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1 Summary 

Since the beginning of the Industrial Revolution, atmospheric carbon dioxide concentrations 

have been steadily increasing and, thus, contributed to a warming of the climate and altered 

biogeochemical cycles. To study the response of soil microorganisms to altered 

environmental conditions under global climate change, the nitrate-reducing community was 

regarded as a model community in the present thesis. This functional group, which performs 

the first step in the denitrification pathway, was selected because it is phylogenetically very 

diverse and, thus, represents microorganisms of various taxa. Simultaneously, denitrification 

is considered as most sensitive to environmental changes whereby it can serve as an indicator 

for altered turnover processes in soils. In particular rising levels of atmospheric carbon 

dioxide as the most important catalyst of temperature rise and the retreat of glaciers in the 

Alps as one of the most evident consequences of climate change were investigated. In the 

latter part of the study the main focus was the microbial succession in a glacier foreland, 

which exhibits a high variety of differently developed soils due to the continuous glacier 

retreat for 150 years. This ecosystem, thus, represents a static model for dynamic changes. 

The behaviour of nitrate reducers was investigated in a biphasic approach: (i) at the level of 

its specific enzyme activity of the nitrate reductase, which was determined via a biochemical 

method, and (ii) at the level of community structure, which was characterised by RFLP 

(Restriction Fragment Length Polymorphism)-fingerprints using the functional gene narG.  

The effect of elevated atmospheric carbon dioxide concentrations on nitrate-reducing micro-

organisms was studied in the Swiss FACE (Free Air Carbon dioxide Enrichment) experiment 

including the rhizosphere of two functional plant types (Lolium perenne and Trifolium 

repens), two N fertilisation levels and two sampling dates (June and October 2002). Whereas 

in June no significant treatment effect was observed, the nitrate reductase activity proved to 

be significantly reduced under elevated atmospheric carbon dioxide at the autumn sampling 

date. Simultaneously, elevated enzyme activities were recorded under Trifolium repens and 

high N fertilisation pointing to a control of nitrate reductase activity by nitrate availability at 

the time of sampling. The community structure of nitrate reducers, however, showed a 

different response pattern with sampling date and the strongly varying pH of the different 

experimental plots constituting the main driving factors. With respect to the three 

experimental factors atmospheric carbon dioxide, plant type and N fertilisation the 

composition of the nitrate reducers revealed a high stability. 
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In order to verify the resistance of the community structure of nitrate reducing micro-

organisms versus fluctuating nitrate contents in soils a microcosm experiment was performed. 

Grassland soils were amended with none, high (100 µg NO3
--N g-1 dry soil) and extreme high 

(300 µg NO3
--N g-1 dry soil) nitrate additions and incubated at 25 °C for three, seven and 

fourteen days. narG RFLP-fingerprints remained unchanged over the whole experimental 

period indicating high resistance to ecosystem short-term disturbance. However, comparison 

of the nitrate reductase in the control and under the extreme high nitrate treatment showed a 

significant increase in the latter at day 3. No further differences were observed at days 7 and 

14 which suggest a high resilience of the nitrate reductase activity.  

The microbial succession of nitrate-reducing microorganisms was studied in the rhizosphere 

of Poa alpina across the glacier foreland of the Rotmoosferner/Oetz valley. Sampling was 

performed in August and at the end of the short period of vegetation in September. The nitrate 

reductase activity increased significantly with progressing successional age, whereas organic 

carbon together with nitrate concentrations in the soils explained the major part of this effect. 

The microbial community of nitrate reducers revealed a significant shift across the glacier 

foreland, with pH and organic carbon representing the most important environmental factors 

inducing this shift. A detailed analysis of the clone libraries that were constructed for the 

youngest and the oldest site in the glacier foreland pointed to the tendency of lower diversity 

in the late succession compared to the young succession. Possibly an increasing selective 

pressure due to higher densities of microorganisms and, hence, a higher competition for 

limited resources contributed to the decline in diversity.  

In conclusion, the functional group of nitrate reducers responded to changing environmental 

conditions under global climate change particularly through altered enzyme activities. The 

amount and the direction of this response depended strongly on the nitrate availability and the 

organic carbon content in soils. The community structure of nitrate-reducing microorganisms, 

however, proved to be resilient towards short-term substrate fluctuations. Shifts in the 

composition of the nitrate-reducing microorganisms occurred only after mid-term to long-

term changes in environmental conditions like seasonal fluctuations in temperature and water 

status or the accumulation of organic carbon in soils and dropping pH, respectively. This 

indicates that the genetic pool of this specific group of soil microorganisms possesses a high 

functional stability characterized by a relatively persistent composition and an independent 

modulation of enzyme activity.  



2 Zusammenfassung  3 
 
 
 
 

2 Zusammenfassung 

Seit dem Beginn der Industriellen Revolution sind die Kohlendioxid-Konzentrationen in der 

Atmosphäre durch menschliche Aktivitäten stetig angestiegen und haben zu einer Erwärmung 

des Klimas und veränderten biogeochemischen Kreisläufen beigetragen. Um Reaktionen von 

Bodenmikroorganismen auf veränderte Umweltbedingungen im globalen Klimawandel zu 

untersuchen, wurde in der vorliegenden Arbeit die mikrobielle Gemeinschaft der 

Nitratreduzierer als Modellgemeinschaft betrachtet. Diese funktionelle Gruppe von 

Bodenmikroorganismen, die den ersten Schritt im Denitrifikationsprozess ausführt, wurde 

ausgewählt, da sie phylogenetisch sehr divers zusammengesetzt ist und damit 

Mikroorganismen aus verschiedenen Taxa repräsentiert. Gleichzeitig gilt die Denitrifikation 

als äußerst empfindlich gegenüber Umweltveränderungen, womit sie als Indikator für 

veränderte Umsatzprozesse im Boden dienen kann. Im Besonderen wurden die steigenden 

Konzentrationen an atmosphärischem Kohlendioxid als wichtigster Auslöser des globalen 

Temperaturanstiegs und der Rückzug der Gletscher in den Alpen als eine der 

augenscheinlichsten Folgen des Klimawandels untersucht. Bei letzterem Teil der Arbeit galt 

das Hauptaugenmerk der mikrobiellen Sukzession im Gletschervorfeld, welches durch den 

kontinuierlichen Gletscherrückzug seit 150 Jahren eine große Spannweite an unterschiedlich 

weit entwickelten Böden aufweist. Damit stellt dieses Ökosystem ein statisches Modell für 

dynamische Veränderungen dar. 

Die Verhaltensweise der Nitratreduzierer wurde auf zwei verschiedenen Ebenen analysiert: 

Erstens, auf der Ebene der spezifischen Enzymaktivität der Nitratreduktase, welche durch eine 

biochemische Messmethode bestimmt wurde, und zweitens, auf der Ebene der 

Gemeinschaftsstruktur, welche anhand des Funktionsgens narG durch RFLP (Restriction 

Fragment Length Polymorphism)-Fingerprints charakterisiert wurde.  

Der Einfluss von erhöhten atmosphärischen Kohlendioxidgehalten auf nitratreduzierende 

Mikroorganismen wurde im Swiss FACE (Free Air Carbon dioxide Enrichment) Experiment 

untersucht, wobei die Rhizosphäre von zwei funktionellen Pflanzentypen (Lolium perenne 

und Trifolium repens), zwei N-Düngungsniveaus und zwei Zeitpunkte in der 

Vegetationsperiode (Juni und Oktober 2002) berücksichtigt wurden. Es zeigte sich, dass im 

Oktober die Nitratreduktase-Aktivität unter erhöhtem atmosphärischem CO2 signifikant 

reduziert war. Gleichzeitig wurden unter Trifolium repens und der hohen N-Düngungs-
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variante erhöhte Enzymaktivitäten gemessen, was darauf hindeutete, dass vor allem die 

Nitratverfügbarkeit am Termin der Probenahme die Nitratreduktase-Aktivität kontrollierte. 

Die Gemeinschaftsstruktur der Nitratreduzierer wies dagegen ein anderes Reaktionsmuster 

auf. Hier stellten sich der Zeitpunkt der Probenahme sowie der stark variierende pH der 

verschiedenen Versuchsparzellen als wichtige Einflussgrößen dar. Hinsichtlich der drei 

Versuchsfaktoren atmosphärische CO2-Konzentration, Pflanzentyp und N-Düngung zeigte die 

Zusammensetzung der Nitratreduzierer eine hohe Stabilität.  

Um die Beständigkeit der Gemeinschaftsstruktur von nitratreduzierenden Mikroorganismen 

gegenüber schwankenden Nitratgehalten im Boden zu verifizieren, wurde ein Mikrokosmos-

Versuch durchgeführt. Dabei wurde Grünlandboden mit hohen (100 µg NO3
--N g-1 Boden) bis 

extrem hohen (300 µg NO3
--N g-1 Boden) Nitratzugaben versetzt und drei, sieben und 

vierzehn Tage lang bei 25 °C inkubiert. Die narG RFLP-Fingerprints blieben über die 

gesamte Versuchsdauer unverändert, was auf eine hohe Beständigkeit gegenüber kurzfristigen 

Störungen des Ökosystems hinweist. Ein Vergleich der Nitratreduktase-Aktivität in der 

Kontrollvariante und unter extrem hohen Nitratzugaben zeigte jedoch eine signifikante 

Erhöhung nach drei Tagen in letzterer Variante. Nach sieben und vierzehn Tagen wurden 

keine Unterschiede mehr festgestellt, was auf eine hohe Resilienz der Nitratreduktase-

Aktivität hinweist.  

Im Gletschervorfeld des Rotmoosferners (Ötztal) wurde die mikrobielle Sukzession der 

nitratreduzierenden Mikroorganismen in der Rhizosphäre von Poa alpina untersucht. Die 

Beprobung erfolgte im August und im September am Ende der kurzen Vegetationsperiode. 

Die Nitratreduktase-Aktivität zeigte einen signifikanten Anstieg mit zunehmendem 

Sukzessionsalter, wobei in erster Linie der steigende Gehalt an organischem Kohlenstoff 

zusammen mit der Nitratkonzentration im Boden diesen Effekt erklärte. Die mikrobielle 

Gemeinschaft der Nitratreduzierer veränderte sich ebenfalls signifikant über das 

Gletschervorfeld hinweg, wobei der pH und der Gehalt an organischem Kohlenstoff die 

wichtigsten Einflussgrößen darstellten. Eine detaillierte Analyse der Klonbibliotheken, die 

jeweils für den jüngsten und ältesten Standort erstellt wurden, deutete darauf hin, dass die 

Diversität der Nitratreduzierer in der späten Sukzession tendenziell geringer als am Beginn 

der Sukzession war. Möglicherweise war der zunehmende Selektionsdruck aufgrund höherer 

Dichten an Mikroorganismen und der daraus resultierenden Konkurrenz um begrenzte 

Ressourcen für die abnehmende Diversität mitverantwortlich.  
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Zusammenfassend lässt sich festhalten, dass die funktionelle Gruppe der Nitratreduzierer 

insbesondere mit veränderter Enzymaktivität auf sich wandelnde Umweltbedingungen im 

globalen Klimawandel reagierte. Die Höhe und die Richtung dieser Reaktion hingen dabei 

sehr stark von der Nitratverfügbarkeit und dem Gehalt an organischer Substanz im Boden ab. 

Die Gemeinschaftsstruktur der Nitratreduzierer hingegen zeigte sich gegenüber kurzfristigen 

Substratschwankungen beständig. Verschiebungen in der Zusammensetzung der 

nitratreduzierenden Mikroorganismen traten nur nach mittel- bis langfristigen Änderungen 

von Umweltbedingungen wie jahreszeitlichen Schwankungen im Temperatur- und 

Wasserhaushalt beziehungsweise der Anreicherung von organischer Substanz im Boden und 

sinkendem pH auf. Dies deutet daraufhin, dass diese spezielle Gruppe von 

Bodenmikroorganismen eine hohe funktionelle Stabilität aufweist, die durch eine relativ 

beständige Zusammensetzung und einer davon unabhängigen Regulation der Enzymaktivität 

gekennzeichnet ist.  
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3 General introduction 

3.1 Global climate change and soil microorganisms 

Since the early evolution of life one billion years after the Earth’s formation living organisms 

have been causing profound changes in the composition of the atmosphere (Staley and Orians, 

2000). Photosynthetic active bacteria gradually changed the atmosphere from a reducing to an 

oxidising one by releasing oxygen and, thus, created conditions that facilitated the origin of 

eukaryotic life (Madigan et al., 2003). Eukaryotic organism and particularly man have then 

contributed increasingly to biogeochemical cycles. Since 1750 anthropogenic activities, 

particularly burning of fossil fuels and deforestation, have led to a steady increase in 

atmospheric carbon dioxide concentrations reaching 365 ppmv at present, which has never 

been recorded before. The radiative forcing of carbon dioxide and other greenhouse gases like 

methane and nitrous oxides has contributed to a temperature rise of 0.6 ± 0.2 °C since the late 

19th century (IPCC, 2001a). Due to the high residence time of CO2 in the atmosphere this 

trend is supposed to accelerate in the 21st century. Estimates of atmospheric carbon dioxide 

concentrations in the year 2100 range between 540 ppmv and 970 ppmv depending on 

economic growth, technological advances and carbon sequestration by biological and 

geological processes (IPCC, 2001a). Temperatures are anticipated to rise by 2 to 4.5 °C in the 

same period. As a result of global warming, deglaciation of pole caps and accelerated 

shrinking of glaciers have been predicted (IPCC, 2001b). During the observation period 2002-

2003 a loss of on average a few decimetres of ice depth per year were reported based on over 

one hundred glaciers monitored around the globe (Haeberli et al., 2005).  

However, there is still considerable uncertainty about the feedback mechanism of terrestrial 

ecosystems (IPCC, 2001a). Since the capacity of ecosystems to store carbon depends on its 

net ecosystem productivity, which is the difference between net primary productivity and 

ecosystem heterotrophic respiration, numerous studies have dealt with the response of plants 

to elevated atmospheric CO2 (Kimball, 1983; Bazzaz, 1990; Drake et al., 1997). Most results 

indicate a positive effect on biomass production by increasing atmospheric CO2 levels 

(Ainsworth and Long, 2005). This is attributed to the fact that particularly in C3 plants the key 

enzyme of C assimilation, ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco), is 

unsaturated under ambient CO2 conditions. Thus, increasing atmospheric carbon dioxide 

concentrations enhance carbon assimilation of plants. In addition, the decrease in stomatal 
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conductance and transpiration of plants grown under elevated CO2 results in a higher water 

use efficiency, which may promote biomass production under water limiting conditions 

(Niklaus et al., 1998). Besides, modifications in the tissue quality were observed like higher 

lignin contents and lower N concentrations, which were, however, often not significant 

(Norby et al., 2001). Carbon allocation to below-ground increased under elevated atmospheric 

CO2 mainly through enhanced root growth (Jongen et al., 1995; Fitter et al., 1997; Zak et al., 

2000). Particularly, the density of fine roots was seen to increase under CO2 enrichment 

(Rogers et al., 1994). Under unlimiting nitrogen supply, however, carbon allocation to roots 

was not affected by rising atmospheric CO2 emphasising the role of N availability for the 

responses of root growth (Suter et al., 2002). With respect to rhizodepositions and root 

exudates, controversial results have been reported, which may be partly attributed to 

differences in the physiological state of the plants under investigation (Pendall et al., 2004; 

Bazot et al., 2005). 

Increasing attention has been paid to the responses of soil microorganisms because of their 

crucial role in the net balance of C sequestration. Whether soils can act as a sink or as a 

source for atmospheric CO2, will depend largely on their heterotrophic respiration of plant 

residues and soil organic matter. Since natural concentrations of CO2 in soils are about 50 

times higher than in the atmosphere, no direct CO2 stimulus can be expected, but rather a 

plant-mediated effect through higher C inputs in soils. In most studies microbial biomass was 

higher under enriched atmospheric CO2, although the responses varied widely (Zak et al., 

2000; Sonneman and Wolters, 2005). Neutral or negative responses might be explained by 

increased grazing of protozoa, nematodes and collembola (Lussenhop et al., 1998; Yeates et 

al., 2003) or by limiting N availability (Diaz et al., 1993). The response of microbial 

respiration was more consistent and increased in 95 % of all studied ecosystems with a mean 

response of +28 %, which was attributed to an increased supply of organic substrates for 

microbial metabolism through greater plant growth under elevated atmospheric CO2 (Zak et 

al., 2000).  

Only a few studies have considered microbial community composition in the context of 

global climate change. In general, shifts in community structure were very subtle and rather 

occurred in specific components of the soil microbiota like e. g. Pseudomonas or Rhizobia 

(Marilley et al., 1999; Montealegre et al., 2000; Roussel-Delif et al., 2005). Methods targeting 

the overall microbial community by PLFA (phospholipid fatty analysis) or the eubacterial 
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community by 16S DGGE analysis found no or only very little significant differences 

(Montealegre et al., 2002; Ebersberger et al., 2004). 

The activity of soil microorganisms deserves special consideration, since changes in nutrient 

turnover and particularly N cycling will feedback on plant growth. Studies on important 

processes of the N cycle, however, showed contrasting results with no clear pattern apparent. 

Gross N mineralization in soils exposed to enriched atmospheric CO2 remained constant 

(Gloser et al., 2000; Richter et al., 2003), increased or decreased depending on the N status of 

the site (Hungate et al., 1997). Similarly, N immobilization displayed large increases as well 

as large declines under elevated atmospheric CO2 (Zak et al., 2000). With regard to 

nitrification, in most cases a tendency of decreasing activity was reported under elevated 

atmospheric CO2 (Barnard et al., 2004). Low oxygen pressures due to higher water contents 

in the soil and increased heterotrophic respiration might have negatively affected the strictly 

aerobic nitrifiers. The responses of denitrification processes will be addressed in more detail 

in the next chapter.  

 

3.2 Effects of global climate change on denitrification  

Denitrification is one of the most sensitive soil processes since it is regulated by a complex 

web of biotic and abiotic factors (Tiedje, 1988). The most important regulator in denitri-

fication is the partial pressure of oxygen. Denitrifiers generally exist in soils as aerobic 

heterotrophs and switch to nitrate as alternative electron acceptor only if oxygen is limiting. 

This process can also occur in aerobic soils at microsites, where oxygen consumption exceeds 

O2 diffusion, such as in the centre of soil aggregates (Højberg et al., 1994), or in the 

rhizosphere and other hot spots (Klemedtsson et al., 1987; Højberg et al., 1996). The 

mechanisms, through which oxygen affects denitrification, are the repression of enzyme 

synthesis and the inhibition of nitrate-reducing activity by means of a suppressed nitrate 

transport across the cytoplasmic membrane (Tiedje, 1988; Moir and Wood, 2001). At limiting 

oxygen concentrations, denitrification rates depend mainly on nitrate availability and carbon 

resources. The latter not only provides the electrons for the reduction of nitrogenous oxides 

but also fuels respiration which reduces oxygen concentrations thereby creating anoxic 

microenvironments. In soils, carbon availability is generally not limiting unless nitrate is 

present in excess. Thus, denitrification rates are highly dependent on nitrate availability and 
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show pronounced peaks after fertilizer application, as long as anoxic conditions are given 

(Clayton et al., 1997; Müller et al., 2004; Šimek et al., 2004).  

Denitrification in soils is of interest for several reasons: (i) it leads to a loss of plant available 

nitrogen, which is one of the most growth-limiting nutrients, (ii) N2O, a possible end product 

in the denitrification pathway, is known to contribute to the destruction of the ozone layer and 

to the greenhouse effect with a radiative force that is 300 times higher than for CO2 and (iii) it 

completes the global nitrogen cycle by returning fixed N2 to the atmosphere. Particularly the 

first two motives induced scientists to study denitrification under global climate change 

conditions, since its positive response could accelerate the warming of the planet. 

Most studies on the response of denitrification to elevated atmospheric carbon dioxide 

concentrations both in controlled environments and under field conditions revealed increased 

rates of activity (Smart et al., 1997; Ineson et al., 1998; Robinson and Conroy, 1999; Carnol 

et al., 2002; Baggs et al., 2003; Kettunen et al., 2005). They were explained by higher 

availability of root derived carbon or by higher water saturation in the soils due to higher 

water use efficiency of plants grown under enriched atmospheric carbon dioxide. 

However, contrasting results were reported by Phillips et al. (2001). He observed decreased 

denitrification rates under carbon dioxide enrichment associated with lower N availability 

during the summer period, whereas in winter, when plants were less active with lower uptake 

rates of nitrate, N2O fluxes increased. In other studies, limiting nitrate concentrations were 

considered to be responsible for the neutral effect of elevated atmospheric CO2 on 

denitrifying processes (Mosier et al., 2002; Martin-Olmedo et al., 2002; Barnard et al., 2004). 

 

3.3 Nitrate-reducing microorganisms as model community 

Nitrate-reducing microorganisms perform the first step in the denitrification pathway, i.e. the 

dissimilatory reduction of nitrate to nitrite. This particular functional group of soil organisms 

is (i) very diverse including members of the α-, β-, γ-, ε-proteobacteria, high and low GC 

Gram-positive bacteria and even Archaea, and (ii) one of the largest groups of soil 

microorganisms involved in the N cycle and estimated to constitute 10 to 50 % of the soil’s 

total bacterial community (Phillipot, 2005).  
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So far, only those species of nitrate reducers have been known which were cultivable. These 

were only a minor part of the total nitrate-reducing species. However, new molecular 

approaches now allow us to determine the diversity of the nitrate reducers based on the 

functional genes encoding the active site of either the membrane-bound (narG) or the 

periplasmic nitrate reductase (napA). The first primers for narG were designed by Gregory et 

al. (2000) based on a nested PCR design. A direct PCR approach was developed more 

recently and applied to a variety of different soils (Philippot et al., 2002; Chèneby et al., 2003; 

Mounier et al., 2004). Consistently, a high diversity of nitrate-reducing microorganisms in 

soils was revealed by constructing clone libraries and sequencing representative 

recombinants. In order to screen large sample sets a fingerprint technique, the RFLP 

(Restriction Fragment Length Polymorphism)-Analysis, was employed using the restriction 

endonuclease AluI.  

In a parallel attempt a nested PCR to amplify napA was developed (Flanagan et al., 1999). 

The periplasmic nitrate reductase is phylogenetically less widespread and has been detected 

only in Gram-negative bacteria up to date. Recent studies on the function of the NAP system 

point to an important role in redox balancing using nitrate as an ancillary oxidant to dissipate 

excess reductant, which functions also in the presence of oxygen (Gavira et al., 2002). Studies 

on enzyme expression revealed that the periplasmic nitrate reductase was predominantly 

expressed under aerobic growth conditions, whereas under anaerobiosis the NAR system 

prevailed (Richardson et al., 2001). The significance of the high physiological flexibility of 

this enzyme is still not completely understood.  

The studies presented here focused on the nitrate-reducing community containing the 

membrane-bound nitrate reductase, because (i) of its wider distribution compared to the NAP 

system, (ii) many strains possess both dissimilatory nitrate reductases, which reduces the 

additional information that could be obtained by analysing the molecular marker gene napA, 

and (iii) the existing primers for napA require a nested PCR, which we wanted to avoid since 

it greatly increases the PCR bias. 

The method to assess the corresponding enzyme activity, the dissimilatory nitrate reductase, 

was first published by Abdelmagid and Tabatabai (1987). The main principle of their 

approach was to incubate waterlogged soil samples with excess nitrate and measure 

colorimetrically the accumulated nitrite after 24 hours. Nitrite reduction was inhibited by 2,4-

dinitrophenol, which is a potent uncoupler of oxydative phosphorylation. The optimal 
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concentration of this inhibitor, however, varies widely depending on the soil, and has to be 

determined for every soil type in advance.  

To our knowledge, this is the first time that the analysis of the community structure of nitrate-

reducing microorganisms and their specific enzyme activity were combined in order to search 

for the relevant mechanisms governing their responses to environmental changes. As their 

performance under global climate change could be crucial for future trends we studied their 

response under a variety of changed environmental variables. 
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4 Outline of the thesis 

The overall goals of this thesis were (i) to explore responses of nitrate-reducing 

microorganisms towards environmental changes under global climate change at the level of 

community structure and enzyme activity, (ii) to identify important variables that drive the 

modifications and (iii) to deepen our understanding of the link between diversity and function 

of this specific group. Three independent experiments were performed in order to realize 

these objectives.  

In the first experiment, the impact of long-term elevated atmospheric carbon dioxide on the 

nitrate-reducing community was examined. The Swiss FACE (Free Air Carbon dioxide 

Enrichment) experiment offered the opportunity to study the combined effect of enriched 

carbon dioxide (600 ppmv versus 365 ppmv), plant type (non-leguminous versus leguminous) 

and nitrogen fertilisation level (56 g m-2 a-1 versus 14 g m-2 a-1) after 10 years of CO2 

fumigation. The FACE technology enabled direct investigations in the field with no 

modifications of the microclimate as observed in open top chambers. Our investigation was 

based on previous results, which revealed significantly higher N2O emissions under enriched 

atmospheric carbon dioxide. We aimed to verify whether these increased denitrification rates 

were accompanied by shifts in the community structure and/or in the activity of the nitrate-

reducing community. Since the main impact of elevated atmospheric CO2 was supposed to 

occur via plants, we analysed the rhizosphere of Lolium perenne and Trifolium repens grown 

in monoculture in the Swiss FACE experiment. 

As nitrate is one of the major controlling factors of denitrification we tested the susceptibility 

of the nitrate reducers and their activity towards excessive substrate supplies. We 

hypothesised that (i) the nitrate-reducing community structure was resistant towards 

fluctuating nitrate concentrations and (ii) nitrate reducers responded mainly by modulation of 

their enzyme activity to altered nitrate availabilities in oxygen limited soil environments. 

Therefore, we amended repacked soil cores with 0, 100 and 300 µg NO3
--N g-1 dry soil and 

incubated them under anoxic conditions for 3, 7 and 14 days at 25 °C in a dark chamber. 

Changes in pH, nitrate, nitrite, and ammonia concentrations were monitored and related to 

measured activities of nitrate reductase. Simultaneously, the structure of the nitrate-reducing 

community was assessed.  
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The third experiment addressed one of the most apparent consequences of global climate 

change, the retreat of glaciers. For more than 150 years the Rotmoosferner, a glacier in the 

Oetz valley (Austria), has been deglaciating, and left a foreland of 2 km in length. Our 

specific objectives were (i) to study the succession of nitrate-reducing microorganisms in this 

newly exposed terrain, (ii) to monitor the corresponding enzyme activity, and (iii) to identify 

the most important environmental factors such as organic carbon, nitrate, water content and 

pH governing any changes. The experimental site of the glacier foreland provided, thus, a 

static model for dynamic processes. Since microbial activity has been found in previous 

studies to be highest in rhizospheric soil, we focused on the rhizosphere flora of Poa alpina, 

which is a perennial grass and occurred across all successional stages.  

The manifold aspects of global climate change included in this work gave a broad view on the 

response of nitrate-reducing microorganisms to altered environmental conditions as they are 

forecasted for the 21st century. Simultaneously, they provided detailed insight in the 

mechanisms governing the community structure and the function of this particular group of 

soil microorganisms. 
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Abstract 

In June and October 2002, rhizosphere soil was sampled in monocultures of Lolium perenne 

and Trifolium repens at two different nitrogen fertilisation levels (14 g N m-2 a-1 and  

56 g N m-2 a-1) and under two pCO2 atmospheres (360 ppmv and 600 ppmv) at the Swiss 

FACE (Free Air Carbon dioxide Enrichment) site. Directly extracted soil DNA was analysed 

via RFLP-PCR by use of degenerated primers for the narG gene encoding the active site of 

the membrane-bound nitrate-reductase. The corresponding enzyme activity of the nitrate 

reductase was determined colorimetrically after 24 hours of anaerobic incubation. The narG 

RFLP-PCR fingerprints showed that the structure of the nitrate-reducing community was 

primarily affected by season and pH of the sampling site, whereas CO2 enrichment, plant 

species or fertiliser treatment had no apparent effect. In contrast, the nitrate reductase activity 

responded to N fertilisation, CO2 enrichment and plant species in October, whereas in June 

drought stress most likely kept the enzyme activity at a low level in all treatments. 

Apparently, the respiratory nitrate-reducing community adapted to different treatments 

primarily by altered enzyme activity.  
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Introduction 

Increasing concentrations of atmospheric pCO2 have a strong impact on terrestrial eco-

systems, leading to higher C assimilation rates in plants and, hence, to greater biomass 

production. Particularly root growth is stimulated under elevated atmospheric pCO2 [1-3]. 

This has been attributed to nutrient limitation inducing plants to invest more carbohydrates 

into below-ground growth and to release root exudates in order to utilise soil resources more 

effectively. 

Although soil microorganisms are not directly influenced by atmospheric carbon dioxide 

enrichment because the CO2 concentration in soil is already more than 50 times greater than 

in the atmosphere, there may be a plant-mediated influence on soil microorganisms due to 

altered rhizodeposition and root exudation. In fact, several authors have shown shifts in the 

composition of soil microbial communities under elevated atmospheric pCO2, with those 

bacteria colonising the rhizosphere and the rhizoplane-endorhizosphere being most affected 

[4, 5]. As microorganisms are responsible for most soil processes, they play a key role in the 

response of ecosystems to CO2 enrichment.  

Special attention has been focused on the denitrification pathway, which can release the 

greenhouse gas N2O as a possible end product and thereby enhance climate change [6]. 

Denitrification under elevated pCO2 has therefore been investigated in various studies [7-9]. 

A significant increase in the denitrifying activity under CO2 enrichment has consistently been 

reported for controlled systems as well as under field conditions. Higher denitrification rates 

under elevated levels of atmospheric pCO2 may have several causes: (1) Higher growth of 

fine roots containing large amounts of non-structural carbohydrates, along with enhanced root 

exudation, may enrich the rhizosphere with easily decomposable carbon sources [10].  

(2) Increased soil and microbial respiration may reduce the oxygen content and, hence, create 

anoxic sites [1]. (3) Higher water use efficiency in plants grown under elevated pCO2 are 

likely to increase the soil water content and thus to constrain oxygen diffusion, facilitating the 

occurrence of anaerobic conditions [11]. 

Our study focused on the first step in the denitrification pathway, the reduction of nitrate to 

nitrite, which is catalyzed by a periplasmic or a membrane-bound nitrate reductase. The nitrite 

produced can be then reduced to gaseous nitrogen by denitrification or to ammonium by 

DNRA (Dissimilatory Nitrate Reduction to Ammonium), which is of minor importance in 

soil. For this process both the molecular technique to target the nitrate-reducing community 
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and the method to study the specific enzyme activity were available. The first step of 

denitrification is usually catalysed by the membrane-bound nitrate reductase, which is 

widespread among taxonomically diverse nitrate reducers [12]. Therefore, the functional gene 

narG encoding the catalytic subunit of the membrane-bound nitrate reductase has been used 

as molecular marker in this study. Adequate primers have been described to amplify a narG 

fragment of approx. 650 bp by polymerase chain reaction and have been successfully applied 

to environmental samples before [13, 14]. The objective of our study was to test whether the 

nitrate-reducing community responds to long-term elevated atmospheric pCO2. We addressed 

this issue by using the Swiss FACE facility that had been operating for 10 years at the time of 

sampling. As we expected an indirect impact of atmospheric CO2 enrichment on microbial 

community structure via the plants, we focused on the rhizosphere of the two examined 

grassland species, Lolium perenne and Trifolium repens.  

 

Material and Methods 

Experimental site and soil sampling 

To study the long-term effect of elevated pCO2 on model grassland ecosystems, the Swiss 

FACE experiment was established in 1993 at the Swiss Federal Institute of Technology 

(ETH) field station at Eschikon (47°27’N and 8°41’E, 550 m above sea level) near Zurich, 

Switzerland. The soil was a fertile eutric cambisol with 31 % sand, 38 % silt and 31 % clay in 

the mineral fraction [15]. The organic matter content varied from 2.7 % to 5.1 % and the pH 

(KCl extracted) ranged from 4.1 to 7.1 (10 cm top soil), with extreme low values in the third 

block. Three blocks were set up, each consisting of two rings (18 m diameter), one fumigated 

with CO2 to maintain elevated levels of pCO2 (600 ppmv) and one control ring without 

fumigation (360 ppmv pCO2). The CO2 fumigation was operated during daylight throughout 

the growing season from March to November at air temperatures above 5 °C. Over the whole 

experimental period, the 1-min average was 600 ppmv ± 10 % within 90-94 % of the 

fumigated time for the three rings with elevated pCO2 [2]. 

Within each ring, subplots (2.8 m x 1.9 m) were distributed randomly. In this study the 

following treatments were investigated: Trifolium repens cv Milkanova in monoculture and 

Lolium perenne cv Bastion in monoculture, each at low N (14 g N m-2 a-1) and high N 
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fertilisation level (56 g N m-2 a-1). Nitrogen was applied as NH4NO3 at the start of the growing 

season and after each cut. In 2002 the above-ground biomass was harvested four times.  

The experimental plots were sampled in June and October 2002, directly after defoliation. 

Eight soil cores (2.5 cm diameter, 10 cm depth) per plot were mixed together to form one 

composite sample. From each soil sample the rhizospheric soil was recovered by picking out 

the visible roots. The soil still adhering to the roots after gentle shaking was considered 

rhizospheric soil and stored at -25 °C prior to further analysis. 

 

DNA extraction and PCR amplification 

DNA was extracted from 0.3 g soil using the FastDNA Spin Kit for soil (BIO101, Qbiogene), 

following the protocol of the manufacturer. The quantity of the DNA extractions was checked 

using a BioPhotometer (Eppendorff). A narG fragment of 650 bp length was amplified using 

the primers narG1960f and narG2650r [13]. Three independent PCR amplifications were 

performed for each sample in a total of 50 µl containing 1x PCR buffer, 200 µM of each 

deoxyribonucleoside triphosphate, 500 pM of each primer, 2 U of Taq polymerase, and 10 ng 

of soil DNA. AmpliWax (Applied Biosystems) was used to facilitate a hot start PCR. The 

cycling conditions of the PCR were as follows: an initial denaturation step at 95 °C, followed 

by a “touch down” PCR with a denaturation step at 94 °C for 30 s, primer annealing at 59 °C 

for 30 s and elongation at 72 °C for 45 s. During the first 9 cycles, the annealing temperature 

was decreased by 0.5 °C each cycle until it reached 55 °C. The additional 26 cycles were 

performed at an annealing temperature of 55 °C. Cycling was completed by a final elongation 

step at 72 °C for 10 min. The size and presence of the amplification products were checked by 

electrophoresis in a 1.5 % agarose gel.  

 

RFLP analysis and clone library construction 

For purification, the narG PCR products belonging to the same sample were pooled and then 

run on a 2 % agarose gel for 3 h at 100 Volt. Gel slices containing the amplified narG 

fragment were excised and DNA was recovered using the Qiaex II kit (Qiagen) as specified 

by the manufacturer with one slight modification: For higher DNA yield, elution time was 

extended to 30 min. Purified PCR products were quantified in a 1.5 % agarose gel according 

to the standardised DNA quantities of the Smart Ladder SF (Eurogentec). Aliquots of same 
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quantities of the purified narG PCR product were digested by AluI restriction enzyme at 

38 °C for 12 h and separated by electrophoresis on an 8 % polyacrylamide gel for 15 h at 

8 mA. After staining with SYBER green II (Molecular Probes) the narG RFLP-fingerprints 

were scanned with a Phospho Imager.  

Aliquots of the purified narG PCR products from two samples (June, Lolium perenne, low N, 

600 ppmv pCO2 and 360 ppmv pCO2) were cloned using the pGem-T Easy Vector System 

(Promega) according to the manufacturer’s instructions. Approximately 90 transformants per 

sample were randomly picked and the inserted narG fragment was amplified by transferring 

small aliquots of cells to PCR mixtures containing the primers T7 and SP6 and thermal 

cycling. PCR products were digested by the restriction endonuclease AluI as described above. 

Restriction fragments were resolved by electrophoresis in a 3 % small fragment agarose gel. 

Recombinants with identical restriction patterns were grouped together into RFLP types and 

phylogenetic diversity was estimated by Analytic Rarefaction Version 1.3. (Stratigraphy 

laboratory, University of Georgia). 

 

Sequencing and phylogenetic alignment 

Thirty-nine representative recombinants of the various RFLP types were sequenced using the 

DTCS-1 kit (Beckman Coulter) and a Ceq 2000 XL sequencer (Beckman Coulter) according 

to the manufacturer’s instruction. Vector primers T7 and SP6 were used for sequencing 

reactions. The deduced protein sequences of narG genes were aligned using the CLUSTALX 

software version V.1.0.1 [16]. The phylogenetic tree based on amino acids alignments 

(approximately 210-220 amino acids), was constructed by neighbour-joining method with 100 

replicate trees. NarG from the Archea Pyrobaculum aerophilum was used as outgroup.  

 

Nucleotide accession numbers 

The sequences obtained were deposited in the GenBank sequence database under accession 

numbers AY453347 to AY453384. 
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Determination of potential nitrate reductase activity 

The potential activity of the nitrate reductase was determined by anaerobic incubation of soil 

following a modified protocol of Kandeler [17]. Briefly, 0.2 g rhizospheric soil was weighed 

in five replicates into 2.0 ml reaction tubes. 33.3 µg of 2,4-dinitrophenol per g soil (fresh 

weight) were added to inhibit the nitrite reductase. After 24 h incubation in 1 mM KNO3 in a 

total volume of 1 ml at 25 °C in the dark, the soil mixture was extracted with 4 M KCl and 

centrifuged for 1 min at 1400 x g. The accumulated nitrite in the supernatant was determined 

by colorimetric reaction. 

 

Statistics 

narG RFLP-fingerprints were analysed by the software package Quantity One® (Version 

4.2.1) for image analysis, and a band-matching table was generated containing the molecular 

weight and the trace of each detected band normalised by the molecular weight marker. Based 

on the band-matching table, bands with similar molecular weights were grouped together in 

band classes. A cluster analysis was performed on the trace of the respective band class with 

the statistic software package SAS 8.0. Ward’s algorithm was selected for the clustering 

method. The environmental variables were ranked according to their importance by a 

canonical correspondence analysis (CCA) in CANOCO (Version 4), a software for canonical 

community ordination [18]. The statistical significance of the variables was tested by a Monte 

Carlo permutation test carrying out 1000 permutations restricted by the split-plot design.  

The data of the enzyme activity of the nitrate reductase were transformed by natural logarithm 

and analysed as a split-plot design with repeated measurements using the mixed model 

procedure in the SAS 8.0 statistical analysis package.  
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Results 

narG fingerprints 

Amplification of the narG genes with degenerated primers yielded in all samples a band of 

the expected size (approximately 650 bp, Fig. 5.1). Restriction analysis of the purified narG 

PCR products of rhizosphere soil samples from June and October 2002 showed no difference 

between the two pCO2 levels (Fig. 5.2 and Fig. 5.3). In contrast, the narG RFLP-fingerprints 

are grouped according to the sampling date in two separate clusters (Fig. 5.3).  

 
1636 

 
1018 

 
 

507 

Fig. 5.1: Amplified narG products from rhizospheric soil sampled under Trifolium repens in June 
2002, lane 1: Molecular weight marker 1 kb, lane 2: negative control, lanes 3-8: PCR products from 
samples obtained under high pCO2 levels, with low and high N-fertilisation, lanes 9-14: PCR products 
from samples obtained under low pCO2 levels, with low and high N-fertilisation. 

 

Whereas a high variation in the composition of the nitrate reducers was recorded within the 

soils sampled in October, the nitrate-reducing community structure in June appeared to be 

rather stable over all treatments. Only four narG fingerprints obtained from June samples 

were grouped apart from the others, i.e. three samples from the third ring under elevated pCO2 

and the second replicate of Trifolium repens with high nitrogen fertilisation and no CO2 

fumigation (Fig. 5.3, cluster 5). These differences in narG RFLP-fingerprints corresponded to 

lower pH values (pH≤  5).  
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Fig. 5.2: RFLP-fingerprints of the nitrate-reducing community under Trifolium repens in June 2002; 
lanes 1-3: elevated pCO2, low nitrogen fertilisation, replicates 1, 2, and 3, lanes 4-6: ambient pCO2, 
low nitrogen fertilisation, replicates 1, 2, and 3, lanes 7-9: elevated pCO2, high nitrogen fertilisation, 
replicates 1, 2, and 3, lanes 10-12: ambient pCO2, high nitrogen fertilisation, replicates 1, 2, and 3, 
lanes 13: Molecular weight marker VIII (Roche). 
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Fig. 5.3: Dendrogram of narG RFLP-fingerprints from rhizospheric soil under elevated (+) and 
ambient (-) pCO2 sampled under Lolium perenne (L) and Trifolium repens (T) with two N-fertilisation 
levels (14=14 g N m-2 a-1, 56=56 g N m-2 a-1) in June (S=summer) and October (A=autumn) 2002. pH 
values of the corresponding bulk soil are given in the second column. 
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Tab. 5.1: Ranking environmental variables in importance by their marginal (left) and conditional 
(right) effects on the nitrate-reducing community, as obtained by forward selection.  
 

Marginal Effects     Conditional Effects     

Variable λ1 P  Variable λa P cum (λa) 

season 0.19 0.005  season 0.19 0.005 0.19 

pH 0.18 0.002  pH 0.18 0.002 0.37 

N fertilisation 0.06 0.005  pCO2 0.05 0.191 0.42 

plant species 0.04 0.219  plant species 0.03 0.264 0.45 

pCO2 0.03 0.942  N fertilisation 0.03 0.440 0.48 
 
λ1: fit or eigenvalue with one variable only; λa: additional fit or increase in eigenvalue; 
cum (λa): cumulative total of eigenvalues;  
P = significance level of the effect, as obtained with a Monte Carlo permutation test under the null 
model with 1000 random permutations. 
 
 

The ranking of the environmental variables according to their importance in canonical 

correspondence analysis confirmed, that mainly season and pH affected the composition of 

the nitrate-reducing community explaining 37 % of the variance observed within the nitrate-

reducing community (Tab. 5.1).  

 

 

Phylogenetic analysis 

To verify the identity of the amplified gene fragments we established a clone library based on 

two samples, i.e. PCR products from soil sampled under Lolium perenne in June 2002 with 

low nitrogen fertilisation under ambient and elevated pCO2 levels, respectively. One hundred 

and sixty recombinants were screened by RFLP and grouped into narG RFLP types according 

to their restriction profile. We obtained 45 different narG RFLP types, with one dominant 

type accounting for almost 30 % of all analysed clones (Fig. 5.4). 

 



5 The nitrate-reducing community under long-term elevated CO2 31 
 

 
 
 

0

10

20

30

40

50

1 6 11 16 21 26 31 36 41

narG  RFLP types

N
um

be
r o

f c
lo

ne
s 

0

10
20

30
40

50

0 40 80 120 160
Number of clones analysed

N
um

be
r o

f R
FL

P
  t

yp
es

 o
bs

er
ve

d B 
A 

 

Fig. 5.4: (A) Distribution of narG RFLP types in the rhizosphere of Lolium perenne in June 2002 with 
low N-fertilisation under 1) ambient pCO2 (grey bar) and 2) elevated pCO2 (black bar); (B) Rare-
faction curve of all 160 analysed clones. 

 
 

Rarefaction analysis estimating the diversity at a given number of studied individuals 

demonstrated that the 160 clones screened were still insufficient to cover the entire diversity 

within the nitrate-reducing population; hence, a greater number of analysed clones would 

detect even higher diversity. Representatives of different RFLP types were sequenced and 

their identity verified. One clone was dismissed because there was only poor sequence 

homology to narG, but all other clones were identified as narG genes. The deduced amino 

sequences were aligned according to their phylogeny (Fig. 5.5). Twenty-six sequences of 

known organisms were included in the phylogenetic analysis in addition to the 38 sequences 

obtained from our clones. Most of the recombinants clustered together either with NarG of 

Actinomycetes, associated to the gram-positive bacteria, or with NarG of Brucella melitensis 

biovar suis, an α-proteobacteria. In addition to this large cluster, two more sequences 

appeared within the gram-negative bacteria: clone F29 was related to NarG of the β-

proteobacteria Ralstonia sp. and Burkholderia pseudomallei, whereas F23 fell outside the 

NarG cluster of the β-and γ-proteobacteria. Furthermore, two clones were found to be close to 

Thermus thermophilus.  
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Fig. 5.5: Phylogenetic analysis of deduced protein sequences from 38 narG clones. The corresponding 
RFLP types are indicated in brackets and bold after the clone number. Only bootstrap values above 
75 % are given.  
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Nitrate reductase activity 

The results of the potential nitrate reductase activity are presented in Fig. 5.6. In June, the 

activity in all treatments was at the same level, with spatial variability being very high. 

Neither CO2 enrichment nor N fertilisation or plant species had an effect in June. In contrast, 

enzyme activity in October responded strongly to elevated pCO2. In the rhizosphere of Lolium 

perenne under low nitrogen fertilisation the nitrate reductase activity was reduced by 84 % 

(P=0.008), under high nitrogen fertilisation, however, this effect was not significant. 

Similarly, the decrease in the enzyme activity was less pronounced and statistically not 

significant in the rhizosphere of Trifolium repens.  

 

 

Fig. 5.6: Data of the nitrate reductase activity in µg NO2
--N g-1 dry soil d-1 in rhizospheric soil of  

Trifolium repens and Lolium perenne under ambient (grey bars) and elevated (black bars) atmospheric 
pCO2 sampled in A) June and B) October 2002. Low N corresponds to annual N-fertilisation rates of 
14 g N m-2 a-1 and high N to 56 g N m-2 a-1. 

 

Analysis of variance for both dates combined showed that the amount of nitrogen fertiliser 

was primarily responsible for altering nitrate reductase activity significantly (P=0.016), 

whereas the plant species and pCO2 levels had only marginally significant effects, with 

P=0.059 and P=0.058 (data not shown). Initially, also pH was included in the model as 

covariable, but as it proved to be of no statistical significance (P=0.498), it was disregarded in 

all further analysis. Due to the significant interaction of pCO2 and date (P=0.040), we 
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calculated the ANOVA statistics for each date separately. In June no significant effect was 

found (data not shown). In October all three main factors significantly affected nitrate 

reductase activity, with the N level again being most significant, whereas interactions were 

negligible (Tab. 5.2).  

 

Tab. 5.2: Results of analysis of variance (procedure MIXED in SAS software package) of nitrate 
reductase activity in the rhizosphere of Lolium perenne and Trifolium repens at two N fertilisation 
levels and under two levels of atmospheric pCO2 sampled in October 2002. 

 

Source of variance Significance P value 

block 

pCO2

plant species 

pCO2 x plant species 

N fertilisation 

pCO2 x N fertilisation 

N fertilisation x plant species 

pCO2 x plant species x N fertilisation 

n.s. 

* 

* 

n.s. 

** 

n.s. 

n.s. 

n.s. 

0.1543 

0.0246 

0.0361 

0.1914 

0.0044 

0.3403 

0.4461 

0.7417 
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Discussion 

1. Factors controlling the structure of the nitrate-reducing community 

In our study, 48 RFLP-fingerprints of narG PCR products were analysed with four 

experimental factors: atmospheric pCO2, plant species, nitrogen fertilisation and sampling 

date. Both CO2 levels yielded similar band patterns (Fig. 5.2 and Fig. 5.3). Elevated 

atmospheric pCO2 apparently did not affect the composition of the nitrate-reducing 

community in the rhizosphere of Lolium perenne and Trifolium repens. Similar results were 

obtained recently in the Swiss FACE experiment for Pseudomonas possessing the narG gene 

in the rhizosphere of Lolium perenne under low N fertilisation [19]. Also, Rhizobia 

leguminosarum biovar. trifolii collected from Trifolium repens under low N at the Swiss 

FACE site, showed no response to elevated atmospheric pCO2 in June 2002 (Stöber, personal 

communication). These results contradict earlier observations in the Swiss FACE experiment 

where shifts were detected within the Rhizobia strains after 3 years of fumigation [20]. 

Moreover, Marilley et al. [5] detected major alterations in the composition of the rhizosphere 

bacterial community, with the frequency of Pseudomonas ssp. being reduced under Trifolium 

repens and enhanced under Lolium perenne after 5 years of elevated pCO2. We assume that in 

the first years of the Swiss FACE, the conversion of ploughed field into perennial grassland 

provoked a C- and N-sink [21, 22]. Within this labile system, atmospheric CO2 enrichment 

had a significant impact on C- and N-dynamics of the soil and hence on soil microorganisms. 

After 10 years of perennial grassland, however, soil organic matter pools were approximately 

replenished and effects of the CO2 treatments on soil microbial communities became 

negligible.  

Our experiment did show, however, that sampling date clearly affected the composition of the 

nitrate-reducing microorganisms (Tab. 5.1). Seasonal shifts in the structure of microbial 

communities in soils are well known [23]. They have been attributed partially to changes in 

water content and soil mineral N-availability [24]. As the period preceding sampling in June 

was rather hot (>20 °C mean daily air temperature) and almost no rain had fallen for more 

than two weeks, we assume that the low water potential in the soil matrix determined the 

homogeneous composition of the narG community. In October, however, the composition of 

narG communities in the rhizospheres of Lolium perenne and Trifolium repens differed much 

more than in June. As the soil was sampled after a rather wet period (130 mm precipitation 
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within 3 weeks), the conditions within the rhizosphere were probably more heterogeneous 

than in June. 

After the season, the pH effect was ranked at the second position in the canonical 

correspondence analysis accounting for 18 % of the variance (P=0.002). Since most 

microorganisms have a specific pH optimum, as a matter of course also the functional group 

of nitrate reducers responded to differences in pH. In contrast to other studies, the N fertiliser 

level had no effect [25]. This may be explained by the rather high supply of nitrogen fertiliser 

even in plots with low N level. Equally, the plant species did not select for specific 

microorganisms in their rhizospheres on a larger scale. Even though rhizospheric soil samples 

obtained from Trifolium repens dominated cluster no. 2 and cluster no. 4 contained only 

samples from the rhizosphere of Lolium perenne, plant species was no significant 

environmental variable in the canonical correspondence analysis. 

 

2. Response of nitrate reductase activity to elevated atmospheric pCO2

The corresponding enzyme activity – the nitrate reductase activity – responded to variations 

in atmospheric pCO2, plant species and N level, yet not in June. During June sampling, the 

nitrate reductase activity was probably limited by the low water potential in the soil matrix 

(approx. 18 % water content). N2O fluxes determined in situ in experimental plots of Lolium 

perenne directly after the June sampling confirmed that, at this time, denitrification activity 

was very low. Only after fertiliser application and rainfall events was N2O emitted in plots 

with high N supply [26]. The high spatial variability of the observed nitrate reductase activity 

is in line with the heterogeneous distribution of denitrifying activity reported for agricultural 

soils [27, 28].  

In October, however, nitrate reductase activity responded strongly to elevated pCO2. Contrary 

to our hypothesis that higher amounts of readily available C and lower oxygen potential in the 

rhizosphere would boost nitrate respiration, we observed a reduced nitrate reductase activity. 

This finding contrasts with other studies, which show that elevated atmospheric pCO2 favours 

potential denitrification, whereby these studies attribute higher denitrification rates to 

enhanced C availability under high atmospheric pCO2 levels [7, 29]. Martin-Olmedo et al. 

[30], however, deduced from stochiometric calculations that root-derived C has only a minor 

effect on denitrifying activities, as has also been reported by Robinson [8]. With respect to the 
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oxygen potential, after the wet period preceding the soil sampling, apparently no differences 

in pO2 existed between the CO2 treatments.  

On the October sampling date, we rather suggest that nitrate availability was the dominant 

factor controlling nitrate reductase activity. Apparently, nitrate availability in the rhizosphere 

of Lolium perenne and Trifolium repens depended on N-fertilisation rate, but most likely was 

also affected by CO2 treatment and plant species. The lowest nitrate reductase activity was 

detected in the rhizosphere of Lolium perenne at elevated atmospheric pCO2 and low N 

fertilisation (Fig. 5.6). Since this non-legume plant forms greater root biomass than legumes 

under N-limiting conditions that are aggravated under elevated pCO2 [31], N-immobilisation 

by root-decomposing microorganisms probably reduced nitrate availability, particularly at 

elevated pCO2. This conclusion is supported by Richter et al. [32], who detected a trend to 

increased N immobilisation under CO2 enrichment in the Swiss FACE experiment for Lolium 

perenne. In contrast, N limitation for the nitrate-reducing community was less pronounced 

under Trifolium repens due to symbiotic N-fixation of this legume. Moreover, roots of 

Trifolium repens have a higher N content compared to Lolium perenne, lowering the 

biosynthetic need for N during decomposition.  

 

3. Relationship between diversity of the nitrate-reducing community and its activity 

Linking functional communities and their respective activity is still a very new field in 

molecular ecology. Nevertheless, this approach is crucial for our understanding of how soil 

ecosystems function and respond to altered environmental factors. We infer from our data that 

nitrate-reducers adapt to different CO2 environments by regulating their enzyme activity. 

However, in our study, it is unfortunately difficult to relate accurately structure and activity of 

the nitrate reducing community since: (i) diversity of only a part of the nitrate reducing 

community was studied because nitrate reducing bacteria having the periplasmic nitrate 

reductase or having a not yet identified nitrate reductase were not taken into account and (ii) 

nitrate reductase activity can be influenced not only by the diversity of the corresponding 

functional community but also by its density which was not determined in this study. 

In conclusion, further developments are necessary to target in the future all the bacteria 

genetically able to reduce nitrate to nitrite but also to determine their density for a better 

understanding of the relation between structure/density and activity. 
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Abstract 

To study the effects of short-term fluctuation of nitrate concentrations on the nitrate-reducing 

community, repacked soil cores were amended with 0, 100 and 300 µg NO3
--N g-1 dry soil 

and incubated for 3, 7 and 14 days. The nitrate reductase activity was determined by 

colorimetric measurement of the accumulated nitrite after 24 h of anaerobic incubation. 

Simultaneously, the community structure of nitrate-reducing microorganisms was 

characterised by RFLP-PCR using the functional gene narG, which encodes the catalytic site 

of the membrane-bound nitrate reductase. The community structure remained constant over 

the experimental period indicating that this functional community is characterised by a high 

resistance towards fluctuating nitrate concentrations. The nitrate reductase activity responded 

sensitively to anaerobic conditions after onset of the experiment. Decreases in nitrate 

concentration as well as increasing pH values indicated a very active nitrate-reducing 

community under nitrate addition. Surprisingly, inhibition of nitrite reductase by 2,4-dinitro-

phenol, which is a precondition for the measurement of nitrate reductase activity, could not be 

achieved in the 100 µg NO3
--N treatment despite increased concentrations of the inhibitor. 

However, comparison of the nitrate reductase in the control and the 300 µg NO3
--N treatment 

showed a significant increase in the latter at day 3. No further differences were observed at 

days 7 and 14 which suggest a high resilience of the nitrate reductase activity.  
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Introduction 

Altered environmental conditions might cause either changes in the activity status of soil 

microorganisms or shifts in their community structure. The nitrate-reducing community, 

which is responsible for the first step in denitrification, presents a model functional 

community to study the prevailing effect, since methods to explore the community structure 

as well as to determine the corresponding enzyme activity have been well established 

(Philippot et al., 2002; Chèneby et al., 2003; Kandeler, 1995). By analysis of the functional 

gene narG, which encodes the catalytic site of the membrane-bound nitrate reductase, 

rhizosphere effects as well as effects of pH and season on the structural composition were 

observed (Philippot et al., 2002; Deiglmayr et al., 2004; Enwall et al., 2005). In contrast, the 

major factors controlling nitrate reductase activity were total organic carbon content and 

nitrate availability (Reddy and Reddy, 1998; Deiglmayr et al., 2004). None of the studies up 

to date revealed any effect of nitrate availability on the structure of nitrate-reducing 

microorganisms in soils despite its pivotal role in controlling the level of enzyme activity. 

Therefore this study focused on the effect of extreme nitrate addition to nitrogen limited soils 

in order to verify the resistance of the nitrate-reducing community structure towards 

fluctuating nitrate concentrations. We aimed to test the hypothesis that nitrate reducers 

respond mainly by regulation of their enzyme activity to altered nitrate availability in oxygen 

limited soil environments, because low growth rates under anaerobiosis don’t allow 

modulation of the community structure. 

 

Material and Methods 

Experimental design 

For this purpose, repacked soil cores (100 cm³) were incubated with nitrate added in form of 

KNO3
- according to 100 and 300 µg NO3

--N g-1 dry soil, which is equivalent to 21 and 64 mM 

nitrate in the soil water, respectively. The control was treated in the same way but without any 

nitrate addition. The soil, a loamy Luvisol with 1.1 % organic carbon and a pH of 5.6, was 

collected from permanent grassland at the University Hohenheim (0-10 cm) in February 2004. 

The soil cores, compressed to 1.4 g dry soil cm-3 and adjusted to 26 % of water content cor-

responding to approximately 98 % water filled pore space (WFPS), were kept in a dark 

chamber at 25 °C. Drying was prevented by moist cloths, which was checked routinely. After 
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3, 7 and 14 days three replicates of each treatment were sampled; nitrate and ammonia were 

extracted immediately with 0.0125 M CaCl2 and kept at -20 °C prior analysis.  

 

DNA extraction and PCR amplification 

DNA was extracted from 0.3 g soil using the FastDNA Spin Kit for soil (BIO101, Qbiogene), 

following the protocol of the manufacturer. A narG fragment of 650 bp length was amplified 

using the primers narG1960f and narG2650r (Philippot et al., 2002). Three independent PCR 

amplifications were performed for each sample in a total of 50 µl containing 1x PCR buffer, 

200 µM of each deoxyribonucleoside triphosphate, 1.25 mM of each primer, 2 U of Taq 

polymerase, and 20 ng of soil DNA. The cycling conditions of the PCR were as follows: an 

initial denaturation step at 95 °C, followed by a pause to facilitate a manual hot start. After 

adding the Taq polymerase the PCR was continued by a “touch down” with a denaturation 

step at 94 °C for 30 s, primer annealing at 59 °C for 30 s and elongation at 72 °C for 45 s. 

During the first 9 cycles, the annealing temperature was decreased by 0.5 °C each cycle until 

it reached 55 °C. The additional 26 cycles were performed at an annealing temperature of 

55 °C. Cycling was completed by a final elongation step at 72 °C for 10 min. The size and 

presence of the amplification products were checked by electrophoresis in a 1.5 % agarose 

gel.  

 

narG RFLP analysis  

Purified PCR products were digested by AluI restriction enzyme at 37 °C for 2 h and 

separated by electrophoresis on an 8 % polyacrylamide gel for 15 h at 8 mA. After staining 

with SYBER green II (Molecular Probes) the narG RFLP-fingerprints were scanned with a 

Phospho Imager. To verify the identity of the amplicons, aliquots of purified narG PCR 

products were cloned using the pGEM-T Easy Vector System (Promega) according to the 

manufacturer’s instructions and sequenced using the DTCS-1 kit (Beckman Coulter) and a 

Ceq 2000 XL sequencer (Beckman Coulter). The sequences obtained were deposited in the 

GenBank sequence database under accession numbers DQ248877 to DQ248883.  
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Determination of potential nitrate reductase activity 

Nitrate reductase activity was determined by anaerobic incubation of soil following a 

modified protocol (Deiglmayr et al., 2004). Briefly, 0.2 g soil was weighed in five replicates 

into 2.0 ml reaction tubes. To inhibit nitrite reductase activity, 7.5 µg of 2,4-dinitrophenol per 

g soil (fresh weight) were added. After 24 h incubation in 1 mM KNO3 in a total volume of 

1 ml at 25 °C in the dark, the soil mixture was extracted with 4 M KCl and centrifuged for 

1 min at 1400 x g. The accumulated nitrite in the supernatant was determined by colorimetric 

reaction.  

narG RFLP fingerprints were analysed by the software package Quantity One® (Version 

4.2.1) for image analysis. A principal component analysis (PCA) was performed using 

CANOCO (Version 4) in order to explore shifts within the narG fingerprints (ter Braak and 

Šmilauer, 1998). The data of the enzyme activity of the nitrate reductase were evaluated by 

ANOVA in the SAS 8.0 statistical analysis package. Data were log-transformed to obtain a 

normal distribution as verified by Shapiro-Wilk test (P=0.0008). Significance was accepted at 

the P≤  0.05 level of probability.  

 

Results and Discussion 

Responses of the nitrate-reducing community structure 

The narG RFLP-fingerprints of the different nitrate treatments had highly similar band 

patterns over the 14 days of the experiment with only some variations in bands intensity 

(Fig. 6.1). The diagram of PCA reflected this result by an arbitrary scattering with no 

separation of the different nitrate treatments (Fig. 6.2). Identity of PCR products used to 

generate the RFLP-fingerprints has been verified by cloning and sequencing. The deduced 

amino sequences exhibited identities of 64 % to 87 % with NarG sequences from known 

strains. Apparently, even extreme additions of nitrate didn’t result in a significant response on 

community level. Yet, we can not exclude that minor changes in community structure 

occurred, which were not detected by narG fingerprint analysis.  
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Day 0 Day 3 Day 7 Day 14 

a b c  a b c a b c a b c

 

Fig. 6.1: Selected narG fingerprints from an incubation experiment with no (a), 100 (b) and 300 (c) 
µg NO3

--N g-1 dry soil sampled at day 0, 3, 7 and 14. 

 

Possibly, the incubation time of two weeks was too short to see any shifts by genomic DNA 

analyses. However, Mounier et al. (2004) detected visible changes of narG fingerprints within 

two weeks after mucilage amendment and freezing-thawing resulted in shifts in 16S rDNA 

patterns after only six days (Sharma, 2006). Moreover, since the incubation time was long 

enough to observe the reduction of virtually all nitrate added, an extension of incubation time 

would have been of little benefit. Previous studies on the impact of long-term N-fertilisation 

on nitrate-reducing microorganisms revealed no changes in the composition of the nitrate-

reducing community except if pH changes were associated with the application of different 

N-fertilisers (Enwall et al., 2005). However, in a study of culturable nitrate-reducers Nijburg 

et al. (1997) found that NO3
- availability influenced the community structure in sediments 

after 69 days of incubation at nitrate concentration exceeding continuously 50 mM. 
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Fig. 6.2: Principal component analysis of narG fingerprints from an incubation experiment with no 
(open symbols), 100 (grey) and 300 (black) µg NO3

--N g-1 dry soil at day 0 (○), day 3 (▲), day 7 (♦) 
and day 14 (■). 

 

Yet, such conditions are unlikely to occur in agricultural managed lands. Single events of high 

nitrogen supply as in urine patches of grazing cattle with estimated 510 kg N ha-1 (Whitehead, 

2000) or fertilizer applications are more frequent, which result in a transient increase of N20 

and/or N2 emissions under oxygen limiting conditions (e. g. Clayton et al., 1997).  
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Responses through changes in nitrate reductase activity 

In the control treatment the nitrate reductase activity significantly increased after 3 days and 

declined slightly after two weeks (Fig. 6.3). Under extreme nitrate additions of 300 µg NO3
--

N g-1 dry soil higher activities of nitrate reductase than in the control were recorded which 

were significantly increased (P<0.05) at day 3 of the incubation period. In contrast, with 

addition of 100 µg NO3
--N g-1 dry soil no immediate response of nitrate reductase activity was 

observed (Fig. 6.3). After 14 days, however, when all nitrate had disappeared, the nitrate 

reductase activity approached the values of the control. The underlying causes for these 

different responses can be enlightened by analysing the monitored soil parameters in detail.  

 

 

Fig. 6.3: Nitrate reductase activities [µg NO2
--N g-1 24 h-1] in repacked soil cores amended with no 

(open symbols), 100 (grey symbols) and 300 (black symbols) µg NO3
--N g-1 dry soil; bars represent 

means, whiskers indicate standard errors. * shows significant differences (P≤ 0.05) between control 
and nitrate treatments for a given incubation time. 
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In the control treatment it is likely that the combined effect of anaerobic conditions, which 

predominate at WFPS exceeding 70 % (Sexstone et al., 1988; Bateman and Baggs, 2005), and 

the temperature increase of approximately 20 °C compared to preincubation conditions 

induced an elevated enzyme synthesis.  

The occurrence of anaerobiosis after onset of the experiment was documented by the rapid 

reduction of nitrate and the accumulation of NH4
+ that resulted from repressed nitrification of 

mineralized ammonium (Fig. 6.4 a and c). The lasting effect of increased nitrate reductase 

activities – though nitrate was not detectable any longer after 3 days - might be explained by 

the high persistence of this enzyme (Lensi et al., 1991; Dendooven and Anderson, 1994).  

The extreme nitrate addition of 300 µg NO3
--N g-1 dry soil induced a significant increase in 

enzyme activity compared to the control, which was obviously limited by nitrate con-

centrations below 2 µg g-1 dry soil. However, after seven days the differences between control 

and extreme nitrate treatment were no longer significant pointing to a high resilience of the 

nitrate reductase activity towards nitrate addition. We can not exclude the possibility that the 

relatively low response to nitrate addition might be associated with osmotic stress or a toxic 

effect on some denitrifier strains through the high accumulation of nitrite, which was 

observed in this treatment (Tiedje, 1988). Apparently, nitrite reduction was completely 

inhibited during the first 3 days of incubation, since the accumulated amount of nitrite was 

equivalent to the decrease in nitrate. Similar high accumulations of nitrite were observed by 

Ellis et al. (1998) and attributed to a long lag phase for the synthesis of nitrite reductase. In 

our experiment this explanation is unlikely since under addition of 100 µg NO3
--N g-1 dry soil 

no such lag phase was observed. Polcyn and Lucinski (2003) rather argue that under high 

nitrate additions the competition for electrons between nitrate and nitrite reductase is 

responsible for nitrite accumulation since nitrate reduction is energetically more advantageous 

and, hence, the limited electron-flow is preferentially directed to nitrate reductase.  

In the 100 µg NO3
--N treatment the low nitrate reductase activity conflicted with the rapid 

decrease of nitrate concentration (Fig. 6.3 and 6.4a). This could be explained by the inability 

of 2,4-dinitrophenol (DNP) to inhibit nitrite reduction in our enzyme assay, which resulted in 

an underestimation of nitrate reductase activity. Although the DNP concentration used 

effectively repressed nitrite reduction in the other treatments, we tested up to 10 fold 

increased concentrations of DNP, but the result remained unchanged (data not shown). Why 

did the method fail in only this treatment? We suggest that the very high activity of nitrite 
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reductase, which reduced almost all NO2

- produced during the first three days of the 

incubation, interfered with the principle of measurement, which is based on the relative 

differences in sensitivity of nitrate and nitrite reductase towards DNP. Only after 14 days 

when levels of nitrite reductase, which possesses only a short persistence in soils (Dendooven 

and Anderson, 1994), were presumably low again, the measured activities of the nitrate 

reductase approached the values of the control.  

In conclusion, the composition of the nitrate-reducing community carrying the membrane-

bound nitrate reductase was not influenced by fluctuating nitrate concentrations. Even 

extreme nitrate additions did not induce shifts in the structure of the nitrate-reducing 

community. Apparently, the present nitrate-reducing community had a high capacity to 

reduce the additional nitrate without growth of one particular competitive population. That 

points to a high resistance towards changes in nitrate availability. Decreasing nitrate 

concentrations and the rising pH point to a highly active nitrate-reducing community. 

Measurements of nitrate reductase activity only partly supported this observation but failed 

under high N supply of 100 µg NO3
--N g-1 dry soil most likely due to incomplete inhibition of 

nitrite reduction during the enzyme assay. However, comparison between the control and the 

300 µg NO3
--N treatment revealed a significant short-term effect of nitrate addition and a high 

resilience of the nitrate reductase activity since no differences were observed at day 7. These 

results indicate a high functional stability of the nitrate-reducing community towards 

fluctuating nitrate concentrations characterised by a resistant community structure and a 

resilient nitrate reductase activity.  
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Abstract 

Changes in community structure and activity of the dissimilatory nitrate-reducing community 

were investigated across a glacier foreland in the Central Alps to gain insight into the 

successional pattern of this functional group and the driving environmental factors. Bulk soil 

and rhizosphere soil of Poa alpina was sampled in five replicates in August during the 

flowering stage and in September after the first snowfalls along a gradient from 25 to 129 

years after deglaciation and at a reference site outside the glacier foreland (>2000 years 

deglaciated). In a laboratory based assay, nitrate reductase activity was determined 

colorimetrically after 24 hours of anaerobic incubation. In selected rhizosphere soil samples, 

the community structure of nitrate-reducing microorganisms was analysed by RFLP-PCR 

using degenerate primers for the narG gene encoding the active site of the membrane-bound 

nitrate reductase. Clone libraries of the early (25 years) and late (129 years) succession were 

constructed and representative clones sequenced. The activity of the nitrate-reducing 

community increased significantly with age mainly due to higher carbon and nitrate 

availability in the late succession. The community structure, however, only showed a small 

shift over the 100 years of soil formation with pH explaining a major part (19 %) of the 

observed variance. Clone library analysis of the early and late succession pointed to a trend of 

declining diversity with progressing age. Presumably, the pressure of competition on the 

nitrate reducers was relatively low in the early successional stage due to minor densities of 

microorganisms compared to the late stage; hence, a higher diversity could persist in this 

sparse environment. These results suggest that the nitrate reductase activity is regulated by 

environmental factors other than those shaping the genetic structure of the nitrate reducing 

community.  
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Introduction 

Alpine ecosystems are extremely sensitive to climatic fluctuations. Thus, slightly increasing 

temperatures since the ‘Little Ice Age’ around 1820 to 1850 led to a continuous retreat of 

glaciers and the existence of new barren terrain. The successively colonized glacier forelands 

offer a chronosequence with different stages of primary succession in close vicinity and are, 

hence, ideal subjects to study successional processes (Raffl, 1999; Kaufmann, 2001).  

In the sparse environments of these glacier forelands, soil microorganisms are particularly 

essential for plant growth as they play a key role in nutrient cycling. In fact, microbial and 

invertebrate communities colonize new terrain before establishment of plant species 

(Hodkinson et al., 2002). In this phase, nitrogen, phosphorus and other nutrients accumulate 

and facilitate succeeding plant growth. In the course of primary succession, autotrophic plant 

growth results in the input of organic carbon by litter and root deposits and, hence, stimulates 

the microbial biomass and its activity (Ohtonen et al., 1999). Most directly the rhizosphere 

flora benefits from these inputs (Bardgett and Walker, 2004; Tscherko et al., 2004).  

In contrast to the succession of plant assemblies, the evolution of soil microbial diversity in 

glacier forelands has attracted increasing attention only in the last few years. By PLFA 

analysis of microbial communities in the rhizosphere, differences between pioneer, transition 

and mature stages could be observed (Tscherko et al., 2004). Sigler et al. (2002) detected 

shifts in the bacterial community structure from 0 to 100 year-old soils by molecular 

fingerprinting of bulk soil samples. Equally, the soil fungal community assembly has been 

studied in detail showing significant differences between a recently deglaciated site and a 

successional site that has been ice-free over more than 100 years (Jumpponen, 2003). 

This work focuses on the functional group of nitrate-reducing microorganisms. Respiratory 

nitrate reduction catalyzed by a membrane-bound or periplasmatic nitrate reductase is the first 

step in the denitrification pathway and in the dissimilatory reduction of nitrate to ammonia 

(DNRA). Since DNRA is of minor importance in soils, the major part of the reduced nitrate is 

returned to the atmosphere in form of N2O or N2. Thus, nitrate-reduction represents an 

important process of open nutrient cycling. According to Odum’s theory of succession, open 

cycles of mineral nutrients are characteristic for young developing ecosystems, whereas in 

mature systems closed cycles are prevalent (Odum, 1969). In the context of climate change, 

denitrification is of particular significance as the greenhouse gas N2O, which is also a natural 
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catalyst of stratospheric ozone degradation, can be emitted as possible end product (Lashof 

and Ahuja, 1990).  

The main objective of this study was to monitor changes in diversity and activity of nitrate-

reducing micro-organisms in the course of primary succession and to search for the principal 

environmental variables such as organic carbon, nitrate, water content and pH driving these 

changes. To study the community structure of nitrate-reducing microorganisms, RFLP 

(Restriction Fragment Length Polymorphism)-analysis of the functional gene narG, which 

codes for the catalytic unit of the membrane-bound nitrate reductase has been well established 

(Philippot et al., 2002; Chèneby et al., 2003; Deiglmayr et al., 2004; Mounier et al., 2004; 

Patra et al., 2005). By biochemical measurement of the nitrate reductase activity, the 

corresponding enzyme activity of this functional community can be determined (Kandeler, 

1995). In this way, structure and activity of the nitrate reducers can be studied in parallel. 

Since major changes in community structure were previously found in the rhizosphere 

(Tscherko et al., 2004), we focused on the nitrate-reducing community of the rhizosphere 

flora of Poa alpina occurring across all successional stages. 

 

Experimental Procedures 

Study site  

The study was carried out at the glacier foreland of the Rotmoosferner (46°50’ N, 11°03’ E) 

in the Ötz valley (Austria) at an altitude of 2280-2450 m above sea level (Kaufmann, 2001). 

Since 1858 the Rotmoosferner has been retreating and left a mainly level valley 2 km in 

length ascending only in the younger parts of the foreland (<50 years) (Kaufmann, 2001). The 

well-preserved chronosequence has been described in detail regarding the soil formation, the 

vegetational gradient, the invertebrate succession and the total soil microbial communities 

(Erschbamer et al., 1999; Raffl, 1999; Kaufmann, 2001; Tscherko et al., 2004). The parent 

material of the soils is mainly neoglacial moraine till and fluvio-glacial sands (Tscherko et al., 

2004). The texture of the soils is pure sand to silty sand. Organic carbon, pH, NO3
- and NH4

+ 

contents were determined following standard methods and results are shown in Tab. 7.1. 
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Soil sampling 

The soil was sampled in mid of August 2004 at the flowering stage of Poa alpina and in the 

end of September 2004 after the first snowfalls. Seven successional sites deglaciated for 25 to 

129 years (Rüdiger Kaufmann, personal communication) were selected within the orographic 

right side of the glacier foreland. One site outside the glacier foreland served as reference 

(>2000 years old). For each of the five replicates 3-5 plants of Poa alpina were digged out, 

shaken and the soil still adhering to the roots was considered rhizospheric soil. The bulk soil 

was sampled in 0-10 cm depth with as little roots as possible. The rhizospheric and bulk soil 

samples were sieved through a 2 mm sieve directly on site and stored at – 20 °C prior to 

analysis. 

 

Determination of potential nitrate reductase activity 

The potential activity of the nitrate reductase was determined by anaerobic incubation of soil 

following a modified protocol (Kandeler, 1995). Briefly, 0.2 g rhizospheric soil was weighed 

in five replicates into 2.0 ml reaction tubes. To inhibit nitrite reduction, 167 µg of  

2,4-dinitrophenol per g soil (fresh weight) were added. After 24 h incubation in 1 mM KNO3 

in a total volume of 1 ml at 25 °C in the dark, the soil mixture was extracted with 4 M KCl 

and centrifuged for 1 min at 1400 x g. The accumulated nitrite in the supernatant was 

determined by colorimetric reaction. 

 

DNA extraction and PCR amplification 

Based on the results of the nitrate reductase activity, the investigation on the community 

structure of the nitrate-reducing community was restricted to five successional sites within the 

glacier foreland. To exclude heterogeneity based on different vegetation, only rhizospheric 

soil of Poa alpina was included in the analysis. DNA was extracted from 0.3 g soil using the 

FastDNA Spin Kit for soil (BIO101, Qbiogene), following the protocol of the manufacturer. 

The quantity of the DNA extractions was checked using a BioPhotometer (Eppendorff). A 

narG fragment of 650 bp length was amplified using the primers narG1960f and narG2650r 

(Philippot et al., 2002). Three independent PCR amplifications were performed for each 

sample in a total of 50 µl containing 1x PCR buffer, 200 µM of each deoxyribonucleoside 

triphosphate, 1.25 mM of each primer, 2 U of Taq polymerase, and 20 ng of soil DNA.  
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To increase amplification efficencies, 1 µg of T4 gene 32 protein (BioLabs) was added per 

reaction volume (Kreader, 1996). The cycling conditions of the PCR were as follows: an 

initial denaturation step at 95 °C, followed by a pause to facilitate a manual hot start. After 

adding the Taq polymerase the PCR was continued by a “touch down” with a denaturation 

step at 94 °C for 30 s, primer annealing at 59 °C for 30 s and elongation at 72 °C for 45 s. 

During the first 9 cycles, the annealing temperature was decreased by 0.5 °C each cycle until 

it reached 55 °C. The additional 26 cycles were performed at an annealing temperature of 

55 °C. Cycling was completed by a final elongation step at 72 °C for 10 min. The size and 

presence of the amplification products were checked by electrophoresis in a 1.5 % agarose 

gel.  

 

RFLP analysis and clone library construction 

For purification, the narG PCR products belonging to the same sample were pooled and then 

run on a 2 % agarose gel for 3 h at 100 Volt. Gel slices containing the amplified narG 

fragment were excised and DNA was recovered using the Qiaex II kit (Qiagen) as specified 

by the manufacturer. Purified PCR products were quantified in a 1.5 % agarose gel according 

to the standardised DNA quantities of the Smart Ladder SF (Eurogentec). Aliquots of same 

quantities of the purified narG PCR product were digested by AluI restriction enzyme at 

37 °C for 2 h and separated by electrophoresis on an 8 % polyacrylamide gel for 15 h at 

8 mA. After staining with SYBER green II (Molecular Probes) the narG RFLP-fingerprints 

were scanned with a Phospho Imager.  

For construction of clone libraries, aliquots of the purified narG PCR products from the five 

replicate samples of early (25 years) and late (129 years) successional site of each of the two 

sampling dates were pooled together and cloned using the pGEM-T Easy Vector System 

(Promega) according to the manufacturer’s instructions. Approximately 55 transformants per 

clone library were randomly picked and the inserted narG fragment was amplified by 

transferring small aliquots of cells to PCR mixtures containing the primers T7 and SP6 and 

thermal cycling. PCR products were digested by the restriction endonuclease AluI as 

described above. Restriction fragments were resolved by electrophoresis in a 3 % small 

fragment agarose gel. Recombinants with identical restriction patterns were grouped together 

into OTUs (operational taxonomic units).  
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Sequencing and phylogenetic alignment 

Fourty-one representative recombinants of the various RFLP types were sequenced using the 

DTCS-1 kit (Beckman Coulter) and a Ceq 2000 XL sequencer (Beckman Coulter) according 

to the manufacturer’s instruction. Vector primers T7 and SP6 were used for sequencing 

reactions. The deduced protein sequences of narG genes were aligned using the CLUSTALX 

software version V.1.0.1 (Thompson et al., 1999). The phylogenetic tree based on amino 

acids alignments (approximately 210-220 amino acids), was constructed by neighbour-joining 

method with 100 replicate trees. NarG from the Archea Pyrobaculum aerophilum was used as 

outgroup.  

 

Nucleotide accession numbers 

The sequences obtained were deposited in the GenBank sequence database under accession 

numbers DQ233258 to DQ233296.  

 

Statistics 

The data of the enzyme activity of the nitrate reductase were evaluated by ANOVA using the 

mixed model procedure in the SAS 8.0 statistical analysis package. Statistics were performed 

for the dataset including and excluding the reference site. The normal distribution of 

untransformed data was verified by Shapiro-Wilk test (P<0.0001). To improve the fit of the 

model, heterogeneous group variances were allowed for the different successional stages. For 

covariates NO3
-, organic carbon, water content and pH were included in the model. 

Significance was accepted at the P≤ 0.05 level of probability. In order to estimate the 

proportions of explained variance for the various factors, homogeneous group variances had 

to be accepted. 

narG RFLP-fingerprints were analysed by the software package Quantity One® (Version 

4.2.1) for image analysis. A band-matching table was generated containing the molecular 

weight and the relative intensity of each detected band in reference to the mean intensity 

within each lane. Based on the band-matching table and the visual control of the gels, bands 

with comparable molecular weights were summarised in band classes.  
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To evaluate shifts in community structure among successional sites and sampling dates, 

discriminant function analysis via multidimensional scaling was applied, according to Tiunov 

and Scheu (2000). In short, based on the square matrix of nonparametric Gamma correlation a 

multidimensional scaling analysis was performed in order to compress the total of information 

given in the band-matching table to only a few dimensions. To reassure not to lose any  

significant information, the optimal number of dimensions n was determined by comparing 

actual stress values with the theoretical exponential function of stress. Subsequently, the 

coordinates of the samples in n-dimensional space were used for discriminant function 

analysis with successional age and sampling date as grouping variables. Four canonical roots 

proved to contribute significantly to the discriminatory power of the model. Squared 

Mahalanobis distances were calculated to determine significant differences between group 

centroids. The calculations were performed using the STATISTICA software package 

(Version 6.0, StatSoft®). 

The impact of environmental variables on the diversity of nitrate-reducing microorganisms 

was analysed by redundancy analysis using CANOCO (Version 4), a software for canonical 

community ordination (ter Braak and Šmilauer, 1998). The data of band intensities were log-

transformed. As the environmental gradient proved to be rather short across the glacier 

foreland, the linear response model was chosen (Lepš and Šmilauer, 2003). The statistical 

significance of the environmental variables was tested by a Monte Carlo permutation test 

carrying out 1000 non restricted permutations.  

For comparison of the phylotype richness of the early and late succession, various diversity 

parameters were calculated by addressing OTUs as representatives for different species. In 

order to examine how exhaustively the total diversity was captured in the clone libraries, 

expected species accumulation curves (i. e. sample-based rarefaction curves) were computed 

using EstimateS (Version 7.5, R. K. Colwell, http://purl.oclc.org/estimates). The 95% 

confidence intervals were calculated using the analytical formulas of Colwell et al. (2004). 

According to Chao and Shen (2003), the nonparametric estimator of the Shannon diversity 

index Ĥ  accounting for unseen species was calculated based on Horvitz-Thompson estimator 

and sample coverage method. For its good discriminant abilities Fisher’s α recommended by 

Magurran (1988) as the standard diversity statistic was also included in the statistical analysis. 

This index is based on the assumption of a log series distribution of the species abundances. 

http://purl.oclc.org/estimates
http://viceroy.eeb.uconn.edu/EstimateS7Pages/EstS7UsersGuide/EstimateS7UsersGuide.htm#ColwellEtAlMao2004#ColwellEtAlMao2004
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The total species richness was approximated by two different nonparametric estimators. First, 

SChao1 was calculated according to the classical formula 
2

2
1

1 2n
nSS obsChao += ,  

where  is the number of observed species, nobsS 1 is the number of singletons (species 

captured once), and n2 is the number of doubletons (species captured twice) (Hughes et al., 

2001). The 95 % confidence interval was applied using a log-transformation as suggested by 

Chao (1987). For validation the abundance-based coverage estimator SACE was considered 

additionally incorporating data of all OTUs with fewer than 10 individuals (Hughes et al., 

2001). 

 

 

Tab. 7.1: Soil characteristics of bulk and rhizospheric soil under Poa alpina in the glacier foreland of 
the Rotmoosferner sampled in August 2004. 

 
Corg  
[%] 

pH NO3
- -N 

[µg g-1 soil] 
NH4

+ -N 
[µg g-1 soil] 

Successional 
age 

Sample type 

25 years 
 

Bulk soil 
Rhizosphere 

0.12 (0.01) 
0.37 (0.10) 

7.83 (0.01) 
7.53 (0.01) 

0.12 (0.04) 
0.33 (0.06)a

0.20 (0.01) 
0.64 (0.10) 

40 years 
 

Bulk soil 
Rhizosphere 

0.17 (0.04) 
0.64 (0.14) 

7.46 (0.07) 
7.23 (0.07) 

0.25 (0.06) 
1.76 (0.23) 

0.23 (0.04) 
1.17 (0.27) 

44 years 
 

Bulk soil 
Rhizosphere 

0.29 (0.05) 
2.58 (0.94) 

7.43 (0.07) 
6.75 (0.16) 

0.46 (0.16) 
2.82 (0.45) 

0.72 (0.22) 
6.20 (2.56) 

52 years 
 

Bulk soil 
Rhizosphere 

0.66 (0.17) 
3.79 (1.11) 

7.03 (0.24) 
6.45 (0.08) 

0.55 (0.27) 
3.04 (0.72) 

1.60 (0.47) 
11.60 (4.02) 

0.33 (0.05) 
1.39 (0.40) 

7.20 (0.22) 
6.24 (0.14) 

0.45 (0.10) 
1.28 (0.26)a

0.82 (0.28) 
2.92 (0.73) 

57 years 
 

Bulk soil 
Rhizosphere 

0.37 (0.14) 
3.02 (1.29) 

7.29 (0.36) 
5.49 (0.12)a

0.20 (0.09) 
0.85 (0.20) 

0.90 (0.37) 
8.80 (4.41) 

72 years 
 

Bulk soil 
Rhizosphere 

1.93 (0.72) 
9.67 (3.33) 

6.36 (0.70) 
5.56 (n. d.) 

0.37 (0.14) 
1.67 (0.31)a

4.46 (1.78) 
17.42 (1.75) 

129 years 
 

Bulk soil 
Rhizosphere 

5.47 (1.27) 
17.34 (1.45) 

4.50 (0.56) 
n. d. 

0.17 (0.08) 
0.36 (0.05)a

10.21 (3.24) 
25.28 (0.68) 

>2000 years 
 

Bulk soil 
Rhizosphere 

Values are given as means (± standard error) 
a missing values, only a part of the replicates is included in the mean 
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Results 

Nitrate reductase activity 

The nitrate reductase activity increased highly significantly (P=0.0002) with progressing 

succession with a maximum activity in the late succession, whereas the reference site showed 

much lower enzyme activities (Fig. 7.1, Tab. 7.2). The nitrate reductase activities in the 

rhizospheric soil were significantly higher than in the bulk soil (P=0.0037), particularly in the 

earlier part of the glacier foreland with up to 23 fold higher enzyme activities in the 

rhizosphere (August, 44 years after deglaciation). The significant interaction of age and 

rhizosphere effect (P=0.0125) pointed to a decrease in rhizosphere effect with progressing 

age. No significant effect of sampling date on the enzyme activity was observed. Step by step 

the covariates organic carbon, nitrate, pH and water content were included in the statistical 

model according to their significance. Organic carbon and nitrate availability affected the 

nitrate reductase activity most significantly explaining 51.0 % and 10.8 % of the observed 

variance thereby reducing the proportion of variance explained by successional age from 

37.5 % to 6.3 % (Tab. 7.2). 
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Fig. 7.1: Nitrate reductase activity in the rhizosphere of Poa alpina (white) and the bulk soil (striped) 
from seven successional sites in the glacier foreland of the Rotmoosferner and one reference site 
sampled in August (A) and September (B) 2004; bars are means, whiskers indicate standard  
error. 
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Tab. 7.2: ANOVA of the nitrate reductase activities in the bulk soil and rhizosphere soil of Poa alpina 
across the glacier foreland of the Rotmoosferner (reference site excluded).  
 
    Proportion of explained variance 

Source F value P  without covariates  
[%] 

including covariates 
[%] 

Age 5.60 0.0002  37.5 6.3 

Date 1.29 0.2603  0.2 0.0 

Age × Date 0.85 0.5410  1.0 1.0 

Rhizosphere 8.98 0.0037  16.3 0.0 

Age × Rhizosphere 3.15 0.0125  6.5 1.6 

Date × Rhizosphere 0.73 0.3951  0.2 0.0 

Age × Date × Rhizosphere 0.73 0.6264  0.9 0.6 

      

Corg 34.19 <0.0001  - 51.0 

NO3 9.68 0.0031  - 10.8 

pH 6.40 0.0219  - 0.0 

H2O 1.12 0.3031  - 6.1 

      

Residual    37.4 22.6 
 

 

The data presented here refer on the statistics without consideration of the reference site, since 

its converse response masked the successional effects within the glacier foreland. By 

including the reference site, the effect of successional age could only marginally be explained 

by environmental covariates with nitrate availability exceeding organic carbon in significance. 

 

 

RFLP-fingerprints 

NarG RFLP-fingerprints of the rhizosphere soil samples of August revealed slight shifts in 

the nitrate-reducing community structure across the five successional sites of the glacier 

foreland (Fig. 7.2 A). In particular in the lower part of the gel several bands (39 bp, 42 bp, 49 

bp, 87 bp, 171 bp) decreased in relative intensity with progressing age. The same patterns 

could be observed at the sampling date in September (Fig. 7.2 B).  
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Fig. 7.2: RFLP-fingerprints of the nitrate-reducing community under Poa alpina from five 
successional sites in the glacier foreland of the Rotmoosferner sampled in (A) August and (B) 
September 2004; lanes 2-6: 25 years after deglaciation; lanes 7-11: 40 years after deglaciation; lanes 
12-16: 44 years after deglaciation; lanes 17-21: 72 years after deglaciation; lanes 22-26; 129 years 
after deglaciation; lane 1 and 27: molecular weight marker VIII (Roche). 
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Fig. 7.3: Ordination diagram of discriminant analysis via multidimensional scaling of narG RFLP-
fingerprints from five successional sites in the glacier foreland of the Rotmoosferner sampled in 
August (filled symbols) and September (open symbols) 2004: sites deglaciated for 25 years (light 
green), for 40 years (dark green), for 44 years (blue), for 72 years (red) and for 129 years (black). (A) 
Axis 1 plotted versus axis 2, (B) axis 1 plotted versus axis 3.  

 

The discriminant analysis via multidimensional scaling including seven dimensions reflected 

very clearly the transition from late to young succession (Fig. 7.3 A and B). Four axes proved 

to add significantly to the discrimination between groups. Primarily along the first axis which 

accounted for 65 % of the discriminatory power, the different successional ages were 

separated. Along the second axis the samples were split into the two sampling dates. Based on 

the squared Mahalonobis Distance all five successional sites and the two sampling dates could 

be distinguished significantly, except for the two youngest sites (25 and 40 years) in August 

and the 40 and 44 years old sites in September (data not shown).  

In order to search for the driving factors of the changes in community structure a redundancy 

analysis was performed. In this ordination method the axes are constrained to be linear 

combinations of environmental variables. The first two axes explained 30 % of the species 

variability, which corresponded to 78 % of the total species-environment relation (Fig. 7.4). 

The successional age accounted for 22 % of the observed variability in community structure 

followed in importance by pH, H2O, Corg and NO3
- (Tab. 7.3). Treating the environmental 

variables pH, Corg, H2O and NO3
- as covariates the additional effects of age and date 

amounted to 5 % and 3 %, respectively. All environmental variables in sum explained 39 % 

of the observed variability in community structure. 
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Fig. 7.4: Ordination diagram of redundancy analysis of narG RFLP-fingerprints from five 
successional sites in the glacier foreland of the Rotmoosferner sampled in August (filled symbols) and 
September (open symbols) 2004: sites deglaciated for 25 years (light green), for 40 years (dark green), 
for 44 years (blue), for 72 years (red) and for 129 years (black); arrows indicate quantitative 
environmental variables, the qualitative environmental variable date is shown with its centroid (▲). 



7 Microbial succession across a glacier foreland 70 
 

 
 
 
Tab. 7.3: Ranking environmental variables in importance by their marginal (left) and conditional 
(right) effects on the nitrate-reducing community, as obtained by manual forward selection. 

 

Marginal effects     Conditional Effects after forward selection 

Variable λ1 P   Variable λa P cum (λa) 

Age 0.22 0.001  pH 0.19 0.001 0.189 

pH 0.19 0.001  Corg 0.06 0.001 0.244 

H2O 0.17 0.001  H2O 0.04 0.005 0.279 

Corg 0.15 0.001  NO3
- 0.03 0.010 0.309 

NO3
- 0.05 0.022  Age 0.05 0.002 0.356 

Date 0.05 0.012   Date 0.03 0.005 0.389 
 
λ1: fit or eigenvalue with one variable only; λa: additional fit or increase in eigenvalue;  
cum (λa): cumulative total of eigenvalues;  
P = significance level of the effect, as obtained with Monte Carlo permutation test with 1000 random 
permutations. 
 

 

Clone libraries 

To investigate the diversity of the nitrate-reducing community in more detail, clone libraries 

of the early and late succession at both sampling dates were constructed. Within the total of 

221 clones, 84 different RFLP patterns (with 34 represented by at least two clones) were 

detected and grouped into operational taxonomic units (OTUs) (Fig. 7.5). In the late 

succession, one prominent OTU accounted for 22 % of the clones, whereas only 7 % of the 

early succession’s clones were found in this group. The most frequent OTU in the early 

succession comprised 10 % of the total of clones analysed. This OTU was detected only once 

in the late succession. Several other frequent OTUs were found only in either the early or the 

late succession.  
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Fig. 7.5: Distribution of narG RFLP types in clone libraries of the pooled PCR products from (A) 
early and (B) late succession sampled in August (filled) and September (lined) 2004. 

 

For all statistical analysis the two sampling dates were pooled together. To check the 

coverage of diversity by the screened clone libraries, expected species accumulation curves 

were calculated (Fig. 7.6). These curves present - according to sample-based rarefaction 

curves - the expected number of observed OTUs at a certain sampling intensity. As the  

curves did not reach saturation, it must be concluded that further screening would still reveal 

higher diversity.  

To estimate the total species richness, SChao1 and SACE were calculated according to Chao 

(1987) (Tab. 7.4). Both estimators indicated that the nitrate-reducing community in the early 

succession tended to be more diverse than in the late succession. This latter conclusion was 

also confirmed by the diversity indices Shannon’s Ĥ and Fisher’s α (Tab. 7.4). 
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Fig. 7.6: Species accumulation curves of narG RFLP types in clone libraries from (grey) early and 
(black) late succession, sampling dates are pooled together; error bars indicate the 95 % confidence 
interval. 

 

 

Tab. 7.4: Diversity indices and estimators of total species richness for the pooled clone libraries of late 
and early succession in the glacier foreland of the Rotmoosferner.  
 

  Diversity Indices Total Species Richness Estimators 

Source Sobs Shannon’s Ĥ  Fisher’s α SChao1 SACE

Early  
succession 

56 
(112)a

4.12  
(3.78, 4.47)b

44.57 
(32.90, 56.24)b

141.6  
(90.2, 270.1)b

144.8  
(97.9, 244.3)b

Late  
succession 

44 
(109)a

3.62 
(3.10, 4.13)b

27.43 
(19.32, 35.53)b

109.3  
(67.1, 228.8)b

108.9  
(72.4, 192.2)b

 
Sobs= Number of observed OTUs 
a Number of analysed clones  
b lower and upper limits of the 95 % confidence interval 
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Phylogenetic analyis 

Representatives of the different OTUs comprising at least two clones were sequenced and the 

deduced amino sequences phylogenetically aligned (Fig. 7.7). Two sequences were found to 

have no sequence homology to narG and were thus dimissed. In addition to the remaining 39 

sequences obtained from the glacier foreland 54 sequences of known organisms were 

included in the phylogenetic analysis. One sequence representing four clones of the early 

succession was related to NarG of Geobacter metallireducens. All other clones clustered 

together with NarG either from Actinobacteria (Cluster 1) or from Proteobacteria (Cluster 2). 

In the late succession 79 % and 21 % of all identified clones were found in Cluster 1 and 2, 

respectively (Tab. 7.5). In contrast, a different percentage of the clones within the two clusters 

was found in the early succession: 51 and 44 % in Cluster 1 and 2, respectively. Hence, the 

ratio of clones belonging to Cluster 1 to those of Cluster 2 increased from 1.2 to 3.7 from 

early to late succession. 

 

Tab. 7.5: Affiliation of clones from early and late succession in the glacier foreland of the 
Rotmoosferner. 

 

  Early succession Late succession 

Affiliation No. of clones Proportion [%] No. of clones Proportion [%] 

Cluster 1 (Actinobacteria) 43 51 67 79 

Cluster 2 (Proteobacteria) 37 44 18 21 

Geobacter association 4 5 0 0 

Ratio Cluster 1: Cluster 2  1.2  3.7 

 



7 Microbial succession across a glacier foreland 74 
 

 
 
 

 

Fig. 7.7: Phylogenetic analysis of deduced NarG amino acid sequences from 39 narG clones. The 
corresponding OTUs are indicated in brackets and bold after the clone number. Only bootstrap values 
above 75 are given.  
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Discussion 

Environmental factors regulating nitrate reductase activity 

The data of nitrate reductase activity revealed a significant increase with successional age as it 

has been demonstrated for other enzyme activities (Ohtonen et al., 1999; Tscherko et al., 

2003; Sigler and Zeyer, 2002). The stimulation of nitrate reductase activity could be 

explained by increasing contents of organic carbon and varying nitrate resources with 

progressing age (Tab. 7.2). The remaining significant effect of successional age may be 

attributed to the increasing vegetation cover, which prevents the soil surface from heat stress 

and dryness and, hence, improves the environmental conditions for soil microorganisms 

(Tscherko et al., 2005). Possibly the quality of organic carbon that also alters during primary 

succession contributed to the observed effect of successional age additionally. One should 

also consider that due to our sample design restricted to one chronosequence with no true 

replicates of successional stages, the effects of age and position in the glacier foreland could 

not be distinguished from one another. In this respect, the temperature gradient along the 

valley as well as varying sun exposure at the different sites may be included in the observed 

“age effect” (Kaufmann, 2001). Additionally, coarse parent material of the glacial drift as it 

prevailed at the 57 years old site, may have hampered soil development and led to lower 

enzyme activity rates. At the reference site, nitrification was possibly repressed due to the low 

pH of 4.5 that is critical for ammonia-oxidizing bacteria (Stienstra et al., 1994). Hence, the 

low nitrate contents restricted the nitrate reductase activity to the observed low levels. This 

finding confirms Odum’s theory, that in mature successional stages closed nutrient cycles 

dominate (Odum, 1969). In the glacier foreland the relatively high nitrate reductase activities 

point to rather open nitrogen cycles with possible losses due to emissions of N2O and N2. 

The strong effect of the rhizosphere on the enzyme activity observed in the younger part of 

the glacier foreland resulted from the very low concentrations of organic carbon of the bulk 

soil. Under these sparse conditions the extra carbon entering the soil in the rhizosphere of Poa 

alpina through root exudates, lysates and decomposing fine roots apparently affected the 

respiratory nitrate reduction substantially. As in the late succession organic carbon contents in 

the bulk soil increased due to higher litter inputs, the rhizosphere effect declined. Beside the 

higher availability of organic carbon in the rhizosphere, the low partial oxygen pressure in the 

proximity of roots resulting from respiration by roots and rhizoflora may have favoured 

nitrate reduction additionally (Klemedtsson et al., 1987; Højberg and Sørensen, 1993).  
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Analysis of the covariates stressed the pivotal role of organic carbon together with nitrate 

availability on the nitrate reductase activity during primary succession. As organic carbon 

significantly accumulated with successional age due to increasing plant biomass production 

and low decomposition rates, it may have affected the nitrate reductase in several ways: (i) by 

providing the substrate for a higher microbial biomass and activity, resulting in higher oxygen 

consumption (Ohtonen et al., 1999; Tscherko et al., 2003), and (ii) by enhancing the water 

retention capacity of the soils, which may have led to a decrease in oxygen diffusion. In the 

consequence anaerobic sites probably occurred more frequently under higher organic matter 

contents inducing nitrate-reducing microorganisms to switch to anaerobic respiration and use 

nitrate as alternative electron acceptor. The nitrate availability was very low across all 

successional stages and, hence, limited the nitrate reductase activity where organic carbon 

was abundant. 

 

Shifts in community structure across the glacier foreland 

The narG RFLP-fingerprints showed slight changes across the glacier foreland. The 

discriminant analysis via nonmetric multidimensional scaling indicated that the different 

successional stages and dates could be separated from one another and that the shift in 

community composition followed a directional pattern as it is characteristic for successional 

series (Odum, 1969). In the same glacier foreland, Tscherko et al. (2004) observed a similar 

splitting into pioneer, transient and mature successional stages by multidimensional scaling of 

PLFA data from rhizosphere microorganisms of Poa alpina (Tscherko et al., 2004). By 

ranking environmental variables according to their importance, the redundancy analysis 

revealed that the environmental variable explaining most of the variance was successional age 

followed by pH, water content and organic carbon. Since these soil characteristics are 

correlated among themselves, it is impossible to correctly attribute the partial effects to these 

various variables. By selecting first pH, organic carbon, water content and nitrate and thus 

treating them as covariates the additional successional age effect was reduced to 5 %. We 

concluded that apparently these four environmental variables explained the major part of the 

successional age effect. Particularly, pH had a pivotal impact on the nitrate-reducing 

community. The significance of pH as driver of microbial community structure has been 

discussed by numerous authors (O’Donnell et al., 2001; Deiglmayr et al., 2004; Stres et al., 

2004; Enwall et al., 2005). The relatively low impact of NO3
- on the nitrate-reducing 
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community is congruent to previous results, where nitrate fertilisation did not alter the 

community composition of nitrate reducers (Deiglmayr et al., 2004). 

The detailed study of the early and late succession by clone library analysis revealed further 

insight into these differences. Although clones related to NarG from Actinobacteria and 

Proteobacteria were prevalent in all clone libraries which is in accordance with inventories 

from other soil types (McCaig et al., 1999; Philippot et al., 2002; Buckley and Schmidt, 2003; 

Chèneby et al., 2003; Mounier et al., 2004), a shift in the composition of OTUs was observed 

from early to late succession. Accordingly to McCaig et al. (1999), who reported a slightly 

higher proportion of Actinobacteria in improved grassland soils, clones related to NarG of 

Actinobacteria became more dominant in the late succession. Our observation is also 

confirmed by PLFA analysis of the rhizosphere flora of Poa alpina where an increasing ratio 

of Gram+/Gram- bacteria with progressing age was stated (Tscherko et al., 2004). We suggest 

that at high densities of soil microorganisms with elevated intra- and interspecific competition 

selection favours K-strategists, i.e. microorganisms that can survive and reproduce with 

limited resources like Actinobacteria (Bottomley, 1998). Their ability to use a wide variety 

and also complex substrates such as lignin may be an additional competitive advantage. At 

low densities of soil microorganisms, however, r-strategists that can reproduce rapidly 

regardless of efficiency are more successful (Boyce, 1984; quoted by Ricklefs and Miller, 

2000). This hypothesis is supported by observations of Sigler and Zeyer (2004), who found a 

higher proportion of rapidly colonizing bacteria in recently deglaciated soils than in older 

soils.  

The tendency of declining diversity in the late succession could be attributed to higher 

competition for carbon resources due to a rising density of heterotrophic microorganisms and, 

hence, a higher selective pressure. PLFA analysis of the rhizosphere flora indicates that with 

progressing age the rhizosphere selects for a specific rhizosphere flora whereas in the early 

succession rhizosphere and bulk soil harbour the same microbial communities (Tscherko et 

al., 2004). Accordingly, DGGE and RISA analysis of microbial communities at two Swiss 

glacier forelands confirm that the highest diversity was found in the pioneer stage (Sigler and 

Zeyer, 2002; Sigler et al., 2002). The authors argued that noncompetitive conditions prevail in 

the early succession due to relatively high nutrient availability in relation to low population 

density. Zhou et al. (2002) stressed the importance of spatial isolation of soil particles, which 

are not interconnected by free water, for the occurrence of high microbial diversity in low 
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carbon soils as competition between species is excluded under these conditions. In the glacier 

foreland of the Rotmoosferner differences in water contents between the early and the late 

succession accounted for more than 10 % (data not shown), which certainly attributed to 

variable grades of spatial isolation between soil particles. Additionally, the low pH in the late 

succession possibly selected for adapted bacteria thereby reducing the diversity (Stres et al., 

2004). 

 

Conclusion 

Whereas the community structure showed only slight shifts which were rather bound to long-

term soil characteristics like pH and organic carbon, the nitrate reductase activity increased 

significantly with successional age and responded sensitively to the substrate availability of 

Corg and NO3
-. The source of the higher nitrate reductase activity in the late succession might 

be either a higher density of the nitrate-reducing community and/or an upregulated enzyme 

synthesis. To unravel the underlying mechanism, further studies are required to quantify the 

nitrate-reducing bacteria and their expression of nitrate reductase along the successional 

gradient and to relate this to the enzyme activity. In addition, since nitrate reduction is only 

the first step of the denitrification cascade, it will be of interest to extent this study to bacteria 

reducing soluble nitrogen oxides to N2O or N2 for a better understanding of the N cycle in 

alpine ecosystems. 
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8 Final conclusions and perspectives 

Linking the structure of soil microbial communities with its function in soil processes is a big 

challenge for current research in soil microbiology. In the present thesis the dissimilatory 

nitrate-reducing community was investigated as a model community using a biphasic 

approach that provided information on both the level of enzyme activity and the community 

structure. The combined knowledge of these two aspects will be needed to address future 

challenges of global climate change and to develop appropriate guidelines for the improved 

management of agricultural ecosystems.  

 

Responses of nitrate reductase activity 

By measurement of the nitrate reductase activity valuable information about the potential 

enzyme activity of the nitrate-reducing microorganisms in soils could be obtained. The 

following responses of nitrate reductase activity were observed:  

 In the Swiss FACE experiment sensitive and significant responses of the nitrate reductase 

activity to nitrogen supply, elevated atmospheric CO2 and functional plant type were 

detected, which were mainly attributed to differences in nitrate availability. Recent results 

on root exudations of Lolium perenne collected at the same sampling dates and in the 

same plots point to a possible contribution of reduced root exudation to the decline in 

nitrate reductase activity under elevated atmospheric CO2 (Bazot et al., 2006).  

 The incubation experiment confirmed the fast reaction rate of the nitrate reductase activity 

with regard to nitrate supply showing a significant difference between the control and the 

treatment of 300 µg NO3
--N g-1 soil after three days. Simultaneously, a high resilience of 

the enzyme activity could be deduced since differences between the control and the nitrate 

amended treatments disappeared within seven days. However, under addition of 100 µg 

NO3
--N g-1 soil the nitrate reductase activity was most likely underestimated, which could 

possibly be explained by the inability of 2,4-dinitrophenol to inhibit nitrite reduction in 

the enzyme assay. 

 The data obtained from the glacier foreland revealed significant effects of successional 

age and rhizosphere on the level of enzyme activity. The predominant environmental 

factors governing this response were the concentration of organic carbon, which varied 

over a large range across the glacier foreland and was closely related to the water content 
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of the soil samples, and the nitrate availability, which was rather low and limited the 

response of the nitrate reductase activity, where carbon was abundant.  

The consistent pattern found identified the short-term availability of nitrate and carbon as one 

of the most important factors controlling the nitrate reductase activity. Estimates of future 

developments of nitrate reductase activity under global climate change, therefore, will depend 

strongly on the extent of nitrate and carbon availability. The latter might possibly be enhanced 

under elevated atmospheric carbon dioxide concentrations depending on plant species, 

physiological state and nutrient supply. Levels of nitrate concentrations, however, can at least 

partially be controlled by management practices and represent, thus, a possible approach to 

reduce the increased denitrification risks under global climate change in agricultural managed 

fields.  

Some drawbacks of the methodical approach also have to be considered:  

 The determination of nitrate reductase activity is a potential measurement, which does not 

provide any information about in situ activities. In order to obtain these relevant data for 

modelling future climate scenarios, other methods have to be employed using e. g. 15N 

stable isotopes.  

 Under high nitrite reducing activities the nitrite reductase seemed not to be inhibited by 

2,4-dinitrophenol in the enzyme assay. Further research is needed to reveal the mechanism 

of nitrite reductase inhibition. 

 

Responses of nitrate-reducing community structure 

The community structure of nitrate-reducing microorganisms proved to be very stable in the 

face of short-term fluctuations in nitrate availability. The observed shifts in community 

structure were rather based on long-term changes of the physical and chemical environment. 

The most important environmental variable affecting the composition of the nitrate-reducing 

microorganisms proved to be pH. Organic carbon content was an additional driver of shifts in 

the community composition of the nitrate reducers in the primary successional soils of the 

glacier foreland. However, not only the quantity of soil organic carbon, but also the organic 

carbon quality might be an important factor in determining the composition of nitrate-

reducers. A shift towards an Actinomycetes dominated rhizosphere flora with increasing 
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successional age could perhaps be linked to the capacity of Actinomycetes to metabolize 

complex substrates such as lignin. 

In conclusion, future trends in global climate change will probably not result in large shifts of 

the nitrate-reducing community. However, minor changes in the composition of the nitrate-

reducing community have to be expected, particularly in sensitive environments like glacier 

forelands.  

Certainly, when interpreting molecular data one has to keep in mind the limitations of this 

technique. Methodical biases can occur through all steps of the procedure starting with DNA 

extraction. Martin-Laurent et al. (2001) have revealed that the phylotype abundance and the 

community structure of the eubacterial community varied with different DNA recovery 

methods. Another inherent bias lies within the primer design as the universality and the 

specificity of the primer sequence depends strongly on the existing database. Up to date less 

than 1 % of the total existing microbial diversity is comprised in the ribosomal database 

project (Forney et al., 2004). For functional genes the available sequences are even more 

limited. During the polymerase chain reaction preferential binding of the primers can result in 

overamplification of specific target sequences (Polz and Cavanaugh, 1998). Last but not least 

by fingerprinting methods (e.g. DGGE, RFLP, SSCP) developed for fast screening of large 

sample sets only dominant phylotypes can be detected, whereas many smaller populations 

remain unseen.  

 

Perspectives 

In order to improve our understanding of the behaviour of denitrifying communities in the 

face of global climate change future studies should extend to the complete series of functional 

genes involved in the denitrification pathway. Therein included are narG encoding the 

catalytic subunit of the membrane-bound nitrate reductase and its periplasmic counterpart 

napA, the copper-containing (nirK) and cytochrome cd1-containing (nirS) nitrite reductases, 

and norB/norZ and nosZ as marker genes for the nitric oxide and nitrous oxide reductases. 

The microarray technology, based on the DNA-DNA hybridization principle, offers a great 

opportunity to rapidly screen for a vast number of phylotypes and to obtain even quantitative 

information (Wu et al., 2001; Taroncher-Oldenburg et al., 2003). However, probe 

development faces the same drawbacks as primer design in regard of specificity and is 
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restricted additionally by the requirements of similar melting temperatures. Information on 

changes in density of the various functional communities can be acquired by quantitative real-

time PCR, which is established already for the major part of genes involved in the 

denitrification pathway. 

Since the presence of denitrifying genes in soils does not imply that the respective 

microorganisms are active, further methods are needed in order to link community structure 

and activity closer. The biphasic approach applied in this thesis needs to be completed by the 

missing intermediates. Targeting the mRNA and the corresponding enzymes by 

immunological approaches will be one step in this direction (Philippot and Hallin, 2005). If 

we want to recommend appropriate policies how to reach lower denitrification rates in order 

to reduce the emissions of greenhouse gases, we will need to deepen our understanding of the 

factors governing the activity of denitrifying microorganisms.  
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