H 4/00Plant reproductA61K 38/00Medicinal presentA61K 39/00Medicinal presentA61K 48/00Medicinal presentA61K 48/00Medicinal presentC02F 3/34Biological tresentBiological tresentUsedC07G 11/00Compounds ofC07G 13/00Compounds ofC07K 15/00Compounds ofC07K 14/00Peptides haviDerivatives thDerivatives thC07K 16/00ImmunoglobicC07K 19/00Hybrid pepticC12NMicro-organis	ing more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; hereof ulins, e.g. monoclonal or polyclonal antibodies d or immobilised peptides; Preparation thereof des r enzymology or microbiology sms or enzymes; compositions thereof propagating, preserving, or maintaining
A61K 38/00Medicinal predictA61K 39/00Medicinal predictA61K 48/00Medicinal predictA61K 48/00Medicinal predictA61K 48/00Medicinal predictC02F 3/34Biological tredictBiological tredictUsedC07G 11/00Compounds ofC07G 13/00Compounds ofC07K 15/00Compounds ofC07K 14/00Peptides haviDerivatives thDerivatives thC07K 16/00ImmunoglobicC07K 19/00Hybrid peptionC12NMicro-organis	eparations containing peptides eparations containing antigens or antibodies eparations containing genetic material which is inserted into cells of the living body tic diseases; Gene therapy atment of water, waste water, or sewage: characterised by the microorganisms of unknown constitution: antibiotics of unknown constitution: vitamins of unknown constitution: hormones ing up to 20 amino acids in an undefined or only partially defined sequence; hereof ing more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; hereof ulins, e.g. monoclonal or polyclonal antibodies d or immobilised peptides; Preparation thereof des r enzymology or microbiology sms or enzymes; compositions thereof propagating, preserving, or maintaining
A61K 39/00Medicinal predictA61K 48/00Medicinal predictA61K 48/00Medicinal predictC02F 3/34Biological tredictBiological tredictUsedC07G 11/00Compounds ofC07G 13/00Compounds ofC07G 15/00Compounds ofC07K 4/00Peptides haviDerivatives thDerivatives thC07K 16/00ImmunoglobicC07K 17/00Carrier-boundC07K 19/00Hybrid peptidC12NMicro-organis	eparations containing antigens or antibodies eparations containing genetic material which is inserted into cells of the living body itic diseases; Gene therapy atment of water, waste water, or sewage: characterised by the microorganisms of unknown constitution: antibiotics of unknown constitution: vitamins of unknown constitution: hormones ing up to 20 amino acids in an undefined or only partially defined sequence; hereof ing more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; hereof ulins, e.g. monoclonal or polyclonal antibodies d or immobilised peptides; Preparation thereof des r enzymology or microbiology sms or enzymes; compositions thereof propagating, preserving, or maintaining
A61K 48/00Medicinal pre- to treat gene to treat gene Biological tre usedC02F 3/34Biological tre usedC07G 11/00Compounds of Compounds of C07G 15/00C07G 15/00Compounds of Compounds of Derivatives th Derivatives th C07K 14/00C07K 14/00Peptides havi Derivatives th C07K 16/00C07K 16/00Immunoglobi C07K 17/00C07K 19/00Hybrid peptid C12MC12NMicro-organis	parations containing genetic material which is inserted into cells of the living body tic diseases; Gene therapy atment of water, waste water, or sewage: characterised by the microorganisms of unknown constitution: antibiotics of unknown constitution: vitamins of unknown constitution: hormones ing up to 20 amino acids in an undefined or only partially defined sequence; hereof ing more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; hereof ulins, e.g. monoclonal or polyclonal antibodies d or immobilised peptides; Preparation thereof des r enzymology or microbiology sms or enzymes; compositions thereof propagating, preserving, or maintaining
to treat geneC02F 3/34Biological tre usedC07G 11/00Compounds of Compounds of C07G 15/00C07G 15/00Compounds of Compounds of Derivatives th Derivatives thC07K 14/00Peptides havi Derivatives th C07K 16/00C07K 16/00Immunoglobi C07K 17/00C07K 19/00Hybrid peptid C12N	tic diseases; Gene therapy atment of water, waste water, or sewage: characterised by the microorganisms of unknown constitution: antibiotics of unknown constitution: vitamins of unknown constitution: hormones ing up to 20 amino acids in an undefined or only partially defined sequence; hereof ing more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; hereof ulins, e.g. monoclonal or polyclonal antibodies d or immobilised peptides; Preparation thereof des r enzymology or microbiology sms or enzymes; compositions thereof propagating, preserving, or maintaining
C02F 3/34Biological treusedC07G 11/00Compounds ofC07G 13/00Compounds ofC07G 15/00Compounds ofC07K 14/00Peptides haviDerivatives tlDerivatives tlC07K 14/00ImmunoglobiC07K 16/00ImmunoglobiC07K 17/00Carrier-boundC07K 19/00Hybrid peptidC12NMicro-organis	atment of water, waste water, or sewage: characterised by the microorganisms of unknown constitution: antibiotics of unknown constitution: vitamins of unknown constitution: hormones ing up to 20 amino acids in an undefined or only partially defined sequence; hereof ing more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; hereof ulins, e.g. monoclonal or polyclonal antibodies d or immobilised peptides; Preparation thereof des r enzymology or microbiology sms or enzymes; compositions thereof propagating, preserving, or maintaining
C07G 13/00 Compounds of C07G 15/00 Compounds of C07K 4/00 Peptides havi Derivatives th C07K 14/00 Peptides havi Derivatives th C07K 16/00 Immunoglobe C07K 17/00 Carrier-bound C07K 19/00 Hybrid peptid C12M Apparatus for C12N Micro-organis	of unknown constitution: vitamins of unknown constitution: hormones ing up to 20 amino acids in an undefined or only partially defined sequence; hereof ing more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; hereof ulins, e.g. monoclonal or polyclonal antibodies d or immobilised peptides; Preparation thereof des r enzymology or microbiology sms or enzymes; compositions thereof propagating, preserving, or maintaining
C07G 15/00 Compounds of C07K 4/00 Peptides havi Derivatives th C07K 14/00 Peptides havi Derivatives th C07K 16/00 Immunoglobe C07K 17/00 Carrier-bound C07K 19/00 Hybrid peptid C12M Apparatus for C12N Micro-organis	of unknown constitution: hormones ing up to 20 amino acids in an undefined or only partially defined sequence; hereof ing more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; hereof ulins, e.g. monoclonal or polyclonal antibodies d or immobilised peptides; Preparation thereof des r enzymology or microbiology sms or enzymes; compositions thereof propagating, preserving, or maintaining
C07G 15/00 Compounds of C07K 4/00 Peptides havi Derivatives th C07K 14/00 Peptides havi Derivatives th C07K 16/00 Immunoglobe C07K 17/00 Carrier-bound C07K 19/00 Hybrid peptid C12M Apparatus for C12N Micro-organis	of unknown constitution: hormones ing up to 20 amino acids in an undefined or only partially defined sequence; hereof ing more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; hereof ulins, e.g. monoclonal or polyclonal antibodies d or immobilised peptides; Preparation thereof des r enzymology or microbiology sms or enzymes; compositions thereof propagating, preserving, or maintaining
Derivatives thC07K 14/00Peptides havi Derivatives thC07K 16/00ImmunoglobeC07K 17/00Carrier-boundC07K 19/00Hybrid peptidC12MApparatus forC12NMicro-organis	hereof ing more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; hereof ulins, e.g. monoclonal or polyclonal antibodies d or immobilised peptides; Preparation thereof des r enzymology or microbiology sms or enzymes; compositions thereof propagating, preserving, or maintaining
Derivatives th C07K 16/00 Immunoglob C07K 17/00 Carrier-bound C07K 19/00 Hybrid peptic C12M Apparatus for C12N Micro-organis	hereof ulins, e.g. monoclonal or polyclonal antibodies d or immobilised peptides; Preparation thereof des r enzymology or microbiology sms or enzymes; compositions thereof propagating, preserving, or maintaining
C07K 17/00 Carrier-bound C07K 19/00 Hybrid peptic C12M Apparatus for C12N Micro-organis	d or immobilised peptides; Preparation thereof des r enzymology or microbiology sms or enzymes; compositions thereof propagating, preserving, or maintaining
C07K 19/00 Hybrid peptic C12M Apparatus for C12N Micro-organis	les r enzymology or microbiology sms or enzymes; compositions thereof propagating, preserving, or maintaining
C07K 19/00 Hybrid peptic C12M Apparatus for C12N Micro-organis	les r enzymology or microbiology sms or enzymes; compositions thereof propagating, preserving, or maintaining
C12N Micro-organis	sms or enzymes; compositions thereof propagating, preserving, or maintaining
C12N Micro-organis	sms or enzymes; compositions thereof propagating, preserving, or maintaining
micro-organi	sms; mutation or genetic engineering; culture media
C12P Fermentation	or enzyme-using processes to synthesise a desired chemical compound or or to separate optical isomers from a racemic mixture
papers there	testing processes involving enzymes or micro-organisms; compositions or test for; processes of preparing such compositions; condition-responsive control in cal or enzymological processes
C12S Processes usi compound or	ing enzymological processes ing enzymes or micro-organisms to liberate, separate or purify a pre-existing composition processes using enzymes or micro-organisms to treat textiles or to urfaces of materials
G01N 27/327 Investigating	or analysing materials by the use of electric, electro-chemical, or magnetic nemical electrodes
	or analysing materials by specific methods not covered by the preceding groups: y; biospecific binding assay; materials therefore
double or sec carrier for im suspendable	or analysing materials by specific methods not covered by the preceding groups: cond antibody: with steric inhibition or signal modification: with an insoluble mobilising immunochemicals: the carrier being organic: synthetic resin: as water particles: with antigen or antibody attached to the carrier via a bridging agent: es: with antigen or antibody entrapped within the carrier
G01N 33/55* Investigating the carrier be cell or cell fra	or analysing materials by specific methods not covered by the preceding groups: eing inorganic: Glass or silica: Metal or metal coated: the carrier being a biological agment: Red blood cell: Fixed or stabilised red blood cell: using kinetic it: using diffusion or migration of antigen or antibody: through a gel
G01N 33/57* Investigating for venereal	or analysing materials by specific methods not covered by the preceding groups: disease: for enzymes or isoenzymes: for cancer: for hepatitis: involving antibodies: involving limulus lysate
G01N 33/68 Investigating	or analysing materials by specific methods not covered by the preceding groups: teins, peptides or amino acids
	or analysing materials by specific methods not covered by the preceding groups:
G01N 33/76 Investigating	or analysing materials by specific methods not covered by the preceding groups: onic gonadotropin
	or analysing materials by specific methods not covered by the preceding groups:
	or analysing materials by specific methods not covered by the preceding groups:
G01N 33/92 Investigating	or analysing materials by specific methods not covered by the preceding groups: ds, e.g. cholesterol
	le subgroups up to one digit (0 or 1 digit). For example, in addition to the code
	33/531, GO1N 33/532, etc. are included.

Source: Own illustration; data: OECD & EUROSTAT (http://www.biotechnologie.de/).

Hohenheimer Diskussionsbeiträge aus dem

INSTITUT FÜR VOLKSWIRTSCHAFTSLEHRE

DER UNIVERSITÄT HOHENHEIM

- Nr. 258/2005 Heinz-Peter Spahn, Wie der Monetarismus nach Deutschland kam Zum Paradigmenwechsel der Geldpolitik in den frühen 1970er Jahren
- Nr.259/2005Walter Piesch, Bonferroni-Index und De Vergottini-Index
Zum 75. und 65. Geburtstag zweier fast vergessener Ungleichheitsmaße
- Nr. 260/2005 Ansgar Belke and Marcel Wiedmann, Boom or Bubble in the US Real Estate Market?
- Nr. 261/2005 Ansgar Belke und Andreas Schaal, Chance Osteuropa-Herausforderung für die Finanzdienstleistung
- Nr. 262/2005 Ansgar Belke and Lars Wang, The Costs and Benefits of Monetary Integration Reconsidered: How to Measure Economic Openness
- Nr. 263/2005 Ansgar Belke, Bernhard Herz and Lukas Vogel, Structural Reforms and the Exchange Rate Regime A Panel Analysis for the World versus OECD Countries
- Nr. 264/2005 Ansgar Belke, Frank Baumgärtner, Friedrich Schneider and Ralph Setzer, The Different Extent of Privatisation Proceeds in EU Countries: A Preliminary Explanation Using a Public Choice Approach
- Nr. 265/2005 Ralph Setzer, The Political Economy of Fixed Exchange Rates: A Survival Analysis
- Nr. 266/2005 Ansgar Belke and Daniel Gros, Is a Unified Macroeconomic Policy Necessarily Better for a Common Currency Area?
- Nr. 267/2005 Michael Ahlheim, Isabell Benignus und Ulrike Lehr, Glück und Staat-Einige ordnungspolitische Aspekte des Glückspiels
- Nr. 268/2005 Ansgar Belke, Wim Kösters, Martin Leschke and Thorsten Polleit, Back to the rules
- Nr. 269/2006 Ansgar Belke and Thorsten Polleit, How the ECB and the US Fed Set Interest Rates
- Nr. 270/2006 Ansgar Belke and Thorsten Polleit, Money and Swedish Inflation Reconsidered
- Nr. 271/2006 Ansgar Belke and Daniel Gros, Instability of the Eurozone? On Monetary Policy, House Price and Structural Reforms
- Nr. 272/2006 Daniel Strobach, Competition between airports with an application to the state of Baden-Württemberg
- Nr.273/2006Gerhard Wagenhals und Jürgen Buck, Auswirkungen von Steueränderungen im Bereich
Entfernungspauschale und Werbungskosten: Ein Mikrosimulationsmodell
- Nr. 274/2006 Julia Spies and Helena Marques, Trade Effects of the Europe Agreements
- Nr. 275/2006 Christoph Knoppik and Thomas Beissinger, Downward Nominal Wage Rigidity in Europe: An Analysis of European Micro Data from the ECHP 1994-2001
- Nr 276/2006 Wolf Dieter Heinbach, Bargained Wages in Decentralized Wage-Setting Regimes
- Nr. 277/2006 Thomas Beissinger, Neue Anforderungen an eine gesamtwirtschaftliche Stabilisierung

		II
Nr.	278/2006	Ansgar Belke, Kai Geisslreither und Thorsten Polleit, Nobelpreis für Wirtschaftswissen- schaften 2006 an Edmund S. Phelps
Nr.	279/2006	Ansgar Belke, Wim Kösters, Martin Leschke and Thorsten Polleit, Money matters for inflation in the euro area
Nr.	280/2007	Ansgar Belke, Julia Spiess, Die Aussenhandelspolitik der EU gegenüber China- "China-Bashing" ist keine rationale Basis für Politik
Nr.	281/2007	Gerald Seidel, Fairness, Efficiency, Risk, and Time
Nr.	282/2007	Heinz-Peter Spahn, Two-Pillar Monetary Policy and Bootstrap Expectations
Nr.	283/2007	Michael Ahlheim, Benchaphun Ekasingh, Oliver Frör, Jirawan Kitchaicharoen, Andreas Neef, Chapika Sangkapitux and Nopasom Sinphurmsukskul, Using citizen expert groups in environmental valuation - Lessons from a CVM study in Northern Thailand -
Nr.	284/2007	Ansgar Belke and Thorsten Polleit, Money and Inflation - Lessons from the US for ECB Monetary Policy
Nr.	285/2007	Ansgar Belke, Anselm Mattes and Lars Wang, The Bazaar Economy Hypothesis Revisited - A New Measure for Germany's International Openness
Nr.	286/2007	Wolf Dieter Heinbach und Stefanie Schröpfer, Typisierung der Tarifvertragslandschaft - Eine Clusteranalyse der tarifvertraglichen Öffnungsklauseln
Nr.	287/2007	Deborah Schöller, Service Offshoring and the Demand for Less-Skilled Labor: Evidence from Germany
Nr.	288/2007	Ansgar Belke and Albina Zenkić, Exchange Rate Regimes and the Transition Process in the Western Balkans
Nr.	289/2007	Ansgar Belke and Julia Spiess, Enlarging the EMU to the East: What Effects on Trade?
Nr.	290/2007	Michael Knittel, Europäischer Lender of Last Resort – Unnötig oder notwendig
Nr.	291/2007	Harald Hagemann and Ralf Rukwid, Perspectives of Workers with Low Qualifications in Germany under the Pressures of Globalization and Technical Progress
Nr.	292/2007	Heinz-Peter Spahn, Realzins, intertemporale Preise und makroökonomische Stabilisierung Ein Streifzug durch die Theoriegeschichte
Nr.	293/2007	Wolf Dieter Heinbach and Stefanie Schröpfer, What a Difference Trade Makes Export Activity and the Flexibility of Collective Bargaining Agreements
Nr.	294/2007	Wolf Dieter Heinbach and Markus Spindler, To Bind or Not to Bind Collectively? Decomposition of Bargained Wage Differences Using Counterfactual Distributions
Nr.	295/2008	Michael Ahlheim and Ulrike Lehr, Equity and Aggregation in Environmental Valuation
Nr.	296/2008	Gerhard Gröner, Rückblick auf fünfzig Jahre in der Bevölkerungsstatistik
Nr.	297/2008	Michael Ahlheim, Benchaphun Ekasingh, Oliver Frör, Jirawan Kitchaicharoen, Andreas Neef, Chapika Sangkapitux and Nopasom Sinphurmsukskul, Better than their reputation – A case for mail surveys in contingent valuation

Π

Nr.	298/2008	Michael Ahlheim, Oliver Frör, Antonia Heinke, Alwin Keil, Nguyen Minh Duc, PhamVan Dinh, Camille Saint-Macary and Manfred Zeller Landslides in mountainous regions of Northern Vietnam: Causes, protection strategies and the assessment of economic losses
Nr.	299/2008	Roman Inderst und Ulrich Schwalbe, Effekte verschiedener Rabattformen-Überlegungen zu einem ökonomisch fundierten Ansatz
Nr.	300/2008	Gabriel J. Felbermayr, Sanne Hiller and Davide Sala; Does Immigration Boost Per Capita Income?
Nr.	301/2008	Friederike Niepmann and Gabriel J. Felbermayr, Globalization and the spatial concentration of production
Nr.	302/2008	Gabriel J. Felbermayr and Benjamin Jung, The Pro-Trade Effect Of the Brain Drain: Sorting Out Confounding Factors
Nr.	303/2008	Julian P. Christ and André P. Slowak, Standard-Setting and Knowledge Dynamics in Innovation Clusters