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Chapter I 
 

 

Scope and outline 
 

 

Scope 
 

In high pressure treatment, the structure of casein micelles can be modified by the process 

parameters and milieu conditions resulting in new functional properties. Several studies have 

shown that during pressure build-up phase casein micelles dissociate into submicelles 

(Schmidt & Buchheim, 1970; Needs et al., 2000; Regnault et al., 2004). This pressure-

induced dissociation was explained by the weakening of hydrophobic and electrostatic 

interactions between submicelles (Mozhaev et al., 1996), and the solubilisation of colloidal 

calcium phosphate out of the micellar framework (Shibauchi et al., 1992; Lee et al., 1996; 

Schrader et al., 1997). During pressure release, the binding forces are regained and new 

calcium bridges are built up (Shibauchi et al., 1992). Instead of the original casein micelles 

new hyper-structures may be built up. Most of the studies on casein micelles under high 

pressure are focused on the influence of pressure level and temperature but knowledge about 

the influence of pressure release rate is still lacking.  

 

The focus of the work was to study the influence of different high pressure process 

parameters especially pressure release rate but also pressure build-up, pressure level and 

holding time and milieu conditions on pressure-induced casein structures. The experiments 

were carried out with an enriched micellar casein powder gained by diafiltration of skim milk 

at the Institute for Food Process Engineering in Freising, Germany (Kersten, 2001). Pressure 

release and pressure build-up rates were varied from 20 to 600 MPa min-1, pressure level from 

200 to 600 MPa and holding time from 0 to 30 min. A better understanding of the pressure-

induced structure formation of the casein micelles on ultra-high pressure treatment may offer 

opportunities for the creation of novel dairy products. 
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Outline of the thesis 
 

Chapter II provides basic information about casein, casein micelles but also aggregation and 

gelation. Hypotheses about the action of high pressure on casein structures are presented. 

Furthermore, theories about the used analysis methods are given. All these aspects will allow 

the discussion and interpretation of the results in the following chapter and therefore give a 

better understanding of the behavior of casein under high pressure. 

 

Chapter III describes the influence of pressure release rate and protein concentration on the 

formation of pressure-induced casein structures. 

This Chapter has been submitted to Journal of Dairy Research: 

Merel, E., Hinrichs, J. & Kulozik, U. Influence of pressure release rate and protein concentration on the 

formation of pressure-induced casein structures, Journal of Dairy Research (in first revision). 

 

Chapter IV is focussed on the influence of pressure build-up rate, pressure holding time and 

pressure release rate on casein. Ex situ and in situ results are presented and compared.  

 

Chapter V describes the influence of casein concentration and calcium content, combined 

with pressure release rate on the formation of new casein structures. 

This Chapter was published in the proceedings CD of the AIRAPT-EHPRG conference in 

Karlsruhe: 

Merel, E., Budde, T. & Hinrichs, J. (2005). Formation of new casein structures by high pressure, Proceedings 

CD, joint 20th AIRAPT - 43rd EHPRG Conference on Science and Technology of High Pressure, Karlsruhe. 

 

Chapter VI describes the influence of pressure level, pressure release rate and temperature on 

the formation of pressure-induced casein structures 

This chapter is accepted for publication in Milk Science International: 

Merel-Rausch, E., Duma, I.P. & Hinrichs, J. Pressure-induced modification of casein micelles - Influence of 

pressure build-up rate, pressure level, release rate and temperature on viscosity and particle size, Milk Science 

International 61(3), 255-259. 
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Coauthors 

My work was supervised by Prof. Jörg Hinrichs. The research was done in parallel with 

researchers of the Chair for Food Process Engineering and Dairy Technology of the Technical 

University of Munich, headed by Prof. Ulrich Kulozik. Their research was mainly based on 

the formation of high pressure induced casein/hydrocolloids and whey proteins/hydrocolloids 

structures. 

This dissertation comprises studies that were carried out in cooperation with several 

researchers. Dr. Gebhardt of the research group of Dr. Doster of the Physics Department of 

the Technische Universität München worked with our casein powder and investigated the 

effect of high pressure (in situ PCS) on the particle size distribution. A part of the work 

presented in Chapter III was supervised by Prof. Ulrich Kulozik. Chapter IV presents research 

supervised by Prof. Antonio Delgado and Dr. Albert Baars of the Chair for Fluidmechanics 

and Processautomation of the Technische Universität München. Natalie Pereyra-Grünhagen 

of the working group of Prof. Antonio Delgado provided the results of the in situ viscosity. 

Results presented in Chapter V to VI were obtained with the help of Tanja Budde and Ioana 

Paula Duma who did their master theses in our institute in Hohenheim. 

 

The project was financially supported by the DFG (Deutsche Forschungsgemeinschaft) as part of 

the high pressure project FOR 358/2.  
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Chapter II 
 

 

General introduction 
 

The work was focused on the pressure-induced transformation of the structure of casein 

micelles. In this chapter basic information about casein, casein micelles but also aggregation 

and gelation are provided. Hypotheses about the action of high pressure on casein structures 

are presented. Furthermore, theories about the used analysis methods are given. All these 

aspects will allow the discussion and interpretation of the results in the following chapter and 

therefore give a better understanding of the behavior of casein under high pressure.  

 

The theories presented in this chapter are mostly assembled from the following books: 

Walstra & Jennes, 1984; Walstra et al., 1999; Belitz et al., 2001 and Walstra, 2003.  
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The caseins 

 

Milk is a three phase system composed of a solution (milk serum), an emulsion and a 

dispersion. In the serum, the major parts of the milk are whey proteins, salts, vitamins, urea 

and other diluted milk components. The emulsion is composed of the milk fat in form of 

dispersed fat drops. Caseins represent the dispersion phase. The milk proteins (about 3.4 %) 

are composed of two major protein fractions: the caseins and the whey proteins at the rate of 

4:1.  

About 80 % of the milk proteins consist of casein, phosphoproteins that precipitate at about 

pH 4.6 and 20 °C. Due to their electrophoretic mobility, caseins are divided in four major 

fractions: αs1-casein (39 %), αs2-casein (10 %), β-casein (36 %) and κ-casein (13 %) 

(Table II.1).  

 

Table II.1: Characteristics of the casein fractions (Walstra et al., 1999) 
Fraction αS1 αS2 β κ 

Molecular weight 23.6 25.2 24.0 19.0 

Phosphoserine (res./mol) 8 11 5 1 

Cysteine (res./mol) 0 2 0 2 

Hydrophobicity (kJ/res.)* 4.9 4.7 5.6 5.1 

Net charge / residues at pH 6.6 -0.10 -0.07 -0.06 -0.02 

Isoelectric pH 4.1-4.8 5.1 5 5.5-5.8 

Calcium sensitivity ++ +++ + - 
*Tanford-bigelow hydrophobicity scale 

       

The casein fractions differ from each other in their amino acid composition (Table II.2), their 

charge distribution and in their tendency to aggregate in the absence and presence of calcium.  
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Table II.2: Amino acid composition of the cow casein fractions * 

Amino acid αs1-Cas αs2-Cas β-Cas κ-Cas 

 % F % F % F % F 

Ala 4.5 0.6 3.9 0.5 2.4 0.3 8.3 1.1 

Arg 3.0 0.6 2.9 0.5 1.9 0.4 3.0 0.6 

Asn 4.0 1.0 6.8 1.6 2.4 0.6 4.7 1.1 

Asp 3.5 0.7 1.9 0.4 1.9 0.4 2.4 0.4 

Cys 0.0 0.0 1.0 0.6 0.0 0.0 1.2 0.8 

Gln 7.0 1.8 7.7 2.0 9.6 2.4 8.9 2.2 

Glu 12.6 1.9 11.6 1.7 9.1 1.4 7.1 1.1 

Gly 4.5 0.7 1.0 0.1 2.4 0.3 1.2 0.2 

His 2.5 1.1 1.4 0.6 2.4 1.0 1.8 0.8 

Ile 5.5 0.9 5.3 0.9 4.8 0.8 7.1 1.2 

Leu 8.5 0.9 6.3 0.7 10.5 1.1 4.7 0.5 

Lys 7.0 1.2 11.6 2.0 5.3 0.9 5.3 0.9 

Met 2.5 1.1 1.9 0.8 2.9 1.2 1.2 0.5 

Phe 4.0 1.0 2.9 0.7 4.3 1.1 2.4 0.6 

Pro 8.5 1.8 4.8 1.0 16.7 3.5 11.8 2.5 

Ser 8.0 1.2 8.2 1.2 7.7 1.1 7.7 1.1 

Thr 2.5 0.5 7.2 1.3 4.3 0.8 8.9 1.6 

Trp 1.0 0.9 1.0 0.8 0.5 0.4 0.6 0.5 

Tyr 5.0 1.6 5.8 1.9 1.9 0.6 5.3 1.7 

Val 5.5 0.8 6.8 1.0 9.1 1.4 6.5 1.0 
* The amino acid sequences of the mature chains of the different casein fractions of Bos 

taurus (cow) were obtained from the protein database SWISS-PROT 

(http://www.expasy.org/sprot; Boeckmann et al., 2003; SWISS-PROT-IDs: 

CAS1_BOVIN, CAS2_BOVIN, CASB_BOVIN, CASK_BOVIN) 

%: occurance of given amino acid per 100 amino acids in protein, F: factor discribing 

the over or under representation of this amino acid in the casein fractions (occurance of 

amino acid in given protein divided by the average composition of this amino acid in the 

complete data base of proteins (SWISS PROT)) 

The amino acid composition (% and F) were calculated using the program PEPSTATS 

of the EMBOSS program package (Rice et al., 2000) 
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The casein fractions contain a large amount of proline inhibiting helix formation because of 

its ring form (helixbraker). The formation of a secondary and tertiary structure is therefore 

obstructed and caseins can not be denatured (Holt & Sawyer, 1993; Walstra et al. 1999). 

Caseins contain a large amount of phosphor (0.9 %), mostly as phosphoserine. These 

phosphoserine residuals are able to build stable bonds with bivalent ions like Ca2+. All caseins 

tend to self-associate in solution, also self association of αs1-casein, αs2-casein, β-casein and κ-

casein is possible (Walstra et al., 1999; Belitz et al., 2001; Rollema & de Kruif, 2003). 

 

αs1-casein 

The αs1-casein fraction consists of five genetic variants (A, B, C, D, E). The most frequently 

found variant B has a peptide chain with 199 amino acids and a molecular weight of 23,600. 

The polypeptide chain of αs1-casein consists of two predominantly hydrophobic regions 

(residues 1-44 and 90-199) and a highly charged polar zone (45-89). The amino acid proline 

is equally dispersed along the peptide chain and inhibits the formation of larger regular 

secondary structure elements. αs1-casein builds an insoluble calcium salt in the presence of 

calcium concentrations typically found in milk. 

 

αs2-casein 

The αs2-casein fraction has a peptide chain with 207 amino acids and a molecular weight of 

25,200. αs2-casein contains two cysteine residues wherefore disulfide bonds can be formed. 

αs2-casein is more sensitive to precipitation by Ca2+ than αs1-casein. αs2-casein has a dipolar 

structure with a concentration of negative charges near the N-terminus and positive charges 

near the C-terminus. 

 

β-casein 

From the seven genetic variants (A1, A2, A3, B, C, D, E) the variant A2 is the most frequent 

one in bovine milk. This variant has a peptide chain of 209 amino acids and a molecular 

weight of 24,000. β-casein is the most hydrophobic casein. Due to its uncharged essentially 

hydrophobic tail and its negatively charged head, this casein molecule is acting as an anionic 

detergent. It contains, like αs1-casein, no cysteine and precipitates in the presence of calcium 

in milk common concentrations. The calcium salt can be resolubilized at a temperature below 

1 °C. 
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κ-casein 

Four genetic variants (A, B, C, D) are known. The variant B is the most frequent variant in 

bovine milk. It has a peptide chain of 169 amino acids and a molecular weight of 18,000. κ-

casein consists of a mixture of trimers or higher polymers presumably held together by 

intermolecular disulfide bonds. The protein contains a carbohydrate-free major component 

and six other components differing in the amount of carbohydrates. κ-casein is the only casein 

fraction being soluble in the presence of calcium in milk concentration and is able to protect 

the other calcium insoluble fractions by building complexes. This property of κ-casein is very 

important for the building of casein complexes and casein micelles. κ-casein is hydrolyzed at 

the Phe(105)-Met(106) bond by the enzyme chymosin. Chymosin cleaves the κ-casein into 

the hydrophobic para-κ-casein and the hydrophilic caseinomacropeptide. This reaction is the 

initial step of curdling the milk (by rennet) and thus essential for cheese-making. 

 

Interactions between the casein fractions 

An important functional property of the caseins is their ability to self associate and to 

associate with the other casein fractions. For the formation of intra- and inter-molecular 

interactions between the casein fractions, the amino acid composition of these fractions is 

important (Table II.2). Disulfide bridges can be formed by thiols and disulfide interchange or 

by oxidation of thiol groups. This formation can only occur if cysteine is present in the 

protein structure. Two cysteine groups are located in αs2- and κ-casein. So, these proteins are 

able to form disulfide bridges. αs1- and β-casein do not contain cysteine.  

Electrostatic interactions result from attraction of ionized groups of opposite charge. The 

terminal carboxyl groups are negatively charged at the physiological pH of milk (≈ 6.7), the 

terminal amino groups are positively charged. Electrostatic bonds are either influenced by pH 

or the milieu (e.g. ionic strength). Ionized groups of equal charge repel each other. At the 

physiological pH of milk, the carboxyl groups of aspartic acid (IEP = 2.8) and glutamic acid 

(IEP = 3.2) are negatively charged. In contrary, the amino group of lysine (IEP = 9.6), the 

imidazol ring of histidine (IEP = 7.5) and the guanidine group of arginine (IEP = 10.8) are 

positively charged. All casein fractions in table II.2 possess these amino acids, and therefore 

all casein fractions are able to form electrostatic bonds.  

For the formation of calcium bridges, proteins must contain carboxyl groups (aspartic acid, 

glutamic acid) or phosphorylized amino acids (phosphoserine, phosphothreonine, 

phosphotyrosine), and calcium has to be in the system. All casein fractions contain carboxyl 

groups and different amounts of phosphoserine. Especially αs2-casein has a high amount of 
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phosphoserine and is known as the most calcium sensitive fraction of the caseins. In 

summary, caseins are able to build calcium ion salt bridges.  

The association of non polar groups in water induces hydrophobic interactions. When two 

hydrocarbon groups associate, some of the water molecules which were more ordered around 

a hydrocarbon group than elsewhere in the solution, are released and become less ordered 

(entropy increase). This increase of entropy of water induces the formation of hydrophobic 

bonds. These hydrophobic interactions are especially important for the protein folding. Non-

polar groups are ordered inside the structure, polar groups outside of it. Amino acids with 

non-polar side groups (alanine, valine, leucine, isoleucine, phenylalanine and methionine) are 

found in high quantity in all casein fractions. Thus hydrophobic interactions can become 

active in and between all casein fractions.  

Hydrogen donors and acceptors can be found in many amino acids; hydrogen donors in 

serine, threonine und tyrosine, acceptors in methionine, asparagine, glutamine, aspartic acid 

und glutamic acid. The acid amide group of the main chain (donor: -NH, Acceptor: =O) can 

contribute to the formation of hydrogen bonds. Thus all caseins contain hydrogen donors and 

acceptors and hydrogen bonds can be built. 

 

Casein micelles 

The major part of casein (90 %) is structured in casein micelles. Casein micelles in skim milk 

generally have a diameter between 40 and 300 nm. The variation of the casein micelle size 

depends principally on the protein composition and the proportion of κ-casein. Casein 

micelles contain inorganic substances, mainly calcium phosphate (8 %). Many models exist 

about the structure of the casein micelle. The most commonly used one is the submicelles 

model: casein micelles are aggregates composed of smaller units, the submicelles (10-20 nm) 

which are bound together by calcium phosphate bonds (Schmidt & Buchheim, 1970; Walstra 

et al., 1999). Two submicelle types exist: one type essentially contains αs-casein and β-casein, 

the other one αs-casein and κ-casein. The hydrophobic and calcium sensitive fractions αs-

casein and β-casein are situated in the inner of the micelle, the calcium insensitive κ-casein at 

the surface, protecting the micelles against calcium precipitation. The hydrophilic 

caseinomacropeptide of the κ-casein is oriented outside the micelles into the surrounding 

medium as a flexible “hair” and builds a hydrate envelope stabilizing the micelle because of 

steric and electrostatic repulsions. Aggregation of submicelles would go on until the surface 

of the micelle was more or less covered with κ-casein. Figure II.1 shows the model of a casein 

micelle as described by Walstra et al. (1999). 
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Figure II.1: Schematic model of a cross-section through a casein micelle (according to Walstra et al. 1999; 

Schmidt & Payens, 1976 and Walstra, 1979) 

 

Intermolecular interactions stabilizing the casein micelles are illustrated in Table II.3. Some 

authors proposed that the micelles are stabilized essentially by calcium bridges and 

hydrophobic interactions. Others mention that electrostatic interactions and/or hydrogen 

bonds are also involved. According to Law et al. (1998), casein monomers aggregate to 

submicelles due to electrostatic and hydrophobic interactions and the casein submicelles are 

bound together by calcium bridges to form the casein micelle structure.  
 

Table II.3: Proposed stabilizing interactions in casein micelles  

Stabilizing interactions Sources 

CaB, Hy Schmidt and Buchheim, 1970; Horne, 1998; 

Haque et al., 2001; Johnston et al., 2002 

CaB, Hy, WB Lucey and Singh, 1998; Horne, 1999 

CaB, Hy, EB Law et al., 1998 

CaB, Hy, EB, WB Walstra and Jenness, 1984; Walstra et al., 1999 

CaB, EB, WB Keim, 2005 
EB: electrostatic bonds, CaB: calcium bridge, Hy: hydrophobic bonds, WB: hydrogen 
bonds 
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By applying different buffer systems, Keim (2005) measured that calcium bonds and the sum 

of electrostatic interactions, hydrogen bonds and non bound proteins dominated in a casein 

concentrate with 15% casein content (Table II.4). 

 

Table II.4: Stabilizing bonds in casein concentrate with 15 % casein content (Keim, 

2005) 

 Stabilizing bonds [%] 
Mean ± CI 99 

SS 0.9 ± 4.8 
Hy 1.3 ± 8.0 
CaB 36.6 ± 4.8 
EB+WB+nb 60.3 ± 7.4 
EB+WB n.a. 
nb n.a. 
Total 99.1 ± 4.8 
i 8 
SS: disulfide bridges, EB: electrostatic bonds, CaB: calcium bridge, Hy: hydrophobic 
bonds, WB: hydrogen bonds, nb: non bond proteins; n.a.: non analyzed because liquid 
sample; i: number of independent experiments; CI: confidence interval 

 

A casein micelle and its surroundings keep exchanging components. The principal exchanges 

occur between: 

• casein molecules and submicelles 

• submicelles and colloidal calcium phosphate 

• submicelles and micelles 

The stability of casein micelles is affected by modifications of external conditions like 

temperature, pH and proportion of calcium, but also high pressure, modifications which can 

lead to aggregation of the micelles. The aggregation theory is discussed later in this chapter. 

The various causes for the aggregation of casein micelles are reported in Table II.5.  
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Table II.5: Various causes for the aggregation of casein micelles (Walstra et al., 1999) 

Cause 

Micelles 

changed? 

Aggregation 

reversible? 

Aggregation 

at low 

temperatures? 

Long storage (age gelation) 

At air-water interface 

High temperature (heat coagulation) 

Acid to pH ≈ 4.6 

Ethanol 

Renneting 

Excess Ca2+ 

Freezing plus thawing 

Addition of some polymers 

Yes 

Spreading 

Chemically 

No CCP left 

Presumably 

κ-casein split 

More CCP 

Presumably 

No 

No 

No 

No 

(Yes)1 

No 

No 

Yes 

(Yes)2 

Mostly 

No 

No 

- 

No 

? 

No 

? 

- 

Yes 
1 At neutral pH, the aggregates dissolve again but the natural micelles do not reappear  
2 Partly, depending on conditions 

CCP: colloidal calcium phosphate 
 

Not reported by Walstra et al. (1999) is the sensitivity of the casein micelles under high 

pressure. 

 

 

Influence of high pressure on casein 

 

High pressure treatment can be applied in food processing for different objectives: to destroy 

microorganisms, to inactivate enzymes or to modify proteins. Pressure effects are governed 

by Le Chatelier´s principle, which states that at equilibrium a system tends to minimize the 

effect of any external factor by which it is perturbed. Thus, reactions that result in reduced 

volume will be promoted under high pressure whereas those associated with a volume 

increase are retarded (Masson, 1992; Mozhaev et al., 1996). Covalent bonds are largely 

insensitive to pressure treatment up to 1000 MPa. The main targets of pressure treatment are 

electrostatic and hydrophobic interactions which are accompanied by a positive reaction 

volume (+10 to +20 ml mol-1) and therefore weakened by high pressure. Hydrogen bond 

formation is almost pressure insensitive (-4 to 1 ml mol-1) (Masson, 1992).  
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Pressure treatment can cause substantial modification of the casein micelles. High pressure 

parameters (pressure level, holding time, release rate, temperature) and milieu conditions 

(casein and calcium content, pH) influence dissociation and re-association of casein and 

induce the formation of new casein structures. 

 

Pressure level 

Casein micelles dissociate into smaller particles called submicelles during the pressure build-

up phase of a pressure treatment up to 400 MPa (Schmidt & Buchheim, 1970; Schrader & 

Buchheim, 1998; Needs et al., 2000; Regnault et al., 2004). This pressure-induced casein 

micelle dissociation was explained by the weakening of the hydrophobic and electrostatic 

interactions between the submicelles (Mozhaev et al., 1996) due to their positive reaction 

volume (+10 to +20 ml mol-1), and by the solubilisation of colloidal calcium phosphate (CCP) 

out of the micellar framework (Shibauchi et al., 1992; Lee et al., 1996; Schrader et al., 1997). 

An increase of the casein micelles size at pressures of 200 to 250 MPa (Gaucheron et al., 

1997; Huppertz et al., 2004) followed by a decrease of the micelles size up to 400 MPa 

(Desobry-Banon et al., 1994; Gaucheron et al., 1997; Needs et al., 2000; Huppertz et al., 

2004; Regnault et al., 2004) was observed by photon correlation spectroscopy (PCS), laser 

granulometer studies and transmission electron microscopy.  

 

Pressure release rate 

Keenan et al. noted in 2003 that the gelling process in concentrated milk occurred during 

decompression. Fertsch et al. (2003) demonstrated that the pressure release rate significantly 

influences the structure formation of pressure-induced 15 % casein gels. The higher the 

pressure release rate, the firmer and more homogeneous the structures after high pressure 

treatment (Table II.6 and Figure II.2). 
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Table II.6: Median of the gel firmness of the pressure induced micellar 

casein (mC) gels with a protein content of 15 % (number of independent 

experiments n=3) (Fertsch et al, 2003) 

Build-up rate / holding time / release rate 

in min 

mC gel ± s.d.  

in N 

3/0/1 
3/15/1 
3/30/1 

 

0.14 ± 0.14 
0.70a ± 0.11 
0.73a ± 0.20 

3/0/3 
3/15/3 
3/30/3 

 

0.08 ± 0.05 
0.41b ± 0.07 
0.54b ± 0.23 

3/0/30 
3/15/30 
3/30/30 

0.12c ± 0.03 
0.31c ± 0.10 
0.21c ± 0.12 

s.d.: standard deviation; a, b, c: values with the same index do not differ 
significantly with p < 0.05 

 

Figure II.2: Electron micrographs (image 3030 X 3030 nm) of pressure-induced 15 % casein gels (600 MPa) as 

a function of the pressure release rate. The name of the samples consists of the time in min for pressure increase / 

holding time / pressure release (Fertsch et al., 2003) 

 

During pressure release, the non covalent interactions weakened by high pressure are 

reactivated (Suzuki & Taniguchi, 1972; Hinrichs, 2000) and calcium bonds are rebuilt 

(Shibauchi et al., 1992; López-Fandiño et al. 1998). The casein submicelles aggregate to form 

new microstructures (Ohmiya et al., 1989; Johnston et al. 1992a; Johnston et al. 1992b; 

Masson, 1992; Hinrichs, 2000; Johnston et al., 2002; Fertsch et al., 2003). 
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Pressure holding time 

As essentially non covalent bonds stabilize the structure of casein micelles it can be assumed 

that the high pressure-induced reformation of these bonds occurs during pressure release and 

that pressure holding time has no influence. However, Fertsch et al. (2003) observed that the 

firmness of 15 % casein gels was higher when a holding time of 15 min was applied than 

without holding time at 600 MPa (Table II.4). They assumed that the dissociation of the 

micelles may not be completed when pressure is not hold for a certain time. Therefore, 

association initiated during pressure release leads to inhomogeneous gelling since intact 

micelles or bigger fragments are present. The texture of the gels appears very soft. 

Furthermore, an increase of the casein micelles size was observed at 200 MPa (Anema et al., 

2005) and 250 MPa (Huppertz et al., 2004) by increasing the treatment time from 5 to 60 min. 

 

Temperature 

Gaucheron et al. (1997) observed that increasing the temperature from 4 to 40 °C during a 

pressure treatment at 250 MPa increased the casein particle size (252 nm at 40 °C compared 

to 184 nm at 20 °C, 133 nm at 4 °C and 190 nm for control). No influence was observed at 

treatment at 450 and 600 MPa. Garcia-Risco et al. (2000) and Huppertz et al. (2004) showed 

the presence of large casein aggregates for milk treated at pressures between 250 and 

400 MPa and temperatures from 40 to 60 °C. Anema et al. (2005) noticed that increases in 

temperature promoted the aggregation reactions of casein micelles. Needs et al. (2000) and 

Anema et al. (2005) suggested that the hydrophobic interactions, which increase with rising 

temperature, may be involved in the reassociation of casein micelles.  

 

Casein content 

The pressure-induced structure of the casein micelles is affected by protein concentration and 

firm gels were obtained at a protein concentration of about 10 % (Velez-Ruiz et al., 1998; 

Hinrichs, 2000; Fertsch et al., 2003). According to Snoeren et al. (1982) the influence of 

casein content on gel formation is due to the inner friction of the dispersed particles with the 

outer phase and to the high water binding capacity of the casein. 

 

Calcium content 

Calcium phosphate is essential for the stability of casein micelles. Micelles dissociate into 

smaller units after treatment with calcium binding substances (e.g. sodium citrat, EDTA, 

Oxalate) or dialyze against calcium-free solution. Shibauchi et al. (1992) and Lee et al. (1996) 
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showed that the dissociation of casein micelles during high pressure treatment is accompanied 

by an increase in the levels of soluble calcium and phosphate. Lee et al. (1996) also showed 

that the resistance to pressure-induced solubilisation of colloidal calcium phosphate out of the 

micellar framework is increased by soluble calcium.  

 

 

Aggregation and gelation 

 

Kinetics of Aggregation 

When colloidal particles meet each other, aggregation can occur due to Brownian motion 

(perikinetic aggregation) or to velocity gradient (orthokinetic aggregation). Colloidal 

interaction forces are responsible for aggregation.  

 

Perikinetic fast aggregation 

In his theory, Smoluchowski (1916, cited by Walstra, 2003) assumes that colloidal particles 

stick and remain aggregated when encountering each other due to the Brownian motion. 

Smoluchowski defined the number Jperi of encounters per unit volume and time (flux or 

aggregation rate) [s-1] for equal-sized spheres to be: 

NrDJ mperi π4=         (II.1) 

where N is the number of particles per unit volume (or particle number concentration) [m-3], 

Dm the mutual diffusion coefficient of two particles (for a sphere equal the sum of the 

diffusion coefficient of both spheres) [m2 s-1] and r the collision radius (for a sphere equal the 

sum of the radii of both spheres) [m].  

The diffusion coefficient D is given by the Stokes-Einstein equation: 

d
TkD B

⋅⋅⋅
⋅

=
03 ηπ

        (II.2) 

where d is the diameter of the particle [m], kB the Boltzmann constant [J K-1], T the absolute 

temperature [K], η0 the viscosity of the continuous phase [Pa·s] and D the diffusion 

coefficient [m2 s-1]. 

For an equal sphere equation II.1 is transformed: 

NTkJ B
peri

03
8
η

=         (II.3) 

where η0 is the viscosity of the continuous phase [Pa·s], kB the Boltzmann constant [J K-1] and 

T the temperature absolute [K]. 
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With the assumption that each collision of two particles reduces the particle number by unity, 

the change in number of particles per unit volume with time is obtained by: 

2

03
4

2
1 NTkNJ

dt
dN B

peri η
==−        (II.4) 

During the aggregation process, N keeps decreasing, the aggregate size increasing and 

therefore the aggregation rate decreases. 

The time needed for halving the number of particles is given by: 

ϕ
ηπη
Tk

d
TNkJ

t
BB 84

32 0
3
0

0

0

0
5.0 ===       (II.5) 

where J0,peri, N0 and d0 are the initial values of Jperi, N and d and φ the volume fraction of the 

particles defined as: 

6

3 Ndπϕ =          (II.6) 

The number of particles as a function of aggregation time is described by the following 

equation: 

5.0

0

1
t
t

N
Nt

+
=          (II.7) 

For the case of aggregation by encountering doublets or triplets particles, equation II.8 will be 

used: 
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        (II.8) 

Figure II.3 illustrates this time dependent aggregation process. 
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Figure II.3: Modification of the particles composition in a dispersion during a perikinetic aggregation (Walstra, 

2003) 

 

The presented theory of Smoluchowski describes the aggregation process of colloidal solution 

under following conditions: 

• The solution contains N0 particles at t0. The particles are spherical, have the same 

size and have the same aggregation readiness at every time. 

• Each collision between two particles implies a fast aggregation and a durable contact. 

• The new formed spherical particles from two aggregated particles with the radius r 

have the radius 2r. 

• The aggregation time is independent of the number of non aggregated particles. 

For dispersions not following one or more of these conditions, the theory can be used for the 

first few aggregation steps, but correction factors have to be considered.  

 

Orthokinetic fast aggregation 

During an orthokinetic aggregation, particles aggregate due to velocity gradients in the liquid. 

A theory of Smoluchowski for the case of simple shear flow assumes that particles will stick 

and remain aggregated when encountering each other. Assuming spheres of equal size, he 

defined the particle number concentration N as: 

γϕ
π

γ && NNdNJ
dt
dN

ortho
4

3
2

2
1 23 ===−      (II.9) 

where γ&  is the velocity gradient (here equal the shear rate) [s-1].  

The time needed for halving the number of particles is given by: 
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γϕ
π

&4
2ln

5.0 =t          (II.10) 

The ratio of the initial rates of orthokinetic over perikinetic aggregation is given by: 

Tk
d

J
J

Bperi

ortho

2
0

3

,0

,0 γη &
=         (II.11) 

If the particles are large (above 1µm), orthokinetic aggregation tends to be faster than 

perikinetic. One reason is the d3 in the numerator of Equation II.11. A second reason is the 

small velocity gradients being induced by temperature fluctuations and leading to significant 

orthokinetic aggregation for particles above 4 µm.  

 

In practice, slow aggregation often prevails mostly due to electrostatic repulsions, 

hydrodynamic interaction, disaggregation of particle doublets, high volume fractions, 

sedimentation of the particles or anisometric particles. For all these cases, a capture efficiency 

(probability that two particles stick upon closely encountering each other) has to be 

determined. 

 

Fractal aggregation 

A fractal is an irregular geometric object that is self-similar to its substructure at any level of 

refinement. When particles bond together during perikinetic aggregation and stay in the same 

relative position as during bond formation, fractal aggregates are formed. Fractal aggregates 

are scale-invariant because of the repetition of the same type of structure in the whole 

aggregate. A simple equation describes fractal formation: 
fD
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a
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=          (II.12) 

where Np is the number of particles in the aggregate, ra the radius of the aggregate [m], rp the 

particle radius [m] and Df the fractal dimensionality.  

The fractal dimensionality is a measure of the irregularity of the boundary of the aggregate. 

The number of particles in a sphere of radius R if closely packed is: 
3
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and the volume fraction of the particles in this spherical fractal aggregate: 
3−
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In a three dimensional space, the fractal dimensionality is always smaller than 3. It means that 

the volume fraction of particles decreases with increasing size of the aggregate and the 

amount of water bound to the particles increases. The fractal aggregate thus grows until the 

volume fraction of particles in the aggregate equals the volume fraction of particles in the 

liquid. The system is then packed with aggregates inducing the formation of a particle gel.  

Casein micelles essentially encounter each other because of Brownian motion. Their 

aggregation follows the theory of perikinetic aggregation of Smoluchowski and the 

aggregates have a fractal nature. Bremer et al. (1989) studied the fractal structure of casein 

gels formed of casein micelles aggregates. They showed that acid casein gels can be described 

as formed from fractal aggregates with a fractal dimension of 2.3. The aggregation of casein 

micelles is illustrated by Walstra et al. (1999): 

 

Figure II.4: Aggregation of casein micelles. 1: Aggregation reaction, 2: Fusion of two micelles, 3: Example of 

an aggregate of micelles formed during ongoing aggregation (Walstra et al., 1999) 

 

The fusion of two casein micelles (reaction 2. in Figure II.4) is the same reaction as the fusion 

of submicelles to form micelles. It is a low reaction compared to with the one of aggregation 

but it can be accelerated for example by the cleaving of κ-casein. If the fusion is faster than 

the aggregation, large and dense particles are formed and no gelation occurs.  
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High pressure-induced gelation of casein 

According to Aguilera & Stanley (1999), a gel is a three-dimensional network formed by the 

association or cross-linking of long polymeric molecules, which entraps and immobilizes the 

liquid solvent forming a rigid structure. A classification of gels related to their formation 

mechanisms was done by Djabourov (1991). Cross-linked or fishing nets are chemical gels 

built from linear flexible chains linked by covalent bonds (e. g. acrylamide gels). 

Thermoreversible physical gels are formed by partial crystallization of chains or by 

conformational coil-to-helix transitions. Depending on the temperature, the structure can 

switch from sol to gel. Soft and highly deformable gels like gelatin gels but also hard and 

brittle gels like agarose gels belong to the thermoreversible ones. Junction zones linked by 

ionic complexation with a divalent cation (like Ca2+) bridging two strands of the polymer 

form an egg-box structure (e. g. alginate and pectin gels). A cluster arrangement of more or 

less spherical particles forms a particle or colloidal gel (casein and whey proteins). The 

junction zones and supramolecular structures of some gels are illustrated by Aguilera & 

Stanley, 1999 (Figure II.5). 

 

Figure II.5: Schematic representation of some supramolecular structures of pure gels. (A) Cross-linked or 

fishing net type (chemical gel). (B) Triple-helices of gelatin gels. (C) Egg-box structures of pectin and alginate 

gels in the presence of calcium ions. (D) Aggregated domains after carrageenan gelation. (E) Bundles of double 

helices agarose gels. (F) Particulate gels formed by globular proteins (like casein and whey protein). Not at the 

same scale (Aguilera & Stanley, 1999) 
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Casein forms particle gels. Casein gelation occurs because of the destabilization of the casein 

micelles and can be induced by different processes like temperature treatment, high pressure 

treatment or renneting (cleaving of the κ-casein). 

Keim (2005) showed that gels can be induced by high pressure at a casein concentration of 

about 12 % at a pressure of 600 MPa. She also measured the stabilizing bonds in casein 

concentrate and pressure-induced casein gels with 15 % casein content (Table II.7). 

 

Table II.7: Stabilizing bonds in casein concentrate and in pressure-induced (600 MPa, 

30 °C, 30 min, pH 6.5) casein gels with 15 % casein content (Keim, 2005) 

 
Bonds in casein 

concentrate 
[%] Mean ± CI 99 

Bonds in pressure-induced 
casein gels 

[%] Mean ± CI 99 
SS 0.9 ± 4.8 -3.5 ± 3.8 
Hy 1.3 ± 8.0 1.5 ± 8.0 
CaB 36.6 ± 4.8 35.5 ± 5.3 
EB+WB+nb 60.3 ± 7.4 63.0 ± 8.8 
EB+WB n.a. 63.0 ± 8.8 
nb n.a. 0.0 ± 0.0 
Total 99.1 ± 4.8 96.5 ± 4.0 
i 8 4 
SS: disulfide bridges, EB: electrostatic bonds, CaB: calcium bridge, Hy: hydrophobic 
bonds, WB: hydrogen bonds, nb: non bond proteins; n.a.: non analyzed because liquid 
sample; i = number of independent experiments; CI: confidence interval. 

 

Calcium bonds and the sum of electrostatic interactions, hydrogen bonds and non-bound 

proteins dominated in the non treated casein concentrate but also in the pressure-induced 

casein gel. Although the texture changed from sol (liquid) to gel (solid), no difference in the 

sum of the stabilizing bonds was determined.  

In addition, the firmness of high pressure-induced gels depends on various factors besides 

protein concentration. For example, Fertsch et al. (2003) found that the higher the pressure 

release rate, the firmer and more homogeneous the gels structures after high pressure 

treatment for a casein solution with 15 % casein. 

At the beginning of our work, we took the following initial hypothesis: casein micelles 

dissociate during pressure build-up phase and holding phase because of the weakening of 

non-covalent bonds. After a certain holding time, all micelles are dissociated in subunits. The 

longer the holding phase, the smaller the units being present. A certain holding time is 

required for the complete dissociation of the micelles, but this holding time should not be too 
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long to avoid the re-association of the submicelles due to hydrogen bonds. During pressure 

release, the non-covalent bonds are reactivated and depending on the release rate structures 

with different structures can be induced. This model is illustrated in Figure II.6. 

 

Figure II.6: Model of the dissociation and aggregation of casein micelles during a high pressure treatment of a 

casein solution 

 

 

Characterization of structural modifications 

 

Principle of rheology 

Rheology is defined as the study of the deformation and flow of matter. Rheology studies the 

relations between the stress (defined as the force divided by the area over which the stress is 

acting) acting on a material, its relative deformation also called strain (deformation or change 

in distance divided by the original distance) and the shear rate involved.  

 

Viscosity 

When a stress is applied to a fluid, it will flow. Viscosity is the measure of the internal friction 

of a liquid or its tendency to resist flow. The viscosity of liquids generally increases with 

molar mass and decreases with increasing temperature. 

The dynamic viscosity η, frequently called “viscosity” or “absolute viscosity”, is defined by 

equation: 
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where τ  is the shear stress [Pa] and γ&  the shear rate [s-1]. 

Shear stress is the stress component applied tangential to the plane on which the force acts, 

shear rate the velocity gradient established in a fluid as a result of an applied stress. 

For a so-called Newtonian liquid, the shear stress is proportional to the shear rate at constant 

temperature and so the viscosity does not depend on the stress or shear rate applied within a 

laminar flow range. The viscosity is given by the slope of the shear stress-shear rate curve, 

called flow curve. Many liquids are not Newtonian. For these liquids, the ratio of shear stress 

over shear rate is called the apparent viscosity. The apparent viscosity will change depending 

on shear rate and temperature. 

In a rotational viscometer with cone-plate geometry, the fluid is held by its own surface 

tension between a cone of small angle that just touches a flat surface. The torque caused by 

the drag of the fluid on the cone is measured as the cone geometry is rotated while the plate 

remains stationary. For Newtonian fluids, the following equation applies for viscosity: 

Ω
= 32

3
r
M

π
αη          (II.16) 

where α is the angle of cone [rad], M the torque [Nm], r the radius of the cone [m], and Ω the 

angular velocity of the rotating cone geometry [rad s-1]. 

Dynamic viscosity can also be determined using a falling-ball viscometer. The viscosity is 

calculated by the following equation:  

tK SB ∆−= )( ρρη         (II.17) 

where K represents a calibration constant depending on pressure and viscosity of the 

investigated medium at ambient pressure, ρB the density of the ball [kg m-3] and ρS the density 

of the liquid sample [kg m-3]. 

Kinematic viscosity ν is defined as the dynamic viscosity η divided by the density of the fluid 

ρ: 

ρ
ην =           (II.18) 

where ρ is the density of the solution [kg m-3]. 

Kinematic viscosity can be determined using a capillary viscometer where the time for a 

standard volume of fluid to pass through capillary tube is measured. Kinematic viscosity is 

obtained by multiplying the measured time by the instrument conversion factor K: 
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Kt=ν           (II.19) 

where K is the conversion factor and t the time measured [s]. 

Vl
hgr

K
8

4π
=          (II.20) 

where h is the mean head [m], g the acceleration of gravity [m s-2], r the radius of capillary 

[m], V the volume of flow [m3] and l the length of capillary [m]. 

 

 

Voluminosity 

An important characteristic of proteins is their degree of hydration, defined as the number of 

grams of water bound per gram of protein. A common way to measure the hydration is to 

measure the voluminosity, defined as the volume of solution occupied by one gram of dry 

micelle material. The voluminosity can be determined using viscosity measurements and 

various relations exist to connect viscosity measurements with voluminosity.  

For very dilute dispersions of solid spherical particles, Einstein derived the following relation: 

( )ϕηη 5.210 +=         (II.21) 

where η is the dynamic viscosity of the solution [Pa·s], η0 the viscosity of the solvent [Pa·s] 

and φ the volume fraction of the particles. 

For the viscosity of less dilute systems, Eilers´ equation (eq. II.22) (Eilers, 1941; Eilers, 1943) 

and the model by Gleissle & Baloch and Windhab (eq II.23) (cited by Windhab, 1986) are 

used. Both models assume solid spherical particles and monodispersity. 
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where φ is the volume concentration occupied by the hydrated particles and φmax the 

maximum volume concentration occupied by the hydrated particles in the solution. 

The model by Gleissle & Baloch and Windhab describes the viscous behaviour of 

suspensions based on the concentration of suspended particles and can be applied for volume 

concentrations up to φmax. 
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In a study regarding shear stability of fat globules, Hinrichs & Kessler (1997) found that the 

particles in laminar shear condition are already coming into contact with each other at volume 

concentration of φmax ~ 0.4.  

The voluminosity Va is related to the volume fraction with the equation φ = c·Va where c is the 

concentration of the particles [g ml-1]. 

Assuming that φmax = 0.4, eqs (II.22) and (II.23) become: 
2
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The voluminosity can be determined by measuring the viscosity of the same sample at 

different concentrations. 

 

Viscoelasticity and dynamic measurements 

A substance is called viscoelastic if after exerting a stress on it, it deforms at first elastically, 

then starts to flow and upon release of the stress it regains part of the original shape. A 

substance is defined as ideal elastic if after an external action of a strain the substance comes 

back in its original state. If the material is purely elastic, the resulting shear stress is always 

proportional to the strain and the ratio shear stress/strain is called the elastic or storage 

modulus G´. It is the measure of the mechanical energy stored during the deformation. For 

viscoelastic materials, the shear deformation is not reversible and the material stays deformed 

after action of a strain. This deformation energy describing the viscous comportment of a 

substance is defined as loss modulus G´´. The loss tangent, tan δ, is a measure of the nature of 

the material: 

´´
´tan

G
G

=δ          (II.26) 

The loss angle is defined as: 

´´
´tan

G
GArc=δ         (II.27) 

The loss angle δ (0° ≤ δ ≤ 90°) is a measure of the (visco) elasticity of the sample. The 

smaller the loss angle, the more elastic is the sample. 

Viscoelastic values are resumed by Keim (2005): 



Chapter II  27 

 

Table II.8: Viscoelastic comportment, models and examples (Keim, 2005) 

Effect G´, G´´ δ Models Examples 
Ideal elastic 
deformation 

G´´ = 0 δ = 0° Hooke (spring) Strong networked 
polymer 

Viscoelastic solid 
substance, gel 

G´ > G´´ 0° < δ < 45° Kelvin / Voigt 
(spring + dampers, 
in parallel) 

Polymer, protein gel 

Viscous and elastic 
part equal 

G´ = G´´ δ = 45°  Sol-Gel-Transition, 
Gel point by gelation 

Viscoelastic liquid 
substance 

G´ < G´´ 45° < δ < 90° Maxwell (spring + 
dampers in series) 

Protein concentrate, 
blood 

Ideal viscous 
flowing 

G´ = 0 δ = 90° Newton (dampers) water 

A gel is a viscoelastic material for which G´ is greater than G´´. 

 

Principle of the photon correlation spectroscopy 

Photon correlation spectroscopy is a dynamic scattered light method used to measure particles 

with a size between 5 nm and 5 µm. Due to the Brownian molecular motion, molecules are 

always in motion bringing time dependent variation of the scattered light. A big particle 

diffuses at a slower rate than a small one. The measured time dependant intensity differences 

are therefore more pronounced for small particles than for large one (Tabatt, 2003; Walstra, 

2003). 

The time dependant variation of the scattered light is determined with a mathematic method, 

the autocorrelation. The measure autocorrelation function can be adapted to a theoretical 

correlation function (Müller & Schuhmann, 1996): 

dvector tKDeg
22)( ⋅⋅−=τ         (II.28) 

where D is the diffusion coefficient [m2 s-1], Kvector the norm of the scattered light vector and 

td the delay time [s]. 

The norm of the scattered light vector K depends on the refraction index RI, the scattered 

light angle Θ and the wavelength of the light λ: 

2
sin4 Θ
⋅

⋅⋅
=

λ
π RIK         (II.29) 

The diffusion coefficient D, describing the velocity of the particles, can be calculated using 

Equation II.14 and II.15. 

If the temperature and the viscosity of the solvent are known, the diameter of the particles is 

determined using the Stokes-Einstein equation (Eq. II.2). 
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Many theories about the behavior of casein, for example under different temperature 

conditions, are available but most of them refer to ambient pressure. Pressure represents an 

additional parameter for experiments with casein. Studies reported so far in the literature 

about the structure modification of casein under pressure are mostly concentrated on the 

influence of pressure level. Influence of other important parameters like pressure release rate 

and in situ observations of the modification of the structure are still missing.  

As shown in this introduction, high pressure treatment of casein micelles can lead to the 

formation of casein particles, aggregates or gels. In the following chapters, casein solutions 

are treated with high pressure under different process and milieu conditions. The obtained 

structures are analyzed with the different methods presented above for a better understanding 

of the behavior of casein micelles in the different phases of high pressure treatment. 
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Chapter III 
 

 

Influence of pressure release rate and protein concentration on the 

formation of pressure-induced casein structures 
 

Summary 

The formation of pressure-induced casein structures (600 MPa for 30 min at 30 °C) was 

investigated for different pressure release rates (20 to 600 MPa min-1) and casein contents 

(1 to 15 %). Structures from liquid (sol) to solid (gel) were observed. The higher the protein 

content and the pressure release rate, the more viscous appeared the macrostructures. A firm 

gel was built up at a casein content of 7 % for a pressure release rate of 600 MPa min-1, while 

lower release rates resulted in weak gels with a rough microstructure (200 MPa min-1) or 

liquid structures (20 MPa min-1). In a 5 % casein solution and at a pressure release rate of 

600 MPa min-1, casein aggregates built from smaller casein particles with a larger 

hydrodynamic diameter and higher voluminosity than in the untreated solution are generated. 

After a slow release rate casein micelles have a smaller hydrodynamic diameter and a lower 

voluminosity, but are similar in shape and diameter as compared to the micelles in solution 

before high pressure treatment. 
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Introduction 

High pressure can be applied to modify casein micelles. Parameters like pressure level 

(Desobry-Banon et al., 1994; Gaucheron et al., 1997; Schrader & Buchheim, 1998; Velez-

Ruiz et al., 1998; Needs et al., 2000; García-Risco et al., 2000; Huppertz et al., 2004a; 

Regnault et al., 2004), holding time (Fertsch et al., 2003; Huppertz et al., 2004a) and 

temperature (Gaucheron et al., 1997; García-Risco et al., 2000; Huppertz et al., 2004a; 

Regnault et al., 2004; Huppertz et al., 2004b) as well as the milieu like calcium content (Lee 

et al., 1996) or pH (Arias et al., 2000; Huppertz at al., 2004a) influence dissociation and 

reassociation of caseins.  

Casein micelles in milk were dissociated in submicelles at a pressure of 400 MPa according to 

Schmidt & Buchheim (1970), Schrader & Buchheim (1998), Needs et al. (2000) and Regnault 

et al. (2004). In more detail, several photon correlation spectroscopy (PCS) and laser 

granulometer studies showed an increase of the casein micelles size at pressures of 200 to 

250 MPa (Gaucheron et al., 1997; Huppertz et al., 2004a) followed by a decrease of the 

micelles size up to 400 MPa (Desobry-Banon et al., 1994; Gaucheron et al., 1997; Needs et 

al., 2000; Huppertz et al., 2004a; Regnault et al., 2004). The decrease of the micelles size after 

treatment at 400 MPa and 600 MPa was also confirmed by transmission electron microscopy 

(Gaucheron et al., 1997; Schrader & Buchheim, 1998; García-Risco et al., 2000; Needs et al., 

2000; Keenan et al., 2001). This pressure-induced casein micelle dissociation was explained 

by the weakening of hydrophobic and electrostatic interactions between the submicelles 

(Mozhaev et al., 1996) and the solubilisation of colloidal calcium phosphate (CCP) out of the 

micellar framework (Shibauchi et al., 1992; Lee et al., 1996; Schrader et al., 1997). 

The increase in micelle size up to 250 MPa accompanied by an increase of viscosity and 

hydration was considered to be due to the solubilisation of CCP rendering the casein micelles 

less compact and due to the formation of casein micelles chains and clusters (Shibauchi et al., 

1992; Desobry-Banon et al., 1994; Gaucheron et al., 1997; Walstra, 1990; Huppertz et al., 

2004b). 

The pressure-induced structure of the casein micelles was also affected by protein 

concentration and firm gels were obtained after pressure treatment according to the protein 

content (Velez-Ruiz et al., 1998; Hinrichs, 2000). 

Hydrophobic and electrostatic interactions in the casein micelles which are weakened under 

pressure are reactivated during pressure release (Suzuki & Taniguchi, 1972; Hinrichs, 2000). 

Keenan et al. (2001) noted that the gelling process in concentrated milk occurred during 

decompression. Fertsch et al. (2003) showed that a low pressure release rate induced the 
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formation of a rough and weak casein gel while a homogeneous and firm microstructure was 

formed at a high release rate. However, only few studies noticed the importance of the 

pressure release phase on properties of the resulting structures.  

The objective of this study was to investigate the influence of casein content and pressure 

release rate on formation of pressure-induced casein micelles structures in more detail. The 

sol-gel transition of casein structures were characterised after high pressure treatment at 

600 MPa for 30 min at 30°C depending on protein content varied from 1 to 15 % and 

applying pressure release rates between 20 and 600 MPa min-1. In addition, pressure-induced 

modifications of the casein structure in the sol phase were described by measuring 

voluminosity and particle size and by atomic force microscopy. 

 

 

Material and methods 

 

Sample preparation and high pressure treatment 

The experiments were carried out with an enriched micellar casein powder produced by 

diafiltration of skim milk at the Institute for Food Process Engineering in Freising, Germany 

(Kersten, 2001). Skim milk was diafiltrated by means of microfiltration (MF) (MF module 

7P19-40GL; cut off: 100nm, APV, 8600 Silkeborg, Denmark). The MF-permeate obtained 

was ultrafiltrated (cut off: 25 kDa, DDS AS, 4900 Nakskov, Denmark) and used for 

diafiltration. After six washing steps the casein retentate was concentrated by microfiltration 

(concentration factor 4) and spray dried (Niro Atomizer, 2860 Soeborg, Denmark). The 

powder contained 6.5 % water, 68.4 % total protein including 68.0 % of casein, 16.6 % 

lactose and 8.4 % minerals including 2.3 % calcium.  

The casein powder was diluted in a reconstituted ultrafiltration permeate obtained from milk 

(UFP) (Ingredia Dairy Ingredients, 3602 Thun, Switzerland) to adjust the casein content in the 

sample from 1 to 15 % and mixed for 3h at room temperature. The UFP powder is composed 

of 4.8 % water, 2.9 % total protein, 84.9 % lactose and 7.4 % minerals including 0.5 % 

calcium and was rehydrated with distilled water to achieve a total water content of 94.8 %. 

The protein content was checked with a nitrogen analyzer using Dumas method (LECO FP-

528, Leco Instrumente GmbH, 41199 Moenchengladbach, Germany). Prior to high pressure 

treatment pH was adjusted to pH 6,0 by adding lactic acid 10 % (VWR, 64283 Darmstadt, 

Germany). The samples were filled into 20 ml HDPE tubes (inner diameter 32 mm, filled 

height 14 mm) (Nalgene, Novodirect, 77694 Kehl, Germany) and closed with a silicone plug 
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(VWR, 64283 Darmstadt, Germany). The samples were tempered for more than 5 min at the 

appropriate temperature of 30 °C before being pressurized. 

In the high pressure autoclave (inner volume 125 ml; height 100 mm; diameter 40 mm) 

(Resato High Pressure Technology, 9301 Roden, The Netherlands) pressure was built up with 

a rate of 200 MPa min-1 and held constant at 600 MPa for 30 min at 30 °C. A temperature 

increase of about 2 °C in the autoclave was noticed during the pressure build-up phase. 

Equilibration took place within about 5 minutes. Pressure release was varied from 20 to 

600 MPa min-1. After treatment, the samples were stored overnight at 4 °C before analysis. 

The following results are the mean of 2 to 3 independent pressure experiments carried out on 

different days. 

 

Viscosity measurements 

 

Dynamic viscosity 

Dynamic viscosity η of the 5 % casein solution was determined before and after high pressure 

treatment at 10 °C using a rotational rheometer (Advanced Rheometer AR 2000, TA 

Instruments, 63755 Alzenau, Germany). The shear rate was increased to 500 s-1 in 3 min, then 

held for 5 min at 500 s-1 and then decreased to 0 s-1 in 3 min. The apparent dynamic viscosity 

was defined as the viscosity at the end of the 5 min holding time at a shear rate of 500 s-1. It 

will be called viscosity in this work. 4 to 6 viscosity measurements from the 2 to 3 

independent high pressure treatments were carried out. 

 

Kinematic viscosity 

Each sample was diluted in five steps in UFP to adjust casein contents from 1 % to 2.5 %. 

The kinematic viscosity ν of each dilution was determined using a capillary viscometer (Type 

53710, VWR, 64283 Darmstadt, Germany). In addition, the density ρ was determined using 

an oscillating U-tube (DMA 5000, Anton Paar, 73760 Ostfildern, Germany). In both cases, 

the temperature was set to 10 °C. The dynamic viscosity η was calculated from: 

ρνη ⋅=          (III.1) 

4 to 8 kinematic viscosity measurements from 2 to 3 independent high pressure treatments 

were carried out for each dilution. 
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Particle size of the casein micelles in the sol 

The mean hydrodynamic diameter dH of the casein micelles in the untreated and high pressure 

treated 5 % casein solution was determined by photon correlation spectroscopy (PCS) at 

25 °C (HPPS, Malvern Instruments Ltd, Malvern WR14 1XZ Worcestershire, UK). This 

particle sizer uses back scattering with an angle of 173 ° which also enables to measure in 

undiluted solutions preventing dissociation of the casein micelles due to dilution effects. 

Three light scattering measurements of 60 s were carried out for each sample. The results, 

expressed in nm, are determined from the intensity distribution curves and are the average of 

10 to 15 measurements from 2 to 3 independent high pressure treatments. 

 

Atomic force microscopy (AFM) 

To visualize the PCS results atomic force microscopy was carried out in analogy to Regnault 

et al. (2004). A dimension 3100 microscope equipped with the nanoscope IIIa electronic 

device in the contact mode (Digital Instruments-Veeco, CA 93117 Santa Barbara, USA) was 

used. The untreated and high pressure treated 5 % casein solutions were diluted 30-fold in 

milk UFP to avoid dissociation of the casein particles. 8 µl of each dilution were placed on a 

teflon disk and dried in ambient air for about 30 min. The pictures were analyzed with the 

Digital Nanoscope Software (version 4.43r2, Digital Instruments-Veeco, CA 93117 Santa 

Barbara, USA). 

 

Structure diagram  

The formation of pressure-induced casein structures depending on pressure release rate and 

casein content was illustrated in a structure diagram for sol-gel transition. Liquid samples 

(sol) were characterized means of a flow curve using the same method as for the 

determination of the dynamic viscosity with the rotational rheometer. The flow index n of the 

samples was determined from the upward flow curve using Ostwald´s equation: 
n

owk γτ &⋅=          (III.2) 

τ: shear stress [Pa]; kow: Ostwald factor;γ& : shear rate [s-1]; n: flow index 

Samples with a flow index n ≥ 0.7 were considered to be part of the sol phase. The firmness 

of gel-like-samples was determinated at 4 °C with a texture analyzer (Zwick I, 89079 Ulm, 

Germany). A cylinder with a 5 mm diameter penetrated the sample with 7 mm depth at a rate 

of 0.5 mm s-1. The maximum strength was defined as firmness. Samples with a firmness 

higher than 0.02 N were classified as gel in the structure diagram. 
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Samples with a very weak gel structure with phase separation which could not be 

characterized by a flow curve or by the firmness test were located in the transition phase of 

the structure diagram. Each point in the structure diagram represents the mean value of three 

independent high-pressure experiments. 

 

Calculation of the voluminosity 

The voluminosity Va of the solution was calculated using Eilers´ equation (Eilers, 1941; 

Eilers, 1943) and the models by Gleissle and Baloch (cited by Windhab, 1986) and Windhab 

(1986). Both models assume solid spherical particles and monodispersity. For simplification 

we also followed this assumption for the calculation of the voluminosity in this study. 

Eilers´ equation connects viscosity measurements with voluminosity when solutions are not 

too concentrated. 
2
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0 1
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η
η         (III.3) 

η: dynamic viscosity of the solution [Pa·s]; η0: dynamic viscosity of the outer phase (here UFP) [Pa·s]; 

φmax: maximum volume concentration occupied by the hydrated particles in the solution; φ: volume 

concentration occupied by the hydrated particles 

The model by Gleissle & Baloch and Windhab describes the viscous behaviour of 

suspensions based on the concentration of suspended particles and can be applied for volume 

concentration up to φmax. 
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In a study regarding shear stability of fat globules, Hinrichs & Kessler (1997) found that the 

particles in laminar shear condition are already coming into contact with each other at volume 

concentration of φmax ~ 0.4. The voluminosity Va is related to the volume fraction with the 

equation φ = ccasein·Va where ccasein is the casein concentration of the particles [g/ml]. 

Assuming that φmax = 0.4, Eqs (III.3) and (III.4) become 
2

0 5.21
25.11









⋅−
⋅−

=
acasein

acasein

Vc
Vc

η
η        (III.5) 

 

( ) 1

0

5.21 −⋅−= acasein Vc
η
η        (III.6) 

Both equations were applied to calculate voluminosity from viscosity measurements:  
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i.: direct determination using viscosity data of the 5 g/100ml casein solution (rotational 

rheometer). 

ii.: regression of viscosity data of the dilutions series (capillary viscometer). 

Results given represent the average of four to six viscosity measurements from two to three 

independent high pressure treatments. 

 

 

Results 

 

Structure diagram for sol-gel transition 

Structures from liquid (sol) to solid (gel) were generated depending on casein concentration 

and pressure release rate. The observed structures are summarized in the structure diagram in 

Figure III.1. 

Figure III.1: Structure diagram: Influence of pressure release rate and casein content on the gel-sol-transition of 

casein structures. S: sol; T: transition; G: gel; ●: indication for sol, ▲: indication for transition, ■: indication for 

gel 

At low casein content (≤ 5 %), the structures were still liquid. At increased release rates and 

higher protein contents the macrostructures appeared to be more viscous. At a slow release 

rate of 20 MPa min-1 a gel was formed at casein content of 13 %. Higher pressure release rates 

with a casein content of 8.5 % (200 MPa min-1) and 6.5 % (600 MPa min-1) already induced 
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gel structures. At a casein concentration of 7 % a homogeneous and firm microstructure was 

built up for a pressure release rate of 600 MPa min-1, while the lower release rates produced 

weak gels with a rough structure (200 MPa min-1) or liquid structures (20 MPa min-1).  

 

Voluminosity of the casein micelles  

Changes in the voluminosity Va as a function of pressure release rate are shown in Table III.1.  

 

Table III.1: Voluminosity of casein micelles from a 5 % casein solution pressurized at 600 MPa / 30 °C 

for 30 min 

A. Calculated from apparent viscosity data of the rotational viscometer* 

Voluminosity Va [ml g-1] Pressure release rate 

[MPa min-1] by Eilers´ (Eq. III.5) by Gleissle and Baloch (Eq. III.6) 

untreated 

600 

200 

20 

4.78 ± 0.09 a 

5.19 ± 0.01 b 

4.42 ± 0.13 c 

3.35 ± 0.31 d 

5.37 ± 0.10 a 

5.84 ± 0.01 b 

4.95 ± 0.15 c 

3.69 ± 0.36 d 

* Data within a column followed by different letters are significantly different at p<0.05 

B. Calculated from viscosity data of the capillary viscometer 
Voluminosity Va [ml g-1] Pressure release rate 

[MPa min-1] by Eilers´ (Eq. III.5) by Gleissle and Baloch (Eq. III.6) 

untreated 

600 

200 

20 

6.06 ± 0.25 

7.32 ± 0.23 

6.09 ± 0.24 

4.82 ± 0.21 

6.55 ± 0.29 

8.01 ± 0.22 

6.61 ± 0.26 

5.15 ± 0.22 

 

The influence of the pressure release rate on voluminosity is clearly shown for both 

calculations based on Eilers (Eq. III.5) and Gleissle & Baloch (Eq. III.6): the higher the 

pressure release rate, the higher the voluminosity of the micelles. Table III.1A illustrates that 

the voluminosity (calculated from viscosity data of the rotational viscometer) after a pressure 

release rate of 600 MPa min-1 was significantly (p < 0.05) higher than the one of the untreated 

solution. After treatment with a release rate of 200 MPa min-1 and 20 MPa min-1 the 

voluminosity was significantly lower than the one of the untreated solution. Voluminosity 

values obtained from viscosity values of the capillary viscometer (Table III.1B) were higher 
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than the one calculated from viscosity data of the rotational viscometer but the influence of 

pressure release rate is still evident: the high pressure release (600 MPa min-1) induced a 

higher voluminosity than the low pressure release (20 MPa min-1). The voluminosity of the 

sample after pressure release rate of 200 MPa min-1 was nearly unchanged compared to the 

untreated sample.  

 

Hydrodynamic diameter of the casein micelles 

Changes in the hydrodynamic diameter dH of the casein micelle as a function of pressure 

release rate are collected in Table III.2.  

 

Table III.2: Average hydrodynamic diameter of casein micelles in 

untreated and pressurized 5 % casein solution  

Pressure release rate 

[MPa min-1] 

Average hydrodynamic diameter 

dH [nm] 

untreated 

600 

200 

20 

377 ± 46 a 

477 ± 65 b 

395 ± 93 a,b,c 

231 ± 7 d 

* Data within a column followed by different letters are significantly 
different at p<0.05 

 

The largest hydrodynamic diameter was obtained with the highest pressure release rate. The 

hydrodynamic diameter at a pressure release rate of 600 MPa min-1 was significantly higher 

(about 30 % more) than the one of the untreated solution. At a pressure release rate of 

200 MPa min-1 the hydrodynamic diameter was not significantly different neither to the 

untreated solution nor to the 600 MPa min-1 treated one while the pressure release rate of 

20 MPa min-1 induced the smallest diameter (about 30 % less than in the untreated solution). 

 

Atomic force microscopy 

Parallel to particle size measurements, atomic force microscopy (AFM) observations were 

used to characterize pressure-induced changes of the structure of the casein micelles. 

Figure III.2 shows AFM images for the untreated solution and the treated solution after 

pressure release of 600, 200 and 20 MPa min-1.  
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Figure III.2: Atomic force microscopic images of casein solutions with 5 g casein/100ml UFP after high 

pressure treatment with variation of the pressure release rate, (a) untreated casein solution, (b) pressure release 

rate 600 MPa min-1, (c) pressure release rate 200 MPa min-1 and (d) pressure release rate 20 MPa min-1 

 

All pictures show spherical casein micelles. Smaller casein particles were detected in casein 

solutions treated at a 600 MPa with a pressure release of 600 and 200 MPa min-1 

(Figure III.2b and III.2c) than in the untreated solution (Figure III.2a). After a slow pressure 

release of 20 MPa min-1, casein micelles appeared comparable to the untreated solution. 

 

 

Discussion 

Protein content and pressure release rate influence the properties of high pressure induced 

casein micelles. At a casein content of about 7 %, depending on the pressure release rate, sol 

as well as gel structures were observed. The higher the casein content and the faster the 
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pressure release, the firmer were the structures built up and the finer were the microstructures. 

The influence of the casein content is due to the inner friction of the dispersed particles with 

the outer phase, and to the high water binding of the casein (Snoeren et al., 1982). The 

difference observed between voluminosity data from the rheometer and the capillary 

viscometer may be due to disintegration of the casein aggregates due to the shearing. 

Nevertheless, in both cases, the influence of pressure release rate was illustrated. This 

influence is in good agreement with the results of Fertsch et al. (2003) which showed that the 

firmness of pressure-induced casein gels with a 15 % casein content was mainly affected by 

the pressure release rate. The hydrodynamic diameter of casein particles treated at 600 MPa 

with a release rate of 600 MPa min-1 was significantly larger than before the treatment. The 

voluminosity of the particles was also higher. However, the AFM pictures showed smaller 

casein micelles after treatment with a fast pressure release (600 MPa min-1) than in the 

untreated solution. Casein aggregates from smaller casein micelles are created by high 

pressure. The non covalent interactions in the casein micelles are weakened during pressure 

build-up and pressure holding phase inducing the dissociation of casein micelles into 

submicelles. Due to the reactivation of these interactions during pressure release phase 

(Suzuki & Taniguchi, 1972; Hinrichs, 2000) and the reformation of calcium bridges from free 

calcium in the serum phase (Shibauchi et al., 1992; López-Fandiño et al., 1998; Abbasi et al., 

2002), casein micelle aggregates are generated (Ohmiya et al., 1989; Johnston et al., 1992a; 

Johnston et al., 1992b; Masson, 1992; Hinrichs, 2000; Johnston et al., 2002; Fertsch et al., 

2003). According to Needs et al. (2000), the extensive reaggregation of the casein particles 

during pressure release is due to the high hydrophobicity of the submicellar particles at 

pressure above 400 MPa (Johnston et al., 1992). The presence of large casein aggregates has 

already been shown by Gaucheron et al. (1997), Law et al. (1998), Garcia-Risco et al. (2000) 

and Huppertz et al (2004a) for milk treated at pressures between 250 and 400 MPa and 

temperatures from 40 to 60 °C. These modifications are accompanied by hydration changes. 

The high pressure induced casein aggregates of smaller casein micelles have a larger 

hydrodynamic diameter and higher voluminosity. The results confirmed the observations of 

Anema & Creamer (1993) and Gaucheron et al. (1997) who noticed that smaller particles had 

greater degrees of hydration. According to Masson (1992), hydration changes are mainly 

caused by pressure induced ionization, solvent exposure change of amino acid side chains and 

of peptide bonds (Carter et al., 1978), and diffusion of water into cavities located in the 

hydrophobic core of proteins. 
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As for a release rate of 600 MPa min-1, a release rate of 200 MPa min-1 induces a structure 

with smaller casein particles. However, voluminosity and hydrodynamic diameter of these 

particles are not higher but almost similar to the particles in the untreated solution. 

Aggregates of small casein micelles are still induced but these aggregates are smaller than 

those after the faster pressure release rate of 600 MPa min-1. They have the size of the initial 

casein micelles before high pressure treatment.  

After a slow release rate of 20 MPa min-1 casein micelles have a similar shape and diameter 

than those of the solution before high pressure treatment. Nevertheless, the initial structure is 

not rebuilt, the micelles show a smaller hydrodynamic diameter and a lower voluminosity 

than in the solution before treatment. 

 

 

Conclusion 

The formation of pressure-induced casein structures (600 MPa for 30 min at 30 °C) has been 

investigated for different pressure release rates (20 to 600 MPa min-1) and casein contents (1 

to 15 %). The present study shows that the choice of a pressure release rate is as quite 

important factor depending on which structure has to be built up. A better understanding of 

the pressure-induced structure formation of the casein micelles on ultra-high pressure 

treatment may offer opportunities for the creation of novel dairy products. 
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Chapter IV 
 

 

The high pressure induced modification of casein as influenced by pressure 

release rate and holding time  
 

Summary 

The properties of bovine casein (5 % casein content), treated at 600 MPa and 30 °C, as 

influenced by pressure build-up rate (20 to 600 MPa min-1), pressure holding time (0 to 

30 min) and pressure release rate (20 to 600 MPa min-1) was studied. By ex situ experiments, 

the samples were analysed regarding viscosity and hydrodynamic diameter before and after 

pressure treatment. Pressure build-up rate had no influence on the resulting pressure-induced 

casein structures. The modification of casein was more influenced by either the pressure 

holding time or the pressure release rate. The higher the pressure release rate, the more 

viscous the pressure treated casein solution and the larger the hydrodynamic diameter of the 

colloid particles (390 nm for a release of 600 MPa min-1 compared to 230 nm for a release of 

20 MPa min-1). Further experiments were established to follow the viscosity in situ while 

pressure treatment. During pressure increase to 600 MPa the viscosity of the casein solution 

increased by more than twofold due to hydration of the dissociated casein fragments. In 

comparison, no significant changes were observed in the holding phase of 30 min. The 

pressure release rate of 600 MPa min-1 induced a dramatic increase in viscosity resulting in 

gel-like properties, but release rates of 200 and 20 MPa min-1 resulted in lower viscosity than 

in the untreated solution.  

 

 

 

 

 

 

.
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Introduction 

High pressure treatment can be applied in food processing for several advantages, like the 

inactivation of microorganisms, modification of proteins, or the creation of new food 

structures. In this context the effect of high pressure treatment on casein micelles has been 

studied. Herein the studies mainly focussed on the influence of pressure level (Desobry-

Banon, Richard & Hardy, 1994; Gaucheron, Famelart, Mariette, Raulot, Michel & Le Graet, 

1997; Schrader & Buchheim, 1998; Velez-Ruiz, Swanson & Barbosa-Canovas, 1998; Needs, 

Stenning, Gill, Ferragut & Rich, 2000; García-Risco, Olano, Ramos & López-Fandiño, 2000; 

Huppertz, Fox & Kelly, 2004a; Regnault, Thiebaud, Dumay & Cheftel, 2004) and 

temperature applied during pressurization (Gaucheron et al., 1997; García-Risco et al., 2000; 

Huppertz et al., 2004a; Regnault et al., 2004; Huppertz, Fox & Kelly, 2004b) on the stability 

of the micelles. 

As observed by photon correlation spectroscopy (PCS), laser granulometer studies (Desobry-

Banon et al., 1994; Gaucheron et al., 1997; Needs et al., 2000; Huppertz et al., 2004a; 

Regnault et al., 2004) and transmission electron microscopy (Gaucheron et al., 1997; Schrader 

et al., 1998; García-Risco et al., 2000; Needs et al., 2000; Keenan, Young, Tier, Jones & 

Underdown, 2001) after a treatment with pressures up to 400 MPa, casein micelles size 

decreases. The reduction of the micelle size was explained by two phenomena, the 

solubilisation of colloidal calcium phosphate (CCP) out of the micelle (Shibauchi, Yamamoto 

& Sagara, 1992; Lee, Anema, Schrader & Buchheim, 1996; Gaucheron et al., 1997; Schrader, 

Buchheim & Morr, 1997; López-Fandiño, De la Fuente, Ramos & Olano, 1998; Keenan et al. 

2001; Abbasi & Dickinson, 2002) and the weakening of hydrophobic and electrostatic 

interactions between the submicelles (Mozhaev, Heremans, Frank, Masson & Balny, 1996; 

Needs et al., 2000). 

However, not only the pressure level but also pressure holding time and especially the 

pressure release rate may influence dissociation and association of caseins. During pressure 

release the binding forces take effect again (Suzuki & Taniguchi, 1972; Hinrichs, 2000), 

calcium bonds are rebuilt (Shibauchi et al., 1992; López-Fandiño et al. 1998) and casein 

submicelles or fragments associate and form new microstructures (Ohmiya, Kajino, Shimizu 

& Gekko, 1989; Johnston, Austin & Murphy, 1992a; Johnston, Austin & Murphy, 1992b; 

Masson, 1992; Hinrichs, 2000; Johnston, Rutherford & McCreedy, 2002; Fertsch, Müller & 

Hinrichs, 2003). Fertsch et al. (2003) demonstrated that the pressure release rate significantly 

influences the structure formation of pressure-induced 15 % casein gels. The higher the 

pressure release rate, the firmer the gels after high pressure treatment. Furthermore, the 
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firmness of gels was higher after fast pressure release when the solution was kept at a pressure 

of 600 MPa for 15 to 30 minutes compared to pressure treatment without holding time. 

Fertsch et al. (2003) assumed dissociation of the micelles may not be finally completed when 

the holding time is too short. Therefore, self-association of the caseins initiated during 

pressure release lead to inhomogeneous gelling since intact micelles or bigger fragments are 

present. The texture of the gels appears soft.  

The aim of this work was to determine which phase of the treatment has an influence on the 

formation of high-pressure-induced casein structures, the pressure build-up, the holding time 

or the pressure release. Pressure-induced modification of the casein solution (ex situ) was 

analysed by measuring apparent viscosity and particle size before and after treatment. In order 

to observe in more detail the change in casein solution during holding phase and pressure 

release, the viscosity was also measured in situ. 

 

 

Material and methods 

 

Sample preparation 

The experiments were carried out with highly enriched micellar casein powder produced by 

diafiltration of skim milk (Kersten, 2001). The powder contained 6.5 % water, 68.4 % total 

protein including 68.0 % casein, 16.6 % lactose and 8.4 % minerals including 2.3 % calcium. 

The powder was diluted in ultra filtration permeate (ultra filtration permeate powder, 

containing 4.8 % water, 2.9 % total protein, 84.9 % lactose and 7.4 % minerals including 

0.5 % calcium was reconstituted with distilled water to a total water content of 94.8 %) 

(Ingredia Dairy Ingredients, Switzerland) to achieve a total protein content of 5 %, mixed for 

3h and then stored at 4 °C for one day. The protein content of the samples was checked with a 

nitrogen analyzer using Dumas method (LECO FP-528, Leco Instrumente GmbH, Germany). 

The pH of the solutions was adjusted to pH 6,0 by adding lactic acid 10 % (Merck, Germany). 

 

High pressure treatment, ex situ viscosity and particle size measurement  

Samples were filled into 20 ml HDPE tubes (inner diameter 32 mm, filled height 14 mm) 

(Nalgene, Novodirect, Germany) leaving no headspace, closed with a silicone plug (VWR, 

Germany). Prior to the pressure application, the samples were tempered for more than 5 min 

at the appropriate temperature of 30°C. In a high pressure apparatus (Resato High Pressure 

Technology, The Netherlands) pressure was built up with 200 MPa min-1 and held constant at 
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600 MPa and 30 °C. Holding time was varied from 0 to 30 min and pressure release by 

applying 20, 200 and 600 MPa min-1. In further experiments, the pressure built up rate was 

varied (20, 200 and 600 MPa min-1) and pressure was kept constant at 600 MPa for 30 min at 

30 °C. Pressure was released with 200 MPa min-1. After the treatment, the samples were 

stored overnight at 4 °C before analysis.  

The apparent dynamic ex situ viscosity of the solution was determined using a rotational 

rheometer (Advanced Rheometer AR 2000, TA Instruments, Germany) tempered at 10 °C. 

The shear rate was linearly increased to 500 s-1 in 3 min, held for 5 min at 500 s-1 and then 

decreased to 0 s-1 in 3 min. The apparent dynamic viscosity was defined as the viscosity at the 

end of the 5 min holding time at a shear rate of 500 s-1. The results are the average of 4 to 6 

viscosity measurements from 2 to 3 independent high pressure experiments. 

The mean hydrodynamic diameter dH of particles was determined by photon correlation 

spectroscopy (PCS) at 25 °C using a high performance particle sizer (HPPS, Malvern 

Instruments Ltd., UK). The particle sizer uses back scattering at an angle of 173° that enables 

to measure undiluted samples preventing the dissociation of the casein micelles due to 

dilution. For each sample, three light scattering measurements of 60 s were carried out. The 

results, expressed in nm, are determined from the intensity distribution curves and are the 

average of 10 to 15 measurements from 2 to 3 replicate high pressure experiments carried out 

at different days. 

 

High pressure treatment and in situ viscosity measurement 

In situ viscosity measurement was carried out with a rolling ball viscometer. Detailed 

information about the measurement system is given by Först, Werner and Delgado (2000, 

2002). It consists of a high pressure tube with an inner diameter of 1.6 mm. During 

measurements a sphere of steel (diameter 1.39 mm) is rolling in the inclined tube, which is 

filled with the pressurized sample. Two coils, situated around the tube in an axial distance L, 

detect by change of inductance the time ∆t the sphere needs to traverse the length L. The 

temperature of the sample is set by a cooling jacket around the pressure tube. A capillary 

connects the high pressure tube to the pressure generation unit, a manual piston pump (Sitec 

Sieber Engineering AG, Switzerland) and to a pressure transducer (Wika GmbH, Germany). 

The viscosity η is calculated by 

tK SB ∆⋅−⋅= )( ρρη   (1) 

where K represents a calibration constant depending on pressure as well as on viscosity of the 

investigated sample at ambient pressure. The values ρB and ρS denote the density of the sphere 
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respectively of the sample. Within the measurement the pressure was build-up with a rate of 

200 MPa min-1 and held constant at 600 MPa and 30 °C for 30 min. Different pressure release 

rates were applied: 20, 200 and 600 MPa min-1. The viscosity of the sample was measured 

prior to high pressure treatment, at 600 MPa with an interval of 10 min and after pressure 

release. During the pressure release experiment with 20 MPa min-1, the viscosity was 

followed at 500, 300 and 100 MPa. The results are the average of 3 in situ viscosity 

measurements. 

Due to small dimensions of the measurement tube and of the disperse phase, an 

approximately homogeneous treatment (Delgado & Hartmann 2003) can be expected in the 

pressure holding phase. In contrast, this assumption can not hold in the pressurization and 

depressurization phase, as pressure and temperature differences as well as shear gradients 

apply. However, these affects are considered to be not the subject of the present contribution. 

 

Statistical analysis 

The statistical analysis was carried out by means of a t-test (Sigma Plot 8.0, SPSS, Inc.) with 

a significance of p < 0.05. 

 

 

Results 

 

Ex situ  

The apparent viscosity and the hydrodynamic diameter of the differently pressurized casein 

solutions are shown in Table IV.1. For the pressure release rate of 600 MPa min-1, the 

viscosity (ex situ) increased with extended holding time (0 to 30 min). Hereby, a significant 

difference to the control sample (untreated solution) appeared at holding times of 20 and 

30 min. At a pressure release rate of 200 MPa min-1, a small, but not significant influence of 

the pressure holding time on viscosity was found. The pressure release rate of 20 MPa min-1 

resulted in the lowest viscosity, being lower than control, and no influence of holding time 

was observed. At constant holding time, viscosity increased significantly with increased 

pressure release rate (about 7 mPa s for a release of 600 MPa min-1 compared to 3.5 mPa s for 

a release of 20 MPa min-1, at a holding time of 30 min). 
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Table IV.1: Influence of the pressure holding time and pressure release rate on apparent dynamic viscosity (ex 

situ, measured at 10 °C) and mean hydrodynamic diameter of a 5 % casein solution treated at 600 MPa, 30 °C, 

pressure build-up 200 MPa min-1 * 

Holding time 

in min 

Pressure 

Release rate 

in MPa min-1 

Apparent dynamic 

ex situ viscosity 

in mPa s 

Mean hydrodynamic 

diameter 

in nm 

Control  4.4 ± 0.3 (3.8 ± 0.6)·102 

0 600 

200 

20 

4.7 ± 0.5 control 

3.6 ± 0.1 

3.2 ± 0.2 

(3.4 ± 0.4)·102 control 

(2.7 ± 0.3)·102 

(2.6 ± 0.2)·102 0(200) 

10 600 

200 

20 

4.9 ± 0.7 control, 0(600) 

4.3 ± 0.7 control,10(600), 0(200) 

3.2 ± 0.2 0(20) 

(3.5 ± 0.6)·102 control, 0(600) 

(3.5 ± 0.6)·102 control, 10(600) 

(2.4 ± 0.3)·102 

20 600 

200 

20 

5.0 ± 0.4 0(600) 

4.4 ± 0.5 control,20(600), 10(200) 

3.1 ± 0.1 0(20), 10(20) 

(4.2 ± 0.8)·102 control 

(3.3 ± 0.4)·102 10(200) 

(2.3 ± 0.2)·102 10(20) 

30 600 

200 

20 

6.9 ± 1.9 20(600) 

4.8 ± 0.9 control, 10(200), 20(200) 

3.5 ± 0.4 0(20), 10(20) 

(3.9 ± 0.6)·102 control, 10(600), 20(600) 

(3.3 ± 0.6)·102 10(200), 20(200) 

(2.3 ± 0.1)·102 10(20), 20(20) 
* Each value was compared with control, and values with the same release rate are also compared. A value 

followed by control is not significantly different to control. A value followed by 0(600) is not significantly different to 

the value of the solution treated with holding time of 0 min and pressure release of 600 MPa min-1 at p < 0.05. 

 

In parallel to viscosity, the values of the mean hydrodynamic diameter were higher for the 

pressure release rate of 600 MPa min-1 compared to 200 MPa min-1 and 20 MPa min-1. The 

hydrodynamic diameter of the solution treated with 600 MPa min-1 was not significantly 

different to control, and no significant influence of holding time was observed. In addition, 

after a pressure release of 200 MPa min-1 particles with the same size as control or smaller 

were detected. The pressure release rate of 20 MPa min-1 resulted in the smallest mean 

hydrodynamic diameter independent from applied pressure holding time. 

In order to illuminate the influence of pressure build-up rate, different values were applied 

(20, 200 and 600 MPa min-1) at constant holding time and pressure release rate (Table IV.2).  
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Table IV.2: Influence of the pressure build-up rate on apparent dynamic viscosity (ex situ, measured at 

10 °C) and mean hydrodynamic diameter of a 5 % casein solution treated at 600 MPa, 30 min, 30 °C, 

pressure release rate 200 MPa min-1 * 
Pressure build-up 

rate 

in MPa min-1 

Pressure release rate 

in MPa min-1 

Apparent dynamic 

ex situ viscosity 

in mPa s 

Mean hydrodynamic 

diameter 

in nm 

600 

200 

20 

200 

200 

200 

4.7 ± 0.4 

4.8 ± 0.9 600 

4.4 ± 0.5 600,200 

(2.9 ± 0.3)·102 

(3.3 ± 0.6)·102 600 

(3.0 ± 0.5)·102 600,200 
* A value followed by 600 is not significantly different to the value of the solution treated with the pressure 

build-up rate of 600 MPa min-1 at p < 0.05. 

 

Hereby, this parameter seems not to affect significantly viscosity and hydrodynamic diameter 

(p < 0.05). 

 

In situ 

The measured in situ viscosity data are given in Table IV.3. The viscosity of the casein 

solution increased more than twofold from 2.0 (control) to 4.7 mPa s while pressure build-up 

phase (Table IV.3). During holding time at 600 MPa, the viscosity of the casein solution 

remained nearly constant: after 30 minutes only a little, but not significant decrease in 

viscosity became visible compared to the value at the beginning of the holding phase. After 

pressure release to 0.1 MPa with a rate of 600 MPa min-1 the ball didn’t roll anymore in the 

tube of the viscometer indicating the formation of a gel like structure of the sample. Hence, 

viscosity was not measurable with this system. The pressure release rates of both, 200 and 

20 MPa min-1, resulted in almost the same viscosity range than control. Only minor changes 

were observed being significant for 200 MPa but not for 20 MPa. Finally, the course of 

viscosity was followed during the slowest pressure release rate of 20 MPa min-1. The most 

important change of viscosity occurred between 300 MPa and 0.1 MPa from about 4.4 to 

1.9 mPas. 
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Table IV.3: In situ viscosity measured at 30 °C during pressure treatment at 600 MPa of a 5 % casein solution and 

ultra filtration permeate * 

 Apparent dynamic 

in situ viscosity 

of the casein solution 

in mPa s 

Apparent dynamic 

in situ viscosity 

of the ultra filtration 

permeat 

in mPa s 

Control 2.0 ± 0.1 a 0.9 ± 0.0 

After pressure build-up at 600 MPa (after 0 min) 

During holding time at 600 MPa:      after 10 min 

after 20 min

after 30 min 

4.7 ± 0.5 b 

4.6 ± 0.4 b 

4.6 ± 0.3 b 

4.5 ± 0.4 b 

1.2 ± 0.1 a 

1.1 ± 0.1 a 

1.1 ± 0.1 a 

1.1 ± 0.1 a 

After pressure release of 600 MPa min-1 not measurable  

After pressure release of 200 MPa min-1 1.7 ± 0.1  

During pressure release of 20 MPa min-1: 

at 500 MPa 

at 300 MPa 

at 100 MPa 

at 0.1 MPa

 

4.8 ± 0.6 b 

4.4 ± 0.6 b 

2.3 ± 0.2 

1.9 ± 0.2 a 

 

* Values within a column followed by the same letter are not significantly different at p < 0.05. 

 

In addition, the in situ viscosity of the outer phase, the ultra filtration permeate, was measured 

at a pressure of 600 MPa after 0, 10, 20 and 30 min holding time (Table IV.3). During the 

build-up phase the viscosity of the permeate increased more than 20 % compared to control. 

During holding time viscosity remained constant. 

 

 

Discussion 

The experimental data of in situ and ex situ measurements provide the basis for discussion of 

the effects of pressure build-up phase, holding phase and pressure release phase on casein.  

Pressure build-up phase: In situ experiments showed that the viscosity of the casein solution 

increased more than twofold due to pressure rise from 0.1 to 600 MPa (Table IV.3). In 

comparison, the viscosity of the solvent (ultra filtration permeate) increased only 20 %, which 
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has the same order like water, see also Först et al. (2002). The latter effect results from more 

dense packed molecules and more intense intermolecular interaction. Hence, pressure induced 

changes in structure of the casein may be responsible for the dramatic increase in viscosity 

under pressure of the solution compared to the permeate. Several researchers explained the 

reduction of the micelle size after pressure treatment by two phenomena, the solubilisation of 

colloidal calcium phosphate (CCP) out of the micelle and the weakening of hydrophobic and 

electrostatic interactions between the submicelles (Shibauchi et al., 1992; Lee et al., 1996; 

Mozhaev et al., 1996; Gaucheron et al., 1997; Schrader et al., 1997; López-Fandiño et al., 

1998; Needs et al., 2000, Keenan et al., 2001; Abbasi et al., 2002). Gebhardt, Doster and 

Kulozik (2005) demonstrated by means of in situ photon correlation spectroscopy at 300 MPa 

that casein micelles (they used the same micellar casein for the experiments as in this work) 

dissociate into smaller fragments and casein monomers.  

The pressure induced change in viscosity of the casein solution results from compound 

counteracting effects. Considering the casein solution as a suspension of spherical particles, 

the viscosity increases with the volume fraction of the solute (Barnes, Hutton & Walters, 

1993). On the one hand side the dissociation of the casein micelles leads to a reduction in 

volume fraction of the solute, and therefore to a decrease in solvent viscosity if molecular 

interactions between solvent and solute are neglected. On the other hand, the surface of the 

solute for interactions with water increases due to disintegration of the casein micelle. This 

results in a higher hydration (Anema & Creamer, 1993; Walstra, 2003) and in a higher 

effective volume fraction of the solute. The latter phenomenon and the increased solvent 

viscosity at 600 MPa cause a raise in solution viscosity in comparison to 0.1 MPa. A further 

effect could originate from different behaviour of solvent and solute density with pressure. 

This also may influence the volume fraction of the solute but can be assumed to be small. The 

twofold increase in viscosity of the casein solution compared to 20 % of permeate indicate the 

hydration of the casein fragments as the dominant impact on the solvent viscosity. Finally, it 

has to be pointed out that the rate of pressure build-up has no significant influence on the ex 

situ viscosity and hydrodynamic diameter of the casein solution after pressure treatment 

(Table IV.2).  

Pressure holding phase: Only minor but not significant changes of the in situ viscosity were 

observed during holding time (Table IV.3). It can be assumed that during pressure build-up 

phase (200 MPa min-1) the disintegration of the casein micelle took mainly place so that 

equilibrium was nearly achieved when the holding time starts. Nevertheless, ex situ 

experiments demonstrated an influence of the pressure holding time especially when the 
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pressure release rate was high (Table IV.1). For 20 and 30 min holding time at 600 MPa 

combined with a pressure release of 600 MPa min-1, viscosity and mean hydrodynamic 

diameter were higher than control. Fertsch et al. (2003) also observed an effect of the holding 

time on gelation for a 15 % micellar casein solution. They proposed that the dissociation of 

the micelles may not be finally completed when the holding time is too short resulting in an 

inhomogeneous gelation during pressure release phase. The texture of the gels appeared soft 

compared to gels formed after a holding time of 30 min. 

Pressure release: Both ex situ and in situ experiments showed an influence of the pressure 

release rate on properties of the casein solution (Table IV.1 and IV.3). The higher the release 

rate was, the more viscous the solution and the bigger the mean hydrodynamic diameter 

appeared. First of all, this observation is in contrast to other researchers (Gaucheron et al., 

1997; Needs et al., 2000; Huppertz et al., 2004a; Regnault et al., 2004) who found smaller 

micelles after pressure treatment. But one has to bear in mind that i) pressure of 400 MPa was 

often not exceeded and ii) the pressure release rate was not investigated explicitly.  

The observations of this work are in good agreement with the results of Fertsch et al. (2003) 

who found that the firmness of pressure-induced casein gels with a 15 % casein content was 

mainly affected by the pressure release rate. This observation can be explained by the fact, 

that during pressure build-up casein micelles disintegrate into smaller fragments by the 

weakening of non-covalent bonds and solubilisation of colloidal calcium phosphate (CCP) out 

of the micelle. During pressure release phase, the binding forces take effect again (Suzuki et 

al., 1972; Shibauchi et al., 1992; Masson, 1992; Hinrichs, 2000; Johnston et al., 2002; Fertsch 

et al., 2003). Thus, protein-protein interactions are reestablished, the self-association of the 

caseins (Rollema & de Kruif, 2003) starts and calcium bridges from free calcium in the serum 

phase are reformed. For the high release rate, the reassociation of casein micelles leads to an 

increase of the hydrodynamic diameter and therefore of the volume fraction of the solute, 

explaining the observed increase in solution viscosity. Considering once more these 

interactions and our experimental data, it can be assumed that a slow release rate may lead 

more or less to the original casein micelles structure due to the ability of the caseins to self-

association. But high pressure release rates, far from equilibrium, disturb the self-association 

mechanisms of the caseins and new structures or aggregates made of casein fragments build 

up. 
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Conclusion 

The influence of the different phases during pressure treatment on the properties of micellar 

casein solution containing 5 % protein was studied in detail. Hinrichs (2000) proposed a 

model for the disintegration and association of casein micelles during high pressure treatment. 

This model can now be completed with the results of the present study and the results of 

Gebhardt et al. (2005). High pressure build-up induces a dissociation of casein micelles in 

casein fragments and casein monomers resulting in the in situ measured increase of viscosity 

and decrease of mean hydrodynamic diameter. Hereby, the rise in viscosity of the solution 

comes predominantly from an increase of volume fraction of the solute due to hydration. 

During pressure holding time the casein fragments and monomers will come very fast to an 

equilibrium. Finally, the pressure release, the last phase of a high pressure process, seems to 

affect significantly the rearrangement of the casein fragments and monomers. The self-

association process of the caseins is initiated during pressure release because protein-protein 

interactions and protein-environment interactions are reestablished. Consequently, association 

rate of the casein fragments and monomers depends on the release rate and the formed casein 

particles may differ from native casein micelles.  

Further studies must be conducted to examine the casein particle structure in more detail as 

well as the stability of the pressure-induced structures. Besides pressure level, holding time 

and temperature, the release rate should be taken into account in future when working with 

milk or casein systems.  

 

This research has been supported by the DFG (Deutsche Forschungsgemeinschaft) as part of 

the project FOR 358/2. 
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Chapter V 
 

 

Formation of new casein structures by high pressure 
 

Summary 
The effect of pressure release rate (20 to 600 MPa min-1), protein content (1 to 15 %) and 

calcium content (ionic strength 0.1 to 2 mol l-1) on the formation of pressure-induced casein 

structures was investigated. The experiments were carried out with highly enriched micellar 

casein concentrate, which was treated at 600 MPa and 30 °C. The formed structures were 

analyzed regarding viscosity and texture. Depending on the different parameters, liquid (sol) 

to solid (gel) structures were generated. The higher the casein content and the release rate, the 

firmer the textures. An ionic strength of 0.3 mol l-1 induced firmer textures than lower ionic 

strengths (0 and 0.1 mol l-1) but the addition of more calcium (ionic strength of 2 mol l-1) 

induced liquid structures with low viscosity. 
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Introduction 
In high pressure treatment, the structure of casein micelles can be modified by the process 

parameter and milieu conditions resulting in new functional properties. Several studies 

showed that during pressure build-up phase casein micelles dissociate into submicelles 

(Schmidt & Buchheim, 1970; Needs et al., 2000; Regnault et al., 2004). This pressure-

induced dissociation was explained by the weakening of hydrophobic and electrostatic 

interactions between submicelles (Mozhaev et al., 1996), and the solubilisation of colloidal 

calcium phosphate out of the micellar framework (Shibauchi et al., 1992; Lee et al., 1996; 

Schrader et al., 1997). During pressure release, the binding forces are regained and new 

calcium bridges are built up (Shibauchi et al., 1992). Instead of the original casein micelles 

new hyper-structures may be built up. In addition, Fertsch et al. (2003) observed that pressure 

release rate influences significantly the structure formation of pressure-induced casein gels. 

The faster the pressure is released, the firmer are the gels that are formed. Furthermore, the 

pressure-induced structure formation of casein particles and casein gels are not only 

influenced by processing but also by the composition. Due to the high water binding capacity 

of casein micelles, highly viscous structures and firm gels are built up depending on the 

casein content (Snoeren et al., 1982, Velez-Ruiz et al., 1998, Hinrichs, 2000). According to 

Lee et al (1996), the solubilisation of colloidal calcium phosphate out of the micellar 

framework is decreased with increasing level of soluble calcium in the solution before 

pressure treatment. 

The aim of this work was to study the influence of casein and calcium content combined with 

the influence of pressure release rate on the formation of pressure-induced casein structures. 

 

 

Experimental Method 

 

The experiments were carried out with highly enriched micellar casein powder (containing 

68.0 % of casein and 2.3 % of calcium) produced by diafiltration of skim milk (Kersten, 

2001). The powder was diluted in ultrafiltration permeate (Ingredia Dairy Ingredients, Thun, 

Switzerland) to adjust the protein content from 1 to 15 %, stirred for 3h and then stored at 

4 °C for 1 day. The pH of the solutions was adjusted to pH 6,0 by adding 10 % lactic acid 

(Merck, Darmstadt, Germany). Samples were filled into 20 ml HDPE tubes (inner diameter 

32 mm, filled height 14 mm) (Nalgene, Novodirect, Kehl, Germany) leaving no headspace 

and closed with a silicone plug (VWR, Darmstadt, Germany). Prior to the pressure application 
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the samples were tempered for more than 5 min at the appropriate temperature. In the high 

pressure pilot apparatus (Resato High Pressure Technology, Roden, The Netherlands), 

pressure was built up with a rate of 200 MPa min-1 and held constant at 600 MPa for 30 min 

at a temperature of 30 °C. Pressure release was varied from 20 to 600 MPa min-1. After 

pressure treatment, the samples were stored 1 day at 4 °C until analysis. 

 

Variation of the ionic strength 

To investigate the influence of calcium content at a casein content of 5%, three different 

amounts of calcium chloride (CaCl2 • 2H2O, crystalline, Merck, Darmstadt, Germany) were 

added to get an additional ionic strength of calcium chloride of 0.1, 0.3 and 2 mol l-1 before 

pH adjustment.  

 

Structure diagram 

The formation of pressure-induced casein structures depending on the pressure release rate 

and the casein content was illustrated in a structure-diagram for sol-gel transition. Casein 

solutions with a casein content of 1 to 15 % were pressure treated and pressure release was 

varied. Structures that appeared still liquid after pressure treatment were characterized as sol, 

and firm structures were characterized as gel. In further experiments, casein content was kept 

constant at 5 % and the influence of calcium and pressure release rate was investigated in 

detail regarding viscosity and firmness. 

 

Viscosity measurements 

Viscosity of the 5 % casein solution was determined before and after high pressure treatment 

at 10 °C by means of a rotational rheometer (Advanced Rheometer AR 2000, TA Instruments, 

Alzenau, Germany). The shear rate was increased to 500 s-1 in 3 min, then held for 5 min at 

500 s-1 and decreased to 0 s-1 in 3 min again. The apparent dynamic viscosity, ηapp was 

defined as the viscosity at the end of the 5 min holding time at a shear rate of 500 s-1. 4 to 6 

viscosity measurements from the 2 to 3 independent high pressure treatments were carried 

out. 

 

Texture properties 

Dynamic rheology measurements (non-destructive measurements) were carried out to 

characterize the texture of the gels. The storage modulus, G´ was determined at 10 °C 

(Advanced Rheometer AR 2000, TA Instruments, Alzenau, Germany) in the oscillation mode 
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with the plate geometry (diameter 20mm, stainless steel). The gap was adjusted by applying a 

normal force of 0.2 N. A stress sweep (1 Hz, 0.1-100 Pa) was first performed with each 

sample in order to figure out the linear viscoelastic regime. Then a frequency sweep was 

performed (2 Pa, linear viscoelastic regime, 0.01-100Hz) and the data of the storage modulus, 

G´ were read at 1 Hz. The data present the mean of 4 to 6 measurements from the 2 to 3 

independent high pressure experiments. 

 

 

Results 
 

Structure diagram 

The following structure diagram (Figure V.1) illustrates the effect of pressure release after a 

pressure treatment at 600 MPa for 30 min at a temperature of 30 °C. Depending on the casein 

concentration and the pressure release rate, liquid (sol) to solid (gel) structures were 

generated. Samples having a very weak gel structure with phase separation neither to be 

characterized with a flow curve nor a firmness test were called “Transition”. 

 

Figure V.1: Structure diagram: Influence of pressure release rate and casein content on gel-sol-transition of 

casein after high pressure treatment at 600 MPa, 30 min, 30 °C. 

 

In general, sol-gel transition was shift from low casein content for high pressure release rate 

to high casein content for low pressure release rate. At a low casein content the solutions were 

still liquid (sol) independent from the release rate. With increased casein content and 
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increased release rate the samples appeared more viscous, and finally gels were formed. 

Below 5 % casein content, all samples were still liquid (sol) after high pressure treatment. 

However, above 7 % casein content, a gel was built up when applying 600 MPa min-1 

pressure release rate. The lower the release rate (20 and 200 MPa min-1) the higher the casein 

content necessary to induce gelation (7.5 % for 200 MPa min-1 and 14 % for 20 MPa min-1). 

Interestingly, structures with different texture (sol, gel or transition) may be induced at casein 

content from 7 to 12 % casein only by varying the pressure release rate. 

 

Influence of calcium content 

Casein solutions with different ionic strengths (0, 0.1, 0.3 and 2 mol l-1) were pressurized with 

600 MPa for 30 min at 30 °C and release rate was varied. Sol viscosity and the storage 

modulus of the gels were determined and the results are presented in Table V.1. 

 

Table V.1: Influence of the ionic strength and the pressure release rate on structure, apparent viscosity and 

storage modulus of 5 % casein solutions pressurized with 600 MPa at 30 °C for 30 min depending on pressure 

release rate 
Ionic strength  

in mol l-1 

Pressure release rate 

in MPa min-1 

Structure ηapp ± s.d. 
in mPa.s 

Storage modulus, 

G´± s.d. in Pa 

Without addition of 
calcium 

Control 
600 
200 
20 

Sol 
Sol 
Sol 
Sol 

5.9 ± 0.7 
6.6 ± 1.2 
5.4 ± 0.6 
4.5 ± 0.4 

- 
- 
- 
- 

0.1 Control 

600 
200 
20 

Sol 
Gel 
Gel 
Sol 

12.2 ± 1.2 
- 
- 

5.9 ± 1.7 

- 
(7.0 ± 1.7)⋅102 
(5.3 ± 1.6)⋅102 

- 
0.3 Control 

600 
200 
20 

Sol 
Gel 
Gel 
Gel 

13.0 ± 2.4 
- 
- 
- 

- 
(1.33 ± 0.33)⋅103 
(1.17 ± 0.15)⋅103 
(8.4 ± 2.6)⋅102 

2 Control 

600 
200 
20 

Sol 
Sol 
Sol 
Sol 

20.0 ± 1.2 
8.0 ± 0.3 
6.7 ± 0.6 
4.2 ± 0.2 

- 
- 
- 
- 

Control: no pressure treatment; Sol: liquid structure; Gel: structure with a firm continuous network; s.d.: 
standard deviation 

 

The viscosity of the untreated control solutions increased with the amount of calcium added. 

It was about 3 times higher in the solution with an ionic strength of 2 mol l-1 than in the one 

without calcium addition. After pressure release rates of 600 and 200 MPa min-1 gelation was 
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observed for an ionic strength of 0.1 mol l-1, while for an ionic strength of 0.3 mol l-1 gels 

were induced independent from the applied release rate. At 2 mol l-1 all samples remained 

liquid after pressure treatment. Furthermore, it is important to notice the influence of pressure 

release rate: the higher the pressure release rate the more viscous the sol (higher apparent 

viscosity) or the firmer the formed gel (higher storage modulus). 

 

 

Discussion 
 

Influence of the protein content 

The influence of casein content is illustrated in the structure diagram (Figure V.1). The higher 

the casein content the firmer the texture. According to Snoeren et al. (1982) the influence of 

casein content is due to the inner friction of the dispersed particles with the outer phase, and 

to the high water binding of the casein. Furthermore it is well-known, that at a certain protein 

content of about 10 to 14 % in milk concentrates gel structures were built up when high 

pressure was applied, but the influence of the pressure release rate on structure formation was 

not studied in detail. This study demonstrated that the casein content necessary for pressure-

induced transition from sol to gel is significantly lower when a pressure release of 

600 MPa min-1 compared to 20 MPa min-1 is applied. The sol-gel transition at low casein and 

high pressure release rate may be due to spontaneous aggregation of caseins into a 

homogeneous network besides during slow relaxation casein hyper-structures are developed 

and network formation is retarded. 

 

Influence of the ionic strength 

The viscosity of the untreated solution increased with increasing amount of calcium. 

Shibauchi et al. (1992) and Lee et al. (1996) showed that the dissociation of casein micelles 

during high pressure treatment is accompanied by an increase in the levels of soluble calcium 

and phosphate. Lee et al. (1996) also showed that the resistance to the pressure-induced 

solubilisation of colloidal calcium phosphate out of the micellar framework is increased by 

soluble calcium. Our results are in good agreement with these observations, higher ionic 

strength decreases the solubilisation of colloidal phosphate and firmer gels are formed. The 

latter may be due to the fact, that the higher the calcium content the more electrostatic 

interactions are formed stabilizing the network structure.  
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However, at 2 mol l-1 the structures remained still liquid after high pressure treatment and 

viscosities were lower than the untreated solution. Water molecules are needed for the 

hydration of the ions, and at high ionic strength the solubility of proteins is decreasing (salting 

out effect, Berlitz et al., 2004). The caseins become more compact, the water binding is 

reduced resulting in a low viscosity and gel formation is retarded. Finally, it should be pointed 

out, that for all ionic strengths and independently whether gels or sols were formed, an 

influence of pressure release rate was observed.  

 

Influence of the pressure release rate 

The structure diagram (Figure V.1) and also the experiments regarding calcium ionic 

strengths (Table V.1) demonstrated the influence of the pressure release rate: the faster the 

pressure release, the firmer the textures that were induced. Fertsch et al. (2003) also showed 

that the firmness of pressure-induced casein gels with 15 % casein content was mainly 

affected by the pressure release rate. During pressure build-up, casein micelles dissociate into 

submicelles by the weakening of non-covalent bonds, while during pressure release, the 

binding forces take effect again (Suzuki & Taniguchi, 1972; Hinrichs, 2000). In addition, 

calcium bridges from free calcium in the serum phase are reformed (Shibauchi et al., 1992) 

and instead of the original casein micelles, new hyper-structures are built up (Masson, 1992; 

Johnston et al., 2002; Fertsch et al., 2003). The formation of these new structures depends on 

the pressure release rate. It is assumed that the slower the pressure is released, the higher is 

the level of aggregates already formed during release. At low casein content the solution 

remains liquid but at certain casein content aggregates also conjoin and form a network.  

 

 

Conclusion 
Not only the casein content and the milieu conditions but also the process parameters like 

pressure build up phase, pressure level and pressure release rate influence the properties of 

casein structures. The higher the casein and calcium content, and the faster the decompression 

the firmer are the gels that are built up. However, too high calcium may induce a salting out 

effect and may inhibit the formation of firm gels. Further research was initiated for better 

understanding of the mechanism and in order to characterize the different structures. The 

results will be published later on. To conclude, it is important to note for experimental design 

as well as for practical application that besides the composition of the solution the pressure 
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release rate is an important process parameter for casein based structures in pressure 

treatment. 

 

The research has been supported by the DFG (Deutsche Forschungsgemeinschaft) as part of 
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Chapter VI 
 

 

Pressure-induced modification of casein micelles - Influence of pressure 

build-up rate, pressure level, release rate and temperature on viscosity and 

particle size  
 

Summary 

The objective of the experiments was to study the influence of pressure build-up (20 to 

600 MPa min-1), pressure level (200 to 600 MPa) and release rate (20 to 600 MPa min-1) as 

well as the applied temperature (20 to 50 °C) on casein micelles. The samples (5 % micellar 

casein solution) were analyzed regarding viscosity and mean hydrodynamic diameter. An 

increase of viscosity and decrease of mean hydrodynamic diameter was observed in the casein 

solution when pressure was increased. When pressure was released from 200 MPa, no 

significant influence of the release rate on viscosity and hydrodynamic diameter was found, 

but when the pressure was released from 400 or 600 MPa changes were significant. The faster 

the pressure was released, the higher were viscosity and hydrodynamic diameter. At pressure 

treatment temperatures of 20, 30 and 40 °C the viscosity increased with increasing release rate 

while no influence of the release was observed at 50 °C. The highest effect of the pressure 

release on the viscosity was observed at 30 °C. At 20 and 30 °C the hydrodynamic diameter 

increased with increasing release rate. Pressure build-up rate had no significant influence on 

pressure-induced modification of casein. 

 

 

 

 

 

 

 

 

Merel-Rausch, E., Duma, I.P. & Hinrichs, J. (2006). Pressure-induced modification of casein 

micelles - Influence of pressure build-up rate, pressure level, release rate and temperature on 

viscosity and particle size, Milk Science International 61(3), 255-259. 
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Introduction 

High pressure treatment can modify the structure of casein micelles depending on the applied 

parameter resulting in different functional properties of the solution. During pressure build-up 

phase casein micelles dissociate into submicelles (Needs et al., 2000; Regnault et al., 2004; 

Schmidt & Buchheim, 1970) due to weakening of hydrophobic and electrostatic interactions 

between submicelles (Mozhaev et al., 1996) and colloidal calcium phosphate solubilizes out 

of the micellar framework (Lee et al., 1996; Schrader & Buchheim, 1997; Shibauchi et al., 

1992). In photon correlation spectroscopy (PCS) and laser granulometer studies an increase of 

the casein micelle size at pressures of 200 to 250 MPa was observed (Gaucheron et al., 1997; 

Huppertz et al., 2004a), followed by a decrease of the micelle size up to 400 MPa (Desobry-

Banon et al., 1994; Gaucheron et al., 1997; Huppertz et al., 2004a; Needs et al., 2000; 

Regnault et al., 2004; Schmidt & Buchheim, 1970; Schrader & Buchheim, 1998). 

Transmission electron microscopy studies confirmed the measured decrease of the micelle 

size after treatment at 400 MPa and 600 MPa (García-Risco et al., 2000; Gaucheron et al., 

1997; Keenan et al., 2001; Needs et al., 2000; Schrader & Buchheim, 1998). 

During pressure release, the binding forces are regained and calcium bridges are rebuilt 

(Shibauchi et al., 1992). Instead of the original casein micelles new hyper-structures may be 

formed. Fertsch et al. (2003) demonstrated that the pressure release rate influences 

significantly the firmness and microstructure of pressure-induced casein gels with 15 % 

casein. The faster the pressure was released after pressure treatment at 600 MPa, the firmer 

the gels that were formed. We showed in one of our recent studies (Merel et al., 2005) that 

depending on the casein concentration and the pressure release rate after pressure treatment at 

600 MPa, liquid (sol) to solid (gel) structures can be generated. At low casein content (≤ 5 %), 

the structures were still liquid independent from the release rate. At about 7 % casein the 

solution remained liquid when a low pressure release of 20 MPa min-1 was applied whereas a 

high release rate of 600 MPa min-1 induced gelation. Finally, at a casein content of 15 % a gel 

was already formed when the slow release rate of 20 MPa min-1 was performed. 

The aim of this work was to study the influence of pressure build-up rate, pressure level, 

pressure release rate and temperature on the formation of pressure-induced casein particles in 

a solution with 5 % casein. 
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Materials and methods 

In order to avoid interaction with whey proteins in the pressure experiment, micellar casein 

was used. Micellar casein powder (6.5 % water, 68.4 % total protein including 68.0 % casein, 

16 % lactose and 8.4 % minerals including 2.3 % of calcium) was produced by diafiltration of 

skim milk (Kersten, 2001). The powder was diluted in ultrafiltration permeate to achieve a 

protein content of 5 %, mixed for 3h and stored at 4 °C for one day. The permeate was 

prepared by reconstitution of powder (Ingredia Dairy Ingredients, Switzerland; composition: 

4.8 % water, 2.9 % total protein, 84.9 % lactose and 7.4 % minerals including 0.5 % calcium). 

The pH of the samples was adjusted to pH 6,0 by adding lactic acid 10 % (Nr.100366, VWR, 

Germany). 

Experiments were carried out in a high pressure apparatus (Resato, The Netherlands). Samples 

were filled into 20 ml HDPE tubes (Nalgene, Novodirect, Germany) leaving no headspace and 

closed with a silicone plug (VWR, Germany). Prior to the pressure application the samples were 

tempered at the appropriate temperature. Pressure level was varied from 200 to 600 MPa and 

temperature held constant at 30 °C. Then pressure treatment conditions were kept constant 

(600 MPa, 30 min) and temperature was varied from 20 and 50 °C. In both cases, pressure was 

built up with a rate of 200 MPa min-1 and release was varied from 20 to 600 MPa min-1. At least, 

build-up rate was varied from 20 to 600 MPa min-1. After treatment, the samples were stored 1 

day at 4 °C until analysis. 

Apparent dynamic viscosity η of the solution was determined before and after pressure treatment 

at 10 °C by means of a rotational rheometer (AR 2000, TA Instruments, Germany). The shear rate 

was increased to 500 s-1 in 3 min, held for 5 min at 500 s-1 and decreased to 0 s-1 in 3 min. η was 

defined as the viscosity at the end of the 5 min holding time at a shear rate of 500 s-1. The η values 

given in the tables represent the average of 6 to 12 measurements from 3 to 6 independent 

pressure experiments.  

The mean hydrodynamic diameter dH of the casein particles was determined by photon correlation 

spectroscopy (PCS) at 25 °C (HPPS, Malvern Instruments Ltd., Malvern, UK). For each sample, 

three light scattering measurements of 30 s were carried out. The results are calculated from the 

intensity distribution curve and are the average of 30 to 60 measurements from 3 to 6 independent 

pressure experiments. 
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Results and discussion 

 

Influence of pressure level and release rate 

In Table VI.1 is shown, that the viscosity η increased with increasing pressure level for the 

release rate of 600 and 200 MPa min-1. A pressure level of 400 and 600 MPa combined with 

600 MPa min-1 release rate resulted in viscosities being higher than control. In contrast, a 

release rate of 20 MPa min-1 showed no significant difference in η on the various pressure 

levels and was lower than control. At a pressure of 200 MPa η reached similar values and 

seemed to be independent from the release rate. In addition, all η values were significantly 

lower than control. The influence of release rate became visible for the pressure level of 

400 MPa and even more at 600 MPa.  

 

Table VI.1: Influence of pressure level and release rate on apparent viscosity and mean hydrodynamic 

diameter of a 5 % casein solution pressurized for 30 min at 30 °C; build-up rate 200 MPa min-1 * 
Pressure 

level 

in MPa 

Pressure release 

rate  

in MPa min-1 

Apparent dynamic viscosity 

η ± s.d. in mPa s 

Mean hydrodynamic 

diameter 

dH ± s.d. in nm 

Control  4.8 ± 0.9 (3.6 ± 0.6)·102 

200 

 

 

600 

200 

20 

3.7 ± 0.4 

3.7 ± 0.4 200(600) 

3.6 ± 0.4 200(600),200(200) 

(5.0 ± 0.6)·102 

(5.0 ± 0.7)·102 200(600) 

(5.4 ± 0.7)·102 

400 600 

200 

20 

6.3 ± 1.6 

4.3 ± 0.5 control 

3.7 ± 0.4 200(20) 

(4.8 ± 1.1)·102 200(600) 

(2.9 ± 0.3)·102 

(2.5 ± 0.3)·102 

600 600 

200 

20 

6.9 ± 1.9 400(600) 

4.8 ± 0.9 control,400(200) 

3.5 ± 0.4 200(20),400(20) 

(3.9 ± 0.6)·102 control 

(3.3 ± 0.6)·102 control 

(2.3 ± 0.2)·102 
*Each value is compared with control and values with the same pressure release rate. Example: a value 
followed by control is not significantly different (p<0.05) to control; a value followed by 200(600) is not 
significantly different to the value of the solution treated at the pressure level of 200 MPa with the pressure 
release rate of 600 MPa min-1. s.d.: standard deviation 

 

As shown in Table VI.1 the mean hydrodynamic diameter dH of the casein particles decreased 

with increasing pressure level. Smallest particles were observed at 600 MPa. Higher dH than 

control were determined at 200 MPa for all pressure release rates and at 400 MPa for a release 
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rate of 600 MPa min-1. The dH measured after treatment at 600 MPa followed by a pressure 

release rate of 600 and 200 MPa min-1 appeared in the same size as control. In contrast, the dH 

was smaller than control after treatment either at 400 MPa followed by 200 and 20 MPa min-1 

pressure release or after 600 MPa and 20 MPa min-1 release. In parallel to viscosity data, the 

influence of release rate became visible at a pressure of 400 and 600 MPa but not at 200 MPa. 

The slower the pressure was released, the smaller dH .  

An influence of release rate on the structure of casein gels was observed by Fertsch et al. 

(2003) for casein solution with 15 % casein. They showed that the higher the pressure release 

rate was, the higher the firmness of pressure-induced casein gels. During pressure build-up, 

casein micelles dissociate into submicelles due to the weakening of non-covalent bonds 

(Mozhaev et al., 1996). During pressure release, these interactions are reactivated (Hinrichs, 

2000; Suzuki & Taniguchi, 1972) and calcium bridges from free calcium in the serum phase 

are reformed (Shibauchi et al., 1992). Instead of the original casein micelles new hyper-

structures are built up and casein micelle aggregates are generated (Fertsch et al., 2003; 

Hinrichs, 2000; Johnston et al., 1992a; Johnston et al., 1992b; Johnston et al., 2002; Masson, 

1992; Ohmiya et al., 1989). From the results shown in Table VI.1 it can be assumed that 

during fast pressure release (600 MPa min-1) the submicelles re-associate to loose and big 

aggregates having a high water binding which is indicated by η which was even higher than 

control. Not only the pressure release, but also the pressure level is important. 

At 400 MPa the pressure release phase still had an influence on dH and η, but no influence was 

noted at 200 MPa. In addition, it was observed that the lower the pressure level, the lower was 

η. The dissociation of casein micelles is probably just starting at 200 MPa. This implies that 

the water binding of the formed aggregates at 200 MPa level is lower than that of particles 

built up at higher pressures.  

Huppertz et al. (2004a) also reported on casein aggregate formation in pressure treated 

(250 MPa, 20 °C) raw skim milk. A decrease of 50 % of the casein particle size compared 

with the untreated milk was observed after pressure treatment in the range of 300 to 800 MPa 

(Desobry-Banon et al., 1994; García-Risco et al., 2000; Gaucheron et al., 1997; Needs et al. 

2000). In our experiments, a decrease in the hydrodynamic diameter was only observed for 

the low release rate; at the high release rate of 600 MPa min-1, particles were still larger than 

control. This difference may be explained by the composition and the particle size 

measurement. The PCS measurement system allows particle measurement without dilution of 

the casein solution which may help to avoid changes in the particle size due to dissociation 

effects.  
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Influence of pressure build-up 

In order to verify that the effect observed in Table VI.1 is mainly due to the pressure release, 

the effect of pressure build-up rate on η and dH is shown in Table VI.2.  

 

Table VI.2: Influence of pressure build-up rate on apparent viscosity and mean hydrodynamic diameter 

of a 5 % casein solution pressurized at 600 MPa and 30 °C for 30 min; pressure release rate 

200 MPa min-1 * 
Pressure build-up rate 

in MPa min-1 

Apparent dynamic viscosity 

η ± s.d. in mPa s 

Mean hydrodynamic diameter 

dH ± s.d. in nm 

600 

200 

20 

4.7 ± 0.4 

4.8 ± 0.9 600 

4.4 ± 0.5 600,200 

(2.9 ± 0.3)·102 

(3.3 ± 0.6)·102 

(3.0 ± 0.5)·102 600,200 
*A value followed by 600 is not significantly different (p<0.05) to the value of the solution treated with 
the pressure release rate of 600 MPa min-1. s.d.: standard deviation 

 

The viscosity η of the treated solution was independent of the pressure build-up rate. Pressure 

build-up had no influence on dH of the casein particles except at 200 MPa min-1 where a bit 

larger particles than at 600 MPa min-1 and 20 MPa min-1 were observed.  

In summary, the pressure build-up rate seems to be not so important for casein micelle 

modification in pressure treatment. More important are pressure level and holding phase 

(dissociation), and finally the pressure release phase in which re-association and aggregation 

take place being mainly influenced by the rate of pressure release (Table VI.1). 

 

Influence of temperature and pressure release 

For pressure treatment at 20 °C, 30 °C and 40 °C, a decrease of η was observed with 

decreasing pressure release rate (Figure VI.1).  

The release rate of 600 MPa min-1 resulted in the highest η, which was significantly higher 

than control, except at 40 °C where η was similar to control. After 200 MPa min-1 release rate 

η appeared in the same range than control. The slowest release rate (20 MPa min-1) induced 

the lowest η. It has to be mentioned, that at a temperature of 30 °C the effect of pressure 

release rate on η change was highest. With increasing temperature (40 °C, 50 °C) the effect of 

the pressure release became lower, and at 50°C no significant influence of pressure release 

was observed. All η values were approximately 70 % of control at 50 °C. 
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Figure VI.1: Influence of pressure release rate and temperature on apparent viscosity η of a 5 % casein solution 

treated at 600 MPa for 30 min; build-up rate 200 MPa min-1 

 

At 20 and 30 °C the diameter dH increased in the treated solution with increasing release rate 

(Figure VI.2).  

 

Figure VI.2: Influence of pressure release rate and temperature on mean diameter dH of a 5 % casein solution 

treated at 600 MPa for 30 min; build-up rate 200 MPa min-1  

 

The highest dH of about 420 nm was observed at 20°C after the pressure release of 600 and 

200 MPa min-1 and at 30 °C after the release of 600 MPa min-1. At 40 and 50 °C, no clear 

influence of the release rate on dH could be observed. At 40 °C combined with release rates of 
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600 and 20 MPa min-1 and at 50 °C with a rate of 20 MPa min-1, higher diameter than control 

with a dH of about 400 nm were detected. In contrast, at 40 °C with a release rate of 

200 MPa min-1 and at 50 °C with release rates of 600 MPa min-1 and 200 MPa min-1, particles 

with a dH below control (about 300 nm compared to 360 nm for control) were found.  

Needs et al. (2000) suggested that during pressure release the association of submicellar 

particles is induced by the reformation of hydrophobic bonds, which are known to be 

enhanced with increasing temperature. Their hypothesis may explain some of our results 

regarding the viscosity η at 40 and 50 °C: the casein particles may be packed denser, water 

binding is reduced resulting in the observed decrease in viscosity being lower than control 

(Figure VI.1). Huppertz et al. (2004a) reported a high increase of the micelle size compared to 

control by increasing the temperature from 5 to 40 °C at 250 MPa. They explained this 

increase with the extensive formation of hydrophobic bonds between the submicellar particles 

inducing the formation of casein aggregates. Others (Gaucheron et al., 1997; García-Risco et 

al., 2000; Huppertz et al., 2004a) as well detected large casein aggregates in milk treated at 

pressures between 250 and 400 MPa and temperatures from 40 to 60 °C. But none of the 

authors mentioned the pressure release rate applied which might give an additional effect as 

demonstrated in Figure VI.2.  

In summary, the experimental results demonstrated that casein micelles react very sensitive to 

the different phases of pressure treatment and also to the temperature applied during 

treatment. Especially, the effect of pressure release rate should be mentioned when working 

with casein containing solutions.  
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Chapter VII 
 

 

Concluding remarks 
 

The problematic of the photon correlation spectroscopy measurement is shortly introduced at 

the beginning of this chapter. Furthermore, the influence of the different phases of pressure 

treatment on the properties of casein was studied in detail and a model is proposed. 

 

Photon correlation spectroscopy  

The size of the casein micelles was measured by means of photon correlation spectroscopy 

(PCS) using back scattering at an angle of 173°. This method enables to measure undiluted 

samples preventing the dissociation of the casein micelles because of dilution. The 

hydrodynamic diameter of the particles was determined and not the real diameter of the casein 

micelles. If particles aggregate, the diameter of the whole aggregate was determined. With 

PCS measurements, it is impossible to know whether larger casein particles were induced by 

a fusion of casein micelles or casein aggregates were built up. Therefore it is important to 

make microscopic images of the structures for a better understanding.  

PCS measurements of a 5 % casein solution treated at 600 MPa at 30 °C for 30 min 

(Table VII.1, results from chapter III) showed bigger particles after a fast pressure release of 

600 MPa min-1. In contradiction, AFM images (Figure VII.1, results from Chapter III) 

showed smaller casein particles. Furthermore, the viscosity of these new formed structures 

was higher than before pressure treatment. 



82  Chapter VII 
 

0.5 1.0 1.50

0
40

0 
nm

µm0.5 1.0 1.50

0
40

0 
nm

µm0.5 1.0 1.50

0
40

0 
nm

µm 0.5 1.0 1.50

0
40

0 
nm

µm0.5 1.0 1.50

0
40

0 
nm

µm0.5 1.0 1.50

0
40

0 
nm

µm

0.5 1.0 1.50

0
40

0 
nm

µm0.5 1.0 1.50

0
40

0 
nm

µm0.5 1.0 1.50

0
40

0 
nm

µm
0.5 1.0 1.50

0
40

0 
nm

µm0.5 1.0 1.50

0
40

0 
nm

µm0.5 1.0 1.50

0
40

0 
nm

µm

(a)

(c) (d)

(b)

z

x

y

0.5 1.0 1.50

0
40

0 
nm

µm0.5 1.0 1.50

0
40

0 
nm

µm0.5 1.0 1.50

0
40

0 
nm

µm 0.5 1.0 1.50

0
40

0 
nm

µm0.5 1.0 1.50

0
40

0 
nm

µm0.5 1.0 1.50

0
40

0 
nm

µm

0.5 1.0 1.50

0
40

0 
nm

µm0.5 1.0 1.50

0
40

0 
nm

µm0.5 1.0 1.50

0
40

0 
nm

µm
0.5 1.0 1.50

0
40

0 
nm

µm0.5 1.0 1.50

0
40

0 
nm

µm0.5 1.0 1.50

0
40

0 
nm

µm

(a)

(c) (d)

(b)

z

x

y

z

x

y

 

Table VII.1: Average hydrodynamic diameter of 

casein micelles in untreated and pressurized casein 

solution [5 g casein/100ml UFP].  

Pressure release 

rate [MPa min-1] 

Average hydrodynamic 

diameter dH [nm] 

untreated 

600 

200 

20 

377 ± 46 a 

477 ± 65 b 

395 ± 93 a,b,c 

231 ± 7 d 

* Data within a column followed by different letters 
are significantly different at p < 0.05 

 Figure VII.1: Atomic force microscopic images of 

casein solutions with 5 g casein/100ml UFP after high 

pressure treatment with variation of the pressure 

release rate, (a) untreated casein solution, (b) pressure 

release rate 600 MPa min-1, (c) pressure release rate 

200 MPa min-1 and (d) pressure release rate 

20 MPa min-1 

 

Combining these observations, it can be assumed that the casein particles with large 

hydrodynamic diameter measured by means of PCS are built up of small casein micelles. 

These aggregates of small particles incorporate some serum resulting in the high water 

binding and in an increased viscosity of the solution compared to the untreated solution. 

In the case of particle size measurement of casein micelles, it is important to verify the PCS 

results with microscopic observations of the structures. 

 

 

Model for the high pressure-induced casein modification  

The model presented as initial hypothesis of this work in chapter II (Figure II.6) should be 

completed with the results presented in chapter III through chapter VI. The influence of the 

different high pressure process parameters especially pressure release rate but also pressure 

build-up, pressure level and holding time and milieu conditions on pressure-induced casein 

structure is summarized in the model illustrated in Figure VII.2 (formation of particles and 

aggregates) and Figure VII.3 (formation of gels). 
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 Figure VII.2: Model of the dissociation and aggregation of casein micelles during high pressure treatment of a 

casein solution with low casein content (ccasein ≤ 5 %). η: viscosity of the solution [mPa s]; dH: mean 

hydrodynamic diameter of the casein micelles [nm]; Va: voluminosity of the solution [ml g-1] (Distribution 

function from Gebhardt, 2005) 

Figure VII.3: Model of the dissociation and gelation of a casein solution (high casein content ccasein > 7 %) 

during a high pressure treatment. F: Firmness of the gel [N]. 
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Pressure build-up phase 

Pressures up to 200 MPa induce the dissociation of casein micelles in submicelles and 

monomers (Figure VII.2 and 3, a→b→c) due to the solubilisation of colloidal calcium 

phosphate out of the micellar framework and the weakening of the non-covalent bonds 

stabilizing the casein micelle. At a pressure of 300 MPa, casein micelles are already 

dissociated into smaller units and casein monomers (Gebhardt et al., 2005), distribution 

function between c and d on Figure VII.2). This dissociation is accompanied by a decrease of 

the particle size and an increase of the viscosity of the casein solution after pressure build-up 

(Table VII.2).  

 

Table VII.2: In situ viscosity measured at 30 °C during pressure treatment at 600 MPa of a 5 % casein 

solution and ultrafiltration permeate  

 5 % casein solution 

η in mPa s 

ultrafiltrafiltration permeate 

η0 in mPa s 

Control 2.0 ± 0.1 0.9 ± 0.0 

After pressure build-up at 600 MPa 4.7 ± 0.5 1.2 ± 0.1 

η: dynamic in situ viscosity of the casein solution, η0: dynamic in situ viscosity of the ultrafiltration permeat 

 

The volume fraction of the hydrated casein can be estimated from the in situ viscosity using 

the model by Gleissle & Baloch and Windhab presented in chapter II and III (Eq. II.25 and 

III.6, here Eq. VII.1). 

 

( ) 1

0

5.21 −−= ϕ
η
η         (VII.1) 

where η is dynamic viscosity of the solution [Pa s], η0 the viscosity of the solvent [Pa s] and φ 

the volume fraction of the particles. 

Equation VII.1 can be transformed in: 

η
ηη

ϕ
5.2

0−
=          (VII.2) 

According to the values of Table VII.2, the volume fraction of casein at ambient high pressure 

is 

22.01.0 =MPaϕ  

and after pressure build-up at 600 MPa: 

37.0600 =MPaϕ  
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The volume fraction of casein increases during pressure build-up. The increase of viscosity 

must be due to an increase of surface of casein being in interaction with water resulting in 

high hydratation. 

The rate of pressure build-up has no significant influence on casein micelles modification 

(viscosity and hydrodynamic diameter) after pressure treatment (Chapters IV and VI).  

 

Pressure holding phase 

During pressure holding time the dissociation into casein fragments and monomers comes to 

an equilibrium (Figure VII.2 and VII.3, c→d). At 600 MPa, the longer holding time (30 min) 

induces firmer structures after fast pressure release (Figure VII.2 and VII.3, d→d1) than no 

holding time or a shorter one (Figure VII.2 and VII.3, c→c1) (Chapter IV). Dissociation of the 

micelles may not be finally completed when the holding time is too short resulting in an 

inhomogeneous gelation during pressure release phase. 

 

Pressure release phase (Chapter III to Chapter VI) 

The last phase of a pressure treatment, the pressure release phase, plays a very important role 

in the rearrangement of the casein fragments and monomers. The small fragments and 

monomers aggregate during pressure release phase because the binding forces take effect 

again. Protein-protein interactions are reestablished and the self association process of the 

casein submicelles and monomers is reinitiated with the formation of calcium bridges. The 

formed casein structures differ from the native structure because the association rate of the 

casein depends on the release rate. To explain the differences, equation VII.3 (Eq II.3 from 

chapter II) has to be considered:  

NTkJ B
peri

03
8
η

=         (VII.3) 

where J is the number of encounters per unit time [s-1] for equal-sized spheres, η0 the viscosity 

of the continuous phase [Pa s], kB the Boltzmann constant [J K-1], T the absolute temperature 

[K] and N is the number of particles per unit volume (or particle number concentration) [m-3]. 

In the case of a fast release, the high number of particles N before pressure release and the fast 

decrease of the viscosity η0 during the release induce an aggregation of the particles. All 

bonds are reactivated and each encounter between particles induces aggregation. 

In the case of a slow release, the number of particles before pressure release is high and the 

viscosity stays first high during release. Bonds are not reactivated immediately and particles 
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do not move so quickly so that aggregation doesn’t occur for each encounter between 

particles. 

Thus, different structures can be obtained by varying the pressure release rate. At 600 MPa, 

structures from sol to gel could be induced by increasing the release rate and the protein 

concentration (Figure VII.4, from Chapter V). 

 

Figure VII.4: Structure diagram: Influence of pressure release rate and casein content on gel-sol-transition of 

casein after high pressure treatment at 600 MPa, 30 min, 30 °C. 

 

At a casein content of about 7 %, depending on the pressure release rate, sol as well as gel 

structures were observed. The higher the casein content and the faster the pressure release, the 

firmer were the structures built up and the finer were the microstructures. The influence of the 

casein content is due to the inner friction of the dispersed particles with the outer phase, and 

to the high water binding of the casein. 

 

Casein and calcium concentration 

Increasing the casein concentration and calcium content leads to the formation of gel 

structures after pressure release (Figure VII.4 and results of chapters III and V). The higher 

the casein and calcium content, and the faster the decompression the firmer are the gels that 

are built up. However, too high calcium may induce a salting out effect: water molecules are 

needed for the hydration of the ions and at high ionic strength the solubility of proteins is 

decreasing. The caseins become more compact, the water binding is reduced resulting in a 

low viscosity and gel formation is retarded. 
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This model is supported by the bonds analysis of Keim (2005) demonstrating that despite the 

texture being changed from sol to gel no difference in the stabilizing bonds between non 

treated casein and pressure-induced 15 % casein gel was determined. The weakening of the 

protein bonds could be seen as reversible; however, after pressure release a new network 

structure is built up. 

 

The model presented in chapter II has been completed with new results. In future besides 

pressure level, holding time and temperature, the release rate should be taken into account 

when working with milk or casein systems. 
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Summary 
 

Besides the inactivation of microorganisms, high pressure can also be applied to modify 

proteins. Owing to their molecular composition, their conformation and their quaternary 

structure, proteins react differently to pressure and temperature, whereby their functional 

properties are influenced in many cases, depending on the intensity of the treatment. The so 

far accomplished research about structure formation of milk proteins deals essentially with the 

effect of a static pressure treatment or the effect of different pressure levels on the structure of 

the molecules observed in situ. A few studies exist about the influence of pressure release, but 

systematic researches has not been undertaken. 

The main component of the milk proteins, the casein, is structured in micelles. Casein 

monomers aggregate to submicelles due to electrostatic and hydrophobic interactions. The 

submicelles are bound together by calcium bridges to form the casein micelles. Two 

submicelle types exist: one type essentially contains αs-casein and β-casein, the other one αs-

casein and κ-casein. The hydrophobic and calcium sensitive fractions αs-casein and β-casein 

are situated in the inner of the micelle, the calcium insensitive κ-casein at the surface. The 

hydrophilic caseinomacropeptide of the κ-casein is situated outside the micelles reaching into 

the surrounding medium and builds a hydrate envelope stabilizing the micelle because of 

steric and electrostatic repulsions. For this reason the hydrophilic caseinomacropeptide is 

responsible for the stability of casein micelles and inhibits the aggregation of casein in milk. 

As shown in preliminary tests, structures stabilized by non-covalent interactions, like casein, 

are mostly influenced by the pressure release phase. Accordingly, the following work 

hypothesis was formulated: the pressure release rate plays an important role for the structure 

formation of caseins, which are mostly stabilized by non-covalent interactions. 

The focus of the work was to study the influence of pressure treatment conditions on 

pressure-induced casein structures in detail. The influence of process parameters like pressure 

build-up, pressure level, holding time and release rate but also temperature, ionic strength and 

casein concentration were determined.  

The used enriched micellar casein powder was gained by diafiltration of skim milk with 

ultrafiltration permeate. Casein concentrates (1 to 15 % casein, pH 6,0) were treated with 

pressures of 200 MPa to 600 MPa. Pressure build-up rate (20 to 600 MPa min-1), holding time 

(0 to 30 min), release rate (20 to 600 MPa min-1), temperature (20 to 50 °C) and calcium 
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concentration (ionic strength 0.1 to 2 mol l-1) were varied and the obtained structures 

characterized regarding ex situ and in situ viscosity, serum binding, texture and particle size. 

Depending on the casein concentration and the pressure release rate, liquid (sol) to solid (gel) 

structures were generated. Structures with a near to Newtonian flow behavior were called 

“sol”. Structures with a continuous and stable network were called “gel”. Samples having a 

very weak gel structure with phase separation were classified into the “transition phase” 

(between “sol” and “gel”). The hypothesis could be confirmed: pressure release rate 

influences structures stabilized by non-covalent bonds like casein micelles. Another important 

result is that the higher the release rate, the firmer the structures obtained. The formation of 

firm pressure-induced casein gels is not only influenced by the protein concentration but 

particularly by the pressure release rate. 

Furthermore the effects of pressure build-up, pressure level, holding time and release rate but 

also of temperature and ionic strength on particle size, composition of the particle, 

voluminosity and viscosity were analysed in detail and the mechanisms were examined. 

Thereby the importance of the above mentioned parameters on the formation of different 

structures was shown and a model about the pressure-induced modification of casein 

depending on process parameters and milieu conditions was presented. 

This work showed that the structure formation of casein under high pressure treatment 

depends on numerous factors. Sols but also gels can be formed and could be used for different 

applications particularly with the choice of the release rate and the milieu conditions, even if 

pressure conditions and casein concentration are kept constant. 
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Zusammenfassung 
 

Das Verfahren der Ultrahochdruckbehandlung kann neben der Inaktivierung von 

Mikroorganismen auch zur Modifikation von Proteinen eingesetzt werden. Proteine reagieren 

aufgrund ihres molekularen Aufbaus, ihrer Konformation und ihrer quartären Struktur 

unterschiedlich auf Druck und Temperatur, wodurch sich in vielen Fällen, abhängig von der 

Intensität der Behandlung, die funktionellen Eigenschaften beeinflussen lassen. Die bisher 

durchgeführten Untersuchungen zur Strukturbildung von Milchproteinen befassen sich im 

Wesentlichen mit dem Effekt einer statischen Druckbeaufschlagung oder der Wirkung 

unterschiedlicher Druckniveaus auf die Struktur der Moleküle, die in situ beobachtet werden. 

Ferner existieren einige wenige Arbeiten zum Einfluss des Druckabbaus; systematische 

Untersuchungen wurden jedoch bisher nicht durchgeführt. 

Betrachtet man die Hauptfraktion der Milchproteine, die Caseine, so sind diese zu Micellen 

assoziiert. Caseinmonomere aggregieren zu Submicellen aufgrund elektrostatischer und 

hydrophober Wechselwirkungen. Diese Submicellen werden durch Calciumbrücken 

gebunden und bilden Micellen. Zwei Arten von Submicellen sind zu unterscheiden: Die eine 

enthält hauptsächlich αs-Casein und β-Casein, die andere αs-Casein und κ-Casein. Die 

hydrophoben und calciumempfindlichen Fraktionen, αs-Casein und β-Casein, befinden sich 

im Inneren der Micelle, die calciumunempfindliche Fraktion, κ-Casein, an der Oberfläche. 

Das hydrophile Caseinomacropeptid des κ-Caseins ist in Milchserum gerichtet und bildert 

aufgrund sterischer und elektrostatischer Abstoßungen eine stabilisierende Hülle. Damit ist 

das hydrophile Caseinomacropeptid wichtig für die Stabilität der Caseinmicellen und 

verhindert zudem die Aggregation der Caseine in der Milch. 

Wie sich in Vorversuchen zeigte, werden Strukturen wie Caseine, die über nicht-kovalente 

Bindungen stabilisiert sind, maßgeblich durch die Druckentspannungsphase beeinflusst. 

Davon ausgehend wurde die Arbeitshypothese formuliert: Für Caseine, die hauptsächlich 

durch nicht-kovalente Bindungen stabilisiert sind, besitzt die Entspannungsphase einen 

maßgeblichen Einfluss auf die sich ausbildenden Strukturen.  

Ziel der Arbeit war es, die Druckbehandlungsbedingungen in ihrer Auswirkung auf die 

Strukturausbildung in Caseinsystemen im Detail zu untersuchen. Neben den 

Prozessparametern Druckaufbaurate, Druckhöhe, Haltezeit und Entspannungsrate wurde der 

Einfluss der Temperatur, der Konzentration an Casein aber auch des Ionenmilieus bei der 

Druckbehandlung untersucht.  
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Das verwendete Caseinpulver wurde mittels Magermilch-Diafiltration mit einem 

Ultrafiltrationspermeat hergestellt. Caseinkonzentrate (1 bis 15 % Casein, pH 6) wurden mit 

Drücken von 200 MPa bis 600 MPa behandelt. Die Druckaufbaurate (20 bis 600 MPa min-1), 

Druckhaltezeit (0 bis 30 min), Druckabbaurate (20 bis 600 MPa min-1), Temperatur (20 bis 

50 °C) und Calciumkonzentration (Ionenstärke 0.1 bis 2 mol l-1) wurden variiert, und die 

gewonnenen Strukturen hinsichtlich ex situ und in situ Viskosität, Serumbindung, Textur und 

Partikelgröße charakterisiert. 

In Abhängigkeit von der Proteinkonzentration und der Entspannungsrate wurden Strukturen 

von Sol über einen Übergangsbereich bis hin zu festen Gelen ausgebildet. Als „Sol“ wurden 

Strukturen mit nahezu newtonschem Fließverhalten charakterisiert. Als „Gel“ wurden 

Strukturen definiert, die ein kontinuierliches und stabiles Netzwerk ausbilden. Zwischen 

diesen zwei Bereichen, dem Übergangsbereich, bilden sich Strukturen aus, die eine Joghurt-

ähnliche Textur und teilweise Phasentrennung aufweisen. Damit wurde die Hypothese 

bestätigt, dass Strukturen, die über nicht-kovalente Bindungen stabilisiert sind, wie es bei 

Caseinmicellen der Fall ist, in ihren Eigenschaften insbesondere durch die 

Entspannungsphase zu modulieren sind. Festzuhalten ist ferner als wesentliches Ergebnis, 

dass je höher die Entspannungsrate gewählt wird, desto fester die erzeugten Strukturen 

werden. Das Ausbilden fester druckinduzierter Caseingele hängt somit nicht nur von der 

Proteinkonzentration, sondern insbesondere von der Entspannungsrate ab. 

In weiteren Versuchen wurden die Einflüsse von Druckniveau, Druckaufbaurate, 

Druckhaltezeit, Druckabbaurate, Temperatur und Ionenstärke und Caseinomacropeptid-

Menge hinsichtlich der Partikelgröße, Aufbau der Partikel, Voluminosität und Viskosität im 

Detail studiert und die Mechanismen untersucht. Dabei wurde die Bedeutung der oben 

genannten Parameter auf die Ausbildung unterschiedlicher Strukturen und deren Mikro- und 

Makrostruktur aufgezeigt, und daraus wurde eine Modellvorstellung der druckinduzierten 

Modifikationen der Caseine in Abhängigkeit von den Prozessparametern und 

Milieubedingungen erarbeitet.  

Mit der Arbeit wurde aufgezeigt, dass die Strukturierung von Casein als Resultat einer 

Hochdruckbehandlung von zahlreichen Faktoren abhängt. Insbesondere durch die Wahl der 

Entspannungsrate und der Milieubedingungen lassen sich bei ansonsten gleicher 

Druckbehandlungsbedingungen und Caseinkonzentration sowohl Sole als auch Gele für die 

unterschiedlichsten Applikationen erzeugen. 
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Appendix 
 

 

Appendix I: Pilot apparatus for high pressure treatment 

 

Figure IX.1: High pressure pilot apparatus (Resato High Pressure Technology, Roden, The Netherlands and 

Knam Schneidertechnik, Langenargen, Germany); d: diameter pressure chamber for the sample, h: height of the 

chamber, V: volume of the pressure chamber, PI: pressure indicator, TI: temperature indicator. 

 

In the used high pressure pilot apparatus, products can be treated up to temperatures of 100 °C 

and pressures of 1000 MPa (Figure IX.1). The pilot plant has seven autoclaves, 6 small ones 

with a volume of 32 ml and a big one with a volume of 125 ml. The 125 ml autoclave was 

used for all experiments.  
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Appendix II: Production of the micellar casein powder 
 

The casein powder used in the experiments was an enriched micellar casein powder produced 

by diafiltration of skim milk at the Institute for Food Process Engineering in Freising, 

Germany (Kersten, 2001). Skim milk was diafiltrated by means of microfiltration (MF) (MF 

module 7P19-40GL; cut off: 100nm, APV, Silkeborg, Denmark). The MF-permeate obtained 

was ultrafiltrated (UF module GR 60 PP; cut off: 25 kDa, DDS AS, Nakskov, Denmark) and 

used for diafiltration. After six washing steps the casein retentate was concentrated by 

microfiltration (concentration factor 4) and spray dried (Niro Atomizer, Soeborg, Denmark) 

(Figure IX.2). 

Figure IX.2: Process steps of the production of the micellar casein powder; i: concentration factor, 

h: temperature during the process, ∆pTM: trans membrane pressure, τw: wall shear stress, wm: mean velocity, 

hentry: temperature at the beginning of the spray drying, hleaving: temperature at the end of the spray drying. 

 

The final micellar casein powder contained 6.5 % water, 68.4 % total protein including 

68.0 % of casein, 16.6 % lactose and 8.4 % minerals including 2.3 % calcium.  

Microfiltration
h = 55 °C, ∆pTM = 40 kPa, τw = 150 Pa

Skim Milk concentrate (i=2)

Microfiltration
h = 55 °C, ∆pTM = 40 kPa, τw = 150 Pa

Casein concentrate (i=4)

Spray drying
hentry = 180 °C, hleaving = 80 °C

MF-Permeat

Ultrafiltration
h = 50 °C, ∆pTM = 350 kPa, wm = 5.3 m/s

Whey protein 
concentrate

UF-Permeat

X 6

Micellar casein powder

Skim Milk

Microfiltration
h = 55 °C, ∆pTM = 40 kPa, τw = 150 Pa

Skim Milk concentrate (i=2)

Microfiltration
h = 55 °C, ∆pTM = 40 kPa, τw = 150 Pa

Casein concentrate (i=4)

Spray drying
hentry = 180 °C, hleaving = 80 °C

MF-Permeat

Ultrafiltration
h = 50 °C, ∆pTM = 350 kPa, wm = 5.3 m/s

Whey protein 
concentrate

UF-Permeat

X 6X 6

Micellar casein powder

Skim Milk



94  Appendix 
 

Appendix III: Results of chapter VI about the influence of temperature and 

pressure release on apparent viscosity and mean diameter 
 

Table IX.1: Influence of pressure release rate and temperature on apparent viscosity η and mean diameter 

dH of a 5 % casein solution treated at 600 MPa for 30 min; build-up rate 200 MPa min-1 

Temperature 
in °C 

Pressure release 
rate 

in MPa min-1 

Apparent dynamic viscosity 

η ± s.d. in mPa s 

Mean hydrodynamic 

diameter 

dH ± s.d. in nm 

Control  4.8 ± 0.9 (3.6 ± 0.6)·102 
20 600 

200 
20 

5.6 ± 0.3 
5.1 ± 0.5 
4.1 ± 0.4 

(4.4 ± 0.8)·102 

(4.1 ± 0.9)·102 

(3.0 ± 0.6)·102 
30 600 

200 
20 

6.9 ± 1.9 
4.8 ± 0.9 
3.5 ± 0.4 

(3.9 ± 0.6)·102 

(3.4 ± 0.6)·102 

(2.3 ± 0.2)·102 
40 600 

200 
20 

5.1 ± 1.1 
4.0 ± 0.5 
3.2 ± 0.2 

(4.0 ± 1.0)·102 

(2.8 ± 0.4)·102 

(4.0 ± 0.5)·102 
50 600 

200 
20 

3.2 ± 0.2 
3.2 ± 0.3 
3.3 ± 0.4 

(2.9 ± 1.0)·102 

(2.6 ± 0.3)·102 

(4.2 ± 1.1)·102 
Control: no pressure treatment; s.d.: standard deviation 
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Appendix IV: Analysis methods 
 

Calcium: 

The calcium amount of the casein powder was determined using the EDTA-method (C10.6.8, 

Methodenbuch (1985), Handbuch der landwirtschaftlichen Versuchs- und 

Untersuchungsmethodik, Band VI, vierte Auflage, VDLUFA-Verlag, Darmstadt.). 

 

Water content: 

The water content of the casein powder was determined with the method for dry milk 

products (C35.6, Methodenbuch VI, 1985).  

 

Ashes content  

The gravimetrical measure of the ashes content of the casein powder was determined after the 

method C35.6 (Methodenbuch VI, 1985).  

 

Protein content 

The total protein content was calculated from nitrogen assayed by a nitrogen analyzer using 

Dumas method (LECO FP-528, Leco Instrumente GmbH, Moenchengladbach, Germany) and 

using a transformation factor of 6.38. 

 

pH-value: 

The pH-value of the samples was determined with a pH-Electrode (Blue line, Schott, Mainz). 

 




