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    Prolog 
 
 

Nitrogen (N) was one of the main limiting mineral nutrients for plant growth before the 

Haber-Bosch synthesis for mineral N fertilizer production was industrialized. Therefore, 

during evolution various plant species may have developed adaptation mechanisms to 

minimize N losses by nitrate leaching or N2O emissions as for example by biosynthesis of 

nitrification inhibitors such as some subtropical grasses.  

Nowadays with a general high application rate of N fertilizers (urea, ammonium and nitrate 

fertilizers) in crop and vegetable fields a rapid nitrification with high storage of nitrate in the 

soil profiles, nitrate leaching and N2O emission result in increasing environmental problems. 

Application of natural (e.g. crop residues of Brachiaria grass) or synthetic nitrification 

inhibitors (e.g. DMPP, N-serve and DCD) could inhibit this rapid nitrification and thus N 

losses via nitrate leaching and N2O emissions. In vegetable production systems this may be 

associated with a better mineral nutrient acquisition (P, and micronutrients) due to 

rhizosphere acidification and improved root growth, and finally improved nutritional value of 

these main players of human health. 

Thus the main goal of this PhD research was to evaluate and compare the potential of natural 

nitrification inhibiting compounds of Brachiaria grasses in comparision to DMPP (ENTEC). 

Finally these natural nitrification inhibitors (NNI) should be tested for application in a 

vegetable (tomato) production system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





 

Chapter 1: Introduction 

 
During the last century particularly the recent decades, human activity toward modern 

industry has led to severe environmental problems, such as deforestation, salinity and soil 

acidification in the main agricultural areas, reduction in plant and animal diversity particularly 

in wild life, and global warming. Various attempts which have been undertaken to improve 

life standards, simultaneously created side effects which in part result in environmental 

problems, and however it seems to be a big challenge to balance both aspects in a better way, 

now and in future. 

Without any doubt nitrogen plays an important role in feeding world population on one hand, 

and on the other hand agriculture production needs to be sustainable over time, particularly in 

developing countries, where there is no control on the effect of (N) fertilizer application on 

land degradation. Environmental pollutions and arable land degradation are the major 

constrains for humans, as direct and indirect consequences of inappropriate agricultural 

activities. By far nitrogen is the major pollutant in modern agriculture, and nitrate as a result 

of nitrification plays a central role in N losses and environmental pollutions. At the same time 

N is the most needed mineral nutrient for crops, which generally limits plant productivity in 

agricultural ecosystems. Therefore, a precise or adapted application and management of this 

essential element (N) is very important for plant production and global safety.  

1.1. Generals on nitrogen 

Nitrogen constitutes 78% of earth atmosphere volume. From the total N found in nature, 

99.96% is present in the atmosphere, and biosphere contains only 0.005%. Nitrogen has an 

electronegativity of 3 and five electrons in its outer shell, therefore it is trivalent in most of 

compounds. Oxidation states of N range from +5 for NO3
- to -3 for NH3 or NH4

+. In the 

oxidized (+) state, the outer electrons of N serve to complete the electron shells of other 

atoms, and in the reduced (-) state, the electrons required to fill the outer shell of N are 

supplied by other atoms (Stevenson 1982).  

The triple bond in molecular nitrogen (N2) is one of the strongest bonds between two atoms. 

Therefore, converting N2 into other compounds requires too much energy, and in nature only 

some specific microorganisms such as rhizobium bacteria which possess nitrogenase enzymes 

can utilize N2 biologically. On the other hand, over converting nitrogen compounds into 

elemental N2, a high release of energy occurs which has important implication in nitrogen 

cycle in biosphere, atmosphere and lithosphere.  



It is only over industrial or microbial conversion of N2 to NH3 that plants can easily absorb 

nitrogen. In the process of mineralization and decay of plant and animal residues, N2 through 

nitrification and denitrification processes is also released into the atmosphere (Majumdar, 

2002; Abbasi and Adams 2000; Bateman and Baggs 2005; Ishikawa et al., 2003).  

1.2. Forms of nitrogen:  

In nature N can be found in different forms. The main neutral hydride of nitrogen is ammonia 

(NH3), and compare to water is 6 times more basic. When ammonia is dissolved in water, it 

forms ammonium ion (NH4
+). Other products of nitrogen such as N2O and NO are the main 

contributors of greenhouse effect and global warming. NO in human physiology, and recently 

in plants involves in signalling processes (Klessig et al. 2000, Besson-Bard et al 2008). NO2
- 

or nitrogen dioxide has an unpaired electron (highly reactive) and is an important component 

of smog. Nitric acid (HNO3), another nitrogen compound, is one of the strongest acids and 

oxidizing agent that generally is used for digestion and analysis of plant materials. Nitrogen is 

a main part of all living tissues in form of amino acids, amines, amides, nitro groups, imines, 

nucleic acids, proteins, chlorophyll, vitamins and too many other molecules like alkaloids, as 

secondary metabolites, which generally have a defensive role in plant biology.  

1.3. Nitrogen in the soil  

All forms of N, including inorganic and organic N, can exist simultaneously inside the soil. 

Organic waste and organic matters with animal or plant origin contain a large portion of 

nitrogenous compound which over mineralization can deliver nitrogen to medium. Nitrate has 

the advantage of immediate availability for plant and microbes, but it has disadvantages of 

high solubility and mobility in the soil. In contrast to nitrate, ammonium is not subjected to 

losses, because it can be held by soil clay minerals. Ammonium pools are always larger in the 

top 10 cm of soil, but NO3
- fluctuates throughout the year and soil profile, and always 

depleted during periods of rapid plant growth (Jackson et al., 1988). However, volatilisation 

of ammonium in dry soils specially with high pH can be significant.  

Nitrate may act as a potential for eutrofication when nitrogen is the limiting factor for the 

growth of certain bacteria and algae in free waters. Application of nitrogen fertilizers in many 

parts of the world, in order to increase the yield, ends in ground water or atmosphere. 

However under ideal cultivation systems the utilization rate of applied N fertilizer is only 50–

70%, and in most of cases more than 50% of those fertilizers enters into air or ground water 

(Velthof et al., 1998; Ishikawa et al., 2003).  
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In soil, plant roots compete with different types of microbes for available nitrogen, 

particularly in an N-limited ecosystem (Neumann and Römheld, 2000; Neumann 2007). This 

plant-microbe competition for available N, however, is a short-term phenomenon (Jackson et 

al., 1989). Therefore, for investigating nitrogen uptake and partitioning in soil-plant-microbe 

system, short term experiments should be carried out. Soil microbes absorb substantially more 

NH4
+ and NO3

- than plants, and the rate of uptake (immobilization) for NH4
+ is much higher 

than NO3
- (Azam and Ifzal, 2006; Herrmann et al., 2005).  

In a short term partitioning incubation, Jackson et al., and (1989) showed that ammonium is 

the dominant source of N to both plants and microbes. Microbes are better competents for 

NH4
+ and NO3

- uptake than plants, so microbial uptake is a major factor controlling NO3
- 

availability to plants. Plants however compete better for NO3
- than for NH4

+ (Jackson et al., 

1989). 

Ammonium occurs in the soil as free NH4
+ ions or bounded to mineral or organic colloids in 

the soil. Ammonia volatilization may occur specially with the surface application of NH4
+ 

containing fertilizers, and normally increases with pH and temperature (Stevenson 1982). 

Incorporation of NH4
+ fertilizers inside the soil, and application of other ammonium fertilizers 

than urea can reduce the extent of this volatilization. Plants are considered both as a sink and 

a source for ammonia, however ammonia emission under agricultural systems is high, but on 

the other hand, semiarid and natural ecosystems act as sinks for ammonia (Sommer et al., 

2004).  

Ammonia and nitrite (NO2
-), produced over microbial decomposition of nitrogenous organic 

compounds, are capable of undergoing chemical reaction with organic matter, producing 

metallo-organic and organo-clay complexes which protect N-compounds against attack by 

microorganisms (Stevenson 1982). Oxidation and reduction reactions, however, are the basis 

of biological N transformation, which some of them take place in the cells of microorganisms 

and some in the tissues of higher plants. The largest N pool in soil is organic matter, which is 

mostly unavailable to plants. Over decomposition and mineralization it becomes available to 

plant roots. Decomposition of organic matter is mediated by microorganisms, therefore this 

microbial biomass is very important in soil physical and biochemical properties. Living 

microbes are as a source of enzymes for decomposition, as well as nutrient mobilization and 

acquisition in soil. On the other hand, microbial dead biomass represents an important soil N 

pool. With mineralization of organic matter, N is released as available form to plants. 

Furthermore organic matter decomposition is a continue process with different extents, so 

plant residues in soil always are in different decomposition strength. Mineralization-



immobilization turnover is very important in the availability of N for plants and microbes in 

soil. N mineralization (amonification) in soil is a result of organic matter decomposition by 

non-specific heterotrophic soil microorganisms under aerobic and anaerobic conditions. The 

major N mineralization occurs in the soil surface which has higher biological activity as a 

result of higher amount of recourses. Mineralization is always acompanied by immobilization 

of inorganic N specially NH4
+, by microbes. Moreover, many microbes can utilize ammonium 

or nitrate as a source of energy. Microbial biomass is also able to incorporate low molecular 

weight N-containing organic compounds such as amino acids from the soil organic matter 

(Barraclough 1997). Soil ammonium may be driven directly from the mineralization of 

organic matter and the addition of ammonium-containing fertilisers.  

1.4. Nitrification 

Nitrification is oxidation processes of organic or ammonium forms of nitrogen to nitrate by 

nitrifying organisms, mainly species of Nitrosomonas, which convert ammonia to 

hydroxylamine by ammonia monooxygenase (AMO), and then to nitrite by hydroxylamine 

oxidoreductase. The later reaction is mediated by bacteria species of Nitrobacter. However, 

many other chemoheterotroph bacteria and microorganisms such as Archaea (Leininger et al., 

2006; Adair and Schwartz 2008) are involved in process of nitrification. Nitrate as outcome of 

this process is quite vulnerable to leaching and denitrification. Nitrification is one of the main 

reasons of soil acidification particularly in tropical region of the world. Most of the applied N-

fertilizer to soil in the form of NH4
+ is usually oxidized quite rapidly to NO3

– by nitrifying 

microorganisms (Subbarao et al., 2006b; Ishikawa et al., 2003).   

Nitrification in soil has mainly chemoautotrophic origin, specially in agricultural soils, but 

sometimes heterotrophic nitrification (by fungi and many other heterotrophic organisms) may 

have a high contribution to ammonium oxidation. This is important specially in some forest 

soils (Verstraete and Alexander, 1972; Duggin et al., 1991) or acid soils (Brierley and Wood, 

2001; De Boer et al., 1991), where autotrophic nitrification can be inhibited. This 

heterotrophic nitrification may also occur in agricultural soils under fertilization (Bateman 

and Baggs, 2005). Acetylene as a specific inhibitor of autotrophic nitrification can be used in 

study of heterotrophic nitrification. Therefore in nitrification incubation of soil, ammonium 

oxidation and NO2
- oxidation can be blocked by acetylene and chlorate, respectively 

(Sahrawat et a., 1987; Herrmann et a., 2007).  

Incubation experiment can be useful tools to study nitrogen transformation in soil. A soil 

water content of about 45% water holding capacity is the best for maximum nitrification. 

Moreover, this optimum soil water content differs with various temperatures (Grundmann et 

 4



 

al., 1995). Mosier (1998) mentioned that a water content of 60% of WHC is considered 

optimum for nitrification. Normally nitrite because of its high reactiveability is not 

accumulating in significant amounts in soil. Nitrite oxidizers (nitrobacters) are more sensitive 

to adverse soil conditions than NH4
+ oxidizers. Therefore under calcareous soils or application 

of NH4
+ fertilizers, nitrite may accumulate in detectable quantities. Nitrite is much more 

sensitive and simple for detection as an indicator of nitrification, and requires a smaller 

sample size (de Boer and Kowalchuk 2001). In soil incubation, chlorate is used for blocking 

nitrite oxidizing bacteria, however chlorate has relatively little inhibitory effect on ammonium 

oxidation. On the other hand, background nitrate in soils can not interfere with measurements. 

In incubation tests or field experiments accumulation of nitrite in the presence of chlorate is 

the reason for the presence of autotrophic nitrite oxidation (de Boer and Kowalchuk 2001).  

Nitrate is soluble and negatively charged and generally is not held by the soil colloids. It is 

therefore subject to leaching under the appropriate conditions. In contrast, ammonium is 

positively charged and retained as a cation by the soil cation exchange capacity (CEC). 

Nitrate plays important role in both nitrification and denitrification processes. Denitrification 

is the opposite process to nitrification, in which NO3
- under anaerobic conditions through 

acting as terminal electron acceptor in metabolic reactions for denitrifying bacteria, can be 

reduced to N2 in optimal condition.  However many other intermediates such as N2O and NO 

can be released to atmosphere. Nitrate in both nitrification and denitrification processes is in 

close relation to NO and N2O emissions. So, controlling the processes of nitrification is a 

potential tool to restrict N leaching, NOx emissions and even ammonia volatilisation from 

soils in one hand, and increasing N use efficiency on the other hand. Denitrification is done 

mainly by facultative anaerobic bacteria (both autotrophic and heterotrophic), and this process 

acts as a balance to biological N2 fixation. It is well known that in soil both nitrification and 

denitrification can occur at the same time and near to each other (Abbasi and Adams, 2000; 

Robertson et al. 1988; Bateman and Baggs 2005). The heterogeneity in soil moisture is 

mentioned as the main reason for this simultaneously emission (Abbasi and Adams, 2000a 

and 200b). Produced nitrate can simply diffuse to adjacent micro sites of denitrification, so 

maybe it causes a significant underestimation of mineralization and nitrate production in such 

condition (Abbasi and Adams, 2000a and 200b). For these reasons nowadays general idea is 

that nitrification more than denittrification participates in NOx emissions. Moreover, under 

such conditions, nitrous oxide (N2O) rather than dinitrogen (N2) is produced under aerobic 

conditions (Bateman and Baggs 2005; Bremner 1997; Mosier 1998), which has more negative 

and destructive properties.  



 

1.5. Nitrification inhibitors 

The main N losses in soil through nitrification, leaching and denitrification involve nitrate as 

central point, so limiting nitrate in the soil through application of nitrification inhibitors can 

alleviate the economic and environmental cost of nitrogen fertilizers. Nitrification inhibitors 

are natural or synthetic compounds that delay the bacterial oxidation of NH4
+ to NO2

– (first 

step of nitrification) for a limited period of time. They generally reduce the Nitrosomas 

bacteria activity in soil. These NIs normally have no effect on Nitrobacters which oxidize 

NO2
- to NO3

-. Despite huge work and great interest in nitrification inhibitors, only a few 

compounds are allowed for agricultural and environmental usage. This is because 

development, production and subsequent use of NIs are quite expensive, and even they need 

to be environmental friendly as much as possible. During last decades different synthetic 

nitrification inhibitors have been developed which block enzymatic pathway, mainly 

ammonium monooxygenase (AMO) of bacteria responsible for ammonium oxidation. AMO 

has wide range of substrate for catalytic oxidation, and the inhibitory effects of many NI 

compounds are due to competition for the active site of enzyme (McCarty, 1999). Oxidation 

of compounds such as acetylene by AMO generates highly reactive products which bind to 

enzyme and causing irreversible inhibition (Herrman et al., 2007). Many of these compounds, 

specially those having thiono-S can bind to Cu in the active site of AMO enzyme and 

inactivate it, while others such as heterocyclic N compounds inhibit AMO activity by their N 

ring (McCarty, 1999). However, using chemicals in production processes of agriculture 

products is going to be more restricted in close future. Natural products to some what can be 

suitable alternatives.  

As an integral and important part of biological cycle in the soil, nitrification seems to be 

beneficial at a natural rate. Disturbance of natural habitants by human activity has lead, direct 

and indirectly, to such changes which favour nitrification, in term of temperature, land 

management, and soil organic matter. Thus adopting some techniques and approaches in order 

to reduce nitrification, and consequently its negative effects specially soil acidification are 

necessary. 

Many chemicals can have inhibitory effect to specific N transformation processes. In practice 

it is critical to increase use efficiency of N fertilizers in one hand and reduce negative impacts 

of applied N and nitrification on the other hand. Heterocyclic N compounds have NI effect, 

and unsubstituted heterocyclic N compounds such as pyrazole, 1,2,4-triazole, pyridazine, 

benzotriazole, and indazole, which have two or three adjacent ring N atoms are potent 
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inhibitors of nitrification (McCarty and Bremner, 1989; McCarty 1999). By far Nitrapyrin, 

Dicyandiamide (DCD), and 3,4-Dimethylpyrazole phosphate (DMPP), are three major 

commercial NIs (Subbarao et al., 2006b; McCarty 1999). DCD and nitrapyrin have some 

disadvantages compare to DMPP. For example, DCD is very soluble in water resulting in 

spatial separation of NI and NH4
+, and for large scale usage is too expensive, as well as its 

efficiency is not high. In addition, under certain conditions, it may cause phytotoxic problems. 

In contrast, nitrapyrin is adsorbed to soil minerals more strongly than NH4
+, which also causes 

spatial separation from NH4
+. Moreover this compound is corrosive, explosive and makes 

toxicities to plants (Sahrawat et al., 1987; Subbarao et al., 2006b). The effects of NIs, depend 

on soil conditions, are too complicated and are most likely to be greater on soils rich in 

nitrogen with high risk of leaching and denitrification. Inhibitory effect of NIs and related 

plant growth is largely depends on soil N status. Meanwhile, efficiency of these compounds 

largely depends on soil N status, soil physiochemical factors (texture, temperature, moisture, 

organic matter, pH) and climatic factors (temperature, rainfall intensity and frequency) which 

on one side, determine the size of these losses, and on the other side,  influence dynamics of 

NIs in the soil (Adair and Schwartz 2008). High efficiency at lowest possible concentration 

and minimum side effect is very important in selection of a NI. It needs to persist in soil for 

longer time, and resist against being washed out from the soil profile, and be environmental 

friendly (McCarty and Bremner 1989).  

Limiting nitrate production as a result of NIs, may also significantly decrease N2O emissions 

(Mosier 1998; Zerulla et al., 2001; Müller et al., 2002; Hatch et al., 2005). In contrast, Weiske 

et al., (2001) showed no significant direct effects of the DMPP or DCD treated plots on NH4
+ 

concentrations, in comparison to the controls. However plant uptake and higher affinity of 

NH4
+ for uptake by plant roots could be the possible reasons. 

Most of organisms which oxidize NH4
+, also can use methane (CH4)  as an energy source 

(Bedard and Knowels, 1989; Bronson and Mosier, 1994; Chaves et al., 2006), so over 

inhibition of those bacteria, an increase in CH4 emission might occur, which is potentially an 

important greenhouse gas. Normally higher dosage of NIs increase NH4 concentration in soil 

(Chaves et al., 2006). Furthermore, most of the compounds which have NI activity, also may 

affect both AMO and methane monooxygenase (MMO), because structure of these two 

enzymes are very similar to each other (Hooper et al., 1997; Bedard and Knowles 1989; 

Bronson and Mosier 1994). It is necessary to consider that global warming potential of CH4 

and N2O are 21 and 310 times of CO2, respectively (IPCC 1996). Agriculture represents the 



main contributes of global CH4, N2O and CO2 emissions, 40%, 70% and 40%, respectively 

(Mosier 1998).  

With incorporation of NIs into N-fertilizers, depending on soil physical and chemical 

properties, NH4
+ would persist for longer time in soil. This ammonium in soil in part, is 

adsorbed to clay minerals and consequently with gradual release plants can benefit better in 

less application rates and numbers. Finally it would lead to increased use efficiency and better 

plant growth.  

1.6. 3,4-Dimethylpyrazole phosphate (DMPP) 

3,4-Dimethylpyrazole phosphate (DMPP) is a nitrification inhibitor, highly specific in 

inhibiting nitrification at low concentrations of 0.5–1.0 kg active compound ha–1 over a period 

of 4–10 weeks (Zerulla et al., 2001). ENTEC on the market is a combination of an N-NH4 

fertilizer with DMPP (1% of total N) in form of granules. However, compare to other 

nitrification inhibitors such as DCD, and N-Serve, it has no toxicity or other side effects, but 

instead, it offer potential advantages for cropping systems (Zerulla et al., 2001; Barth et al., 

2001; Pasda et al., 2001). However tobacco and grape farmers in south Germany complained 

about negative effects of ENTEC on plants growth (personal communication), in which plants 

showing some N deficiency symptoms, and winter injury. This is probably because of its 

strong effect specially in light soils and early in spring which prolongate presence of nitrogen 

and late season uptake which consequently leads to winter damage. However, it is in 

particular importance that the duration of NIs effects depends on climatic conditions, site 

characteristics and probably the cultivated crop (Zerulla et al., 2001).  

Application of NIs in general, and DMPP in particular, has important consequences including 

reduced leaching of nitrate and emission of N2O (Weiske et al., 2001; Zerulla et al., 2001; 

Müller et al., 2002; Hatch et al., 2005), reduced emission of CO2 (Weiske et al., 2001), and 

increasing yield (Zerulla et al., 2001; Pasda et al., 2001; Linzmeier et al., 2001). However the 

decrease of N2O emission by application of DMPP could be related to an inhibitory effect on 

the enzymes of denitrification as the non-target process (Müller et al., 2002). This results in 

less application of mineral N fertilizer, saving financially and probably higher crop yields. 

Plants receiving ENTEC (DMPP containing fertilizer) show darker green leaf colour, which is 

typical symptom of ammonium nutrition in nutrient solution, however plants (leaves) may 

have a reduced nitrate content (Hähndel and Zerulla, 1999) which is quite important in fresh 

consuming of vegetable crops.  

In most cases efficiency of inhibitors depends on their own chemical properties and several 

other factors, including soil texture and temperature. For example, effectiveness of both DCD 
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and DMPP was progressively decreased when soil temperatures increased (Irigoyen et al., 

2003). So specially in warm climates with application of these inhibitors, it is necessary that 

soil temperature must be considered. With DMPP and probably other NIs the oxidation of the 

NH4
+, in sandy soils compare to loamy soils, is more inhibited. The binding behaviour of 

DMPP is influenced markedly by soil textural properties (Barth et al., 2001), which in short 

term experiments is an important factor in inhibition property. Moreover, DMPP may have no 

effect on the N mineralization of the crop residues (Chaves et al., 2006). 

1.7. Brachiaria as a source of natural nitrification inhibitor (NNI): 

Ecological production as an adaptive measure to biological cycles in the soil requires limited 

application of chemicals including synthetic nitrification inhibitors. Depends on conditions, 

natural products could be suitable alternatives. Plants due to their phenotypic plasticity and 

adaptation properties are able to change their biochemical, physiological and morphological 

characteristics in response to environmental variation (Schlichting, 1986). In contrast to 

animals, plants through secretion and emission of chemicals respond to any change in their 

surroundings. Plants produce secondary metabolites which might be a potential nitrification 

inhibitor (Lodhi, 1978; Howard et al., 1991), for example grasslands through production and 

accumulation of phenolic acids and flavonoids that inhibit nitrification, display low nitrate 

content in the soil (Lodhi, 1978; Rice and Pancholy, 1973; Ellis and Pennington, 1989; 

Subarrao et al., 2006 and 2007). Olson and Reiners (1983) suggested that higher phenolic and 

terpenoid concentrations are responsible for inhibition of nitrification in the forest soils. 

However Stienstra et al., (1994) and McCarty et al., (1991) are not agree with this hypothesis.  

Different plant-based substances have been shown to have biological activity specially against 

insects, weeds and bacteria. Different parts of tropical tree (Azadirachta indica) known as 

neem, have biological activity against bacteria, pests and diseases (Melathopoulos et al., 

2000; Gahukar, 2000), medicinal usage (Schmutterer 1990), and specially for improving 

nitrogen use efficiency in agriculture (Kumar et al, 2007; Joseph and Parasad 1993; Sharma 

and Parasad, 1995). Neem and karanj seed cakes (Pongamia glabra Vent) (Majumdar, 2002) 

as well as plant polyphenols, vegetable tannins and waste tea products (Krishnapillai, 1979), 

terpenes and essential oils of ment (Patra et al., 2002; Patra et al. 2006), essential oils from 

Mentha spicata, Artemisia annua, and mustard (Brassica juncea L) (Kiran and Patra, 2003; 

Patra et al., 2001), and different types of quinines (Mishra et al. 1980) have been shown to 

inhibit nitrification in the soil. Carbon-rich secondary chemicals have been found to inhibit 

nitrifiers directly (Horner et al., 1988). Monoterpenes can inhibit nitrification but not 

denitrification, however, increased respiration activity indicating indirect inhibition of 



nitrification by monoterpenes, due to immobilization of mineral N (Paavolainen et al., 1998). 

It is worth mentioning that litter quantity as well as quality controls mineralization rate in soil 

in most of natural ecosystems. 

Most of these natural products also retard soil urease activity as a urease inhibitor. On the 

other hand, intensity of inhibition normally increases with the level of application (Patra et al., 

2006). These natural compounds could decrease Nitrosomonas, Nitrobacter, and total 

bacterial and actinomycete populations in soil (Patra et al. 2006). Moreover, in contrast to 

synthetic nitrification inhibitors, natural products are less persistent, more biodegradable, 

economic and environmental friendly (Patra et al. 2006). Therefore, nitrification inhibitory 

properties of plant based substances offer better advantages for agricultural production, which 

can keep environment more healthy, too. However, there are not enough studies on this topic, 

so the biological inhibition of nitrification by crop plants or grasses still is not well 

understood.  

Brachiaria spicies are C4 grasses grow in tropical and subtropical regions of South America, 

Africa and Asia. They are waterlogged tolerant and mostly adapted to infertile and acidic soils 

of these tropical region mainly as pastures (CIAT, 1983). These plants are particularly very 

susceptible to saline conditions, getting a succulent effect specially in their root systems 

(Mergulhão et al 2002). During the field works with B. humidicola it has been found that soils 

under cultivation of this plant have low level of nitrate (CIAT, 1985; Sylvester-Bradley et al., 

1988). It has been shown that root exudates and soil extracts of B. humidicola accession 

26159 (BH) suppress ammonium oxidizing bacteria populations, and consequently 

nitrification and N2O emissions, which was not observed for other grasses or Brachiaria 

species (Ishikawa et al., 1999, and 2003; Subbarao et al., 2005, 2006a, 2006c, 2007a and 

2007c). Compounds released from the roots of BH are mainly responsible for its inhibitory 

effect on soil nitrification (Ishikawa et al., 2003; Subarrao et al., 2006a). Moreover, root 

tissue extracts of BH have substantial inhibitory effects on nitrification (Subarrao et al., 

2006c, 2007a, 2007c). Roots of BH produce two methylated phenolic acids, methyl-p-

coumarate and methyl ferulate, that have inhibitory effects on nitrification (Gopalakrishnan et 

al., 2007). There is an estimation of nearly 30% of the root mass turnover annually in BH 

pastures, equals to one ton root dry matter per ha (Fisher et al 1994), which could contain 

significant amounts of nitrification inhibitors added annually to the soil. This might be one of 

the main reasons for the observed low nitrification rates in soils, and this inhibiting effect 

appears to be stable as long as the grass stays in the soil (Ishikawa et al., 2003).   

 

 10



 

 

1.8. Nitrogen uptake by plants 

In nutritional point of view nitrogen is on the top among all elements which are necessary for 

optimum plant growth. In agriculture and other ecosystems, nitrogen is the most limiting 

factor for plant growth. However agricultural crops have normally higher demand for it 

compare to non-cultivated crops. Nitrogen (10-30 g/kg) after carbon and oxygen is the next 

most abundant element in plant dry matter (McNeill and Unkovich, 2007). Despite extensive 

fertilization specially for horticultural crops, N deficiency is very common phenomenon, 

mainly because of climatic and edaphic conditions, as well as the dynamics of N inside the 

soil. This deficiency could appears as yellow colour due to chlorophyll degradation in older 

leaves (which may have early senescence), smaller leaves, early flowering, reduced fruit set, 

and reduction in growth rate and plant biomass and consequently yield.  

Nitrate and ammonium are two major forms of nitrogen which plants can take up by their root 

systems in the soil. However plants are able to take up various forms of nitrogen compounds 

including, nitrate (NO3
-), nitrite (NO2

-), ammonium (NH4
+), ammonia (NH3), Urea 

(CO(NH2)2), amino acids, peptides and low molecular weight organic compounds (Marschner 

1995, von Wiren and Merrick, 2004; Chapin 1995). Nitrogen concentration varies with plant 

species, developmental stages and plant tissues. Woody plants typically have ≤5 g/kg for 

woody tissue and ≤20 g/kg for leaves, but N concentration is typically 10-20 g/kg dry matter 

for grasses and 20-30 g/kg for legumes, and tends to be higher in younger tissues (Schjoerring 

et al., 2002). Shoots usually are stronger sink for N than roots and therefore shoots has higher 

N concentration than roots (Schjoerring et al., 2002). Through mass flow via soil water, 

diffusion or root extension, ammonium and nitrate can reach to the root surface. However 

ammonium movement by these phenomena is limited by NH4
+ fixation in clay minerals. 

Energetically point of view NH4
+ is beneficial for plants, however data from growth 

characteristics suggest that over NH4
+ nutrition plant needs higher amount of energy to exert 

H+ efflux (Britto et al., 2001a and 2001b; Kronzucker et al., 2001). Plant uptake of NH4
+ and 

NO3
- is a function of their concentration in soil solution, root distribution, soil water content 

and plant growth rate (Schjoerring et al. 2002). Ammonium after absorption must be 

assimilated into amino acids, or translocated to other parts than roots, otherwise it makes 

NH4
+ toxicity on plants (Schjoerring et al. 2002; Loque and von Wiren 2004), and however in 

field condition ammonium toxicity is not common. Glutamine as the first and main 

assimilatory products, may has very important role in alleviating NH4
+ toxicity (Schjoerring et 

al., 2002). However glutamine synthetase is relatively sensitive to NH4
+.  



Nitrate on other hand, after uptake can be reduced and assimilated in root or shoot by nitrate 

reductase enzyme which is synthesised in response to NO3
- uptake. Assimilation of NO3

- by 

plants involves the reduction of NO3
- to NO2

- , and reduction of NO2
- to NH4

+ by nitrite 

reductase (another inducible enzyme), which exist in cytoplasm and chloroplasts, 

respectively. Then ammonium generally is assimilated into glutamine. Nitrite is a transitory 

intermediate in plants with a short life, similar to soil condition. Nevertheless, it is highly 

toxic to plants and microorganisms. 

Many investigations indicate that ammonium as a sole nitrogen form, or as the main form in 

combination with nitrate has inhibitory effects on plant growth (Gerendas et al., 1997; Siddiqi 

et al., 2002; Roosta and Schjoerring, 2007; Zhang and Rengel, 1999, and 2003). Reduced 

growth due to NH4
+ nutrition has often several justifications such as decreased net 

photosynthesis (Neumann and Römheld 2000; Gerendas et al., 1997), acidification of external 

culture medium (Brito and Kronzucker, 2002; Britto et al., 2001; Claussen, 2002), a lack of 

osmolites such as cations, nitrate and sucrose, which contribute to the rate of leaf expansion 

(Rahaab and Terry, 1995) or hormonal imbalance of plants (Barker and Ready 1994; Gweyi, 

2006). Symptoms of NH4
+ toxicity including marginal necrosis and interval chlorosis on 

leaves, wilting, and inhibition of root growth are very common. However by moderate supply 

and buffering nutrient solution, still there is a rapid inhibition of leaf growth (Walch-Liu et 

al., 2000; Rahayu, 2003; Britto and Kronzucker, 2002). This could be mainly due to a 70% 

reduction in zeatin + zeatin riboside (the active component of cytokenin) concentrations in the 

xylem sap within 24 h of exudation from tobacco under NH4
+ nutrition. Nitrate, on the other 

hand can return this inhibitory effect of NH4
+ on leaf growth (Walch-Liu et al., 2000; Rahayu, 

2003; Britto and Kronzucker, 2002; Siddiqi et al., 2002; Britto and Kronzucker, 2001), similar 

to cytokenin application effects. NH4
+ supply to plants increases the level of ABA in roots 

xylem sap and leaf tissues (Rahayu, 2003), so by its interaction with cytokenins, they regulate 

leaf growth, and plant development. Disturbance of hormonal balance of plant may is an 

important feature of NH4
+ toxicity. Sensing of NO3

- triggers the expression of a series of 

genes involved in utilization of nitrate (Forde and Clarkson 1999). However nitrate inside the 

plant may has several function as a nutrient, as an osmolite (Blom-Zandstra and Lampe 2007), 

or as a signaling molecule (Wang et al., 2000; Forde and Clarkson, 1999). Then it has been 

suggested that growth inhibition by NH4
+ is related rather to the absence of NO3

- as a signal 

than to the presence of NH4
+ (Rahayu et al., 2005; Onyango Gweyi 2006).  

Ammonium toxicity can be reduced by rapid conversion of NH4
+ to amino acids in the roots 

or by sequestering NH4
+ in a vacuolar reservoir (Marschner et al., 1995, Forde and Clarkson 
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1999, Schjoerring et al., 2002). Immediate assimilation of NH4
+ into amino acids is catalyzed 

by the enzymes glutamine synthetase and glutamate synthase. So glutamine synthetase has a 

very important role in reducing NH4
+ toxicity (Schjoerring et al., 2002; Britto et al., 2001). 

Young leaves tended to have higher apoplastic NH4
+ concentrations than older non-senescing 

leaves. Aarnes showed high concentrations of NH4
+ in all parts of spruce seedlings indicating 

metabolic control of NH4
+ concentrations in tissues and that NH4

+ can be stored in acidic 

compartments (Aarnes et al., 2007; Aarnes et al., 1995). Conifers and ericaceous plants 

adapted to acid soils with low or no nitrification have a preference for NH4
+ as the main 

nitrogen source. These plants can tolerate high concentrations of NH4
+ and have been found to 

possess a reduced capacity to use NO3
- (Schjoerring et al., 2002, Britto and Kronzucker 2002, 

Forde and Clarkson 1999). 

1.9. Why ammonium? 

Ammonium energetically and economically point of view, is a preferential form of nitrogen 

for plant uptake and assimilation. Under laboratory experiments most of plants show toxicity 

symptoms with ammonium nutrition, however these symptoms are not common on field 

crops. Ammonium is taken up by plant roots through NH4
+ transporters across the plasma 

membrane (Lauter et al., 1996; Loque and von Wiren 2004). There are two high-affinity 

transporter systems for nitrate and one for ammonium in roots of higher plants (Glass et al., 

2002). Low affinity NH4
+ transport occurs through non-selective cation channels or K 

channels (Howitt and Udvardi, 2000; Kronzucker et al., 2001; Loque and von Wiren, 2004). 

Inside the plant ammonium also is generated as a key intermediate in processes such as nitrate 

reduction, photorespiration, phenyl propanoid metabolism, degradation of transported amides, 

and protein catabolism (Joy, 1988; Schjoerring et al., 2002). So excess uptake of ammonium 

might happen which together with the ammonium released from catabolic processes within 

the cell, can cause toxicity. Measurement of xylem ammonium is not an easy task, because 

interference from other metabolites such as amino acids and amines may cause big 

uncertainties about the magnitude of xylem NH4
+ concentrations (Schjoerring et al., 2002). 

Electroastatically, uptake and assimilation of ammonium is a proton generating process. In 

order to make an electrical-balanced charge, NH4
+ uptake leads to acidification of 

extracellular pH through H+ exclusion (Joy, 1988). On the other hand, NO3
- is taken up by an 

H+-cotransport system in the plasma membrane so nitrate uptake and assimilation is a proton 

consuming process, leading to alkalination of extracellular pH (Marschner, 1995). These 

changes in extracellular pH have important implication for plant nutrition and management 

particularly where nutrient deficiency is a major problem such as calcareous soils.  



There are different NH4
+ transporters which differ in their biochemical properties, 

localization, and in regulation at the transcriptional level. Nitrogen status of a local root 

portion as well as of the whole plant can control ammonium transportation (Loque and von 

Wiren 2004). However toxicity symptoms are very common under NH4
+ which normally is 

coupled with a reduction in plant dry weights and root:shoot ratios compare to NO3
- fed plants 

(Roosta and Schjoerring, 2007; Siddiqi et al., 2002; Claussen, 2002). In tomato there is a 

strong accumulation of ammonium in leaves, stem, and roots at a growth medium 

concentration above 1 mM. The increase in tissue NH4
+ coincided with saturation of 

glutamine synthetase activity and accumulation of glutamine and arginine. Low tissue levels 

of calcium and magnesium in the NH4
+ fed plants constituted part of the NH4

+ toxicity 

syndrome (Schjoerringet al., 2002; Roosta and Schjoerring, 2007). Glutamine synthetase 

incorporates NH4
+ into glutamine, but root glutamine synthetase activity and expression are 

repressed when high levels of NH4
+ is supplied (Schjoerring et al., 2002). However, in tolerant 

species like rice ammonium uptake may have different regulatory control than nitrate adapted 

species (Tobin and Yamaya, 2001). Rice has the same number of ammonium transporter 

homologs as have been isolated from tomato (von Wirén et al., 2000). Roots of rice have two 

ammonium-inducible transporters compared to only one, (AMT1;2) in tomato, showing a 

comparable transcriptional regulation in tomato (Sonoda et al., 2003).  

There are several explanation for toxic effect of NH4
+, including: acidification of soil, 

acidification of the cytosol (Britto et al., 2001; Britto and Kronzucker, 2002), NH4
+-induced 

cation deficiency (specially Ca) and cation versus anion imbalance (Redinbaugh and 

Campbell, 1993) deficiency of carbon sources in the root zone, stimulated nitrogen 

assimilatory capacity, and disturbed phytohormone and polyamine status,  ((Rahayu et al., 

2005; Onyango Gweyi 2006; Gerendas et al., 1997; Zhang and Rengel, 1999; Britto and 

Kronzucker, 2002), or high cost of energy for H+ or NH4
+ efflux in order to keep low NH4

+ 

concentrations in cytoplasm (Britto et al., 2001). Until now there is no distinct specific 

transporter for ammonium efflux movement.  However plants activate NH4
+ efflux to cope 

with NH4
+ influx under high external concentrations of ammonium (Babourina et al., 2001 

and 2007; Britto et al., 2001). This efflux was suggested to have a cytosolic origin (Britto and 

Kronzucker 2003). Nitrate with an unknown mechanism can alleviate NH4
+ toxicity. On 

toxicity extent of ammonium, NO3
-/NH4

+ ratios are quite important. Nitrate primarily may 

affect the NH4
+ low-affinity influx system, and NH4

+ transport is inversely linked to Ca2+ net 

flux (Babourina et al., 2007). Protection against a low pH at the surface of root (Imsande, 

1986), enhancing xylem loading of NH4
+ (Babourina et al., 2007; Kronzucker et al., 1999), or 
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through increasing the expression of enzymes that remove NH4
+ from the cytoplasm 

(Redinbaugh and Campbell, 1993; Kronzucker et al., 1999), or alleviating the NH4
+ induced 

plasma membrane depolarization of cells (Wang et al., 1993) and reduction the internal ratio 

of cations to anions in plants (Britto and Kronzucker, 2002), or affecting low-affinity NH4
+ 

transporters (Babourina et al., 2007) maybe also are the mechanisms involved in this 

alleviation. When NH4
+-induced low pH, potassium releases into external medium (Babourina 

et al., 2001), that means NH4
+ can compete with K+ for absorption through some K+ inward 

channels and non-selective cation channels (Howitt and Udvardi, 2000; Kronzucker et al., 

2001; Loque and von Wiren, 2004). There are enough evidence showing better plant growth 

and development even in nutrient solution with a combination of ammonium and nitrate. In 

soils also following NH4-fertilizer application, even with NI applications, similar situation 

(ammonium and nitrate nutrition) for plants uptake could happen.  

1.10 Objectives of the research  

Despite toxicity symptoms which are mainly under laboratory conditions and nutrient 

solution, ammonium nutrition of plants specially in vegetable production systems could have 

very important positive implications, from economic, environmental and nutritional point of 

view. This could lead to great changes in plant growth and production, specially in CaCO3 

containing soils which have a relatively high pH. Imbalanced nutrition frequently limits plant 

production under such conditions. Increasing new insights into ‘’ecological food production’’ 

and ‘’organic farming’’ need to stabilize ammonium in a soil on one hand, and to use natural 

plant-based substances such as NNIs on the other hand, as an environmental friendly step. 

There is high a potential for detection of plant based chemicals not only for NI, but also for 

fungicides and insecticides, as well. Therefore in the present research project, improving 

nitrogen management for vegetable production systems in calcareous soils through first: 

stabilization of ammonium in soil, and second: finding natural alternatives for synthetic 

nitrification inhibitors (e.g. from Brachiaria humidicola) are the main objectives. Therefore, 

first the effectiveness of chloride as an routine chemical compared to DMPP should get 

evaluated as an NI, then the production, release and efficiency of Brachiaria root exudates as 

well as root and shoot extracts as the main source of NNI should be investigated in the present 

work, and as a further step the role of ammonium and nitrate nutrition on tomato growth, and 

the effects of calcium on ammonium toxicity of tomato plants should be investigated. 

 



Chapter 2: General Materials and Methods 

 

In this chapter, a general description of plant materials, and plant cultivations as well as the 

general methods which were routinely used for this study in following chapters are provided. 

Other methods related to a particular experiment are described in the respective chapter.  

2.1 Plant cultivation 

In these series of experiments Brachiaria humidicola (Rendle) Schweick, accession 26159 (as 

a possible source of NI), and tomato as a target plant for investigation of NH4
+ and NO3

- 

nutrition effects, have been used. 

 

2.1.1. Cultivation of Brachiaria humidicola 

2.1.1.1 Cultivation from seeds 

Seeds from Brachiaria humidicola (Rendle) Schweick (accession 26159) (BH) were rinsed in 

10 mM CaSO4 for 5h and germinated in fine quartz sands (0.2-0.5 mm) in growth chamber 

under 25 ˚C, and regularly watered with distilled water. Two weeks old seedlings were 

transferred to aerated hydroponic culture system with a half strength nutrient solution for four 

days.  

2.1.1.2 Vegetative propagation 

Due to difficulties in seed germination of BH plants (a long process with very low 

germination rate, about 14%), some of germinated seedlings from the first experiment were 

transferred to big soil pots (a mixture consist of TDK, soil, sand, 2:4:1) in greenhouse 

condition (20-26 ºC). These were kept as a source of new plants which they produce as new 

shoot or tiller. For the next experiments generally two weeks before starting any experiment, 

some of these plants removed from the soil, and using a sterilized blade separated to several 

single plants containing roots. In optimum condition 4-5 new plants can be produced and 

separated from one single plant. They transferred to NO3
- or NH4

+ nutrition medium, which 

new shoots (tiller) were produced at the crown of plants (junction section of root to shoot). 

After about 1 week under these conditions, with a size of about 10 cm, uniform seedlings 

again were selected and transformed as new plant for experimental purposes. 
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2.1.1.3 Hydroponic culture system 

Plants after germination and four days in half strength nutrient solution transferred to full 

strength nutrient solution consisting of 10 µM H3BO3, 0.5 µM MnSO4, 0.5 µM ZnSO4, 0.1 

µM CuSO4, 0.01 µM Mo7O24(NH4)6, tomato15 and grass 83 µM Fe-EDTA, 0.7 mM K2SO4, 

0.5 mM KH2PO4, 1.2 mM MgSO4, 1.2mM KCl, 2mM N as (NH4)2SO4 or Ca(NO3)2, and for 

ammonium treatments 1 mM CaCl2 was supplied to each pot.  

The nutrient solution was replaced every 3-4 days and if it was necessary pH was adjusted to 

pH 6, using MES, H2SO4 0.5 M, KOH 0.5 M, or a suspension of 0.5 M Ca(OH)2. Plants were 

grown under controlled conditions, in a climate chamber with a 16/8 h light regime, and 200 

µmole/cm2/s with a light/dark temperature regime 28/25 ºC, and 60% relative humidity. 

Plants had different ages at the time of harvest in each experiment.  

 

2.1.2. Cultivation of tomato plants 

2.1.2.1.Preculture  

Tomato seeds (Lycopersicon esculentum var money maker) were rinsed in 10 mM CaSO4 

solution for 4 h, and germinated in quartz sand (0.2-0.5 mm), at 25 ºC in growth chamber. 

After germination two weeks old seedlings were transferred to half strength nutrient solution 

for 4 days, and later to full nutrient solution.  

2.1.2.2.Hydroponic culture system 

After transferring to nutrient solution, plants were grown under controlled conditions, in a 

climate chamber with a 16/8 h light regime, and 200 µmol/cm2/s light intensity. Temperature 

regime was 28/26 ºC, with 60% relative humidity in growth chamber. The nutrient solution 

was replaced every 3-4 days. 

 

 

 

 

 

 

 

 

 

 



 

Table 2.1. Concentrations of macro and micronutrients for hydroponic culture of tomato and 

Brachiaria plants (according to Walch-Liu et al., 2000). 

Macronutrients mM 

N 2 

K 2.5 

Mg 1.2 

P 0.5 

Ca 2 

Cl 1.2-3.2 

S 3.2 

Micronutrients µM 

B 10 (for Tomato), and 1 (for Brachiaria) 

Fe 15 (for Tomato), and 83 (for Brachiaria) 

Cu 0.1 

Zn 0.5 

Mn 0.5 

Mo 0.01 

2.2. Collection of root exudates: 

Root exudates always were collected at 2 h after starting light period. Plants root first rinsed 

and washed with distilled water for at least 2 minutes, then they were placed in a small plastic 

beaker containing 500 ml distilled water for collecting root exudates, under continues 

aeration. Root exudates were collected for 6 (from 10am to 16pm) or 24 hours (from 10am to 

10 am in the next day). Then they were transferred to 0.5 liter plastic bottles and kept in deep 

freezer (-20 ºC).  

2.3. Collection of xylem exudates 

At harvest for tomato plants, in the morning shoots were cut using a sterilized blade at 2 cm 

above the pot surface. Xylem sap collected using plastic tubes which have been fixed with 

Para film. Collection was conducted for 8 h during the light period. Regularly collected xylem 

sap removed to ependorf tubes using syringe and kept in -20 ºC for further analysis.  
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2.4. Plant harvest and determination of growth parameters 

Quantitative characteristics of plants were measured during growth period, including  

chlorophyll content via SPAD meter, transpiration or water consumption, root and shoot 

overall length, and pH of nutrient solution as an indicator of root activity under nitrate or 

ammonium nutrition. At harvest plant separated in different parts such as shoot, root and 

leaves of different developmental stages (young leaves and old leaves). Fresh weight of 

shoots and roots were determined directly after harvest. Dry weight measured after plant 

material was dried at 60 ºC. Aliquot of these dry weights were used for mineral analysis. 

Further, for Brachiaria plants, fresh materials were cut to small pieces by scissors and 

immediately were frozen in liquid nitrogen, grinded to a homogenates form with mortar and 

stored in –20 ºC for further application in nitrification bioassay.  

2.5. Plant mineral analysis: 

Harvested samples of roots and shoot (leaves) were washed and gently pressed between fine 

sorption paper to remove extra water, and then fresh weight was recorded. The samples were 

placed in the oven at a temperature of 60 ºC for 5 days. Dried samples were grinded using 

grinding machine into fine powder. Analysis of mineral nutrients in shoot and root tissues was 

performed after dry digestion of 100 mg dry weight at 500 ºC for 5 h in a muffle furnace. 

After cooling, the samples were extracted 2 times using 2 ml of 1/3 HNO3 (v/v) and heated to 

dryness. The ash was dissolved in 2 ml of 1/3 HCl (v/v), and then diluted to 10 ml with hot 

deionised water. After addition 0.1 ml of Cs/La buffer to 4.9 ml ash solution Mn and Fe were 

measured. Other mineral elements such as Zn, Cu, and Mg were determined in original or 

diluted ash solution by atomic absorption spectrometry. While K and Ca by flame 

photometry, and C and N by Elemental analyser (Erb, Model NCS 2500) were measured. 

2.6. Preparation of root exudates and tissue homogenates for characterization of 

nitrification inhibiting compounds  

Frozen root exudates (500 ml) were melted at room temperature, filtered and concentrated 

using a rotary evaporator at 40 ºC and a relative pressure of 20-30 mb to 15 ml. Then 2.5 ml 

aliquots of this concentrated root exudates was used for nitrification bioassay.  

Also freeze dried samples of root exudates were dissolved in 20 ml of methanol which later 

methanol was removed via rotary evaporator. It was finally extracted with DMSO as a final 

concentration of 0.8% in the samples. 



Incubation of unextracted plant materials were conducted using 0.5 gram of frozen root or 

shoot homogenates, which was applied per sample soil (2.5 g soil) for determination of their 

potential nitrification inhibition effect.  

For extraction, 4.0 g of root or shoot homogenates was extracted sequentially in mortar with 

hexane, ethyl acetate, ethanol and water, respectively, each one of two times extraction with 

10 ml solvent. Distilled water (30 ml) was then added to each fraction and vacuum filtered, 

the whole mixture concentrated using rotary evaporator to 12.5 ml (for 5 samples).  DMSO 

was added to a final concentration of 0.8% in sample. 2.5 ml aliquots of this concentrated 

applied per sample in nitrification bioassay. 

2.7. Bioassay for nitrification potentials 

The bioassay consists of rapid determination of nitrification inhibitory (NI) potential of single 

compounds or mixtures of compound via inhibition of nitrite formation in soils. 

2.7.2. Principle 

- Incubation of soils with ammonium sulphate and unknown test substances (NI) with 

potential inhibitory effects on nitrification (Kandeler 1993; Berg and Rosswall , 1985). 

- Determination of nitrite formation after standardized incubation times in comparison 

with a control treatment without NI addition. 

- Reduced formation of nitrite by inhibition of ammonium oxidation indicates NI 

activity. Nitrite oxidation during incubation is inhibited by addition of sodium chlorate 

(Belser and Mays, 1980). 

2.7.3. Application 

Testing of single substances or substance-mixtures for  NI activity 

2.7.4. Chemicals 

- Sodium chlorate-solution  (1.5 M) 

                    15.97 g NaClO3  in 100 mL H2Odist. (final volume) 

- Ammonium sulphate stock (13.3 mM)       

                    1.762 g (NH4)2SO4  1 L H2Odist (final volume) 

- Ammonium sulphate solution (1.33 mM) 

                    100 mL stock solution + 900 mL H2Odist 

- Potassium chloride solution (2 M) 

                    149.12 g KCl in 1 L H2Odist (final volume) 

- Sodium nitrite stock (1000 mg NO2-N/L) 

                   4.9257 g NaNO2 in 1 L H2Odist as blank (final volume) 
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2.7.5. Laboratory equipments 

- Biologically active soil with ammonium-oxidizing potential (standard soil, Limburger 

Hof, BASF). 

-  Horizontal shaker and balance 

- Filtration unit (Kandeler, 1993), or  lab centrifuge   

  

2.7.6. Procedure 

- Sieving dry soil ≤ 1 mm mesh, adjusted to 50 % of water holding capacity (1 kg dry 

soil + 145 mL H2Odist); again sieving ≤1 mm mesh  

- Pre-incubation at room temperature 10-14 d to stimulate microbial activity 

 

2.7.7. Test 

- Transferring 2.5 g moist soil (see above) into a 50 mL erlenmeyer or plastic beaker 

- + 2.5 mL NI containing solution  

- + 7.5 mL ammonium sulphate solution (1.33 mM) 

- + 0.05 mL sodium chlorate solution (1.5 M). 

- Replicates, 4 samples is shaken  for 5 h (or 24 h) with 200 rpm at 25°C for 24 or 50 h,  

- One sample stored at –20 °C as blank. 

- Control: Replacement of NI solution by H2Odist  

 

- After 24 h (or 50 h), add 15 mL KCl solution, mix, filtration with Blue-Ribbon filters 

or centrifugation.  

- Photometric nitrite determination via spectrophotometer (Kandeler, 1993), 

autoanalyser or HPLC (Vilsmeier, 1984) 

- Calibration standards:  0 – 0.1 – 0.2 – 0.4 mg NO2-N/L 

 

2.7.8. Spectrophotometric determination of nitrite  

- Ammonium chloride buffer (0.19 M, pH 8.5) 

- 1 g NH4Cl  + 90 mL H2Odist 

- adjust to pH 8.5 with NH4OH conc 

- adjust volume to 100 mL 

- A calibration curve with 0; 0.2; 0.4; 0.6; 0.8; 1.0 mg NO2-N/mL)  each 1 mL 

- Colour reagent: Sulfanilamide: 4 mg + N-(1-naphtyl)-ethylendiaminhydrochloride  (10 

mg), dissolve in 10 mL H2Odist,  add 2 mL o-phosphoric acid, adjust volume to 20 ml 
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- Measurement:  mix 0.5 ml soil extract + 0.3 ml  NH4Cl buffer + 0.2ml colour reagent 

- Measure absorption after 15 min at 520 nm     

 

2.7.9. Calculation 

- Nitrite concentration without NI  = 100 % (Mean of control samples minus blank) and 

nitrite concentration with NI (Mean of samples minus blank) = X % 

2.8. Statistical analysis 

Excel and SPSS softwares were used for analysis of data, and comparisons of means were 

conducted using one way ANOVA and Duncan test at level of (p<0.05). Results in the tables, 

text and figures are given as means ± SD.  

 

 

 

 

 

 

 

 



 
 

Chapter 3: Efficiency of DMPP and chloride as microbial nitrification inhibitors in soil 

3. 1      Abstract  

Microbial oxidation of ammonium to nitrate has important implication for ecosystem 

functioning. Many chemicals including chloride can inhibit nitrification under soil and 

laboratory conditions. This study was conducted to evaluate the effects of chloride in 

comparison to DMPP on nitrification in the soil. Despite mixing with fresh soil extracts and 2 

weeks pre-incubation, net nitrification started after 3 weeks incubation. DMPP specially with 

double concentrations inhibits nitrification for longer time until end of incubation period. 

Chloride as NH4Cl or KCl also significantly inhibited nitrification compared to control until 

end of 7 weeks incubation. Specific ion and osmotic effects of chloride seems to be the reason 

of this inhibitory effect. The results suggest that nitrification process and responsible 

microorganisms are very sensitive to a wide range of chemicals and salts in the soil. For a 

new environment or following dry-wet cycles, population establishment of nitrifiers may not 

be achieved very easily. Adverse climatic and soil factors, as well as salt concentration have 

additive inhibiting effects on nitrification. Under such conditions many chemicals which 

typically are not inhibitors, can function as potent nitrification inhibitor. Slightly acidic 

condition, low organic matter and ammonium content, long dryness, all contribute to slow 

down population establishment of ammonium oxidizing bacteria in soil, leading to enhancing 

inhibitory effect of chemicals such as DMPP or chloride and for a longer time.  

3.2 Introduction  

Nitrogen fertilizers are one of the major destructive pollutants on the globe. Nitrification is 

the process in which a relatively immobile cationic form of nitrogen (NH4
+) is converted into 

a more mobile anionic form (NO3
-). This conversion has important implications for physical, 

chemical and biological functioning of soil and ecosystems, so it may also affect ecosystem 

productivity. In addition, low nitrate availability could influence composition of plant 

communities by favouring species that have preferential ammonium nutrition. Nitrate as the 

result of nitrification is in centre of almost the all N losses from the soil. Nitrogen as well as 

cation losses can occur due to nitrification, which finally leads to soil acidification as a 

consequence of higher H+ concentrations in soil. In cultivation systems, control of 

nitrification for a limited time may help to apply the exact amounts of N-fertilizer which 

plants actually need (Bronson and Mosier, 1994; Patra et al., 2001; Subbarao et al., 2006b). 

Consequently, this leads to an increase in plant N use efficiency through reduced N 

application rates and numbers. 



On the other hand, ammonium nutrition of crops under field condition might have positive 

implications for plant growth and development. Depending on soil conditions and more 

importantly plant species, these beneficial effects could be increasing N use efficiency, 

reduction in N losses and consequently environmental and health risk, a better and more 

balanced nutrition of micronutrients which specially are not present in available forms in soil 

(calcareous or high pH conditions), better utilization of unavailable phosphorus forms such as 

Ca-P or rock phosphate (Hinsinger et al., 2003; Onyango Gweyi, 2006), and more effective 

bioremediation of contaminated soils. However, NH4
+-fertilizers after application to the field 

are oxidized to nitrate within few days (Abbasi and Adams, 2000; Azam et al., 2002). 

Blocking this oxidation in order to have stabilized ammonium in bulk soil, is achieved 

through application of synthetic nitrification inhibitors such as N-Serve, Dicyandiamide 

(DCD) and 3,4-Dimethylpyrazole phosphate (DMPP). To large extent, the efficiency of these 

compounds depends on their chemical structure, mode of action, dynamics inside the soil, and 

their resistance to biological and chemical degradation. DMPP however is one of the most 

effective and widely used nitrification inhibitor with high efficiency and no side effect 

(Weiske et al., 2001; Pasda et al., 2001; Irigoyen et al., 2003). Its typical dosage is 1% N-

NH4
+ which is too much lower than other inhibitors such as Dicyandiamide (DCD) (Zerulla et 

al., 2001). 

Potential distinct advantages such as significant and more effective inhibition of nitrification 

and reduction of N2O emission (Weiske et al., 2001; Zerulla et al., 2001; Hatch et al., 2005), 

and CO2 emission (Weiske et al., 2001), increasing yield (Zerulla et al., 2001; Pasda et al., 

2001; Linzmeier et al., 2001) and consequently increasing N use efficiency are attributed to 

DMPP, compare to other NIs. However because of simultaneous absorption of ammonium 

and DMPP to clay minerals (Pasda et al., 2001; Azam et al., 2002), the difference between 

kinetics of adsorption for NH4
+ and DMPP regulates the effectiveness of inhibition. 

Therefore, it has the highest efficiency in light soils (Barth et al., 2001; Pasda et al., 2001).  

Apart from environmental and economic point of view, stabilized ammonium in the soil also 

has other beneficial effects, mainly in vegetable production, where normally the amount of N 

uptake by crops exceeds its assimilation rate, therefore N accumulates as nitrate in leaves and 

other vegetative tissues. Nitrate reduction capacity of plants which is mainly a function of 

nitrate reductase activity is the main limiting step leading to nitrate accumulation. Upon 

consumption of these vegetable materials by human, serious problems regarding health 

specially with vegetable crops such as lettuce and spinach can occur. Therefore under 
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application of nitrification inhibitors, plants in their root medium have a higher ratio of 

NH4
+:NO3

-, as well as preferential uptake of NH4
+ would lead to less nitrate accumulation.  

Beside synthetic nitrification inhibitors, many chemicals can inhibit nitrification. Chloride, for 

instance with a concentration of 7-50 mM has been found to reduce nitrification rate in 

laboratory and field condition (Golden et al., 1980; Wickramasinghe et al., 1985; Darrah et 

al., 1987; Wade, 1997; McGuire et al., 1999; Chen and Wong, 2004). Despite chloride ions, 

salt concentration of soil and its osmotic pressure, also can suppress nitrification. Generally, 

there is a reduction in microorganisms activity with increasing salt concentrations (Darrah et 

al., 1985; Monaghan, and Barraclough, 1991). Darrah et al., (1985) with application of 7.3 

mM kg-1 soil chloride found that ammonium chloride but not ammonium sulphate inhibits 

nitrification, because with ammonium sulphate the salt concentration in the soil solution was 

restricted by the precipitation of calcium sulphate. With different chloride salts, KCl, CaCl2, 

and MgCl2 and NaCl, Wade, (1997) suggested that chloride alone controls Rhizoctonia 

disease and chloride might be used for management of Rhizoctonia root and crown rot of 

sugar beet production, indicating antibiotic effect of Cl in the soil. Moreover, take all root rot 

(Gaeumannomyces graminis) in wheat is decreasing with applying chloride fertilizers 

(Christensen et al., 1981), suggesting a reduction in plant water potential could be the 

inhibiting effect of Cl on take all disease, because the rate of this disease decreases with 

reduction in plant water potential. This could be due to a reduction of nitrification and higher 

rate of NH4
+/NO3

- under application of chloride fertilizers (Christensen and Marcia 1985). In 

contrast Löffler et al. (1986) suggested that nitrite rather than ammonia may is responsible for 

the declining effect of ammonia-generating compounds on populations of Fusarium 

oxysporum sp. dianthi in soil. So, following these antimicrobial properties of chloride the 

present experiment was conducted to evaluate the effectiveness of DMPP and chloride on 

inhibition of microbial nitrification. 

3.3 Materials and Methods 

This experiment was conducted with a loamy soil which has been kept in dry condition for 

more than 20 years. This soil was mixed with fresh soil extract (0.66 l extract of 1 kg fresh 

loamy soil) from a long term experiment investigation (with a pH 6.3, P2O5; 161 mg /100g 

soil, K2O;18 mg /100g soil, Mg; 12 mg/ 100 g soil, C; 0.2%, N: 0.23%), which was 

homogenously mixed to 4.5 kg dry soil, and pre-incubated at 50% of water holding capacity 

at constant temperature of 20 oC for more than 2 weeks to induce and increase its microbial 

activity. Water holding capacity of soil has been measured before starting, and the final 

moisture of soil in pots, has been adjusted to about 60% of its water holding capacity (WHC), 



which is equal to 18% of the soil weight. After sieving the soil through 0.2 mm mesh, 

fertilizers were homogeneously distributed into the soil, and again several times passed 

through mesh. Added N was on the basis of 120 mg N-NH4 as (NH4)2SO4, or NH4Cl.  

Treatments were ammonium sulphate without DMPP (AS-D as control), ammonium sulphate 

with normal concentration of DMPP (1% of N-NH4
+) (as AS+D), and with double 

concentration of DMPP, 2% of N-NH4
+ (as AS+DD), ammonium sulphate + chloride (30.5 

mg/100 g dry soil) as KCl (a solution of ~ 48mM Cl-), and ammonium Chloride (NH4Cl) 

(amount of chloride was ~ 2.5 times of N-NH4).  

DMPP were dissolved together with ammonium sulphate in distilled water and mixed 

homogeneously into the soil. The same procedure was carried out for chloride treatments. An 

amount of 59 g fresh soil (on basis of 50 g dry soil) was placed into the small 50 g plastic 

pots. The pots transferred to trays which were included a wet cover beneath the pots to 

maintain water status of pots more stable. Then the pots were closed firmly with bleu plastic 

cover for protection against water loss during whole incubation period, and they placed in 

growth chamber with 23/20 °C for exact period of time based on experiment condition. 

However the water content of pots has been checked every 4-5 days and kept stable. The time 

course for sampling (0, 1, 2, 3, 5, 7 weeks) were chosen based on the expectation and 

experiment condition (23 ºC), as well as literatures results (Abbasi and Adams, 2000; Azam et 

al., 2002; Williams et al., 1998). 

 

3.3.1 Analysis  

Pots representing a defined sampling date were removed from growth chamber and 

immediately transferred to –20 ºC until further measurement. After weighing 30 g of fresh 

soil of each pot and transferring into a 100 ml plastic bottle, 30 ml of calcium chloride 

solution (0.025 M) was added to each bottle, (soil: solution of 1:1), and shacked for one hour 

with 200 rpm. Following this shaking period pH of each bottle was measured with pH meter 

(model MPC227, Mettler Toledo) while the whole soil solution was mixing using a magnet. 

Then the whole solution was filtrated using Schleicher and Schell (Dassel) blue ribbon filters 

(No. 110), with discarding the first drops of filtrate. From this filtrate, separate samples for 

determination of nitrate and ammonium were pipetted into ependorf tubes, (1 ml). Nitrate was 

immediately measured with nitrate quick test reflectometrically (three times for each sample) 

using the Merck-Reflectoquant Quicktest (Merck, Darmstadt, Germany). For determination of 

ammonium the samples first received 10 µl of (10 mM) formic acid for its stabilization, then 

stored at –20 oC and finally measured with HPLC. Excel and SPSS softwares were used for 
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analysis of data, and comparisons of means were conducted using one way ANOVA and 

Duncan test at level of (p<0.05). Results in the tables, text and figures are given as means ± 

SD. 

3.4 Results  

In present experiment a soil which for a long time has been stored in dry condition (more than 

20 years) was used, however, before starting it mixed with fresh soil extract and incubated for 

more than two weeks. Two weeks incubation generally is enough for induction of bacteria 

activity inside the soil (Trevors, 1983), specially when it is combined with fresh soil extract. 

Original soil nitrate concentration was about 95 mg NO3
- per kg dry soil, (21 mg N/ kg dry 

soil), with a pH of 5.8 (extracted with 0.025 M CaCl2 ). Although the native concentration of 

NH4
+ was not measured in the soil, however due to very low organic matter and long storage 

history of soil, its ammonium must not be in detectable size. 

In contrast to expectations, net nitrification (measurable nitrate) started after three weeks (Fig. 

3.1 and Fig. 3.2). There was no significant difference between treatments for soil pH, nitrate, 

and ammonium concentration at beginning of experiment. After one week incubation, 

treatments did not show any difference in soil pH, nitrate and ammonium concentrations, 

however pH and ammonium show some fluctuations between treatments. These fluctuations 

become more significant with progress of incubation time. At two and three weeks after 

incubation still there was no significant difference in terms of produced nitrate (net 

nitrification). Significant differences between double concentration of DMPP (2% of N-NH4) 

and other treatments occurred after three weeks for ammonium concentrations in samples. It 

was only inside weeks four and five that net nitrification became visible. At this sampling 

date, while the concentration of nitrate in control (AS-D) was 238.1 mg kg-1 soil, it was about  

15.4 and 101.8 for one and double application of DMPP, respectively, which was very similar 

to concentrations at beginning of experiment. There was also significant differences between 

chloride treatments compare to control, and these differences continued to the end of 

experiment. After four and five weeks of incubation, a significant negative correlation 

between pH and nitrate in soil samples was observed (Fig. 3.1). Ammonium concentration 

was highest for double application of DMPP, while it measured at lowest concentration for 

control (AS-D) at all sampling dates. When net nitrification was visible and detectable, 

always there was a positive correlation between pH and ammonium concentrations inside soil 

samples. Nitrate production negatively correlated with pH, and after weeks five and seven 

still there were significant differences between DMPP treatments and others, and also 

between chloride treatments and control. These differences expected to continue even after 8 



weeks until the end and complete nitrification of applied fertilizer. However, at beginning we 

expected that full nitrification would be achieved in 4-6 weeks. Because of changes in 

ammonium as well as pH changes during first 3 weeks of incubation, despite undetectable net 

nitrification, gross nitrification has occurred, which became measurable after 3 weeks. 

Nevertheless, the trend of nitrification inhibition of treatments was in the order of: Control < 

ASKCl < NH4Cl < DMPP≤ double DMPP. 
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Fig. 3. 1. Nitrification or nitrate concentration and pH in soil samples of different treatments, 

from zero-time to seven weeks after incubation. Treatments are as AS-D= ammonium 

sulphate minus DMPP as control; AS+D= ammonium sulphate + DMPP; AS+DD= 

ammonium sulphate + double concentration of DMPP; NH4Cl= ammonium chloride; 

ASKCl= AS + KCl. 
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Fig. 3. 2. Ammonium concentration in soil samples measured from zero-time to seven weeks 

after starting incubation, extracted with 0.025 M CaCl2. Treatments are as AS-D= ammonium 

sulphate minus DMPP as control; AS+D= ammonium sulphate + DMPP; AS+DD= 

ammonium sulphate + double concentration of DMPP; NH4Cl= ammonium chloride; 

ASKCl= AS + KCl. 

3.5 Discussion  

Nitrification rate in soil is a function of vegetation and soil types and controlled by several 

factors, including temperature, moisture, pH, substrate availability, nutrient availability, and 

allelopathic effect, however, nitrification is highly heterogeneous in space and time even 

under a homogeneous vegetation cover (Ste-Marie and Paré, 1999; Abbasi et al., 2000b; 

Carlyle et al., 1990; Baldwin et al., 1983). The effects of these factors on nitrification are 

variable and it is difficult to predict the production of nitrate for a given soil under a certain 

situation. Moreover, biological processes in the field may be quite different from those in 

laboratory conditions. There is always a lag in net nitrification under laboratory soil 



incubation. This is mainly because of low carbon availability, which could cause a relative 

change in nitrification and nitrate immobilization (Hart et al., 1994). In present experiment net 

measurable nitrate occurred after 3 weeks of incubation (Fig. 3.1). However, others indicate 

that active nitrification starts with a lag period of 4–10 days (Mulvaney et al., 1997; Williams 

et al., 1998) or even more than two weeks (Vitousek et al., 1982; Killham, 1994; Avrahami et 

al., 2003) following rewetting of soils. Also after soil rewetting and applying NH4 fertilizers, 

ammonium preferably assimilated by microorganisms (Azam and Ifzal, 2006; Herrmann et 

al., 2005; Ste-Marie and Paré, 1999), while nitrate immobilization would occur in microsites 

where ammonium is not available (Davidson et al., 1992). However in presence of both 

nitrate and ammonium, NH4
+ immobilization is faster than NO3

-, and occurs in 12 h after 

adding fertilizer, instead of 48 h for NO3
- (Azam and Ifzal, 2006). Moreover, remineralization 

of immobilized N starts in 48 h and is faster for NH4
+ than NO3

− (Azam and Ifzal, 2006). 

Despite adding 120 mg N-NH4 per kg soil, only about 90 mg of that amount was detectable as 

ammonium at zero time, just after application of treatments (Fig.3.2). This can be explained 

due to NH4
+ fixation by clay minerals, volatilisation as NH3, or inefficient extraction of 

ammonium, which has been done with 0.025 M CaCl2. 

In this experiment ammonium limitation to nitrifiers could not play any role, because a 120 

mg N-NH4 per kg soil is enough to always have a free portion of NH4
+ in soil solution. 

However, under field condition these nitrifiers have little chance due to their normally poor 

ability to compete with roots, mycorrhizae and decomposers, for ammonium (Neumann, 

2007). Despite specific inhibiting effect of DMPP on enzymology of bacteria, molecule of 

DMPP, itself, maybe absorb N due to CH, CH3, CN chemical bounds, however the applied 

amount of DMPP was not high enough to fix NH4
+, NO2

- or NO3
- significantly. All these 

direct and indirect effects (including inhibition and fixation) could be possible explanation for 

low nitrification in present experiment or under field condition. A lag in starting nitrification 

is not avoidable until the ammonium oxidizer populations become well established (Vitousek 

et al., 1982), this is mainly because these organisms have a long generation time (Killham, 

1994). Similarly in this experiment net detectable nitrification started very late, after 3 to 5 

weeks incubation.  

Soil drying and rewetting which frequently happening in surface soils, is a common stress for 

the microorganisms (Fierer et al., 2003). Long drying history of the soil in this experiment as 

well as other factors including low organic matter content might be the main reason of this 

delay. Drying even for a short time may induce lysis and losses of microbial biomass and 

consequently, this also may influence microbial community composition. This change in 
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microbial composition, on the other hand, is generally depends on plant species (Fierer et al., 

2003). It is well known that in soils with low organic matter content, normally there is a lag of 

starting nitrification which might be more than two weeks (Vitousek et al., 1982; Killham, 

1994; Avrahami et al., 2003). Furthermore, generally there is positive correlation between soil 

organic matter and microbial biomass (Chander et al., 1997). So nitrogen mineralization and 

nitrification appear to be limited by soil low organic matter, as well as microbial 

establishment. Similarly in this experiment, low organic matter content, as well as low 

ammonium content of soil could partly explain the lag of three weeks net nitrification. 

Therefore, time consuming adaptation of nitrifying bacteria to new soil conditions is 

important factor to be considered.  
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Fig. 3. 3. PH, nitrate and ammonium concentrations of soil samples after five weeks 

incubation. Nitrogen was 120 mg N-NH4
+ per kg soil. 
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Fig. 3. 4. PH, nitrate and ammonium concentrations of soil samples after seven weeks 

incubation.  Nitrogen was 120 mg N-NH4
+ per kg soil. 

 



Nitrification has been inhibited in all treatments specially in first 3 weeks, however 

ammonium concentration showed a steady reduction with incubation time. This may be partly 

due to ammonium fixation in soil clay minerals, and microbial immobilization. Uptake and 

immobilization of NH4
+-N is reported to be more than NO3

−-N, while remineralization of 

immobilized N is slower in NH4
+- in soil (Azam et al., 1986; Herrmann et al., 2005; Azam 

and Ifzal, 2006). Long dryness, slightly acidic pH, low organic matter and ammonium content 

of soil leads to very slow establishment of nitrifying population which can result in low net 

nitrification. Moreover, population shifts can simply occur over any change on soil or 

medium condition (Avrahami et al., 2003; Horz et al., 2004). So depend on condition, 

ammonia oxidizers may need several weeks to adapt to a new soil condition through changes 

in the community structure (Avrahami et al., 2003; Vitousek et al., 1982; Killham, 1994). 

Adaptation of microbes to new soil condition is a time consuming phase, therefore it takes 

longer time for bacteria to reach a population resulting in net nitrification. DMPP strongly 

inhibited nitrification and after 7 weeks of incubation, still there were significant differences 

between DMPP applications and other treatments. Normally higher dosage of nitrification 

inhibitors increases NH4
+ concentration in soil (Chaves et al., 2006). DMPP specially with 

double concentration extended the presence of ammonium in soil more strongly, this effect 

also confirmed by other authors (Weiske et al., 2001; Zerulla et al., 2001; Hatch et al., 2005, 

Pasda et al., 2001). Nevertheless, in South Germany, tobacco and grape farmers have 

complain about effects of ENTEC (a DMPP containing NH4
+ fertilizer) on plants, with 

symptoms of yellowing in tobacco farms and winter damage to grape orchards. This could be 

due to DMPP dynamics in the soil, its adsorption in heavier soil and its strong effect in light 

soils. On the other hand, applied concentration of chloride (30.5 mg/ 100g soil) in soil also 

significantly decreased nitrification activity compare to control, indicating efficiency of 

chloride in inhibiting nitrification. Nitrate concentration and pH presented a better indication 

of nitrification. These parameters, however showed high correlation with proceed in 

nitrification time, and pH always correlate negatively with amount of produced nitrate (Fig. 

3.1, Fig. 3.2 and Fig. 3.3). This is always the reason of acidification of soils in tropical and 

subtropical regions, which through washing nitrate and basic cations out of soil, soil 

conditions getting worse. 

Original pH of the soil was about 5.8, a relatively acidic pH for soil nitrifying bacteria, which 

over nitrification it reduced lower in control to near 5.40 and 5.30 after five and seven weeks, 

respectively. Soil pH can significantly affect microbial activities (Trevors, 1983), with a full 

inhibiting effect on nitrification at pH lower than 4.5 (Ste-Marie and Paré, 1999). This may 
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has an additive effect to low organic matter content of soil regarding limitation of bacterial 

establishment, and potentially could limit nitrification more strongly. Nitrification inhibition 

under low pH and acid soil condition is well known (Wickramasinghe et al., 1985; Golden et 

al., 1980; Ste-Marie and Paré, 1999; Curtin et al., 1998). When pH is the limiting factor for 

microbial activity, other factors can not improve nitrification. Therefore, pH appears as an 

important regulator of net nitrification (Ste-Marie and Paré, 1999; Carlyle et al., 1990). Soil 

pH, apart from its direct effect on bacterial activity can also indirectly affect  nitrification rate 

by influencing soil physical, chemical and biological properties. Most of chemical reactions in 

soil are specially well known to be influenced by pH (Ste-Marie and Paré, 1999; Curtin et al., 

1998). Normally, under field condition there is an increase in N mineralization and net 

nitrification after adding lime to acid soils. This is always coupled with an increase in CO2 

evolution, which is an indicator of soil biological activity (Curtin et al., 1998; Ste-Marie and 

Paré, 1999). If other factors remain stable, in semiarid areas of the world high calcium content 

could stimulate nitrification through increasing soil pH. Presence of high concentration of 

chloride ions (>20 mM) may cause acidity and pH reduction even in neutral soils 

(Wickramasinghe et al., 1985), however, in present study chloride had no effects on soil pH 

(Fig. 3.1). The role of pH in slightly acidic soils may be more important, because nitrification 

finally results in more acidification of soil. These additional H+ ions which produced over 

nitrification can limit the process of ammonium oxidation, at least by (nitrozomonas) bacteria. 

Most of toxins and heavy metals become more available in low pH (exactly the points which 

bacteria start to show less activity), compare to neutral or basic pH. Generally microbial 

biomass and enzyme activities inside the soil decrease with increasing heavy metal pollution, 

but the amount of reduction differ among the enzymes. Enzymes involved in the carbon 

cycling were least affected, whereas enzyme activities related to N, P and S cycling, showed a 

considerable decrease in activity (Kandeler et al., 1996). Soil nitrifying bacteria are very 

sensitive to a high range of contaminants (Kandeler et al., 1996; Hu et al., 2002), so lower pH 

also indirectly via more availability of heavy metals, can also suppress nitrification. 

In this experiment chloride significantly retarded nitrification in soil samples compare to 

control. Chloride form of fertilizers can suppress nitrification, particularly when fertilizer is 

locally applied in precision farming, and this effect has been long recognized (Golden et al., 

1980; Darrah et al., 1987; McGuire et al., 1999). Chloride is believe to increase osmotic 

pressure of the soil more than other onions such as sulphate (Darrah et al., 1987; Golden et 

al., 1980), so it has been suggested that increasing solute concentration and osmotic pressure  

of soil solution with application of chloride could be the inhibiting effect of this chemical on 



nitrification. With increasing osmotic pressure the rate of nitrification decreases (Darrah et al., 

1987; Low et al., 1997). The extent of inhibition is a function of osmotic pressure of the soil 

solution and the osmolite properties of fertilizer used. However in some experiments even low 

concentration of chloride inhibited nitrification, which does not seem to be an osmotic effect 

(Darrah et al., 1987; Golden et al., 1980). Our results support the specific role of chloride ions 

on nitrification rather than a mere role of osmotic properties, so the role of osmotic pressure is 

second to it. Similarly in studying ammonium chloride, ammonium sulphate and sorbitol 

Golden et al., (1980) concluded that specific ion effect together with solute concentration 

(osmotic pressure) can inhibit nitrification more effectively. Chloride and its different 

derivatives can act as strong oxidizers and potent biocides (Chen and Wong, 2004), and in 

nitrification test chlorate is used at very low concentration (7mM) to inhibit nitrite oxidation 

(Kandeler, 1993). Undergoing some (chemical or biological) changes in soil, may chloride 

(Cl) produces other compounds which similar to chlorate or chlorite are toxic for nitrifying 

bacteria!. Even low concentration of Chlorite (ClO2
-, 0.05mg/L) can inactivate ammonia-

oxidizing bacteria in several hours, and with a higher concentrations, it inactivate all 

ammonium oxidizing bacteria just in 30 minutes (McGuire et al., 1999). All these factors 

including: low soil pH and organic matter, chloride specific and osmotic effects, and 

adaptation period for colonizing bacteria, and even competition between nitrifying bacteria 

and other microorganisms, and immobilization of small amount of nitrate which may 

produced in first weeks of incubation, could explain the lag period in starting net nitrification 

in this experiment. Furthermore, high concentration of NH3 or NH4
+ in soil solution can 

inhibit nitrification and it has been shown that NH4
+ injection into the soil inhibits nitrification 

very strongly (Pang et al., 1973). So ammonium chloride may be an effective fertilizer for 

application in agricultural systems, where chloride is not a problem, and regarding nitrogen 

use efficiency it may has higher recovery rate compare to sulphate forms. This equals to 390 

kg Cl/Kg-1 soil in 10 cm soil surface, however on basis of Cl/N similar to our experimental 

case, an amount of 150-250 kg per hectare is enough to have significant nitrification 

inhibition. In arid, semi-arid or Mediterranean-type ecosystems, particularly soil surface 

which is the main place of microbial activity, may undergo long periods of dryness (Fierer et 

al., 2003). These soils might have low nitrification rate, and nitrification probably will not 

start immediately just after raining. The results of present study suggest that following 

frequent wetting-drying cycles, or long drying periods of soil, biological activity may not be 

established very simply. Therefore, in many soils in arid and semi-arid regions around the 

world, where raining is not distributed equally around the year or irrigation rates are not 
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enough, similar situation (limited nitrification) may exist. All soils normally have some 

amount of chloride as original concentration, which nitrifying bacteria are adapted to it. Could 

be a critical level above which the activity of these bacteria may be affected severely. 

Therefore in various soil, nitrifiesrs may differently respond to chloride concentrations. 

However it seems that even the effect of slight concentration of chloride at the beginning of 

population establishment could have significant inhibitory effect. This should be the case also 

for other chemicals such as heavy metals through their specific and osmotic effect (Kandeler 

et al., 1996).  

3.6 Conclusion 

There was a delayed nitrification (2-3 weeks lag phase). Chloride at applied rate (30.5 mg/100 

g soil) had a distinct lower inhibiting effect than DMPP at rate 1 or 2. However, no difference 

between KCl and NH4Cl was observed. Double amount of DMPP as suggested by BASF had 

a stronger inhibition. In whole incubation period there was a close correlation between 

nitrification and decrease of pH. 

Under optimal conditions ammonium fertilizers after application into the soil oxidize to 

nitrate within few days. Nitrate as the outcome of reaction represents a challenging global 

pollutant, however this process and responsible microorganisms are very sensitive to a wide 

range of chemicals and salts in the soil. Adverse climatic and soil factors, as well as salt 

concentration have accumulative or additive inhibiting effects on nitrification. Therefore, 

under unfavourable conditions besides potential inhibitors such as DMPP, DCD or Cl, 

chemicals which typically are not inhibitors, can function as potent nitrification inhibitors. 

Slightly acidic condition, low organic matter and ammonium content, long soil dryness, all 

contribute to slow down population establishment of ammonium oxidizing bacteria in soil, 

leading to enhancement of inhibitory effect of chemicals such as DMPP or chloride and for a 

longer time. Finally, while the mechanism of nitrification inhibition by chloride is not clear, it 

could be mentioned that reactivity and highly oxidizing properties of chloride and its different 

compounds which would produced in soil over their application and their biochemical 

changes, might be a possible reason. 

 

 

 

 

 

 



 

Chapter 4: Effects of root exudates from Brachiaria humidicola on nitrification 

4.1. Abstract  

Nitrification inhibitory (NI) of climax ecosystems has been suggested for decades. However 

this inhibitory effect seems to be a feature of wild genotypes rather than commercial cultivars. 

Many plants particularly grasses have been shown to have this NI activity, and recently 

Brachiaria genotypes specially B. humidicola has been suggested and attracted for its role in 

inhibiting nitrification, through root exudates. In this chapter during a series of experiments it 

has been shown that B. humidicola root exudates when collected in distilled water, 

independent of light intensity, plant age, N-form, and N-concentration, had no inhibitory 

effect on nitrification. However, when root exudates collected in a medium containing 1 mM 

NH4Cl, it shows significant nitrification inhibition. A passive secretion, due to root cell 

membrane damage as consequence of low pH of collecting medium, possibly is involved. 

This is more supported by the fact that this inhibitory effect is a function of longer collection 

period (24h instead of 6h). 

4.2. Introduction 

Precise nitrogen management requires enough knowledge regarding spatial distribution of 

mineral nitrogen. If plants themselves could precisely manage nitrification, it could offer very 

important economic and environmental implications. Finding such plants and related 

physiological and molecular characteristics can help to introduce such highly valuable 

properties to farming crops. This consequently leads to less application rate of fertilizers and 

higher N recovery rates. Plants can not move from their place, but instead they can use 

different strategies to coupe with unfavourable conditions surrounding them and to change 

these unfriendly conditions optimal for their growth and development. Despite physiological 

and morphological changes, exudation of primary and secondary metabolites by roots as well 

as emission of chemicals through leaves is well known phenomena in this case. Plant roots 

with their activity can change the physical, chemical, and biological conditions of 

rhizosphere. These changes have important implications for plants in terms of nutrients 

acquisition and toxins degradation which occur in root medium (Neumann 2007). Plants can 

allocate 20-60% of their photosyntesis fixed carbon to roots (Neumann 2007). Nevertheless, 

root exudates normally comprise 5-10% of net fixed carbon in plants (Jones et al. 2004). 

Similar to any other plant-related phenomena, root exudates quantity and quality could be 

influenced by climatic and soil factors, as well as plant physiological status. Moreover, root 

exudation patterns are controlled by plant, microbial and soil factors (Meharg and Killham, 



 
 

1995). Plant age and developmental stage are very important in terms of root exudates 

quantity, and normally root exudates decreases with increasing plant age, specially after 

flowering which is coincidence with a reduction in microbial number (Liljeroth and Baath, 

1988). Root exudation has positive correlation with root growth, however, after flowering 

generally root growth stops, therefore no exudation after flowering and senescence may 

occur. This indicates that actively growing root systems is very critical for a considerable root 

exudation. Any rapid and great change, particularly in root medium, could also through 

leakage of ions and metabolites or change in permeability of membranes modify root 

exudates composition. It is quite important also to notice that during procedures of collection, 

concentration and extraction of root exudates, degradation or inactivation of NNIs may 

happen.  

The N-form (nitrate or ammonium) and their ratios in rhizosphere can have a nutritional 

important effect through changes in pH, which generally is the main factor controlling 

nutrients availability and uptake in most of the soils.  External medium pH may change the 

ionic states of compounds released from the roots (Subbarao et al., 2006a, 2006b and 2007a), 

and therefore these compounds may be, absorbed again by plant roots, fixed to organic and 

inorganic soil particles, deactivated by microbial activity (Jones and Darrah, 1996), or they 

can occur biologically very reactive inside soil solution. Nutrient deficiencies such as P and 

Fe deficiencies always increase the rate of exudations. This is through release of organic 

compounds such as organic acids, phenolics or phytosiderophores, aiming at increasing 

availability of limiting nutrients (Neumann, 2007). Furthermore, soil physical and chemical 

characteristics are one of the main determinants regarding effectiveness of root exudates 

specially on microbial activity. Temperature, soil moisture content, pH and oxygen 

availability directly and indirectly through influencing microbial activity in soil, can affect the 

dynamics of root exudates in rhizosphere. Under field conditions, these factors can also 

influence plant growth and consequently root exudation, in turn.  

Brachiaria plants are C4 species and among the most important pastures widely adapted to 

grow in tropical and subtropical parts of South America, Africa and Asia (CIAT, 1983). 

Different Brachiaria species consist of 85% of total planted pasture area in South America 

(Nakamura et al., 2005), so commercially they are very important economic player in the 

tropics, particularly in Brazil.  The genus Brachiaria contains a wide range of species, which 

have been adapted to poor acidic soils and even are tolerant to drought and harsh 

environments. Huge diversity in Brachiaria plants could be a main reason of their adaptation 

capacity to different edaphic and climatic conditions. Under such conditions, compare to any 



other plants, they have relatively higher biomass production, and this is mainly because of 

their ability to uptake and use nutrients very efficiently in these poor soils (Nakamura et al., 

2005; Cazetta and Villela, 2004). Meanwhile throughout tropical America B. brizantha Stapf 

cv Marandu, B. humidicola Schweick and B. decumbens Stapf are the most important of these 

species (Mergulhão et al., 2002; Bernardino, 2002). In addition, the Brachiaria improvement 

programs focus on developing commercial cultivars that combine high level of resistance to 

biotic and abiotic stresses such as adaptation to low soil fertility and high aluminium, and 

tolerance to drought.   

It has been observed during field surveys that soils of BH generally have low levels of N-

NO3
- (CIAT, 1985; Sylvester-Bradley et al., 1988). Later in recent years it has been shown 

that root exudates of Brachiaria plants specially BH (accession 26159) can efficiently 

suppress nitrification process in laboratory, soil and field conditions (Ishikawa et al., 2003; 

Wang et al., 2005; Subbarao et al., 2005; 2006a, 2007a, 2007b). During a series of 

publications these authors indicated that only BH suppressed nitrification in soil, and this 

inhibition occurs only under NH4
+ rather than NO3

- nutrition. They suggested that nitrification 

inhibition abilities are a plant specific reaction to stress conditions, specially under low N 

level in the soil (Ishikawa et al., 2003; Subbarao et al., 2007). The differential plant effects on 

potential nitrification may not necessarily influence the gross microbiology of the soil, but 

may affect physiologically distinct sub-components of the microbial biomass (Wheatley et al., 

1990). 

Similar to other plant species, BH plants can use both forms of nitrate and ammonium. 

However, this plant is one of the most adopted species to ammonium nutrition with special 

ability for ammonium uptake. It has also high efficiency in terms of nitrogen uptake under 

low N condition (Nakamura et al., 2005; Rao et al., 2001). However Rao et al., (2001) 

showed that with increasing NH4
+ concentration in medium, growth of BH increases, whereas 

growth of B. brizantha and B. decumbens inhibited. Under N limited condition, in natural or 

agricultural soils nitrate absorption by plants is more important. Since long time it has been 

known that plant based substances could have nitrification inhibitory effects (Moore and 

Waid 1971; Sahrawat et al., 1987; Lodhi 1978; AlSaadawi 1988; White 1988; Sylvester-

Bradley et al., 1988; White 1994; Subbarao et al. 2005, 2006b, 2007d). Also allelopathic 

effects of plants and microbes have been well known, particularly under laboratory 

conditions. Many of compounds originated from plants are potential allelopatic to other 

organisms or even neighbouring plants (Inderjit, and Keating 1999; White, 1988). Terpenoids 

in leaf litter of pine trees (White, 1988), phenolics, alkaloids, and fatty acids (Gopalakrishnan 
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et al., 2007; Subbarao et al., 2007c) has been reported for most of these biocide activities. 

Most of the effects observed, are mainly from water extract phase of plant materials tested on 

specific plants (for example germination inhibition of lettuce seeds, as a model), or microbe. 

However there is not enough publication on effects of plants root exudates on nitrification. 

Subbarao et al., (2006, and 2007) showed strong inhibition of collected root exudates of BH 

on nitrification which this inhibitory effect was lasting up to 70 days, more efficient than 

synthetic NIs such as N-Serve and DMPP. DMPP, N-serve, and DCD are three main 

commercial nitrification inhibitors with highest efficiency on inhibiting nitrification and N2O 

emission. However the effect of these inhibitors under standard condition would not be more 

than 4-6 weeks ( Zerulla et al., 2001; Pasada et al., 2001). However, the biological inhibition 

of nitrification by crop plants or pasture species is not well known, and still there are too 

many questions need to be answered. To test whether the reported release of NIs is a passive 

or active phenomena, in this study nitrification inhibitory effects of root exudates by BH, 

which have been grown under different pre-treatments and growing conditions such as N-

form and N-concentrations, light intensity and plant age , have been investigated.  

4.3. Materials and Methods:  

Seeds from Brachiaria humidicola accession 26159 germinated at 25 ºC in fine sands (0.2-0.5 

mm diameter). Germination period was very long (4 weeks), with low rate of heterogeneous 

germinated seedlings (~15%). After reaching a size of about 10 cm (2-3 leaves) they 

transferred to treatment conditions in nutrient solution, containing NH4
+ as (NH4)2SO4 or 

NO3
- as Ca(NO3)2, with 1, 2, or 4 mM N, depends on experiment. However normal N 

concentration was 2 mM N. Ammonium treatment conducted since the beginning of seedlings 

growing or when plants supposed to receive short-time (1-2 weeks) NH4
+. In this case, first 

they received 2 mM N-NO3
- as pre-culture for 2 weeks, after which they transferred to NH4

+ 

(2mM N). Different variable factors such as light intensity or plant age on production and 

release of NIs were tested. In treatments with pH control, a solution of 3 mM MES and two 

times checking pH in the morning and in afternoon and adjusting with KOH, Ca(OH)2 and 

H2SO4 were performed.  

Different light intensity situations were applied using the same growth chamber, in which for 

high light intensity (400 μmol/cm2s-1), plants were placed at centre of table in growth 

chamber, and in positions which light intensity was constant. For intermediate light intensity 

plants placed at the corner of growth chamber, where light intensity was 240 μmol/cm2s-1. 

Low light intensity was achieved in same growth chamber (same growth conditions except 

light intensity) by locating plants under different layers of plastic inside a box, where they 



received 180 μmol/cm2s-1 light intensity. Plants were grown under a light/dark regime of 16/8, 

and a temperature of 28/25 ºC in nutrient solution culture. Nutrient solutions were changed 

every 3 days. 

Root exudates were collected 2 h after starting light period, for 6 hours from 10 am to 4 pm, 

or for 24 hours from 10 am to 10 am in next day. Collecting medium generally was 500 ml 

distilled water, or in one case similar to procedure done by Subbarao et al., (2006a and 2007a) 

it was 1mM NH4Cl, however before collection, plant roots were washed in distilled water for 

at least 1-2 min. After collection root exudates were concentrated at 35 ºC using rotary 

evaporator to a volume of 15 ml, which 2.5 ml of it was applied per replicate in our Bioassay 

test (chapter 2).  Four sample (replicates) for incubation and two samples which were kept at 

freeze condition for original NO2
- concentration inside the soil and samples, were used.  

 

4.3.1. Soil incubation 

- 2.5 g of an activated fresh standard soil were placed in a plastic bottle,  

- adding 7.5 ml of 1.33 mM (NH4)2SO4 sollution to each bottle  

- adding 50 μl of NaClO3 1.5 M for blocking NO2
- oxidation by Nitrobacters 

- adding 2.5 ml distilled water in the case of control or 2.5 ml of concentrated or 

extracted root exudates for treatments 

- The mixture then was shaked at 200 rpm for 24 h, which later extracted with 7.5 ml of 

2M KCl, filtered and measured photometrically.  

4.4. Results 

The results presented in this chapter are extracted from a series of different experiments 

which were conducted in growth chamber. In the first experiment which plants were 

originated from seeds, germination rate was nearly 15% and very heterogeneous in terms of 

germination time (1-4 weeks) and form of plants. So in the next experiments plants grown as 

new cuttings, separated from pot plants, were used for propagation. The same way was used 

by Subbarao et el., (2006a and 2006c). Effects of various treatments and growth factor on 

release of NNIs through root exudates of BH are presented as follow. 

 

4.4.1. Effects of DMPP concentrations  

DMPP (3,4-Dimethylpyrazole phosphate) was used in all incubation experiments as a 

standard control. At beginning (Fig. 4.1.) a concentrations of 1, 10, 50, 100, 250, and 500 

times more than prescribed dosage (1% of N-NH4) were tested. Concentration of 1% of N-

NH4 is not effective in our bioassay (data not shown).  

 40



 
 

a

b

cc c
c c

0

0.2

0.4

0.6

0.8

1

1.2

Water
control 

DMPP 1× DMPP 10× DMPP 50× DMPP
100× 

DMPP
250× 

DMPP
500× 

N
itr

ite
 (m

g/
10

0 
g 

dr
y 

so
il)

 

Fig. 4. 1. Nitrification inhibitory effect of different concentrations of DMPP shown as, 

magnitude of the normal concentration (1% N-NH4
+), compare to water control (in 50 h 

incubation). Data are average of 4 replicates ± SD.  

 
4.4.2. Effects of N forms and pH of pre-culture solution 

Root exudates of plants which have been grown in nutrient solution under NO3
- and NH4

+ or 

under NH4
+ with buffered pH of 6 (Fig. 4.2. A), and have been collected for 24 h, showed 

some inhibiting effect on nitrification (lower nitrite production), but only in tendency. Plants 

grown with buffered-NH4
+ showed higher inhibition. However, compare to water control or 

nitrate grown plants this inhibition was not significant.  
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Fig. 4. 2. Nitrification inhibitory effect of root exudates of plants treated with NH4
+, NO3

-, or 

buffered-NH4
+, collected in 500 ml d-water for 24 h (24 h incubation). Data are the average of 

4 replicates ± SD. DMPP was used at a concentration of 50 times more than normal 

concentration of 1% N-NH4
+. PH of medium after collection was ~ 3.5 for NH4

+ and ~ 7 for 

NO3
- plants. 



4.4.3. Effects of plant age 

The effects of root exudates of young plants (three weeks old) compare to old plants (seven 

weeks old) are presented in (Fig. 4.3). NH4
+ grown plants particularly for young plants 

showed inhibitory effects despite this inhibition is not significant (Fig. 4.3.A and Fig 4.3.B).  
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Fig. 4. 3. Effects of root exudates of 3-weeks young (A) and 7-weeks old (B) plants grown 

under 2 mM N-NO3
- or NH4

+, the pH of nutrient solution for both adjusted to 5 using MES 

and H2SO4 or KOH. Data are the average of 4 replicates ± SD. DMPP was used at a 

concentration of 50 times more than normal concentration of 1% N-NH4
+. PH of medium 

after collection was ~ 3.5 for NH4
+ and ~ 7 for NO3

- plants. Root exudates collected in 500 ml 

d-water. 

 

4.4.4. Effects of collecting period 

In Fig (4.4) the effect of root exudates collected for 6 or 24 h on nitrification is shown in 

comparison with DMPP as standard nitrification inhibitor. From this figure it gets obvious 

that independent of N-form during pre-culture and collection time, no nitrification could be 

achieved.  
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Fig. 4. 4. Effects of root exudates collected in d-water for 6 or 24 h, from plants pre-cultured 

with ammonium or nitrate (without pH adjustment during both pre-culture and collection). 

Data are the average of 4 replicates ± SD. DMPP was used at a concentration of 50 times 

more than normal concentration of 1% N-NH4
+. PH of medium after collection was ~ 3.5 for 

NH4
+ and ~ 7 for NO3

- plants. 

 
4.4.5. Effects of N concentrations 

When plants were grown under unbuffered medium containing different N concentrations 

(Fig. 4.5.), their collected root exudates showed no significant NI inhibiting activity. 
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Fig. 4. 5. Effects of root exudates of plants pre-cultured with different N concentrations as 

NO3
- or NH4

+. Root exudates collected in 500 ml d-water. Data are the average of 4 replicates 

± SD. DMPP was used at a concentration of 50 times more than normal concentration of 1% 

N-NH4
+. PH of medium after collection was ~ 3.5 for NH4

+ and ~ 7 for NO3
- plants. 

 



4.4.6. Effects of different light intensity 

The effects of root exudates of plants under high, middle and low light intensity are presented 

in (Figs 4.6). Plants under low light intensity showed insignificant NI effect. The order of 

nitrification is NH4
+-HL>NH4

+-ML>NO3
--HL>NH4

+-LL When root exudates were collected 

for 6 h, almost the same trend exists among treatments. However in 6 h collection (Fig. 4.6A), 

nitrification rates for all treatments were less than 24 h collection period (Fig. 4.6.B). 
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Fig. 4. 6. Effects of different light intensities, plants grown with NH4
+ under low, middle and 

high light intensity compare to NO3
--high light intensity (both 2 mM N); (A) for 6 h 

collection, and (B) for 24 h collection. Root exudates collected in 500 ml d-water. DMPP was 

used at a concentration of 50 times more than normal concentration of 1% N-NH4
+. 
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Fig. 4. 7. Typical ammonium effect on leaf tips, and root growth of ammonium and nitrate fed 

plants, respectively, in 2 mM N as Ca(NO3)2 or (NH4)2SO4 with 10 plants per pot. 

 



4.4.7. Effect of freeze drying of root exudates 

The effect of freeze drying of root exudates was presented in Fig. (4.8). Collected root 

exudates were freeze dried, and extracted with methanol, and further with DMSO. Data 

showed significant NI activity of root exudates of plants grown in NH4
+ (independent of light 

intensity). Furthermore nitrate grown plants showed no significant NI activity (Fig. 4.8).  
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Fig. 4. 8. Nitrification inhibitory effects of freeze dried root exudates (collected in d-water) of 

plants pre-cultured with NH4
+ or NO3

- in high or low light intensity, which have been 

extracted finally with 0.6% DMSO (on basis of final volume). Data are average of 4 replicates 

±SD. 

 
4.4.8. Effect of NH4Cl in collection medium 

Effects of collected root exudates in 1 mM NH4Cl for plants pre-treated in NH4
+ or NO3

- 

under different light intensities are presented in (Fig. 4.9). Significant inhibition of 

nitrification compared to control was shown for ammonium, but in 24 h rather than 6 h 

collection period. There is no significant inhibitory effect for nitrate. However, root exudates 

of nitrate grown plants show insignificant inhibition after 24 h collection.  
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Fig. 4. 9. Nitrification inhibitory effect of root exudates of NH4
+ or NO3

- pre-treated plants 

collected in distilled water containing 1 mM NH4Cl (6 h versus 24 h collection). Plants pre-

cultured with NH4
+ or NO3

-. The pH value for ammonium was ~4 and ~3 for 6 and 24 h, and 

pH value for nitrate was ~5 and ~4 respectively. DMPP was used at a concentration of 50 

times more than normal concentration of 1% N-NH4
+. 

4.5. Discussion 

Despite no significant differences among various concentrations of DMPP regarding 

nitrification in a 50 h incubation test, a concentration of 50 times more than normal (1% of N-

NH4
+) was used in all further incubation experiments (Fig. 4.1.). This was mainly to avoid big 

differences among various incubations conducted during 3 years experiments. However, even 

very high dosage (50 times more concentrated) of DMPP can not inhibit nitrification 

completely (Figs. 4.1, 4.2, 4.3, and 4.4).  

It is almost three decades that the roles of phytosidrophores have been well established mainly 

in iron uptake of plants. Their collection procedure still is used for collecting root exudates 

even for other purposes. Collecting for 4-6 h, two h after starting light period, 

phytosidrophores are highest in root exudation (Römheld and Marschner 1986). However, in 

these experiments also plant roots were transferred 2 h after light period to distilled water 

medium for collection root exudates. Meanwhile, Subbarao et al., (2006a and 2007a and 

2007b) used a collecting medium of distilled water containing 1 mM NH4Cl or KNO3, and 

they indicated that only plants under NH4Cl in collection medium show significant 

nitrification inhibitory effect, which this inhibition is several times higher for plants grown 

(pre-cultured) with NH4
+ rather than those pre-cultures with NO3

-. When plants grown in 

buffered-NH4
+, root exudates showed insignificant inhibition (Fig.4.2). This might be due to 

phenolic compounds or terpenoids which have been reported to have NI activity (White 1988; 



Gopalakrishnan et al., 2007). Younger plants rather than old plants represent better inhibition. 

This may be due to decomposition of root cells as separated debris in older plants. Similarly, 

6 h collection of root exudates represent better rather than 24 h under distilled water as 

collection medium. This could probably be due to osmotic effect of distilled water medium 

and degradation of root cells for longer period. On the other hand, exposure of plant roots to 

external solutions of very low ionic strength is also likely to increase exudation rates due to an 

increased transmembrane concentration gradient of solutes (Neumann and Römheld 2000). 

Therefore collecting in distilled water can not prevent or reduce the root exudation, but 

instead even it can increase it through osmotic conditions (root medium change from nutrient 

solution to d-water). Promising inhibition also occurred with freeze dried root exudates of 

plant grown in various light intensities (4.8). This might be due to avoiding some degradation 

of NI compounds during routine concentration via rotary evaporator. However, the inhibitory 

effect of applied concentration of DMSO must not be ignored. The highest inhibitory effect 

(Fig. 4.9) occurs when 1 mM NH4Cl was used in collecting medium. This inhibition is a 

function of collection period and N-form. Similar results were obtained by others (Subbarao et 

al., 2005; Subbarao et al., 2006a, 2006c,; Subbarao et al., 2007a and 2007c; Ishikawa et al., 

1999; 2003). 

Our results are not in line with works done by Subbarao et al., (2005; 2006a, 2007a and 

2007c) where emphasis was on NH4
+ rather than NO3

- nutrition, regarding effective 

production and exudation of NNIs from roots of BH. Root exudates can contain a wide range 

of plant compounds from low molecular weight, including gases such as ethylene, CO2, 

organic acid anions, phytosiderophores, sugars, vitamins, amino acids, purines, nucleosides, 

inorganic ions, to high molecular weight compounds such as proteins and mucilage, which is 

composed of polysaccharides and polygalacturonic acid (Marschner 1995). Therefore, in BH 

root exudates, which might be a mixture of various compounds, the NI effect of specific 

compounds may be covered by other compounds. All plant species have a specific compound 

as root exudates, which is a unique biochemical fingerprint for a given species (Neumann, 

2007). Gopalakrishnan et al., (2007) identified two main compounds in BH as ingredient of 

NI activity: methyl (E)-3-(4-hydroxyphenyl)-prop-2-enoate [methyl-p-coumarate (methyl- p-

coumarate) and methyl (E)-3-(4-hydroxy-3-methoxyphenyl)- prop-2-enoate (methyl ferulate). 

Different alkyl esters of p-coumarate and ferulate exhibited NI activity, with ethyl and propyl 

esters showing the highest NI activity, but their free acids are not active (Gopalakrishnan et 

al. 2007). Furthermore, Subbarao et al., (2006c and 2007a) showed that the BNI-activity 

released from roots is composed of at least three types of active components which have 
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different pH stability. The main portion of the BNI-activity released in the presence of NH4
+ 

is of Type-I, which is stable to pH changes from 3.0 to 10. This compound inhibits the 

function of Nitrosomonas europaea through the blocking of both AMO 

(ammoniamonooxygenase) and HAO (hydroxylaminooxidoreductase) pathways. 

On one hand plants particularly in their tissue under stress produce phytoalexins 

(antimicrobial compounds) and low molecular weight secondary metabolites, with high 

implication in natural ecosystems (Hammerschmidt 1999; Gutierrez-Mellado et al., 1996), 

and on the other hand the diversity of microorganisms inside rhizosphere strongly influenced 

by root exudates (Neumann, 2007). It is well known that flavonoids secreted from roots have 

various functions in protecting plants against pests and diseases, as well as they are a 

chemoatractant for beneficial microorganisms (Neumann 2007). Except flavonoids, however 

for any effective functioning, root exudates need to be produced and released in large amounts 

from the root tips which is the main place of almost all exudations (Neumann and Römheld 

2000; Neumann 2007). 

In our experiments, in root and shoot extracts (chapter 5) and to less extend in root exudates, 

there was always a negative correlation between N concentration in nutrient solution and NI 

activity of plant materials independent of N-forms. However Subbarao et al., (2006a, 2006c 

and 2007a) showed that amount of BNI production and release is a function of N status of 

plant as well as NH4
+ nutrition rather than NO3

-, in which higher N content of plants leads to 

more NI compounds production. They also indicated that natural inhibition of nitrification is 

an adaptive mechanism in order to conserve and use N more efficiently under N limiting 

conditions, therefore N stress could be the main factor behind the evolution of NNIs as an 

adaptive mechanism (Ishikawa et al., 2003; Lata et al., 2004; Subbarao et al., 2007a).   

Subbarao et al., (2007c) released a patent indicating fatty acids particularly some isomers of 

unsaturated linolenic fatty acid haveing strong NI activity. It is clear that active exudation of 

fatty acids specially unsaturated long chain isomers of linolenic acid is not possible 

(Neumann, personal communication). This could be possible only as a result of damage or 

passive exclusion of root debris. Despite the works which have been done (Subbarao et al., 

2006a, 2006c, 2007 a, 2007b, 2007c) still there is not strong evidence supporting the effect of 

low pH or ammonium signal on NNI release from BH.  

Microbial and physiochemical degradation of root exudates (Neumann and Römheld 2000), 

might inactivate NNIs during the collection and concentrating procedures, specially when 

temperature is above 10-15 oC (Puttanna et al., 1999). Fixing to organic and inorganic colloid 

materials (Neumann and Römheld, 2000), reabsorbtion by plant roots, and chemical 



inactivation might be some explanation for no significant inhibitory effects of root exudates 

under some experimental conditions.  

The inhibitory effect of exudates when collected in 1mM NH4Cl, could be seen as a 

secondary response of BH to salt or osmotic conditions in collection medium. Mergulhao et 

al., (2002) showed that BH is relatively sensitive to salinity specially to chloride in growth 

medium, with a succulent effect on leaves and roots which is more pronounced on roots 

(Mergulhao et al., 2002; Cazetta  and Villela, 2004). The same succulent effect was observed 

in our pot plants in greenhouse (data not presented). So the presence of Cl in collecting 

medium may trigger release of phytoalexins, which could have an inhibitory effect on 

nitrification.  

Finally no significant NI activity under distilled water, but significant inhibition effect in 

collecting medium containing ammonium chloride, indicates no active release of NNIs. This 

is further supported by low pH as an indirect effect of NH4
+ uptake in collecting medium, 

which can damage the root cell membranes, and leaching of NNIs could occur as a passive 

phenomena.   

Based on their capabilities plants can change their biochemical, physiological and 

morphological characteristics in response to environmental variations, and the nature of these 

changes usually determines a species ability to succeed under temporary or permanent 

environmental stress. It is quite important that interactions among stress factors that occur 

parallel in infertile acid soils must always be considered (Wenzl et al., 2003). So the observed 

low nitrate status under BH, also might be due to abilities and high affinity of BH plants to 

uptake NO3
-, specially under limited N condition (Sylvester-Bradley et al., 1988; Nakamura et 

al., 2005; Rao et al., 2001). However the ability of plants to inhibit nitrification is also 

presented in this work (Fig. 4.9). However, our findings can not support the idea that BH 

plants release controlled root exudates which strongly and efficiently suppress nitrification. 

Nevertheless as our results showed, under specific conditions plants can have NI activity in 

their root exudates, however this inhibitory effect is a passive phenomena rather than 

controlled and active release.   
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4.6. Conclusion 

There were no detection of NI in root washings, independent of plant age, light intensity, 

collection time, pre-culture conditions (N-form), treatments (H2O, N-form, and PH) except 

under extreme low pH (PM damage) in collecting medium. Therefore, under proper collection 

conditions for root exudates, (avoiding membrane damage and potential degradation or 

chemical modification of exudate compounds due to extended collection times in distilled 

water), there was not any evidence for a controlled release of NI compounds from Brachiaria 

roots, independent of plant age, the amount and form of N supply (NO3
- or NH4

+), the pH of 

the growth medium and the light intensity during the pre-culture period.  

However, NI activity was detectable in root washings when the plants were exposed to 

extended collection times (24 h) in combination with NH4
+ supply (Fig.4.9), but not with NO3

- 

in the collection solution or after short-term collection (6 h). This observation is consistent 

with the findings of Subbarao et al., (2005, 2006a and 2007a) but it also strongly suggests that 

the observed release of NI compounds was rather a consequence of membrane damage due to 

inadequate collection conditions, than mediated by controlled exudation from undamaged 

roots. Supplying only ammonium (1 mM) in distilled water as root washing medium over 

extended time periods (24 h) will lead to rapid ammonium uptake and medium acidification 

associated with the risk of Ca2+-leaching, an important element required for membrane 

stabilisation. Accordingly, Cakmak and Marschner, (1988) reported detrimental effects on 

membrane stability in roots of cotton seedlings due to the lack of Ca2+ in the root washing 

medium, which was detectable already after an incubation period of only six hours.  

 

 

 

 

 

 

 

 

 

 



 

Chpater 5: Effect of shoot and root homogenates and extracts from Brachiaria 

humidicola on nitrification 

5.1 Abstract 

Following no active release of NNI compounds in root exudates of BH (chapter 4), plant 

shoot and root materials, with or without extraction, were applied in bioassay test for potential 

nitrification inhibitory and more characterization of NI compounds. Shoot but not root 

materials when applied (without extraction) in a soil incubation test, showed high nitrification 

inhibitory effect, however the variation of data were high. On the other hand, under 

application of root materials, significant increase in nitrification could occur. In contrast 

further and sequential extractions of shoot materials, independent of N-form, shows the 

ethanol extract fraction would contains the possible inhibitory compounds.  

5.2 Introduction 

Since long time it has been suggested that grass species have the ability to inhibit soil 

nitrification specially in natural ecosystems (Rice 1974; Ishikawa et al., 2003; Lata et al., 

2004; Subbarao et al., 2006b), but this idea has been challenged by other scientists (Bremner 

and Mc-Carty 1988; White, 1988; Miranda et al., 1994). This inhibitory effect may be caused 

by compounds released as root exudates (mainly water soluble) or from decaying plant 

residues (water soluble and insoluble fractions). It seems that NI production and activity of 

root exudates and plant materials such as leaf litter and root extracts is under plant control 

(Rice 1974; Lata et al., 2004; Subbarao et al., 2006b, 2007a). 

Nitrifier microorganisms through oxidation of ammonium to nitrate play a critical role in 

natural and agricultural ecosystems. A controlled nitrification or higher NH4:NO3 ratios seems 

to be beneficial for ecosystem functioning, however human activities generally led to huge 

changes in ecosystem, favouring nitrification and denitrification and finally environmental 

and health problems. If plant can control nitrification, many problems related to N fertilizers 

application, including their pollution potential could be reduced. Inhibitory effects of root 

exudates on nitrification have been discussed in chapter (4). Depending on growth conditions 

and plant growth characteristics, root exudates of Brachiaria humidicola accession 26159 

(BH) may have suppressing effect on nitrification, when it applied in a rapid bioassay for 

detection of nitrite inside the soil. Plants have different mechanisms to cope with stress 

conditions in their close environment. This could be through release of compounds such as 

alkaloids, phenolics, amino acids and flavonoids into rhizosphere. Each plant species has a 

specific dominant chemical compound(s) as its own fingerprint. Upon release of those 



 

compounds in rhizosphere, they can have a suppression effect on nitrification, directly 

through enzymatic inhibition of nitrifiers or indirectly through attracting competent 

microorganisms which can out-compete nitrifiers. Phenolics, alkaloids, flavonoids and fatty 

acids have been suggested to have significant NI activity. So any stressful conditions may 

help plant to produce and release significant amount of NI compounds into rhizosphere. 

Despite insignificant inhibitory effects of collected root exudates in distilled water on 

nitrification, which have been done under various treatments (chapter 4), over collection in 1 

mM NH4Cl, root exudates showed significant NI activity. This is in line with the published 

results of Subbarao et al., (2006a, 2006c and 2007a). On the other hand, under NH4Cl 

containing collection medium, inhibitory effect of root exudates is a function of collection 

period. When root exudates collected for 24 h, NI activity was much higher compare to 6 h 

collection (Fig. 4.9). This inhibitory effect of 24 h rather than 6 h collection period in NH4Cl 

containing medium indicates a passive secretion of NI compounds into collecting medium 

through root cells membrane damage. Therefore in previous works done by Subbarao et al., 

(2006a, 2006c, 2007a) inadequate and sub-optimal conditions for collection of root exudates 

may lead to root damage and consequently leaching of NI compounds, which would not be 

released as root exudates from undamaged roots. Long term (24 h) collection of root exudates 

in presence of 1 mM NH4Cl, and using 60 days old plants as well as more inhibition of root 

exudates of NH4
+ pre-treated plants than NO3

- pre-treated plants, all support this idea. This 

damage could be mainly due to H+ release as a result of NH4
+ uptake from the collecting 

medium, which finally this acidification could have a digestive and/or corrosive effects on 

root cell wall and membranes. However, plant tissues can contain NI compounds, and extracts 

of several plant species have been shown to have NI activity (Mishra et al., 1980; Rice 1974; 

Sahrawat 2003; Kiran and Patra, 2003a and 2003b; Lata et al., 2004; Ishikawa et al., 2003; 

Patra et al., 2006). Our results in chapter 4 (Fig. 4.9), when we used the similar methods of 

root exudates collection as Subbarao et al., (2006, 2007), showed NI activity which is 

consistent with their findings. However linoleic and linolenic acid (Subbarao et al., 2007c, 

and 2007b), and alkaloids and phenolics (Gopalakrishnan et al., 2007) has been reported as 

the major NI compounds in root exudates and root tissues.  

The hypothesis here is that BH plants produces NI compounds which are not released actively 

as root exudates. To pursue more characterization and identification of NI compounds in BH, 

as was the overall aim of this research, application of plant shoot and root materials to the 

bioassay test was considered as next step. Therefore unextracted and extracted plant materials 

(fractionation of root and shoot extracts), as the aim of this present chapter, has been 



suggested to lead in more characterization of NIs compounds. On the other hand, in practice if 

the inhibitory compounds are synthesized throughout the plant, then substantial amounts of 

these compounds can be added to soil through leaf litter and roots specially in natural 

ecosystems (Fisher et al., 1994).  

5.3 Materials and Methods 

5.3.1 Plant culture 

Brachiaria humidicola (BH) plants germinated from the seeds or they propagated 

vegetatively from new shoots (young tillers) which produced at crown of plants. Plants have 

been grown in nutrient solution under controlled conditions in growth chamber. Four 

replicates per treatment and 10 plants per pot were used in all studies. Details of various 

experiments have been presented in (Fig. 5.1).  

Experiments Details of conditions 
N-forms 2 mM N as Ca(NO3)2 or SO4(NH4)2 

N-concentrations  1, 2 and 4 mM N as Ca(NO3)2 or SO4(NH4)2 

PH of plants growing medium  Buffered pH using 3 mM MES, as well as two times per days 

pH adjustment with KOH, Ca(OH)2  or H2SO4 

Light intensity Low light intensity 180 μmol m-2s-1, middle light intensity 

240 μmol m-2s-1, and high light intensity 400 μmol m-2s-1 

Plant age Young seedlings (3 weeks old) compare to old plants (7 

weeks old) 

Periods and methods of root 

exudates collection 

- 6 h versus 24 h collection of  

-Collecting in distilled water or in NH4Cl containing medium 

Fig. 5. 1. Details of various experiments conducted in present chapter for physiological 

characterizations (production, release and effectiveness) of NNIs in BH. 

 

When pH was to be controlled, it was adjusted (to a pH 5) using 3 mM 

Morpholinoethanesulfonic acid (MES) buffer in nutrient solution. The maximum daily 

variation of pH in nutrient medium ranged between 4.5 and 5.2. which have been recorded 

and adjusted (to pH 5 using KOH and H2SO4) 3 times a day. 

 

5.3.2 Plant homogenates 

Before and after harvesting, growth characteristics of plants for each experiment and related 

treatments have been recorded. Plant shoots and roots where separated and weighed, then the 

middle part leaves and the whole root system of plants were homogenised to a fine powder 
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using liquid nitrogen. The homogenates were stored at –20 ºC until further analysis and 

application in bioassay for NI detection test. 

 

5.3.3 Sequential extraction of plant material 

Four grams of frozen shoot or root homogenates where extracted sequentially with solvents of 

increasing polarity (hexane, ethyl acetate, methanol or ethanol, and water), to achieve a 

separation of substance classes with different polarity. Plant material was sequentially 

extracted twice with 10 ml of each solvent using mortar and pestle, just before starting 

extraction with the next solvent. Subsequently 50 ml of distilled water was added to each 

fraction and concentrated to 10 ml at 35 ºC using a rotary evaporator. Dimethylsulfoxide 

(DMSO) was added to a final concentration of 0.8% (v/v), and the final volume was adjusted 

to 15 ml for 5 samples (4 replicates + 1 freeze sample, for original nitrite concentration), each 

one 2.5 ml. 

 

5.3.4 Biotest for NI potential 

The bioassay consists of rapid determination of nitrification inhibitory (NI) potential of single 

compounds or mixtures of compound via inhibition of nitrite formation in soils (see chapter 

2). An amount of 2.5 g of a pre-incubated standard sandy soil + 7.5 ml of (NH4)2SO4 1.33 

mM (as energy source for ammonium oxidizing bacteria) + 50 μl of NaClO3 1.5 M for 

blocking NO2
- oxidation by Nitrobacters + 2.5 ml distilled water + 0.5 g fresh shoot or root 

homogenates or 80 μl of DMSO containing hexane, ethylacetate, ethanol or water extracted 

fractions. The mixture then was shaked with 200 rtf for 24 or 50 h, extracted with 7.5 ml of 2 

M KCl, filtered using blue ribbon filter paper, and the reaction of nitrite inside the samples 

with acid sulfanilic (4 mg) was measured photometrically.  

5.4 Results 

5.4.1 Plant growth and nutritional status 

Fig (5.2) shows pH changes in nutrient solution (Fig. 5.2A) and plant fresh biomass (Fig. 

5.2B) under NH4
+ or NO3

- nutrition. There is no difference between 1 mM and 2 mM NH4
+. 

There is identical negative trend of changes (2 units) for both NO3
- and NH4

+ from the starting 

pH 5. However this changes is for relatively young plants, because the pH changes with 

bigger plants, as well as higher light intensity is much faster (data not presented). Plants root 

and shoot fresh weight (Fig. 5.2B) showed significant difference among NH4
+-HL compare to 

NH4
+-LL intensity and also compare to NO3

-. On the other hand with increasing light 

intensity, plant fresh weight increases.  
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Fig. 5. 2. (A) PH changes in nutrient solution of young BH plants under NH4

+ and NO3
- 

nutrition (10 plants per pot); and (B) biomass production as fresh weight root and shoot under 

different light intensities (low, intermediate and high light intensity). 

 

Nutrients analysis for plants which grown in NH4
+ under low and high light intensity compare 

to NO3
- under high light intensity is presented in (Fig. 5.3). It tried to brought only nutrients 

which were affected the most under treatments, such as N, K, Ca, and Zn. Calcium 

concentration in shoots for plants grown in nitrate showed highest data. There was a positive 

correlation between nitrate and Ca concentration in the shoots (Fig. 5.3B). Surprisingly, shoot 

K concentration is significantly higher for plants grown in NH4
+ under low light intensity than 

higher light intensity of plants pre-treated with NH4
+ or NO3

- (Fig. 5.3C). Similar trends exist 

for Zn (Fig. 5.3D), and to less extent for total nitrogen (Fig. 5.3A). Plants grown with nitrate 

have significant less concentration of K and Zn in their shoot compared to ammonium grown 

plants. Zinc concentration, regardless of N-form, seems to be influenced by light intensity, so 

plants grown with NH4
+ under low light intensity show highest Zn concentration in their shoot 

(Fig. 5.3D). 
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Fig. 5. 3. Nutrient concentrations in plants pre-cultured with 2 mM N as NH4

+ (low and high 

light intensity) compare to NO3
- under high light intensity (LL: low light: HL: high light); A: 

nitrogen, B: calcium, C: potassium, and D: zinc  

  

5.4.2 Effects of shoot homogenates (without extraction) 

Application of shoot and root homogenates without extraction showed significant nitrification 

inhibition compared to water control (Fig. 5.4, 5.5, and 5.6). In our first experiment (not 

presented data) there was strong inhibition of shoot and root homogenates regarding 

nitrification (Souri et al., 2006 abstract). Root homogenates, on the other hand had no effect 

on nitrification or even sometimes stimulated nitrification (Fig.5.4, 5.6A, and 5.7). Generally 

root homogenates had no effect on nitrification, however longer incubation of root 

homogenates promoted nitrification (Fig.5.7). It seems that in short term incubations, 

sometimes root homogenates may have inhibitory (Fig.5.4) effect (maybe because of NH4
+ or 

NO2
- fixation). When unextracted fresh plant materials incubated for 2, 4, 6, and 8 days, 

which only in their 2 last days they received NH4
+ (in bioassay test), root homogenates 

showed constant positive nitrification correlation with progress in incubation time (Fig.5.7). 

Furthermore, shoot material until 6 days incubation showed constant positive NI correlation, 

in which they significantly inhibited nitrification, and the trend of inhibition was increasing. 

Root homogenates which incubated for 8 days and only at the end of day 6 they received 

NH4
+, had high nitrite production rate (Fig. 5.7) as well as high concentration of nitrate (NO3

-) 



was observed in samples (Fig. 5.8). This rates of nitrite (nitrification) is almost double amount 

of that in control 8-days which received NH4
+ at the beginning. There are similarities for 

amount of nitrate in these two treatments. However with double times application of NaClO3 

(one at the beginning and another 6 days later) production of nitrate is quite mysterious. In 

this inhibitory effects of root and shoot homogenates, there was no difference between plants 

grown in NO3
- and those grown in NH4

+. Ammonium concentrations in samples (Fig. 5.6B) 

showed that free ammonium in adequate concentration occur inside the samples, although 

some fixation to plant materials may partially happen.  

Buffering nutrient solution pH improved NI activity of plant materials (Fig. 5.5). It is 

particularly significant in plants which grown in NH4
+ under light intensity, which normally 

under unbuffered condition didn’t show any NI activity (data not presented). 
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Fig. 5. 4. Effects of unextracted fresh shoot and root homogenates of plants pre-cultured with 

2 mM N as NH4
+ or NO3

- (50 h incubation). DMPP was used at a concentration of 50 times 

more than normal concentration of 1% N-NH4
+. 

 

 58



 

0

0.5

1

1.5

2

2.5

3

3.5

Water
control

DMPP
control

LL
shoot

ML
shoot

HL
shoot

LL root ML root HL root

N
itr

ite
 (m

g/
10

0 
g 

dr
y 

so
il) LL= Low  light intensity

ML= middle light Intensity
HL= High light Intensity

 
Fig. 5. 5. Effects of unextracted fresh shoot and root homogenates of plants pre-cultured with 

NH4
+ under different (low, middle and high) light intensity (50 h incubation). Plants growth 

medium was adjusted to pH 5 using MES. DMPP was used at a concentration of 50 times 

more than normal concentration of 1% N-NH4
+. 
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Fig. 5. 6. (A) Effect of unextracted fresh shoot (0.25 versus 0.5 g) or root homogenates of 

plants grown in 1mM N-NO3
-. (B) Ammonium concentration of samples. DMPP was used at 

a concentration of 50 times more than normal concentration of 1% N-NH4
+. 
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Fig. 5. 7. Effects of different incubation periods of plant root (R) and shoot (S) homogenates 

which received NH4
+ only at two last days. All samples received 2.5 g fresh soil + 50 µl 

NaClO3 + 7.5 ml d-water at the beginning. Samples for 2-days incubation received NH4
+ at 

the beginning, 2 days later samples for 4-days incubation received NH4
+ + 50 µl NaClO3, and 

so on. Controls received NH4
+ at the beginning. Control 8-days at the middle (day-4) received 

50 µl NaClO3. Plants precultured with NH4
+ nutrition. 
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Fig. 5. 8. Amount of nitrate produced after 8 days incubation of root homogenates, (which 

received NH4
+ only in two last days), and control 8-days (which received NH4

+ at the 

beginning). Chlorate for inhibition of nitrite oxidation was added at beginning and also at the 

time of adding NH4
+. 

 

5.4.3 Improvement of methods 

The procedure for extracting plant materials involves application of different solvents. These 

solvents at different time of extraction may have influence on specific target factor which 

already is under studying. For these reasons the effects of different concentrations of these 

compounds on nitrification, which have been used in different parts of experiments, were 
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determined as a percentage of content of samples medium.  So, a range of concentrations of 

linoleic acid (Fig. 5.9), DMPP (see chapter 4), ethanol (Fig. 5.10) and dimethylsolfoxides 

(DMSO) (Fig. 5.11) were tested on nitrification. This may help to avoid interruption and 

interference of these compounds which actually may occur in incubation test. The results 

showed that even low concentration of these compounds can inhibit nitrification. However, 

DMSO showed the lowest inhibitory effect, meanwhile it is one of the most important 

laboratory solvents.  
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Fig. 5. 9. Effects of different concentrations of linoleic acid on nitrification (24 h incubation), 

as a percentage of solution in incubating medium. DMPP was used at a concentration of 50 

times more than normal concentration of 1% N-NH4
+. 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Water
control 

DMPP
control

Eth 0,05% Eth 0,1% Eth 0,2% Eth 0,5%

N
itr

ite
 (m

g/
10

0 
g 

dr
y 

so
il)

 
Fig. 5. 10. Effects of different concentrations of ethanol 95% on nitrification (24 h 

incubation), as a percentage of solution in incubating medium. DMPP was used at a 

concentration of 50 times more than normal concentration of 1% N-NH4
+. 



0

0.2

0.4

0.6

0.8

1

Water
control

DMPP
control

0,1%
DMSO

0,2%
DMSO

0,4%
DMSO

0,8%
DMSO

1,5%
DMSO

2,5%
DMSO

N
itr

ite
 (m

g/
10

0 
g 

dr
y 

so
il)

  

Fig. 5. 11. Effects of different concentrations of dimethylsolfoxides ( DMSO) on nitrification 

(24 h incubation), as a percentage of solution in incubating medium. DMPP was used at a 

concentration of 50 times more than normal concentration of 1% N-NH4
+. 

 

5.4.4 Effects of extracted shoot homogenates 

Application of plant homogenates specially shoot homogenates, always led to high variation 

of data. This makes explanations and interpretation rather difficult. However, for further 

identification of NI compounds in plant materials, extraction in different solvent was 

proposed as the next step. Since root homogenates showed no NI activity, only shoot (leaves 

material) of NH4
+ and NO3

- fed plants were used for this step.  Four grams shoot homogenates 

was extracted sequentially from unpolar to polar solvents, with the order of hexane – 

ethylacetate – ethanol - water, each one 2 times with 10 ml. Results of the extraction is 

presented in (Fig. 5.12), showing NI activity of unextracted shoot homogenates (original 

shoot) together with five other fractions of extraction. However even hexane, and ethylacetate 

fractions (Fig. 5.12, and Fig.5.13) show some inhibitory effects on nitrification, which may be 

due to too many different compounds inside those fractions. Nevertheless, the fraction of 

ethanol extraction shows the expected NI activity, which is in line also to nitrification 

inhibitory effects of unextracted shoot homogenates (as partially water soluble). Fig. (5.12) is 

the sequential extraction of ammonium pre-treated plants which compare to nitrate pre-treated 

plants shows no significant differences, except for water and ethyl acetate extraction which 

may be due to experimental error and the solvent in usage.   

 62



 

0

0.2

0.4

0.6

0.8

1

1.2

Water
Control

DMPP
control

Original
shoot

Hexan
extract

Ethylacetate
extract

Ethanol
extract

Water
extract

N
itr

ite
 (m

g/
10

0g
 d

ry
 s

oi
l)

 
Fig. 5. 12. Effects of shoot homogenates of NH4

+ pre-cultured plants, extracted sequentially 

with different solvents, respectively, (each one two times 10 ml), evaporating and finally 

extracting with DMSO (0.8% final concentration in samples). DMPP was used at a 

concentration of 50 times more than normal concentration of 1% N-NH4
+. 
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Fig. 5. 13. Effects of shoot homogenates of NO3

- pre-cultured plants, extracted sequentially 

with different solvents, evaporated and finally extracted with DMSO (0.8% final 

concentration in samples). DMPP was used at a concentration of 50 times more than normal 

concentration of 1% N-NH4
+. 

5.5 Discussion 

Relatively low concentration of calcium and potassium under ammonium particularly with 

high light intensity indicates that root cells also might potentially damaged by low pH induced 

by NH4
+ uptake (Fig. 5.3B). On the other hand, the idea that in BH higher light intensities 

induce much higher N uptake, as ready compounds to interfere with nitrite measurements, 

could not be acceptable (Fig. 5.3A). Therefore, high variation of data can not be justified by 



interfering higher N concentration of samples. Nevertheless, spatial distribution of absorbed 

N in plant is under question and still might be a reason of variation. 

Despite adaptation and tolerance of BH to ammonium (Figs 5.2, 5.3), toxicity symptoms such 

as leaves tip necroses, especially in younger leaves of plant is not avoidable (Fig 4.7). This is 

independent of buffering the nutrient solution medium. The symptoms on roots, in severe 

condition are inhibition of root development specially root hairs, with burned tips which is 

typical proton effects. Buffering nutrient solution containing ammonium prevented these 

symptoms particularly root damages. Nevertheless necrosis of leave tips still exists, but to less 

extent. Regardless of N-form, nitrogen uptake of plants is quite fast, which has been shown as 

pH changes (Fig. 5.2). A pH of less than 2 also was not avoidable in root medium containing 

ammonium, particularly under higher light intensity. Regardless of N-forms and pH effect, NI 

activity was a character of shoot materials but not root materials. However, these NI effect 

normally due to high variation among replicates were not significant (Fig. 5.4, 5.5, and 5.7). 

Generally, there was not such variation for root homogenates. Sometimes small inhibitory 

effect of unextracted fresh root homogenates could be due to fixing properties of root surface 

exchange positions. Meanwhile, with increasing incubation time (Fig. 5.7 and 5.8), there was 

a positive correlation between nitrite production and incubation periods. Nevertheless, it 

seems that some of this nitrite production originates from plant materials, or in a better 

optimistic way it can be suggested that enzymes released and accumulated under root material 

decaying in soil could play a role (beside bacterial enzymes). Furthermore, nitrate 

concentration supports these ideas (5.8). In contrast, unextracted shoot homogenates 

improved NI activity with increasing incubation periods up to 6 days (Fig. 5.7).  This 

indicates that NI compounds release gradually over decaying shoot residues. On the other 

hand, microbial degradation and inactivation of NI compounds, adsorption to soil colloids, 

reabsorbtion by plant roots may also be possible explanation for insignificant or high data 

variance. Subbarao et al., (2006a, 2006c and 2007a) showed that amount of NNI production 

and release is a function of N status of plant as well as NH4
+ nutrition rather than NO3

-, 

indicating that higher N content of plants produce more NI compounds. However, our data 

shows that NI effect is a function of less N concentration in plants (Fig. 5.6A), similar to 

natural  brachiaria stands in tropical and subtropical South America. 

To test the hypothesis that NI compounds are released from damaged plant root cells of 

Brachiaria, the NI potential of fresh root and shoot tissue (homogenised to a fine powder in 

liquid N2) was measured after soil incorporation. Despite a high variability, the data presented 

evidence that:   
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- There was no indication for substrate (NH4
+) limitation in the NI tests (e.g. by NH4

+ 

immobilisation or inactivation), since the soluble NH4
+ concentration in soil samples with 

incorporated plant material was always higher than in the control treatments with addition of 

water and NH4
+ substrate solution alone.  

- NI potential was detectable in shoot tissue but not in roots. 

- The NI effect of soil-incorporated shoot tissue lasted for at least 8 d, while root tissue 

even stimulated nitrification with increasing incubation time. 

- NI activity was detectable in shoot tissue from Brachiaria plants pre-cultured with 

NH4
+ or NO3

- supply, although the variability of the data tended to be higher in NO3
--fed 

plants. 

- NI activity of shoot tissues tended to increase with increasing light intensity during the 

pre-culture period, but the variability of the data also increased.    

Subbarao et al., (2007c) identified linoleic acid as NI compound in root washings of 

Brachiaria. The NI potential of pure linoleic acid additions to soil samples has been confirmed 

also in the present study (Fig. 5.9), although its mechanism of NI inhibition is not clear. Since 

unsaturated fatty acids are rapidly oxidised it seems to be likely that not the unmodified 

linoleic acid molecule itself exerts long-lasting NI effects in soils reported by Subbarao et al., 

(2006a, 2007a and 2007c). The finding that oxidation products of linoleic acid, such as 

linoleic acid hydroxy-peroxides have a cytotoxic potential (Kaneko et al., 1994) may offer a 

possible explanation. 

Although linoleic acid seems to be a NI compound released into root washings of Brachiaria 

(Subbarao et al. 2006a, and 2007a) as a consequence of unfavourable conditions, promoting 

membrane damage, surprisingly, soil incorporation of fresh homogenised root material did 

not show any NI activity. Possible explanations could be that: 

The NI compounds in the root tissue homogenates were biochemically inactivated after 

decompartmentation of the homogenized tissue. This effect did not occur during leaching into 

root washings. Also Gopalakrishnan et al. (2007) couldn't detect linoleic acid as NI compound 

in root extracts of Brachiaria, although this compound was detected in root washings. Linoleic 

acid in free and esterified form is a constituent of plant cell membranes (Kaneko et al. 1994) 

and may be selectively liberated under conditions causing membrane damage (i.e. 

unfavourable conditions for collection of root washings). The concentration of NI compounds 

in the root tissue samples was too low to find any significant NI effects. 

Attempts to characterise the NI compounds detected in shoot tissue of Brachiaria plants 

revealed a particularly high activity in the ethanol-soluble fraction, both in plants with NH4
+ 
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and NO3
- preculture, after extraction with solvents of increasing polarity (hexane, 

ethylacetate, ethanol, water). This solubility pattern is in line with observations of Subbarao et 

al 2008 (unpublished) who isolated linoleic acid as NI compound from Brachiaria leaves by 

80% methanol extraction.  

5.6  Conclusion 

The working hypothesis that Brachiaria plants exhibit a regulated NH4
+-induced root 

exudation of NI compounds into the rhizosphere, as an adaptation to stabilize nitrogen in N-

limited natural ecosystems in the tropics, could not be confirmed by the results of the present 

study. The data rather suggest release of NI compounds as an experimental artefact due to 

membrane damage, caused by unfavourable conditions for collection of root exudates. 

However, this finding does not exclude the concept of N stabilisation by plant-borne NI 

compounds in these ecosystems. Since NI activity was found also in the plant tissue, N 

stabilisation could be mediated by liberation of NI compounds from plant residues of 

Brachiaria as a very competitive and long lasting tropical pasture species. 



 

Chapter 6: NH4
+ and NO3

-
 nutrition of tomato and effects of calcium on NH4

+ toxicity  

6.1. Abstract 

Tomato is a typical sensitive plant to ammonium nutrition in solution culture. It also 

represents one of the main and most adopted vegetable crops to calcareous soils. The aim of 

this chapter is to represent the complementary effects of ammonium and calcium to each other 

under such condition in improving tomato plant performance, where acidification of 

rhizosphere induced by ammonium uptake compensate for micronutrients deficiencies 

induced by calcium. On the other hand, ammonium induce plant toxicity (mainly root 

damage) compensated by high concentration of calcium in medium. Therefore, stabilized 

ammonium through application of synthetic or natural nitrification inhibitors represent a very 

important nutritional player under such conditions. Improved growth characteristics 

particularly root growth when ammonium fed plants received supplemental calcium support 

our hypothesis. Meanwhile, compared to nitrate fed plants ammonium uptake reduces plant 

water uptake. This means under stabilized ammonium nutrition, significant reduction in water 

consumption could occur which is economically quite important in arid and semi arid regions. 

Improved root and shoot growth, leaf area and chlorophyll contents and consequently water 

relation of plants compared to sole ammonium fed plants, indicates magic role of calcium in 

lowering ammonium toxicity symptoms.  

6.2. Introduction 

Ammonium nutrition of plants could have positive environmental, economical and nutritional 

consequences. In root medium or inside the plants, ammonium represents an equilibrium 

between NH4
+ and NH3, which have different membrane permeabilities (Loque and von 

Wiren 2004). In addition low affinity NH4
+ transport occurs through non-selective cation 

channels or K channels (Howitt and Udvardi, 2000; Kronzucker et al., 2001; Loque and von 

Wiren, 2004). So despite precise action of ammonium transporters over NH4
+ concentrations, 

plant roots can not completely control NH4
+ uptake, therefore excess uptake of ammonium 

mainly in nutrient solution may happen, which is out of tolerance for some plant species and 

causes toxicity. The mechanisms of toxicity still are not well known.   

Tomato is one of the most sensitive cultivating plants to ammonium nutrition in hydroponic 

culture. Severe toxicity symptoms are common under NH4
+ nutrition which normally is 

coupled with growth inhibition and a reduction in plant dry weights, leaf area and root: shoot 

ratios compare to  NO3
- fed plants (Ludewig et al., 2002; Roosta and Schjoerring, 2007; 

Siddiqi et al., 2002; Claussen 2002). When concentration of ammonium in growth medium is 



above 1 mM, tomato plants have a strong accumulation of ammonium in leaves, stem, and 

roots (Schjoerring et al., 2002). The increase in tissue NH4
+ coincides with saturation of 

glutamine synthetase activity and accumulation of glutamine and arginine. Glutamine 

synthetase incorporates NH4
+ into glutamine, but root GS activity and expression are repressed 

when high levels of NH4
+ is supplied (Schjoerring et al., 2002). Ammonium may simply 

replace calcium at membranes (Cramer et al., 1985), in addition low tissue levels of calcium 

and magnesium in the NH4
+ fed plants constitute part of the NH4

+ toxicity syndrome 

(Schjoerring et al., 2002; Roosta and Schjoerring, 2007).  

It is generally believed that a series of mechanisms rather than a single mechanism cause 

these negative effects on tomato plants. Increasing free ammonia in apoplast, low pH damage, 

NH4
+ induced cations deficiency, high cost of energy-derived H+-efflux,  (Ludewig et al., 

2002; Redinbaugh and Campbell, 1993; Schjoerringet al., 2002; Babourina et al., 2007; Britto 

et al. 2001; Britto and Kronzucker, 2002), are among the possible reasons which perhaps 

together govern the toxicity symptoms. On the other hand, calcium is a structural important 

essential element with critical function in cell walls and membranes, and represents a counter 

cation for inorganic and organic anions in the vacuoles (osmoregulator), and as an 

intracellular messenger in cytosol (Marschner 1995). The movement of calcium through 

symplast or apoplast pathways via cytosolic Ca2+ concentrations must be finely balanced, to 

allow a control over rates of Ca2+ delivery to xylem and prevent toxic cations accumulation 

(White and Broadley 2003). The apoplastic pathway is relatively non selective between 

divalent cations (White 2001), and its presence and activity could result in the accumulation 

of toxic solutes in the shoots (White and Broadley 2003). However controlled xylem loading 

may also occur. 

Calcium has distinct function in higher plants mainly in membranes, cell walls, enzymes and 

interaction with phytohormones, so it can have an important role in plant tolerance to various 

stresses (White and Broadley 2003). It is well known that in absence of calcium, ion 

selectivity is lost and deficiency and toxicity of specific nutrients may occur. Calcium ions 

tends to bond phosphate and carboxylate groups in phospholipids and protein structure, which 

results in membrane stability. The role of calcium ions also is well known as a ubiquitous 

intracellular second messenger in plants (Evans et al., 2001; Hepler, 2005). Any stimulus 

from biotic or abiotic stresses induces cytosolic Ca2+ oscillation through Ca2+ channels in 

organelle membranes or plasma membranes. On the other hand, the symplastic pathway 

allows the plant to control the rate and selectivity of Ca transport to the shoots (White 2001), 

therefore NH4
+ primarily may damage symplastic pathway which regulates the selectivity of 
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ions. In addition shoot calcium has been correlated with cation exchange capacity (CEC) of 

plant roots, which is located in root apoplast, and is attributed to free carboxyl groups of 

galacturonic acids of cell wall pectins in the middle lamella (Sattelmacher 2001).  

In the present experiment we have tried to consider most of mechanisms involved in 

ammonium toxicity symptoms, with special emphasis to the role of calcium on membrane 

stability and plant (root) cell wall hardening. In this experiment root damage, probably by 

membrane and cytosolic sensitivity, hypothesised to be the main cause of toxicity symptoms 

of NH4
+ on tomato plants. Therefore, it has been suggested that high calcium levels can 

protect the cell wells and specially cell membranes from the adverse effects of ammonium 

toxicity, as it plays the same role in salt and sodium toxicity (Bush et al., 1995; Cramer 2004). 

In addition it might reduce xylem hydraulic resistance similar to plants grown under nitrate 

nutrition. 

6.3. Materials and Methods 

6.3.1. Plant culture 

Seeds of tomato (Lycopersicon esculentum var Money Maker) were germinated in a mixture 

of fine sand (0.2-0.5 mm) and TKS1, a peat medium containing low level of nutrients, (1:1 

Volume). Two weeks after germination homogeneous seedlings were transferred to nutrient 

solution containing 2 mM N-NO3
- for 2 weeks (pre-culture period) in growth chamber under 

controlled conditions (30/26 ˚C, and 70% relative humidity with a 16/8 light regime). Nutrient 

solutions were changed every 4 days.  

 

6.3.2. Water consumption related to nitrate uptake 

Tomato seedlings (Lycopersicon esculentum var Money Maker) after germination were 

transferred to nutrient solution containing 2 mM N in form of Ca(NO3)2 as pre-culture 

conditions in growth chamber. They were grown for 2 weeks in such condition.  Then plants 

transferred to nutrient solution containing 0.8, 2, and 5 mM N-NO3, with 4 replicates and 4 

plants per pot. Root length, root and shoot fresh and dry weight, and water consumption 

(transpiration) per pot was measured and compensated (resupplied) after 48, 72 and 96 h.  

 

6.3.3. Nitrate and ammonium nutrition of tomato and role of calcium 

The response of tomato plants to ammonium, nitrate, split application of ammonium, pH, and 

calcium concentration in nutrient solution was studied under controlled condition in growth 

chamber using various treatments as following: 

 



 

 

Treatments Details 
Nitrate  2 mM N as Ca(NO3)2 

AS (sole) 2 mM N as (NH4)2SO4  (no buffering of pH) 

AS 3S (in 3 splits) 2 mM N as (NH4)2SO4, but by 3 split applications (adding each time 

1,66 ml of 0.5 M (NH4)2SO4 to nutrient solution equal to 3×0.66 mM), 

(no buffering of pH) 

AS 6S (in 6 splits) 2 mM N as (NH4)2SO4, but by 6 split applications (adding each time 

0,83 ml of 0.5 M (NH4)2SO4 to nutrient solution equal to 6×0.33 mM), 

(no buffering of pH) 

AS+CaSO4 2 mM N as (NH4)2SO4 + 10 mM Ca2+ as CaSO4 in root medium 

AS+CaCO3 2 mM N as (NH4)2SO4 + a gradual 2-3 mM CaCO3 in root medium to 

have a fixed pH ~6.7. 

Fig. 6. 1 . Treatments and details of variables under study. 

 

All treatments cinsisted of 4 pots (as replicates) each one with three plants. Nitrogen was 

applied as 2 mM N-NH4
+ or N-NO3

-, and all NH4
+ treatments also received 1 mM CaCl2 as 

original calcium concentration. Plants treated with AS+CaSO4 received 10 mM Ca2+ during 

both pre-culture and treatment periods.  

With split applications of the mM amount of N-NH4
+ which was applied at starting of any 

nutrient solution change, we expected to have less ammonium toxicity due to enough time 

that plants have to assimilate absorbed NH4
+. However, this experiment mainly focuses on 

hardening of root cells (membrane stability) through application of Ca2+ (in forms of CaSO4, 

or CaCO3). The nutrient solution containing ammonium and calcium sulphate (AS+CaSO4) 

could not resist strongly against pH changes. On the other hand, for calcium carbonate 

treatment a stable and buffered pH of 6.6 was maintained using 0.5-1.0 g of CaCO3 per pot 

which is equal to 2-3 mM Ca2+. This would eliminate the effect of low pH.  

 

6.3.4. Determination of growth characteristics 

Before applying treatments, seedlings shoot and root lengths were recorded for later 

comparison to their lengths at harvest time. PH and water consumption of plants, which is an 

indicator of transpiration and stomata activity, was measured daily since the beginning of 

experiment. The water consumption of plants during last 4 days just before harvest has been 
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presented. Chlorophyll content as well as other related growth characters were determined at 

harvest. Nutrient concentrations were measured based on dry digestion and with atomic 

absorption and flame photometry. Root xylem sap was collected by plastic tubes after cutting 

plant stem 2 cm above the soil surface. Regularly the collected sap removed to ependorf tubes 

and kept in refrigerator.  

6.4. Results 

6.4.1. Water consumption related to nitrate uptake 

Tomato plants which pre-cultured in 2 mM Ca(NO3)2 were transferred to different 

concentration of nitrate as 0.8, 2 and 5 mM N-NO3 (Fig 6.1). Water consumption was 

measured regularly after 48, 72 and 96 h for two times nutrient solution change during 8 days 

(Fig. 6.1). At the beginning, after 48 h and even until 72 h there was no significant difference 

for transpiration among plants with different N concentrations. Plants start to show significant 

differences in transpiration after 72 h when they received 5 mM N rather than other 

concentrations, which showed significant higher water consumption compared to plants 

received 0.8 mM N. These differences continue get larger in the next 4 days when they 

received renewed nutrient solution (Fig. 6.1B). At the end of 8 days plants under different 

concentrations of N showed clear differences, indicating highest water consumption when 

plants received higher (5 mM) N-nitrate in nutrient solution (Fig. 6.1B). Despite no 

significant differences for shoot dry weights (Fig. 6.1D), their fresh weights (Fig. 6.1C) 

showed significant difference among plants which received 0.8, 2 and 5 mM N. There was no 

difference between root fresh weight and root length among plants, however root but not 

shoot, when plants received 5 mM N showed significant lower dry weight compared to plants 

which received 0.8 mM N. 
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Fig. 6. 2. Water consumption of tomato plants during 8 days, grown with different 

concentrations of nitrate in nutrient solution; Water consumption during first 4 days in 

nutrient solution (A); Water consumption during second 4 days (B); Root and shoot fresh 

weight at harvest (C); Root and shoot dry weight (D); Root length and root fresh weight 

relation (E).  

 
6.4.2. Effects of NO3

-, NH4
+, and Ca2+ on plant growth characters   

6.4.2.1. Root length 

When plants received different N treatments as nitrate, ammonium sulphate (AS control), 

ammonium sulphate with 3 split applications (AS 3S), ammonium sulphate with 6 split 

applications (AS 6S), ammonium sulphate + calcium sulphate (AS+ CaSO4) and ammonium 

sulphate + calcium carbonate (AS+ CaCO3), except for root length of CaSO4 treated plants 

which received 10 mM Ca (during both pre-culture and treatment periods), root and shoot 
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lengths showed no significant difference before applying treatments (Fig. 6.1A). However, at 

harvest (Fig. 6.1B) plants showed significant differences in both shoot and overall root 

lengths with highest length under nitrate nutrition. Nitrate compared to ammonium 

represented a better N source for plant root and shoot growth. Plants received AS+CaSO4 or 

AS+CaCO3 also showed improved root length compared to AS sole (control) plants. Despite 

lower shoot and root lengths of Ca treated plants compare to nitrate, however they showed 

significant higher root and particularly shoot growth than control. Plants with split 

applications of ammonium, on other hand, showed no significance difference to each other 

and compared to control plants which received their ammonium at the beginning. In control 

and split applications, root growth inhibited immediately after transferring to NH4
+ (Fig. 

6.1A, 6.2B).  
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Fig. 6. 3. Shoot and overall root length before treatments (A); and at harvest (B). Ammonium 

sulphate (AS control), ammonium sulphate with 3 split applications (AS 3S), ammonium 

sulphate with 6 split applications (AS 6S), ammonium sulphate + calcium sulphate (AS+ 

CaSO4) and ammonium sulphate + calcium carbonate (AS+ CaCO3). 

 
 



6.4.2.2. Number of lateral shoots 

Number of lateral shoots was strongly influenced by N-forms and Ca concentrations in the 

nutrient solution (Fig.6.4A).  Plants fed with nitrate had highest number of lateral shoots per 

pot (15 shoots). Under ammonium in nutrient solution, only when plants received higher and 

additional concentration of Ca (as CaSO4), or pH and Ca effects (as CaCO3), they showed 

more lateral shoot production which was quite significant compared to control.  However 

there was no significant difference between sulphate or carbonate forms of calcium in this 

case.  

 

6.4.2.3. Senescenced leaves and chlorophyll content  

Fig. (6.4B) shows the number of leaves which plants lost until harvest. Ammonium treatments 

showed high leaf chlorosis, senescence, and abscission which started 1 week after receiving 

ammonium.  Nitrate grown plants, as well as plants grown with ammonium which received 

supplement calcium as CaSO4 or CaCO3 show the lowest number of abscessed leaves. 

Chlorophyll content of upper part or younger leaves (Fig.6.4C) showed higher amounts for 

ammonium rather than nitrate grown plants, however there is not significant difference 

between control, split applications and those plants received Ca as AS+CaSO4 or AS+CaCO3. 

On the other hand, chlorophyll content of older or lower leaves showed significant differences 

among plants. In older or lower leaves of plants under control (AS sole) and split applications 

there was a significant reduction in chlorophyll content, however most of these plants lost 

more than half of their leaves (lower leaves) until harvest (Fig 6.4B). Chlorophyll content of 

whole plant showed the highest data when plants received CaSO4 or CaCO3, even better than 

nitrate nutrition. 
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Fig. 6. 4. Number of lateral shoots per pot (shoots ≥ than 3 mm) at harvest (A); number of lost 

leaves (B); chlorophyll content of top leaves (C); chlorophyll content of lower leaves (D) 

 
 

6.4.2.4. Root and shoot biomass  

Nitrogen forms strongly affected plant shoot and root production (Fig. 6-4). Plants grown 

with nitrate as well as ammonium, when they received CaSO4 or CaCO3 had highest root 

fresh (Fig.6.5A) and dry matter (Fig.6.5C). Similarly, shoot fresh matter was highest for these 

plants compared to control or split applications (Fig.6.5B). Plants grown with nitrate showed 

significant higher fresh shoot production compared to all other treated plants (Fig.  6.5B), 

however for dry weight, nitrate grown plants did not show any significant difference 

compared to ammonium treated plants which received Ca2+ as CaSO4 or CaCO3 (Fig.6.5D).  
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Fig. 6. 5. Root fresh weight (A), shoot fresh weight (B), Root dry weight (C), and shoot dry 

weight (D) 

 
 

6.4.2.5. Water consumption and xylem sap flow  

In nutrient solution, water consumption is strongly influenced by N forms as well as the 

presence of higher Ca2+ concentrations (Fig. 6.6). While ammonium inhibited water uptake in 

plants under control and split applications, Ca2+ ion in medium significantly improved water 

uptake of plants. There was no significance difference for water consumption between plant 

treated with CaSO4 and those received nitrate, during the most period of experiment (not 

presented results), indeed for two first weeks CaSO4 treated plants had the highest water 

consumption, however with growing plants and increasing plant size 10 mM Ca2+ as CaSO4 

seems to be not enough to keep growing conditions compatible with nitrate. Nevertheless, 

with progress in plants development and size, nitrate and AS+CaCO3 seem to have higher 

water consumption. CaSO4 and CaCO3 in nutrient solution surprisingly improved 

transpiration which is a function of higher leaf area due to a better growth as consequence of 

healthy roots. Starting pH for CaSO4 and CaCO3 treatments was 6.4 and 6.8, respectively, and 

for other treatments it was about 5.4. In nitrate grown medium there was a significant increase 

of pH (5 to 7), however very rarely under nitrate nutrition pH exceeds 7. Moreover, even 

under micro molar daily concentrations of ammonium (in plants under 6 split applications) 
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there was a sharp reduction of pH (at the beginning when roots were not damaged). PH 

changes during 72 h in nutrient solution followed the same order which happenned at 24 h. 

Always the lowest pH was recorded for CaSO4 treated plants, except at the beginning of 

experiment when control and split application of ammonium showed lower pH (data not 

presented).  
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Fig. 6. 6. Water consumption and pH changes of plants after 24h (A), 48h (B), and 72h (C) of 

last nutrient solution change, just before harvest. Xylem sap exudation per plant which 

collected during 8 h (D). Whole water consumption during 72 h per g shoot dry weight (E).  

 
 

 

 



Xylem sap which has been collected at harvest didn’t completely follow water consumption 

trends among treatments. Nitrate and AS+CaCO3 grown plants had the highest collected 

xylem sap, similar to their water consumption. Plants treated with CaSO4 didn’t follow their 

water consumption and they showed no significant difference compared to control or split 

applications. It is worth mentioning that except this xylem sap flow, for most other growth 

characteristics, AS+CaSO4 treated plants show close similarities to plants grown under nitrate 

or AS+CaCO3.  

6.4.2.6. Nutrient concentrations 

Total nitrogen (Fig. 6.7A) showed highest concentrations of N in AS+CaSO4 and AS+CaCO3 

grown plants, even more than nitrate fed plants. Plants belong to AS sole (control) as well as 

split applications, despite lower N concentration in shoots, had highest total N concentration 

in roots. Nitrate grown plants had the significant lowest N in their root, which must be 

considered based on their root biomass. 

Potassium concentrations in shoot (Fig 6.7B) showed significant higher amounts in plants 

grown in nitrate, AS+CaSO4 and AS+CaCO3 compare to AS sole and split applications. 

These differences would get even wider if the contents of nutrients would be considered. 

Potassium was particularly higher in shoots rather than in roots in AS+CaSO4 treated plants 

more than any other treatments. Despite receiving additional Ca as CaCO3 or 10 mM CaSO4, 

nitrate grown plants had highest concentration of calcium in their shoot (Fig.6.7C). Control 

plants (AS sole) as well as plants with split applications of AS showed the lowest Ca 

concentration specially in their root. Similarly Mg concentration in shoot (Fig. 6.7D) is 

relatively high and not significant in all plants except AS+CaSO4 treated plants, which show 

the lowest Mg concentrations. However roots of the latter plants in contrast to nitrate or 

AS+CaCO3 treated plants showed the highest Mg concentration. Significant higher Mg 

concentration in shoots rather than roots occurred for all treatments, but not for AS+CaSO4. 

Manganese concentration was quite higher in nitrate and AS+CaCO3 treated plants compared 

to all other plants including AS+CaSO4 grown plants (Fig.6.7E), both in root and shoot, 

although the concentrations were higher in root rather than shoot. Plants treated with 

AS+CaSO4 showed trends in root and shoot Mn concentration similar to control and split 

applications.  

In (Fig. 6.7F) all plants showed several fold higher Fe concentrations in root compared to 

shoot, however in shoot highest concentrations occurred for nitrate and AS+CaCO3 plants, 

which were significantly higher than all other plants. AS+CaSO4 as well as AS sole and split 

application plants showed insignificant similar concentrations. Zinc and cupper 
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concentrations (Fig 6.7G, 6.7H) in root and shoot showed very similar trends, but not with big 

differences among plants for both shoot and root. However upon conversion of these data as 

nutrient content per dry matter, significant differences must be exist.  
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Fig. 6. 7. Nutrient concentrations in root and shoot of plants.  

 
 
 
 
 



6.5.Discussion 

Water consumption of crops and water preservation is quite important in semiarid and arid 

parts of the world. There is good indication that NH4
+ improves drought and salinity stress 

compared with nitrate in soil. Our soil experiment also supports this fact (data not presented), 

where plants with stabilized ammonium use less water compared to nitrate fed plants. 

However, in nutrient solution to continue transpiration and water consumption, adequate 

nitrate concentration in root medium is necessary (6.2A and 6.2B) and sole ammonium 

impaire water uptake and transpiration due to root necrosis. No significant difference in water 

consumption at the beginning indicates that for plants, applied amounts of 0.8, 2 and 5 mM 

N-NO3 is enough to maintain normal transpiration and water uptake. Increased water 

consumption after 96 h might be due to higher plant growth following 3 days growing in 

higher N concentrations (2 and 5 versus 0.8 mM). This increased water consumption 

continued more strongly in the next 4 days. Interestingly, plants had no significant difference 

in terms of their shoot dry matter. There was, however, positive correlation between water 

consumption and shoot fresh weight. It is well known that nitrate functions differently in plant 

physiology, including osmotic adjustment and as a signalling molecule (Blom-Zandstra and 

Lampe 2007; Wang et al., 2000). Probably here both mechanisms play role in observed higher 

water consumption. This might be due to higher uptake rates of NO3
- and water than their 

assimilation when plants receive higher NO3
- concentrations. This consequently leads to 

higher turgidity of plant cells and watery tissues. Also it is possible that a photosynthesis 

limiting steps (such as enzyme activity) might be involved as a limiting factor for 

assimilation, particularly at the immediate transfer of plants to higher NO3
- concentrations (5 

mM). Van Ieperen et al., (2003) indicated that xylem hydraulic resistance decreases with 

increasing nitrate concentrations, which leads to higher water uptake, watery tissue and finally 

significant higher fresh weight, but not dry weight (Fig. 6.2C and D). With progress in tomato 

plant development, there is a high hydraulic resistance between plant and tomato fruit tissue 

(van Iperen et al, 2003), which could lead to some disorders such as blossom end rot. This 

highlights the role of nitrate in reduction of xylem hydraulic resistance. Therefore 

theoretically it must be possible that adequate nitrate improves the nutrients (uptake) and 

movements inside the xylem and phloem vessels, which is quite important in the case of Ca 

related to Blossom end rot. This is nicely presented for calcium and other nutrients in Fig. 

(6.7). Uptake and distribution of Ca is generally believed to be the main factor controlling 

blossom end rot, which is a common problem during the production of tomato fruits (DeKock 
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et al., 1982). Any limitation in transpiration and water import, could also limit Ca2+ content 

and distribution in plant.   

An amount of 10 mM Ca2+ as CaSO4 kept root length growth and root biomass (even in low 

pH of nutrient solution) comparable to nitrate or AS+CaCO3 grown plants. This indicating an 

effect of root growth stimulation due to Ca2+ ions, which is very important under NH4
+ 

nutrition. Compare to control, in plants treated with AS+CaSO4 or AS+CaCO3, the ratio of 

increased growth for shoots were much higher than roots length (Fig. 6.2B). Also improved 

root dry weight (Fig. 6.5C and D) indicating lateral root growth improvement, or higher shoot 

dry weight indicates higher lateral shoots and leaf area production. In control and split 

applications, root growth (root biomass) inhibited completely just after application of 

ammonium, because root overall length changed from 21 cm to 20 cm (Fig. 6.2). This 

reduction in root length is mainly because of digestive effect of low pH in root growth 

medium (nutrient solution), which finally leads to root necrosis particularly on root tips. 

Furthermore, root hairs and root tips which are the main place for nutrients uptake, are the 

most sensitive to low pH and were damaged first, but for plants which received supplemental 

calcium this damage was not significant. 

More lateral shoot production under nitrate or ammonium treatments which received 

additional CaSO4 or CaCO3, indicating a cytokinin-like behaviour of NO3
- and Ca2+ ions. 

Both nitrate and calcium plays important role in plant cells signalling and cell division (Wang 

et al., 2000; Marschner 1995). On the other hand, generally there is a positive correlation 

between nitrate, cytokinin concentration in growth medium and lateral shoot production in 

tomato (Rahayu 2003; Gweyi 2006). In addition, cytokinin levels in plant are in close relation 

to NO3
- status of plant. Ammonium as well as urea suppresses lateral shoot production 

(Gweyi 2006). In nutrient solution but not in soil system, highly leaf senescence and 

yellowing in NH4
+ treated plants is probably due to water stress, N limitation which force 

plant to remobilise N from older leaves, ethylene production as a result of stress conditions, 

and a higher ratio of abscisic acid/cytokinin. Cell division, expansion and elongation all seem 

to reduce with ammonium, while they tended to increase with nitrate concentrations in root 

medium in our plants (Fig. 6.2B).  

Higher concentration of chlorophyll due to ammonium nutrition is well known (Bligny et al., 

1997; Forde and Clarkson 1999), but this is merely in younger leaves, and similarly in our 

plants in nutrient solution and soil culture (not presented data) has been observed. However, 

in severe toxicity conditions (nutrient solution), leaf yellowing and senescence also need to be 

considered. Less chlorophyll contents of older leaves compared to young leaves of NH4
+ fed 



plants may be due to ethylene production under NH4
+ stress, nitrogen limitation to plants due 

to root necrosis, and finally water stress. In other word ammonium treated plants get higher 

concentration of chlorophyll in young parts, at the expense of abscission of most of their older 

leaves (Fig. 6.4B and C and D). For some replicates, plants lost more than 70% of their leaves 

even in split applications. Therefore chlorophyll degradation as a response to NH4
+ nutrition 

starts at older leaves and progresses to younger leaves with times, and the severity of lose is a 

function of ammonium treatment duration. Apart from other physiological responses, NH4
+ 

showed an effect on leaf and plant growth similar to growth inhibitors. In plants grown under 

CaSO4 and CaCO3, chlorophyll content for both top and lower leaves are higher, indicating a 

coping strategy of these plants with toxicity effects of NH4
+ nutrition (Fig.6.4D) when they 

receive supplimental calcium. Plants seem to exert a highly control over NH4
+ toxicity, when 

they received additional Ca2+ or adjusted pH. Root membrane integrity and cell wall 

stabilization due to Ca2+ effect, and improving ammonium movement by apoplastic pathways 

could be the possible explanations. It might be possible that other cations will pass trough 

symplastic pathways. Therefore there would not be significant interference with plasma 

membrane and cytoplasm biochemistry. 

Significant low fresh and dry matter production of control and split application plants, are 

mainly due to growth inhibitory effect of NH4
+ (Schjoerring et al., 2002; Siddiqi et al., 2002). 

Plants received nitrate, or ammonium plus CaSO4 or CaCO3 showed significant higher 

biomass production, indicating improving effects of Ca2+ or pH on growth characters. 

Shoot:Root dry matter ratio for nitrate grown plants was higher than ammonium grown plants 

(not presented results). Claussen, (2002) showed that under ammonium nutrition in 

hydroponic culture reduction in fruit dry matter is more than vegetative parts of tomato, while 

nitrate nitrogen rather supported an increase in dry matter accumulation in the reproductive 

organs.  

Improvement of growth characteristics under AS+CaSO4 or AS+CaCO3 applications also 

could be because of antagonist effect of Ca2+ ions to NH4
+ ions in nutrient solution and on 

membrane sites. Split applications of ammonium, which supposed to give enough time to 

plants to assimilate absorbed NH4
+, could not improve growth conditions of tomato plants. 

For example plants which received 6 times applications of 330 µM NH4
+ compared to AS 

sole (control) plants which received their 2 mM N once  at the beginning, showed no 

difference except for the number of leaves that plant lost (because of NH4
+ toxicity effect). 

This indicates that µM concentrations of ammonium in nutrient solution is also toxic and 

suppress tomato plant growth. However most of researches which have been done dealing 
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with this topic, indicate toxicity symptoms under high concentration of N-NH4
+ in nutrient 

solution (Roosta and Schjoerring, 2007; Siddiqi et al., 2002; Claussen 2002).  

Better and higher transpiration (water consumption) of AS+CaCO3 and AS+CaSO4 treated 

plants compared with AS sole or split applications of AS indicating the role of pH and Ca2+ 

ions in water uptake. Despite receiving only 1mM Ca2+, nitrate treated plants showed the 

highest transpiration. Similar conditions (due to pH and Ca2+ effect) exists for AS+CaCO3 

treated plants which also showed high rate of transpiration. However, in AS+CaSO4 grown 

plants only a Ca2+ effect was the only reason of higher water consumption compared to AS 

sole plants, because nutrient solution pH in AS+CaSO4 treated plants decreased to near 3.3. 

For most of experiment duration, plants grown under AS+CaSO4 had the lowest medium pH, 

and at the same time growth characteristics of these plants were comparable to nitrate or 

AS+CaCO3 treated plants. This indicates that high concentration of Ca2+ can not completely 

remove negative effects of NH4
+ toxicity (low pH effect). On the other hand, effect of external 

medium pH on water uptake seems to be quite significant, due to a trend of transpiration 

reduction in CaSO4 treated plants with time. This might be due to sensitivity of aquaporine 

proteins (water uptake channels) to low pH. Claussen (2002) mentioned that ammonium 

nitrogen can lead to a decrease in water use efficiency, and in this case proline is a reliable 

indicator of the environmental stress imposed on hydroponically grown tomato plants. In our 

study a sharp reduction in pH under ammonium, and a more slowly increase in pH with 

nitrate indicating organic acid release (a compensation for OH-) through plant roots. 

Nevertheless tomato is well known for its ability to release organic acids under different 

growth conditions (Neumann and Römheld, 1999). Plant growth and development (tolerance) 

in low pH of nutrient solution containing ammonium+10 mM CaSO4, probably is a 

physiochemical effect of Ca2+ ions in exteracellular and intracellular medium. Calcium 

mechanically through binding to exchange positions on root cell surface, competition for non 

selective cation channels, increasing salt concentration and osmotic effect of external medium 

can limit NH4
+ uptake, as it is observed in similar ways in salt stress plants (Cramer et al., 

1985; Tuna et al., 2007). Cell internal mechanisms of Ca2+-induced tolerance to ammonium 

involves precipitation of Ca2+ ions on cell wall (Marschner 1995; White and Broadley 2003), 

binding to phospholipids at outer side of membranes and increasing their integrity and 

selectivity (Sattelmacher, 2001), an highly activated Ca2+ influx/efflux protein systems which 

limit NH4
+ influx, and the role of Ca2+ as secondary messenger and signalling molecule 

(Sanders et al., 2002 ; Knight et al., 1997; Blackford et al., 1990; White and Broadley, 2003).  



Ammonium and water shortage (by limiting Ca partitioning to fruits) both could lead to 

blossom end rot in tomato (mainly in nutrient solution and in calcium deficient soils). A mild 

water shortage may improve Ca concentrations inside the plants. However a longer water 

shortage can induce calcium deficiency and change the availability of certain elements, and 

consequently mineral composition of plant (DeKock et al., 1982; van Ieperen et al., 2003).   

In present experiment, ammonium damaged and suppressed water uptake systems in plant 

roots, while at the same condition presence of Ca2+ ions (even with low pH in root medium) 

improved water uptake almost similar to nitrate fed plants. Low water availability in the root 

environment causes higher hydraulic resistance of xylem elements (Van Ieperen et al., 2003). 

During tomato leaf or fruit development hydraulic resistance of xylem vessels decreases (Van 

Ieperen et al., 2003), which is coincident with high activity of phytohormones such as 

sytokinin in these developing organs. Changes in xylem hydraulic resistance are necessary to 

reduce the effects of diurnal water stress in the plant. Therefore in our experiment a higher pH 

as well as Ca2+ ions under CaCO3 nutrition, or a higher Ca2+ concentration in nutrient solution 

under AS+CaSO4, or high NO3 concentration (Fig. 6.2) could reduce hydraulic resistance of 

xylem, finally leading to better water uptake and plant growth. In addition shorter or smaller 

diameter vessels which may occur directly under NH4
+ or indirectly through NH4

+-induced 

water stress, also significantly increase xylem hydraulic resistance (Van Ieperen et al., 2003). 

Similar phenomena exist for salt stress plants (Cramer 2004; Cramer et al., 1985; Navarro et 

al., 2000; Tuna et al., 2007), however in salt stressed plants water stress is an indirect effect, 

but in our plants NH4
+ had a direct effect on water relations of plant because of increasing 

hydraulic resistance, through physiochemical damage and consequently necrosis of root 

systems.  

To our surprise, xylem sap flows were not consistent with water consumption of plants (Fig. 

6.6D). Similar to their water consumption (transpiration), nitrate grown plants had highest 

xylem sap amount collected during 8 h. The same trend exist for AS+CaCO3 treated plants 

(pH 6.7). This might indicate the role of pH on xylem flow and transpiration, however in our 

study root health positively correlated with root medium pH. Plants treated with AS+CaSO4 

didn't have the same trend of xylem flow compared to transpiration amounts of plants. In 

contrast to all improved growth factors, in this case they were more similar to control (AS 

sole) plants. This indicates a shoot-originated controlling factor for transpiration. This 

controlling factor could be, cell signalling by cytosolic Ca2+ oscillation, micro molar cytosolic 

or apoplastic NO3
- concentrations that may stored during pre-culture condition and is released 

over Ca signalling, or a hormonal-calcium dependent effect. Also it is possible that because 
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collection of xylem sap happened at harvest, 10 mM Ca in AS+CaSO4 could not counteract a 

further pH decline and H+ effect in plasma membrane stability.  

Low K concentration (6.7B) in NH4
+ treated plants may be because of competitive effect of 

NH4
+ for uptake, or NH4

+-induced K influx blocking through membrane depolarisation. 

Shoot: root K concentration ratios in AS+CaSO4 treated plants was higher than all other 

plants including nitrate and AS+CaCO3 grown plants. In addition a significant reduction in K 

and Mn concentrations under ammonium conditions compared to nitrate was not avoidable, 

and without any doubt potassium status of shoots improved under increasing Ca2+ 

concentration in nutrient solution. 

For calcium (Fig. 6.7C), differences in root Ca concentrations were wider than differences 

among shoots. This may be due to higher availability of Ca in NO3
- treated plants, or in 

ammonium treated plants which received CaCO3 or CaSO4. This can give an order of 

important factors improving Ca2+ uptake, as pH> NO3
-> Ca2+ concentrations, respectively. It 

seems that root Ca concentration, to a great extent, is under pH control, so even 1 mM Ca2+ as 

Ca(NO3)2 is more effective than 11 mM Ca2+ in NH4
+ nutrition (AS+CaSO4). Calcium 

concentration in plant is also related to total salt in growth medium (Hoque et al., 2008). 

Supplemental calcium sulphate added to nutrient solution containing salt, significantly 

improved growth and physiological variables affected by salt stress (e.g. plant growth, fruit 

yield, and membrane permeability) and also increased leaf K, Ca2+, and N in tomato plants 

(Tuna et al., 2007). Similarly Roosta and Schjoerring (2007) showed that low tissue levels of 

calcium and magnesium in NH4
+ fed plants is common phenomena in tomato and cucumber 

plants. 

Magnesium concentration of shoot material of AS+CaSO4 treated plant was significantly 

lower than other plants including control and those with split applications (Fig. 6.7D). 

However root concentration showed significantly higher Mg compared to other treatments. 

Higher calcium in root medium under NH4
+ nutrition may significantly reduced the 

movement and mobility of Mg in xylem sap. High Mg concentration in AS sole (control) or 

split applications may be due to remobilisation of Mg from leaves which become senescent, 

however Mg content of plants could not be similar when the dry matter of whole plants would 

be considered. Pei et al., (1999) showed that cytosolic Mg concentration has regulatory effect 

on vacuole ion channels, and it is in present of Mg that submicromolar concentration of Ca 

can do its physiological functions of vacuolar current. In all treatments except AS+CaSO4 

magnesium concentration was higher in shoot, specially for ammonium treatments which had 

significant less Mg in shoots compared to other treatments, although Mg deficiency 



symptoms were not observed on plants. Here maybe the synergistic interaction effects (Pei et 

al., 1999) of both Mg and Ca must be considered, despite the same concentration of Mg 

which has been applied for all treatments.  

Low concentrations of Mn in AS+CaSO4 treated plants is mainly due to low pH in growth 

medium. Manganese uptake is severely inhibited by (low pH) proton (Marschner et al., 1987). 

While in two other groups, nitrate and AS+CaCO3 grown plants, high concentration of both 

root and shoot compared to other treatments exist. From the data presented in the (Fig. 6.7) it 

can be concluded that Mn2+ uptake has a significant positive correlation with higher pH, for 

example in nitrate and AS+CaCO3 treated plants. This might be due to cell membrane and cell 

wall integrity. Similarly Fe concentration of shoot material (Fig. 6.7) in nitrate and 

AS+CaCO3 grown plants were significantly higher than AS sole and other ammonium treated 

plants. Zinc and cupper concentration did not change dramatically, in contrast to other 

nutrients. Micronutrients relatively are not mobile inside plants (Marschner 1995), therefore 

their remobilisation from older senescenced leaves could not play important role in this case. 

On other hand, particularly for Fe and Cu, however the role of NH4
+ nutrition on their 

remobilisation has not been studied yet. Cytosolic pH or other related changes which could 

occur with ammonium nutrition may also have an effect on these nutrients remobilisation. 

These observations lead us to conclude that higher NH3:NH4
+ ratio in higher pH may reduce 

many negative effects of NH4
+ uptake on micronutrient compositions of plants.  Plants under 

cultivation of AS+CaSO4 and AS+CaCO3 had the highest total N concentration compared to 

AS sole and split applications of AS. This is more highlighted when we take into account 

higher performance and biomass production of these plants, which can lead us to conclude 

that ammonium uptake occurred at rather high rates without any toxicity effect. This resulted 

in plant growth characteristics compatible to nitrate nutrition (Fig 6.5). It is surprising that in 

plants grown under nitrate, Ca was the highest, while AS+CaSO4 treated plants received 10 

mM Ca (clearly a higher Ca concentration). On the other hand, N concentration of plants 

under AS+CaSO4 and AS+CaCO3 was highest, while general opinion is that Ca compete with 

NH4
+ for uptake sites on root surface and ion channels. Therefore limiting NH4

+ uptake by 

Ca2+ ions could not be a major reason for all improved growth characters observed in this 

research. Better assimilation of ammonium and preventing toxicity and damage effects of 

NH4
+ by Ca or pH probably are the main reasons. Furthermore, higher Ca in nutrient solution 

did not increase Ca concentrations in plant shoots (Fig. 6.7B). However, upon conversion of 

N concentrations to content, significant differences could be observed compare to control 

plants. Similarly Zou et al., (2005) found that adding CaCO3 improves the N concentration in 
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NH4
+ treated tobacco plants. Nevertheless N concentrations of root in control or split 

application plants showed highest N. This may be mainly due to passive adsorption and 

penetration of NH4
+ into the necrosis root cells.  

6.6. Conclusion 

Under ammonium nutrition tomato plants showed severe toxicity symptoms even with 

micromolar concentrations (in split applications). These symptoms are visualized as 

suppression of root and shoot growth, chlorophyll degradation in lower leaves extending to 

upper leaves with time, leave abscission and consequently growth inhibition. However, when 

supplemental calcium as calcium sulphate was added under ammonium nutrition, significant 

root and shoot growth of tomato plants occurred. This improved growth performance was 

mainly due to better root growth (root system) under supplemental calcium in nutrient 

solution, even under relatively a low pH. Supplemental calcium induced significant 

improvement in water consumption of ammonium treated plants. However, similarly nitrate 

as well as AS+CaCO3 treated plants had high rate of transpiration. No significant difference 

between split applications of ammonium (3 and 6 splits) compared to sole ammonium 

(control) plants for all growth related factors was observed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 7: General discussion 

7.1. Inhibition of nitrification by chloride and DMPP 

Agricultural activities in general and application of nitrogen fertilizers in particular, 

encourage nitrification and denitrification processes in soil. These two processes are in close 

relation with emission of contaminant trace gases such as NO and N2O into atmosphere 

(Abbasi et al., 1997; Abbasi and Adams 2000a and 200b; Robertson et al., 1988). In 

cultivation systems more than 50-70 % of applied N is lost by different pathways from the 

soil (Velthof et al., 1998). Basicly plants can take up all forms of nitrogen except molecular 

nitrogen (N2). However, some limitation may exist, for example, while plants can take up 

proteins, this uptake is limited to low molecular weight proteins. Nitrate and ammonium by 

far are the main N-forms for plant uptake. A mixed and balanced NH4
+ and NO3

- is probably 

the preferred form by most of plants to satisfy their nitrogen demands (Lauter et al., 1996). 

Meanwhile in nutrient solution but may not in soil, ammonium uptake suppress nitrate uptake 

in tomato plants (Loque and von Wiren 2004; Siddiqi et al., 2002). Many factors including 

environmental and soil conditions, plant species and their developmental stages control the 

form of N uptake. In acid soils of tropics or in cool climate of northern latitudes, however, 

amino acids may are the major N-forms for plant uptake (Kielland 1994).  

Fixing properties of NH4
+ to clay minerals offer potential advantages for plant nutrition as 

well as environmental friendly activities in agricultural, but also limitation due to slow access 

to plants at low root growth. This property keeps ammonium always in the upper soil horizons 

and prevents nitrogen (nitrate) leaching, thereby improves the access to plant roots. 

Application of nitrification inhibitors can prolongate the presence of NH4
+ in soil and improve 

plant N use efficiency, chlorophyll content, protein content, yield and dry matter production 

(Zerulla et al., 2001; Pasda et al., 2001; Linzmeier et al., 2001; Subbarao et al., 2006b). 

Nevertheless in application of NIs particular attention must also be paid to rotation crops, 

which grow following main crop under NIs application. In all N transformation processes in 

soil microorganisms act as a central point. Despite important role of Nitrosomonas bacteria in 

oxidation of ammonium to nitrite, now general opinion is that many other bacteria and even 

microorganisms are involve in this process (Leininger et al., 2006; Adair and Schwartz 2008). 

For their energy requirements these microorganisms, may have evolved different pathways of 

ammonium oxidation. Therefore, for effective inhibition of nitrification, compounds with 

different and a wide range of action may be required. In present study, chloride similar to 

DMPP was shown to have significant NI activity (Figs 3.1; 3.2; 3.3; 3.4). Moreover nitrifier 

bacteria in soil seem to be sensitive to a wide range of chemicals including chloride. The 
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inhibitory effect of chemicals or sensitivity of nitrifiers depends on dosage and microbial 

population dynamics inside the soil. Chloride has been shown before to inhibit nitrification, in 

concentrations between 7-50 mM (Darrah et al., 1987; Golden et al., 1980; Chen and Wong 

2004). Similarly in present study, the specific chloride ion effect as well as related osmotic or 

salt effects, as KCl or NH4Cl forms, could be the main reasons of significant inhibitory effect 

of Cl on nitrification. Despite late starting of net nitrification (after tree weeks), however until 

7 weeks, still there was strong NI activity in Cl treated soils. Nevertheless under laboratory 

soil incubations, always there is a lag of 1-2 weeks in net nitrification (Hart et al., 1994; 

Mulvaney et al. 1997; Williams et al. 1998). This mainly could be due to immobilization and 

population establishment of nitrifying bacteria in the soil. On the other hand, for soils which 

have been stored under dry condition (without microorganisms) for a long period, population 

establishment takes a longer time. It is particularly important that soil microorganisms absorb 

substantial higher amount of NH4
+ and NO3

- than plants. This immobilization for NH4
+ is 

higher than NO3
- (Azam and Ifzal, 2006; Herrmann et al., 2005). So the presence of other 

competitive microorganisms rather than nitrifiers may function as a nitrification inhibitor 

through immobilization of ammonium (Jackson et al., 1989). 

Apart from chloride, NH3 and NH4
+ also have been shown to have significant NI activity 

(Pang et al., 1973). Ammonium and chloride in form of ammonium chloride may have 

additive effects on NI activity, e.g. the role of chloride in suppression of take all disease has 

been attributed to the role of Cl on slowing down nitrification rate. So ammonium chloride 

might be an effective fertilizer for application in agricultural systems. When and where 

salinity and chloride is not a problem in the soil, ammonium chloride may offer better 

advantages in terms of N recovery rate compare to sulphate forms of N fertilizer. Adverse 

climatic and soil factors, as well as salt concentration could have accumulative or additive 

effects on nitrification inhibition. Therefore, under unfavourable conditions, besides strong 

and commercial NIs such as DMPP, DCD or Cl, even chemicals which typically are not 

inhibitors such as heavy metals (Premy and Cornfield, 1969; Hu et al., 2002) or sodium 

(Azam and Ifzal 2006) can function as potent nitrification inhibitors. When nitrogen is a 

limiting factor, nitrifying bacteria can oxidize a wide range of chemicals, however different 

microorganisms may play role in the process of ammonium oxidation. Therefore, a clear 

prediction of nitrification in a given soil is not a simple task. Slightly acidic condition, low 

organic matter and ammonium contents, long dryness, all contribute to slow down population 

establishment of oxidizing bacteria in the soil, leading to enhancement and extension 

inhibitory effect of chemicals such as DMPP or chloride.  



7.2. NI activity of root exudates and shoot and root extracts of Brachiaria humidicola 

 

Sustainable agriculture production is a necessary task in resource safety for future generations 

and needs precise control on long-term farming activities. High nitrification rate is not 

consistent with sustainable production. In addition, for economic and environmental reasons 

application of agrochemicals in production systems will be more restricted in future. Saving 

energy in farm, from fertilizers production and application to tillage operations could help to 

maintain our production systems more sustainable and productive. In such a sustainable 

system, a controlled release of mobile nutrients especially N according to plant requirements 

is highly required. Plants themselves through their root exudates have the ability to change the 

chemical, physical and biological conditions of their rhizosphere (Grayston et al., 1996; 

Marschner et al., 1987; Marschner, 1995; Phillips, and Tsai 1992; Neumann and Römheld 

2000). These changes have important implications for plants in terms of nutrients acquisition 

and toxins reduction which frequently occur in the rhizosphere (Neumann 2007). If plants 

themselves can precisely manage nitrification in the soil, in economic and environmental 

point of view, it would have important practical implications. Finding such plants and related 

physiological and molecular characteristics can help to introduce such highly valuable 

properties to farming crops. Since long time nitrification inhibitory of plant based substances 

has been known (Sahrawat and Parmar 1975; Lodhi 1978; Santhi et al., 1986; AlSaadawi 

1988; White 1988; Sylvester-Bradley et al., 1988). Recently Brachiaria humidicola has been 

considered as a plant with high potential for NNIs production and release as root exudates 

(Subbarao et al., 2005, 2006a, 2006c). To identify whether the reported release of NIs is a 

passive or actively regulated process, root exudates of plants grown in nutrient solution under 

different treatments were collected in distilled water. Root exudates of NH4
+ and NO3- 

precultured plants collected in distilled water didn’t show significant NI activity (Figs 4.1, 

4.2, 4.3, 4.4, 4.5, 4.6, 4.8) and the pH of collection medium declined to 3-4 for the plants 

which were pre-cultured with NH4
+. However, NI activity was detectable in root washings 

when plants were exposed to extended collection times (24 h) in combination with NH4
+ 

supply but not with NO3
- in the collection solution. This observation is consistent with the 

findings of Subbarao et al., (2006a; 2006c: 2007a), who also reported release of NI 

compounds only in presence of NH4
+ in the collection medium after a time of 24 h. However, 

it is well established that collection of root washings over extended time periods in media 

without Ca2+ supply has the risk of membrane damage due to leaching of Ca2+ from the 

plasma membranes (Cakmak and Marschner, 1987; Neumann and Römheld, 2007). This risk 
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is particularly expressed in acidic collection media, in present study, induced by sole NH4
+ 

supply with a pH of less than 3. Accordingly, no NI activity was detected in the root washings 

when plant roots exposed to shorter periods (6 h) of the harmful conditions during exudates 

collection. These findings strongly suggest that release of NI compounds observed in this 

study and reported by Subbarao et al., (2006a, 2006c, 2007a, 2007c) was rather a 

consequence of root membrane damage due to acidic and protonic collection conditions, than 

mediated by controlled exudation from undamaged roots (extended exposure to NH4
+ and 

consequently low pH and membrane damage). To test the hypothesis that NI compounds are 

released from damaged plant cells of Brachiaria, the NI potential of fresh root and shoot 

homogenates was measured after soil incorporation and incubation. Nitrification inhibition 

potential was detected in shoot but not in root tissues. The NI effect of soil-incorporated shoot 

tissues lasted for at least 8 d, while root tissue even stimulated nitrification with increasing 

incubation time. This NI effect is independent of N form, however, variability of data 

increases with increasing NO3
- or in higher light intensity (Figs 4.5, 4.6, 5.4, 5.6). Meanwhile 

in our study inhibitory effects of unextracted shoot materials was a function of N 

concentrations or numbers of plants per pot. Concentrations more than 2 mM caused high 

variation of data. In contrast less concentration (1 mM N) prevented this data variation, 

showing significant nitrification inhibition (Fig. 5.6A) similar to soils under natural BH stands 

where N concentration insid the soil is not high.   

Subbarao et al., (2007c) released a patent which identified several isomers of linoleic and 

linolenic acids as NI compounds in root washings of Brachiaria. The NI potential of pure 

linoleic acid additions to soil samples has been confirmed also in the present study (chapter 

5), however the mechanism of the NI effect is still not clear. Since unsaturated fatty acids are 

rapidly oxidised, it is probably not the unmodified linoleic acid molecule itself, which exerts 

long-lasting NI effects in soils reported by Subbarao et al., (2007c). However, the oxidation 

products of linoleic acid, such as linoleic acid hydroxy-peroxides, which have a cytotoxic 

potential may offer a possible explanation (Kaneko, et al., 1994). 

Although linoleic acid seems to be a NI compound released into root washings of BH 

(Subbarao et al., 2007a; 2007c) as a consequence of unfavourable conditions promoting 

membrane damage during the collection period, surprisingly soil incorporation of fresh 

homogenized root material did not show any NI activity (Figs 5.6 and 5.7). This might be due 

to (enzymatic) inactivation of NI compounds in root homogenates after decompartmentation 

of homogenized tissue. This effect may not occur during leaching into root washings. Linoleic 

acid in free and esterified form is a constituent of plant cell membranes (Kaneko et al. 1994) 



and may be selectively liberated under conditions causing membrane damage (i.e. 

unfavourable conditions for collection of root washings). 

Further fractionation and characterisation of NNI compounds in shoot tissue of Brachiaria 

plants revealed a particularly high activity in the ethanol-soluble fraction, both in plants with 

NH4
+ and NO3

- pre-culture, after extraction with solvents of increasing polarity (hexane, 

ethylacetate, ethanol, water). This solubility pattern is in line with observations of Subbarao et 

al., 2008 (unpublished) who isolated linoleic acid as NI compound from Brachiaria leaves by 

80% methanol extraction. 

Nevertheless, the results presented in this study can not support the hypothesis of a controlled 

release of NNI compounds in root exudates of BH in response to N- NH4
+ as an adaptation to 

N-limited natural ecosystems in tropics. The data rather suggest that release of NI compounds 

as an effect of membrane damage, is caused by unfavourable conditions for collection of root 

exudates. However, this finding doesn't exclude the concept of N stabilisation by plant-borne 

NNI compounds in these ecosystems. Since NI activity was found also in the plant tissue 

(chapter 5), N stabilisation could be mediated by liberation of NNI compounds from plant 

residues of Brachiaria as a very competitive and long lasting tropical pasture species. 

Brachiaria humidicola are C4 fast growing grasses, which produce enough shoot biomass 

which over its incorporation into the soil, significant inhibition of nitrification could occur. 

This is particularly important in vegetable production systems in developing country in tropic 

and subtropical regions of world, where intercropping and mixed culture is a highly valuable 

practice for soil perservation.  

 

7.3. NO3
- and NH4

+ nutrition of tomato 

Tomato represent one of the most sensitive species to NH4
+ nutrition in nutrient solution 

(Loque and von Wiren 2004; Siddiqi et al., 2002; Claussen 2002). Severe toxicity symptoms 

can occur in few days after transferring to NH4
+ medium. However, many factors including 

the intracellular and extracellular NO3
-/ NH4

+ ratios plays very important role in this 

ammonium toxicity on tomato plants (Britto et al., 2001; Kronzucker et al., 1999; Kronzucker 

et al., 2001). Based on preliminary experiments we hypothesised here that damages to root 

system is the main force behind NH4
+ toxicity. The role of calcium in physiochemical and 

structural functions of plant cells is well known (Evans et al., 1991; Blackford et al., 1990; 

Marschner, 1995). Furthermore, in our study plants which grown in nitrate showed the highest 

Ca in their shoot, despite they received only 1 mM Ca, compare to 11 mM in AS+CaSO4 and 

3 mM in AS+CaCO3 grown plants. Supplemental calcium as CaSO4 was used to give a Ca ion 

 92



 
 

effect and CaCO3 was used to give a pH effect (pH 6.6) Similar to other studies nitrate rather 

than ammonium represented preferable N-form for tomato plants. All growth related 

parameters improved under nitrate nutrition of plants compared to NH4
+ grown plants (Figs 

6.3, 6.5, 6.6, 6.7, 6.8). Healthy plants were observed in nitrate, AS+CaSO4 and AS+CaCO3. 

Increasing nitrate:ammonium ratios also has been reported to reduce ammonium toxicity. 

Despite we didn't use this, however calcium showed similar effct in this case to nitrate. Water 

uptake or transpiration represented an important indicator of root health and plant 

performance. Tomato plants under nitrate, or in NH4
+ when supplied with supplemental Ca 

ions (as CaSO4) or in a higher pH (as CaCO3) showed a high transpiration rate compare to 

control plants (plants without additional Ca). This transpiration has positive correlation with 

plant root dry weight (Fig. 6.6, 6.7). On the other hand, ammonium treated plants showed an 

immediate inhibition of root growth after transferring to NH4
+ medium (Fig. 6.3). However, 

when these plants received 10 mM Ca as AS+CaSO4 or a constant pH of 6.6 by application of 

CaCO3 (effects of pH and Ca2+), they didn't show toxicity symptoms (Figs. 6.2, 6.5, 6.6, 6.7, 

6.8). Their growth performance was more or less similar to nitrate-fed plants. When CaSO4 or 

CaCO3 were added to NH4
+ nutrient solution, plant growth characteristics such as root and 

shoot biomass, root and shoot length, number of lateral shoots, chlorophyll content and 

mineral nutrients composition significantly improved. In control plants (in only ammonium 

(AS sole) or in plants which received split applications of ammonium, toxicity symptoms, 

including growth inhibition, reduced leaf area, yellowing and senescence of older leaves, root 

necrosis and water stress were common phenomena. This might be due to difficulties related 

to control of ammonium fluxes by plants (Loque and von Wiren 2004).  Howitt and Udvardi, 

(2000) argued that the toxicity symptoms is mainly because of high concentration of NH4
+ in 

apoplast, which normally needs to keep down. However Britto et al., (2001) didn't accept it 

and challenged such conclusion. Furthermore, the symplastic pathway allows the plant to 

control the rate and selectivity of cations transport to the shoot (White 2001), so NH4
+ 

primarily may damage symplastic pathway which regulates the selectivity of ions. Therefore, 

positive effects of Ca is probably due to increasing plant cell membrane integrity and 

selectivity, which simply do not allow NH4
+ ions to pass through. Moreover, NH4

+ would pass 

mainly through apoplastic pathways to the shoot, where it can be assimilated to other 

compounds. Nevertheless, this apoplastic pathway also needs to be protected against adverse 

effects of ammonium, by calcium ions. Our findings are consistent with this hypothesis 

supporting the important role of Ca on protecting cell integrity and symplastic pathway.  

However, the role of other mechanism can not be ignored. It is in particular importance to 



consider that there are different NH4
+ transporters which differ in their biochemical 

properties, localization, and in regulation at the transcriptional level (Loque and von Wiren 

2004). Root necrosis and consequently related water stress could be the main reason of 

toxicity symptoms in macro level. It is probably the cytosolic and membrane sensitivity which 

are expressed as NH4
+ toxicity, in micro level. Physiochemical changes on membranes and 

cell walls as well as in cytoplasm would probably be the main protective mechanisms of Ca 

against negative effects of ammonium. Physical protection against a low pH at the surface of 

root, improving NH4
+ compartmentation and assimilatory capacity through glutamine 

synthetase, increasing enzyme activity which can remove NH4
+ from cytoplasm, increasing 

plasma membrane stabilization and integrity and cell wall hardening (Marschner et al., 1987), 

Cations (K, Mg, Ca) improvement (Redinbaugh and Campbell, 1993), preventing 

phytohormone imbalance (Gerendas et al., 1997; Zhang and Rengel, 1999; Britto and 

Kronzucker, 2002), are among the possible mechanisms which Ca also may induce better 

plant performance under NH4
+ nutrition. Additionally, the growth improving effects of Ca 

might be due to, activation of an influx/efflux system of Ca at plasma membrane of root cells, 

stimulation of a symplastic (more selectivity for cations) rather than apoplastic pathways of 

ions transportation (White 2001), and reducing hydraulic resistance of xylem vessels (Van 

Ieperen et al., 2003). Under such conditions ammonium has less chance to pass through cell 

membranes. Calcium has an important role in structural and functional integrity of plant 

membranes and cell walls, regulation of ion transport and selectivity, and enzyme activities. 

Calcium may simply be displaced from its membrane binding sites by ammonium (Cramer et 

al., 1985; Cramer 2004). It is important to consider that Ca2+ ions function as a second 

messenger in mediating plant responses to external stimuli of biotic and abiotic origin. In 

plants despite precise control of ammonium transporters, NH4
+  uptake may also occur 

through non-selective cation channels and K channels (Howitt and Udvardi, 2000; 

Kronzucker et al., 2001;  Loque and von Wiren, 2004). Limiting NH4
+ uptake by Ca ions 

could not be a reason for all improved growth characters observed in these plants. Better 

assimilation of ammonium and preventing toxicity and damage effects of NH4
+ to membranes 

and sub cellular organelles by Ca or highr pH, probably are the main reasons, because 

AS+CaSO4 and AS+CaCO3 treated plants have the highest N concentration, similar to results 

obtained by (Zou et al., 2005). On the other hand, over application of CaSO4 or CaCO3, Ca 

concentration in plants shoots didn’t increase (Fig. 6.7B). It seams that pH, NO3
- and Ca 

concentrations in nutrient solution, respectively, are the most important factors improving Ca 

uptake. Signalling functions of these players (NO3, internal and external pH, and Ca) could be 
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the main force behind fluctuation in Ca concentration inside plants. Similar to NO3
-/ NH4

+ 

ratios, intracellular and extracellular Ca2+/ NH4
+ ratios are likely play important role in growth 

improvement under ammonium nutrition. In many aspects of plant growth, Ca functions very 

similar to NO3
- (Sanders et al., 2002; Rahayu, 2003). In different growth parameters, 

cytokinin-like effects are responses which have been observed in our study. Similarly, Rahayu 

(2003) stated that the inhibitory effects of NH4
+ on leaf growth can rapidly (24 h) be reverted 

by re-application of NO3
-, suggesting that hormonal signals rather than recovery from NH4

+ 

toxicity were involved in this process (Rahayu 2003).  However, immediate action of Ca as a 

hormonal signal could not justify the protection effects observed by application of calcium 

forms, despite the role of calcium in plant signal transduction is well established. Finally it 

can be concluded that with calcium a root-shoot protection system occurs against toxic effects 

of ammonium. In this system, physiochemical mechanisms seem to play the main role of root 

protection against NH4
+. Direct and indirect effects of ammonium will produce stimuli which 

induce cytosolic calcium fluctuations. This response is in close relation with hormones and 

enzymes, totally as the intelligent system of plant, which keeps ammonium uptake and 

toxicity under control. Shoot-root signalling, however, can regulate the extent of plant 

responses and tolerance to NH4
+ toxicity. For instance, in plants grown in AS+CaSO4, xylem 

sap exudation was not consistent with transpiration, indicating a shoot-controlling system 

over physiological performance of plants under such conditions (high Ca concentration but 

low pH of root medium). Meanwhile, for plants grown under nitrate or AS+CaCO3 xylem sap 

exudations were high and consistent with their transpiration (Fig. 6.7D). While xylem sap 

exudation is generally independent of plant transpiration, root pressure and metabolic activity 

of roots are generally believed to be driving force in xylem exudation.  

Nevertheless, these findings indicate that calcium is necessary and critical in protection of 

particularly plant root cells. In semiarid regions, calcium is a major constitute of soil (as 

CaCO3). Therefore, ammonium toxicity and growth reduction of tomato under application of 

NH4
+ fertilizers may not occur in calcareous soils. On the other hand, under vegetable 

production systems, nitrification rates in these types of soil which predominated in arid and 

semiarid climates (see chapter 3), seems to be significantly higher than the other 

agroecosystems such as acid soils. This is mainly due to a better performance of nitrifiers at 

higher Ca concentrations as well as higher pH. Therefore ammonium can persist only for a 

short time inside the soil. Therefore, by application of synthetic or natural nitrification 

inhibitors stabilized ammonium could give better growth performance.   
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If grasses (such as Brachiaria) can be included in rotation systems of vegetable production, or 

as intercropping, beside other positive effects, their NI activity could keep mineralized or 

applied ammonium as the main N form in the soil. Moreover, low organic matter content of 

soil, imbalanced nutrition, and nutrients deficiency in plants are characteristics of arid zones. 

Under NH4
+ uptake and consequently rhizosphere acidification, significant improvement of 

micronutrients deficiencies of plants, which frequently happening in these climatic zones, 

could occur. However, the potential of ammonium volatilisation of these soils should be 

considered, and appropriate measures must be under taken to keep it under control.  

 

 

 

 

 

 

 



 

Summary                                                                                                                                         

 
Nitrogen is one of the most limiting factor for crop production, thus agricultural production is 

highly dependent on N fertilizer supply. After application of ammonium fertilizers into the 

soil, microbe-mediated oxidation of ammonium to nitrate (nitrification) happens relatively 

fast. Nitrification, due to the mobility of the end product (nitrate), can result in spatial 

separation of nitrogen from root zone. Through inhibition of nitrification and stabilization of 

ammonium, long term preservation and accessibility of nitrogen can be improved, especially 

when plants themselves could produce and release nitrification inhibiting (NI) compounds. 

On the other hand, ammonium nutrition of plants can have important environmental, 

economic and nutritional implications for agricultural production. Micronutrient deficiencies 

are widespread phenomena particularly in calcareous soils, so rhizosphere acidification as a 

result of imbalanced cation/anion uptake caused by NH4
+ uptake, could improve phosphorous 

and micronutrient status of plants.  

Besides commercial NIs, many chemicals could also inhibit nitrification. In our study 

(Chapter 3) regarding efficiency of chloride compared to 3,4-Dimethylpyrazole phosphate 

(DMPP), it was found that chloride at applied concentration of 30.5 mg per 100g dry soil, 

could effectively inhibit nitrification. Despite a lag period of 3 weeks in detectable net 

nitrification, inhibitory effect of chloride continued to persist even after 7 weeks of soil 

incubation compared to control. Nevertheless, DMPP particularly with higher concentration 

(2 % of N-NH4
+ instead of 1%) stabilized ammonium more strongly than Cl-1. The extent of 

nitrification inhibition after 5 and 7 week of incubation was in order of: (2 % of N-NH4
+) 

DMPP > (1 % of N-NH4
+) DMPP> NH4Cl > KCl > control. The residue ammonium in the 

soil as well as the produced nitrate concentrations in samples showed a significant NI activity 

of chloride in both forms NH4Cl and KCl. Nitrification-induced pH decrease, however, 

showed a better correlation with measured nitrate than ammonium in this experiment.  

In a second series of experiments undertaken to identify whether the reported NI release by 

Brachiaria humidicola accession 26159 is an active or passive phenomena, root exudates of 

plants grown under various treatments, have been collected in distilled water or in 1 mM 

NH4Cl. Under various pre-culture conditions such as N form (NH4
+ versus NO3

-), N 

concentrations (1, 2, 4 mM), light intensities (180, 240, 350 µmol m-2 s-1), plant age (3-weeks 

old versus 7-weeks old) and collecting periods (24 versus 6 h), there was no significant NI 

activity when root exudates were collected in distilled water. However, NI activity was 

detectable in root washings when the plants were exposed to extended collection times (24 h) 

in combination with NH4
+ supply, but not after short term collection (6 h) or with NO3

- in the 
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collection solution. This observation is consistent with the results of Subbarao et al., (2006, 

2007), but it also strongly suggests that the observed release of NI compounds was rather a 

consequence of membrane damage (passive phenomena) due to inadequate collection 

conditions, than mediated by controlled exudation from undamaged roots. It has been 

assumed that supplying only ammonium (1 mM) in distilled water as root washing medium 

over extended time periods (24 h) could lead to rapid ammonium uptake and medium 

acidification associated with the risk of Ca2+ desorption, which is an important element 

required for membrane stabilisation and integrity. To test the hypothesis that NI compounds 

are released from damaged plant cells of Brachiaria, the NI potential of fresh root and shoot 

homogenates was measured after soil incorporation and incubation. Surprisingly, NI potential 

was detected in shoot but not in root homogenates. The NI effect of soil-incorporated shoot 

tissues lasted for at least 8 d, while root tissue even stimulated nitrification with increasing 

incubation time. This NI effect was independent of the N form. However, the variability of 

data increased with NO3
- form, higher light intensity or higher N concentrations during plant 

pre-culture. Independent of N forms, further extraction and characterisation of NI compounds 

in shoot tissue of Brachiaria plants revealed a particularly high activity in the ethanol-soluble 

fraction, both in plants with NH4
+ and NO3

- pre-culture.  

In a third experiment, the role of Ca2+ ions on improvement of tomato growth under 

ammonium nutrition was investigated. In this experiment root damage, probably by 

membrane damage and cytosolic sensitivity were hypothesised to be the main cause of 

toxicity symptoms of NH4
+ on tomato plants. At application of 2 mM N as NH4

+, plant 

biomass, number of lateral shoots, and transpiration were strongly inhibited and an increased 

Ca2+ application into the nutrient solution counteracted these observed negative effects. 

Transpiration or water consumption was found to be a good indicator of plant performance 

under NH4
+ nutrition. Plants grown under nitrate nutrition had the highest transpiration rates, 

as well as the best growth characteristics. There was a positive correlation between nitrate 

concentrations and transpiration rates. On the other hand, plants grown in ammonium (as 

control, or 3 and 6 split applications of NH4
+ during 4 days) showed severe toxicity symptoms 

including growth inhibition and leaf abscission. However, when ammonium was applied 

together with 10 mM Ca2+ (as CaSO4), or in a buffered solution of pH 6.6 with CaCO3 (pH 

or/and Ca2+ effect), transpiration and other growth factors (e.g. root and shoot dry matter, 

number of lateral shoots), as well as the nutrients especially N concentrations in the biomass 

were significantly improved. In other words, shoot and particularly root growth were 



 

inhibited when NH4
+ treated plants (control and split applications) did not received CaSO4 or 

CaCO3. Micro molar concentrations of NH4
+ in 6 split applications also could not prevent 

ammonium toxicity symptoms. 

Improved growth and plant performance by increasing calcium concentration in the root 

medium could be achieved due to a better protection of root system from toxic effects of 

NH4
+. These findings indicate that growth reduction of tomato culture by application of NH4

+ 

fertilizers may not occur in calcareous soils. On the other hand, under regular irrigation, 

nitrification rates in these types of soil which predominated in arid and semiarid climates 

seems to be significantly higher than in soils widespread in subtropical agroecosystem (acid 

soils). Therefore ammonium will persist only for very short period, particularly when 

incorporated into the soil. However, after application of natural or synthetic nitrification 

inhibitors, through ammonium uptake and a consequent rhizosphere acidification, significant 

improvement of micronutrients deficiencies of plants, which frequently happen in these 

climatic zones, could occur. But possible ammonia emissions must be avoided on such 

calcareous soils by an adapted application technique for ammonium fertilizers stabilized by 

nitrification inhibitors e.g. in vegetable production systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Zusammenfassung  

 

Stickstoff (N) ist einer der am meisten limitierenden Faktoren für die Pflanzenproduktion. 

Aus diesem Grund ist die landwirtschaftliche Pflanzenproduktion in hohem Maße abhängig 

von einer optimalen Stickstoffversorgung der Pflanzen. Nach der Applikation von 

ammoniumhaltigen Düngemitteln erfolgt in der Regel nach relativ kurzer Zeit eine mikrobiell 

vermittelte Oxidation von NH4
+ zu NO3

- (Nitrifikantion). Aufgrund der hohen Mobilität des 

Endprodukts dieser Reaktion (NO3
-) in Böden, kann die Nitrifikation zu einer räumlichen 

Verlagerung von Stickstoff aus dem Wurzelraum führen. 

Eine Hemmung der Nitrifikation und die Stabilisierung von NH4
+ im Boden kann zu einer 

Verbesserung der Speicherung von Stickstoff in Böden und einer besseren Versorgung der 

Kulturpflanzen führen, vor allem wenn die Kulturpflanzen selbst Nitrifikationshemmstoffe 

(NI) produzieren und in die Rhizosphäre abgeben können.  

Eine NH4
+-Ernährung der Kulturpflanzen kann wesentliche Auswirkungen für die Umwelt, 

die Versorgung von pflanzlichen, tierischen Organismen und Menschen mit Nährstoffen und 

ökonomische Aspekte der landwirtschaftlichen Pflanzenproduktion haben. Beispielsweise ist 

Mikronährstoffmangel (Fe, Zn, Mn) ein weitverbreiteter limitierender Faktor für die 

Pflanzenproduktion, der vor allem auf kalkhaltigen Böden auftritt. Eine durch die Ernährung 

der Kulturpflanzen mit NH4
+ induzierte Ansäuerung der Rhizosphäre, aufgrund einer 

unausgeglichene Aufnahme von Kationen und Anionen durch die Pflanzen, kann unter diesen 

Bedingungen zu einer erhöhten Verfügbarkeit von Mikronährstoffen für  die Pflanzen führen. 

Neben kommerziell hergestellten Nitrifikationshemmstoffen kann eine Reihe von weiteren 

chemischen Substanzen zu einer Hemmung der Nitrifikation führen.  

In der hier vorliegenden Studie (Kapitel 3) in der die Effizienz von Chlorid mit dem 

kommerziellen Nitrifikationshemmstoff 3,4-Dimethylpyrazol-Phosphat (DMPP) verglichen 

wurde, zeigte sich, dass 30.5 mg Chlorid/ 100g Boden zu einer sehr effektiven Hemmung der 

Nitrifikation führte. Trotz eines Zeitraums von drei Wochen, in dem unabhängig von der 

Behandlung keine Netto-Nitrifikation beobachtet werden konnte, induzierte Chlorid sogar 

noch nach einer Inkubationszeit von sieben Wochen im Vergleich zur Kontrolle eine 

Hemmung der Nitrifikation. Trotz allem verursachte DMPP, vor allem in einer erhöhten 

Konzentration (2% von N-NH4
+ statt 1%  von N-NH4

+), im Vergleich mit Cl- eine stärkere 

Stabilisation von  Ammonium. Die Effektivität der Hemmung der Nitrifikation nach fünf 

bzw. sieben Wochen war: (2% von N-NH4
+)-DMPP > (1% von N-NH4

+)-DMPP > NH4Cl > 

KCL > Kontrolle. Residuales Ammonium im Boden, aber auch die produzierte 



 
 

Nitratkonzentration in den Proben zeigten eine signifikante Nitrifikationshemmung durch 

beide Chloridformen, NH4Cl und KCl.  Die durch die Nitrifikation induzierte Verminderung 

des pH-Werts zeigte in diesem Experiment jedoch eine bessere Korrelation mit dem 

gemessenen Nitrat als dem gemessenen Ammonium.  

In einer zweiten Serie von Modellversuchen sollte untersucht werden, ob es sich bei der in 

wissenschaftlichen Untersuchungen beobachtete Abgabe von Nitrifikationshemmstoffen 

durch Brachiaria humidicola Genotyp 26159 um einen aktiven oder um einen passiven 

Prozess handelt. Die Wurzelexsudation von Brachiaria humidicola 26159 Pflanzen wurden in 

destillierten Wasser oder 1mM NH4Cl gesammelt und auf die Fähigkeit zur 

Nitrifikationsinhibition geprüft. Unter verschiedenen Wachstumsbedingungen, beispielsweise 

der Form der Stickstoffernährung (NH4
+ oder NO3

-), N-Konzentration (1, 2, 4mM), 

Lichtintensität (180, 240, 350 μmol m-2 s-1), Pflanzenalter (drei Wochen oder sieben Wochen) 

und der Dauer der Wurzelexsudationssammlung (6h oder 24h) zeigte sich keine signifikante 

Hemmung der Nitrifikation, wenn die Wurzelexsuadate in destilliertem Wasser gesammelt 

wurden. Im Gegensatz dazu konnte eine Hemmung der Nitrifikation in Wurzelexsudaten von 

Brachiaria humidicola 26159 detektiert werden, wenn die Pflanzen mit NH4
+ aber nicht mit 

NO3
- ernährt wurden und Wurzelexsudate für einen Zeitraum von 24 Stunden gesammelt 

wurden. Diese Ergebnisse bestätigen die Beobachtungen von Subbarao et al. (2006, 2007), 

jedoch weisen sie ebenfalls darauf hin, dass die beobachtete Abgabe von 

Nitrifikationshemmstoffen eher die Konsequenz einer Membranschädigung (passiver 

Prozess), versucht durch eine inadäquate Bedingungen zur Sammlung von Wurzelexsudaten, 

war und nicht durch eine kontrollierte Wurzelexsudation aus intakten Wurzelzellen verursacht 

wurde. Es wird angenommen, dass die Zugabe von Ammonium (1mM) in destilliertes Wasser 

als Wurzelwasch-Medium über einen Zeitraum von 24 Stunden eine rapide Aufnahme von 

Ammonium und der Ansäuerung des Mediums verursachen kann, verbunden mit einer 

Desorption von Ca2+, einem der wesentlichen Faktoren für die Membranstabilisierung und –

integrität. 

In einem Dritten Experiment, um die Hypothese zu testen, dass Nitrifikationshemmstoffe von 

beschädigten Pflanzenzellen von Brachiaria humidicola abgegeben werden können, wurde 

das Nitrifikationsinhibitionspotenzial von homogenisiertem Wurzel- und Sprossgewebe von 

Brachiaria nach einer Inkorporation und Inkubation in Bodenproben getestet. 

Erstaunlicherweise konnte ein Potenzial zur Nitrifikationshemmung im Spross- aber nicht in 

Wurzelhomogenaten nachgewiesen werden. Der die Nitrifikation inhibierende Effekt von in 

den Boden inkorporierten Sprossgewebe hielt etwa acht Tage an, während Wurzelgewebe im 
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Gegensatz dazu mit zunehmender Inkubationszeit zu einer Stimulation der Nitrifikation 

führte. Der Effekt einer Hemmung der Nitrifikation durch in den Boden inkorporiertes 

Sprossgewebe war unabhängig von der N-Form. Jedoch stieg die Variabilität der Daten mit 

N-Form (NO3
-), höherer Lichtintensität, oder höherer N-Konzentrationen. Unabhängig von 

der N-Form zeigten weitere Extraktionen und Charakterisierung der 

Nitrifikationshemmstoffen aus dem Sprossgewebe von Brachiaria humidicola Pflanzen eine 

besonders starke Hemmung der Nitrifikation durch eine Ethanol-extrahierbare Fraktion, 

sowohl für Pflanzen, die mit NH4
+ als auch mit NO3

-vorkultiviert worden waren. 

In einem Fierten Experiment wurde die Rolle von Ca2+-Ionen für eine Verbesserung des 

Pflanzenwachstums von Tomaten bei einer Ammonium-Ernährung untersucht.  Entsprechend 

der Hypothese wurde in diesem Modellversuch angenommen, dass Wurzelschäden durch 

Membran- und Cytosolsensitivität die Hauptursache von NH4
+-Toxizitätssymptomen bei 

Tomate sein würde. Bei einer Applikation von 2mM als NH4
+ waren die Biomasse der 

Pflanzen, laterale Sprossbildung und die Transpiration stark vermindert. Eine zunehmende 

Ca-Applikation in die Nährlösung konnte die beobachteten negativen Effekte kompensieren. 

Die Ergebnisse zeigten, dass die Transpiration bzw. der Wasserverbrauch gute Indikatoren für 

die Entwicklung von Pflanzen im Falle einer NH4
+-Ernährung sind. Pflanzen mit 

Nitraternährung zeigten eine höhere Transpiration und eine Verbesserung anderer 

Wachstumscharakteristika. Es zeigte sich eine positive Korrelation zwischen Nitraternährung 

und Transpiration. Pflanzen, die mit Ammonium (als Kontrolle, oder als Split-Applikation 

von NH4
+ über 4 Tage) kultiviert wurden, zeigten ausgeprägte Symptome einer NH4

+-

Toxizität, darunter Wachstumshemmung und Blattfall. Jedoch, wenn Ammonium zusammen 

mit 10mM Ca2+ (als CaSO4), oder in eine mit CaCO3 bei pH 6.5 gepufferte Lösung (pH 

und/oder Ca2+ Effekt) appliziert wurde, war die Transpiration und andere 

Wachstumsparameter (v.a. Wurzel- und Spross-Biomasse, Bestockung) aber auch die N-

Konzentrationen in den Pflanzen verbessert. Mit anderen Worten, das Spross- und 

Wurzelwachstum von Pflanzen wurde gehemmt, wenn NH4
+-ernährte Pflanzen (Kontrolle 

und Split-Applikationen) nicht mit CaSO4 oder CaCO3 behandelt wurden. Auch durch die 

Applikation mikromolarer Konzentrationen von NH4
+ (in einer in  6 Applikationen 

aufgeteilten Split-Applikation)  konnte die Ausbildung von  NH4
+-Toxizitätssymptomen nicht 

verhindert werden. Verbessertes Wachstum und eine bessere pflanzliche Entwicklung durch 

eine erhöhte Calciumkonzentration im Wurzelmedium konnten durch einen besseren Schutz 

des 



 

Wurzelsystems vor den toxischen Effekten von NH4
+ erreicht werden. Diese Ergebnisse 

deuten an, dass eine NH4
+-induzierte Wachstumsbeeinträchtigung bei Tomaten 

möglicherweise auf kalkhaltigen Böden nicht auftritt. Auf der anderen Seite sind die 

Nitrifikationsraten in diesen Böden, die sehr häufig in ariden und semiariden Regionen  der 

Erde anzutreffen sind, bei einer regelmäßigen Bewässerung signifikant höher als in anderen 

Agrarökosystemen, beispielsweise auf sauren Äckern. Aus diesem Grund ist die Verweildauer 

von Ammonium in diesen Böden sehr kurz, vor allem bei einer Einarbeitung in den Boden. 

Die Applikation von natürlichen oder synthetischen Nitrifikationshemmstoffen kann über eine  

Aufnahme von NH4
+ und einer damit eng verbundenen Ansäuerung der Rhizosphäre zu einer 

signifikanten Verminderung von Mikronährstoffmangel bei Kulturpflanzen führen, der in 

diesen klimatischen Regionen häufig auftritt. Mögliche Ammonikemmisionen müssen jedoch 

auf solchen kalkhaltigen Standorten durch eine angepasste Applikationstechnik für mit 

Nitrifikantionshemmstoffen stabilisierten Ammoniumdüngern vermieden werden.   
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