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1.  General Introduction 

Agricultural productivity is geared to a high yield and quality level, but pests and diseases 

can compromise these objectives; therefore plant protection is needed. 

Weeds especially cause heavy losses. They compete for water, light, and nutrients (Wilson 

and Wright 1990) and decrease quality and quantity of yield. Weeds cause an increase in 

moisture in the field and grain, implicating non-uniform ripening. They hinder harvest 

techniques and lead to contamination of harvest grain with weed seeds resulting in 

cleaning costs (Koch and Hurle 1978). 

Nowadays chemical plant protection is established because of the convenient handling and 

the high degree of efficiency. The commencement of chemical weed control goes back to 

the 18th century, at that time it was discovered that several chemicals cause a damaging 

effect on plants (Hock et al. 1995). The first herbicides 2,4-D and MCPA were developed 

in the 1940s for weed control in cereals. Herbicides increasingly replaced the labour–

intensive mechanical weed control. Today around 34 % of worldwide yield is saved due to 

chemical weed control (Oerke 2006). However, herbicides represent about 50 % of the 

globally used plant protection products (Berger 2002). Pesticide use in European countries 

is strictly regulated to minimize any negative side effects for the environment and pesticide 

residues in the food chain. In context of the German reduction program for chemical plant 

protection, herbicide use needs to be strictly controlled in the future and reduced to the 

absolute necessary extent (BMVEL, 2005). Additionally, herbicide resistance must be 

prevented, thus sustainable technologies for weed control are needed. 

1.1 State of knowledge 

1.1.1 Weed distribution in agricultural fields 

It is generally known, that the weed seedlings distribution within agricultural fields is 

spatially and temporally heterogeneous, weeds often occur in patches of varying size, 

whereas other areas in the field are less infested or weed free (Marshall 1988, Thornton et 

al. 1990; Wiles et al. 1992; Mortensen et al. 1993; Cardina et al. 1995; Johnson et al. 

1996, Gerhards et al. 1997a, b; Christensen and Heisel 1998; Dieleman and Mortensen 

1999; Perry et al. 2002; Nordmeyer and Zuk 2002; Dicke et al. 2007). This heterogeneity 

is conditional on numerous factors. Seedlings emergence varied depending on crop, soil 

cultivation, crop rotation, and weather conditions in the current year (Gerowitt and 

Heitefuss 1990). Dunker and Nordmeyer (2000) found out that the occurrence of A. 

myosuroides is positively correlated with clay and total nitrogen content in the soil at those 
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locations. Cardina et al. (2002) analysed the effects of crop rotation and tillage on weed 

seedbanks. They determined vertical distribution, weed species abundance and 

composition in response to crop and soil management. Cousens and Moss (1990) analysed 

the effects of different soil cultivation methods on the vertical distribution of Alopecurus 

myosuroides seeds in the soil, and found that vertical distribution was reached sooner 

under ploughing than under rigid tine cultivation. Additionally, the growth rate and 

development of a population is depending on density of the species involved, the cropping 

system, soil type, and climate (Mortimer 1987; Fernandez-Quintanilla 1988; Mortimer et 

al. 1989). 

1.1.2 Population dynamics 

Population dynamics are the modification in frequency, distribution and genetic structure 

of the entirety of individuals of one species that are present in a natural habitat (Koch and 

Hurle 1978). Compared to single weed plants, weed populations have different 

characteristics due to community interactions (Koch and Hurle 1978). Weed population 

dynamics in arable fields are mainly influenced by intrinsic parameters, such as population 

density and longevity of the seeds. Additionally, several extrinsic factors, such as soil 

characteristics, weather conditions, soil cultivation and management (above-mentioned), 

are affecting population dynamics.  

Studies on weed population dynamics permit recognition and identification of parameters 

and factors of influence (Zwerger and Eggers 2004) and help to understand the interactions 

of these parameters, to compile prognoses and formulate hypotheses (Koch and Hurle 

1978). Kropff (1996) declared that an insight into the population dynamics of weeds and 

the interactions between crop and weeds is needed in order to develop improved weed 

management systems, to effectively control weeds with a reduced dependency on 

herbicides, and to prevent colonisation of new areas. 

Profound knowledge of weed population dynamics is the basis for all weed management 

systems, thus population dynamic models are strongly needed in order to study, or rather 

simulate long-term effects of weed populations in agricultural fields, and to ensure precise 

weed management. 

Since the seminal paper of Sagar and Mortimer (1976) several computerized models were 

developed to help farmers to define the need for herbicide application and to support an 

optimal assortment and dosage of herbicides. Most of these models are based on the 

lifecycle of weed populations (Figure 1). 
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Figure 1: Life cycle of an annual weed population [Cousens & Mortimer 1995, modified] 

 

The seedbank is the central point of the model, it is updated in one year steps by 

subtracting the emerging seedlings, fatal germinated and died seeds and adding the new 

produced seeds. During growth and development the population is influenced by inter- and 

intra-specific competition, mortality due to competition, weed management induced 

mortality, diseases, fungal decay, aging and predation due to rodents, snails, beetles and 

birds (Cousens and Mortimer 1995).  

The models describe the interactions of several parameters within a population. By 

changing a variable or an intrinsic or extrinsic factors (mentioned above) of influence the 

consequence of this change can be simulated. In such a way processes can be qualified and 

prognoses can be derived. The output of the model is the generated optimal combination of 

weed management strategies. The models differ in the life stages that are included (Holst et 

al. 2005).  

Some models are only valid for one single weed species, and other approaches model 

particular population parameters in detail. Colbach et al. (2006 a, b) modelled germination 

and emergence of Alopecurus myosuroides HUDS. The model from Aarts (1986) 

allegorised the complete life cycle of Galium aparine L. The model of Pacala and Silander 

(1990) accurately predicts growth, fecundity, survivorship, germination, seed dormancy, 

and dispersal of Abutilon theophrasti and Amaranthus retroflexus. The model from 
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Cousens et al. (1992) dealt with the weed competition in cropping systems, and Grundy 

(2003) modelled the weed seedlings emergence. Van der Weide and Groenendael (1990) 

tested the complexity of a demographic model on the example of Galium aparine in 

consideration of several management practices. They found that changes in sowing time or 

time of herbicide application can cause enormous differences in population dynamics. 

Additionally, they showed that weed density and spatial weed distribution have bearing on 

population dynamics. Van Groenendael (1988) found that a patchy distribution of weeds 

can influence its population dynamics. Mortimer et al. (1989) hypothesised a relationship 

in-between weed biomass and fecundity. Further research on these parameters is needed to 

evaluate the models. 

1.1.3 Site-specific weed control 

The uniform application of herbicides is still the standard method of weed control, and 

spatial variation has often been ignored in weed management decisions. However, the use 

of field-scale mean weed density estimates in spatially heterogeneous weed populations 

results in under-prediction of yield loss at locations where weed density is high and in 

over-prediction in areas of the field where the weed density is low or absent; thus weed 

distribution must be considered in the development of economic weed thresholds 

(Lindquist et al., 1998; Brain and Cousens 1990). 

Based on the awareness that weeds are distributed heterogeneously, first spatially variable 

herbicide application has been tried and tested in the 1990’s (Gerhards et al. 1996, 1997a) 

Site-specific weed control is managing weeds with respects to their spatial and temporal 

variability (Mortensen et al. 1998). The site-specific weed management is based on the use 

of weed thresholds. That means to implement an appropriate post-emergence herbicide 

application only at infested locations in the field. Thompson et al. 1991 proved that 

spatially variable herbicide application based on map information has potential. Johnson et 

al. 1995 verified that herbicide use could be reduced, if information on spatial weed 

distribution would be used for threshold adjustment. Gerhards and Christensen (2003) 

saved 60 % of the herbicides against broad leaf weeds and 90 % of grass weed herbicides 

in winter cereals, due to site-specific herbicide application. In maize they saved 78 % of 

grass weed herbicides and 11% of grass weed targeting herbicides. In sugar beet 36 % of 

herbicides against grass weeds and 41 % of broad leaf weed targeting herbicides were 

saved, respectively. Gerhards and Oebel (2006) tested a system for site-specific weed 

management in various crops resulting in herbicide reduction by 6 up to 81 %. The 

efficacy of weed control varied in between 85 % and 98 %, thus the system appears to be 
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effective. Site-specific weed control is reasonable, and it has been applied successfully to 

various crops, resulting in a considerable reduction of herbicide use and treatment costs. 

1.1.4 Weed thresholds 

In order to minimise herbicides, the German plant protection law from 1986, modified in 

1990, requires the use of economic weed thresholds. The economic weed threshold is the 

critical value above which an herbicide treatment is economically required (Warmhoff 

1986). Herbicide application will not be carried out under the economic threshold 

(Swanton and Murphy 1996; Buhler et al. 2000). It is not arguable to spray without the 

certainty that economic threshold is exceeded (Gerhards and Kühbauch 1993). In 

combination with weed thresholds, it makes sense to use selective herbicides. In the past a 

couple of studies were made to derive weed thresholds. 

The thresholds for cereal grain crops vary depending on weed species, their 

competitiveness, crop, and treatment costs. Meinert and Mittnacht (1992) found weed 

thresholds for Galium aparine L. ranged from 0.1 up to 2 plants m
-2

. For Alopecurus 

myosuroides HUDS. thresholds of 25-35 plants m
-2

 were detected by Wellmann and 

Feucht (2002). For Apera spica-venti (L.) BEAUV. threshold densities of 10-20 plants m
-2

 

were obtained (Warmhoff and Heitefuss, 1985). Börner (1995) determined thresholds of 1-

2 plants m
-2

 for Cirsium arvense (L.) SCOP. and Polygonum convolvulus L., whereas for 

the most broad leaf weed species, the thresholds are closer to 40-90 plants m
-2

 (Zanin et al. 

1993). These thresholds for weed control have not consequently been changed in relation 

to changes in the price of grain and the costs of weed control, and therefore, they need to 

be used as an approximate guide to decide on weed control methods (Gerhards et al. 2005). 

Additionally, implementation of the estimated weed thresholds into practice showed some 

problems that resulted first and foremost from the heterogeneous weed distribution in the 

fields (Warmhoff 1986). The heterogeneity clearly impedes the treatment decision clearly. 

Decision support systems that perform calculations on the cost-effectiveness of weed 

management under the given circumstances, offering an appropriate management solution 

were developed. So for example Cousens (1985) applied a model to relate yield loss to 

weed density, and Gerowitt and Heitefuss (1990) developed an economic threshold model 

to derive weed thresholds; therein an estimated value for weed density was used. Gerhards 

and Kühbauch (1993) established and tested a model to predict yield loss caused by weed 

competition. Results of this work showed that the degree of weed coverage, the weed 

density, the development stage, and the degree of crop coverage need to be objectively 

measured and considered in order to evaluate precise weed control thresholds. Christensen 
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et al. 2003 developed a decision support system for patch spraying that is suitable for a 

wide range of cereals. It is based on current crop state and weed infestation and helps 

farmers to decide which control treatments are necessary during the growing season. They 

determined the economic optimal herbicide dose with respect to the spatial heterogeneous 

weed distribution, weed competition, and population dynamics. This strategy was tested in 

a five-year experiment and resulted in highest crop yields, lowest soil seed banks, and 

equal weed control costs compared to conventional decision models. Effective decision 

rules for site-specific weed control are not available at present, but they urgently required 

(Dicke and Kühbauch 2006). 

In order to derive valid decision rules for site-specific management, the heterogeneity of 

factors that affect productivity need to be considered. Therefore a new experimental 

design, often described as on-farm research, is needed (Luschei et al. 2001; Leithold and 

Traphan 2006; Dicke and Gebhardt 2007).  

Recently, sensors to measure within-field variation of factors that affect crop yield such as 

soil properties (Corwin and Lesch 2005; Sudduth et al. 2003) and to detect weeds (below-

mentioned) have been developed to provide spatially referenced information. With such 

techniques quantitative thematic information on arable fields can be obtained with high 

spatial resolution. This information layers need to be overlaid and spatially joined in order 

to explain where yield variability comes from. The influences of the co-variables weed and 

soil on yield need to be assessed. Out of this information yield losses due to weed and 

herbicide injury can be defined and valid decision rules for site-specific weed management 

can be ascertained. 

1.1.5 Weed mapping  

Site-specific weed management requires accurate information on weed infestation and 

distribution within agricultural fields. Thus weed distribution needs to be mapped in order 

to know where it makes sense to spray and where herbicide application is not reasonable 

(Warmhoff and Heitefuss 1985). In the following several methods of manual and sensor-

based weed detection are described.  

 

1.1.6.1. Manual mapping 

In the most studies up to this day the weed distribution was mapped manually by means of 

global positioning system (GPS) and geographical information system (GIS) software. 

Several authors used irregular sampling at random successfully (Chauvel et al. 1998). 

Punctual mapping is convenient for a precise detection of weed patches e.g. Cirsium 
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arvense (L.) SCOP., Galium aparine L., and Avena fatua L. (Colliver et al. 1996). 

However, grid sampling is the most frequently used method. Usually a regular grid is 

established in the experimental field, and the spatial distribution and density of emerged 

weed seedlings is assessed by counting the weeds at each grid intersection point (Gerhards 

et al. 1996, 1997a, 2005; Gerhards and Oebel 2006; Dicke et al. 2007; Krohmann et al. 

2006). Different resolutions of sampling grids have been applied. The sampling size is 

determined by cost and is not based on any prior knowledge. In the literature, sampling 

intensities from a few meters up to 50 x 50 m were used, depending on the width of the 

spray boom used for herbicide application (Wilson and Brain 1991; Christensen and Heisel 

1998; Hamouz et al. 2004). Backes and Plümer (2004) showed that heterogeneity on a 

small scale could not be assessed with any of the so far used sampling grids, weed patches 

that are smaller than the grid size may remain undetected (Backes and Plümer 2005). Rew 

and Cousens (2001) and Wyse-Pester et al. (2002) showed also that interpolation methods 

may fail to detect patches that are smaller than the distance between the sampling points. 

Independently of the used method of weed mapping, interpolation is always necessary to 

estimate the weed seedlings density in-between the sampling points. Out of sparely 

distributed observations continuous surfaces can be calculated by the use of deterministic 

or geostatistic methods. Several interpolation methods are used to calculate weed density at 

unsampled locations (e g. Johnson et al. 1995, 1996; Cardina et al. 1996, Gerhards et al. 

1997a, Colbach et al. 2000; Goudy et al. 2001). All interpolation methods are based on the 

assumption that similarity occurs between spatially neighbouring points in the field, thus 

unknown values can be calculated out of the information of surrounding sampling points. 

The Nearest-Neighbour interpolation performs segmentation of the field into polygons, 

each polygon get the same value like the nearest measured point has. It is a local accurate 

interpolation method but not close to reality. Gerhards et al. 1997a used linear 

triangulation, while the absent values are calculated by triangle creation out of the three 

adjacent support points. This interpolation method is local accurate, but very abrupt. 

Inverse-Distance-Weighting considers all support points weighted according to their 

distance to the unknown positions. This is a constant approximative method (Streit 2007). 

Kriging is the generic term for several geostatistic interpolation methods. Kriging 

interpolations are based on linear estimation procedures with spatially weighted average 

determination (Goovaerts 1997). Johnson et al. (1995) and Colbach et al. (2000) used 

kriging to estimate weed distribution at unsampled positions. Heisel et al. (1996) showed 

that kriging based on seedling counts in a sampling grid of 10 x 10 m resulted in a good 
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agreement with actual field situation, but reducing the sampling intensity to 20 x 30 m 

gave a poor agreement. Generally the methodology of manual weed mapping serves the 

purpose of creating weed distribution maps, but is very labour-intensive, time consuming, 

and expensive (Wiles and Schweizer 1999). Additionally interpolations always implicate 

inaccuracies and will never accurately express the reality Backes and Plümer (2004). 

 

1.1.6.2 Sensor-based weed detection 

In order to determine the weed distribution more detailed and more effective, automatic 

sensors for weed detection and imaging technologies for weed identification were 

developed. Brown and Noble (2005) assumed that the absence of an automatic image 

acquisition and analysis technology is the reason why site-specific weed management is 

not yet introduction into practice. Ground based detection technologies using cameras or 

sensors and remote sensing technologies are introduced in the following.  

Lamb et al. 1999 used a remote sensing technique to detected Avena spp. patches in 

agricultural fields with multi-spectral images, Lamb and Brown (2001) ascertained that 

satellite systems at that time were not able to offer the required spatial resolution and 

mission flexibility for practical weed identification. Hyper spectral scanner systems are 

suitable, but they will only be economic on a large scale. Only lower cost multi-spectral 

systems based on digital and video camera technique are affordable. Several approaches 

for image acquisition for automatic weed identification used CCD (charge-couple device) 

cameras for aerial photography. Medlin et al. (2000) applied this technique to map weeds 

in soybean fields, but only high density weed patches could be recognised, which was 

insufficient for any site-specific weed management decision. Another approach was taking 

pictures with a colour camera from a drone, which was flying in-between 10 and 100 

meters high (Vioix et al. 2001), but because of bad light conditions and poor picture 

quality weed species could not be identified with this technique. Rew and Maxwell (2002) 

analysed satellite images and aerial pictures in conjunction with farmers’ information on 

weed occurrence, in order to find appropriate site-specific management decisions. This 

methodology was very time consuming and there was a lack of evaluation algorithms, thus 

no precise management decision could be derived. 

Promising technologies are near-range sensor technologies. Optoelectronic sensors for 

weed detection against a soil or crop residue background were developed by Vrindts and 

de Baedemaeker (1997) and Biller (1998). The different light reflection properties of plants 

and soil are used to discriminate soil, crop and weeds. Reflection intensity of plants 
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depends on water and nutrient conditions, so that the system needed to be calibrated prior 

to every use. Additionally, the optoelectronic sensors are not able to distinguish between 

weed species; they are suitable for weed management at rail tracks but unqualified for 

weed management in agricultural fields.  

Gerhards et al. (1993); Gerhards and Kühbauch (1993); Chapron et al. (1999); Sökefeld et 

al. (2000); Oebel (2004) and Gerhards and Oebel (2006) used digital image analysis for 

automatic weed identification based on shape, colour and texture analysis.  

Several systems are based on CCD colour cameras in boxes with internal illumination 

(Hemming 2000; Downey et al. 2004), the images provided good segmentation of plants 

and background, but the large dimension of the system prohibits the practical exertion. 

Images taken from colour or monochrome cameras without boxes, under natural light 

conditions, were used for shape analysis techniques by Pérez et al. (2000) and Gerhards 

and Sökefeld (2001). Direct solar radiation impaired image quality, thus this techniques for 

weed identification was applicable only to a limited degree. Sökefeld et al. (2007) created 

a mobile bi-spectral camera technique for image acquisition at a speed of up to 10 km h
-1

, 

providing images largely free of background information and a sufficient sample size with 

a spatial resolution of 1 x 3 m in the field. In addition to camera systems creating high 

images with strong contrast between plants and background, fast and robust image analysis 

algorithms to classify the weed species are needed. Gebhardt and Kühbauch (2007) 

developed an algorithm for automatic Rumex obtusifolius L. detection within digital 

images by using colour and texture features and the influence of image resolution. The 

image classification procedure leads to large detection rates (up to 95 %) and only few 

misclassifications.  

Weis and Gerhards (2007) enhanced the weed species identification in digital images by 

using feature extraction with shape features based on skeleton operation, leading to a more 

precise identification of crop and weed, and weed species among each other. Camera 

technology and automatic image analysis are being developed and will be implemented 

into practice soon (Weis and Gerhards 2007). The objective is to establish an intelligent 

sensor system that provides online weed detection, classification, and site-specific 

herbicide application based on economic weed thresholds (Sökefeld et al. 2000). 

1.1.6 Site-specific herbicide application technique 

For this thesis a site-specific herbicide application technique, developed since 1996 and 

built by a working group of the Bonn University in collaboration with Kverneland Group 

(Sökefeld et al. 2000; Dicke et al. 2007) was used, in order to apply herbicides site-
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specifically with varying mixture and dosage. An automated 21 m wide sprayer, divided 

into seven sections of 3 m, was A Differential Global Positioning System (DGPS) provides 

real time location of the sprayer. The sprayer integrates three separated hydraulic circuits 

including tank, spray line and regulation system, allowing it to realise three different 

application maps at the same time. Thus the weeds can be grouped into three target classes; 

for example, grass weeds, broad leaf weeds and a special weed such as Galium aparine L. 

or Cirsium arvense (L.) SCOP., and sprayed with an appropriate selective herbicides. 

Different volume rates, depending on weed density, can be applied by changing the 

pressure in the system. Thus up to three weed thresholds can be set for each target weed 

group. A spray control system is connected to an on-board computer with the application 

maps for the three weed classes. Herbicide mixture can be varied in composition and 

dosage during the application based on the weed thresholds and map information 

(Gerhards and Oebel 2006). This sprayer was used for all experiments of this thesis. 

1.2 Thesis objectives 

The overall aims of this research were to test the site-specific weed management over time, 

to study the spatial and temporal dynamics of weed populations, to evaluate the population 

dynamics of weeds and the interactions between crop and weeds under the site-specific 

weed management. Additionally an experimental approach to create precise decision 

algorithms for site-specific weed management was needed. Three publications resulted out 

of this study. 

 

The first one deals with the population dynamics of two dominant weed species with high 

importance throughout Western Europe: Galium aparine L. and Alopecurus myosuroides 

HUDS. The aim was to ascertain the effects of the site-specific weed management on the 

population dynamics in order to provide more information for population dynamic models 

in order to make them more precise, to predict weed performance under different 

management practices, and to warrant an appropriate decision. The active life cycle from 

emerging to seed production was studied under the influence of the site-specific weed 

control; weed seedling emergence, competition, mortality, biomass, seed production and 

seeds viability were examined. It was hypothesised that the weed density has a 

considerable impact on population dynamics and that fecundity is related to weed biomass. 
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The objective of the second article was to detect the long term effects of site-specific weed 

management, if site-specific weed management leads to an increase in weed density, and if 

weed patches remain stable in density and location over time. Furthermore, to determine 

whether these short-term effects are persistent or if herbicide use reductions in one year 

result in increased use and costs in subsequent years. Data of an eight year study, which 

consists of two full crop rotation cycles, allowed the examination of long-term effects. 

 

The purpose of the third paper was to design an experimental on-farm approach in order to 

explain yield variation caused by within-field heterogeneity of weed density, soil quality 

and herbicide application. The effects of the co-variables needed to be quantified 

separately in order to know where yield variability comes from. Out of this information 

yield losses due to weed and herbicide injury can be defined and valid decision rules for 

site-specific weed management can be ascertained.  
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2.  Population dynamics of Galium aparine L. and Alopecurus 

myosuroides HUDS. under the influence of site-specific weed 

management 

 

Abstract – In order to study weed population dynamics under the influence of site-specific 

weed management, data on population dynamics of Catchweed bedstraw (Galium aparine 

L.) and Blackgrass (Alopecurus myosuroides HUDS.) were collected from 2005 to 2007 in 

maize, sugar beet, winter and spring cereals. Assessed parameters were weed seedling 

emergence, crop-weed competition, seedlings mortality, herbicide efficacy, seed 

production and viability. It was found that most of the tested population parameters were 

weed density dependent. With increasing weed density weed biomass and fecundity 

increased in this study. Seed viability showed no correlation to density biomass or seed 

production rate. All findings support that weed density has to be considered in weed 

management strategies. 

 

Keywords: competition ⋅ emergence ⋅ mortality ⋅ population dynamic model ⋅ seed bank ⋅ 

seed production ⋅ viability 

2.1 Introduction 

The basis for a successful practical weed management is a comprehensive understanding of 

weed biology and the interactions in a cropping system. Information on spatial and 

temporal dynamics of weeds is needed to control weeds effectively, and to prevent 

colonisation of new areas. Weed population dynamics in arable fields are mainly 

influenced by intrinsic parameters such as population density and longevity of the seeds. 

Additionally, several extrinsic factors such as soil characteristics, weather conditions, soil 

cultivation and management are affecting population dynamics. In the recent past several 

population dynamic models have been developed to describe population dynamics, and 

study or rather simulate long-term effects of weed populations in agricultural fields (Holst 

et al. 2007). These models are strongly needed to precise weed management. In general 

they are describing the weed populations quite well, but the agreement between simulation 

and the measurement in the field was not sufficient (Zwerger and Hurle 1990) and there is 

still a lack of knowledge on some population parameters (Cousens 1995; Kropff et al. 

1996). 
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The aim of this study was to provide more information for population dynamic models for 

two dominant weed species widespread throughout Western Europe: Galium aparine L. 

and Alopecurus myosuroides HUDS. Already low densities of G. aparine are causing crop-

weed competition for water, light, and nutrients (Wilson and Wright 1990) and an increase 

in moisture in field and grain implicating non-uniform maturation. Additionally the prickly 

stems, leaves and fruits are hindering harvest techniques and leading to contamination of 

harvest grain with weed seeds resulting in cleaning costs. Alopecurus myosuroides is the 

dominant monocot weed across agricultural fields in Western Europe. It primarily occurs 

in winter cereals. The plants are competing for resources and are plant disease vectors (e.g. 

Septoria tritici is transmitted by A. myosuroides). The seeds of A. myosuroides are viable 

up to eight years in the soil seed bank. Usually A. myosuroides is managed by preventive 

tillage and chemical weed control. But in recent years less effect of herbicides was 

reported and the first herbicide resistant A. myosuroides biotypes were identified in 

Germany (Cocker et al. 1999). 

Weeds life cycle can be separated into the active lifecycle (growing plants) and the passive 

(dormant seeds and underground buds) lifecycle (Fernandez-Quintanilla 1988). 

Information on the passive life cycle that includes the seed losses in the seed bank and the 

proportion of seedlings emergence are already well studied for A. myosuroides and G. 

aparine (Kemmer et al. 1980, Röttele 1980, Zwerger and Hurle 1988; 1990, Amann 1991). 

This research focuses on the active life cycle, from emerging to seed production, faced 

with environmental conditions, diseases, competition, and herbicide application. 

2.2 Materials and methods 

2.2.1 Study site 

Field trails were carried out from 2005 to 2007 at two Hohenheim University research 

stations. Field 1 (1.8 ha) and 2 (1.6 ha) were located at Heidfeldhof (48°42`N; 9°11`E), 

about 400 m above sea level, with an average temperature of 8.5°C and an annual 

precipitation of 685 mm. Field 3 (6.3 ha) was located at Ihinger Hof (48°44`N; 8°55`E), 

481 m above sea level, with an average temperature of 7.9°C and average rainfall about 

690 mm, respectively. The soil texture at both study sites is a silty clay loam. 

2.2.2 Weed mapping 

The population dynamic parameters were estimated in the three arable fields (crop rotation, 

sowing and herbicide application date are shown in Table 1). In 2006 field 2 was separated 
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in two fields and sugar beet and maize was grown. The weeds were manually counted 

along a permanent 8 x 8 meter raster, using four 0.1 m
2
 quadrants, abutted next to each 

other (135 sampling points per ha). During metering a GPS with real time kinematical 

satellite navigation provided a typical nominal accuracy of 1 centimetre ± 2 ppm 

horizontally and 2 centimetres ± 2 ppm vertically, thus a high repeatability was secured. In 

every year the weed distribution and density were assessed prior to herbicide application, 

and about three weeks after herbicide application. The sampled weed densities from 0.4 m
2 

were extrapolated to 1 m
2
. Based on these data weed distribution and herbicide application 

maps were created using linear triangulation interpolation (Gerhards et al. 1997a) and a 

geographical information system (ArcGIS by ESRI). 

 

Table 1: Overview of crop rotation, sowing and herbicide application dates in the 

experimental fields. 

  2005 2006 2007 

field 1  

crop 

sowing date  

herbicide application date 

winter wheat 

10/06/04 

04/05/05 

winter barley 

09/19/05 

10/25/05 

sugar beet 

04/03/07 

04/27/07 

     

field 2 

crop 

sowing date  

herbicide application date 

spring barley 

03/22/05 

05/02/05 

sugar beet 

04/19/06 

04/24/06 

  maize 

05/04/06 

05/24/06 

winter wheat 

10/16/06 

03/28/07 

      

field 3 

crop 

sowing date  

herbicide application date 

maize 

05/02/05 

06/02/05 

maize 

04/26/06 

06/06/06 

maize 

04/24/07 

05/31/07 

  

2.2.3 Herbicide application 

The date of herbicide application depended on weather conditions, crop, and herbicide; at 

the optimal date for the best effect of the herbicides for the most part weeds were in 

between seedling stage and the begin of tillering. Herbicide application was done site-

specifically with a DGPS-controlled sprayer (Gerhards and Oebel 2006), based on the map 

information. The used active ingredients are shown in Table 2. The fields were treated with 

the herbicide doses: no herbicides at all 200 l ha
-1

, 245 l ha
-1

 or 290 l ha
-1

. For weed control 

thresholds based on regional guidelines and farmers former experience were set. If the 

threshold weed densities were exceeded, herbicide application was made. In maize the 

thresholds 1/5/10 were set against broad leaf weeds as well as for grass weeds. That means 

that it was not sprayed if the threshold of 1 plant m
-2

 was not exceeded, if there were more 
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than one plant m
-2

 200 l ha
-1

 were sprayed, from > 5 plants m
-2

 245 l ha
-1

 were applied and 

from > 10 plants per m
2
 the full dose of 290 l ha

-1
 were sprayed. In winter wheat the grass 

weed thresholds were set at 10/25/40 and for broad leaf weeds 10/30/50. In sugar beet the 

first application was made for the whole field; and in further applications grasses were 

sprayed from 1/5/10 and broad leaf weeds if 1 plant per m
2
 was exceeded. In sugar beet in 

some years an additional treatment with a third herbicide against Cirsium arvense (active 

ingredient Clopyralid) was needed (threshold: 1 plant m
-2

). In winter- and spring barley no 

weed thresholds were used. 

 

Table 2: Active ingredients used for site specific weed control in the three experimental 

fields from 2005-2007. 

crop active ingredients 

maize  nicosulfuron 

 sulcotrione + bromoxynil 

winter wheat clodinafop-propargyl + cloquintocet-mexyl 

 fluroxypyr + florasulam + metsulfuron + carfentrazone or  

thifensulfuron + metsulfuron-methyl + florasulam 

sugar beet  haloxyfop-R 

 phenmedipham, ethofumesat, desmedipham 

 clopyralid 

winter barley flufenacet + diflufenican 

spring barley tribenuron methyl 

 

2.2.4 Population dynamic parameter estimation 

Seedlings mortality is defined as the seedlings that died after emerging due to diseases, 

competition and environmental conditions; it was estimated at sampling locations where no 

herbicide application was done. The herbicide efficacy was assessed by calculating the 

difference between the weed density before herbicide application and the density of 

surviving weeds, about three weeks after spraying, at all sampling points where chemical 

weed control was performed. New weed seedlings emergence after herbicide application 

was not considered. In order to estimate the seed production whole weed plants were 

harvested during maturation and their densities of growth were listed. Since weed seeds do 

not ripe simultaneously, not all seeds are mature at the same time. Whole plants were 
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harvested when most of the seeds were mature and before they started to drop off. To 

prevent the fall off of the A. myosuroides seeds flimsy envelopes were imposed on the seed 

heads during maturation. Biomass of the weeds was measured after drying the whole plants 

at 40°C for two weeks. Seed production per plant was assessed and their viability was 

measured by tetrazolium test (after ISTA Rules, Leist and Krämer 2003). 

2.2.5 Data analysis 

Weed seedlings emergence and weed distribution was monitored over the period of three 

years. Seed production was correlated with weed density and weed biomass. Additionally, 

it was tested if seed viability is correlated with the seed production as well, if fecundity is 

increasing or rather decreasing with rising seed production. The statistical analysis was 

made with SPSS. Regression analysis was used to examine the relation of the population 

dynamic parameters, and the coefficient of determination (r
2
) was estimated to explain the 

correlation between the observer population dynamic parameters. 

2.3 Results and discussion 

Weed distribution was spatially heterogeneous in all fields. Besides the two observed 

weeds other weed species such as Lamium purpureum L., Matricaria chamomilla aut. non 

L., Chenopodium album L., Thlaspi arvense L., Amaranthus retroflexus L., Viola arvensis 

MURR. Veronica persica POIRET, Stellaria media (L.) VILL., Capsella bursa-pastoris 

(L.) MED. and Cirsium arvense (L.) SCOP. were present in lower densities in the 

experimental fields. Average weed densities over the three years are shown in Figure 

2 and 3. 
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Figure 2: Seedlings emergence of Galium aparine in the years 2005-2007 (error bars 

indicate standard deviation). 
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Figure 3: Seedlings emergence of Alopecurus myosuroides in the years 2005-2007 (error 

bars indicate standard deviation). 
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In all three fields the weed seedlings emergence of A. myosuroides was higher than the one 

of G. aparine. The weed seedling emergence ranged up to 228 G. aparine seedlings m
-2

 in 

winter barley and the maximum density for A. myosuroides was 358 seedlings m
-2

 in 

winter wheat. The weed seedling emergence is a function of the seed density in the soil 

seed bank (Moray 2005). According to Leguizamón and Roberts (1982) 3 % of the 

apparently viable seeds in the 0-10 cm soil layer emerge in spring, independently of crop. 

Roberts and Ricketts (1979) found that the weed seedlings represented 3-6 % of the 

number of seeds in the top 10 cm of soil, and Zhang et al. 1998 estimated 3-7 % seedling 

emergence from the active soil seed bank. Granted that 3-6 % of the viable soil seed bank 

germinates, the soil seed bank in field 1 counted from 100 up to 2500 seeds, in field 2 

around 300 to 500 seeds and in field 3 about 3-8 A. myosuroides seeds per m
2
 in the top 10 

cm of soil. For G. aparine it varied in between 100 and 250 seeds m
-2

 in field 1, around 30-

20 seeds m
-2

 in field 2 and about 5-14 seeds m
-2

 in field 3. These differences are 

explainable by the history of crop rotation and field management. Due to common weed 

management field 1 and 2 show an ordinary weed appearance; field 3 is known to be 

slightly infested because of an intensive weed management in the past. 

The seedlings mortality was assessed when no herbicide application was done. According 

to the weed threshold, most of the fields were already sprayed when low weed densities 

occur. In such a way the natural mortality could just be evaluated in winter wheat where 

the thresholds were set higher and sufficient sampling points were not treated. Average 

mortality of A. myosuroides in winter wheat was 35 % and 26 % for G. aparine, 

respectively (Table 3 and 4).  

 

Table 3: Seedlings mortality, herbicide efficacy and seed production of Galium aparine 

(GALAP). 

seed production [seeds/plant] 

single plant patch 

 
seedlings 

mortality 

herbicide 

efficacy 
 >5 GALAP m

-2
 

winter cereals 0.26 0.93 356 430 

spring cereals - 0.28   59  89 

maize - 0.58     -    - 

sugar beet - 0.66 168 683 
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Table 4: Seedlings mortality, herbicide efficacy and seed production of Alopecurus 

myosuroides (ALOMY). 

seed production [seeds/plant] 

single plant patch 

 
seedlings 

mortality 

herbicide 

efficacy 
 >5 ALOMY m

-2
 

winter cereals 0.35 0.96    149   651 

spring cereals - 0.67    218   294 

maize - 0.72 2,536        - 

sugar beet - 0.50 3,640 4,230 

 

Kemmer et al. (1980) estimated an average mortality rate for A. myosuroides of 26 %. 

Röttele (1980) found that the seedling mortality of G. aparine goes up to 52 % and it is 

highly depending on crop and weed density. Zwerger and Hurle (1988, 1990) found for G. 

aparine a mortality of 23-66 % depending on crop. Generally seedlings mortality depends 

on the crop because of higher suppression; in cereals it is higher than in row crops (Röttele 

1980). Mortality of G. aparine due to competition seems to be lower in winter cereals. The 

herbicide efficacy of the site specific weed management against G. aparine and A. 

myosuroides, over the three years in the three fields, is detailed shown in Figure 4.  



Chapter II                  Population dynamics of Galium aparine and Alopecurus myosuroides 

                                                                                                                         22 

Galium aparine

0

25

50

75

100

w
in

te
r w

he
at

 ´0
5

sp
rin

g 
ba

rle
y 
´0

5

m
ai
ze

 ́ 05

w
in

te
r b

ar
le
y 
´0

6

m
ai
ze

 ´0
6

su
ga

r b
eet

 ´0
7

w
in

te
r w

he
at

 ´0
7

m
ai
ze

 ́ 07

h
e
rb

ic
id

e
 e

ff
ic

a
s
y
 i

n
 [

%
]

Alopecurus myosuroides

0

25

50

75

100

w
in

te
r w

he
at

 ´0
5

sp
rin

g 
ba

rle
y 
´0

5

m
ai
ze

 ´0
5

w
in

te
r b

ar
le
y 
´0

6

m
ai
ze

 I 
´0

6

m
ai
ze

 II
 ́ 06

su
ga

r b
eet

 ´0
7

w
in

te
r w

he
at

 ´0
7

m
ai
ze

 ´0
7

h
e
rb

ic
id

e
 e

ff
ic

a
s
y
 i

n
 [

%
]

 

Figure 4: Herbicide efficacy rates in various crops against Galium aparine and Alopecurus 

myosuroides in the years 2005-2007 (error bars indicate standard deviation). 

 

In this research the herbicide efficacy increased in decreased from year to year in between 

28 and 96 %. It is evident, that herbicide efficacy is depending on several factors, such as 

weed density, weed threshold used, herbicides spectrum of activity and weather conditions. 

Averaged the efficacy of site-specific weed management was quite satisfying over the 

three years of study. Mean values of all estimated data on population dynamics for each 

crop are shown in Table 3 and 4. In this research herbicide efficacy was higher in cereals 

than in row crop. Herbicide efficacy is density-dependent, too. Kemmer et al. (1980), 
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Weidenhamer et al. (1989) and Weidenhamer (1996) found that more weeds survived the 

herbicide application the higher weed density was, and obtained lower herbicide efficacies 

with increasing weed densities. Herbicide efficacy is conditioned by a number of factors 

such as the development stage of the weeds, soil, weather, and growth conditions. At very 

high weed densities it could happen, that an insufficient amount of active ingredient hits 

the target weed plants, in this case more herbicide is required to obtain equivalent fresh 

weight reductions (Winkle et al. 1981). Seed production went up to 2,638 G. aparine seeds 

per plant and 16,258 seeds per A. myosuroides plant (Figure 5).  
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Figure 5: Weed density and seed production of Galium aparine and Alopecurus 

myosuroides in various crops. 

 

It was presumed, that individual weeds without competition evolve better and produce 

more seeds but this study showed opposed results. The coefficient of determination (r
2
) for 

weed density and seed production was 0.05 for G. aparine, 0.19 for A. myosuroides in 

winter wheat (Figure 6), and 0.11 for G. aparine in spring barley, and the highest 

coefficient of determination achieved G. aparine in sugar beet (0.48). Statistical analysis 

achieved no significant positive correlation, but there is a slight indication that the weeds 

in higher growth densities rank and benefit themselves reciprocative; and they might need 

each other to entwine around themselves or support one another. Further studies should 
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provide more experimental data on this issue in order to survey this result. Seed production 

increased with increasing biomass (r
2
 = 0.73) (Figure 6).  
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Figure 6: Correlation of weed biomass and seed production of Galium aparine and 

Alopecurus myosuroides over all crops. 

 

The stronger the weeds the more fecund they were and the more seeds were produced.  

Weed seed viability of G. aparine and A. myosuroides is shown in Figure 7. Seeds viability 

was rather good in this study; it varied from zero, in one singular case, up to 100 %; 

averaged it was 78 % for G. aparine and 86 % for A. myosuroides. Data showed no 

correlation to weed density or seed production, so that this study could not prove that seeds 

viability is decreasing with increasing seed production. 
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Figure 7: Seed viability of Galium aparine (GALAP) and Alopecurus myosuroides 

(ALOMY) in winter and spring cereals. 

 

Obtained weed data can be integrated into computer models providing valuable insights 

that are needed to understand dynamics of weed populations and the effects of a cropping 

system on the demography of weeds; in order to manage weed populations sustainable. 

The results of this research showed the high influence of weed density on the population 

dynamic parameters, seedlings emergence, mortality, herbicide efficacy, and seed 

production. Up to this day, variation in weed density was not considered in weed 

population models, but it should be considered to precise decision support systems to 

warrant an economical and ecological sensibly herbicide application. 
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3.  Can short-term gains in site-specific weed management be 

sustained over multiple years? 

 

Abstract – In order to test long-term effects of site-specific weed management on 

population dynamics of blackgrass (Alopecurus myosuroides HUDS.) three arable fields 

were studied over a period of eight years. Emergence of A. myosuroides was assessed from 

1999 until 2006 in a crop rotation of winter wheat, winter barley, maize and sugar beet at 

the Bonn University Research Station Dikopshof, in Germany. Herbicides were applied 

site-specifically with a DGPS-controlled patch sprayer based on weed distribution and 

density maps. Weed distribution was spatially and temporally heterogeneous from year to 

year. In two of the observed fields, the average weed density remained relatively stable 

through the eight years of study and in one field it even decreased. Site-specific weed 

management including competitive small annual grains in the crop rotation appears to be 

effective for long term control of A. myosuroides. 

 

Keywords: crop rotation ⋅ weed distribution ⋅ Alopecurus myosuroides HUDS. ⋅ patch 

spraying ⋅ long-term data  

3.1 Introduction 

Weed control has proved to save around 34 % of worldwide yield (Oerke, 2006). Among 

all strategies of weed control herbicides play an important role. However, herbicide 

application leads to economic costs and environmental risks. Therefore, site-specific weed 

management is a promising approach to minimize these shortcomings. Over the past years 

several studies of site-specific weed control found that this practice is reasonable and has 

been successfully implemented in research experiments resulting in a significant reduction 

of herbicide use, satisfying efficiencies and environmental benefits (Cousens, 1987; 

Thompson et al. 1991; Johnson et al. 1995; Gerhards et al. 1997a; Dammer et al. 2003; 

Timmermann et al. 2003). Currently, sensors for precise and powerful weed detection are 

under way (Gerhards and Christensen, 2003), that site-specific weed control will be ready 

for implementation in the field soon. Gerhards and Oebel (2006) found that herbicide use 

following a map-based approach can be reduced in winter cereals by 20-79 %. 

Timmermann et al. (2003) achieved herbicide reduction of up to 90 % for grass weed 

herbicides in winter cereals and Gerhards and Christensen (2003) realised herbicide 
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savings of 78 % in maize and 41 % in sugar beet. Most of these studies are based on short-

term data, studies in which current year infestations guided herbicide use and subsequent 

savings. 

To test the profitability of the site-specific weed management a dataset consisting out of 

three fields and eight years was consulted for this study. This work focuses on blackgrass 

(Alopecurus myosuroides Huds.), the dominant monocot weed in agricultural fields across 

Western Europe. Blackgrass exhibits similar germination requirements like winter cereals; 

it primarily germinates in winter crops in autumn, but as well in spring. It germinates 

between 10°C and 15°C out of the top ten centimetres of soil. Narrow winter cereal based 

crop rotations, that offer ideal evolution potentials for grasses, are common. Blackgrass is 

competing for resources and plant disease vector (e.g. Septoria tritici). Blackgrass seeds 

are viable up to eight years in soil seed bank. Seed production of blackgrass occurs during 

maturation and before harvest of winter wheat, maize and sugar beet, in winter barley 

blackgrass seeds were produced contemporaneously with crop harvest. Typically 

blackgrass is managed using soil tillage and chemical weed control (IPU, ALS- and 

ACCase-Inhibitors), but in recent years less effect of herbicides towards blackgrass was 

reported and the first herbicide resistant biotypes were identified in Germany (Cocker et al. 

1999).  

Objective of this study was to detect if site-specific weed management does lead to an 

increase in weed density at locations where no herbicides or reduced rates were applied 

and if high density patches are remain stable in density and location overtime and if so, for 

how long. Furthermore, to make aware whether these short-term effects are persistent or 

herbicide use reductions in one year result in increased use and costs in subsequent years. 

Since the extent of herbicide use is dictated by the distribution and abundance of the target 

weed, blackgrass; the answer to the question of short vs. long-term benefits of site-specific 

management is driven by the population dynamics. This eight year study, which consists of 

two full crop rotation cycles, allows examining long-term effects. 

3.2 Material and Methods 

3.2.1 Study site 

The studies were initiated in 1999 on three arable fields at the Bonn University Research 

Station Dikopshof in Germany (50°48`N; 6°57`E). Winter wheat (Triticum aestivum L.), 

winter barley (Hordeum vulgare L.), maize (Zea mays L.) and sugar beet (Beta vulgaris L.) 

were rotated in the experimental fields (Table 5). The soil type at the study site is a silty 
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loam, the average temperature is 9.7°C and the average rainfall is 630 mm. Prior to the 

onset of the experiment in 1999 these three fields had been managed for bulk production in 

the two years preceding the initiation of the study and had weed infestations typical of 

fields managed with this crop rotation. The experimental fields were ploughed every year. 

3.2.2 Data collection 

The spatial distribution and the density of emerged blackgrass seedlings were manually 

sampled along a 7.5 x 15 meter grid, this means about 97 sampling locations per ha. The 

same locations were sampled in each year from 1999 to 2006. The weed density was 

assessed immediately prior and about three weeks after herbicide treatment, using four 0.1 

m
2
 quadrates abutted next to each other and centred on each grid intersection. Data were 

converted into plants per m
2 

for data analysis. Inverse Distance Weighting (IDW) was used 

to estimate weed seedling density at unsampled positions. Weed patches in this study are 

defined as clear visual weed aggregations with densities higher than 25 plants per m
2
. 

3.2.3 Herbicide application 

Due to the spatially-heterogeneous nature of the blackgrass infestation site-specific 

herbicide application was implemented. Decision rules were based on regional guidelines 

and an economic weed control threshold model depending on field crop, weed infestation 

and weather conditions. Weed control thresholds were set (Table 5) and herbicide dose was 

reduced depending on weed density. Linear triangulation was used to create application 

maps out of the weed distribution and density data. A 21 m wide Differential Global 

Positioning System (DGPS)-controlled multiple boom sprayer (Kverneland Group) was 

used for herbicide application. This sprayer is guided by the application map and varies the 

herbicide mixture and dosage during application based on map information. Rates were 

regulated by varying pressure and volume delivered by the sprayer. Broadleaf weeds were 

managed according to custom, using an appropriate herbicide group. 
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Table 5: Experimental fields, field size, crop rotation and weed control thresholds (in 

plants m
-2

) for A. myosuroides used in the experimental fields from 1999 until 2006 at the 

Bonn University Research Station Dikopshof, Germany. 

 Year Crop Low Medium Full 

Field A 1999 Winter barley 15 25 50 

5.3 ha 2000 Maize 3 6 25 

 2001 Sugar beet 10 24 49 

 2002 Winter wheat 10 20 30 

 2003 Winter barley 10 15 20 

 2004 Sugar beet 3 10 25 

 2005 Winter wheat 10 20 30 

 2006 Winter barley   1 

Field B 1999 Winter wheat  20 50 

2.4 ha 2000 Winter barley 15 30 50 

 2001 Maize 4 10 20 

 2002 Sugar beet   1 

 2003 Winter wheat 3 5 15 

 2004 Maize 5 10 25 

 2005 Spring barley 10 25 40 

Field C 1999 Sugar beet 15 30 50 

5.8 ha 2000 Winter wheat 19 35 50 

 2001 Winter barley 15 30 50 

 2002 Maize   5 

 2003 Sugar beet   1 

 2004 Winter wheat 3 5 15 

 2005 Winter barley 10 20 30 

 2006 Maize   1 

 

The target weed blackgrass was sprayed separately with adequate herbicides (Table 6). 

Herbicide selection was made based on weed infestation, stage of development, 

compatibility of the crop, atmospheric conditions and farmers’ former experiences 

(Gerowitt et al. 1988). Unless the threshold weed density was exceeded no herbicide was 

applied. Three different volume rates were sprayed against blackgrass. 
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Until 2003 300 l ha
-1

 was the full dose, the medium label was 240 l ha
-1

 and the low dose 

180 l ha
-1

. Normally, winter barley was sprayed in autumn; the other crops were sprayed in 

spring or early summer. Since autumn 2003, by reason of the development of a new 

sprayer, lower rates were used. The full dose was 290 l ha
-1

, medium 245 l ha
-1

, and the 

lowest 200 l ha
-1

.
 

 

Table 6: Application date and grass weed herbicides (active ingredient ha
-1

 by full dose) 

used in the experimental fields (A, B, and C) from 1999 until 2006 at the Bonn University 

Research Station Dikopshof in Germany. 

 Crop Date Herbicide (active ingredient ha
-1

) 

A Winter barley 03/16/1999 750 g Bifenox + 924 g Mecoprop-P + 1500 g Isoproturon 

 Maize 05/26/2000 600 g Bentazon + 600 g Terbuthylazin + 12.5 g Rimsulfuron 

 Sugar beet 05/22/2001 78 g Haloxyfop-R 

 Winter wheat 03/12/2002 1500 g Isoproturon +14 g Carfentrazone-ethyl + 600.3 g Mecoprop-P 

 Winter barley 10/24/2003 1200 g Isoproturon + 156.25 g Diflufenican + 1500 g Isoproturon 

 Sugar beet 04/29/2004 120.95 g Clethodim 

 Winter wheat 11/02/2004 1500 g Isoproturon 

 Winter barley 10/21/2005 1500 g Isoproturon 

  04/06/2006 60 g Pinoxaden und 15 g Cloquintocet-mexyl 

B Winter wheat 04/23/1999 500 g Bifenox + 616 g Mecoprop-P + 1400 g Isoproturon 

   05/12/1999 90 g Mefenpyr + 76.32 g  Fenoxaprop-P (only in weed patches) 

 Winter barley 03/22/2000 1400 g Isoproturon 

 Maize 05/30/2001 7.5  g Rimsulfuron + 15 g Prosulfuron + 300 g Bromoxinil 

 Sugar beet 04/30/2002 187.5 g Fluazifop-p-butyl 

 Winter wheat 03/10/2003 1250 g Isoproturon + 14 g Carfentrazone-ethyl + 600.3 g Mecoprop-P 

 Maize 05/25/2004 7.5 g Rimsulfuron 

 Spring barley 04/22/2005 75g Mefenpyr + 63.6 g Fenoxaprop-P 

C Sugar beet 04/30/1999 52 g Haloxyfop-R 

 Winter wheat 03/20/2000 1050 g Isoproturon + 25 g Diflufenican + 187.5 g Ioxinyl + 234 g Mecoprop-P 

 Winter barley 11/15/2001 100 g Diflufenican + 250 g Flurtamone + 1250 g Isoproturon 

 Maize 05/30/2002 12.5 g Rimsulfuron + 666 g Terbuthylazin + 300 g Bromoxinyl 

 Sugar beet 05/13/2003 187.5 g Fluazifob-p-buthyl 

 Winter wheat 03/15/2004 1500 g Isoproturon 

 Winter barley 11/02/2004 1500 g Isoproturon 

 Maize 06/05/2006 10 g Rimsulfuron 

 

 

 



Chapter III                                                            Long term site-specific weed management 

                                                                                                                         34 

3.2.4 Data analysis 

Scale for the success of site-specific weed control in this work was the weed density in the 

fields. Out of the weed seedling data, weed distribution and density maps were created 

using ESRI ArcGIS Software. In order to test the stability of the weed patterns and to 

determine whether short-term effects are persistent the weed distribution and herbicide 

application decisions were monitored over eight years. A difference map approach was 

used to quantify the degree of stability of the weed aggregations. Weed patches were 

observed in order to analyse their change in density and location under the influence of 

site-specific weed control. The maps identify how often high density patches remain high 

and low density patches remain low, disappear or increase. Furthermore herbicide savings 

were estimated in comprehensive analysis in order to calculate the economic and 

environmental effects of the site-specific weed control. 

3.3 Results 

The spatial distribution of A. myosuroides seedlings in the experimental fields was always 

heterogeneous and varied depending on crop and weather conditions. Figures 7, 8, and 9 

show the blackgrass density in the three fields immediately before (T1) and about three 

weeks after herbicide application (T2). The weed density increased and decreased from 

year to year depending on crop and their competitiveness. The density varied from 2.5 

weeds per m
2
 to 280 in winter cereals, 800 in sugar beet and up to 2500 in maize. The 

blackgrass density in row crop and subsequent years was always higher than in winter 

cereals. 
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Figure 8: Blackgrass distribution and density (in plants m
-2

) in field A before (T1) and 

about 3 weeks after herbicide application (T2) from 1999 until 2006. 
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Figure 9: Blackgrass distribution and density (in plants m
-2

) in field B before (T1) and 

about 3 weeks after herbicide application (T2) from 1999 until 2006. 
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Figure 10: Blackgrass distribution and density (in plants m
-2

) in field C before (T1) and 

about 3 weeks after herbicide application (T2) from 1999 until 2006. 
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In field A and B the average weed density remains relatively stable from year to year 

(Figure 11); in field C the mean of the weed density even decreases. During the eight years 

studied, the mean density of A. myosuroides remains in between 3 and 15 plants per m
2
. 
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Figure 11: Blackgrass density from 1999 until 2006 compared in the three fields [dotted 

line indicates the ecological threshold of 25 A. myosuroides plants m
-2

]. 

 

High density weed patches, with densities higher than 25 plants per m
2
, consistently recur 

over the years at the same areas in the experimental fields (Figure 8, 9, and 10); they were 

mostly stable in density and location. Within the weed patches high pixels remain high and 

low pixels remain low or disappear. Total area of A. myosuroides aggregations in the three 

fields remains in between 0-16 % expanse (Table 7).  
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Table 7: Number of blackgrass plants in the fields, relative patch area (%), mean, standard 

error and maximum blackgrass abundance in the patches (plants m
-2

). 

 

  1999 2000 2001 2002 2003 2004 2005 2006 

Field A Total field 1,453 715 5,513 3,808 4,783 4,396 5,925 7,068 

 Patch area % 3.54 0.39 10.61 5.30 7.86 10.81 9.63 16.70 

 Patch mean 39 31 56 42 90 44 75 59 

 SE 2.66 1.25 8.86 2.87 8.28 2.19 9.49 3.31 

 Patch max. 75 33 500 83 280 90 253 145 

Field B Total field 1,485 1,048 448 870 2,110 1,776 2,538 290 

 Patch area % 4.20 3.78 - 1.26 8.82 3.36 10.08 - 

 Patch mean 42 39 - 33 46 35 47 - 

 SE 3.80 4.60 - 1.67 4.65 2.24 4.08 - 

 Patch max. 58 65 - 35 113 48 100 - 

Field C Total field 27,720 4,978 5,030 6,783 1,965 6,995 3,240 13 

 Patch area % 41.98 6.67 7.93 7.21 3.06 10.81 0.72 - 

 Patch mean 107 41 42 97 61 34 49 - 

 SE 6.95 2.05 2.53 61.63 7.92 1.06 11.93 - 

 Patch max. 800 70 108 2500 125 80 84 - 

 

The herbicide efficacy or rather the weed reduction from T1 to T2 was satisfying in each 

year. Weed density did not increase at locations where no herbicides or reduced rates were 

applied. Herbicide use (Table 8) and costs did not increase in subsequent years. The site-

specific weed control resulted in high herbicide saving rates. 
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Table 8: Percentage area sprayed in the experimental fields. 

 Threshold 1999 2000 2001 2002 2003 2004 2005 2006 Total 

Field A full 0 0 4 3 10 11 7 63  

 medium 3 7 8 6 1 13 5 0  

 low 3 4 13 11 4 22 12 0  

 Total 6 11 26 21 14 46 24 63 26 

Field B Full 1 1 0 57 15 3 0 -  

 Medium 5 1 2 0 23 27 3 -  

 Low 0 6 13 0 16 18 27 -  

 Total 6 8 15 57 54 48 30 - 31 

Field C Full 26 1 2 41 33 28 1 1  

 Medium 12 3 4 0 0 39 1 0  

 Low 15 10 11 0 0 12 9 0  

 Total 54 14 16 41 33 80 10 1 35 

 

 

In winter barley 84 %, winter wheat 75 %, maize 80 % and sugar beet 61 % on average 

were saved due to site-specific weed control (Figure 12). In average over the long run 

about 26-35 % of the experimental fields were sprayed. 
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Figure 12: Herbicide savings average over eight years in four fields [error bars indicate 

standard deviation]. 
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3.4 Discussion 

The results of this study restate that weeds are heterogeneously distributed in agricultural 

fields and confirm the need of site-specific weed control (Gerhards et al. 1997b). Marshall 

(1988) proved that an amount of at least 18 sampling points per ha is required to warrant 

precise estimations of the mean grass weed density in the field, so that the sampling 

intensity in this research (97 sampling points ha
-1

) was quite sufficient. 

The weed germination and density in this research varied depending on weather and crop 

conditions. So for example in 2001 in early summer there were low rainfall and high 

temperatures, so that the weed germination in field B in maize was low, and in spring 1999 

reigned optimal weather conditions for A. myosuroides germination. Weed abundance in 

row crops such as sugar beet and maize was always higher than in winter wheat and winter 

barley. Due to the wider spacing between crop rows, weed competition is higher thus sugar 

beet and maize are less competitive than winter cereals. The higher weed occurrence in and 

after row crops was embanked by suppression of cereals in the following years. Primarily 

the buffering effect from winter cereals drove weed density down again (Legacy effect). 

This fact clarifies the need of adequate crop rotations. Weed thresholds have to be varied 

with the competitiveness of the crop; in less competitive crops such as sugar beet and 

maize they were set lower than in cereals in this experiment. 

Estimation of the profitability of the weed management was made on the basis of weed 

seedlings emergence: at some locations the situation remains stable, ameliorated or was 

getting worse. In two of the observed fields, the average weed density remained stable over 

the eight years of the study, while in the third field the mean blackgrass density declined. 

Out of this data consequences for further decision algorithms for the site-specific weed 

control could be drawn. In the long run the average A. myosuroides density remained under 

25 plants m
-2

, Warmhoff and Heitefuss (1984) obtained a weed threshold of 25 plants per 

square meter up to this level A.myosuroides can be tolerated without a significant yield 

loss. 

Earlier than this study started persistent weed patches already existed. Some A. 

myosuroides populations persisted in the experimental fields, even through effective 

herbicide rates were sprayed every year. These patches were increasing and decreasing in 

weed density and their spread shifts from year to year. These patches occur in elliptic 

pattern, were increasing and decreasing in weed density and their spread shifts from year to 

year. 
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The weed patch centres were rather stable in this study, but the in-patch densities and the 

patch frames were spatially varying over the years, similar results obtained Mortensen and 

Dieleman (1998) and Dieleman and Mortensen (1999). Wilson and Brain (1991) monitored 

the incidence of seed heads for ten years. Blackgrass weed patches were persistent in 

cereal fields during 10 years, although effective herbicides were applied every year.  

The success of the site-specific weed control was always satisfying. The weed reduction in 

between T1 and T2 is not really a measures value for the herbicide efficacy, because in T2 it 

was not distinguished in between weeds that survived the herbicide application and new 

emerging weeds, so that the real measurement of herbicide efficacy might be higher than 

the weed reduction from T1 to T2 was. 

Locations in the field where reduced rates or no herbicides were applied according to the 

thresholds did not increase in weed populations within the eight years of study. But already 

existing weed patches could not be extinguished due to site-specific weed control, the high 

density patches were persistent overtime. This is a deficit of the site-specific weed 

management. But it might be more important that no new patches arose during the eight 

years of study. 

Enormous herbicide savings were obtained during this study so that the site-specific weed 

control was profitable. Only 26-35 % of the fields were sprayed over the years. The highest 

herbicide savings were realised in cereals. Maize and sugar beets are less competitive so 

that lower but nevertheless appreciable herbicide savings could be realized. At locations 

where no or reduced herbicide rates were sprayed, the population density did not increase 

so that a purposeful site-specific weed management can tolerate a marginal weed 

emergence. The actual seedlings emergence depends on annual weather conditions 

(Gerowitt et al. 1988), soil cultivation and crop rotation in the current year. 

By reason of the aggregation performance of weeds, the knowledge of weed density and 

distribution in the one year can be used for herbicide treatment decisions in the following 

years with regard to the competitiveness of the crop. However, site-specific management 

coupled with competitive cereal grain crops in the rotation provided a buffering effect that 

reduced weed density. The site-specific weed control appears to be effective and 

sustainable. The site-specific weed management offers a great potential for herbicide 

reduction in agricultural crops. Additionally, the change of active ingredient and the 

combination of herbicides with different modes of action are essential for herbicide 

resistance prevention. Throughout this study no negative long-term effects from the site-
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specific weed control on weed population dynamics were found. The profitability of the 

site-specific weed management remains stable over years. 

 

3.5 Conclusions 

The site-specific weed management remained successful over multiple years. High weed 

control efficacy and enormous herbicide savings and can be achieved. In the long run, 

weed density remained relatively stable and no new weed patches were generated. But 

already existing high density blackgrass patches could not be eliminated through the eight 

years of study, since from a specific weed density patches remain stable under common 

and site-specific herbicide measure. 
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4.  An on-farm approach to quantify yield variation and to 

derive decision rules for site-specific weed management 

 

Abstract – Grain yield often varies within agricultural fields as a result of the variation in 

soil characteristics, competition from weeds, management practices, and their causal 

interactions. To implement appropriate management decisions yield variability needs to be 

explained and quantified. A new experimental design was established and tested in a field 

experiment to detect yield variation in relation to the variation in soil quality, the 

heterogeneity of weed distribution, and weed control within a field. Weed seedling 

distribution and density, apparent soil electrical conductivity (ECa) and grain yield were 

recorded and mapped in a 3.5 ha winter wheat field during 2005/2006.  A linear mixed 

model with an anisotropic spatial correlation structure was used to estimate the effect of 

soil characteristics, weed competition and herbicide treatment on crop yield. The results 

showed that all properties had a strong effect on grain yield. By adding herbicide costs and 

current grain price into the model, thresholds of weed density were derived for site-specific 

weed control. This experimental approach enables the variation of yield within agricultural 

fields to be explained, and an understanding of the effects on yield of the factors that affect 

it and their causal interactions to be gained. The approach can be applied to improve 

decision algorithms for the patch spraying of weeds. 

 

Keywords: Weed distribution ⋅ Soil variation ⋅ Weed control thresholds ⋅ Herbicide injury 

⋅ Geostatistics 
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5.  General Discussion 

In this study the site specific weed management was tested in the field, long term effects 

were examined, population dynamics under the influence of site-specific weed control 

were analysed and a model approach to derive management decision was approved. The 

main outcomes of these experiments are summarised, and discussed, and future 

prospects are given in this chapter. 

 

Population dynamics 

Over the past years several authors proved the spatially heterogeneous distribution of 

weed in agricultural fields (Marshall 1988; Thornton et al. 1990; Wiles et al. 1992; 

Mortensen et al. 1993; Cardina et al. 1995, Johnson et al. 1996). This heterogeneity was 

once again proved with this work and confirms the need of site-specific weed control. In 

this study the dynamics of weed seedlings distribution was monitored in winter and 

spring cereals, sugar beet and maize in several fields over different periods of time 

(three up to eight years). Various weed species were dominating in the different fields. 

Characteristic weed associations for region and crop rotation were found during this 

study: Alopecurus myosuroides HUDS., Poa annua L., Galium aparine L., Lamium 

purpureum L., Matricaria chamomilla aut. non L., Chenopodium album L., Thlaspi 

arvense L., Amaranthus retroflexus L., Viola arvensis MURR. Veronica persica 

POIRET, Stellaria media (L.) VILL., Capsella bursa-pastoris (L.) MED. and Cirsium 

arvense (L.) SCOP. The weeds were controlled site-specifically based on weed 

distribution maps and an economic weed control threshold model.  

It was proved that the weed seedlings emergence varied depending on crop, soil 

cultivation, crop rotation, and weather conditions in the current year (Gerowitt and 

Heitefuss 1990). In row crops such as sugar beet and maize weed germination was 

always higher than in cereal grains. The higher weed occurrence in and after row crops 

was embanked by suppression of cereals in the following years. Primarily the buffering 

effect from winter cereals drove weed density down again. This fact clarifies the need of 

adequate crop rotations. The results showed that low rainfall and high temperatures 

caused low germination and optimal weather conditions lead to higher germination. 

Bouwmeester (1990) showed that germination performance depends on seed dormancy. 

Differences in soil moisture and light requirements for germination are result of the 

dormancy state of the seeds, which is determined by temperature during seed ripening. 
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Spectrum of germinating weed seedlings varied depending on the soil seed bank and 

this varied depending on the history of crop rotation and field management. However a 

weed seed bank of zero is unattainable. In the same manner competition and mortality 

are depending on crop. In row crops occurs less competition due to the wider spacing 

between crop rows. Thus weed thresholds have to be varied with the competitiveness of 

the crop; in less competitive crops have to be set lower than in cereal grains. 

A clear result was the hypothesised relation between weed biomass and fecundity 

(Mortimer et al. 1989). In this study it was proved that the seed production rate 

increased with increasing and biomass. Another explicit result was the density 

dependence of the observed population dynamic parameters. First and foremost the seed 

production increased with increasing weed density. Weeds in higher growth densities 

rank and benefit themselves reciprocative; and they might need each other to entwine 

around themselves or support one another. It was rather presumed, that individual 

weeds without competition evolve better and produce more seeds. However, seed 

viability showed no correlation to density biomass or seed production rate. However, up 

to this day variation in weed density was not considered in weed population models, but 

it should be considered to precise decision support systems to warrant an economical 

and ecological sensibly herbicide application.  

 

Weed mapping 

Weed mapping was the basis of all experiments of this work. Therefore sampling grids 

from an 8 x 8 m up to 7.5 x 15 m were used in this study, depending on the width of the 

spray boom for herbicide application. Marshall (1988) proved that an amount of at least 

18 sampling points per ha is required to warrant precise, thus the sampling intensities in 

this research was quite sufficient and Heisel et al. (1996) showed that a sampling grid of 

10 x 10 m resulted in a good agreement with actual field situation. Linear triangulation 

and Inverse-Distance-Weighting interpolation were used and served the purpose of 

estimating weed seedlings densities in-between the sampling points in order to generate 

continuous weed distribution maps. Backes and Plümer (2004) studied the differences 

between the weed distribution maps with respects to the interpolation methods. They 

found, that the lacking aberration is also conditional on the sampling grid used for 

mapping and not only based on the used interpolation method, since interpolation 

methods is only as good as its underlying data. With the use of new automatic sensors 

for weed detection and identification that are under way, interpolation will not be much 
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important anymore. Weed mapping will be faster and more effective. Smaller sampling 

grids will be used providing higher density of data. Information will be more detailed 

and the real infestation situation in the field will more accurately be assessed. Small 

scale heterogeneity could be assessed and weed patches will not remain undetected 

anymore.  

 

Site specific weed management 

Site-specific weed management was effective over the eight years of study. Herbicides 

use was significantly reduced due to spatially variable herbicide application site specific 

herbicide application without loosing performance. The highest savings were realised in 

cereals. In average in winter barley 84 % and in winter wheat 75 % of herbicides were 

saved compared to uniform application of herbicides that is still the standard method of 

weed control. Maize and sugar beets are less competitive crops, so that lower but 

nevertheless appreciable herbicide savings could be realized. In maize 80 % and sugar 

beet 61 % of herbicides were saved. In average only 26-35 % of the fields were sprayed 

over the years.  

For the purpose of calculating the herbicide efficacy the weed reduction from T1 (before 

herbicide application) to T2 (about three weeks after herbicide application) was 

consulted in this study. However, in T2 it was not distinguished in between weeds that 

survived the herbicide application and new emerging weeds, so that the real 

measurement of herbicide efficacy might be higher than the weed reduction from T1 to 

T2 was. In further studies this fact should be considered for better evidence. However, 

the weed reduction was satisfying over the eight years of study, even if it was higher in 

cereals than in row crops. KEMMER et al. 1980 found that herbicide efficacy intensely 

varies from year to year and is conditioned by a number of factors such as the 

development stage of the weeds, soil, weather, and growth conditions. WEIDENHAMER 

et al. 1989 ascertained that phytotoxicity decreased as plant density increased. In this 

thesis similar results were obtained, it was proved that herbicide efficacy is density-

dependent. In high density weed patches the herbicide efficacy decreases, since an 

insufficient amount of active ingredient hits the target weed plants. In such a way 

always a few weed plants survive the herbicide application and re-import seeds into soil 

seed bank, thus the patches are self-preservative. 

The spatially variable herbicide application should not lead to an increase in weed 

infestation in following years. This concern was also studied in this work by analysing 
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data from three fields which were managed site-specifically over a period of eight years. 

The site-specific weed control was sustainable over the eight years of study. In the long 

run the average weed density remained under a level that can be tolerated without 

significant yield losses. A purposeful site-specific weed management can tolerate a 

marginal number of weeds. 

 

Weed aggregation 

Weed densities in the fields were variable during the eight years of study. At some 

locations the situation remains stable, ameliorated or was rarely getting worse. 

Locations in the field where reduced rates or no herbicides were applied, by reason of 

low weed infestation and according to the thresholds, did not increase in weed 

populations and weed density.  

A question in dispute is still what a ’weed patch’ is. A plurality of approaches to define 

weed patches can be found in the literature. For this study weed patches were defined as 

clear visual weed aggregations; with densities higher than the weed thresholds in the 

literature is. 

In the past several studies attempt to quantify the spatial stability of weed patches in 

agricultural fields. High density patches were persistent over time, even through 

effective herbicide doses were sprayed at these locations every year, they were 

increasing and decreasing in weed density and their spread shifts from year to year. The 

weed patch centres were rather stable, but the in-patch densities and the patch frames 

were spatially varying over the years. Similar results summarised Mortensen and 

Dieleman (1998). Wilson and Brain (1991) found, that A. myosuroides weed patches 

were persistent in cereal fields over a period of 10 years, even with effective herbicide 

doses sprayed in every year.  

In this study already existing high density weed patches could also not be eliminated 

due to site-specific weed control in the eight years of study. Stability of weed patches is 

a general problem that could be solved by site-specific weed control combining 

chemical, physical and preventive methods of weed management. In addition to that, it 

is more important that no new weed patches emerge over time. 

Due to the aggregation performance of weeds, the weed density and distribution maps 

from previous years could be used to make herbicide application plans for site-specific 

weed management in subsequent years (Goudy et al. 2001; Barroso et al. 2003). 
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Decision rules 

For a worthwhile site-specific weed management appropriate decision rules are 

essential. Especially for weed management strategies geared to long-term profitability 

the influence of population dynamics needs to be considered. Several computerised 

population dynamic models are available (Holst et al. 2007). Aim of these models is to 

simulate the effects of management decision, in order to find appropriate management 

decisions. In order to understand the interactions of weeds with the cropping system the 

population dynamics under the influence of the site specific weed management were 

observed over three years, using the examples of two weed species. The results of this 

work showed high variation even within a species. Meaning that population dynamic 

parameters can hardly be universalised and measured values can heavily be 

investigated. However they can be monitored in order to get more information on weed 

dynamics and interactions within a cropping system. 

All in this study obtained data on population dynamics can be integrated into computer 

models providing valuable insights that are needed to understand dynamics of weed 

populations and the effects within a cropping system on the demography of weeds. An 

all-embracing understanding of fundamental weed population biology will improve our 

ability to develop expedient site-specific management decisions. In general the models 

are describing the weed populations quite well, and deliver valuable information for the 

development of sustainable management strategies. However, they are always afflicted 

with uncertainties since adequate comprehensive typal data sets on population dynamics 

are limited available and there is still a lack of knowledge on some population 

parameters (Cousens 1995; Kropff et al. 1996). Additionally, the agreement between 

simulation and the measurement in the field was not sufficient (Zwerger and Hurle 

1990). Independent from the complexity that these models they will ever achieve, they 

will always reproduce the reality only fractional. 

 

In order to quantify yield variation caused by within-field heterogeneity a linear mixed 

model was developed. In the model repeated measurements are incorporated into the 

analysis by using the spatial correlation structure. The effects of soil characteristics, 

weed competition and herbicide treatment could be quantified separately. The results 

showed that all factors had a significant effect on grain yield and must be considered for 

management decisions. At all locations where no application was required, because of 

the low weed occurrence (under the economical threshold), the costs for herbicides and 



Chapter V                                                                                             General Discussion 

                                                                                                                         74 

application could be saved. An additional yield surplus was realised by means of the 

absence yield decrease due to the negative side effects of herbicides on crop. For the 

first time the injury to the crop due to herbicide application could be numeralised, a 

yield loss from about 0.7 t ha
-1

, in this case 6 % of the average yield was revealed with 

this model. This large loss of yield can be avoided and considerable reductions in 

herbicide rates can be achieved by site-specific management based on weed thresholds. 

However, further investigations are needed on other fields, other cropping systems, and 

for more weed species to confirm these findings. 

 

Prospects  

The outcomes of this research are valuable for precision farming and help to create 

decision algorithms for precise weed management. With the development of sensors for 

weed detection, infestations of weeds can be recorded more detailed and effective. New 

sensors for weed detection will improve weed sampling thus it will be less time 

consuming compared to visual methods that are still the standard method of weed 

mapping. 

The developed experimental approach described above enabled decision rules to be 

formulated for precise weed management. A site-specific management coupled with 

competitive cereal grain crops in the crop rotation provides a buffering effect that 

reduced weed density. Additionally, the change of active ingredient and the 

combination of herbicides with different modes of action are essential for herbicide 

resistance prevention. In consideration of the results of this work, large reductions in 

herbicide use can be achieved to meet the requirements of pesticide reduction 

programmes and for sustainable long-term weed management strategies. 
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6. Summary 

Weeds occur in agricultural land all over the world, causing decrease in yield quantity and 

quality. However, weeds can successfully be suppressed by the use of herbicides. Today, 

herbicides represent about the half of the globally used plant protection products. In 

context of reduction programs for chemical plant protection, herbicide use needs to be 

strictly controlled and reduced to the absolute necessary extent in order to minimise 

negative side effects for the environment and pesticide residues in the food chain. The site 

specific weed management is a promising way to reduce herbicide use. It aims at managing 

weeds with respects to their spatial and temporal variability. Post-emergence herbicides are 

only applied at highly infested locations in the fields. Several studies on site-specific weed 

control have shown that this practice is reasonable, and it has been successfully 

implemented in various crops, resulting in a considerable reduction of herbicide use, 

treatment costs, and consequently benefits to the environment. However, there is still lack 

of knowledge on the population dynamics of weeds and the interactions between crop and 

weeds under the site-specific weed management. Long term effects of the site-specific 

weed control have not been studied in detail yet. Additionally, an experimental approach 

was needed to create precise decision algorithms for site-specific weed management. 

 

Therefore the applied scientific objective of this research was: 

- to analyse the spatial and temporal distribution of weeds,  

- to provide information on weed population dynamics under the influence of the 

site-specific weed control, 

- to detect if site-specific weed management leads to an increase in weed density, and 

if weed patches remain stable in density and location over time, 

- to determine herbicide savings and efficacy of the site specific weed management, 

- to design an experimental on-farm approach to explain yield variation caused by 

within-field heterogeneity of weed density, soil quality and herbicide application, in 

order to derive decision rules for site-specific weed control. 

 

During the course of this work site specific weed management tested in field trails, long 

term effects were examined, population dynamics were analysed and a model approach to 

derive management decision was approved. 
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It was proved that weed distribution was heterogeneous in all experimental fields. The 

average weed density remained stable when economical weed thresholds were applied. The 

application of effective herbicides in every year did not reduce density in high density 

weed patches. The patches were persistent over eight years, with slight variations in 

density from year to year. It is suggested that a combination of chemical, mechanical, and 

cultural weed management strategies would be necessary to effectively control weeds in 

high density locations. However, the knowledge about the spatial stability of weed patches 

of individual species offers possibilities to use this information for weed management 

strategies. 

Population dynamic parameters such as weed seedling emergence, crop-weed competition, 

seedlings mortality, herbicide efficacy, seed production and viability were found to be 

weed density dependent. With increasing weed density weed biomass and fecundity 

increased. These findings support that weed density has to be considered in weed 

management strategies. Site-specific weed management was effective over time. The 

amount of herbicides used could be decreased significantly due to site specific herbicide 

application, without loosing performance. Only 26-35 % of herbicides were sprayed 

compared to uniform application of herbicides that is still the standard method of weed 

control. Additionally, a new experimental design based on an anisotropic exponential 

model with nugget effect was established. The influences of the co-variables weed and soil 

on yield and the side-effects of herbicides were quantified separately with this model, by 

overlaying and spatially joining all data. Out of this information, yield losses due to weed 

and herbicide injury could be defined, and valid decision rules for site-specific weed 

management could be ascertained. For the first time the injury to the crop due to herbicide 

application could be numeralised with this experimental design. A yield loss from about 

0.7 t ha
-1

, in this case 6 % of the average yield, was revealed with the model. This large 

loss of yield can be avoided and considerable reductions in herbicide rates can be achieved 

by site-specific weed management based on weed thresholds. This experimental approach 

enables to explain the variation of yield within agricultural fields, and an understanding of 

the effects on yield of the factors and their causal interactions. This work is seen as a 

mayor step forward in order to precisely manage weeds with respect to their spatial and 

temporal dynamics. 
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7. Zusammenfassung 

Unkräuter verursachen weltweit auf landwirtschaftlich genutzten Flächen Ertragseinbußen 

sowie Quantitätsverluste. Durch Herbizide können Unkräuter erfolgreich bekämpft und 

Erträge gesichert werden. Herbizide stellen heute ungefähr die Hälfe aller weltweit 

eingesetzten Pflanzenschutzmittel dar. Um negative Auswirkungen auf die Umwelt und 

Pflanzenschutzmittelrückstände in der Nahrungskette zu minimieren, muss der 

Herbizideinsatz im Rahmen von Reduktionsprogrammen für den chemischen 

Pflanzenschutz grundsätzlich geregelt und auf das notwendige Maß begrenzt werden. Die 

teilflächenspezifische Unkrautbekämpfung ist ein richtungweisender Ansatz, um diesen 

Anforderungen gerecht zu werden. Bei der teilflächenspezifischen Unkrautbekämpfung 

werden die Unkräuter unter Berücksichtigung ihrer räumlichen und zeitlichen Variabilität 

und unter Verwendung von ökonomischen Schadschwellen kontrolliert. Eine 

Herbizidapplikation im Nachauflaufverfahren findet nur beim Auftreten von Unkräutern 

statt. Durch Studien zur teilflächenspezifischen Unkrautkontrolle konnte gezeigt werden, 

dass dieses Verfahren erfolgreich angewendet werden kann, mit beachtlichen 

Herbizideinsparungen sowie signifikanten ökonomische und ökologische Vorteilen. 

Neben diesen sehr positiven Ergebnissen mangelt es bisher noch an Kenntnissen über die 

Populationsdynamik von Unkräutern und den Wechselbeziehungen zwischen 

Kulturpflanze und Unkraut unter dem Einfluss der teilflächenspezifischen 

Unkrautbekämpfung. Die Langzeitwirkungen der teilflächenspezifischen Unkrautkontrolle 

wurden bisher nicht eingehend untersucht. Darüber hinaus war bislang keine 

Versuchsmethodik verfügbar um präzise Entscheidungsalgorithmen für die teilflächen-

spezifische Unkrautkontrolle abzuleiten. 

 

Aus diesen Prämissen ergab sich die Zielsetzung dieser Arbeit: 

- die Analyse der räumlichen und zeitlichen Verteilung von Unkräutern, 

- die Bereitstellung von Informationen über die Populationsdynamik von 

Unkräutern unter dem Einfluss der teilflächenspezifischen Unkrautbekämpfung, 

- zu untersuchen ob die teilflächenspezifische Unkrautkontrolle zu einem Anstieg 

der Unkrautdichte führt und ob Unkrautnester in ihrer Lage und Dichte stabil 

sind, 

- Ermittlung von realistischer Herbizideinsparungen und Bekämpfungserfolge, 
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- Erarbeitung eines Modells zur Ermittlung von Entscheidungsalgorithmen für 

die teilflächen-spezifische Unkrautbekämpfung unter Berücksichtigung der 

Ertragsvariabilität.  

 

Im Verlauf dieser Arbeit wurde die teilflächenspezifische Unkrautbekämpfung erprobt und 

ihre Langzeitwirkungen untersucht, die Populationsdynamik der Unkräuter unter dem 

Einfluss teilflächenspezifische Unkrautkontrolle analysiert und ein Modellansatz zur 

Ermittlung von Entscheidungsalgorithmen entwickelt. 

Die Ergebnisse dieser Arbeit belegen die heterogene Verteilung von Unkräutern in 

Ackerflächen. Die durchschnittliche Unkrautdichte in den Ackerflächen blieb unter der 

Verwendung von ökonomischen Schadschwellen über den untersuchten Zeitraum stabil. 

Die Lage bestehender Unkrautnester war mit leichten Dichteschwankungen gleich 

bleibend. Um diese Nester wirkungsvoll zu kontrollieren empfiehlt es sich chemische, 

mechanische und kulturelle Unkrautbekämpfungsmaßnahmen zu kombinieren. Die 

populationsdynamischen Parameter: Keimung, Konkurrenz, Mortalität, 

Bekämpfungserfolg, Samenproduktion sowie Lebensfähigkeit zeigten sich abhängig von 

der Unkrautdichte. Mit zunehmender Unkrautdichte stiegen auch die Biomasse der 

Unkräuter und deren Samenproduktionsrate an. Diese Ergebnisse belegen, dass die 

Unkrautdichte im Unkrautmanagement berücksichtigt werden muss. Auch über einen 

längeren Zeitraum war die teilflächenspezifische Unkrautbekämpfung erfolgreich. Der 

Herbizideinsatz konnte ohne Verlust an Bekämpfungserfolg signifikant gesenkt werden. 

Im Vergleich zur ganzflächigen Herbizidapplikation, die immer noch die Standardmethode 

in der Unkrautbekämpfung darstellt, wurden in diesen Versuchen nur 26-35 % der 

Herbizidmenge ausgebracht. 

Des Weiteren wurde ein geostatistischer Ansatz mit einem linearen gemischten Model und 

anisotropher räumlicher Korrelationsstruktur als Grundlage erarbeitet. Die 

Ertragswirkungen von Bodenqualität, Unkrautkonkurrenz und Herbizidapplikation können 

getrennt voneinander analysiert werden, indem die verschiedenen Informationsebenen 

übereinander gelegt und miteinander verschnitten wurden. Aus diesen Informationen 

konnten Ertragsverluste durch Unkrautkonkurrenz und Herbizidschäden definiert und 

zuverlässige Entscheidungsalgorithmen für die teilflächenspezifische Unkrautkontrolle 

ermittelt werden. Hierdurch war es erstmalig möglich Herbizidschäden an Kulturpflanzen 

zu beziffern. Mit Hilfe des Modells konnte ein Verlust durch Herbizidschäden von 0,7 t/ha, 

in diesem Fall 6 % des Durchschnittsertrages des Winterweizens, ermittelt werden. Durch 
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die dargelegte teilflächenspezifische Unkrautkontrolle können deutliche Ertragsverluste 

vermieden und beachtliche Herbizideinsparungen realisiert werden. 

Mit dem erarbeiteten geostatistischen Ansatz sind Ertragsvariabilität erklärbar und 

angepasste Entscheidungsalgorithmen können ermitteln werden. Die Ergebnisse dieser 

Arbeit bilden die Grundlage für zukünftige Entwicklungen um Unkräuter, unter der 

Berücksichtigung ihrer räumlichen und zeitlichen Dynamik, nachhaltig zu kontrollieren. 
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