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1. General Introduction

The development of inbred lines with superior testcross performance is a

major objective of hybrid breeding (Hallauer 1990). In maize, inbred lines

have commonly been derived by recurrent selfing for five to six generations.

The use of doubled haploids (DHs) enables the development of completely

homozygous lines in one step and, thus, represents a promising alternative

to recurrent selfing. Besides time saving, further advantages of using DHs in

hybrid breeding are (i) the availability of the maximum additive variance for

DHs in comparison with half the additive variance in the S1 generation, (ii)

the possibility to evaluate potential hybrid cultivars from the very beginning

of the selection process, (iii) the reduction of masking effects due to remain-

ing heterozygosity, (iv) a good per se performance of DH lines due to the

elimination of deleterious mutants during DH development, (v) cost-savings

due to reduced expenses for selfing and maintenance breeding, (vi) the pos-

sibility to protect outstanding lines early by plant variety rights, and (vii)

simplified logistics (cf. Schmidt 2004, Röber et al. 2005).

Spontaneous haploids have early been reported in maize (Stadler 1929 un-

published, cited by Randolph 1932), but their occurrence is very low (0.1%,

Chase 1947). Furthermore, spontaneous chromosome doubling is seldom in

maize with rates below 10% (Beckert 1994). The identification of inbred

lines that induced larger number of haploids (Coe 1959, Kermicle 1969) and

intensive selection resulted up to now in the development of lines with hap-

loid induction rates above 10% (cf. Röber et al. 2005). These lines are
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used in the in-vivo haploid induction mostly as pollinators in crosses with

elite germplasm to induce larger number of haploids in breeding materi-

als. In combination with artificial chromosome doubling, e.g., by the use

of colchicine, in-vivo haploid induction can easily be integrated into exist-

ing breeding programs. Consequently, in-vivo haploid induction is currently

adopted as a routine method in commercial maize breeding programs in Eu-

rope (Schmidt 2004) and North America (Seitz 2005). The implementation

of the new DH technology in maize breeding requires an investigation of the

optimum breeding scheme. This involves the optimization and comparison

of different breeding schemes in order to maximize progress from selection,

taking possible limits of the DH technique into account.

Target criteria for optimization of breeding

schemes

Selection gain (∆G)(Cochran 1951; Utz 1969) and the probability of iden-

tifying superior genotypes (P (q)) (Robson et al. 1967; Johnson 1989; Knapp

1998) were reported in the literature to quantify the progress from selection.

Selection gain represents the difference between the genotypic mean of the

selected fraction and the genotypic mean of the base population (Fig. 1.1).

In contrast, P (q) is the percentage of selected genotypes exceeding a given

threshold, e.g., the (100− q)% quantile of the normal distribution.

For a given population, ∆G is a function of the heritability and selection

intensity, and increases with larger values for both parameters (Bernardo

2002). Heritability increases with an increasing number of testers, test lo-

cations, years, and replications in performance trials. Selection intensity

increases with a larger number of initial test candidates and/or a smaller

number of selected test candidates. For a given population and a fixed num-

ber of selected test candidates, P (q) is increased by an increasing number of

initial test candidates and by an increasing heritability (Robson et al. 1967;
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Figure 1.1 Expected distribution of genotypes in an infinite base population,

where α refers to the selected fraction, µ0 to the mean genotypic value of the

base population, µα to the mean genotypic value of the selected fraction, and

t to a given threshold.

Johnson 1989). Thereby, a large number of initial test candidates is required

in order to have at least the number of desired superior genotypes in the

initial sample. A large heritability warrants a high probability of detecting

them. Hence, a plant breeder with a fixed budget has to find a compromise

between (i) the number of candidates to be tested and (ii) the intensity of

their testing as determined by the number of testers, test locations, years,

and replications. This requires an optimization of the test resources for each

breeding scenario.

Selection gain represents the most widely used target criterion in recurrent

selection to optimize the allocation of test resources and to compare different

methods (cf. Choo and Kannenberg 1988; Gallais 1991). In contrast, P (q)
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represents a suitable target criterion to focus on rapid development of com-

petitive varieties (Robson et al. 1967; Johnson 1989), e.g., in second-cycle

breeding, where new lines are developed by crossing elite inbreds within het-

erotic groups. An optimization of the allocation of test resources based on

P (q) seems especially promising for the use of DHs due to the possibility to

evaluate potential hybrid cultivars from the beginning of the selection pro-

cess. However, P (q) has so far not been used to determine the optimum

allocation of test resources. Furthermore, the diverse definitions of ∆G and

P (q) may lead to differences in the optimum allocation of test resources.

Thus, a comparison of these target criteria is necessary with particular em-

phasis on the potential of P (q) for hybrid maize breeding with DHs.

Selection theory was developed by assuming an infinite population size,

although populations of medium size are commonly used in plant breeding

(Cochran 1951; Hanson and Brim 1963; Utz 1969; Tomerius 2001; Grüneberg

et al. 2004). This assumption simplifies the calculations considerably but af-

fects the probability distribution of the test candidates. With stochastic sim-

ulations, selection gain was determined for a finite population size (Cochran

1951; Finney 1966; Utz 1969; Young 1976). Thereby, marginally reduced ∆G

and similar optimum allocation of test resources were obtained in compar-

ison with infinite population sizes. However, these studies were conducted

more than 30 years ago and the limited computing power available at that

time largely restricted the accuracy of simulations and the number of sce-

narios considered. Therefore, verification of the above conclusions with more

accurate simulations in a broader range of scenarios is required.

Alternative breeding schemes for hybrid maize

breeding with DHs

Owing to the necessity of five to six selfing generations in conventional line

development, two selection stages on testcross performance can be realized
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until homozygous lines are available. In contrast, with DHs the evaluation of

potential hybrid cultivars is possible from the very beginning of the selection

process. This enables an early registration of varieties, e.g., after one stage of

selection. However, for one-stage selection, a 20% smaller ∆G in comparison

with two-stage selection was reported in the literature (Utz 1969). The as-

sumptions about the budget and variance components in this study differed

clearly from those applying to hybrid maize breeding. Thus, an investigation

of the potential of one- and two-stage selection in hybrid maize breeding with

DHs is required.

With a large number of lines in each heterotic group, the number of

factorial crosses among them becomes rapidly prohibitive. Hence, new lines

are usually tested in combination with one or several testers to evaluate their

general combining ability (GCA, Hallauer et al. 1988). Specific combining

ability (SCA) acts as a masking effect in determining GCA. Its influence can

be reduced by using genetically broad testers and/or an increased number of

testers (Hallauer and Miranda 1981).

Considering one-stage selection for GCA between inbred lines in maize,

Federer and Sprague (1947) and Keller (1949) investigated the optimum num-

ber of testers, lines, and replications. They concluded that for a fixed budget,

∆G was increased by increasing the number of testers even at the expense

of the number of lines and replications. Schnell (1996) extended these in-

vestigations to two-stage selection for early generations in maize considering

also the number of test locations. For a fixed budget corresponding to 1200

testcross plots, he suggested to use one tester in the first and seven testers in

the second stage of selection. However, these studies used simplified genetic

models for calculation of ∆G. Varying the type of tester, e.g., use of inbred

lines, single crosses, or double crosses as testers, may affect the optimum

number of test candidates, testers, test locations, and replications. However,

investigations on the type of testers within the context of optimum allocated

test resources have not been reported in the literature. Consequently, a thor-

ough study on the optimum type and number of testers is required for the

optimum allocation of hybrid maize breeding schemes.
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Testcross performance of experimental lines is the prime selection crite-

rion in hybrid maize breeding (Mihaljevic et al. 2005). However, an economic

production of hybrid seed requires an acceptable line per se performance of

the seed parent (Sampoux and Gallais 1996, Gallais 1997). The possibility

of a simultaneous improvement of line per se and testcross performance de-

pends on the genetic correlation between both selection criteria (Mihaljevic

et al. 2005). For nearly homozygous lines in maize, values for the genetic cor-

relation between line per se and testcross performance of 0.5 are reported in

the literature (Seitz et al. 1992, Mihaljevic et al. 2005). For these reasons,

evaluation of line per se performance may be an interesting alternative to

testcross evaluations in the first selection stage. Nevertheless, an assessment

of this selection strategy based on line per se and testcross performance is

not available in maize.

Alternatively to the evaluation of potential hybrid cultivars from the be-

ginning of the selection process, an early test on testcross performance in

the S1 or S2 selfing generation could be made before DH production. This

elongates the breeding scheme but permits to restrict the production and

testing of DH lines to those derived from segregation in the most promis-

ing families. The potential of early testing has been debated ever since it

was first proposed by Jenkins (1935). Early testing was considered useful

by Sprague (1946), Lonnquist (1950), Hallauer and Lopez-Perez (1979), and

Jensen et al. (1983). In contrast, Richey (1945) and Payne and Hayes (1949)

discouraged the use of early testing.

The aim of early testing is to select lines with above-average combining

ability to concentrate the test resources on more promising material (cf. Hal-

lauer et al. 1988). Thereby, early testing is based on the assumption that

the combining ability of a line is determined during the early generations

of selfing (cf. Hallauer et al. 1988). The genetic correlation for testcross

performance between S1 plants and inbreds is larger than 0.7 supporting the

determination of combining ability in the early stages of selfing (Bernardo

1991). Therefore, the concentration of test resources on the most promising
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families in early testing prior to DH production may be an interesting alter-

native to intensive evaluation of DH lines from the beginning of the selection

process. However, an assessment of the potential of early testing in hybrid

maize breeding with DHs is completely lacking in the literature.

Objectives

The goal of my thesis research was to examine the optimum implemen-

tation of DHs in hybrid maize breeding with emphasis on the optimum allo-

cation of test resources. In particular, the objectives were to

1. compare two target criteria for the allocation of test resources with ∆G

for infinite and finite population size as well as P (q) by use of numerical

integration and Monte Carlo simulations;

2. investigate the impact of varying budget, variance components, and

number of finally selected test candidates on the optimum allocation

of test resources and the different target criteria;

3. examine the potential and limitations of the current technique of DH

production and its impact on the target criteria, choice of breeding

schemes, and optimum allocation of test resources;

4. compare one- versus two-stage selection on testcross performance in

hybrid maize breeding with DHs;

5. assess two-stage breeding schemes with evaluation of (i) testcross per-

formance in both stages, or (ii) line per se performance in the first stage

followed by testcross performance in the second stage;

6. investigate the potential of early testing in hybrid maize breeding with

DHs and identify the optimum number of families and DH lines within

families;
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7. determine the optimum allocation of the number of test candidates,

test locations, as well as number and type of testers for the investigated

breeding schemes; and

8. give recommendations for the optimum implementation of DHs in com-

mercial hybrid maize breeding.
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Austria, pp 1–6
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Abstract Optimum allocation of resources is of
fundamental importance for the efficiency of breeding
programs. The objectives of our study were to (1)
determine the optimum allocation for the number of lines
and test locations in hybrid maize breeding with doubled
haploids (DHs) regarding two optimization criteria, the
selection gain DGk and the probability Pk of identifying
superior genotypes, (2) compare both optimization cri-
teria including their standard deviations (SDs), and (3)
investigate the influence of production costs of DHs on
the optimum allocation. For different budgets, number
of finally selected lines, ratios of variance components,
and production costs of DHs, the optimum allocation of
test resources under one- and two-stage selection for
testcross performance with a given tester was determined
by using Monte Carlo simulations. In one-stage selec-
tion, lines are tested in field trials in a single year. In two-
stage selection, optimum allocation of resources involves
evaluation of (1) a large number of lines in a small
number of test locations in the first year and (2) a small
number of the selected superior lines in a large number of
test locations in the second year, thereby maximizing
both optimization criteria. Furthermore, to have a real-
istic chance of identifying a superior genotype, the
probability Pk of identifying superior genotypes should
be greater than 75%. For budgets between 200 and 5,000
field plot equivalents, Pk > 75% was reached only for
genotypes belonging to the best 5% of the population. As
the optimum allocation for Pk(5%) was similar to that
for DGk, the choice of the optimization criterion was not
crucial. The production costs of DHs had only a minor

effect on the optimum number of locations and on values
of the optimization criteria.

Keywords Optimum allocation Æ Selection gain Æ
Probability Æ Superior genotype Æ Monte Carlo
simulation

Introduction

Optimum allocation of financial and breeding resources
is of fundamental importance for the efficiency of
breeding programs and selection strategies. Advances in
the production of doubled haploids (DHs) by in vivo
haploid induction (Bordes et al. 1997; Röber 1999) offer
a promising alternative to recurrent selfing for rapid
inbred line development in hybrid maize breeding.
Currently, DHs are adopted as a routine method in
commercial maize breeding programs in North America
(Seitz 2005) and Europe (Schmidt 2004). Their efficient
use requires an optimization of the entire breeding
scheme in order to maximize progress from selection.

A selection strategy may involve one or several stages
of selection. In the latter case, the initial population of
lines is evaluated in 1 year and a superior subset is se-
lected for further evaluation and selection in subsequent
year(s). To quantify the progress from k selection stages,
various criteria have been used such as (1) the selection
gain (DGk) (Cochran 1951; Utz 1969) and (2) the prob-
ability of identifying superior genotypes (Pk) (Keuls and
Sieben 1955; Robson et al. 1967; Johnson 1989; Knapp
1998). In recurrent selection, DGk represents the most
widely used criterion to compare different methods and
optimize the selection progress in population improve-
ment (cf. Choo and Kannenberg 1988; Gallais 1991).
For a given population, DGk is a function of the heri-
tability (h2) and selection intensity (ia), and increases
with larger values for both parameters (Bernardo 2002).
Heritability increases with an increasing number of test
locations, years, and replications in performance trials,
whereas ia depends on the selected fraction (a) and the
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probability distribution of the lines. With a fixed number
of finally selected lines (Nf), ia increases with a larger
number of initial lines. Hence, a plant breeder with a
fixed budget has to find a compromise between (a) the
number of initial lines and (b) the intensity of their
testing as determined by the number of test locations,
years, and replications. This requires an optimization of
the test resources for each breeding scenario.

For DGk the optimum allocation of test resources for
a fixed budget was investigated with numerical integra-
tion, assuming an infinite population size (Utz 1969),
and with stochastic simulations, assuming a finite pop-
ulation size (Finney 1966; Young 1976). However, pro-
duction costs of DHs have so far not been taken into
account. In addition, most studies on the optimum
allocation of resources were conducted more than
30 years ago and the limited computing power available
at that time restricted the number of scenarios consid-
ered.

In addition to medium- and long-term germplasm
improvement, plant breeders are forced to focus on
rapid development of competitive varieties. For the latter
purpose, Pk represents a suitable criterion (Johnson
1989). For a given population and a fixed number of Nf,
Pk is increased by (1) an increasing number of lines in
order to have at least the number of desired superior
genotypes in the initial sample and (2) an increasing h2

to warrant a high probability of detecting them. For
one-stage selection, Robson et al. (1967) and Johnson
(1989) investigated the impact of h2, the initial sample
size, and Nf on the probability (P1) that all Nf have
genotypic values exceeding a given threshold. Knapp
(1998) extended this approach to marker-assisted selec-
tion. Nevertheless, these studies investigated Pk only for
given values of h2 and a, disregarding the optimum
allocation of resources. Furthermore, DGk and Pk have
not yet been compared for one- and two-stage selection.

In this study, we optimized the allocation of test re-
sources in hybrid maize breeding with DHs under one-
and two-stage selection for testcross performance with a
given tester by using Monte Carlo simulations. For
different assumptions regarding the budget, ratio of
variance components, and value of Nf, we (1) deter-
mined the optimum allocation of the number of lines
and test locations for DGk and Pk, (2) compared both
optimization criteria including their standard deviations,
and (3) investigated the influence of production costs of
DHs on the optimum allocation of test resources.

Materials and methods

Selection strategies

In a standard maize breeding scheme (Fig. 1), a total of
N1 DH lines generated from one or several F1 crosses via
in vivo haploid induction are available at the beginning
of the evaluation and selection process. A certain

number Nf of phenotypically best DH lines are selected.
We compared Nf=1 and Nf=5. The target variable Y is
the genotypic value of testcross performance with a gi-
ven tester T for a certain trait or index of traits. The
tester can be any population with an arbitrary structure
such as an inbred line, single cross, or random mating
population. With one-stage selection, selection is based
on field tests in a single year. With two-stage selection,
field tests are conducted in 2 years with a subset of the
most superior lines N2 selected after the first year being
evaluated in the second year. At stage j (j=1, 2), selec-
tion among Nj DH lines is based on variable Xj, the
phenotypic mean of testcross performance at this stage
with tester T evaluated in Lj locations with Rj replica-
tions. At stage j=2, the selection among lines could
alternatively be based on an index of their performance
in the first and second year. However, this would affect
the optimum allocation and the selection gain only
marginally (Utz 1969; Young 1976). Without an upper
limit on Lj, Rj=1 is optimal regarding DGk (Sprague and
Federer 1951; Utz 1969). Thus, we set Rj=1.

Economic frame and quantitative-genetic parameters

We investigated three assumptions (C=0, 0.5, 1) con-
cerning the production cost of one DH line relative to

DH induction 

x   Tester 

P1 x P2

k = 1 k = 2

N
f

N1N1

N2

N
f

DH population

Fig. 1 Hybrid maize breeding scheme with production of doubled
haploid (DH) lines, their testcross progenies and testcross evalu-
ation in several test locations with one-stage (k=1) or two-stage
selection (k=2). (N1=number of initial lines; N2=subset of
superior lines selected after the first stage of two-stage selection;
Nf=number of finally selected lines)
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the cost of one field plot for evaluating testcross
progenies. For instance, C=0.5 means that the pro-
duction cost of one DH line is equal to half the cost of
one field plot. C=0.5 corresponds to the actual costs of
DH production in breeding companies most advanced
in the DH technique (Seitz, personal communication).
C=1 is a realistic assumption at the beginning of
establishing the DH technique in a breeding program.
With further improvements in the DH technique, the
costs of DH production may become negligible in the
future (C=0).

A fixed total budget B for (1) producing the DH lines
and (2) evaluating their testcross progenies in k selection
stages was defined in terms of testcross plot equivalents
as

B ¼ N1C þ
Xk

j¼1
NjLjRj ð1Þ

assuming equal plot sizes in all selection stages. We
compared three budgets with B=200, 1,000, 5,000 plot
equivalents. An overview of the notation used
throughout this treatise is given in Table 1.

Three ratios of variance components (rg
2:rgl

2 :rgy
2 :

rgly
2 :re

2) were considered, where rg
2 refers to the genotypic

variance, rgl
2 to the variance of genotype · location

interactions, rgy
2 to the variance of genotype · year

interactions, rgly
2 to the variance of genotype · location ·

year interactions, and re
2 to the error variance. We set

VC1=1:0.25:0.25:0.5:1, VC2=1:0.5:0.5:1:2, and VC3=
1:1:1:2:4, resulting in a heritability on a plot basis of

0.33, 0.20, and 0.11, respectively. These ratios were
chosen based on combined analyses of variance of grain
yield in (1) recent official maize variety performance tests
in Germany (VC1, Laidig, personal communication), (2)
DH populations of commercial breeding programs
(VC2, Gordillo and Geiger 2004), and (3) official maize
variety performance tests in Southwest Germany (VC3,
P. Herrmann, unpublished data).

Simulation model

Genotypic and phenotypic values were generated sepa-
rately for each combination of the above factors.
Genotypic values were sampled from a normal distri-
bution N(0, rg

2). Non-genetic values were sampled from
a normal distribution Nð0; r2

mj
Þ; with

r2
mj
¼ r2

gy þ
r2
gl

Lj
þ

r2
gly

Lj
þ r2

e

LjRj
ð2Þ

representing the non-genetic variance. Phenotypic values
were then generated by adding non-genetic values to the
genotypic values. For two-stage selection, genotypic and
phenotypic values were sampled out of a multivariate
normal distribution MVN(l, V) with lT=(0, 0, 0) and

V ¼
r2
g r2

g r2
g

r2
g r2

x1 covx1x2

r2
g covx1x2 r2

x2

0
B@

1
CA: ð3Þ

The covariance between the phenotypic values at stage
j=1 and j=2 was determined as covx1x2 ¼ r2

g þ
ðLcr2

glÞ=ðL1L2Þ; with Lc representing the number of
locations common to both selection stages (Utz 1969).
We assumed Lc=L1. The two optimization criteria and
their SDs were then calculated and stored. This proce-
dure was repeated for each factor combination and
choice of Nj and Lj, with a new set of realizations of
random variables (further referred to as runs). The
number of runs required to warrant an accuracy of 0.01
for the optimization criterion was calculated based on
the standard error of the arithmetic mean as
ð3SD=0:01Þ2 (Berry and Lindgren 1996). Between 7,000
and 70,000 simulation runs were required for the dif-
ferent scenarios.

Optimum allocation and optimization criteria

An admissible allocation of test resources refers to tuples
(Nj, Lj) for all stages j, such that Eq. 1 is satisfied. An
element (Nj

*, Lj
*) is denoted as an optimum allocation if

it maximizes the optimization criterion in the set of
admissible allocations. For each run, the mean geno-
typic value of the Nf selected lines was calculated and the
selection gain was estimated by averaging over all Monte
Carlo runs for the allocation considered DĜk

� �
: The

variance among these runs was used to calculate the

Table 1 Notation used in this treatise

h2 Heritability
ia Selection intensity for a certain selected

fraction a=Nf / N1

j Selection stage
B Fixed total budget in field plot equivalents
C Production costs of one DH line relative

to the costs of one field plot for evaluating
testcross progenies

DH Doubled haploid
DGk Selection gain after k stages of selection
DĜk DGk estimated by Monte Carlo simulations
DĜ�k Value of DĜk at the corresponding optimum

allocation (Nj
*, Lj

*)
Nf Number of finally selected lines
Nj, Lj, Rj Number of lines, locations, or replications

at stage j in performance trials
Nj

*, Lj
* Optimum number of lines and locations

maximizing the optimization criterion
in the set of admissible allocations

Pk(q) Probability of identifying lines with genotypic
values exceeding a fixed (100�q)% quantile
of the corresponding normal distribution
N(0, rg

2) after k stages of selection
P̂kðqÞ Pk(q) estimated by Monte Carlo simulations
P̂ �k ðqÞ Value of P̂kðqÞ at the corresponding optimum

allocation (Nj
*, Lj

*)
VC Ratio of variance components

rg
2: rgl

2 : rgy
2 : rgly

2 : re
2
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corresponding SD SDDĜk

� �
: In addition, the number of

selected lines with genotypic values exceeding a fixed
(100�q)% quantile of the corresponding normal distri-
bution N(0, rg

2) was determined for each run and divided
by Nf. The probability of identifying superior genotypes
was estimated by averaging these values over all Monte
Carlo runs for the allocation considered P̂kðqÞ

� �
: The

variance among these runs was used to calculate the

corresponding SD SDP̂kðqÞ

� �
: We examined q values of

25, 5, 1, and 0.1%, with corresponding standardized
genotypic thresholds of 0.67449, 1.64485, 2.32635, and
3.09023, respectively.

The optimum allocation of test resources for each
scenario was obtained by a grid search in Z, the space
of admissible resource allocations. For instance, for
B=200, Nf=1, VC1, C=0, and one-stage selection, the
optimum choice of N1 was determined by varying the
selected fraction a1 between 0.01 and 0.30 for each
L1 between one and a number that allowed a clear
identification of the optimum of L1. Thus, at least 100
calculations were performed to identify the optimum
allocation for each scenario. Let OC represent the
optimization criterion DGk or Pk(q). Let (Nj

o, Lj
o) be the

allocation, where OC assumes its numerical maximum
value in the simulations

OC No
j ; L

o
j

� �
¼ max
ðNj;LjÞ�Z

OC Nj; Lj
� �

: ð4Þ

Since OC is only estimated with a precision of 0.01, the
optimum allocation (Nj

*, Lj
*) was determined following

Utz (1969) such that the number of locations was min-
imum among all allocations within 0.01 drop-off of
OC(Nj

o, Lj
o), i.e.,

L�j ¼ min
Lj

Nj; Lj
� �

�ZjOC No
j ; L

o
j

� �
�OC Nj; Lj

� �
\0:01

n o
:

ð5Þ
The reason being that breeders prefer for technical rea-
sons tests in fewer locations if this affects the OC only
marginally.

The values of each optimization criterion at its cor-
responding optimum allocation (Nj

*, Lj
*) were denoted as

DĜ�k and P̂ �k ðqÞ: Simulation programs were written in C
and implemented in the statistical software R (R
Development Core Team 2004).

Results

The optimization criteria were similarly affected by
deviations from the optimum allocation of test resources
for one- and two-stage selection, Nf=1 or 5, and pro-
duction costs of DHs. Thus, only response curves for
DĜ1 and P̂1ð1%Þ as a function of L1 were presented for
varying budgets and ratio of variance components
assuming one-stage selection, Nf=1, and C=0.5
(Fig. 2). With increasing L1, the optimization criteria

DĜ1 and P̂1ð1%Þ increased up to an optimum and
decreased slightly thereafter. Both response curves were
flat in the vicinity of the maximum. The increase in
DĜ1 and P̂1ð1%Þ was largest between L1=1 and L1=4.
Curves for SDP̂1ð1%Þ displayed similar trends as those for
P̂1ð1%Þ; with a maximum at the optimum allocation of
P̂1ð1%Þ: In contrast, curves for SDDĜk

decreased with
increasing L1.

The consequences of one-stage versus two-stage
selection, varying Nf, and budgets on the optimum
allocation of test resources and optimization criteria
were hardly affected by the ratio of variance components
and production costs of DHs (data not shown). Hence,
the results on the influence of the former group of fac-
tors were presented exemplarily for intermediate values
VC2 and C=0.5 (Table 2). The optimum number of
initial lines N1

* and test locations for two-stage selection
was about twice as large as for one-stage selection. This
was due to the optimum allocation of two-stage selec-
tion, which comprised a large number of initial lines N1

*

tested in a small number of test locations L1
* at the first

stage, and a small number of selected lines N2
* tested in a

large number of test locations L2
* at the second stage.

Furthermore, under the same allocation of resources
DĜ�k ; and values of P̂kð5%Þ; P̂kð1%Þ; and P̂kð0:1%Þ were
on average 20, 30, 50, and 80%, respectively, higher than
for one-stage selection. Reducing Nf from five to one
resulted in (1) smaller values of Nj

* but larger values of
Lj
* in the last selection stage, and (2) an increase in DĜ�k

and corresponding values for P̂kð5%Þ; P̂kð1%Þ;
and P̂kð0:1%Þ of 20, 30, 60, and 110%, respectively.
However, SD of these estimates were also increased by
more than 60% on average. For one-stage selection,
increasing the budget from B=200 to B=5,000 resulted
in a more than 10-fold increase in N1

* and a twofold
increase in L1

*. For two-stage selection, N1
* and N2

* in-
creased more than 15- and 5-fold, whereas L1

* and L2
*

increased twofold and threefold, respectively. In addi-
tion, the average increase in DĜ�k and corresponding
values for P̂kð5%Þ; P̂kð1%Þ; and P̂kð0:1%Þ was 65, 125,
300, and 650%, respectively.

The influence of different ratios of variance compo-
nents and production costs of DHs on the optimum
allocation of test resources and optimization criteria was
hardly affected by the number of selection stages, Nf,
and budget. Therefore, representative results on the
influence of both factors were given for two-stage
selection, B=1,000, and Nf=1 (Table 3). An increase in
the non-genetic variance from VC1 to VC3 resulted in a
reduction in N1

* and an increase in Lj
* for

DĜ�k ; P̂ �k ð5%Þ; and P̂ �k ð1%Þ: For P̂ �k ð0:1%Þ; N �1 was also
reduced with increasing non-genetic variance, but N2

*

increased and Lj
* was fairly stable. The optimum allo-

cation of test resources based on the same VC but dif-
ferent optimization criteria differed largely for small
values of q (q=0.1%) and large non-genetic variance
(VC3). For instance, for VC3 and C=0.5 the optimum
number of lines Nj

* was approximately doubled and the
optimum number of locations Lj

* was halved for
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P̂ �k ð0:1%Þ in comparison with DĜ�k : In addition,
DĜ�k ; P̂ �k ð5%Þ; P̂ �k ð1%Þ; and P̂ �k ð0:1%Þ were reduced by
approximately 25, 35, 65, and 70%, respectively, with

increasing non-genetic variance. For C=1 compared
with C=0, Nj

* decreased about 50%, whereas Lj
* chan-

ged only slightly. The reduction in DĜ�k and P̂ �k ðqÞ for
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Fig. 2 a Selection gain DĜ1; b probability P̂1ð1%Þ of identifying one
line with a genotypic value belonging to the 1% best genotypes of
the population, c, d corresponding standard deviation

SDDĜ1
and SD

P̂1ð1%Þ; respectively, as a function on the number of
locations for one-stage selection assuming C=0.5, and Nf=1. For
explanation of abbreviations, see Table 1

Table 2 Optimum allocation of test resources maximizing selection gain ðDĜ�kÞ; values of DĜ�k ; and corresponding probabilities P̂kðqÞ of
identifying Nf lines with genotypic values belonging to the 5, 1, and 0.1% best genotypes of the population assuming C=0.5 and VC2. For
explanation of abbreviations, see Table 1

Assumptions Optimum allocation Selection gain Corresponding probabilities P̂kðqÞ

ka Nf B N1
* N2

* L1
* L2

* DĜ�k SDb P̂kð5%Þ SDb P̂kð1%Þ SDb P̂kð0:1%Þ SDb

1 1 200 44 – 4 – 1.42 0.81 0.39 0.49 0.13 0.34 0.02 0.14
1 1 1,000 133 – 7 – 1.85 0.76 0.60 0.49 0.27 0.44 0.05 0.22
1 1 5,000 588 – 8 – 2.22 0.74 0.78 0.42 0.44 0.50 0.12 0.32
1 5 200 57 – 3 – 1.08 0.36 0.25 0.20 0.07 0.11 0.01 0.04
1 5 1,000 222 – 4 – 1.52 0.36 0.43 0.23 0.16 0.16 0.03 0.07
1 5 5,000 769 – 6 – 1.92 0.35 0.64 0.22 0.30 0.21 0.06 0.11
2 1 200 93 10 1 6 1.68 0.78 0.52 0.50 0.21 0.40 0.04 0.19
2 1 1,000 298 17 2 15 2.20 0.70 0.79 0.41 0.42 0.49 0.10 0.30
2 1 5,000 1,560 50 2 22 2.64 0.67 0.94 0.06 0.68 0.22 0.25 0.19
2 5 200 90 16 1 4 1.25 0.37 0.31 0.21 0.09 0.13 0.01 0.05
2 5 1,000 461 44 1 7 1.80 0.35 0.58 0.23 0.24 0.20 0.04 0.09
2 5 5,000 1,502 83 2 15 2.30 0.32 0.84 0.17 0.48 0.23 0.12 0.15

ak=1, one-stage selection; k=2, two-stage selection
bSD=standard deviation of estimates among runs
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C=1 versus C=0 was small, and ranged from
5% DĜ�k
� �

to 30% P̂ �k ð0:1%Þ
� �

:

Discussion

The selection gain (DGk) is the most widely used crite-
rion to optimize selection processes, but an infinite
sample size was assumed in most studies (Cochran 1951;
Hanson and Brim 1963; Utz 1969; Tomerius 2001;
Grüneberg et al. 2004). As breeding populations nor-
mally are relatively small, we determined DGk for finite
sample sizes. However, both assumptions result in sim-

ilar optimum allocations and marginally reduced gains
for the finite sample case (Cochran 1951; Finney 1966;
Utz 1969). We compared DGk with an alternative opti-
mization criterion, the probability Pk(q) of identifying
superior genotypes. Both DGk and Pk(q) were estimated
by Monte Carlo simulations for one- and two-stage
selection, assuming a Gaussian normal distribution of
(1) genotypic and (2) phenotypic values. Experimental
verification of the latter assumption requires a large
population size in view of the low power of statistical
tests for deviations from a Gaussian normal distribu-
tion. However, an extremely extensive QTL mapping
experiment in maize (Schön et al. 2004) with testcross

Table 3 Optimum allocation of test resources maximizing selection gain DĜ�k or probability P̂ �k ðqÞ of identifying one line (Nf=1) with a
genotypic value belonging to the 5, 1, and 0.1% best genotypes of the population for two-stage selection assuming B=1,000. For
explanation of abbreviations, see Table 1

Assumptions Optimum allocation

OC
a

SD
b

VC C N1
* N2

* L1
* L2

*

DĜ�k
1c 0 739 29 1 9 2.59 0.63

0.5 498 28 1 9 2.51 0.63
1 396 23 1 9 2.44 0.64

2d 0 660 34 1 10 2.26 0.73
0.5 298 17 2 15 2.20 0.70
1 251 19 2 13 2.16 0.70

3e 0 346 22 2 14 1.89 0.80
0.5 224 12 3 18 1.85 0.78
1 199 12 3 17 1.82 0.78

P̂ �k ð5%Þ
1 0 760 30 1 8 0.93 0.25

0.5 480 31 1 9 0.92 0.27
1 350 30 1 10 0.90 0.30

2 0 620 38 1 10 0.80 0.40
0.5 293 19 2 14 0.78 0.41
1 257 19 2 12 0.76 0.43

3 0 580 35 1 12 0.61 0.49
0.5 271 23 2 14 0.60 0.49
1 254 17 2 14 0.58 0.49

P̂ �k ð1%Þ
1 0 739 29 1 9 0.66 0.47

0.5 480 31 1 9 0.61 0.49
1 392 27 1 8 0.56 0.50

2 0 690 31 1 10 0.46 0.50
0.5 312 20 2 11 0.42 0.50
1 257 19 2 12 0.40 0.49

3 0 667 37 1 9 0.28 0.45
0.5 288 28 2 10 0.27 0.44
1 271 17 2 11 0.26 0.44

P̂ �k ð0:1%Þ
1 0 832 24 1 7 0.21 0.41

0.5 538 32 1 6 0.17 0.38
1 427 29 1 5 0.15 0.35

2 0 760 40 1 6 0.12 0.32
0.5 526 35 1 6 0.10 0.30
1 412 35 1 5 0.09 0.28

3 0 730 45 1 6 0.06 0.24
0.5 480 35 1 8 0.06 0.23
1 395 42 1 5 0.05 0.21

aOC=optimization criterion
bSD=standard deviation of estimates among runs
cVC1=1:0.25:0.25:0.5:1
dVC2=1:0.5:0.5:1:2
eVC3=1:1:1:2:4
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progenies of 976 F5 lines evaluated in 19 locations pro-
vided no evidence that phenotypic means for yield
deviated from a Gaussian normal distribution. Likewise,
the large number of detected QTL with small effects
resulted in an approximative Gaussian normal distri-
bution of genotypic values due to the Central Limit
Theorem (Schön et al. 2004). Nevertheless, further re-
search is needed to check the assumptions on probability
distributions. DH populations should be an excellent
tool for this purpose, because natural selection during
inbreeding is minimized, if selection during in vivo
haploid induction can be neglected.

We chose an accuracy of 0.01 for the optimization
criteria to limit the number of simulation runs to a
manageable number. Increasing the accuracy up to
0.0001 would require 5,000,000–600,000,000 simulation
runs. However, the length of the resulting optimum
allocation interval for an accuracy of 0.01 is only a
minor problem for practical breeding purposes due to
the extremely flat response curves.

Comparison of optimization criteria

In a first step, we compare the two optimization criteria
under the assumption of no non-genetic variance (h2=1)
and one-stage selection (Fig. 3), because two-stage
selection offers advantages only for h2 < 1. Our simu-
lation results for DĜ1 and SDDĜ1

were in harmony with
means and standard deviations of order statistics
(Pearson and Hartley 1972). For P̂1ðqÞ the results were in
agreement with those reported by Robson et al. (1967,
Appendix 6 and Table 2). Thus, our Monte Carlo sim-
ulations were sufficiently accurate to estimate DGk and
P1(q). Furthermore, simulations can provide estimates
for SDDG2

; P2(q), SDP1ðqÞ; and SDP2ðqÞ; which were not
reported in previous studies.

The response curves of both optimization criteria
illustrated that the slopes decreased with an increasing
number of lines (Fig. 3). This corroborates the well-
known relationship that a linear increase in DG1 requires
an exponential increase in N1 (Becker 1993). The choice
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Fig. 3 a Selection gain DĜ1; b probability P̂1ðqÞ of identifying one
line with a genotypic value belonging to the q% best genotypes of
the population, c, d corresponding standard deviation

SDDĜ1
and SD

P̂1ðqÞ; respectively, as a function of the number of

lines assuming h2=1. For explanation of abbreviations, see Table 1
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of q had a strong influence on the curve of P̂1ðqÞ; espe-
cially its slope. Response curves of P̂1ð5%Þ and P̂1ð1%Þ
were similar in shape to the curve of DĜ1: P̂1ð25%Þ in-
creased rapidly between 2 and 20 lines reaching for N1

> 20 a 100% probability that the selected genotype
belongs to the best 25% of the population. In contrast,
the response curve of P̂1ð0:1%Þ was almost linear with a
low slope. Thus, for N1=1,000 the probability that the
selected genotype belongs to the best 0.1% of the pop-
ulation was still smaller than 65%. Consequently, for
obtaining DHs with large genotypic values, a very large
number N1 of initial lines must be tested, which is in
harmony with results of Robson et al. (1967), Johnson
(1989), and Knapp (1998). In addition to rarely occur-
ring positive recombinants, this result may explain that
outstanding inbreds are identified only seldom in prac-
tice because the choice of N1 is commonly much smaller
than required. P̂kð25%Þ will be disregarded in our further
discussion, because of being close to one.

In practice, selection is based on phenotypic and not
on genotypic values and, thus, heritability is smaller than
one. The influence of the different optimization criteria
on the optimum allocation of test resources was hardly
affected by the number of selection stages. Hence, only
results for two-stage selection are discussed. Optimum
allocation of test resources differed for the two optimi-
zation criteria and also for values of q, especially under
large non-genetic variance (Table 3). The closest agree-
ment between the optimum allocation of test resources
maximizing P̂kðqÞ and DĜk was observed for q=5%.
With decreasing values of q, an increased N1

* and a
decreased Lj

* were observed. Nevertheless, values of
P̂ �k ðqÞ differed only slightly from P̂kðqÞ at the optimum
allocation of test resources with regard to DĜk: For in-
stance, P̂ �2 ð0:1%Þ � P̂2ð0:1%Þ was below 0.01 for two-
stage selection, B=1,000, Nf=1, VC2, and C=0.5
(Tables 2, 3). This can be explained by the flat response
curves of DĜk and P̂kðqÞ in the vicinity of the maximum
(Fig. 2). For DĜk; it is attributable to the small slopes of
the curves of h2 for increased Lj, and ia for decreased a
(Becker 1993). For P̂kðqÞ; these findings are due to the
small slopes of the curves of (1) h2 and (2) the probability
that genotypes belonging to the q%best genotypes of the
population are among the lines for decreased a (Fig. 3).

The concept of DGk is based on the superiority of the
selected genotypes in comparison with their unselected
base population. In contrast, Pk(q) reflects the chance of
developing competitive varieties that are better than
the existing ones. To have a realistic chance of identi-
fying a superior genotype, Pk(q) should be greater than
75%, permitting only q values of about 5% for the
budgets considered. The choice of the optimization cri-
terion for these q values is not crucial, because the
optimum allocation of test resources differed only
slightly from those obtained by applying DĜk: For small
values of q, different allocation optima were obtained
for DĜk and P̂kðqÞ; but probabilities P̂kðqÞ were too low
to be recommended as optimization criterion for the
budgets investigated. Extending the formula of P1(q)

given by Robson et al. (1967) to multi-stage selection
could facilitate the optimum allocation of resources
based on Pk(q) due to a drastic reduction in computation
time.

Standard deviations of optimization criteria

The choice of q had a large influence on the curves of
SDP̂1ðqÞ (Fig. 3). For instance, SDP̂1ð25%Þ decreased rap-
idly between 2 and 20 lines and reached zero for N1=40,
whereas SDP̂1ð0:1%Þ increased up to a maximum at
N1=700 and decreased slightly thereafter. These differ-
ences can be explained by the binomial nature of Pk(q)
with genotypes surpassing the defined threshold or not.
Thus, SDP̂kðqÞ assumed its maximum for P̂kðqÞ ¼ 0:5: In
contrast, the response curve of SDDĜ1

decreased con-
tinuously with an increasing number of lines (Fig. 3) and
test locations (Fig. 2). The small differences between
values of SDDĜ1

for varying budgets (Fig. 2) can be ex-
plained by the small negative slope of SDDĜ1

for
increasing values of N1 (Fig. 3). As the curves of the
optimization criteria were flat in the vicinity of the
maximum (Fig. 2), their respective SD could serve as a
secondary optimization criterion. However, curves of
SD were also flat in the vicinity of the maximum of the
optimization criteria, thus limiting their usefulness as
additional optimization criterion.

Economic frame, quantitative-genetic parameters,
and selection strategies

To assess their relative importance, the economic frame
and quantitative-genetic parameters were varied in a
range relevant for maize. Production costs C of DHs
covered the entire range from recently established
(C=1) to further improved (C=0) DH technology, with
C=0.5 corresponding to the actual costs in breeding
companies advanced in the DH technique (Seitz,
personal communication). The budget in our study can
either refer to the resources available for evaluating the
progenies of one cross (B=200 � 1,000) or a complete
breeding program (B=5,000). For instance, considering
the evaluation of 100 DH lines for each cross in two
locations, 200 plots are required for 1 cross, and 5,000
plots for 25 crosses. The optimization of a complete
breeding program would, however, require the
assumption of equal means and segregation variances
for progenies from different crosses. As these parameters
usually differ among crosses (cf. Mihaljevic et al. 2004),
optimization of breeding programs including these
population parameters would be very promising but
requires additional research.

The choice of Nf in this study reflects two situations.
Commonly, numerous crosses are completely rejected
before final evaluation and only few lines are selected in
each of the remaining crosses. Thus, Nf=1 represents a
reasonable compromise for one specific cross. In con-
trast, in a complete breeding program, typically several
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lines are finally selected. Consequently, Nf=1 seems
appropriate for B=200 � 1,000 but Nf=5 for B=5,000.

For selection among genetically fixed lines, both
optimization criteria depend on a=Nf/N1 and h2. Vari-
ation in the budget or production costs of DHs mainly
influenced a and, to a lesser extent, h2. The budget was
the major factor influencing values of both optimization
criteria by its strong influence on a (Table 2). In con-
trast, production costs of DHs had only a minor effect
on both optimization criteria. This can be explained by
small changes in (1) a in comparison to changes of a for
different budgets and (2) h2 (Tables 2, 3). The slight
trend towards larger values of Lj

* for C=1 versus C=0
reflects the fact that rejection of more expensive lines
should be based on more reliable information.

The variance components were chosen according to
recent estimates from large series of experiments within a
broad sample of Central European maize breeding pop-
ulations including DH populations (VC2, Gordillo and
Geiger 2004), reflecting the typical situation for breed-
ing programs with adapted maize populations. Vari-
ance components affect h2 directly, and with VC3 the
reduced h2 could only partly be compensated by
increased values of Lj

* with a parallel reduction in N1
*.

Altogether, we found a large reduction in values of
P̂kð1%Þ and P̂kð0:1%Þð> 50%Þ with increased non-genetic
variance. This is in accordance with previous studies
(Keuls and Sieben 1955; Robson et al. 1967; Johnson
1989; Knapp 1998) analyzing the problem to identify
superior genotypes under high non-genetic variance.
Summarizing, our results underline the high impact of
VC on the optimum allocation of resources with alter-
native breeding strategies.

Breeding is a continuous process and every year a
new breeding cycle is initiated. Under this assumption,
the annually available budget, for all cycles running in
parallel is equal to the budget available for one entire
cycle (Utz 1969). Consequently, comparisons between
one- and two-stage selection can be made directly
without dividing the optimization criteria by the years
required in the selection strategy. Two-stage selection
with optimum allocation of resources allows the evalu-
ation of a large number of lines N1 in a small number of
test locations L1. The N2 lines selected in stage one are
further evaluated in a large number of test locations L2

to ascertain a high accuracy of the test results. This
guarantees a low a and high h2 and increases conse-
quently both optimization criteria. In addition, response
curves of the optimization criteria were flatter for two-
stage selection than for one-stage selection, reducing the
risk of choosing a non-optimal allocation. However,
with one-stage selection breeders could exploit 1 year
earlier the progress of selection by improved DH lines
and hybrids developed from them.

Values of DĜk and P̂kðqÞ increased roughly to the
same extent by (1) two-stage instead of one-stage selec-
tion, (2) a fivefold increase in the budget (B=200 to
B=1,000), (3) a reduction in Nf from five to one, or (4)
a quarter reduction in the non-genetic variance (VC1

instead of VC3). Except for the last factor, which is
determined by the breeding material and target envi-
ronments, all other factors can be chosen in favor of an
increased selection response, but at the expense of a
longer duration of the selection strategy (two-stage
selection), higher costs (larger budget), and a higher risk
of the final outcome (larger SD for Nf=1). In particular,
our results demonstrate that employing two-stage
instead of one-stage selection represents a promising
alternative to an increased budget.

Conclusions

The production costs of DHs had only a minor effect on
the optimum allocation of breeding resources. Even if
the current DH production using in vivo haploid induc-
tion is still relatively expensive, the compensation
obtained through a reduced number of initial lines
recommends their application. AsDH costs are decreasing
owing to expected improvements in the DH technique in
the future, they will be only of secondary importance
regarding the optimum allocation of resources.

For two-stage selection, a budget of approximately
1,000 field plot equivalents, and actual production costs
of DHs, the allocation of test resources is roughly close to
its optimum, if (1) the selected fraction a1=N2/N1 is
smaller than 0.10, (2) the number of test locations at the
final selection stage exceeds at least six, and (3) about
three quarters of the budget are invested in the first stage.

We attained a reasonable probability of success with
continuous breeding for q values of about 5%. In these
cases, the choice of the optimization criterion was rela-
tively unimportant. However, for very large budgets the
small probability of identifying outstanding genotypes is
maximized if the number of lines is increased at the ex-
pense of the number of test locations. Optimization of
complete breeding programs based on DHs is very
promising, but selection theory must be extended for
selection among and within crosses, consideration of
different number and types of testers, and tests for line
per se performance.
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ABSTRACT

The optimum allocation of breeding resources is crucial for the efficiency of breeding programmes. The

objectives were to (i) compare selection gain (∆Gk) for finite and infinite sample sizes, (ii) compare ∆Gk and

probability of identifying superior hybrids (Pk), and (iii) determine the optimum allocation of the number

of hybrids and test locations in hybrid maize breeding using doubled haploids. Infinite compared to finite

sample sizes led to almost identical optimum allocation of test resources, but to an inflation of ∆Gk. This

inflation decreased as the budget and the number of finally selected hybrids increased. A reasonable Pk was

reached for hybrids belonging to the q = 1% best of the population. The optimum allocations for Pk(q) and

∆Gk were similar indicating that Pk(q) is promising for optimizing breeding programmes.

T
HE optimum allocation of financial and breeding resources

is of fundamental importance for the efficiency of breeding

programmes. Currently, doubled haploids (DHs) are adopt-

ed as a routine method in commercial maize breeding pro-

grammes (Seitz 2005). Their efficient use requires the opti-

mization of the entire breeding strategy in order to maximize

progress from selection. To quantify the progress from k selec-

tion stages, various criteria have been used.

Selection gain ∆Gk is the most widely used criterion to op-

timize selection processes. The selection theory for ∆Gk was

developed assuming an infinite sample size, although popu-

lations of medium size are commonly used in plant breeding

(Cochran 1951; Hanson and Brim 1963; Utz 1969; Grüneberg et

al. 2004). This assumption simplifies the calculations consider-

ably. Inflated ∆Gk and slightly different optimum allocation of

test resources for infinite compared to finite sample size were

reported in the literature (Cochran 1951; Finney 1966; Utz 1969;

Young 1976). However, these studies were conducted more

than 30 years ago and the limited computing power available at

that time restricted the accuracy of simulations. The probability

of identifying superior genotypes (Pk) represents an interesting

alternative to ∆Gk for optimizing the allocation of test resources

(Robson et al. 1967; Johnson 1989; Longin et al. 2006).

The allocation of test resources in hybrid maize breeding

with DHs was optimized under one- and two-stage selection

for testcross performance with a given tester by using Monte

Carlo simulations and numerical integration. The objectives

were to (i) compare ∆Gk for finite and infinite sample sizes, (ii)

compare ∆Gk and Pk, and (iii) determine the optimum alloca-

tion of the number of hybrids and test locations.

Corresponding author: Albrecht E. Melchinger, Institute of Plant Breeding, Seed

Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Ger-

many. Email: melchinger@uni-hohenheim.de

MATERIALS AND METHODS

Selection strategies

A total of N1 hybrids generated by crosses of DH lines to a giv-

en tester are available each year to start selection. The tester

can be any population with an arbitrary structure, such as an

inbred line, single cross, or random mating population. The

N f phenotypically best hybrids are finally selected. A value of

N f = 1 was assumed to emphasize the interest in the very best

hybrid. The target variable is the genotypic value of testcross

performance with a given tester for a certain trait or index of

traits. With one-stage selection, selection is based on field tests

in a single year. With two-stage selection, field tests are con-

ducted in two years with a subset of the most superior hybrids

N2 selected after the first year being evaluated in the second

year. At stage j ( j = 1, 2), selection among N j hybrids is based

on the phenotypic mean of testcross performance at this stage

with a given tester evaluated in L j test locations with R j repli-

cations. Without an upper limit on L j, R j = 1 is optimal for ∆Gk
(Sprague and Federer 1951; Utz 1969). The R j value was thus

set to 1.

Economic frame and quantitative-genetic parameters

A fixed total budget B for (i) producing the DH lines and (ii)

evaluating their testcross progenies in two selection stages was

defined in terms of testcross plot equivalents as B = N1C +

N1L1R1 + N2L2R2 assuming equal plot sizes in both selection

stages. Therein, the production cost C of one DH line was

assumed to equal half the cost of one field plot (C = 0.5),

corresponding to the actual costs of DH production in breed-

ing companies most advanced in the DH technique (Seitz,

pers. comm.). The focus was generally on a budget of B =

20 000 field plot equivalents. Three ratios of variance compo-

nents (σ2g : σ
2

gl
: σ2gy : σ

2

gly
: σ2e ) were considered, where σ

2
g
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Figure 1 (A) Selection gain for infinite ∆G(in f )1 and

finite sample size ∆Ĝ1 and (B) probability P̂1(q) of

identifying one hybrid with a genotypic value belong-

ing to the 1%(�), 0.1%(♦), and 0.01%(4) best genotypes

of the population as a function of the number of test

locations for one-stage selection, assuming a budget

of 20 000 field plot equivalents and a ratio of variance

components of 1 : 0.5 : 0.5 : 1 : 2.

refers to the genotypic variance, σ2
gl
to the variance of geno-

type × location interactions, σ2gy to the variance of genotype ×

year interactions, σ2
gly
to the variance of genotype × location ×

year interactions, and σ2e to the error variance. Values were set

to VC1 = 1 : 0.25 : 0.25 : 0.5 : 1, VC2 = 1 : 0.5 : 0.5 : 1 : 2,

and VC3 = 1 : 1 : 1 : 2 : 4, resulting in a heritability on a plot

basis of 0.33, 0.20, and 0.11, respectively. These ratios were cho-

sen based on combined analyses of variance of testcrosses of

DH populations from commercial breeding programmes (Lon-

gin et al. 2006).

Calculation of optimization criteria

Selection gain for finite sample size (∆Ĝk) and probability of

identifying superior hybrids (P̂k) were estimated byMonte Car-

lo Simulations according to Longin et al. (2006) assuming a

standard normal distribution of the hybrids in a whole breed-

ing programme. The calculation of selection gain for infinite

sample sizes (∆G(in f )k) with numerical integration is based

on uni- and bivariate normal integrals for selected fractions

α j = N j+1/N j and the square root of heritability of phenotypic

means at stage j (cf. Cochran 1951). An admissible allocation of

test resources refers to tuples (N j,L j) for all stages j. An element

(N∗
j
;L∗
j
) is denoted as an optimum allocation if it maximizes the

optimization criterion in the set of admissible allocations. The

values of each optimization criterion at its corresponding opti-

mum allocation (N∗
j
;L∗
j
) were denoted as ∆Ĝ∗

k
and P̂∗

k
(q) for the

Monte Carlo simulations and ∆G(in f )∗
k
for the numerical inte-

gration. The optimization criteria ∆Ĝk and P̂k(q) are estimated

with a precision of 0.01 to limit the number of simulation runs

to a manageable number (Longin et al. 2006). Thus, the opti-

mum allocation (N∗
j
, L∗
j
) was determined following Utz (1969)

such that the number of test locations was minimum among

all allocations within a 0.01 drop-off of all optimization criteria,

since breeders prefer tests in fewer test locations for technical

reasons if this only affects the optimization criteria marginally.

Table 1 Optimum allocation of test resourcesmaximizing

selection gain for infinite (∆G(in f )∗
1
) and finite sample size

(∆Ĝ∗
1
) and their standard deviation (SD) for one-stage se-

lection assuming a ratio of variance components of 1 : 0.5 :

0.5 : 1 : 2. (B = budget in field plot equivalents, N f = num-

ber of finally selected hybrids, N∗
1
,L∗
1
= optimum number

of hybrids and test locations, OC = optimization criterion).

Assumptions Optimum allocation

B N f N∗

1
L∗
1

OC SDa

∆G(in f )∗
1

200 1 44 4 1.54 0.83
5 57 3 1.11 0.39
20 80 2 0.71 0.21

20 000 1 1904 10 2.60 0.73
5 2352 8 2.26 0.34
20 3076 6 1.95 0.18

∆Ĝ∗

1

200 1 44 4 1.42 0.80
5 57 3 1.08 0.36
20 133 1 0.69 0.21

20 000 1 1739 11 2.52 0.72
5 2352 8 2.25 0.34
20 3076 6 1.94 0.17

a Approximated for infinite sample size after Burrows (1975)

RESULTS

With increasing L1, the optimization criteria ∆G(in f )1, ∆Ĝ1,

and P̂1(q) increased up to an optimum and decreased slight-

ly thereafter (Fig. 1). The increase in ∆G(in f )1, ∆Ĝ1, and P̂1(q)

was largest between L1 = 1 and L1 = 6. All response curves

were flat in the vicinity of the maximum. With decreasing q,

the slope of P̂1(q) decreased. The optimum allocation and the

standard deviations (SDs) of the optimization criteriawere sim-

ilar for ∆G(in f )∗
1
and ∆Ĝ∗

1
(Table 1). Differences were observed

for ∆G(in f )∗
1
compared to ∆Ĝ∗

1
. With increasing N f , the ra-

tio ∆G(in f )∗
1
/∆Ĝ∗

1
decreased from 8.5 to 2.9% for B = 200 and

from 3.2 to 0.5% for B = 20 000. With increasing B, the ratio

∆G(in f )∗
1
/∆Ĝ∗

1
decreased from 8.5% to 3.2% for N f = 1 and
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Table 2 Optimum allocation of test resources maximizing selection gain ∆Ĝ∗
k
or probability P̂∗

k
(q) of

identifying one hybrid with a genotypic value belonging to the q = 1, 0.1, and 0.01% best genotypes

in the population assuming a budget of 20 000 field plot equivalents. (k = number of selection stages,

VC = ratio of variance components, N∗
j
,L∗
j
= optimum number of hybrids and test locations at stage

j, OC = optimization criterion, SD = standard deviation of estimates among runs).

Assumptions Optimum allocation

k VC N∗

1
N∗

2
L∗
1

L∗
2

OC SD

∆Ĝ∗

k

1 1a 2666 - 7 - 2.87 0.63

1 2b 1739 - 11 - 2.25 0.72
1 3c 1481 - 13 - 2.11 0.81

2 1 10440 217 1 20 3.33 0.56
2 2 6090 129 2 37 2.99 0.64
2 3 3660 84 4 42 2.57 0.73

P̂∗
k
(1%)
1 1 2666 - 7 - 0.81 0.40
1 2 2105 - 9 - 0.60 0.49
1 3 1739 - 11 - 0.39 0.49

2 1 7224 102 2 19 0.97 0.19
2 2 4926 89 3 31 0.85 0.36
2 3 3967 58 4 37 0.63 0.48

P̂∗
k
(0.1%)
1 1 3636 - 5 - 0.35 0.48
1 2 2666 - 7 - 0.21 0.41
1 3 2666 - 7 - 0.10 0.30

2 1 10440 217 1 20 0.66 0.47
2 2 6627 143 2 24 0.43 0.50
2 3 5001 96 3 26 0.23 0.42

P̂∗
k
(0.01%)
1 1c 5714 - 3 - 0.09 0.08
1 2 4444 - 4 - 0.04 0.04
1 3 5714 - 3 - 0.01 0.01

2 1 10750 298 1 13 0.23 0.42
2 2 7104 140 2 16 0.12 0.33
2 3 5450 66 3 14 0.05 0.23

a VC1 = 1: 0.25: 0.25: 0.5: 1; b VC2 = 1: 0.5: 0.5: 1: 2; c VC3 = 1: 1: 1: 2: 4

from 2.9 to 0.5% for N f = 20. The optimum allocation of test

resources based on the same VC but different optimization cri-

teria differed largely for small values of q (q = 0.1, 0.01%) and

large non-genetic variance (VC3, Table 2). For instance, for

VC3, the optimum number of hybrids N∗
j
was approximately

doubled and the optimum number of test locations L∗
j
wasmore

than halved for P̂∗
k
(0.01%) in comparison with ∆Ĝ∗

k
.

The optimum number of initial hybrids N∗
1
and test loca-

tions for two-stage selectionwas about twice as large as for one-

stage selection (Table 2). This was due to the optimum alloca-

tion of two-stage selection, which comprised a large number of

initial hybridsN∗
1
tested in a small number of test test locations

L∗
1
at the first stage, and a small number of selected hybrids

N∗
2
tested in a large number of test locations L∗

2
at the second

stage. Furthermore, values of ∆Ĝ∗
k
, and of P̂k(1%)

∗, P̂k(0.1%)
∗,

and P̂k(0.01%)
∗ were 18%, 40%, 100%, and 250%, respectively,

higher on average than for one-stage selection.

DISCUSSION

Comparison of selection gain for infinite vs. finite sample size

The optimum allocation of test resources regarding selection

gain for infinite (∆G(in f )∗
k
) vs. finite sample size (∆Ĝ∗) was al-

most identical for all the scenarios considered (Table 1). This

is in accordance with a previous study (Utz 1969) and can be

explained by the similar response curves for ∆G(in f )k and ∆Ĝ

as a function of the number of test locations (Fig. 1). The sim-

ilar response curves are due to similar slopes of the selection

intensity for infinite and finite sample size and to the fact that

heritability is not affected by the sample size of the population.

For small budgets and number of finally selected hybrids,

∆G(in f )∗
k
was clearly inflated in comparison to ∆Ĝ∗

k
(Table 1),

which is in harmony with results reported in the literature (Utz

1969). The inflation of ∆G(in f )∗
k
decreased with increasing B

and/or N f . This can be explained by the distribution of the hy-
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brids. With increasing population size (increasing B), the devi-

ation of the realized distribution for finite sample sizes from the

expected standard normal distribution for infinite sample sizes

decreases. The impact of N f can be explained by the fact that

the deviation from the standard normal distribution for small

sample sizes mainly affects the tails of the distribution.

Comparison between several breeding alternatives is nor-

mally based on the use of either ∆G(in f )k or ∆Ĝk. Thus, the al-

ternatives are equally affected by the inflation of ∆G(in f )k. For

comparison between different B and N f values, the small bias

caused by ∆G(in f )k can be neglected in comparison to the large

impact of B and N f on selection gain (Table 1). Consequently,

the simplifying assumption of infinite sample sizes for deter-

mining the optimum allocation of test resources is justifiable as

long as a reduction in computing time and effort is warranted.

Comparison of selection gain with probability of identifying

superior hybrids

The optimum allocation of test resources differed for ∆Ĝ∗
k
and

P̂k(q)
∗ especially for small values of q and large non-genetic

variance (Table 2). For one-stage selection, the closest agree-

ment between the optimum allocation of test resources max-

imizing P̂k(q) and ∆Ĝk was observed for q = 5% (data not

shown). With decreasing values of q, an increasedN∗
1
and a de-

creased L∗
1
were observed. This can be explained by the fact that

the probability that genotypes belonging to the q% best geno-

types of the population are among the initial hybrids decreases

rapidly with decreasing N1 and q (Longin et al. 2006). In ad-

dition, the slope of the response curves of P̂k(q) decreased with

smaller q (Fig. 1), favoring allocations with smaller L1.

For two-stage selection, the optimum allocation of test re-

sources maximizing P̂2(q) and ∆Ĝ2 was only comparable for

VC1 and q = 0.1%. For large non-genetic variances and small

q, an increased N∗
1
and a decreased L∗

2
were observed. Howev-

er, for q = 1%, VC1, and VC2, a decreased N∗
j
and increased L∗

1

were observed in comparison to ∆Ĝ∗
2
. This may be due to the

considerable increased N∗
1
in two-stage selection compared to

one-stage selection and the consequent increase in the impor-

tance of heritability. Nevertheless, values of P̂∗
k
(q) differed only

slightly from values of P̂k(q) at the optimum allocation of test

resources with regard to ∆Ĝ∗
k
(Longin et al. 2006), which can be

explained by the flat response curves of ∆Ĝk and P̂k(q) in the

vicinity of the maximum (Fig. 1).

To have a realistic chance of identifying a superior geno-

type, Pk(q) should be greater than 75%, permitting only q values

of about 1% even for the large budget considered. The choice

of the optimization criterion for these q values is not crucial,

because the optimum allocation of test resources differed only

slightly from those obtained by applying ∆Ĝk. Therefore, the

use of Pk(q) seems appealing for the optimization of breeding

programmes, favoring a reduction in the number of test loca-

tions with a parallel increase of the number of initial hybrids

for the selection of very outstanding hybrids.

Two-stage selection – promising method to increase Pk(q)

The possibilities to increase P̂k(q) are limited especially for

small values of q (Longin et al. 2006). An increasing budget

increases P̂k(q), but the return from investment is rather low.

Increasing the number of selection stages from one to two, con-

siderably increased ∆Ĝk and P̂k(q) (Table 2). This is due to the

optimum allocation of test resources in two-stage selection in-

volving the evaluation of (i) a large number of hybrids in a

small number of test locations in the first year and (ii) a small

number of the selected superior hybrids in a large number of

test locations in the second year. The probability of identify-

ing superior hybrids for small values of q was particularly im-

proved by two-stage selection in comparison to one-stage se-

lection, which may mainly be due to the increased N∗
1
. With

one-stage selection, breeders could exploit the progress of se-

lection by improved hybrids one year earlier. However, the

limited possibilities for increasing P̂k(q) make the use of two-

stage instead of one-stage selection very appealing to identify

a hybrid with outstanding performance.

This research was supported by funds from DFG, Grant No 1070/1, International

Research Training Group “Sustainable Resource Use in North China” to C. F. H.

Longin.
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Abstract Optimum allocation of test resources is of
crucial importance for the efficiency of breeding pro-
grams. Our objectives were to (1) determine the opti-
mum allocation of the number of lines, test locations,
as well as number and type of testers in hybrid maize
breeding using doubled haploids with two breeding
strategies for improvement of general combining abil-
ity (GCA), (2) compare the maximum selection gain
(DG) achievable under both strategies, and (3) give
recommendations for the optimum implementation of
doubled haploids in commercial hybrid maize breed-
ing. We calculated DG by numerical integration for two
two-stage selection strategies with evaluation of (1)
testcross performance in both stages (BS1) or (2) line
per se performance in the first stage followed by test-
cross performance in the second stage (BS2). Different
assumptions were made regarding the budget, variance
components (VCs), and the correlation between line
per se performance and GCA. Selection gain for GCA
increased with a broader genetic base of the tester.
Hence, testers combining a large number of divergent
lines are advantageous. However, in applied breeding
programs, the use of single- or double-cross testers in
the first and inbred testers in the second selection stage

may be a good compromise between theoretical and
practical requirements. With a correlation between line
per se performance and GCA of 0.50, DG for BS1 is
about 5% higher than for BS2, if an economic weight
of line per se performance is neglected. With increas-
ing economic weight of line per se performance, rela-
tive efficiency of BS2 increased rapidly resulting in a
superiority of BS2 over BS1 already for an economic
weight for line per se performance larger than 0.1.
Considering the importance of an economic seed pro-
duction, an economic weight larger than 0.1 seems
realistic indicating the necessity of separate breeding
strategies for seed and pollen parent heterotic groups.

Introduction

Inbred line development by doubled haploid technol-
ogy is currently adopted as a routine method in com-
mercial hybrid maize breeding programs in North
America (Seitz 2005) and Europe (Schmidt 2004). The
use of doubled haploids offers the possibility to eval-
uate potential hybrid cultivars from the very beginning
of the selection process. With a large number of lines in
each heterotic group, the number of factorial crosses
among them becomes rapidly prohibitive. Hence, new
lines are usually tested in combination with one or
several testers to evaluate their general combining
ability (GCA, Hallauer et al. 1988). Specific combining
ability (SCA) acts as a masking effect in determining
GCA. Its influence can be reduced by using genetically
broad testers and/or an increased number of testers
(Hallauer and Miranda 1981). However, choice of type
and number of testers also affect the optimum alloca-
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tion of test resources. As plant breeders have only a
fixed budget available, they must find a compromise
between (1) the number of initial lines to be tested and
(2) the intensity of their testing as determined by the
number of testers, test locations, years, and replica-
tions.

A selection strategy may involve one or several
stages of selection. With multi-stage selection, the ini-
tial population of lines is evaluated in one year and
based on the test results, a superior subset is selected
for further evaluation and selection in subsequent
year(s). Considering one-stage selection for GCA
between inbred lines in maize, Federer and Sprague
(1947) and Keller (1949) investigated the optimum
allocation of the number of testers, lines, and replica-
tions. They concluded that for a fixed budget, the
selection gain (DG) was increased by increasing the
number of testers even at the expense of the number of
lines and replications. Schnell (1996) extended these
investigations to two-stage selection for early testing in
maize considering also the number of test locations.
For a fixed budget corresponding to 1,200 testcross
plots, he suggested to use one tester in the first and
seven testers in the second stage of selection. However,
simplified genetic models and covariances were used
for calculation of selection gain. In addition, a larger
genetic variance is expected with doubled haploids in
comparison with segregating lines.

Several experimental studies examined the impact
of testers with narrow versus broad genetic base (for
review see Hallauer and Miranda 1981). To our
knowledge, investigations on the type of testers within
the context of optimum allocated test resources have
not been reported in the literature. An economic
production of hybrid seed requires an acceptable line
per se performance of the seed parent. For this and
other reasons, evaluation of line per se performance
may be an interesting alternative to testcross evalua-
tions in the first selection stage. An assessment of this
alternative selection strategy based on line per se
performance and testcross performance is not available
in maize.

We calculated the maximum DG by numerical
integration to optimize the allocation of test resources
in hybrid maize breeding using doubled haploids under
two two-stage selection strategies with evaluation of
(1) testcross performance in both stages, or (2) line per
se performance in the first stage followed by testcross
performance in the second stage. Different assump-
tions were made regarding the budget, variance com-
ponents, correlation between line per se performance
and GCA, and economic weight of line per se perfor-
mance and GCA. Our objectives were to (1) determine

the optimum allocation of the number of lines, test
locations, as well as number and type of testers for
each strategy, (2) compare the maximum DG achiev-
able under both strategies, and (3) give recommenda-
tions for the optimum implementation of doubled
haploids in commercial hybrid maize breeding.

Materials and methods

Breeding strategies

Doubled haploid lines generated from several F1 crosses
via in vivo haploid induction are evaluated for line per se
performance and/or testcross performance. The target
variable is GCA or a selection index of line per se per-
formance and GCA. We investigated two strategies to
evaluate the doubled haploid lines. In both strategies,
the lines are evaluated in two consecutive years. In the
first year, N1 lines are evaluated and a subset N2 of the
most superior lines are selected for evaluation in
the second year. The five best doubled haploid lines are
selected after these two selection stages to give oppor-
tunity to further selection also on SCA. Breeding
strategy one (BS1) represents two-stage selection based
on testcross evaluation of Nj lines with Tj testers at Lj

locations in stage j (j = 1, 2). Tester number and tester
type can vary in both stages. The investigated tester
types were inbred lines, single-crosses, double-crosses,
or double-double crosses. In breeding strategy two
(BS2), the lines are evaluated for line per se perfor-
mance in the first stage and for testcross performance
with T2 testers in the second stage at Lj locations,
respectively. Without restrictions on Lj, DG is maximum
for one replication per location (Sprague and Federer
1951; Utz 1969; Melchinger et al. 2005). For this reason,
we set the number of replications to one for all calcu-
lations. An overview of the notation used throughout
this treatise is given in Table 1.

Calculation of selection gain

Our target variable was the selection index H = aGCA

gGCA + aLP gLP (Cochran 1951), where a refers to the
economic weight and g to the genotypic effect of GCA
and line per se performance (LP), respectively. We used
mostly aLP = 0 restricting the target variable to GCA.
For comparison, we also calculated aLP = 0.1 and 0.2
with aGCA = 1 – aLP. The selection criterion in the
second stage is an optimum index of the phenotypic
means of the lines evaluated in the first and second stage
with I = b1 x1 + b2 x2, where x refers to the phenotypic
mean and b to its weight in stage one or two.
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Calculation of DG is based on the well-known for-
mula of Cochran (1951) with uni- and bivariate normal
integrals for selected fractions and the square root of
heritabilities of x1 and x2. For a detailed description of
the calculation of DG, the reader is referred to Wricke
and Weber (1986). For BS1, heritability is calculated
by h2

xj
¼ r2

GCA=r
2
xj

with

r2
xj
¼r2

GCA þ r2
GCA�y þ

r2
GCA�l

Lj
þ

r2
GCA�l�y

Lj

þ r2
SCA

TjMj
þ

r2
SCA�y

TjMj
þ r2

SCA�l

TjMjLj
þ

r2
SCA�l�y

TjMjLj
þ r2

e

TjLj
;

ð1Þ
where rGCA

2 and rSCA
2 refer to the variance of GCA

and SCA effects, rGCA · y
2 to the variance of GCA ·

year interactions, rGCA · l
2 to the variance of GCA ·

location interactions, rGCA · l · y
2 to the variance of

GCA · location · year interactions, rSCA · y
2 ,

rSCA · l
2 , and rSCA · l · y

2 to the respective interactions
with SCA, as well as re

2 to the variance of the plot
error. Tester type is defined by Mj, the number of
inbred lines combined in a tester. We assumed an
equal contribution of the gametes of the inbred lines
combined in the tester to the testcross progenies, with
Mj = 1, 2, 4, 8 referring to an inbred line, a single-cross,
a double-cross, or a double-double cross tester,
respectively. The covariance between testcross means
of doubled haploid lines evaluated in two years was
calculated as

Covðx1; x2Þ ¼ r2
GCA þ

Lcr2
GCA�l

L1L2
þ Tcr2

SCA

T1M1T2M2

þ TcLcr2
SCA�l

T1M1L1T2M2L2
; ð2Þ

where Lc and Tc refer to the number of locations and
tester lines (Tj · Mj) common to both selection stages.
For BS2, h2

x1
¼ r2

Line=r
2
x1

with

r2
x1
¼ r2

Line þ r2
Line�y þ

r2
Line�l

Lj
þ

r2
Line�l�y

Lj
þ r2

e

Lj
; ð3Þ

where rLine
2 refers to the genetic variance among

lines, rLine · y
2 to the variance of line · year

interactions, rLine · l
2 to the variance of line ·

location interactions, rLine · l · y
2 to the variance of

line · location · year interactions, as well as re
2 to

the variance of the plot error. In the second stage,
heritability was calculated as for BS1. The covariance
between line and testcross means of doubled haploid
lines in the two years was calculated as

Covðx1; x2Þ ¼ qðLP;GCAÞrLinerGCA

þ LcCovðLine� l;GCA� lÞ
L1L2

; ð4Þ

where q(LP, GCA) refers to the genetic correlation
between line per se performance and GCA. We as-
sumed Cov(Line · l, GCA · l) = 0, because experi-
mental values are lacking and a small value is expected
from theory. The extension of the formulas for DG

expected for an optimum index in the second stage and
aLP > 0 is straightforward in multivariate selection
(Baker 1986).

Optimum allocation of resources

The allocation of test resources refers to triples (Tj, Lj,
Nj) for each tester type in all stages j. An element (Tj

*,
Lj

*, Nj
*) is denoted as an optimum allocation if it

Table 1 Notation used in this treatise

aLP, aGCA Economic weight of line per se performance (LP) and GCA of the doubled haploid lines
h2 Heritability on an entry-mean basis
q(LP, GCA) Genetic correlation between line per se performance and GCA
xj Phenotypic mean in stage j with corresponding variance r2

xj

BS1 Breeding strategy one representing two-stage selection with evaluation of testcross performance
in both stages

BS2 Breeding strategy two representing two-stage selection with evaluation of line per se performance
in the first stage followed by testcross performance in the second stage

DG Selection gain in two-stage selection, where the second selection is based on an optimum index combining
the phenotypic means of both selection stages

DG* Value of DG at the corresponding optimum allocation (Tj
*, Lj

*, Nj
*)

Mj Number of unrelated inbred lines combined in a single tester in stage j
Tj, Lj, Nj, Number of testers, locations, and lines in stage j in performance trials
Tj

*, Lj
*, Nj

* Optimum number of testers, locations, and lines maximizing selection gain in the set of admissible allocations
Tc, Lc Number of T and L common to both selection stages
VC VCs, for details see Table 2
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maximizes DG in the set of admissible allocations,
which are valid for the budget, variance components,
and tester type considered. The value of DG at its
corresponding optimum allocation (Tj

*, Lj
*, Nj

*) was
denoted as DG*. The optimum allocation of test re-
sources for each scenario was obtained by a grid search
in the space of admissible resource allocations by
increasing N1 by one between its minimum and maxi-
mum possible value under the allocation considered.

Economic frame and quantitative-genetic
parameters

A fixed total budget for (1) producing the doubled
haploid lines and (2) evaluating their testcross proge-
nies in two selection stages was defined in terms of
testcross plot equivalents as N1 C + N1T1L1 +
N2T2L2, assuming equal plot sizes in all selection
stages. Therein, the production cost C of one doubled
haploid line was assumed to equal half the cost of one
testcross plot equivalent (C = 0.5), corresponding to
the actual costs of doubled haploid production in
breeding companies most advanced in the doubled
haploid technique (G. Seitz, personal communication).
We compared three budgets with 500, 1,000, and 5,000
testcross plot equivalents. We assumed that each tester
is evaluated at each location. Alternatively, we con-
sidered that each tester · line combination is evalu-
ated only in a single location. With that assumption, Tj

Lj is reduced to Tj in Eqs. 1, 2 and the calculation of
the budget.

We determined the optimum allocation for different
scenarios of variance component for line per se per-
formance and testcross performance (Table 2). These
variance components were chosen based on combined
analyses of variance in testcrosses of doubled haploid
populations in commercial breeding programs and in
elite germplasm of the maize breeding program of the
University of Hohenheim (Longin et al. 2006a; Schrag
et al. 2006). In addition, variance components were
varied to cover a wide range of scenarios. The refer-
ence scenarios VC2.2 for testcross performance and
VC5 for line per se performance resulted in heritabil-
ities on a plot basis of 0.11 and 0.28, respectively. The
larger h2 for line per se performance in comparison
with testcross performance is in accordance with re-
sults of experimental studies (Seitz 1989; Gallais 1997;
Mihaljevic et al. 2005). This is due to similar non-ge-
netic variances but larger genetic variances for line per
se performance than for testcross performance. We
investigated three assumptions concerning the genetic
correlation between line per se performance and GCA
with q(LP, GCA) = 0.25, 0.50, and 0.75, which were
based on results published by Mihaljevic et al. (2005)
and Weiss (1981).

Results

For all parameters being only marginally affected by
varying budget and variance components, representa-
tive results were presented for intermediate values of

Table 2 Variance components used in this study with rGCA
2 and

rSCA
2 referring to the variance of general (GCA) and specific

combining ability (SCA) effects, rGCA · y
2 to the variance of

GCA · year interactions, rGCA · l
2 to the variance

of GCA · location interactions, rGCA · l · y
2 to the variance

of GCA · location · year interactions, rSCA · y
2 , rSCA · l

2 , and

rSCA · l · y
2 to the respective interactions with SCA, r2

e to the
variance of the plot error, rLine

2 to the genetic variance among
lines per se, rLine · y

2 to variance of line · year interactions,
rLine · l

2 to the variance of line · location interactions, as well as
rLine · l · y

2 to the variance of line · location · year interac-
tions

Testcross performance

Acronym Variance components

rSCA
2 /rGCA

2 rGCA
2 rGCA · y

2 rGCA · l
2 rGCA · l · y

2 rSCA
2 rSCA · y

2 rSCA · l
2 rSCA · l · y

2 re
2

VC1 1/4 0.40 0.20 0.20 0.40 0.10 0.05 0.05 0.10 1.80
VC2.1 1/2 0.40 0.10 0.10 0.20 0.20 0.05 0.05 0.10 1.00
VC2.2 1/2 0.40 0.20 0.20 0.40 0.20 0.10 0.10 0.20 2.00
VC2.3 1/2 0.40 0.40 0.40 0.80 0.20 0.20 0.20 0.40 4.00
VC3 1/1 0.40 0.20 0.20 0.40 0.40 0.20 0.20 0.40 2.40

Line per se performance

Variance components

rLine
2 rLine · y

2 rLine · l
2 rLine · l · y

2 re
2 – – – –

VC4 – 1 0.15 0.15 0.50 0.50 – – – –
VC5 – 1 0.30 0.30 1.00 1.00 – – – –
VC6 – 1 0.60 0.60 2.00 2.00 – – – –
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the budget (1,000) and variance components (VC2.2).
Deviations from these assumptions are explicitly sta-
ted. A fourfold increase in the ratio r2

SCA/rGCA
2 from

VC1 to VC3 resulted in an approximately doubled
optimum number T2

*, a 50% reduction in L2
*, slightly

decreased N1
*, and a reduction in DG* of more than 7%

(Table 3). For a given ratio r2
SCA/r2

GCA, the use of
double-double cross instead of inbred testers resulted
in a substantial reduction in T2

* and a parallel increase
in L2

*, a minor increase in N1
*, and an increase in DG* of

at least 6%. Restricting the tester type in the second
stage to inbreds resulted in fairly stable values of Tj

*

and Lj
* for all tester types. However, N1

* decreased with
the use of genetically broad testers in the first stage. In
addition, the possibility of using genetically broad
testers only in the first stage reduced their superiority
over inbred testers in comparison with non-restricted
tester types in both stages.

Further results were presented for single-cross tes-
ters in the first stage and inbred testers in the second
stage, because these tester types are most commonly
used in applied maize breeding programs. With
increasing L2 or T2, DG increased strongly up to a
maximum and decreased thereafter (Fig. 1). In the
vicinity of the maximum, all response curves of DG

were flat for varying values of L2, T1, and T2. The
optimum number L2

* depended strongly on T2 with

smaller values of L2
* being obtained with larger values

of T2 (Fig. 1a). The optimum number T1
* was always

one (Fig. 1b). For T1 > 1, the reduction in DG de-
pended on the ratio rSCA

2 / rGCA
2 with a bigger loss for

smaller values of rSCA
2 .

The impact of varying budget and variance compo-
nents on the optimum allocation and DG was hardly
affected by the ratio rSCA

2 /rGCA
2 . Thus, results were

presented only for rSCA
2 /rGCA

2 = 1/2. In both breeding
strategies, increasing the budget from 500 to 5,000
testcross plot equivalents resulted in a more than six-
fold increase in N1

*, approximately doubled values of
T2

*, L2
*, and N2

*, as well as a 50% higher DG* (Table 4).
For BS1, a fourfold increase in the non-genetic vari-
ance from VC2.1 to VC2.3 resulted in (1) an increase in
Lj

* of at least 50%, (2) a decrease in N1
* of 30%, (3) a

slight reduction in T2
*, and (4) a reduction in DG* of

more than 30%. For BS2, a fourfold increase in the
non-genetic variance of the first selection stage from
VC4 to VC6 had only a minor effect on T2

*, L1
*, and L2

*,
but resulted in decreased N1

*, increased N2
*, and a 6%

reduction in DG*. In BS1, evaluating each tester · line
combination only at a single location resulted in (1)
doubled T1

*, (2) tripled T2
* and L2

*, and (3) an increase
of 6% in DG*. Similar results were obtained for BS2
(data not shown). With increasing q(LP, GCA) in BS2,
the optimum number of N2

* was approximately halved,

Table 3 Optimum allocation of test resources in two-stage
selection for GCA of doubled haploid lines for maximizing
selection gain (DG*) with several ratios of rSCA

2 /rGCA
2 and their

dependence on the tester type assuming a budget of 1,000
testcross plot equivalents and Tc = min(T1 · M1, T2 · M2). For
explanation of abbreviations, see Table 1

Variance
components

Tester type Optimum allocation

Selection stage 1 Selection stage 2 T�1 T�2 L�1 L�2 N�1 N�2 DG*

VC1 Inbred Inbred 1 2 2 7 247 27.3 1.010
Single-cross Single-cross 1 1 2 12 258 29.6 1.038
Double-cross Double-cross 1 1 2 12 256 30.0 1.061
Double-double cross Double-double cross 1 1 2 12 255 30.2 1.073
Single-cross Inbred 1 2 2 7 252 26.4 1.019
Double-cross Inbred 1 2 2 7 253 26.3 1.029
Double-double cross Inbred 1 2 3 7 200 21.4 1.034

VC2.2 Inbred Inbred 1 3 2 5 238 27.0 0.956
Single-cross Single-cross 1 2 2 7 244 27.9 0.998
Double-cross Double-cross 1 1 2 12 255 30.2 1.025
Double-double cross Double-double cross 1 1 2 12 253 30.6 1.047
Single-cross Inbred 1 3 2 5 246 25.7 0.972
Double-cross Inbred 1 2 3 7 201 21.2 0.985
Double-double cross Inbred 1 2 3 7 201 21.2 0.997

VC3 Inbred Inbred 1 4 2 4 224 27.5 0.882
Single-cross Single-cross 1 3 2 5 233 27.8 0.937
Double-cross Double-cross 1 2 2 7 239 28.8 0.976
Double-double cross Double-double cross 1 1 2 13 244 30.0 1.001
Single-cross Inbred 1 4 2 4 236 25.6 0.905
Double-cross Inbred 1 5 3 4 182 18.2 0.921
Double-double cross Inbred 1 3 3 5 198 20.5 0.940
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T2
*, L1

*, and N1
* were affected only slightly, and DG*

increased more than 19%.

Discussion

Selection gain is the most widely used criterion to
optimize selection strategies. Selection theory was
developed by assuming an infinite sample size, al-
though populations of medium size are used commonly

in plant breeding (Cochran 1951; Hanson and Brim
1963; Utz 1969; Tomerius 2001; Grüneberg et al. 2004).
This assumption simplifies the calculations consider-
ably and results only in marginally inflated DG and
similar optimum allocation of test resources compared
to finite sample sizes (Cochran 1951; Finney 1966; Utz
1969; Longin et al. 2006b).

Optimum use of resources is primarily a matter
of heritability

We used one replication per location, which maximizes
DG if the number of locations is unrestricted (Sprague
and Federer 1951; Utz 1969; Melchinger et al. 2005).
For instance, superiority in DG for one replication
compared with two replications increased from 1.5%
for Lj = 1 towards more than 5% for optimum Lj

*

(data not shown). This can be explained by the fact
that heritability is more increased by increasing Lj and/
or Tj than by an increasing number of replications.

The use of different locations (Lc = 0) and tester
lines (Tc = 0) either as inbred tester or in combination
as single-crosses, double-crosses, or double-double
crosses in both stages increased DG (data not shown).
This is due to the reduction of the error part of the
covariance between phenotypic means of the stages
(Eqs. 2, 4). However, differences in DG* between the
extremes of using no common location (Lc = 0) or
tester line (Tc = 0) or all locations (Lc = L1) and tester
lines of the first stage also in the second stage (Tc =
min(T1 · M1, T2 · M2)) were small, ranging from 0.5 –
1% for Lc and 0.7–1.3% for Tc. In addition, the opti-
mum allocation was affected only marginally. These
small differences can be explained by the flat response
curves of DG in the vicinity of the maximum (Fig. 1).
Consequently, we limited our further discussion to the
common practice in maize breeding of using the loca-
tions (Lc = L1) and tester lines (Tc = min(T1 · M1,
T2 · M2)) of the first stage also in the second stage.

Evaluating progenies of each tester · line combi-
nation at a single location instead of evaluating prog-
enies of tester · line combination at all locations led
to an increased DG* of up to 7.6% for large non-ge-
netic variances (VC2.3, Table 4). This is due to a
considerably increased h2, which can be explained by a
substantially larger optimum number of Tj

* and Lj
* and

the fact that the reduced product TjLj = Tj affects only
three of the eight non-genetic variances (Eq. 1). Thus,
this simple change in breeding policy represents a very
promising method in first testcross evaluations of new
lines.

The broader the genetic base of a tester, the
higher is DG for GCA (Table 3). For instance, the
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Fig. 1 Selection gain (DG) in two-stage selection for GCA as a
function of a the number of test locations and inbred testers in
the second stage, assuming T1

* and L1
*, and b the number of

inbred testers in the second stage for different numbers of single-
cross testers in the first stage and ratios of rSCA

2 /rGCA
2 = 1/4

(dotted lines), 1/2 (dashed lines), and 1 (solid lines), assuming L1
*

and L2
* for each scenario. In both figures, a budget of 1,000

testcross plot equivalents and variance components VC2.2 were
assumed. For explanation of abbreviations, see Table 1
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use of double-double cross testers instead of inbred
testers resulted in a 9.5% higher DG for reference
variance components VC2.2. This is in harmony with
results of experimental studies (cf. Hallauer and
Miranda 1981) and can be explained by an increase
in h2 without requiring more testcross plots (Eq. 1).
However, in applied breeding programs, use of
genetically broad testers is uncommon due to addi-
tional efforts required for their production, and the
possibility of early identification of promising single-
cross hybrids when using inbred testers. Thus, the use
of inbred testers in the second stage of selection is
very appealing in hybrid maize breeding with dou-
bled haploids. However, the use of single-cross or
double-cross instead of inbred testers in the first stage
increased DG* between 2.6 and 4.4% for larger ratios
rSCA

2 /rGCA
2 . In applied breeding programs, intra-pool

single-cross hybrids are frequently applied as testers
in the first stage and inbred lines in the second
selection stage (Schipprack, personal communica-
tion). Thus, we restricted our further discussion to
single-cross and inbred testers in the first and second
stage, respectively.

Use of previous information for selection

Results of previous selection stages are often neglected
for further selection in applied plant breeding pro-
grams. For two-stage selection on GCA, superiority in
DG by using results of the first stage in the second
selection stage in comparison with neglecting this
information was mostly around 1% (data not shown).
This increase in DG was more than 2% with an
increasing h2 or decreasing selected fraction for first
years’ results. In addition, the optimum allocation of
test resources was only marginally affected by using or
neglecting previous information for selection. As da-
tabases are commonly used in modern plant breeding,
the above discussed increase in DG of 1–2% can be
accomplished without any experimental expenditures.

Relative efficiency of breeding strategies

Selection gain in BS1 was clearly larger than for BS2
except for q(LP, GCA) = 0.75, without any economic
weight for line per se performance (Table 4). This is
due to the differences in the correlation between

Table 4 Optimum allocation of test resources in two-stage
selection for GCA of doubled haploid lines maximizing selection
gain (DG*) for both breeding strategies, varying budgets,
variance components (VC), and correlation of line per se

performance (LP) and GCA (q(LP, GCA)) assuming a ratio of
rSCA

2 / rGCA
2 = 1/2, Tc = min(T1 · M1, T2 · M2), and tester type

of T2 restricted to inbred testers. For explanation of abbrevia-
tions, see Table 1

Variance components Optimum allocation

Budget TCa LP q(LP, GCA) T�1 T�2 L�1 L�2 N�1 N�2 DG*

Breeding strategy 1
1,000 VC2.1 – – 1 2Wb 4 2 4 262 21.6 1.141
1,000 VC2.2 – – 1 2W 3 2 5 246 25.7 0.972
1,000 VC2.3 – – 1 2W 3 3 6 174 21.7 0.793
500 VC2.2 – – 1 2W 2 2 5 127 18.3 0.831
5,000 VC2.2 – – 1 2W 5 3 8 919 44.6 1.281
1,000 VC2.1 – – 2c 2W 12 2 12 271 26.9 1.214
1,000 VC2.2 – – 3c 2W 14 3 14 191 23.7 1.039
1,000 VC2.3 – – 4c 2W 16 4 16 144 22.0 0.853

Breeding strategy 2
1,000 VC2.2 VC4 0.25 – 2 1 5 237 64.5 0.833
1,000 VC2.2 VC4 0.50 – 3 1 4 344 40.3 0.959
1,000 VC2.2 VC4 0.75 – 3 2 5 285 19.2 1.108
1,000 VC2.2 VC5 0.25 – 2 1 5 206 69.1 0.811
1,000 VC2.2 VC5 0.50 – 2 1 5 317 52.5 0.905
1,000 VC2.2 VC5 0.75 – 3 2 5 257 23.8 1.027
1,000 VC2.2 VC6 0.25 – 2 1 5 175 73.8 0.793
1,000 VC2.2 VC6 0.50 – 2 1 5 267 60.0 0.858
1,000 VC2.2 VC6 0.75 – 3 2 4 238 33.8 0.946
500 VC2.2 VC5 0.50 – 2 1 4 158 32.9 0.779
5,000 VC2.2 VC5 0.50 – 4 2 7 997 89.6 1.193

a TC testcross performance
b Tester type is optimum of inbred lines and single-crosses (2W)
c Each tester · line combination was evaluated only at a single location
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selection and target criterion in first stage (q1). For
BS1, q1 ¼

ffiffiffiffiffiffiffi
h2

x1

q
; whereas for BS2, q1 ¼

ffiffiffiffiffiffiffi
h2

x1

q
�

qðLP;GCAÞ: Results of experimental studies suggest
that q(LP, GCA) = 0.50 is realistic for grain yield
(Seitz et al. 1992; Mihaljevic et al. 2005). Conse-
quently, DG for BS1 is about 5% higher than for BS2.

Production costs of hybrid seed for single-crosses
depends strongly on an acceptable yield level of the
seed parent line. Thus, the assumption of no economic
weight for line per se performance is not appropriate
for the seed parent heterotic group. Therefore, we
additionally calculated DG assuming an economic
weight for line per se performance larger than zero
(Table 5). For q(LP, GCA) = 0.50, the relative effi-
ciency of BS2 increased rapidly with increasing eco-
nomic weight for line per se performance, and resulted
in a superiority of BS2 over BS1 already for an eco-
nomic weight for line per se performance larger than
0.1. This is due to the change from direct to indirect
selection in the first stage in BS1 and vice versa in BS2.
Consequently, for the seed parent heterotic group,
choice of BS2 improves the selection gain.

Optimum allocation of test resources

Optimum allocation of test resources for BS1 and BS2
was similar assuming no economic weight for line per se
performance and q(LP, GCA) = 0.75 or an economic
weight for line per se performance of 0.1 and q(LP,
GCA) = 0.5 (Tables 4, 5). With decreasing economic
weight for line per se performance or q(LP, GCA), the
optimum allocation of BS2 changed towards a more
intensive evaluation of testcross progenies in the second
selection stage. This result indicates the importance of

specific optimizations of test resources. For no economic
weight for line per se performance and q(LP, GCA)
< 0.75, optimum allocation for BS2 was L1

* = 1
(Table 4). With the assumption of one replication per
location, however, this includes a high risk in applied
breeding because of possibility of failure at one location
due to biotic or abiotic stresses and other hazards and,
thus, complete loss of the first stage. Therefore, L1 = 2 is
advantageous for reducing this risk with only a small
sacrifice in DG.

Response curves of DG revealed that a careful
allocation of the test resources is important, if only a
small number of L2 and T2 is available (Fig. 1). With
larger values of L2 and T2, however, response curves
become flatter and therefore strongly reduce the risk of
choosing an unfavorable allocation of test resources.
For instance, choice of T2 = 5 instead of the optimum
T2 = 3 reduced DG only to a small extent, if the
number of L2 was reduced in parallel. These findings
are in harmony with results of previous studies (Utz
1969; Melchinger et al. 2005; Longin et al. 2006a).
Decreasing augmentation of DG with increasing L2 and
T2 can be explained by decreasing slopes of (1) h2 for
increasing values of Lj and Tj and (2) selection inten-
sity for increasing values of N1 (Becker 1993).

For selection among genetically fixed lines, DG in
both breeding strategies depends on the selected frac-
tion and h2. Variation in the budget or number of finally
selected lines (data not shown) mainly affected the se-
lected fraction and to a smaller degree h2 (Table 4). The
budget was the major factor affecting DG by its strong
impact on the selected fraction. Variance components
affect h2 directly, and with larger non-genetic variance,
h2 was strongly reduced. Heritability can be increased

Table 5 Optimum allocation of test resources in two-stage
selection for GCA of doubled haploid lines maximizing selection
gain (DG*) for both breeding strategies and varying economic
weights of line per se performance (aLP) assuming a budget of

1,000 testcross plot equivalents, variance components VC2.2 and
VC5, q(LP, GCA) = 0.50, Tc = min(T1 · M1, T2 · M2), aGCA =
1 – aLP, and tester type of T2 restricted to inbred testers. For
explanation of abbreviations, see Table 1

Optimum allocation

aLP T�1 T�2 L�1 L�2 N�1 N�2 DG*

Breeding strategy 1
0 1 2Wa 3 2 5 246 25.7 0.972
0.1 1 2W 3 2 5 246 25.7 0.951
0.2 1 2W 3 2 5 247 25.5 0.929

Breeding strategy 2
0 – 2 2b 5 227 43.3 0.900
0.1 – 3 2 4 241 33.1 0.952
0.2 – 3 2 4 264 28.3 1.011

a Tester type is optimum of inbred lines and single-crosses (2W)
b We demanded a minimum of two plots per line and stage
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most efficiently by larger numbers of Lj (Eq. 1). How-
ever, this requires a parallel reduction in Nj and Tj for
BS1 and BS2, and reduces DG considerably (Table 4).

Implications for hybrid development

In second cycle breeding, where new lines were
developed by crossing elite inbreds within heterotic
groups, the number of initial lines is normally too large
to be tested in factorial crosses with several testers.
Therefore, a breeder must find a compromise between
(1) selection for GCA to reduce the number of initial
lines and (2) parallel selection for GCA and SCA to
identify superior hybrids. Optimization of breeding
strategies for GCA and SCA must be based on dif-
ferent definitions of the gain criterion, exploiting either
rGCA

2 or 2 rGCA
2 + rSCA

2 . This requires additional re-
search.

Nevertheless, the findings of our study allow some
conclusions to link GCA and SCA selection. For the
seed parent heterotic group, the use of BS2 is most
suitable with an allocation of resources adapted to the
economic weight of line per se performance. For the
pollen parent heterotic group, BS1 is most suitable with
(1) use of several genetically broad testers, such as two-
way or four-way intra-pool hybrids, and (2) evaluation
of the progenies of each tester only at a single location
in the first stage. The selection in the first stage strongly
reduces the number of lines in the second stage, en-
abling an evaluation of factorial crosses with more than
six testers in the second selection stage. Consequently,
this strategy represents a good compromise between
the large number of initial lines and early exploitation
of GCA and SCA for rapid identification and eco-
nomical seed production of superior hybrids.
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Abstract Early testing prior to doubled haploid (DH)

production is a promising approach in hybrid maize

breeding. We (1) determined the optimum allocation of the

number of S1 families, DH lines, and test locations for two

different breeding schemes, (2) compared the maximum

selection gain achievable under both breeding schemes,

and (3) investigated limitations in the current method of

DH production. Selection gain was calculated by numerical

integration in two-stage breeding schemes with evaluation

of testcross progenies of (1) DH lines in both stages

(DHTC), or (2) S1 families in the first and DH lines within

S1 families in the second stage (S1TC-DHTC). Different

assumptions were made regarding the budget, variance

components, and time of DH production within S1 families.

Maximum selection gain in S1TC-DHTC was about 10%

larger than in DHTC, indicating the large potential of early

testing prior to DH production. The optimum allocation of

test resources in S1TC-DHTC involved similar numbers of

test locations and test candidates in both stages resulting in

a large optimum number of S1 families in the first stage and

DH lines within the best two S1 families in the second

stage. The longer cycle length of S1TC-DHTC can be

compensated by haploid induction of individual S1 plants

instead of S1 families. However, this reduces selection gain

largely due to the current limitations in the DH technique.

Substantial increases in haploid induction and chromosome

doubling rates as well as reduction in costs of DH pro-

duction would allow early testing of S1 lines and sub-

sequent production and testing of DH lines in a breeding

scheme that combines high selection gain with a short

cycle length.

Introduction

Inbred line development by the doubled haploid (DH)

technique is currently adopted as a routine method in

commercial hybrid maize breeding programs (Schmidt

2004; Seitz 2005). The use of DHs offers the possibility to

evaluate potential hybrid cultivars from the very beginning

of the selection process. Alternatively, an early test on

testcross performance in generation S1 or S2 could be made

before production of DHs. This elongates the breeding

scheme but permits the restriction of the production and

testing of DH lines to those derived from segregation in the

most promising families.

Early testing is based on the assumption that the com-

bining ability of a line is determined during the early

generations of selfing (cf. Hallauer et al. 1988). Experi-

mental results reported in literature have been proving

(Sprague 1946; Lonnquist 1950; Hallauer and Lopez-Perez

1979; Jensen et al. 1983) or disproving this assumption

(Richey 1945; Payne and Hayes 1949). However, the ge-

netic correlation for testcross performance between S1

plants and inbreds is larger than 0.7, thus supporting the

determination of combining ability in the early stages of

selfing (Bernardo 1991). An assessment of the potential of
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early testing in hybrid maize breeding with DHs is not

available in the literature.

Early testing prior to DH production requires selection

among two different types of test candidates: families and

DH lines within families. As plant breeders have only a

fixed budget available, they must find a compromise be-

tween (1) the number of families and (2) the number of DH

lines within families to be tested, as well as (3) the intensity

of their testing as determined by the number of test loca-

tions, years, and replications. For self-pollinated crops, Utz

(1981) and Weber (1981) investigated two consecutive

selfing generations with selection among families in the

first stage and selection among and within families in the

second stage. Almost equal parts of the budget were used

for selection among and within families. For the second

stage, this approach resulted in a small optimum number of

families but a large optimum number of lines within fam-

ilies. However, hybrid maize breeding schemes have not

been taken into account. In addition, the number of test

locations was not optimized.

We calculated the maximum selection gain by numeri-

cal integration to optimize the allocation of test resources

in hybrid maize breeding with DHs. Two-stage selection

schemes were considered with evaluation of testcross

progenies of (1) DH lines in both stages, or (2) S1 families

in the first and DH lines within S1 families in the second

stage. Different assumptions were made regarding the

budget, variance components, and time of DH production

within S1 families. Our objectives were to (1) determine the

optimum allocation of the number of S1 families, DH lines,

and test locations for two different breeding schemes, (2)

compare the maximum selection gain achievable under

both breeding schemes, and (3) investigate limitations in

the current method of DH production.

Materials and methods

Breeding schemes

We investigated two breeding schemes for second-cycle

breeding, where new lines are developed by crossing elite

inbreds within heterotic groups. Both breeding schemes

comprise two-stage selection of test candidates within

one cross of two homozygous lines (Fig. 1). The target

variable is the genotypic value of testcross performance

for yield with a given tester. In applied maize breeding,

per se evaluation of DH lines for traits with high heri-

tability but not for yield is commonly performed before

testcross evaluation. Therefore, we considered per se

evaluation of DH lines with regard to the time length of

the breeding scheme but neglected it in the selection

process.

In breeding scheme DHTC, test candidates are DH lines

produced by in vivo haploid induction from S0 plants and

evaluated for their testcross performance (Fig. 1). With S0

we refer to the F1 of a biparental cross (cf. Bauman 1981).

In the first stage, N1 DH lines are evaluated at L1 test

locations and N2 of the most superior DH lines are selected

for evaluation at L2 test locations in the second stage.

Without restrictions on Lj in stage j (j = 1, 2), selection

gain is maximum for one replication per location (Sprague

and Federer 1951; Utz 1969; Melchinger et al. 2005).

Thus, we set the number of replications to one for all

calculations. The four best DH lines are selected after two

test stages.

In breeding scheme S1TC-DHTC, an early test for

testcross performance of the S1 families is made and

remnant seed is used for a simultaneous in vivo haploid

induction of these S1 families. However, chromosome

doubling was only performed with haploid kernels pro-

duced in selected S1 families. Therefore, test candidates are

either S1 families or DH lines within S1 families evaluated

for their testcross performance. Testcross progenies of N1

S1 families are evaluated at L1 test locations in the first

stage and N2F
of the most superior S1 families are selected.

Within each of the selected S1 families, a constant number

of N2DH=F
DH lines are produced and evaluated at L2 test

locations in the second stage. Selection in the second stage

is made first among S1 families and then among DH lines

within S1 families. A final number of one S1 family and

four DH lines within this S1 family is selected.

Calculation of selection gain

In the first stage, selection among N1 test candidates was

based on the phenotypic mean of testcross performance (x1)

at this stage with the given tester evaluated at L1 test

locations. In the second stage, the selection criterion was an

optimum index of the phenotypic means of the test can-

didates evaluated in both stages with I = b1x1 + b2x2,

where b1 and b2 refer to the weight of the phenotypic mean

in stage one or two (Supplementary Table S1). Calculation

of selection gain was based on the well-known formula of

Cochran (1951). For DHTC, the selection gain (DG) was

calculated as

DG ¼ r
qx1

o1J2 þ qx2
o2J1

a1a2

� �
; ð1Þ

where r is the standard deviation of the target variable, aj

the selected fraction in stage j (i.e., the ratio of selected by

tested candidates), qxj
the coefficient of correlation be-

tween the phenotypic mean of testcross performance xj in

stage j and the target variable, oj the ordinate of the uni-

variate normal distribution at the truncation point of

Theor Appl Genet

123



Longin et al. 2007. Theor. Appl. Genet. Published online 39

selection stage j, and J1, J2 the convergent improper inte-

gral of the standardized bivariate normal distribution. A

detailed description of the calculation of selection gain is

given by Wricke and Weber (1986).

For S1TC-DHTC, we assumed that selection among DH

lines within S1 families was independent from selection

among S1 families (cf. Falconer and Mackay 1996).

Selection among S1 families in the first stage and selection

among DH lines within S1 families in the second stage

were based on their phenotypic mean of testcross perfor-

mance at the corresponding stage evaluated at Lj test

locations. Selection among S1 families in the second stage

was based on the optimum index I combining the pheno-

typic mean of S1 families of the first stage with the phe-

notypic mean of all DH lines from the corresponding S1

family in the second stage. Selection gain (DG) was cal-

culated according to Utz (1981) as

DG ¼ r
qx1

o1J2 þ qx2F
o2F

J1

a1a2F

þ
qx2DH=F

o2DH=F

a2DH=F

 !
: ð2Þ

Optimum allocation of test resources

The allocation of test resources refers for DHTC to (L1, N1,

L2, N2) and for S1TC-DHTC to ðL1;N1; L2;N2F
;N2DH=F

Þ:
The allocation of test resources was considered optimum if

it maximized the selection gain in the set of all integer

allocation combinations feasible for a given scenario, i.e.,

budget, variance components, and production costs of DH

lines. The optimum allocation as well as the corresponding

selection gain are denoted by an asterisk, e.g., DG*.

Economic frame and quantitative-genetic parameters

A fixed total budget for the production of test candidates

and evaluation of their testcross progenies in two selection

stages was defined in terms of testcross plot equivalents

assuming equal plot sizes in both selection stages. In

DHTC, the budget equals N1CDH + N1L1 (1 + CT) + N2L2

(1 + CT), where CDH refers to the production costs of one

DH line and CT to the production costs of testcross seed for
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Fig. 1 Hybrid maize breeding schemes using DH lines under two-
stage selection with test candidates generated within one cross of two
homozygous lines. In breeding scheme DHTC, testcross progenies of
N1 doubled haploid lines produced from S0 plants by in vivo haploid
induction are evaluated in the first stage and the top N2 DH lines again
in the second stage, where four DH lines are finally selected. In
breeding schemes S1TC-DHTC and S1TC-DHTCfast, testcross prog-

enies of N1 S1 families are evaluated in the first stage and N2F
of the

top S1 families are selected. Within each of these selected S1 families,
N2DH=F

DH lines are produced by in vivo haploid induction and
evaluated in the second stage. Four DH lines within one S1 family
are finally selected. (Di = ith generation of DH multiplication,
Æ æ = selfing, [ ] = isolation plot, h = performance trials of Nj test
candidates at Lj locations in stage j)
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one plot. In S1TC-DHTC, the budget equals N1CFþ
N1L1ð1 þ CTÞ þ N2F

N2DH=F
CDH þ N2F

N2DH=F
L2ð1 þ CTÞ;

where CF refers to the production costs of each S1 family.

All costs are based on actual costs in the maize breeding

program of the University of Hohenheim. We assumed

CDH = 1/2, CT = 1/25, and CF = 1/12. Three budgets were

compared with a total of 200, 1,000, and 5,000 testcross

plot equivalents per cross.

For DHTC, we assumed the proportions among variance

components as rDH
2 :rDH·y

2 :rDH·l
2 :rDH·l·y

2 :re
2 = 1 : 0.5 :

0.5 : 1 : 2 (VC2), where rDH
2 refers to the genotypic var-

iance among testcross progenies of DH lines, rDH·y
2 to the

variance of genotype · year interactions, rDH·l
2 to the

variance of genotype · location interactions, rDH·l·y
2 to the

variance of genotype · location · year interactions, and re
2

to the plot error variance. Two additional scenarios were

considered with interactions and error variances being

halved (VC1) and doubled (VC3) in comparison with rDH
2 .

These ratios were chosen based on combined analyses of

variance of grain yield in (1) recent official maize variety

performance tests in Germany including early and late

germplasm (VC1, Laidig, personal communication), (2)

DH populations in maize programs of Central European

breeding companies (VC2, Gordillo and Geiger 2004), and

(3) official maize variety performance tests of early

germplasm in Southwest Germany (VC3, P. Herrmann,

unpublished data). Variance components for traits with less

complex genetic architecture than yield, e.g., dry matter

content, are expected to be close to VC1 or even with

smaller non-genetic variances. However, the study focused

only on grain yield of maize and, thus, the chosen variance

components warrants the inclusion of a wide range of

maize breeding populations.

The total genotypic variance among testcross progenies

of DH lines from different S1 families in breeding scheme

S1TC-DHTC was the sum of the genotypic variance among

testcross progenies of S1 families (rF
2) plus the genotypic

variance among testcross progenies of DH lines within S1

families (rDH/F
2 ), i.e., rDH

2 = rF
2 + rDH/F

2 . In the absence of

epistasis, rF
2 = rDH/F

2 = 0.5 rDH
2 for the use of S1 families

and DH lines within S1 families according to quantitative

genetic expectations (Melchinger 1988; Bernardo 2002). In

both stages, we assumed that the ratio of rF
2 or rDH/F

2 to

corresponding interaction variances was identical to the

ratio of rDH
2 to interaction variances described above.

However, re
2 was assumed to be equal for testcrosses

of DH lines and S1 families. For example, for S1 fami-

lies and VC2, we assumed rF
2:rF·y

2 :rF·l
2 :rF·l·y

2 :re
2 =

0.5:0.25:0.25:0.5:2, where rF·y
2 , rF·l

2 , and rF·l·y
2 refer to the

interaction variances of testcross progenies of S1 families

with years, locations, as well as locations · years.

Results

For parameters only marginally affected by varying budget

and variance component ratios, representative results were

shown for intermediate values of the budget (1,000 test-

cross plot equivalents) and variance components (VC2).

Deviations from these assumptions are explicitly stated.

With production costs of one DH line equal to half the cost

of one testcross plot (CDH = 1/2), maximum selection gain

DG* was approximately 10% larger in breeding scheme

S1TC-DHTC than in DHTC (Table 1). For S1TC-DHTC,

the optimum allocation was L1
* = 5 and L2

* = 6 test locations

Table 1 Optimum allocation of test resources maximizing selection
gain (DG*) in two-stage selection with evaluation of testcross
progenies of (1) DH lines in both stages (breeding scheme DHTC)
and (2) S1 families in the first stage and DH lines within S1 families in
the second stage (breeding schemes S1TC-DHTC and S1TC-

DHTCfast) and its dependence on production costs of DH lines
(CDH) assuming a budget of 1,000 testcross plot equivalents, variance
components VC2, and four finally selected DH lines. For explanation
of abbreviations, see ‘‘Materials and methods’’

Breeding scheme CDH Optimum allocation DG*,a (%)

N1
* N2

* L1
* L2

*

DHTC 1/2 272 26 2 11 89.7

S1TC-DHTC 1/2 82 84 =2 · 42b 5 6 100.0

S1TC-DHTCfast 1/2 53 30 =3 · 10c 7 11 87.0

DHTC 0 583 42 1 9 92.8

S1TC-DHTC 0 81 106 = 2 · 53 5 5 100.8

S1TC-DHTCfast 0 138 40 = 4 · 10c 4 10 92.4

S1TC-DHTCfast 0 73 104 = 2 · 52 6 5 100.8

a Relative to DG* in S1TC-DHTC assuming CDH = 1/2
b Number of S1 families · DH lines within S1 families
c With current limitations in DH technique a maximum of 10 DH lines can be produced from a single S1 plant
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in stage one and two, N1
* = 82 S1 families in the first stage,

and N�2F
¼ 2 S1 families as well as N�2DH=F

¼ 42 DH lines

within each of the two S1 families in the second stage. In

DHTC, N1
* and L2

* were larger and N2
* and L1

* were smaller

in comparison with S1TC-DHTC. Assuming negligible

production costs for DH lines (CDH = 0), DG* in S1TC-

DHTC was 8% larger than in DHTC. For CDH = 0 com-

pared with CDH = 1/2, DG* was increased in S1TC-DHTC

by 1% and DHTC by 3%.

The impact of varying budget and variance component

ratios on the optimum allocation and selection gain was

hardly affected by the production costs of DH lines (data

not shown). Thus, results in Fig. 2 and Table 2 were pre-

sented only for CDH = 1/2 referring to actual costs in

breeding companies most advanced in DH technology (G.

Seitz, personal communication). For all considered vari-

ance component ratios in S1TC-DHTC, selection gain DG

increased strongly up to a maximum and thereafter de-

creased slightly with increasing N2DH=F
at the expense of

decreasing N2F
(Fig. 2). Deviations from N�2DH=F

by de- or

increasing N2F
led to reductions in selection gain of more

than 2%.

Breeding scheme S1TC-DHTC was superior to DHTC

for a large range of budgets and variance components

(Table 2). Increasing the budget from 200 to 5,000 test-

cross plot equivalents in breeding scheme S1TC-DHTC

resulted in a more than eightfold increase in N1
* and N�2DH=F

;

in tripled values of Lj
*, and an increase in the maximum

selection gain DG* of about 80%. An increased budget for

DHTC led to larger increases in N1
* and L2

* and smaller

increases in L1
* in comparison with S1TC-DHTC. A

fourfold increase in the non-genetic variance from VC1 to

VC3 resulted for S1TC-DHTC in roughly halved values of

N1
* and N�2DH=F

; doubled values of Lj
*, and a reduction in DG*

of 30%. Increased non-genetic variances (VC3) had a

smaller impact on the optimum number of N2
* and L2

* in

DHTC than in S1TC-DHTC. For S1TC-DHTC, the final

selection of one DH line in each of the top four S1 families

instead of selecting four DH lines within the top S1 family

led to an increase in N1
* and N�2F

of 30 and 250%, respec-

tively. Furthermore, a slight reduction in Lj
*, and reductions

in N�2DH=F
by 70% and DG* by 13% were revealed. The final

selection of only one DH line reduced the superiority of

S1TC-DHTC over DHTC. For a budget of 200 field plots,

DG* was smaller in S1TC-DHTC than in DHTC. In addi-

tion, the optimum number of DH lines N2
* and N�2DH=F

in the

second stage was reduced in favor of a larger optimum

number of test locations L2
*.

Discussion

We focused on second-cycle breeding with selection within

one cross of two homozygous lines. Therefore, short-term

success of different breeding schemes achieved in one

breeding cycle was of interest. Comparison among breed-

ing schemes with different length by per-cycle selection

gain becomes feasible under the assumption that breeding

is a continuous process and every year a new breeding

cycle is initiated. Under this assumption, the annually

available budget for all breeding cycles running in parallel

is equal to the budget available for one entire breeding

cycle (Utz 1969). Consequently, we used per-cycle selec-

tion gain, which is further referred to as selection gain.

Optimum allocation of test resources

For a given target variable, selection gain is increased by a

higher selection intensity and a closer correlation between

the phenotypic mean of testcross performance and the

target variable ðqxj
Þ (cf. Bernardo 2002). We used the term

selection intensity in our multi-stage selection approach in

a more general sense than its strict definition for one-stage

selection, where it refers to the standardized selection

differential (cf. Falconer and Mackay 1996; Wricke and

Weber 1986). Selection intensity can be increased by

increasing the number of test candidates and/or decreasing

the number of selected test candidates. The correlation

between the phenotypic mean of testcross performance and

the target variable is increased with a higher heritability.

Heritability can be increased by larger numbers of test

locations, years, and replications in performance trials. In

both breeding schemes, variation in the budget had a

stronger impact on the number of test candidates than the
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Fig. 2 Selection gain (DG) in breeding scheme S1TC-DHTC as a
function of the number of DH lines within S1 families evaluated in the
second stage for varying variance components (VC) assuming a
budget of 1,000 testcross plot equivalents, production costs for DH
lines of CDH = 1/2, and optimum numbers of S1 families in the first
stage and test locations in both stages for the respective VC. Values of
DG were shown for all possible integer allocation combinations
possible for the scenario considered
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number of test locations (Table 2), thus, affecting mainly

selection intensity and, to a smaller extent, heritability.

With larger non-genetic variance, heritability is strongly

reduced. This can be counterbalanced by a larger number

of test locations. However, for a given budget, this requires

a simultaneous reduction in the number of test candidates,

thus reducing selection gain considerably (Table 2).

Smaller number of finally selected DH lines resulted in a

decreased number of test candidates and an increased

number of test locations in the second stage increasing both

the selection intensity and heritability.

In DHTC, the optimum allocation of test resources in-

volved evaluation of (1) a large number of DH lines in a

small number of test locations in the first stage and (2) a

small number of the selected DH lines in a large number of

test locations in the second stage. Thus, a high selection

intensity in the first stage is combined with a high herita-

bility in the second stage. Thereby, selection gain was

maximized by using about 70% of the budget for the initial

screening of DH lines. These findings are in accordance

with investigations of Utz (1969) on the optimum alloca-

tion of test resources in multi-stage selection.

In contrast, the optimum allocation of test resources in

S1TC-DHTC involved similar numbers of test locations

and test candidates in both stages. Consequently, compa-

rable parts of the budget were spent in both stages. This is

due to the different types of test candidates in S1TC-

DHTC, with S1 families in the first stage and DH lines

within S1 families in the second stage, where large number

of test candidates and test locations are required in both

stages. This compromise resulted in a smaller optimum

number of test candidates in the first stage and test loca-

tions in the second stage in comparison with DHTC.

The optimum allocation of test resources in S1TC-DHTC

possesses two advantages over DHTC. First, a larger part of

the budget is used for the evaluation of the more promising

material in the second stage of S1TC-DHTC. The possibility

to use also a larger part of the budget in the second stage of

DHTC is limited due to large reductions in selection gain.

Second, the smaller optimum number of test locations in

Table 2 Optimum allocation of test resources maximizing selection
gain (DG*) in two-stage selection with evaluation of testcross
progenies of (1) DH lines in both stages (breeding scheme DHTC)
and (2) S1 families in the first stage and DH lines within S1 families in

the second stage (breeding scheme S1TC-DHTC) and its dependence
on the budget, variance components, and number of finally selected
DH lines (Nf) assuming production costs for DH lines of CDH = 1/2.
For explanation of abbreviations, see ‘‘Materials and methods’’

Assumptions Optimum allocation DG*

Budget Variance componentsa Nf N1
* N2

* L1
* L2

*

Breeding scheme DHTC

200 VC2 4 79 15 1 5 1.375

5,000 VC2 4 1,422 64 2 20 2.412

1,000 VC1 4 460 35 1 8 2.219

1,000 VC2 4 272 26 2 11 1.924

1,000 VC3 4 252 28 2 12 1.605

200 VC2 1 53 6 2 10 1.848

1,000 VC2 1 286 14 2 18 2.348

5,000 VC2 1 1,463 38 2 31 2.780

Breeding scheme S1TC-DHTC

200 VC2 1 · 4b 24 34 =2 · 17c 3 3 1.527

5,000 VC2 1 · 4 264 282 =2 · 141 8 9 2.725

1,000 VC1 1 · 4 106 118 =2 · 59 4 4 2.524

1,000 VC2 1 · 4 82 84 =2 · 42 5 6 2.145

1,000 VC3 1 · 4 56 68 =2 · 34 8 7 1.752

1,000 VC2 2 · 2 82 84 =3 · 28 5 6 2.032

1,000 VC2 4 · 1 104 98 =7 · 14 4 5 1.902

200 VC2 1 · 1 30 18 =2 · 9 3 5 1.812

1,000 VC2 1 · 1 81 58 =2 · 29 5 9 2.417

5,000 VC2 1 · 1 278 190 =2 · 95 8 13 2.974

a VC1 = rDH
2 :rDH·y

2 :rDH·l
2 :rDH·l·y

2 :re
2 = 1:0.25:0.25:0.5:1; VC2 = 1:0.5:0.5:1:2; VC3 = 1:1:1:2:4

b Number of finally selected S1 families · DH lines within selected S1 families
c Number of S1 families · DH lines within S1 families
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S1TC-DHTC compared with DHTC simplifies the logistics

of breeding programs.

In S1TC-DHTC, the optimum number of test candidates

in the second stage was two S1 families and a large number

of DH lines within each of the two S1 families for all

budgets and variance components considered (Table 2;

Fig. 2). For a small budget and small non-genetic variance,

this is in accordance with results for self-pollinated crops

(Utz 1981; Weber 1981). These findings can be explained

by the different types of test candidates in both stages of

S1TC-DHTC and the consequences for the available

amount of genetic variance. In the first stage, selection is

made among S1 families with genetic variance rF
2. In the

second stage, new genetic variance is released due to

DH lines within S1 families with rF
2 = rDH/F

2 . Owing to

the selection among S1 families in the first stage, the var-

iance among S1 families in the second stage is smaller than

rDH/F
2 , favoring selection among DH lines.

Alternatively to the final selection of four DH lines from

the top S1 family in S1TC-DHTC, one could finally select

one DH line from each of the top four S1 families. Con-

sequently, N2F
� 4 is required, but maximum selection gain

DG* is reduced by more than 10%, even though the total

number of finally selected DH lines has not been changed

(Table 2). An evaluation of varying numbers of DH lines

within S1 families according to the performance level of

the S1 family in the first stage and selecting the best DH

line across all S1 families tested in the second stage might

increase N�2F
and DG*. However, to our knowledge no

analytical results are available in the literature to cope with

these more general situations and, hence, further research is

warranted. Monte Carlo simulations may be a promising

alternative for further investigations on the optimum

number of families and lines within families.

Response curves of selection gain as a function of the

number of DH lines within S1 families were flat, close to

the maximum (Fig. 2). However, deviations from the

optimum number of DH lines within S1 families by

increasing N2F
reduced the selection gain by more than 2%.

This is in contrast to differences below 1% in the selection

gain as a function of the number of (1) Lj in both breeding

schemes (data not shown) and (2) Nj in DHTC (Longin

et al. 2006). The difference may be due to the larger impact

of N2F
on the selection intensity and heritability in com-

parison with that of Lj, N1, and N2. In conclusion, with

early testing prior to production of DH lines, an optimum

allocation of the number of families is of crucial impor-

tance for maximizing the selection gain.

Relative efficiency of breeding schemes

For the final selection of four DH lines, maximum selection

gain DG* was largest in S1TC-DHTC, with an advantage of

about 10% over DHTC for all considered budgets and

variance components (Tables 1, 2). A higher selection

intensity and heritability are feasible in the first stage of

S1TC-DHTC compared with DHTC, which is due to the

different amounts of genetic variance available in both

breeding schemes. In DHTC, the total genetic variance

rDH
2 is available from the very beginning of the selection

process. The genetic variance among the remaining DH

lines in the second stage decreases with a smaller number

of DH lines selected in the first stage. In S1TC-DHTC, the

same applies to rF
2. However, the newly released genetic

variance due to DH lines within S1 families in the second

stage of S1TC-DHTC with rDH/F
2 = rF

2 = 0.5 rDH
2 sums up

with the genetic variance among the remaining S1 families.

This allows a high selection intensity in the first stage of

S1TC-DHTC without exhausting the genetic variance for

the second stage. Thus, the chances for obtaining superior

DH lines by segregation within superior S1 families far

outweighs the smaller number of initial test candidates in

comparison with DHTC and allows the use of a larger

number of test locations in the first stage. The reduced

heritability in the second stage of S1TC-DHTC compared

with DHTC is counterbalanced by a higher selection

intensity due to the large number of test candidates in the

second stage of S1TC-DHTC. Consequently, early testing

prior to production of DH lines largely increases selection

gain, underpinning its importance for successful hybrid

maize breeding.

For the selection of only one DH line, the relative effi-

ciency of S1TC-DHTC was considerably decreased as

compared with DHTC. In the extreme case of a budget of

200 field plots, S1TC-DHTC resulted in a smaller maxi-

mum selection gain DG* than for DHTC (Table 2). This

can be explained by a strong reduction in the number of

selected DH lines in the first stage of DHTC, which in-

creased the selection intensity. In contrast, the already very

small number of selected S1 families in the first stage of

S1TC-DHTC could not be reduced any further. In addition,

a sufficiently large number of test locations in the second

stage is crucial for selecting the very best DH line, favoring

DHTC. Nevertheless, S1TC-DHTC was superior to DHTC

for a large range of scenarios with the only exception for a

combination of a very small number of finally selected DH

lines and a very small budget.

Limitations in DH technique affect the efficiency

of breeding schemes

Routine application of in-vivo haploid induction in hybrid

maize breeding requires specific skills and equipment for

chromosome doubling, transplanting of up-regulated plants

in the field, as well as for raising and selfing of the up-

regulated plants (cf. Röber et al. 2005). As these activities
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are rather cost-intensive, we assumed that the costs for the

production of one DH line are equal to half the costs of one

testcross plot. This assumption corresponds to the actual

costs for production of DH lines in breeding companies

most advanced in the DH technique (G. Seitz, personal

communication). In addition, the production of DH lines

from a single plant is limited due to current rates of haploid

induction (10–15%) and chromosome doubling (20–30%,

cf. Röber et al. 2005). Thus, from individual S1 ears with

approximately 250 kernels, a maximum of 10 DH lines can

be produced.

Breeding scheme S1TC-DHTC has a longer cycle length

than DHTC. The length of S1TC-DHTC could be shortened

by using individual S1 plants as (1) males for production of

testcross seed and in parallel as (2) females in crosses with

the inducer. Furthermore, chromosome doubling must be

performed simultaneously with early testing (S1TC-

DHTCfast, Fig. 1). Therefore, test candidates are either S1

single plants or DH lines derived from individual S1 plants

evaluated for their testcross performance.

With current costs and rates of success for production of

DHs, maximum selection gain DG* in S1TC-DHTCfast was

about 13% smaller than that in S1TC-DHTC (Table 1).

This can be explained by the necessity of producing DH

lines from all S1 plants of the first stage in S1TC-DHTCfast,

which consumed about one third of the budget under cur-

rent costs of DH production. Thus, the number of S1 plants,

which could be evaluated in the first stage of S1TC-

DHTCfast, is limited. Furthermore, the number of DH lines,

which can actually be produced per selected S1 plant, is far

below the theoretical optimum allocation of S1TC-

DHTCfast, if there were no limitations in the DH technique

(Table 1). Thus, substantial increases in the haploid

induction rate and chromosome doubling rate as well as

reductions in the costs for chromosome doubling and

recovering of up-regulated plants are required to enable the

use of an optimally allocated breeding scheme S1TC-

DHTCfast.

Nevertheless, if more than 50 DH lines could be pro-

duced per individual S1 plant at negligible costs, selection

gain would most strongly be increased in breeding

scheme S1TC-DHTCfast, resulting in a similar selection

gain as for S1TC-DHTC (Table 1). Thus, the high selec-

tion gain for breeding schemes with early testing prior to

DH production could be combined with a cycle length

similar to DHTC. Crossing DH lines with the tester al-

ready in the D2 generation and performing per se and

testcross evaluation in parallel may be another appealing

alternative to shorten the breeding scheme. However,

consideration of per se and testcross performance must be

based on index selection, requiring more research on the

optimum type of index and appropriate economic weights

of the traits.

In conclusion, early testing prior to production of DH

lines is very promising in hybrid maize breeding. However,

its full potential can be exploited only by choice and

optimization of an appropriate breeding scheme. With

current limitations in the DH technique, S1TC-DHTC

seems most appealing for maximizing selection gain unless

the available budget is extremely low. In order to take more

advantage of early testing prior to DH production, enor-

mous improvements in the DH technique are required to

allow for an efficient use of S1TC-DHTCfast. Thus, time for

inbred line development could be shortened and early

testing prior to production of DH lines would become very

attractive in hybrid maize breeding.
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penstein, Austria, pp 1–6

Seitz G (2005) The use of doubled haploids in corn breeding. In:
Proceedings of the Forty First Annual Illinois Corn Breeders’
School 2005, Urbana-Champaign, Illinois, USA, pp 1–7

Sprague GF (1946) Early testing of inbred lines of corn. J Am Soc
Agron 38:108–117

Sprague GF, Federer WT (1951) A comparison of variance compo-
nents in corn yield trials: II. Error, year · variety, location ·
variety and variety components. Agron J 42:535–541

Utz HF (1969) Mehrstufenselektion in der Pflanzenzüchtung. (In
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Supplementary Table S1. Formulas required for calculation of selection gain for two-stage selection
with evaluation of testcross progenies of (1) doubled haploid (DH) lines in both stages (breeding scheme
DHTC) and (2) S1 families in the first stage and DH lines within S1 families in the second stage (breeding
scheme S1TC-DHTC). Phenotypic variance at stage j (σ2

xj
) is calculated for breeding scheme DHTC from

variance components attributable to the (1) genotypic variance among DH lines (σ2

DH), (2) variance of
genotype × year interactions (σ2

DH×y), (3) variance of genotype × location interactions (σ2

DH×l), (4)

variance of genotype × location × year interactions (σ2

DH×l×y), and (5) plot error variance (σ2
e). In

S1TC-DHTC, genetic variance was σ2

DH = σ2

F + σ2

DH/F with σ2

F = σ2

DH/F , where σ2

F refers to the

genotypic variance among S1 families and σ2

DH/F to the genotypic variance among DH lines within S1

families. Selection criterion in the second stage is an optimum index of the phenotypic means of those
test candidates evaluated in both stages with I = b1x1 + b2x2, where bj refers to the weight of xj . (Lj

= number of test locations at stage j, Lc = number of test locations common to both stages, N2DH/F
=

number of DH lines within S1 families)

ρxj =
Cov(z, xj)

σzσxj

with σ2
z = σ2

DH = σ2

F + σ2

DH/F

Breeding scheme DHTC

σ2
xj

= σ2

DH + σ2

DH×y +
σ2

DH×l

Lj
+

σ2

DH×l×y

Lj
+

σ2
e

Lj

σ2

I = b2

1
σ2

x1
+ b2

2
σ2

x2
+ 2b1b2Cov(x1, x2)

Cov(x1, x2) = σ2

DH +
Lcσ

2

DH×l

L1L2

Breeding scheme S1TC-DHTC

σ2
x1

= σ2

F + σ2

F×y +
σ2

F×l

L1

+
σ2

F×l×y

L1

+
σ2

e

L1

σ2
x2F

= σ2

F + σ2

F×y +
σ2

F×l

L2

+
σ2

F×l×y

L2

+
σ2

DH/F + σ2

DH/F×y +
σ2

DH/F×l

L2

+
σ2

DH/F×l×y

L2

+
σ2

e

L2

N2DH/F

σ2
x2DH/F

=

(

σ2

DH/F + σ2

DH/F×y +
σ2

DH/F×l

L2

+
σ2

DH/F×l×y

L2

+
σ2

e

L2

)

N2DH/F
− 1

N2DH/F

σ2

I = b2

1
σ2

x1
+ b2

2
σ2

x2F
+ 2b1b2Cov(x1, x2F )

Cov(x1, x2F ) = σ2

F +
Lcσ

2

F×l

L1L2



6. General Discussion

The development of inbred lines with superior testcross performance is

of fundamental importance for hybrid breeding. Inbred line development

can be accelerated with doubled haploids (DHs) enabling the evaluation of

completely homozygous lines from the very beginning of the selection process.

The implementation of this promising technology in maize breeding requires

the optimization and comparison of different breeding schemes in order to

maximize progress from selection.

Choice of the model framework

The optimization and comparison of breeding schemes is commonly per-

formed in plant breeding by model calculations (cf. Bouchez and Gallais

2000, Wang et al. 2003, Bordes et al. 2006). These calculations represent

a non-linear optimization, which require the numerical computation of mul-

tivariate integrals for specific probability distributions. Alternatively to the

numerical computation, the multivariate integrals can be estimated by Monte

Carlo simulations.

Our model calculations require the definition of a model framework

(Fig. 7.1), which includes a “Basic level”, a “Breeding level”, and an “Opti-

mization level”. At the “Basic level”, the target criterion, the trait, and the

genetic model of the trait was defined. The efficiency of the different breeding



General Discussion 48

schemes was evaluated by two target criteria, the selection gain (∆G) and

the probability of identifying superior genotypes (P (q)). Both target crite-

ria were determined by assuming the same fixed budget for each breeding

scheme.

Basic level
> Def. target criterion

> Trait

> Genetic model

Breeding level
> Breeding scheme

> Breeding scenario

Optimization level
> Test resources

 Computation

      of  the

target criterion

Figure 7.1 Model framework for the optimization and comparison of breed-

ing schemes. The varied parameters are indicated in italics.

Breeding is a continuous process and, thus, every year a new breeding

cycle is initiated. Under this assumption, the annually available budget for

all breeding cycles running in parallel is equal to the budget available for

one entire breeding cycle (Utz 1969). Consequently, comparisons between

breeding schemes can be made directly with per-cycle values of the target

criteria, representing a constraint of our model framework.

We focused only on the trait grain yield assuming that this trait is con-

trolled by many loci with small effects resulting approximately in a Gaussian

normal distribution of genotypic and phenotypic values (cf. Dekkers and

Hospital 2002). This assumption can be justified by results of an extremely

extensive QTL mapping experiment in maize (Schön et al. 2004), which pro-

vided no evidence that phenotypic means for grain yield deviated from a

Gaussian normal distribution. Likewise, the large number of detected QTL

with small effects resulted in an approximative Gaussian normal distribution

of genotypic values due to the Central Limit Theorem.

The different breeding schemes, which should be compared, were defined

at the “Breeding level” by the number of selection stages, the types of test

candidates, the time of DH production, and others. These assumptions are
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described later in more detail. Furthermore, each breeding scheme was inves-

tigated for different breeding scenarios, i.e., the budget, the variance compo-

nents, the tester type, the number of finally selected DH lines, and the costs

for DH production. At the “Optimization level”, the allocation of test re-

sources was defined, which was represented by the number of test candidates,

testers, test locations, and replications.

In each model run, the target criterion was determined for a given allo-

cation of test resources within a given breeding scenario in a given breeding

scheme. The different breeding schemes were then compared at their opti-

mum allocation of test resources, which maximized the target criterion under

a given breeding scenario. Consequently, with this model framework, the op-

timum implementation of DHs into maize breeding requires three steps: the

choice of the target criterion, the optimization of test resources for each

breeding scheme under different breeding scenarios, and the comparison of

different breeding schemes.

Comparison of the selection gain with the

probability of identifying superior genotypes

Similar optimum allocations of test resources were obtained with regard

to ∆G or P (q), unless very small values of q were chosen (Longin et al.

2006a, b). For these small values of q, a larger optimum number of initial

test candidates was observed at the expense of a reduced number of test

locations for P (q) in comparison with ∆G. However, the difference between

values of P (q) at its optimum allocation and those values of P (q) obtained

at the optimum allocation of test resources with regard to ∆G were very

small. Furthermore, for extremely small values of q, the probability P (q)

was too low to be recommended as target criterion even for very large bud-

gets. Consequently, the use of ∆G, P (5%), and P (1%) seem appropriate for

optimization of breeding schemes.
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The application of the new target criterion P (q) allows important con-

clusions for hybrid maize breeding with DHs (Longin et al. 2006a, b). The

large optimum number of test locations determined by ∆G for population

improvement seems also very important to maximize the chances of identi-

fying a superior genotype. A larger budget, smaller non-genetic variances,

smaller production costs of DHs, and a smaller number of finally selected

test candidates increased ∆G and P (q). However, variation in these factors

had a much larger impact on values of P (1%) than on ∆G indicating their

importance for increasing the chances of identifying superior genotypes.

Comparison of the standard deviations of ∆G and P (q) was hampered by

the binomial nature of P (q) with genotypes surpassing the defined threshold

or not (Longin et al. 2006a, b). Thus, the standard deviation of P (q) assumed

by definition its maximum for P (q) = 0.5. In contrast, the standard deviation

of ∆G decreased continuously with an increasing number of test candidates

and test locations, and especially with an increasing number of finally selected

test candidates. Knowledge of the standard deviation of the target criterion

is important for plant breeders to maximize gain while reducing the risk of

the final outcome. Thus, the number of finally selected DH lines should be

carefully chosen, because it represents the factor with strongest impact on

the standard deviation of the target criteria.

As breeding populations are commonly small, we used Monte Carlo sim-

ulations to determine ∆G and P (q) for finite population size, which enables

also the calculation of their standard deviations. However, Monte Carlo sim-

ulations require a large number of simulation runs to achieve a high accuracy,

which results in prohibitive computing time (Longin et al. 2006a, b). The

use of numerical formulas for calculation of ∆G and P (q) would considerably

reduce computing time. However, in populations with finite size, formulas for

multi-stage selection are lacking in the literature and require further research.

One possibility might be the extension of formulas for one-stage selection in

finite populations given by Robson et al. (1967) and Hill (1976).

For the simplifying assumption of infinite population size, exact formulas

for multi-stage selection have been developed for ∆G (Cochran 1951, Utz
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1969). The comparison of ∆G calculated for finite and infinite population

size led to similar optimum allocation of test resources and values of ∆G

for a large range of scenarios (Longin et al. 2006b). Consequently, the use

of ∆G under the simplifying assumption of infinite population size seems

justified as long as a reduction in computing time is warranted. Thus, our

further discussion is restricted to results determined by ∆G assuming in-

finite population size. For practical breeders, approximations determining

∆G without multiple integration techniques may be easier applicable with

standard software tools. Therefore, approximations for ∆G and its standard

deviation in two-stage selection with infinite population size are shown in the

Appendix. Furthermore, suggestions for approximating two-stage selection

in finite populations are made, which are close to the results of our Monte

Carlo simulations.

Optimum breeding schemes for hybrid maize

breeding with DHs

We assumed that a maximum of two selection stages for testcross per-

formance are used for line development in hybrid maize breeding. Thereby,

we focused on selection within one cross of two homozygous lines, because

means and variances normally differ among crosses (cf. Mihaljevic et al.

2004). We considered two breeding schemes with one-stage (Fig. 7.2A) or

two-stage selection among DH lines (Fig. 7.2B), and two breeding schemes

with early testing prior to DH production (Fig. 7.2C, D). The considered

breeding schemes were based on the assumption that (i) two selfing genera-

tions of DH lines are required to have sufficient quantities of seeds for field

evaluations and (ii) per se evaluation of DH lines before testcross evaluation

is considered with regard to the time length of the breeding scheme but is

neglected for the selection process on yield due to the low correlations be-

tween yield and traits with high heritability determined commonly in line

per se evaluation.
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The impact of the allocation of test resources on ∆G

Selection gain is a function of the selection intensity, the heritability,

and the variance of the target variable and increases with larger values for

these parameters (Bernardo 2002). The variance of the target variable was

constant in our study, because we focused on a given population derived from

one cross of two homozygous lines. However, the selection intensity and the

heritability must be chosen in order to maximize ∆G. Heritability can be

increased by an increase in the number of test locations, testers, years, and

replications in performance trials. Selection intensity can be increased by

an increase in the number of initial test candidates and/or a decrease in

the number of selected test candidates. Hence, a plant breeder with a fixed

budget has to find a compromise between (i) the number of candidates to be

tested and (ii) the intensity of their testing as determined by the number of

test locations, testers, years, and replications.

The optimum number of replications was one for all considered scenarios

(Melchinger et al. 2005), which is in accordance with theoretical studies in

the literature (Sprague and Federer 1951, Utz 1969). This can be explained

by the heritability, which is more affected by the number of test locations and

testers than by the number of replications. However, these calculations were

based on the assumptions that the number of test locations and testers is not

limited and that the costs for one replication are equal to the costs for one

location. These assumptions can be justified, because a breeder commonly

uses a large network of test locations for screening of different diseases and for

regionalization of test results. Thus, for the further discussion, the number

of replications was set to one at the expense of requiring advanced statistical

methods for the analysis of variance to separate the block effects from the

plot error variance (nearest neighbor analysis, Moreau et al. 1999).

The type and number of testers had a crucial impact on the optimum

allocation of test resources and values of ∆G for all considered breeding

schemes (Longin et al. 2007a). The use of testers with broad genetic base
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led to a reduced optimum number of testers allowing for a larger number

of test locations. Consequently, ∆G was largely increased. However, the

use of genetically broad testers is uncommon in applied breeding programs

due to the additional effort required for their production. Furthermore, the

use of inbred testers bears the possibility to early identify promising single-

cross hybrids. A compromise between theoretical requirements and practical

limitations might be the use of single-cross or double-cross testers in the first

stage and inbred testers in the second stage. Instead of evaluating progenies

of each tester at all test locations, the progenies of each tester could be

investigated only at a single test location. This simple change in the breeding

policy largely increased the optimum number of testers and test locations as

well as ∆G. Consequently, the optimum type and number of testers is of

utmost importance to maximize progress from selection.

Breeders can manipulate ∆G by varying economic and quantitative-

genetic parameters. However, the large impact of these parameters on the

optimum allocation of test resources must be considered (Longin et al. 2006a,

b; Longin et al. 2007a, b). An increase in the budget led to increased op-

timum numbers of test locations and testers, but especially to an increased

optimum number of test candidates. This increased ∆G, but reduced its

standard deviation only slightly. A decrease in the number of finally selected

DH lines mainly resulted in a decreased optimum number of test candidates

and an increased optimum number of test locations and testers in the second

stage. This increased ∆G, but also its standard deviation. With decreasing

non-genetic variances, the optimum number of test locations was reduced in

favor of an increased optimum number of test candidates. This increased

∆G and decreased its standard deviation.

Except for the variance components, which are determined by the breed-

ing material and target environments, the other factors can be chosen in

favor of an increased ∆G but at the expense of higher costs (larger budget)

and a higher risk of the final outcome (larger standard deviation for a small

number of finally selected DH lines). However, breeders should be aware of
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the non-linear increase of ∆G with increasing budget and decreasing number

of finally selected test candidates. This can be explained by the non-linear

increase of (i) selection intensity with increasing number of test candidates

and (ii) heritability with an increasing number of test locations, testers, and

replications (cf. Becker 1993). Consequently, the possibility to increase ∆G

by altering the above parameters is limited.

Response curves of ∆G revealed that a careful allocation of the test re-

sources is important, if only a small number of test locations and testers is

available (Longin et al. 2006a, b; Longin et al. 2007a, b). With larger num-

bers of test locations and testers, however, response curves become flatter,

reducing the risk of choosing a non-optimal allocation. Practical require-

ments may lead to deviations from the theoretical optimum allocation of test

resources. Loss in ∆G can be reduced by considering that the optimum al-

location of test resources for a given budget is a compromise between a high

selection intensity and a high heritability. Thus, a number of test locations

exceeding its optimum can be counterbalanced by a reduction in the number

of testers, years, and/or replications to minimize loss in selection intensity. A

number of intial test candidates exceeding its optimum may be compensated

in two-stage selection by a very small number of selected test candidates in

the first stage to realize a higher heritability in the second stage. In contrast

to these relatively flexible allocation options, two situations were identified

in the considered breeding schemes, where even small deviations from the

optimum allocation of test resources would clearly reduce ∆G. An increase

in (i) the small optimum number of test locations in the first stage of breed-

ing scheme DHTC(II) and (ii) the small optimum number of S1 families in

the second stage of breeding scheme S1TC-DHTC cannot be compensated

without substantial losses in ∆G. In conclusion, the optimum allocation of

test resources is important to maximize ∆G under a given scenario, but flat

response curves of ∆G reduce the risk of choosing suboptimal allocations.
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Comparison of breeding schemes

The use of DHs allows the evaluation of potential hybrid cultivars from the

very beginning of the selection process enabling an early registration of vari-

eties, e.g., after one stage of selection (breeding scheme DHTC(I), Fig. 7.2A).

However, for breeding scheme DHTC(I), ∆G was about 20% smaller than

for breeding scheme DHTC(II) (Fig. 7.2B) with two-stage selection of DH

lines (Longin et al. 2006a). This is due to the optimum allocation of test

resources in breeding scheme DHTC(II) with the evaluation of (i) a large

number of DH lines in a small number of test locations in the first stage

and (ii) a small number of the selected DH lines in a large number of test

locations in the second stage. Thus, a high selection intensity in the first

stage is combined with a high heritability in the second stage. Furthermore,

with breeding scheme DHTC(II), the standard deviation of ∆G was consider-

ably reduced in comparison with breeding scheme DHTC(I). Consequently,

breeding schemes with two-stage selection seem promising in line develop-

ment with DHs and, thus, breeding scheme DHTC(I) is excluded from the

further consideration.

A good line per se performance of DH lines is necessary for an economic

seed production of the hybrids. For breeding scheme DHTC(II), the consid-

eration of an economic seed production resulted in the necessity of different

breeding strategies for seed and pollen parent heterotic groups (Longin et

al. 2007a). Thereby, two-stage selection on testcross performance in both

stages was most suitable for the pollen parent heterotic group. In contrast,

for the seed parent heterotic group, evaluation of line per se performance in

the first stage followed by evaluation of testcross performance in the second

stage was most appealing. The importance of line per se evaluations is in-

creased by considering further agronomically important traits like resistance

to diseases and lodging. However, this requires index selection and warrants

further research.

Alternatively to the evaluation of DHs from the very beginning of the

selection process in breeding schemes DHTC(I) and DHTC(II), an early test
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for testcross performance in generation S1 or S2 could be made before pro-

duction of DHs (breeding scheme S1TC-DHTC, Fig. 7.2C). This elongates

the breeding scheme but permits to restrict the production and testing of

DH lines to those derived from segregation in the most promising families.

Selection gain for this breeding scheme S1TC-DHTC was 10% higher than for

breeding scheme DHTC(II) (Longin et al. 2007b). This can be explained by

the different types of test candidates with S1 families and DH lines in breed-

ing scheme S1TC-DHTC, enabling tremendously higher selection intensities

in comparison with breeding scheme DHTC(II). This superiority in selection

intensity decreased with a smaller selected fraction and resulted for the ex-

treme case of a budget of ≤ 200 field plots and selection of only one DH line

in a smaller ∆G for breeding scheme S1TC-DHTC than for breeding scheme

DHTC(II).

The optimum allocation of test resources in breeding scheme S1TC-DHTC

involved similar numbers of test locations and test candidates in both stages

(Longin et al. 2007b). Furthermore, a similar number of testers was deter-

mined for both stages of breeding scheme S1TC-DHTC, being approximately

half as large as the respective optimum number of test locations (data not

shown). This allocation of test resources in breeding scheme S1TC-DHTC

resulted in the use of more than 50% of the budget for evaluating the DH

lines of the most promising S1 families of the second stage. In contrast, in

breeding scheme DHTC, less than 30% of the budget were used for the second

stage. Consequently, the concentration of test resources on the most promis-

ing S1 families in early testing prior to DH production was superior to the

evaluation of DH lines from the beginning of the selection process with the

only exception of the combination of a very small budget with a very small

number of finally selected DH lines. This underpins the large potential of se-

lection in early generations and “the chances of the segregating generations”

(Schnell, pers. comm.).

Routine application of in-vivo haploid induction in hybrid maize breeding

requires specific skills and equipment for chromosome doubling, transplanting
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of up-regulated plants in the field, as well as for raising and selfing of the

up-regulated plants (cf. Röber et al. 2005). As these activities are rather

cost intensive, we assumed that the costs for the production of one DH line

is equal to half the costs of one testcross plot. This assumption corresponds

to the actual costs for production of DH lines in breeding companies most

advanced in the DH technique (Seitz, personal communication). In addition,

the production of DH lines from a single plant is limited due to low rates of

haploid induction (10-15%) and chromosome doubling (20-30%, cf. Röber et

al. 2005). Thus, from individual S1 ears with approximately 250 kernels, a

maximum of 10 DH lines can be produced.

The efficiency of breeding scheme DHTC(II) was only marginally affected

by the current limitations in DH technique (Longin et al. 2006a). Even for

high costs of DH production, the decreased optimum number of DH lines

can be compensated by an increased number of test locations without larger

losses in ∆G. Owing to the small number of DHs that have to be produced,

breeding scheme S1TC-DHTC was even less affected by the current limita-

tions in the DH technique (Longin et al. 2007b). The longer cycle length

of breeding scheme S1TC-DHTC compared with breeding scheme DHTC(II)

can be shortened by using individual S1 plants as (1) males for production of

testcross seed and in parallel as (2) females in crosses with the inducer, and by

performing chromosome doubling simultaneously with early testing (breeding

scheme S1TC-DHTCfast, Fig. 7.2D). However, an efficient use of this breed-

ing scheme will only be feasible, if more than 50 DH lines can be produced per

individual S1 plant at negligible costs (Longin et al. 2007b). With substantial

increases in the haploid induction and chromosome doubling rate as well as

reductions in the costs for DH production, the high selection gain for breeding

schemes with early testing prior to DH production could be combined with a

cycle length similar to breeding scheme DHTC(II), representing a promising

breeding scheme for rapid line development in second-cycle breeding.

The focus of our study was to investigate the efficiency of different breed-

ing schemes for short-term success in second-cycle breeding. We used per-

cycle ∆G, because the valuation of different cycle length in the considered
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breeding schemes is avoided. This is advantageous for the general assess-

ments of breeding schemes, because the cycle length for the same breeding

scheme may vary among breeders due to the availability of different test fa-

cilities. However, for the specific situation of a single breeder with given

test facilities, the consideration of the cycle length by per-year ∆G might be

of interest. Per-year ∆G can easily be obtained from our results by divid-

ing per-cycle ∆G by the number of years required in the breeding scheme.

For instance, for the assumption that two generations per year are possi-

ble and that field tests are only possible in summer season, largest per-year

∆G was obtained for breeding schemes DHTC(I) and S1TC-DHTCfast with

a superiority of more than 9 or 18% over breeding schemes DHTC(II) and

S1TC-DHTC, respectively. However, a change in the underlying assumptions

may alter this ranking. In contrast to rapid line development in second-cycle

breeding, the use of per-year ∆G in combination with the consideration of

the effective population size seems necessary for the investigation of average

population improvement in recurrent selection.

Prospects for model calculations

In breeding scheme S1TC-DHTC, selection in the second stage was made

first among and afterwards within S1 families. However, modifications of the

selection procedure of the second stage might increase the target criteria. For

instance, the best DH lines could be selected across all S1 families tested in the

second stage without regard of the family structure. Furthermore, varying

numbers of DH lines within S1 families could be evaluated in the second

stage according to the performance level of the S1 family in the first stage. A

consideration of best linear unbiased prediction (BLUP, cf. Bernardo 2002)

might further improve selection among and within families. However, to our

knowledge no analytical results are available in the literature to cope with

these more general situations.



General Discussion 60

For the selection of the best DH lines across all S1 families tested in

the second stage of breeding scheme S1TC-DHTC, preliminary calculations

extending an approximation of Hill (1976) resulted in a more than 5% larger

∆G compared with selection first among and afterwards within S1 families

(data not shown). This indicates that the advantage of early testing prior to

DH production is even underestimated by the selection procedure performed

in our study. However, the used approximations are inaccurate for a small

number of families (Hill 1976) and, hence, further research is warranted.

Owing to the lack of analytical results, Monte Carlo simulations may be

promising for further investigations on the optimum number of families and

lines within families.

Our breeding schemes were limited to the selection within one cross of

two homozygous lines. Extension of our results to populations from sev-

eral crosses is feasible assuming that the same budget is spent and the same

number of DH lines is finally selected in each population. However, both

assumptions will most likely fail in applied breeding, where some of the pop-

ulations are discarded at an early stage and promising populations might

receive a larger budget. Consequently, further research is required by ex-

tending our formulas to selection among and within crosses considering the

possibility to predict the average genotypic performance of a cross by the

mean genotypic value of its parents (Utz 1982). The phenotypic values of

the diverse parental lines are obtained with different test accuracy as deter-

mined by the number of test years, test locations, and testers used in the

performance trials. Therefore, the consideration of this varying test accuracy

could further improve the choice of parental lines.

We focused on grain yield assuming that this trait is controlled by a large

number of loci each with a small effect. Results from the increasing number

of QTL mapping experiments for yield (cf. Melchinger et al. 1998, Schön

et al. 2004) could be used to specify more precise genetic models for the

optimization of breeding schemes. For genetic models with small numbers

of QTL each with a different effect, the optimum allocation of test resources
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was similar to results achieved with a genetic model assuming a large number

of QTL each with the same small effect (Longin 2004). However, ∆G was

largely reduced for the considered breeding scheme indicating that a com-

parison of different breeding schemes might be affected by the specification

of the genetic model. Furthermore, new, superior breeding schemes could be

designed by using marker scores simultaneously with phenotypic data for se-

lection, emphasizing the importance of further studies on optimum breeding

schemes in hybrid maize breeding with DHs.
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7. Summary

A major objective in hybrid maize breeding is the development of inbred

lines with superior testcross performance. Inbred lines have commonly been

derived in maize by recurrent selfing for five to six generations. The use of

doubled haploids (DHs) enables the generation of completely homozygous

lines in one step, representing a promising alternative to recurrent selfing.

The implementation of the new DH technique in maize breeding requires an

optimization of the entire breeding scheme in order to maximize progress

from selection.

The objectives of this study were to (i) compare selection gain (∆G) per

breeding cycle with the probability of identifying superior genotypes with re-

spect to the optimum allocation of test resources, (ii) evaluate several breed-

ing schemes for an optimum use of the DH technique, (iii) determine the

optimum number of test candidates and test locations as well the optimum

type and number of testers for the different breeding schemes, and (iv) in-

vestigate the potential and limitations in the current DH technique in hybrid

maize breeding. Monte Carlo simulations and numerical integration tech-

niques were used to calculate the optimization criteria.

The choice of ∆G and the probability of identifying superior genotypes

seems not to be crucial for the optimization of breeding schemes. The use

of the new probability criterion supported the large optimum number of test

locations determined by ∆G. However, a larger impact of varying economic

and quantitative-genetic parameters on the probability criterion than on ∆G
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was found, emphasizing their importance to maximize the chances of identi-

fying a superior genotype.

The use of Monte Carlo simulations for optimizing the allocation of test

resources seems promising because of the possibility to calculate various op-

timization criteria for multi-stage selection in finite populations. However,

the large computing power required for them can rapidly become prohibitive.

Numerical integration techniques allow the calculation of ∆G in multi-stage

selection under the simplified assumption of infinite population size. The dif-

ferences between finite and infinite population size were negligible for both,

∆G and the optimum allocation of test resources. Thus, the simplifying

assumption of infinite population size is justified as long as a tremendous

reduction in computing time is warranted.

Two-stage selection of DH lines was important to increase ∆G and the

probability of identifying superior genotypes, because it combines the eval-

uation of a large number of initial DH lines with the use of a large number

of test locations. Consideration of an economic seed production indicated

the necessity of separate breeding schemes for seed and pollen parent het-

erotic groups. For the pollen parent heterotic group, two-stage selection on

testcross performance in both stages was most suitable, whereas for the seed

parent heterotic group, line per se performance in the first stage followed by

evaluation of testcross performance in the second stage was most appealing.

The concentration of test resources on the most promising S1 families in early

testing prior to DH production was superior to the evaluation of DH lines

from the beginning of the selection process.

The allocation of test resources was crucial to maximize ∆G for a given

scenario. Testers with broad genetic base allow a reduction of the number

of testers in favor of an increased number of test locations and a largely

increased ∆G. An evaluation of progenies of each tester only in a single

location instead of evaluating the progenies of each testers in all locations

further increased ∆G. With early testing prior to DH production, similar
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optimum numbers of testers and test locations were determined for evaluation

of testcross performance of S1 families and DH lines within S1 families. This

resulted in (i) a large optimum number of S1 families for the first stage and

(ii) a small optimum number of S1 families but a large optimum number of

DH lines within S1 families for the second stage.

Current limitations in the DH technique with a low number of DH lines,

which can be produced from a single maize plant, and high costs, affected the

selection gain and the optimum allocation of test resources only marginally

for breeding schemes with evaluation of DH lines from the beginning of the

selection process. However, substantial improvements of the DH technique

are required to realize the high potential of early testing prior to DH pro-

duction in combination with a short cycle length.

In conclusion, the optimum allocation of test resources is of utmost im-

portance to increase selection gain under given economic resources. The

implementation of DHs into maize breeding enables to shorten the length of

the breeding cycle, but a careful evaluation of the breeding alternatives is

required to maximize progress from selection.



8. Zusammenfassung

Die Entwicklung von Inzuchtlinien mit überlegener Testkreuzungsleistung

ist eine der bedeutendsten Aufgaben in der Hybridmaiszüchtung. Üblicher-

weise werden Maisinzuchtlinien durch fortgesetzte Selbstbefruchtung in

fünf bis sechs aufeinanderfolgenden Generationen hergestellt. Eine viel-

versprechende Alternative stellt die Technik der Erzeugung von Doppelhap-

loiden (DH) dar, mit deren Hilfe vollständig homozygote Linien in einem

Schritt entwickelt werden können. Um den Zuchtfortschritt zu maximieren,

erfordert die Einführung der DH-Technik in die Maiszüchtung eine Opti-

mierung des gesamten Züchtungsgangs.

Die Ziele unserer Studie waren: (i) die beiden Kriterien zur Bewertung

des Zuchtfortschritts, nämlich den Selektionserfolg pro Zyklus und die Wahr-

scheinlichkeit, überlegene Genotypen zu identifizieren, hinsichtlich der opti-

malen Allokation von Testressourcen zu vergleichen, (ii) verschiedene Zucht-

schemata für einen optimalen Einsatz der DH-Technik zu bewerten, (iii) die

optimale Anzahl von Prüfkandidaten, Prüforten und Testern sowie den op-

timalen Testertyp zu bestimmen, und (iv) die Möglichkeiten und Grenzen der

aktuellen DH-Technik zu untersuchen. Die Zielkriterien wurden mit Hilfe

von Monte-Carlo-Simulationen und numerischen Integrationsverfahren be-

rechnet.

Die Wahl des Kriteriums zur Bewertung des Zuchtfortschritts, nämlich

der Selektionserfolg vs. die Wahrscheinlichkeit, überlegene Genotypen zu

identifizieren, hatte nur einen geringen Einfluß auf die Optimierung von
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Zuchtschemata. Die große Anzahl von Prüforten, die für den Selektionserfolg

optimal war, wurde durch das Verwenden des Wahrscheinlichkeitskriteriums

bestätigt. Allerdings wurde das Wahrscheinlichkeitskriterium stärker als

der Selektionserfolg durch ökonomische und quantitativ-genetische Param-

eter beeinflusst, was deren Bedeutung für die Maximierung der Chancen,

überlegene Genotypen zu identifizieren, unterstreicht.

Monte-Carlo-Simulationen sind für die Optimierung der Allokation von

Testressourcen geeignet, weil sie ermöglichen, verschiedene Zielkriterien für

die Mehrstufenselektion in Populationen mit finiter Größe zu bestimmen.

Allerdings kann der damit einhergehende hohe Rechenaufwand schnell zum

begrenzenden Faktor werden. Der Selektionserfolg in der Mehrstufen-

selektion kann unter der vereinfachenden Annahme einer infiniten Popu-

lationsgröße mittels numerischer Integrationsverfahren bestimmt werden.

Die Unterschiede in der optimalen Allokation von Testressourcen und dem

Selektionserfolg zwischen den Berechnungen für finite und infinite Popu-

lationsgrößen waren vernachlässigbar klein. Somit ist die vereinfachende

Annahme einer infiniten Populationsgröße gerechtfertigt, solange damit eine

deutliche Reduktion der Rechenzeit verbunden ist.

Der Selektionserfolg sowie die Wahrscheinlichkeit, überlegene Genotypen

zu identifizieren, waren durch ökonomische und quantitativ-genetische Pa-

rameter nur begrenzt beeinflussbar. Dahingegen wurden beide Kriterien

durch eine Zweistufenselektion von DH-Linien, bei der die Untersuchung

einer großen Anzahl von Ausgangslinien mit dem Nutzen einer großen An-

zahl von Prüforten kombiniert wird, beachtlich gesteigert. Die Berücksich-

tigung einer ökonomischen Saatgutproduktion erforderte die Verwendung

unterschiedlicher Zuchtschemata für die heterotischen Gruppen der Saat- und

Polleneltern. Für die Polleneltern war eine Zweistufenselektion auf Testkreu-

zungsleistung am besten geeignet, wohingegen sich für die Saateltern eine Se-

lektion auf Linieneigenleistung in der ersten Selektionsstufe kombiniert mit

einer Selektion auf Testkreuzungsleistung in der zweiten Selektionsstufe als

überlegenes Zuchtschema erwies. Die Durchführung eines frühen Tests vor
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der DH-Produktion ermöglichte eine Konzentration der Testressourcen auf

die viel versprechendsten S1-Familien, was der alleinigen Prüfung von DH-

Linien während des gesamten Selektionsprozesses überlegen war.

Der Nutzen von genetisch breiten Testern ermöglichte eine Reduktion

der Testerzahl zu Gunsten einer gesteigerten Anzahl an Prüforten und eines

stark erhöhten Selektionserfolgs. Die Untersuchung der Nachkommen jedes

Testers an jeweils nur einem Ort anstelle der Prüfung aller Testkreuzungs-

nachkommen an allen Orten steigerte zusätzlich den Selektionserfolg. Ver-

gleichbare Anzahlen von Testern und Prüforten waren für die Untersuchung

von S1-Familien und DH-Linien optimal, wenn ein früher Test vor der Pro-

duktion von DH-Linien gemacht wurde. Dies führte dazu, dass in der ersten

Selektionsstufe eine große Anzahl von S1-Familien, in der zweiten Selektions-

stufe allerdings nur eine kleine Anzahl von S1-Familien mit jeweils einer

großen Anzahl von DH-Linien innerhalb dieser S1-Familien optimal waren.

Die Grenzen der aktuellen DH-Technik, insbesondere die geringe Anzahl

von DH-Linien, die von einer Einzelpflanze produziert werden können, sowie

die hohen Kosten beeinflussten den Selektionserfolg und die optimale Alloka-

tion der Testressourcen in Zuchtschemata, in denen ausschließlich DH-Linien

getestet werden, kaum. Allerdings sind erhebliche Verbesserungen der DH-

Technik nötig, um das große Potential des frühen Tests vor der DH-Pro-

duktion mit einer kurzen Zuchtzykluslänge zu vereinigen.

Das Fazit ist: Die optimale Allokation der Testressourcen ist für die

Maximierung des Selektionserfolgs unter gegebenen ökonomischen Rahmen-

bedingungen von außerordentlich großer Bedeutung. Die Einführung von

Doppelhaploiden in die Maiszüchtung ermöglicht zwar eine Verkürzung der

Zuchtzykluslänge, allerdings ist für eine Maximierung des Zuchtfortschritts

die sorgfältige Abwägung verschiedener Zuchtalternativen von Nöten.



9. Appendix

Approximating the selection gain

One-stage selection

For one-stage selection, selection gain (∆G1) is defined as

∆G1 = i1ρz,x1σz (cf. Falconer and Mackay 1996),

where i1 refers to the selection intensity, ρz,x1 to the coefficient of correlation

between the phenotypic mean of testcross performance x1 and the target

variable z, and σz to the standard deviation of the target variable. The cal-

culation of the selection intensity requires knowledge of the genotypic and

phenotypic distribution of the test candidates. Most often, a Gaussian nor-

mal distribution of phenotypic and genotypic values is assumed. For the

assumption of infinite population size, i1 can be approximated with good

correspondence to exact computation by numerical integration for a selected

fraction α of 0 ≤ α ≤ 0.5 with

i(infinite) = t +
0.23204− 1.7019 t

1 + 2.5143 t + 0.5113 t2
(Utz 1984),

assuming t =
√

ln(1/α2). For finite sample size, i1 can be approximated by

i(finite) = i(infinite)− N − n

2n(N + 1)i(infinite)
(Burrows 1972),
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where N refers to the number of initial test candidates and n to the number

of selected test candidates. In the statistic package R (R Development Core

Team 2004), existing functions for numerical integration and order statistics

can be used to determine exactly i1 for finite and infinite population size.

For infinite sample size, i1 can be calculated as

i(infinite) = dnorm(qnorm(1− α, 0, 1), 0, 1)/(α).

For finite sample size, i1 is calculated based on the expected values of the n

largest order statistic with

i(finite) = sum(as.matrix(normOrder(N))[(N − n + 1) : N ])/n.

The function normOrder() requires the use of library(SuppDists).

The coefficient of correlation between the phenotypic mean of testcross

performance x1 and the target variable z is ρz,x1 = Cov(z, x1)/(σzσx1).

Therein, the phenotypic variance σ2
x1

refers to the number of test locations

and test candidates as well as the type of the test candidates, which are used

in the study (cf. Longin et al. 2006a, b; Longin et al. 2007a, b).

The standard deviation of selection gain can be approximated with

SD∆G1 =

√
(1− ρ2

z,x1
(1− v1))

σ2
z

n
(Burrows 1975)

with v1 = 1−i1(i1−k1)+(1−α1)(i1−k1)
2. Therein, k1 can be approximated

after Abbramowitz and Stegun (1964) as

k1 = t− 2.30753− 0.27061t

1 + 0.99229t + 0.4481t2
,

or calculated exactly in the statistic package R as k1 = qnorm(1− α1, 0, 1).

Two-stage selection

Selection gain in two-stage selection (∆G2) is calculated as

∆G2 = i1ρz,x1σz + i2ρ
′
z,x2

σ′z (Utz 1984).
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For the second stage, selection intensity i2 is calculated like previously defined

using α2. However, ρz,x2 as well as σ2
z are reduced due to the skewness of the

genotypic distribution after the first selection stage. The reduced correlation

between the phenotypic mean of testcross performance x2 and the target

variable z can be approximated after Dickerson and Hazel (1944) as

ρ′z,x2
=

ρz,x2 − ρz,x1ρx1,x2λ√
(1− ρ2

z,x1
λ)(1− ρ2

x1,x2
λ)

,

with λ = i1(i1 − k1), ρx1,x2 = Cov(x1, x2)/(σx1σx2), and ρz,x2 calculated as

described for ρz,x1 . The variance of the target variable in the second stage is

approximated as

σ′z =
√

σ2
z(1− ρ2

z,x1
λ) (Cochran 1951).

To my knowledge, definitions of the standard deviation of ∆G2 are lacking

in the literature. Results for calculating the standard deviation of ∆G2 by a

slight modification of the approximation for the standard deviation of ∆G1

(Burrows 1975) were close to findings of our Monte Carlo simulations for a

large range of scenarios (data not shown). Thus, to get a rough idea of the

standard deviation of ∆G2, I suggest the use of

SD∆G2 =

√
(1− ρ′2z,x1

(1− v2))
σ′2z
n

using i2(infinite) for calculation of v2.
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