
 
 
 

 
 

Institute of Plant Nutrition 
University of  Hohenheim 
Field: Rhizosphere and Fertilization                  Prof. Dr. Volker Römheld 
                                                                            (Supervisor) 

  
 

 

Regulation of phosphate deficiency-induced carboxylate 

 exudation in cluster roots of white lupin (Lupinus albus L.) 

 

 

Dissertation 

 
Submitted in fulfilment of the requirements for the degree "Doktor der Agrarwissenschaften" 

(Dr. sc.agr. /Ph.D. in Agricultural Sciences) 
 

to the  
 

Faculty Agricultural Sciences 
 

presented by  
 
 

 
 
 

Angelika Kania 
from Böblingen 

 
 

2005   
 
 
 
 
 
 
 
 
 
 
 



 
 
 

 
 
 
 

This thesis was accepted as a doctoral dissertation in fulfilment of the requirements for the 
degree "Doktor der Agrarwissenschaften" by the Faculty Agricultural Sciences at the 
University of Hohenheim on March 22, 2005. 
 
 
 
Date of oral examination: May 13, 2005 
 
 
 
Examination Commitee 
 
Supervisor and Review                              Prof. Dr. V. Römheld 
 
1. Co-Reviewer                                          Prof. Dr. R. Böcker 
 
2. Co-Reviewer                                          Prof. Dr. E. Kandeler 
 
Vice-Dean and Head of the Committee     Prof. Dr. K. Stahr 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
                                                              Table of contents                                                        I 
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
 
 
Table of contents 
 
 

Page
 
     General introduction ..............................................................................................     1-10  
          Phosphorus availability in soils ........................................................................ 1
          Mechanisms of P acquisition in higher plants .................................................. 1
          Perspectives to improve P nutrition in crop plants ........................................... 6
               Fertilization management and cropping systems ........................................ 6
               Selection and breeding of P-efficient plants ................................................ 7
          Lupinus albus – a model plant to study chemical P acquisition in plants ........ 9
 
     General Methods ................................................................................................... 11-13
          Plant cultivation and harvest ............................................................................ 11
          Determination of organic acids by HPLC ........................................................ 12
               Root tissue concentrations ........................................................................... 12
               Root exudate collection ............................................................................... 12
               Conditions for HPLC ................................................................................... 12
               Statistics ....................................................................................................... 13
 
Chapter 1: Phosphorus deficiency-induced alterations of organic acid  
                    metabolism during cluster root development 
 
     Introduction ........................................................................................................... 14-21
          Phosphorus deficiency-induced biosynthesis of carboxylates ......................... 14
          Phosphorus deficiency-induced inhibition of citrate turnover ......................... 17
               Inhibition of aconitase ................................................................................. 17
               Reduced assimilation of nitrate with 2-oxoglutarate as N acceptor ............ 17
               ATP-citrate lyase ......................................................................................... 18
               Reduced respiration ..................................................................................... 19
 
     Materials and methods .......................................................................................... 22-34
          Enzyme assays .................................................................................................. 22
          PEP-C immunodetection .................................................................................. 22
          Pyruvate determination ..................................................................................... 22
          Malic enzyme (ME) activity determination ..................................................... 24
          Aconitase and NADP+-Isocitrate-Dehydrogenase (NADP-ICDH) activity  
          assay ................................................................................................................. 25
          Hydrogen-peroxide (H2O2) determination ....................................................... 26
          Malondialdehyde determination ....................................................................... 27
          Histology of dehydrogenase activities ............................................................. 28
          Respiration ........................................................................................................ 28
               Root O2 uptake ............................................................................................ 28
               AOX Western Blot analysis ........................................................................ 29
          ATP-citrate lyase assay .................................................................................... 32
          Inhibitor treatments .......................................................................................... 33
 
 
 
 



 
 
                                                              Table of contents                                                        II 
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
 
     Results.................................................................................................................... 35-59
          Phosphorus deficiency-induced biosynthesis of carboxylates  ........................ 35
               Carboxylate accumulation and metabolic activity status in different  
               developmental stages of cluster roots ..........................................................  35
               Malic enzyme activity  ................................................................................ 37
               Pyruvate concentrations .............................................................................. 38
          Phosphorus deficiency-induced inhibition of citrate turnover  ........................ 39
               Inhibition of Aconitase and NADP-dependent isocitrate-dehydrogenase 
               (NADP-ICDH) ............................................................................................ 39
          H2O2 – a natural inhibitor of aconitase in P-deficient white lupin ? ................ 40
               Peroxide (H2O2) concentrations .................................................................. 40
               Malondialdehyde (MDA) concentrations .................................................... 41
          Effects of the external application of aconitase inhibitors on accumulation  
          and root exudation of citrate ............................................................................. 42
               Inhibition of the enzyme aconitase by hydrogen peroxide (H2O2) ............. 42
               Inhibition of the enzyme aconitase by monofluoroacetate (MFA) and its  
               influence on carboxylate accumulation in young cluster roots ................... 44
               Inhibition of the enzyme aconitase by monofluoroacetate (MFA) and its  
               influence on carboxylate exudation from young cluster roots .................... 45
               Inhibition of the enzyme aconitase by monofluoroacetate (MFA) and its  
               influence on carboxylate exudation from P-sufficient seedling root tips .... 46
               Inhibition of the enzyme aconitase by monofluoroacetate (MFA) and its  
               influence on aconitase and NADP-ICDH activities .................................... 47
              In situ activity of dehydrogenases involved in citrate turnover ................... 49
          Reduced respiration .......................................................................................... 51
               Respiration rates and cytochrome and alternative oxidase (AOX)  
                capacities .................................................................................................... 51
                    Western Blot analysis ............................................................................. 52
                    Uncoupling of respiration ....................................................................... 53
               Oxidative damage of the respiratory chain ? ............................................... 54
               Partial root incubation with respiration inhibitors ....................................... 55
               Reduced assimilation of nitrate into 2-oxoglutarate as N acceptor ? ......... 56
               ATP-citrate lyase (ACL) activity ................................................................ 58
               Inhibition of the citrate cleaving enzyme ATP-citrate lyase (ACL) ........... 59
 
     Discussion ............................................................................................................. 60-82
          Increased biosynthesis of organic acids under P-deficient conditions ............. 60
               Phosphoenolpyruvate carboxylase (PEP-C) activity ................................... 60
               Citrate synthase (CS) activity ...................................................................... 61
               Pyruvate concentration and malic enzyme (ME) activity ........................... 61
          Reduced turnover of citrate under P-deficient conditions ................................ 62
               Reduced aconitase activity .......................................................................... 63
               Reduced activity of dehydrogenases in the TCA cycle ............................... 64
               NADP-dependent isocitrate dehydrogenase (NADP-ICDH) activity ......... 64
               In-situ staining of dehydrogenase (DH) activities ....................................... 65
               Reduced respiration ..................................................................................... 66
               Reduced nitrate assimilation ....................................................................... 68
               Reduced ATP-citrate lyase activity ............................................................. 69
        
 
 
 



 
 
                                                              Table of contents                                                        III 
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
 
 Factors determining reduced citrate turnover ............................................................ 71
               Reduced activity of aconitase ...................................................................... 72
                    Inhibition of aconitase by H2O2 production ?.......................................... 72
                    Nitric oxide (NO) as an aconitase inhibitor ? ......................................... 73
               Substrate limitation of respiration ? ............................................................ 74
               P deficiency-induced oxidative damage ? ................................................... 75
          Citrate accumulation as related to artificial inhibition of selected metabolic  
          sequences .......................................................................................................... 77
               Influence of an inhibited respiration by azide or SHAM on citrate tissue  
               concentrations .............................................................................................. 77
               Inhibition of the aconitase enzyme by external application of MFA .......... 78
               Inhibition of nitrate reductase (NR) by tungstate ........................................ 79
               Inhibition of the ATP-citrate lyase by external application of  
               hydroxycitrate .............................................................................................. 80
         Conclusions and outlook ................................................................................... 80
 
 
 
 
Chapter 2: Mechanisms of citrate export in cluster roots 
 
     Introduction ........................................................................................................... 82-85
 
     Materials and methods .......................................................................................... 86-95
          Vesicle isolation and characterization............................................................... 86
               Citrate transport across vesicle membranes ................................................ 91
          Acidification of the cytosol .............................................................................. 92
          Isolation of protoplasts from mature cluster roots and root tips ....................... 93
          Isolation of root hair protoplasts from seedlings and cluster roots .................. 94
 
     Results ....................................................................... ........................................... 96-108
          Purification of plasma membrane vesicles ....................................................... 96
               Characterization of the plasma membrane H+-ATPase in roots of white   
               lupin as related to the P-nutritional status ................................................... 97
               Alterations of plasma membrane H+-ATPase activity during cluster root  
               development ................................................................................................ 97
                    ATP hydrolysis ....................................................................................... 99
                    pH optimum ............................................................................................ 100
                    Plasma membrane H+-ATPase activity as affected by carboxylates ...... 101
                    Proton transport across membranes ........................................................ 102
                             14C citrate transport into inside-out vesicles ........................................... 103
                   Carboxylate exudation and intracellular pH ............................................ 104
 
          Protoplast isolation ........................................................................................... 106
               Protoplast isolation from mature cluster root laterals ................................. 106
               Protoplast isolation from root tips ............................................................... 107
               Protoplast isolation from root hairs ............................................................. 107
 
 
 
 
 



 
 
                                                              Table of contents                                                        IV 
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
 
     Discussion ............................................................................................................. 109-119
           Plasma membrane H+-ATPase characterization .............................................. 109
               Characterization of the root H+-ATPase as related to the P-nutritional  
                status ........................................................................................................... 109
               Plasma membrane H+-ATPase activity in different cluster root segments . 110
               Plasma membrane H+-ATPase activity depending on the external pH........ 111
               Plasma membrane H+-ATPase activity as affected by carboxylates ........... 112
               Citrate transport across the plasma membrane ............................................         114
          Protoplast isolation from mature cluster root laterals ...................................... 115
               Regulation of the citrate release mechanism in cluster roots of P-deficient  
               white lupin  .................................................................................................. 116
          Conclusions ...................................................................................................... 119
 
 
 
 
Chapter 3: Role of modifications of atmospheric CO2 concentrations on root 
                    exudation and rhizosphere processes in cluster roots  
 
     Introduction ........................................................................................................... 120-122
 
     Materials and methods .......................................................................................... 123-127
          Plant cultivation and harvest ............................................................................ 123
          Root exudate collection and determination of organic acids ........................... 124
          Plants cultivated in nutrient solution ................................................................ 124
               Determination of ortho-phosphate in root tissue and shoot tips .................. 124
          Plants cultivated in rhizoboxes ......................................................................... 125
               Enzymatic citrate determination .................................................................. 125
               Determination of total phosphate in root and shoot tissue .......................... 126
               Determination of acid and alkaline phosphatase activities in rhizosphere 
               soil ............................................................................................................... 127
 
     Results ................................................................................................................... 128-134
          Plants grown in nutrient solution ...................................................................... 128
               Plant growth and development .................................................................... 128
               Cluster root development ............................................................................ 130
               Cluster root function .................................................................................... 132
          Plants grown in rhizoboxes .............................................................................. 135
               Plant growth and development .................................................................... 135
               Cluster root development ............................................................................ 138
               Cluster root function ................................................................................... 138
                    Citrate exudation .................................................................................... 138
                    Phosphatase activity ............................................................................... 139
                    Phosphate concentrations and contents .................................................. 140
 
 
 
 
 
 
 
 



 
 
                                                              Table of contents                                                        V 
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
 
     Discussion ............................................................................................................. 141-150
          Plant growth and development ......................................................................... 141
          Cluster root development ................................................................................. 143
          Function of cluster roots ................................................................................... 143
          Activity of phosphatases .................................................................................. 145
          P acquisition and P nutritional status of the plants ........................................... 146
          Microbial diversity ........................................................................................... 150
 
 
     General conclusions and outlook .......................................................................... 151-155
 
     Abstract ................................................................................................................. 156-160
     Abstract (German) ................................................................................................. 161-165
 
     References ............................................................................................................. 166-187
 



 
 
                                                               List of figures shown                                                  I 
———————————————————————————————————— 

List of figures shown 
 
 

Figure 
No. 

Title 
page

   
1 Models for morphological and root-induced chemical phosphate mobilization 

in the rhizosphere 3 
2 Schematic representation of P-deficiency-induced metabolic processes, as 

indicated by heavy arrows, that may circumvent P-dependent basic reactions 
of carboxylate metabolism, resulting in carboxylate production 16 

3 Schematic representation suggesting metabolic processes being inhibited 
under P deficiency, as indicated by „ = “, promoting a reduced turnover of 
citrate 18 

4 Schematic representations of P-deficiency-induced modifications of 
respiration with potential impact on citrate accumulation (a) reduced 
respiration leading to a feedback inhibition of the TCA cycle by 
overreduction of the reduction equivalents or (b) increased production of 
H2O2, caused by an impaired respiration, leading to inhibition of the aconitase 
enzyme 20 

5 Incubation of part of the root system with metabolic inhibitors in a separate 
jar 34 

6 Immunoblot analysis of PEP-C in different white lupin root segments 36 
7 Malic enzyme (ME) activity in different white lupin root segments 37 
8 Pyruvate tissue concentrations in different white lupin root segments 38 
9 aconitase and NADP-dependent ICDH activity in different white lupin root 

segments  40 
10 Peroxide concentrations in different white lupin root segments 41 
11 Malondialdehyde (MDA) concentrations in different white lupin root 

segments 42 
12 Malate and citrate concentrations and citrate/malate tissue concentration 

ratios in young cluster root segments after incubation with the aconitase 
inhibitor H2O2, applied at the concentrations of 10 mM and 5 mM for 1.5 h, 3 
h and 5 h.  43 

13 Malate and citrate tissue concentrations and citrate/malate tissue 
concentration ratios in young and mature cluster root segments after 
incubation with 10 mM the aconitase inhibitor monofluoroacetate (MFA) for 
8 h.  44 

14 Malate (left) and citrate (middle) exudation rates and citrate/malate exudation 
ratios (right) in young and mature cluster root segments after incubation with 
10 mM the aconitase inhibitor monofluoroacetate (MFA) for 8 h 45 

15 Organic acid exudation rates in seedling root tips after incubation with 
10 mM the aconitase inhibitor monofluoroacetate (MFA), 20 µM Al, and a 
combination of both (Al+MFA) for 12 h, followed by a localized root exudate 
collection for 2 h 47 

16 aconitase and NADP-dependent ICDH activity in young and mature white 
lupin root segments after incubation with 10 mM MFA for 8 h 48 

17 Histological formazan staining of dehydrogenase activities in different root 
zones of P-deficient white lupin with citrate and succinate as substrates 50 

18 Respiration, measured as O2 depletion, in different white lupin root segments 52 
19 Western blot analysis of alternative oxidase protein in different white lupin 

root segments 53 



 
 
                                                               List of figures shown                                                  II 
———————————————————————————————————— 

20 The effect of the uncoupler carbonyl cyanide m-chlorophenylhydrazone  
(CCCP) with the concentrations of 0; 0.2; 1; 10, and 20 µM on respiration of 
different white lupin root segments 

 
 

54 
21 The effect of partial root incubation with the respiration inhibitors azide 

(1 mM) and SHAM (7.5 mM) for 4 h and 8 h on malate and citrate 
concentrations in young (-P y) and mature (-P m) cluster roots of white lupin 56 

22 Malate (left) and citrate (middle) concentrations and citrate/malate tissue 
concentration ratios (right) in young cluster root segments after incubation 
with the nitrate reductase inhibitor Na2WO4, applied at the concentrations of 
300 µM, 600 µM and 1000 µM for 16 h 57 

23 reaction scheme of the enzyme ATP-citrate lyase 58 
24 A: malate and citrate root segment tissue concentrations. B: in vitro activities 

of ATP-citrate lyase in different white lupin root segments; C: transcript 
levels of ACL 58 

25 Malate and citrate concentrations and citrate/malate tissue concentration 
ratios in young cluster root segments after incubation with the citrate lyase 
inhibitor hydroxycitrate (HC), applied at the concentrations of 5 mM for 12 h 
and of  100 mM for 8 h 59 

26 Spatial variation of pH, plasma membrane H+-ATPase activity, and exudation 
of citrate along cluster roots of P-deficient white lupin 98 

27 Development of citrate exudation rate per plant and pH in the nutrient 
solution in +P control plants and P-deficient plants during plant growth 98 

28 Vanadate sensitive PM H+-ATPase hydrolytic activity measured as phosphate 
release by ATP cleavage in PM vesicles derived from different segments of 
cluster roots of  P deficient plants. A: H+-ATPase activity per cluster; B: per 
cluster fresh weight; C: per protein. 99 

29 PM H+-ATPase hydrolytic activity measured as phosphate release by ATP 
cleavage in PM vesicles derived from roots of two to five weeks old P 
sufficient (+P) or P deficient (-P) plants 100 

30 PM H+-ATPase hydrolytic activity measured as phosphate release by ATP 
cleavage in PM vesicles derived from roots of five weeks old P sufficient 
(+P) or P deficient (-P) plants at different pH values in the assay solution. 
Maximum activity for +P at pH 6.50; for -P at pH 6.35 100 

31 PM H+-ATPasehydrolytic activity measured as phosphate release by ATP 
cleavage in PM vesicles derived from -P and +P control plant roots dependent 
on citrate (A) and malate (B) concentrations in the assay solution.  101 

32 Effect of NO3 (100 mM), vanadate (0.1 mM), malate (7.5 mM) and citrate 
(5 mM) on the pH gradient formation in PM vesicles, determined by the 
absorbance change of acridine orange at λ = 492 nm. Vesicles were isolated 
from P deficient roots. The acidification was stopped by the addition of 
10 mM EDTA-BTP 102 

33 Immunodetection of the H+-ATPase protein by Western Blotting of PM 
vesicles isolated from roots of +P control plants or of P-deficient (-P) cluster-
containing plants 103 

34 Citrate and malate concentrations in different root segments of white lupin as 
affected by buffering the external pH and application of propionate 105 

35 Protoplasts isolated from A+B: mature cluster root laterals. Red colouration 
inside the protoplasts means low viability. C: from cotyledons. D-G: root hair 
protoplasts isolated according to  the methods of Gassmann and Schroeder 
(1994) and Cocking (1985) 108 

  
  



 
 
                                                               List of figures shown                                                  III 
———————————————————————————————————— 

   
36 Shoot and root fresh weight of P deficient white lupin plants under ambient 

(400 µmol mol-1) and elevated (800 µmol mol-1) atmospheric CO2 
concentrations at six different days of harvest (days after sowing) 

 
 

128 
37 P deficient white lupin plants cultivated at ambient (400 µmol mol-1) and 

elevated (800 µmol mol-1) atmospheric CO2 concentrations after 35 days of 
growth. below: shoots and roots of P-deficient white lupin plants cultivated at 
ambient (400 µmol mol-1) and elevated (800 µmol mol-1) atmospheric CO2 
concentrations 29 days after sowing 129 

38 Root/shoot mass ratio of P deficient white lupin plants under ambient (400 
µmol mol-1) and elevated (800 µmol mol-1) atmospheric CO2 concentrations at 
six different days of harvest (days after sowing) 130 

39 Total number of cluster roots per plant of P-deficient white lupin plants at 
ambient (400 µmol mol-1) and elevated (800 µmol mol-1) atmospheric CO2 
concentrations at six different days of harvest (days after sowing) 130 

40 Total number of cluster roots per root fresh biomass of P deficient white lupin 
plants at ambient (400 µmol mol-1) and elevated (800 µmol mol-1) 
atmospheric CO2 concentrations at six different days of harvest (days after 
sowing) 131 

41 Distribution of cluster roots of different developmental stages depending on 
plant age and atmospheric CO2 concentrations 131 

42 Malate and citrate exudation rates in different white lupin cluster root 
segments at six different days after sowing at ambient (400 µmol mol-1) and 
elevated (800 µmol mol-1) CO2 concentrations 132 

43 Pi concentrations per root biomass in different cluster root segments at 
ambient (400 µmol mol-1) and elevated (800 µmol mol-1) atmospheric CO2 
concentrations at six different days of harvest (days after sowing) 133 

44 Pi concentrations per shoot biomass in the shoot tip at ambient (400 µmol 
mol-1) and elevated (800 µmol mol-1) atmospheric CO2 concentrations at six 
different days of harvest (days after sowing) 134 

45 Shoot and root dry weight and total plant dry weight of white lupin plants 
grown in rhizoboxes at ambient (400 µmol mol-1) and elevated (800 µmol 
mol-1) atmospheric CO2 concentrations with sufficient (+P) and without (-P) 
external P supply, 35 days after sowing 136 

46 Distribution of cluster roots in different developmental stages (four harvest 
dates) of white lupin plants grown in rhizoboxes, at ambient (400 µmol mol-1) 
and elevated (800 µmol mol-1) atmospheric CO2 concentrations grown with 
sufficient (+P) and without (-P) external P supply (data from J. Wasaki and A. 
Rothe) 137 

47 Citrate exudation from root segments of +P and P-deficient plants 35 days 
after sowing at ambient (400 µmol mol-1) and elevated (800 µmol mol-1) 
atmospheric CO2 concentrations (data from G. Neumann) 138 

48 Rhizosphere acid and alkaline phosphatase activity [nmol substrate turnover 
h-1 g-1 rhizosphere soil] of white lupin plants grown in rhizoboxes at ambient 
(400 µmol mol-1) and elevated (800 µmol mol-1) atmospheric CO2 
concentrations grown with sufficient (+P) and without (-P) external P supply 
35 days after sowing (data from J. Wasaki and A. Rothe) 139 

49 Shoot and root total P concentration per dry weight and P root and shoot 
contents of white lupin plants grown in rhizoboxes at ambient (400 µmol 
mol-1) and elevated (800 µmol mol-1) atmospheric CO2 concentrations grown 
with sufficient (+P) and without (-P) external P supply 35 days after sowing. 
(data from J. Wasaki and A. Rothe) 140 



 
 
                                                               List of tables shown                                                  I 
———————————————————————————————————— 

   
List of tables shown 
 
 

Table 
No. 

Title page 

   
1 Characteristics of different developmental stages of cluster roots I 35 
2 Characteristics of different developmental stages of cluster roots II 36 
3 The effect of partial root incubation with the respiration inhibitors azide 

(1 mM) and SHAM (7.5 mM) for 4 h and 8 h on citrate/malate tissue 
concentration ratios in young (-P y) cluster roots of white lupin 56 

4 Homogenization stock solution (MO) for vesicle isolation 87 
5 GS stock solution 87 
6 MR stock solution (resuspension medium) 87 
7 Homogenization solution 87 
8 Gradient Solution (GS) 88 
9 Different inhibitor treatments to determine the activities of the different 

ATPases in the vesicle suspension derived from different subcellular 
membrane fractions 89 

10 Solution 1 to stop the ATPase reaction 90 
11 Solution 2 for the colour reaction with Pi 90 
12 Vanadate-sensitive and –insensitive plasma membrane ATPase reaction 

medium 90 
13 pH-dependent vanadate-sensitive and –insensitive plasma membrane ATPase 

reaction medium 91 
14 Incubation solution for 14C-citrate transport determination 92 
15 Washing solution 92 
16 Solutions used for protoplast isolation 94 
17 Solutions used protoplast isolation from root hairs 95 
18 Purity of vesicle preparations characterized by inhibition of marker enzymes 

(ATPases). 97 
19 Uptake of 14C labelled citrate and H+ pumping activity by addition of citrate 

alone or citrate + Mg-ATP for energetization in PM vesicles derived from P-
deficient (-P) and +P control plants.  104 

20 Preparation of the mixed reagent for Pi determination 125 
21 Preparation of acids and molybdate-vanadate solution to determine 

Phosphate-P 126 
22 Number of cluster roots of white lupin plants removed for further 

investigations at different harvest times. Plants were grown in rhizoboxes at 
ambient (400 µmol mol-1) and elevated (800 µmol mol-1) atmospheric CO2 
concentrations grown with sufficient (+P) and without (-P) external P supply 
(data from Wasaki and Rothe) 137 

 



 
 

Abbreviations 
 
ACL ATP-citrate lyase 
AOX  alternative oxidase 
A-9-C anthracene-9-carboxylic acid 
BSA bovine serum albumin 
BHT butylated hydroxytoluene 
CCCP carbonyl cyanide m-chlorophenylhydrazone 
CoA Co-Enzyme A 
DAS days after sowing 
DH dehydrogenase  
DMAB 3-dimethylaminobenzoic acid 
DTT dithiotreitol 
EDTA ethylenediaminetetraacetic acid 
FW fresh weight 
ICDH isocitrate-dehydrogenase 
ID  inner diameter 
IRE iron-responsive elements 
IRP iron-regulatory protein 
Gln glutamine 
Glu glutamate 
HC hydroxycitrate 
HEPES 4-(2-hydroxyethyl)-piperazine-1-ethansulfonic acid 
MBTH 3-methyl-2-benzothiazolinone 
MDA malon dialdehyde (indicator of lipid peroxidation) 
MDH malate dehydrogenase 
ME malic enzyme 
MES β-morpholino-ethanesulfonic acid 
MFA monofluoroacetate (inhibitor of aconitase) 
min minute 
NAD(H) Nicotinic-acid-amide-adenine-dinucleotide 
NADP(H) Nicotinic-acid-amide-adenine-dinucleotide-phosphate 
NBT Nitro blue tetrazolium: 2,2‘-Di-p-nitrophenyl-5,5‘-diphenyl-3,3‘-[3,3‘-

dimethoxy-4,4‘-diphenylene]ditetrazoliumchloride 
NO nitric oxide 
NR nitrate reductase  
2-OG 2-oxoglutarate  
P phosphate 
PEP-C phosphoenolpyruvate-carboxylase  
PK pyruvate kinase 
PM plasma membrane 
PMSF phenylmethylsulfonylfluoride 
POX horseradish peroxidase 
PVP-40 polyvinylpyrrolidone 
PVPP polyvinylpolypyrrolidone 
ROS reactive oxygen species 
SDS sodium dodecyl sulfate 
SHAM salicylhydroxamic acid 
 
 
 
 

 
 
 
 



 
 

TBA thiobarbituric acid 
TCA trichloro-acetic acid or tricarboxylic acid cycle 
TEMED N,N,N‘,N‘-Tetramethylethylendiamin 
TEP 1,1,3,3-tetraethoxypropan 
Trizma Tris (hydroxymethyl) aminomethane 
 



 
 
                                                            General introduction                                                        1    
—————————————————————————————————————— 

General introduction 
 

Phosphorus availability in soils 
 

In many tropical and subtropical areas crop production is severely limited by phosphorus (P) 

deficiency. In most cases it is the P available for plant uptake that is limiting rather than the total 

amount of P per se. The amount of ortho-phosphate (Pi) in the soil solution, the only P form 

which can be taken up by plants, is already low in fertile soils, where available P seldom exceeds 

10 µM (Raghothama, 1999). In most soils, the concentration of available Pi (approx. 2 µM) in 

soil solution is several orders of magnitude lower than that in plant tissues (5-20 mM) and 

generally below that of many other micronutrients (Raghothama, 1999). Phosphorus is 

considered to be the most limiting nutrient for growth of leguminous crops in tropical and 

subtropical regions. At the same time the total amount of P, comprising Fe-/Al phosphates or 

phosphates bound to Fe- or Al-oxides or -hydroxides in more acidic soils, or consisting of 

complex structures of Ca-phosphates with limited solubility in more calcareous and alkaline 

soils, lies between 0.02 and  0.15 % (Amberger, 1988). Depending on the content of soil organic 

matter, up to 30-80 % of the total P can be bound in complex forms of organic P esters, with 

phytates frequently forming the dominant fraction (Neumann and Römheld, 2001).  

Intensive P fertilization as a widespread practice in many industrial countries does not provide an 

adequate sustainable solution to this problem due to the poor affordability of P fertilizers, as well 

as unfavourable soil chemistry. Up to 80 % of the applied Pi may be fixed in the soil 

(Raghothama, 1999; Lambers et al., 2003). At the current rate of usage of mineral P fertilizers, 

readily available sources of high quality phosphate rocks with low heavy metal contaminations 

are unrenewable and will be depleted within the next 60 to 90 years (Raghothama, 1999). 

Additionally, a high mineral P input supports surface runoff, and P might be lost by soil erosion 

or leaching (Lægreid et al., 1999), which is a waste of the limited P resources and results in 

eutrophication of rivers, lakes and natural habitats.  

 

 

Mechanisms of P acquisition in higher plants 
 

Plants that naturally grow on P-deficient soils are well adapted to low P soil concentrations to 

cope with this situation. They show a broad range of different mechanisms to overcome P 

deficiency and may therefore serve as model plants to investigate adaptations typical for P 

efficiency.  
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Mechanisms that determine P efficiency comprise (1) development of a more extended root 

system under P-deficient conditions with longer and/or more and thinner lateral roots and root 

hairs (Neumann and Römheld, 2002), (2) symbiosis with mycorrhizae (e.g. Jacobsen et al., 1992; 

Read, 2003), (3) a high internal P use efficiency, determined by a generally lower internal P 

demand, slow growth rates, efficient P remobilization from older tissues, and (4) chemical 

mobilization of the sparingly soluble soil P fraction in the rhizosphere by root exudation of 

organic metal chelators, secretion of phosphohydrolases and modifications of rhizosphere pH 

and redox potential (Marschner, 1995; Neumann and Römheld, 2001; Neumann and Römheld, 

2002) (Fig. 1). Plant species differ in their distribution and amount of P-mobilizing root exudates 

released under P deficiency as well as in the root zones the exudation occurs (reviewed e.g. by 

Crowley and Rengel, 1999; Dakora and Phillips, 2002). In general, dicots, particularly legumes, 

are more efficient than monocots to produce and exude carboxylates (especially citrate and 

malate) into the rhizosphere (Jones, 1998; Raghothama, 1999). 

A habitat of plant species with extraordinarily high expression of adaptive responses for 

chemical P mobilization in the rhizosphere are the sand plains in south-west Australia, which are 

characterized by extremely low availability of nutrients, in particular phosphate and 

micronutrients. On these heavily leached soils, Proteaceae are a significant component of the 

biodiversity and biomass (Roelofs et al., 2001). These Proteaceae, trees and shrubs mainly 

distributed in the native vegetation of Australia and South Africa (Lamont, 1983), are 

characterized by development of so-called cluster roots, bottlebrush-like clusters of short (5-10 

mm) rootlets of determinate growth covered with a dense mat of root hairs. Cluster roots are 

formed along secondary lateral roots with ten or more meristems per cm (Gardner et al., 1982; 

Lamont, 1983; Dinkelaker et al., 1989, 1995; Johnson et al., 1996b; Keerthisinghe et al., 1998), 

and occur in most species of Proteaceae, but also in other plant genera such as Casuarinaceae, 

Betulaceae, Myricaceae, Eleagnaceae or Fabaceae, e.g. in Lupinus albus or L. consentinii 

(Dinkelaker et al., 1995; Gilbert et al., 1998; Neumann and Martinoia, 2002). Formation of 

cluster roots is mainly induced under P deficiency (Lamont, 1982), but can also be found under 

Fe deficiency (Arahou and Diem, 1997; Hagström et al., 2001). In white lupin, light microscopy 

showed that both, cluster root and normal lateral root primordia, arise opposite xylem poles in 

the pericycle (Johnson et al., 1996b), although a triarch stele resulting in the formation of three 

longitudinal rows of rootlets was also observed (Peek et al., 2003). Unlike typical lateral roots 

which emerge at random along the axis of primary and secondary roots, cluster rootlet meristems 

emerge from every protoxylem pole within an axis (Gilbert et al., 2000). A greater number of 

protoxylem poles leads to greater rootlet density (Lambers et al., 2003).  
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Fig. 1: Models for (above) P deficiency-induced morphological adaptations of root growth and 
(below) root-induced chemical phosphate mobilization in the rhizosphere by exudation of carboxylates, 
protons, and root secretory phosphatases (adapted from Neumann and Martinoia, 2002).  
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Cluster roots were first described for Proteaceae and therefore originally were called ‘proteoid 

roots‘ (Purnell, 1960). Meanwhile ‘proteoid‘ roots have been described in a wide range of 

species and genera, and the more appropriate term ‘cluster‘ roots has been introduced (Roelofs et 

al., 2001).  

Almost all cluster root-forming species are non-mycorrhizal (Dinkelaker et al., 1995; Skene, 

1998), which might be an adaptation to their area of distribution, where a short season of rainfall 

does not support the time-consuming development of symbiosis with mycorrhizal fungi 

(Lamont, 1982; Gilbert et al., 1998).  

Cluster roots exhibit intense expression of root-induced chemical changes by exudation of 

substances which improve nutrient availability in the rhizosphere, such as organic metal 

chelators (carboxylates, phenolics), protons which acidify the rhizosphere, or phosphatases to 

hydrolyse organically bound P. Additionally, in cluster roots a higher reducing capacity was 

found (Neumann et al., 2000). Among the carboxylates, citrate and malate are generally the main 

compounds (Roelofs et al., 2001), but also fumarate, cis- or trans-aconitate, malonate, maleinate, 

succinate, or lactate were found in the root exudates (Lambers et al., 2000). The distribution and 

the amount of carboxylates released depend on the plant species and the developmental age of 

the cluster roots (Johnson et al., 1996b; Keerthisinghe et al., 1998; Neumann et al., 1999; Kamh 

et al., 1999).  

Citrate has frequently been reported to be the most efficient carboxylate anion to solubilize 

sparingly soluble P, followed by oxalate. Malate or even acetate have much lower solubilizing 

effects (Jones, 1998). More generally, the number of carboxylic groups and their arrangement 

relative to other carboxyl and hydroxyl moieties determine the stability of the organic ligand-

metal complexes and, therefore, their potential to release Pi into the soil solution. For example, 

tricarboxylates chelate Fe more strongly than dicarboxylates, or even monocarboxylates (Ryan, 

2003). Several mechanisms for this solubilization process have been described: Citrate dissolves 

sparingly soluble phosphates such as calcium-phosphates or Fe- and Al-phosphates by chelation 

of Fe, Al and Ca by citrate-forming metallo-organic complexes, whereby the phosphate anion is 

released. Under acidic conditions Ca-P has a higher solubility and citrate-metal complexes are 

more stable.  

Another mechanism for Pi release into the soil solution is the desorption of P from Fe- and Al-

oxides, -hydroxides, and oxihydroxides by anion exchange. Additionally, P bound to humic-

Fe/Al-complexes can be liberated by carboxylates. Carboxylates can also counteract P fixation 

by blocking P sorption sites in the soil matrix (e.g. Dinkelaker et al., 1989; Gerke, 1992; Gerke 

and Hermann, 1992; Jones, 1998; Dakora and Phillips, 2002), and they can serve as substrates 

for bacteria which degrade organically bound P (Ryan, 2003). 
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Whether the organic acids released by roots of P-deficient plants are really able to mobilize 

sufficient amounts of P to alleviate P deficiency in plants is still a matter of debate (Jones, 1998; 

Jones et al., 2003). Many mobilization studies revealed that high concentrations of carboyxlates 

(> 100 µM for citrate, > 1 mM for oxalate, malate or tartrate) are required to mobilize significant 

quantities of P into the soil solution (Jones, 1998). Below a concentration of 10 µmol citrate or 

oxalate g-1 soil, the P mobilization is negligible or small (Ammann and Amberger, 1988; Gerke 

et al., 2000). Dinkelaker et al. (1989) and Gerke et al. (1994) found around 50 µmol citrate g-1 

soil in the cluster root rhizosphere of white lupin under non-sterile conditions, which was 

sufficient to explain the high efficiency of this plant species for acquisition of sparingly soluble 

soil P sources (Gerke et al., 2000). Additionally, Roelofs et al. (2001) reported that the amount of 

carboxylates exuded by Proteaceae may certainly influence P availability, as well as the 

availability of other nutrients, and suggested that carboxylates, at least malonate and citrate, are 

important for nutrient acquisition by Proteaceae. On the other hand, carboxylate concentrations, 

as found in the rhizosphere soil of many other plant species, are far below the reported threshold 

concentrations for efficient P mobilization (Jones, 1998). Attempts to assess the contribution of 

carboxylate exudation to nutrient mobilization are further complicated by a lack of knowledge of 

the complex interactions and processes between organic acids and the soil, together with the soil 

microbial community, and methodological shortcomings (Jones et al., 2003).  

High stability of complexation between carboxylates and metals is a prerequisite for efficient 

nutrient mobilization or detoxification. However, complex stability depends on many factors, 

such as (1) type and structure of the particular carboxylate, (2) the presence of other organic 

chelators, (3) sorption characteristics, pH, and buffering capacity of the soil, (4) root-induced 

changes of pH and redox potential in the rhizosphere as well as (5) soil microbial activity (Jones, 

1998). The half-life of carboxylates in bulk soils is given as between 2-3 h, depending on the soil 

type or temperature, whereby decomposition is even 2 to 3-fold faster in rhizosphere soil (Jones, 

1998; Ryan et al., 2001). Similar half-life times were given by Neumann and Römheld (2001) 

for different plant species and sampling conditions in soil experiments. However, biodegradation 

of carboxylates appears also to be highly dependent on the amount and type of sorption to soil 

particles, with Al and Fe hydroxides providing the greatest protective effect (Jones, 1998). The 

high temporal and spatial variability of soil conditions, including also small-scale spatial 

variations of soil microsites or in the rhizosphere along a single root (Marschner, 1995), together 

with variations in microbial activity, makes it very difficult to predict the effects of root exudates 

on nutrient mobilization in soils.  
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Perspectives to improve P nutrition in crop plants  
 

 

Fertilization management and cropping systems  
 

A range of alternative management strategies has been proposed with the aim to cope with the 

restrictions and problems of limited P availability, to avoid overfertilization, and to achieve a 

more sustainable practice for use of P fertilizers in agricultural production systems. Apart from a 

better adjustment of P applications to plant demands, an increase in P efficiency can be gained 

by fertilizer placement strategies in close proximity to roots or even seeds. Compared with 

broadcast application, more economic placement of high local P concentrations can minimize 

adsorption effects, it stimulates root growth, and provides a P start supply which can improve 

early growth and can promote the development of P acquisition mechanisms (Lægreid et al., 

1999; Bagayoko et al., 2000). Organic P sources and chemically unprocessed rock phosphates 

without a high energy input for fertilizer production are the only P fertilizers allowed in organic 

farming. However, successful application of these slow-release fertilizers requires management 

strategies to ensure sufficient plant supply of soluble P during the culture period. Root-induced 

pH changes, mediating P solubilization, can be promoted by the form of applied N fertilizers 

triggering acidification or alkalinization of the rhizosphere (Marschner, 1998). Also 

intercropping and rotation systems using plant species with a high potential for P acquisition 

(Horst and Waschkies, 1987, Alvey et al., 2002) can contribute to a reduced input of P fertilizers. 

Approaches for recycling of P fertilizers during waste water management are currently under 

investigation. Inoculation of plant roots with P solubilizing or plant growth promoting 

rhizosphere microorganisms (PGPR) and mycorrhizal fungi, so called "biofertilizers", have been 

demonstrated to improve the P-nutritional status of crop plants (Atkinson et al., 2002; Estaún et 

al., 2002). However, a wide gap of knowledge exists, concerning the conditions for a successful 

application with reproducible responses and the related functional mechanisms. The right choice 

of the P source will be site-specific and depends on edaphic, climatic and economic factors 

(Sinaj et al., 2001). However, the complexity of the root-rhizosphere-soil system prevents 

general rules and recommendations to be drawn from these approaches.  
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Selection and breeding of P-efficient plants 
 

Another possibility is to breed crops with enhanced yield ability in low P soils (Lynch, 2003) or 

to genetically engineering plants for a higher P efficiency. Although intraspecific genotypic 

variation in expressing plant adaptation to P deficiency has been frequently reported (Römer et 

al., 1995; Neumann and Römheld, 2000), approaches for selection or breeding of P-efficient 

genotypes have not been followed widely yet. One of the few examples of practical significance 

is breeding of wheat cultivars with increased efficiency in P acquisition in Northern China 

reported by Li and Li (2000), although the related mechanisms are not clear.   

Several reports exist where a higher organic acid exudation rate was accompanied by higher 

activities of enzymes producing these carboxylates, such as phosphoenolpyruvate-carboxylase 

(PEP-C), malate dehydrogenase (MDH) or citrate synthase (CS) (Johnson et al., 1994; 1996a+b; 

Keerthisinghe et al., 1998; Neumann et al., 1999; Neumann and Römheld, 1999; Watt and 

Evans, 1999a; Uhde-Stone et al., 2003a).  

Transgenic approaches with overexpression of these enzymes, however, showed unconvincing 

and often contradicting results. Koyama et al. (1999) described a higher CS activity and higher 

citrate exudation from protoplast-derived callus from carrot with transformation of cells using 

Arabidopsis thaliana mitochondrial CS. The same group (Koyama et al., 2000) also described 

the overexpression of mitochondrial CS from Daucus carota in Arabidopsis thaliana with a 

higher CS activity and increased citrate excretion from the roots. Anoop et al. (2003) used yeast 

knock-out mutants of citrate synthase (CS), aconitase (ACO) and isocitrate dehydrogenase 

(ICDH) to test Al toxicity resistance and found that only double knock-out yeast mutants of CS 

(two of the three possible) showed significant reduction in their citrate content. ∆aco1 and 

∆icdh12 yeast knock-out mutants accumulated higher levels of citrate (cellular and extracellular) 

and showed improved Al resistance. Overexpression of the Pseudomonas aeruginosa citrate 

synthase (CS) gene was reported to increase citrate concentration, exudation, and Al tolerance in 

tobacco (de al Fuente et al., 1997), or showed a better growth and reproduction on a P-deficient, 

alkaline soil (López-Bucio et al., 2000). However, Delhaize et al. (2001) found that the same 

transgenic tobacco lines, and different lines producing up to 100 times more CS protein, did 

neither show higher citrate concentrations nor higher citrate exudation. Therefore Delhaize et al. 

(2003) concluded that CS activity does not limit the accumulation of internal citrate and suggest 

that the transport of citrate across the plasma membrane is a more likely site for regulation of 

citrate efflux from tobacco roots. Furthermore, the antisense inhibition of the cytosolic NADP-

ICDH in tobacco did not change plant metabolism (Kruse et al., 1998).  
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An improved P acquisition was gained when the phytase gene from Aspergillus niger was 

transferred into Arabidopsis thaliana and the gene product was secreted as extracellular enzyme 

to hydrolyse P from externally applied phytase in agar medium (Richardson et al., 2001). 

However, this approach was yet unsuccessful under soil conditions and is probably limited by 

the very low solubility of phytates in soils (Neumann and Römheld, 2001). 

Apart from the highly artificial growth conditions and tissue preparations frequently used for 

such experiments, a general flaw of these approaches is that the physiological background of the 

reactions manipulated in such a crude way is far from understood. Plant metabolism is a complex 

and highly regulated system where the change of one component leads to adjustments in a whole 

network of reactions. Increases in enzyme activity can only increase product concentrations 

when the reaction increased is limiting. Increasing the amount of enzyme by genetic engineering 

may have little effect on organic acid synthesis if the enzyme is already present in excess, or if 

its activity is regulated by the concentration of reaction products, by phosphorylation (Ryan et 

al., 2001) or otherwise.  

Even less is known about the influence of additional stress factors simultaneously occurring in 

many P-limited soils on the expression of plant adaptations to P deficiency. These stress factors 

can comprise: Ca and Mg deficiency, Al toxicity, Mn toxicity, bicarbonate stress, micronutrient 

deficiencies, alterations in redox conditions, light intensities, or drought or heat stress, and might 

give unexpected results. For example, Nian et al. (2003) and Ligaba et al. (2004) found higher Al 

toxicity-induced malate and citrate exudation for soybean and rape, respectively, when the plants 

were well supplied with P. In contrast, P-deficient plants showed no carboxylate exudation under 

Al stress. Bicarbonate stress in rice plants led to very high citrate exudation rates similar to those 

observed in white lupin cluster roots under P deficiency (Hajiboland, 2000), and comparable 

values were found for lactate accumulation in maize roots under oxygen deprivation (Xia and 

Roberts, 1994).  

Genetically engineering plant metabolic parameters without knowing even the basics of 

physiological correlations between external parameters and regulation seems not to be a very 

promising approach to improve P efficiency in crop plants. The following investigation was 

therefore aimed to increase knowledge of the metabolic characteristics leading to citrate 

accumulation and exudation under P deficiency in cluster roots of white lupin. 
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Lupinus albus – a model plant to study chemical P acquisition in plants 
 

White lupin is the most thoroughly investigated plant species forming cluster roots. Together 

with Lupinus consentinii it is the only cluster-rooted plant species of agricultural importance. It 

is easy and fast to cultivate as an annual plant and produces clusters within 4 to 5 weeks after 

germination when cultivated without or with low levels of external P supply. White lupin is often 

used as a model plant to study adaptations for chemical P mobilization such as rhizosphere 

acidification, release of organic metal chelators, high activities of root secretory acid 

phosphatase, and expression of high affinity P uptake (Neumann et al., 2000).  

Cluster roots of white lupin release high amounts of carboxylates, mainly citrate and malate, in 

variable ratios, depending on the developmental stage of individual root clusters. These stages 

can be visually differentiated by the length of the rootlets and the colour of the clusters 

(Neumann et al., 1999; Kamh et al., 1999) and comprise: (1) still growing, white coloured young 

clusters (2) light brown, mature clusters fully developed without growth activity of the lateral 

rootlets, and (3) senescent clusters with extensive browning. The brown colour probably 

originates from oxidized phenolic compounds produced and exuded during cluster root 

development. The different stages are separated from each other by sections of roots without 

clusters. The production of a new generation of clusters might be brought about by a regulatory 

cascade involving phytohormones such as auxins and cytokinins, where P is remobilized in older 

tissues of the root and the shoot and is re-invested into a new generation of leaves and cluster 

roots (Watt and Evans, 1999a; Neumann et al., 1999; Lamont, 2003).  

Investigating different developmental stages of cluster roots and not only responses of the whole 

root system revealed that malate and citrate tissue concentrations in the clusters can change 

within one day to the other while the clusters age (Johnson et al., 1996b; Keerthisinghe et al., 

1998; Neumann et al., 1999; Watt and Evans, 1999a; Kamh et al., 1999). While malate 

concentrations and exudation rates are highest in young clusters and decrease during cluster root 

development, citrate concentrations are highest in mature and senescent clusters, but exudation 

only peaks in mature ones. This was a strong hint to a regulated citrate release. In addition, the 

finding that anion channel inhibitors can decrease citrate exudation rates led to the conclusion 

that citrate exudation takes place via an anion channel in white lupin (Neumann et al., 1999).  

Carboxylate exudation in cluster roots exhibits a diurnal rhythm. Watt and Evans (1999b) 

described exudation only during the day, and Kamh et al. (1999) reported the highest citrate 

exudation rate directly at the beginning of the light period, and an exponential decline in 

exudation 
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rate during the light period. It would be interesting to investigate how internal carboxylate 

concentrations, supply of carbohydrates from the shoot, and enzyme activities of carboxylate 

metabolism fit into this pattern.  

Intense P deficiency-induced carboxylate exudation from plant roots was frequently correlated 

with high accumulation of carboxylates in the root tissue (Neumann and Römheld, 2001; 

Peñaloza et al., 2002). Several investigations considered citrate metabolism under P deficiency. 

It was found that a substantial proportion of the C exuded by P-deficient lupin is derived from 

nonphotosynthetic C fixation in roots (Johnson et al., 1996a). On the other hand, citrate 

accumulation might not exclusively be due to a higher production, but also be promoted by a 

lower degradation. A decreased aconitase activity in white lupin roots under P deficiency was a 

first hint into this direction (Neumann et al., 1999; Neumann and Römheld, 1999).  

In combination with an increased P mobilization in the cluster roots, P uptake rates are enhanced 

compared to non-cluster or non-deficient roots (Lamont, 1982; Keerthisinghe et al., 1998). 

Especially on the basis of root surface area, P uptake rates were found to be more than twice in -

P cluster roots compared to -P non-clusters or +P control roots (Neumann et al., 1999, 2000). 

Higher P uptake rates might be due to higher expression (Liu et al., 2001) and/or a higher density 

(Neumann et al., 1999, 2000) of P transporters, and the induction of a high-affinity P uptake 

system under P deficiency was described (Schachtman et al., 1998).  

 

Although a lot is already known about the metabolic pathways leading to citrate accumulation, 

the regulation of the key reactions is still unclear. Furthermore, almost nothing is known about 

the factors which trigger and regulate citrate exudation and how the plants react to a combination 

of environmental changes under P deficiency. 

 

Therefore the aim of this work was to  

 

1. characterize metabolic key reactions involved in P deficiency-induced citrate accumulation 

in cluster roots during their life cycle. 

2. characterize the mechanisms for citrate export from cluster roots. 

3. characterize the impact of environmental factors on root exudation and rhizosphere processes 

in cluster roots using the example of elevated atmospheric CO2 concentrations, changing the 

supply of assimilates to the roots. 
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General methods 
 

Plant cultivation and harvest 
 

White lupin seedlings (Lupinus albus L. cv. Amiga; Südwestdeutsche Saatzucht, 76437 Rastatt, 

Germany) were desinfected with 30 % H2O2 for 15 min, rinsed with tap water, soaked in 10 mM 

CaSO4 for 4 h and pre-germinated in wet filter paper containing 2.5 mM CaSO4 for 4 d in the 

dark at 25°C. After emerging of the seedlings, the plants were illuminated in a growth chamber 

for another two days before they were transferred to nutrient solution. For this, 10 seedlings were 

cultivated in a 2.5-L aerated pot containing 2 mM Ca(NO3)2; 0.7 mM K2SO4; 0.1 mM KCl; 

0.5 mM MgSO4; 30 µM Fe-EDTA; 10 µM H3BO3; 0.5 µM MnSO4; 0.5 µM ZnSO4; 0.2 µM 

CuSO4; 0.01 µM (NH4)6Mo7O24, with addition of 2.5 mM CaSO4 per pot in solid form to prevent 

Ca deficiency due to high transpiration rates of the plants. For +P control plants 250 µM KH2PO4 

were added. P-deficient plants were cultivated without any P in the nutrient solution. Growth 

chamber conditions were adjusted to a 16/8 h day/night cycle at a light intensity of 150 µmol m-2 

s-1 and a constant temperature of 25°C with a relative humidity of 60 %. 

Harvest of the four to five weeks old plants was done 3 to 4 h after beginning of the day cycle to 

prevent the influence of possible diurnal rhythms. The roots were rinsed twice in 1 mM CaSO2 

solution, cut, the different root segments wrapped in aluminum foil, shock-frozen in liquid N2, 

and stored at – 80ºC until further use.  

The root segments were differentiated according to their physiological age with the parameters 

of position along the lateral root, rootlet length and colour of the rootlet. Probably due to phenol 

exudation, followed by oxidation, cluster roots get darker when they age. In P-deficient plants 

four different segments were distinguished:  

-P a: the apical root zone of a lateral root up to 1 cm behind the root tip 

-P y: young cluster root with still growing rootlets, white colour 

-P m: mature cluster rootlets; the youngest fully grown cluster with light brown to reddish colour 

-P s: senescent cluster rootlets, darker brown, the next older cluster rootlets referring to the –P m  

        ones; the very rootlet tips being even darker than the rest of the rootlet, but still without 

        signs of decay 

+P:  as +P control, apical root zones of P-sufficient plants up to 1 cm behind the root tips were  

        harvested.   
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Determination of carboxylates by HPLC 
 

Root tissue concentrations 

 

Root tissue concentrations of carboxylates after partial root incubation with respiration inhibitors 

(azide and salicylhydroxamic acid (SHAM)), H2O2, hydroxycitrate, Na2WO4 or 

monofluoroacetate (MFA) were determined via RP-HPLC.  

For this, root segments collected as described above after the incubation were ground with a 

mortar and a pestle in 5 % (v/v) H3PO4 [50 mg root FW mL-1]. Due to the low pH value of the 

extraction solution, resulting in degradation of membranes and enzymes, extraction was done 

without previously grinding the tissue in liquid N2. After centrifugation of the homogenate (for 

10 min at 10,000 g) the supernatant was diluted 10-fold with the HPLC eluent and used for 

HPLC injection. 

 

 

Root exudate collection 
 

For the localized collection of root exudates from nutrient solution-grown white lupin, small 

pieces of wet thick filter paper (Machery and Nagel), previously washed with methanol and 

ddH2O, were placed on the root segments of the plants spread on plastic plates and covered with 

moistened filter paper to prevent the plants from drying out. After 3 h, the filter papers used for 

the sampling were removed and the corresponding root segments were cut, frozen in liquid N2, 

and stored at –80°C. Extraction of the filter papers was done with HPLC buffer (see below), with 

150 µL cm-2 of filter or 50 µL per filter rondelle. After centrifugation and transfer of the 

supernatant into a new vial the paper-free exudates were used for HPLC injection.  

To test how seedlings react to aluminium or aconitase inhibitor stress, one week old white lupin 

and maize seedling root tips were incubated over night with 20 µM AlCl3 or 10 mM MFA in 

Eppendorf vials and immediately afterwards root exudates were collected from the incubated 

root zones for 2 h in 250 µL ddH2O in Eppendorf  vials. The exudates were centrifuged and the 

supernatant used for organic acid analysis.  
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Conditions for HPLC 
 

Separation of the organic acids were isocratically performed on a reversed-phase C-18 column 

(GROM-SIL 120 ODS-5 ST, particle size 5 µm; length 250 mm, ID 4.6 mm), with a guard 

column (length 20 mm, ID 4.6 mm; GROM, Herrenberg, Germany) with the same column 

material. A sample volume of 20 µL were injected into the flow of the eluent (18 mM KH2PO4, 

pH 2.25, 35°C, with a constant flow rate of 0.5 mL min-1), and detected photometrically at 215 

nm with a UV detector. Identification and quantification of the organic acids were done by 

comparing the retention times and peak areas with those of known standards.  
 
 
 
Statistics 
 
For statistical analysis of the data, the program Sigma Stat® 2.03 (Jandel Scientific) was used. 

Differences between the root segments were tested with a one-way ANOVA and Tukey test (p < 

0.05) and significant differences were indicated by different letters. Differences between two 

treatments were tested with a Student's t-test.  
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Chapter 1: Phosphorus deficiency-induced alterations of organic 
acid metabolism during cluster root development 
 
 

 

Introduction 
 

 

In Lupinus albus, citrate accumulates during cluster root development under conditions of P 

deficiency, associated with declining levels of malate in the cluster root tissue. After reaching a 

threshold concentration of 20-30 µmol citrate g-1 root FW in mature root clusters (Neumann et 

al., 2000; Peñaloza et al., 2002), a transient pulse of intense citrate exudation, associated with 

rhizosphere acidification, occurs over a time period of 2-3 days. The transient pattern of 

carboxyate exudation is comparable for lupin plants grown in hydroponics and under soil 

conditions (Neumann et al., 1999; Kamh et al., 1999), and has been similarly described also for 

other cluster-rooted plant species (Dinkelaker et al., 1989; Shane et al., 2004). These findings 

suggest a causal relationship between the accumulation of extraordinarily high tissue 

concentrations of citrate and the transient burst of citrate release into the rhizosphere. Therefore 

the question arises which metabolic processes are responsible for the shift from malate to citrate 

accumulation in the tissue of mature root clusters and the sudden release of citrate as one of the 

most efficient carboxyates mobilizing sparingly soluble P forms in soils. Increased biosynthesis 

and reduced turnover of citrate have been discussed as possible metabolic processes responsible 

for citrate accumulation in cluster roots (Neumann et al., 1999, 2000; Neumann and Martinoia, 

2002). 

 

 

Phosphorus deficiency-induced biosynthesis of carboxylates 
 

On the anabolic side of carboxylate metabolism, induction of several glycolytic bypass reactions 

have been described, circumventing P-depending metabolic reactions under conditions of P 

deficiency (Theodorou and Plaxton, 1993, 1995; Plaxton, 1998). As an example, fructokinase, 

phosphoglucomutase, and sucrose synthase transcript levels and enzyme activities were 

increased in young and mature cluster roots of white lupin (Massonneau et al., 2001). Uhde-
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Stone et al. (2003b) found increased expression of ESTs with homology to a glyoxysomal malate 

synthase, PPi-dependent phosphofructokinase, phosphoenolpyruvate carboxylase (PEP-C) and 

malate dehydrogenase (MDH), together with other enzymes of the glycolytic pathway in cluster 

roots of P-deficient white lupin. 

Higher activities of PEP-C and MDH were found for white lupin (Johnson et al., 1994; 1996a+b; 

Neumann et al., 1999; Neumann and Römheld, 1999; Keerthisinghe et al., 1998; Watt and 

Evans, 1999b; Uhde-Stone et al., 2003a). In other plant species, higher PEP-C activity under P-

deficient conditions were described for Brassica napus (Hoffland et al., 1992), tomato (Pilbeam 

et al., 1993; Neumann and Römheld, 1999), chickpea and wheat (Neumann and Römheld, 1999) 

or Catharanthus roseus (Nagano et al., 1994). In white lupin, PEP-C mRNA (Uhde-Stone et al., 

2003a) and PEP-C protein, determined by immunoblot analysis (Neumann et al., 1999; Uhde-

Stone et al., 2003a), were more expressed in P-deficient cluster roots. Phosphoenolpyruvate 

carboxylase catalyzes the carboxylation of phosphoenolpyruvate (PEP) to oxaloacetate by non-

photosynthetic CO2 fixation, whereby Pi is set free. Moreover, in cluster roots of white lupin the 

PEP-C reaction provides up to 30 % of the carbon released as citrate into the rhizosphere under 

P-deficient conditions (Johnson et al., 1996a+b). 

As a result, these metabolic pathways allow the operation of glycolysis under conditions of low  

P availability and provide additional carbon for root exudates that are released. The products of 

those reactions are oxaloacetate and malate, which can act as precursors for the biosynthesis of 

citrate (Fig. 2).  

Citrate synthase (CS) activity as the metabolic step leading directly to citrate production was 

found to be increased under P deficiency in carrot cells (Takita et al., 1999) and in white lupin 

(Johnson et al., 1994), but was not found by Neumann et al. (1999) or Kihara et al. (2003a) for 

white lupin or by Aono et al. (2001) for Sesbania rostrata CS mRNA.  
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Fig. 2: Schematic representation of P deficiency-induced metabolic processes, as indicated by heavy 
arrows, that may circumvent P-dependent basic reactions of carboxylate metabolism, resulting in 
carboxylate production (adapted from Plaxton, 1998, and Heldt, 2003). 
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Phosphorus deficiency-induced inhibition of citrate turnover 

 

Inhibition of aconitase 
 

First arguments for an impaired citrate turnover as a possible cause for citrate accumulation 

under P-deficient conditions have been provided by Neumann et al. (1999) and Kihara et al. 

(2003) (Fig. 3),  reporting decreased activities of aconitase for mature cluster roots in Lupinus 

albus. A similar correlation between increased accumulation of citrate and reduced activity of 

aconitase was found for P-deficient tomato and chickpea, but not for wheat (Neumann and 

Römheld, 1999). Aconitase, catalyzing the turnover of citrate to cis-aconitate and isocitrate, is 

rapidly inactivated by H2O2 (Verniquet, 1991), which can be produced at increased rates under P 

limitation (Parsons et al., 1999; Juszczuk et al., 2001b; Malusà et al., 2002) or under inhibited 

respiration (Purvis and Shewfelt, 1993; Minagawa et al., 1992) (see below).  

At least two aconitase isoenzymes are present in intact plant cells: one is present in the cytosol, 

the other in mitochondria (Brouquisse et al., 1986, 1987). While the mitochondrial enzyme most 

likely participates in the tricarboxylic acid (TCA) cycle, the cytosolic enzyme might play a role 

in different metabolic pathways (Sadka et al., 2000). Its participation was suggested in the 

glyoxylate cycle in pumpkin cotyledons (Hayashi et al., 1995). Aconitase was found to be 

inhibited by yet unknown factors in sour lemon in contrast to sweet lime, which has been related 

to increased citrate accumulation (Sadka et al., 2001).  

 

 

Reduced assimilation of nitrate with 2-oxoglutarate as N acceptor 
 

Isocitrate as the product of aconitase is further metabolized to 2-oxoglutarate (2-OG) via the 

enzyme isocitrate-dehydrogenase (ICDH). Two forms of this enzyme exist: NAD-dependent 

ICDH occurs only in mitochondria, whereas the NADP-dependent form can be found in 

mitochondria as well as in other compartments such as peroxisomes, chloroplasts and the cytosol 

(Schnarrenberger and Martin, 2002). 

NADP-ICDH was detected in all tissues and organs investigated in higher plants (Chen and 

Gadal, 1990b) and represents 90 % to 100 % of the activity detected in any plant organ, but little 

is known about its physiological role (Palomo et al., 1998). It has been suggested that NADP-

specific ICDH represents an additional or alternative path to the TCA cycle enzyme, when large 

quantities of 2-oxoglutarate (2-OG) are required (Chen and Gadal, 1990a; Gálvez and Gadal, 

1995), e.g. for supplying the 2-OG for amino acid biosynthesis and ammonia assimilation (Chen 
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et al., 1988; Gallardo et al., 1995). Chen and Gadal (1990a) proposed that in higher plants the 

cytosol is the major site for generation of 2-OG used in N assimilation. On the other hand, till 

date, the exact enzymatic origin of 2-OG for plant NH4 assimilation is still unknown. ICDHs and 

aspartate aminotransferases are the two main candidates, and arguments exist for and against the 

role of cytosolic ICDH in NH4 assimilation (Hodges et al., 2003). Nevertheless, a reduced uptake 

and assimilation of nitrate is a common feature in P-deficient plants (Rufty et al., 1990; Pilbeam 

et al., 1993; Buwalda and Warmenhoven, 1999; Gniazdowska et al., 1999; Neumann et al., 

2000), and reduced N-assimilation may therefore also affect the turnover of citrate which is the 

precursor for 2-OG as a potential acceptor molecule for NH4 assimilation (Neumann et al., 

2000). 

 

 

ATP-citrate lyase (ACL) 
 

Differential display analysis of gene expression during cluster root development in Lupinus 

albus using the RFLP approach revealed high expression of ATP-citrate lyase (ACL) in young 

cluster roots, which declined during cluster root development (Langlade et al., 2002). The 

enzyme catalyzes the ATP-dependent cleavage of citrate into oxaloacetate and acetyl-CoA and 

may provide an anaplerotic pathway for acetyl-CoA production under P-deficient conditions 

where phosophoenolpyruvate is preferentially converted to oxaloacetate via the PEP-C reaction 

(Duff et al., 1989a+b; Theodorou and Plaxton, 1991; Kihara et al., 2003). Declining expression 

of ACL during cluster root development, possibly caused by ATP limitation, may therefore re-

present an additional pathway for citrate turnover, which is repressed under severe P-deficient 

conditions.  
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Fig. 3: Schematic representation suggesting metabolic processes being inhibited under P deficiency, as 
indicated by “ = “, promoting a reduced turnover of citrate (adapted from Plaxton, 1998; Neumann and 
Martinoia, 2002; Langlade et al., 2002, and Heldt, 2003). 
 

 

 

Reduced respiration 
 

Lower respiration rates have also been reported for cluster roots of P-deficient white lupin 

(Neumann et al., 1999; Massonneau et al., 2001) and might therefore affect citrate accumulation 

directly by reduced consumption of citrate in the TCA cycle or indirectly by H2O2-induced 

inhibition of aconitase activity. 

Respiration provides energy in form of ATP for many metabolic processes. Oxidation of C-

containing compounds in glycolysis and the TCA cycle provide reduced pyridine nucleotides 

(NADH), which are oxidized in the mitochondrial electron transport chain (Douce, 1985; 
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Parsons et al., 1999). The energy which is set free by the transport of electrons along the 

cytochrome pathway in the mitochondrial inner membrane is used to create an electrochemical 

gradient, which dissipation is coupled to the production of ATP from ADP and Pi, whereby O2 

serves as terminal electron acceptor and is reduced to water. A number of factors may limit the 

rate of root respiration under P limitation, such as availability of Pi and adenylates as respiratory 

substrates, or a more general impairment of mitochondrial function by limited biosynthesis of 

proteins etc. (Bingham and Farrar, 1988; Williams and Farrar, 1990; Bingham and Stevenson, 

1993; Wanke et al., 1998). Due to a reduced respiration, electron transport through the 

cytochromes would cease, and the TCA cycle would be inhibited through a shortage of oxidized 

pyridine nucleotides (Lee, 1979). This might be one explanation for the increased citrate 

concentrations observed in mature cluster roots of white lupin (Fig. 4).  

The mitochondrial electron transport chain can produce significant quantities of reactive oxygen 

species (ROS), primarily due to the presence of the ubisemiquinone radical which can transfer a 

single electron to oxygen and produce superoxide (Sweetlove et al., 2002). This superoxide can 

be oxidized to H2O2, which might inhibit the aconitase enzyme.  

 

As known so far, all plants, and some fungi and protists, additionally have an alternative 

respiratory pathway, brought about by a single protein, the so-called alternative oxidase (AOX). 

This enzyme is a cyanide-resistant terminal quinol oxidase and shunts electrons off the cyanide-

sensitive cytochrome pathway at the level of ubiquinone, and reduces molecular oxygen to water 

in a single four-electron step without conservation of energy (Day et al., 1996). This means that 

this non-phosphorylating pathway is independent of P-containing respiratory substances and 

therfore does not contribute to a transmembrane potential (reviewed by Vanlerberghe and 

McIntosh, 1997). Only the phosphorylating potential from site I (NADH dehydrogenase) is 

retained, thus allowing some energy production (Vanlerberghe and McIntosh, 1997).  

Although a clear function for the AOX pathway has yet to be established (Millenaar et al., 2001), 

its main effect might be to prevent an overreduction of the respiratory chain components and 

ROS production when there is an imbalance between carbon metabolism and electron transport 

(Purvis and Shewfelt, 1993; Wagner and Krab, 1995). Under this aspect, the AOX pathway 

could be taken as a bypass reaction under P deficiency to overcome the limiting cytochrome 

electron transport (Yip et al., 2001) due to a lack of ADP and Pi. In accordance with this, an 

increased alternative pathway capacity was observed under P-deficient conditions (Rychter and 

Mikulska, 1990; Hoefnagel et al., 1993a; Parsons et al., 1999; Juszczuk et al., 2001a; Yip et al., 

2001).  
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Fig. 4: Schematic representation of P deficiency-induced modifications of respiration with potential 
impact on citrate accumulation (a) reduced respiration leading to a feedback inhibition of the TCA cycle 
by overreduction of the reduction equivalents or (b) increased production of H2O2, caused by an impaired 
respiration, leading to inhibition of the aconitase enzyme (adapted from Plaxton, 1998; Neumann and 
Martinoia, 2002, and Heldt, 2003). 
 

 

Based on the working hypothesis that citrate accumulation in cluster roots of P-deficient white 

lupin, preceeding the exudative burst of citrate, is a consequence of (1) increased production of 

citrate precursors and (2) reduced consumption of citrate, the aim of this work was to 

characterize the key regulatory steps in citrate metabolism which might affect citrate 

accumulation during cluster root development. The experimental approach comprises the 

characterization of possible key enzymes, regulatory factors, and metabolic sequences involved 

in citrate metabolism during different stages of cluster root development as related to 

accumulation and root exudation of citrate. 
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Materials and methods 
 

 

Enzyme assays 
 
Determination of in vitro activities of phosphoenolpyruvate carboxylase (PEP-C) (EC 4.1.1.31) 

and citrate synthase (CS) (EC 4.1.3.7) enzymes was carried out by G. Neumann as described by 

Johnson et al. (1994; 1996a) and Neumann et al. (1999). For the determination of PEP-C 

activity, lactate dehydrogenase (LDH) (EC 1.1.1.27) was additionally included into the assay 

buffer (3 U mL-1) to compensate for decarboxylation of oxaloacetate during the test. Crude 

enzyme extracts were prepared by homogenization of frozen tissue with mortar and pestle (200 

mg FW mL-1 of the appropriate extraction buffer), and subsequent centrifugation at 10,000 g 

(4°C). The clear supernatant was used for the enzyme assays.  

 

 

PEP-C immunodetection 
 
Determination was carried out by G. Neumann as described by Neumann et al. (1999). For 

immunoblot analysis of the PEP-C protein, crude extracts of root material, prepared according to 

the procedure for PEP-C activity determinations (400 mg FW mL-1 extraction buffer), were 

separated by SDS-PAGE (10 % acrylamide, application of 60 µg protein per lane), and proteins 

were electrophoretically transferred to nitrocellulose sheets by semi-dry blotting. A polyclonal 

antiserum directed to the phosphorylation site of sorghum PEP-C, which exhibits cross-reaction 

with PEP-C of many other plant species (J. Vidal, Institut des Biotechnologie des Plantes, 

CNRS, Université de Paris-Sud, Paris France, pers. comm.), was used for the detection of the 

PEP-C protein of white lupin in a coupled assay with alkaline phosphatase staining (Sigma, 

Deisenhofen, Germany). Protein determinations were performed according to Bradford (1976). 

 
 
Pyruvate determination 
 

Pyruvate determination was done according to Lamprecht and Heinz (1984), and was adjusted 

for white lupin root material. 

Pyruvate concentrations were determined from root segment material. For extraction, 5 mL of 

ice-cold 1 M perchloric acid were added per 1 g of root fresh weight and homogenized on ice 
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with a mortar and a pestle. The homogenate was transferred into an Eppendorf vial and a spatula 

tip of activated charcoal was added. The mixture was vortexed and stored on ice while the other 

root samples were extracted. The mixture was centrifuged at 20,000 g for 15 min at 4°C. The 

supernatant was transferred into new Eppendorf vials and neutralized with about 115 µL of 2 M 

K2CO3 per 500 µL extract to a pH of about 7.5. Since CO2 is built and produces bubbles, the vial 

should  not be filled too high to avoid the liquid to flow over. Allow the neutralized solution to 

stand for 15 min on ice to almost complete the neutralizing reaction. After mixing again, the tips 

of the vials were perforated to let the CO2 evaporate. To remove the bubbles (which interfere 

with spectrophotometric determinations) the solution was sonicated for 5 min in an 

ultrasonication bath with ice added to keep the solution cold. After another centrifugation step 

for 5 min with 20,000 g  at 4°C to pellet the precipitated material, the supernatant was used for 

pyruvate determination. 

 

Measurement was performed according to the scheme given by Lamprecht and Heinz (1984) and 

changed for the white lupin root material: 

The given incubation times were the times to wait for getting a constant absorbance reading. 

They were determined by time-scan (kinetic) measurements of samples.  

 
pipette successively into a semi-microcuvette:  concentration in assay mixture 

sample solution 0.50 mL pyruvate up to 0.12 mM 

TEA solution 0.25 mL TEA 0.16 M, EDTA 1.8 mM 

NADH solution 0.02 mL NADH 0.179 mM 

Mix thoroughly with a plastic spatula, incubate 
for 8 min and then read absorbance A1.   

Add H2O to get the change of absorbance by the 
addition of a 10 µL volume, wait for 5 min and 
read absorbance A2. 

0.01 mL  

Add LDH solution 0.01 mL LDH 5.76 U mL-1

Mix thoroughly, incubate for 10 min and read 
absorbance A3.    

 
 ∆A = A3-(A1-A2) was used for calculation. 
 
 
According to the law of Lambert-Beer, ε (340 nm NADH) = 6.3 l L x mmol-1 x cm-1  was used 
for calculation. 
 
 



 
 
                                              Organic acid metabolism                                                                 24                      
_____________________________________________________________________________ 
 
Solutions used:  

1. Triethanolamine/EDTA buffer (TEA, 0.5 mol L-1, pH 7.6; EDTA 5 mmol L-1): 
16.67 mL of a triethanolamine solution is diluted to ~ 200 mL, 0.47 g EDTA-Na2H2 x 2 H2O 
are added and the pH adjusted with HCl to pH 7.6; the solution is then filled up to 250 mL. 

 
2. perchloric acid solution (1 M):  

8.6 mL perchloric acid (70 % w/v) are diluted with water to 100 mL. 
Or: 10.03 mL of 60 % perchloric acid (w/v) are diluted with water to 100 mL. 

 
3. potassium carbonate solution (2 mol L-1): 

27.64 g K2CO3 are dissolved with water and made up to 100 mL. 
 

4. reduced nicotinamide-adenine dinucleotide solution (ß-NADH, 7 mmol L-1): 10 mg NADH, 
disodium salt, are dissolved in 2.0 mL 5 % (w/v) NaHCO3 solution. 

 
5. lactate dehydrogenase (LDH, 225 kU L-1): commercially available crystalline enzyme 

suspensions are dissolved with cold water appropriately. Use commercially available enzyme 
solutions from skeletal muscle or heart. 

 

 

Malic enzyme (ME) activity determination  
 

Malic enzyme (ME) (EC 1.1.1.39) activity was determined according to Outlaw and Springer 

(1983) and Dittrich (1976) from root segment material. The root material was ground in liquid 

N2 with a mortar and a pestle, and 500 mg of the ground material was extracted with 3 mL of an 

extraction cocktail containing 50 mM HEPES, pH 7.6, MnCl2 2 mM, DTT 10 mM, BSA 1 % 

(w/v), and 1 % PVP-40 with addition of 150 mg activated charcoal and 0.5 mM PMSF (15 µL 

from a 100 mM stock solution in 100 % ethanol) and filled into an Eppendorf vial. 

For protein determination, part of the frozen ground root material was extracted separately with 

the same extraction cocktail, but without BSA, frozen in liquid N2, and stored at –80°C till 

protein determination according to Bradford (1976), using BSA as a standard. 

To set the ME protein free from the mitochondria, the tissue extract for enzyme activity 

measurement was ultrasonicated with a sonication rod (Bandelin Sonopuls; HF generator GM 

2070) two times for 15 sec with an energy of 20-28 %, and frozen in liquid N2 until 

measurement. Sonication time and energy was chosen to the values giving the highest ME 

activity for a certain sample.  

For the photometric determination of the ME activity, the tissue extract was thawed, 15 µL 

Triton X-100 and 15 µL of the PMSF stock solution per 3 mL tissue extract were added, 

vortexed and centrifuged for 10 min at 10,000 g at 4°C. 12.5 µL of the supernatant was given to 

0.75 mL of the assay cocktail solution containing 50 mM HEPES, 5 mM malic acid, 2 mM NAD, 

0.2 mM EDTA, 0.1 mM CoA; 5 mM DTT, 5 µM NADH, and 500 U L-1 NAD-MDH. The 
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production of NADH from NAD due to the ME activity was monitored photometrically by its 

absorption change at λ = 340 nm, measured against water. Calculations for ME activity in the 

tissue extract were given as b = 9921 x ∆A x ∆t-1 [U L-1]. 

 

 

Aconitase and NADP+-Isocitrate-Dehydrogenase (NADP-ICDH) activity assay  
 

Aconitase (EC 4.2.1.3) and NADP+-Isocitrate-Dehydrogenase (NADP-ICDH) (EC 1.1.1.42) 

activity assays were performed in succession in the same sample. Both activities were 

determined photometrically in a coupled assay in which the formation of NADPH was followed 

at λ = 340 nm by its increase of absorbance, using aconitate (for aconitase activity) and isocitrate 

(for NADP-ICDH activity) as substrates, in essence according to de Vos et al. (1986). NADP-

ICDH activity was monitored directly by the production of NADPH from NADP due to its 

catalytic activity. Aconitase activity, however, was monitored in a coupled assay, where the 

isocitrate produced from aconitate, due to the aconitase activity, was quantitatively transformed 

to 2-oxoglutarate by NADP-ICDH. NADPH, formed from NADP, actually was monitored.  

 

Enzyme activity was measured in (a): P-deficient white lupin cluster root segments and in +P 

control plant root tips, and (b): in –P y and –P m cluster roots segments after localized incubation 

with 10 mM monofluoroacetate (MFA) for 8 h and successive localized collection of root 

exudates with filter papers. For enzyme extraction, the root segments were ground in liquid N2 

with a mortar and a pestle, and (a) 100 mg of the ground powder or (b) 50 mg of the ground 

powder suspended in 1 mL ice-cold extraction buffer with addition of PVPP (5 mg mL-1) and 

PMSF (10 µL mL-1 of a 0.1 M stock solution in methanol). The suspension was stored again in 

liquid N2 and each sample thawed separately directly before use to prevent degradation of the 

instable enzymes (Krebs and Eggleston, 1944). For activity determination, the frozen sample was 

thawed, centrifuged at 10,000 g for 5 min at 4°C, and 50 µL of the supernatant added to the 

assay solution. 

 

extraction buffer for aconitase and NADP-ICDH determination 

 
extraction buffer:   -   0.1 M HEPES 
 -  10 mM tricarballylic acid 
 -  2 mM DTT  
     pH 7.5 
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assay solution for aconitase and NADP-ICDH determination 
 
assay solution: 50 µL 5 mM MgSO4
 50 µL 5 mM MnSO4
 200 µL extraction buffer 
 50 µL 6 mM NADP (4.7 mg mL-1 suspended in HEPES-buffer), pH 7.5 
 
 
Base reaction was followed for 5 min after the addition of 50 µL of enzyme extract. The 

aconitase reaction was started by the addition of 50 µL of 10 mM c-aconitate (17.4 mg c-

aconitate mL-1 HEPES-buffer, pH 7.5; pH further adjusted with 5 M NaOH to pH 7.5) and 

followed until the reaction was linear for at least 3 min. 

To measure NADP-ICDH activity, 50 µL of a 120 mM dl-isocitrate solution (35 mg dl-isocitrate 

x 2 H2O mL-1 HEPES-buffer, pH 7.5) was added and followed for another 3 min.  

Calculation was done according to the law of Lambert-Beer: E = ε x c x d, 

with an extinction coefficient ε NADPH (340 nm) = 6.22 [L x mmol-1 x cm-1] 

 
 
 
Hydrogen-peroxide (H2O2) determination  
 
Determination was done according to Ngo and Lenhoff (1980), Okuda et al. (1991), and 

Veljovic-Jovanovic et al. (2002). Root segment material was ground to a fine powder in liquid 

N2 and 100 mg of the powder was extracted in 2 mL 1 M HClO4 with addition of 5 % PVPP, 

referring to the extraction volume. Homogenates were frozen in liquid N2 and stored at -80°C. 

For further use, the thawed homogenates were centrifuged at 12,000 g for 10 min at 4°C, a 

defined volume of supernatant was transferred into a new Eppendorf vial and neutralized with 

8 M KOH to pH 7 in the presence of 50 µL of a 0.3 M Na-phosphate buffer, pH 5.6. Fine-

adjustment was done with 1 M KOH and 1 M HClO4. All volumes used and added were noted 

and considered for calculation. This new homogenate was centrifuged at 12,000 g for 1 min at 

4°C to remove precipitated KClO4. The supernatant was incubated prior to assay for 10 min with 

1 U ascorbate oxidase mL-1 to oxidize ascorbate at room temperature.  

The colour-producing reaction was initiated by addition of a 100 µL aliquot of the sample to 

1 mL of reaction mixture (0.1 M Na-Phosphate buffer, pH 6.5; 3.3 mM DMAB; 0.07 mM 

MBTH, and 7 ng horseradish peroxidase (POX), type VI). The absorbance change at 590 nm 

was monitored photometrically at 25°C for several minutes. For each assay, the H2O2 

concentration in the extract was quantified by reference to an internal standard (5 µL of a 

0.5 mM H2O2 solution), added to the reaction mixture on completion of the absorbance change 

due to the sample.  
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Malondialdehyde (MDA) determination 
 

Malondialdehyde (MDA) determination was done according to the thiobarbituric acid method of 

Heath and Packer (1968) and Dhindsa et al. (1981) with minor modifications to evaluate lipid 

peroxidation of membranes. 

 

Many exogenic stress factors cause an increased oxidation of membrane lipids in living 

organisms due to activity of free radicals. As a result, malondialdehyde (MDA) is set free from 

these lipids. It can be detected in cell extracts via a reaction with thiobarbituric acid (TBA), 

producing a colour complex which can be measured at 532 nm in a spectrophotometer. The 

result can be taken as a parameter for the degree of membrane damage. 

 

Extraction and determination from plant material was performed according to Dhindsa et al. 

(1981). Production of MDA was tested in the different root segments. Root fresh material was 

ground in liquid N2 with a mortar and a pestle and 1 g of the ground material was extracted in 

5 mL of a pre-cooled 0.1 % trichloro-acetic acid (TCA) with addition of 50 µL of a BHT 

solution (5 % butylated hydroxytoluene in 100 % ethanol) to prevent oxidative rancidity of lipids 

according to Juszczuk et al. (2001). Extracts were stored on ice until all the samples were 

extracted. The homogenate was centrifuged at 10,000 g for 5 min at 4°C and 0.25 mL of the 

supernatant mixed with 1 mL of the assay solution (0.5 % thiobarbituric acid (TBA) in 20 % 

TCA; has to be heated to be resolved) and then heated to 95°C for 30 min. Do not boil, since this 

will cause severe turbidity and oily precipitation in the sample solution.  

To get rid of the bubbles forming in the solution, the solution was vortexed, sonicated for 

10 min, vortexed again and centrifuged for 10 min at 10,000 g at room temperature. 

Malondialdehyde concentration was measured photometrically at 532 nm against a blank and the 

values at 650 nm were subtracted as turbidity correction.  

To determine the MDA concentration, the law of Lambert-Beer was used with ε =  155 L x 

mmol-1 x cm-1  as extinction coefficient. 

To test the own procedure, a standard (TEP; 1,1,3,3-tetraethoxypropan; a fluid) can be measured: 

220 µL TEP are mixed with 0.78 mL of 80 % ethanol. This mixture is diluted 1:20,000 in 

0.1 % TCA. This dilution is then used in the same way as the centrifuged samples.   
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Histology of dehydrogenase activities 
 

The histological staining of dehydrogenase activities has the advantage to show not only the 

average activity of an enzyme as determined by enzyme activity tests of tissue extracts, but also 

the location inside the tissue where the activity occurs. In principle, living root segments are 

incubated with a dehydrogenase substrate and a soluble tetrazolium dye, which serves as 

hydrogen acceptor, whereas the hydrogen is supplied via NADH or NADPH by the substrate due 

to the corresponding dehydrogenase activity oxidizing the substrate. The tetrazolium is reduced 

to an unsoluble bluish-purple formazan product which precipitates in the cells where the 

reduction takes place.  

The method was performed according to Seligman and Butenberg (1951), and adapted for plant 

root material. Whole roots were incubated overnight in 2.5 mM of an aerated CaSO4 solution to 

deplete the roots of TCA cycle substrates. For fixation, the roots were embedded in 4 % of a 

boiled and then cooled-down agar in a high-diameter test-tube. The solidified agar with the 

embedded roots were removed from the test tube and root cross sections were cut with a razor 

blade as thin as possible. The cross sections were layered on microscope slides and then 

incubated in the dark for 5 h at 35°C with a NBT solution consisting of 100 mM Tris-HCl, pH 

7.5, nitro-blue tetrazolium (NBT; 2,2‘-di-p-nitrophenyl-5,5‘-diphenyl-3,3‘-[3,3‘-dimethoxy-4,4‘-

diphenylene]-ditetra-zolium-chloride) 0.025 %, and 50 mM dehydrogenase substrate in the form 

of citrate, isocitrate, c-aconitate, malate, succinate, or fumarate. Control incubations were done 

with the NBT solution without dehydrogenase substrate. Colour development was documented 

with a digital camera with 50-fold magnification. Since quite thick cross-sections were used, 

enough intact cells existed so that co-factors such as NAD, NADP or FMN or FAD and others 

were still available in the tissues for the dehydrogenase reactions.  

 
 
Respiration 
 

Root O2 uptake 
 

Respiration was measured as O2 uptake in excised root segments (200-400 mg FW) of cluster 

roots in different developmental stages or 1 cm apical root zones of lateral roots with a Clark-

type O2 electrode (Tri-Oxmatic EO 200; WTW© Weilheim, Germany, connected with an OXI 

530 reading unit (WTW)) at a temperature of 25°C in 30 mL of an air-saturated 2 mM Ca(NO3)2 
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solution according to Neumann et al. (1999). Readings of the O2 concentrations in the solution 

were taken each 30 s and O2 depletion calculated for the O2 uptake by the root segments on basis 

of time and root mass (fresh weight and dry weight). Calibration of the probe was done in air as 

OxiCal® fast calibration with an in-air calibration vessel PE/OXI. 

Respiration inhibitors were used at final concentrations of 0.5 mM and 7.5 mM for KCN and 

SHAM (salicylhydroxamic acid), respectively. The optimum concentrations for inhibitor supply 

were estimated from titration curves according to Møller et al. (1988). As an uncoupler of 

oxidative phosphorylation CCCP (carbonyl cyanide-3-chlorophenyl-hydrazone) was used at 

concentrations from 0.2 to 20 µM. Each measurement was performed with separate root samples. 

Fresh and dry weight of the root material was recorded when the measurements were finished. 

Cytochrome pathway (COX) capacity was defined as apparent respiration when the alternative 

pathway was inhibited by SHAM and alternative pathway (AOX) capacity as the apparent 

respiration with simultaneous inhibition of the cytochrome pathway by KCN. All data were 

corrected for residual respiration, measured by application of both, KCN and SHAM. 

  

 

AOX Western Blot analysis 
 

Extracts for non-reducing SDS-PAGE were prepared from fresh root material. Root tissue was 

ground in liquid N2 using a mortar and a pestle. Five hundred mg of the ground tissue were 

suspended in a 1 mL volume of protein sample mixture (62.5 mM Tris-HCl, pH 6.8; 2 % (w/v) 

SDS; 10 % glycerol, 2 mM EDTA, and 0.002 % bromophenol blue). PMSF (final concentration 

1 mM) was added to inhibit proteases, and samples were immediately boiled for 5 min. For 

separations under reducing conditions, 5 % (v/v) 2-mercaptoethanol was added.  

After cooling on ice, the samples were centrifuged for 10 min at 16,000 g and 8ºC in a microliter 

centrifuge to precipitate cell debris. Proteins were separated by SDS-PAGE according to the 

method of Laemmli (1970) with a 6 % (w/v) polyacrylamide stacking gel and a 12 % (w/v) 

polyacrylamide resolving gel. The separated proteins were subsequently transferred to a 

nitrocellulose blotting membrane (0.2 µm pore size; Sartorius, Göttingen, Germany) by semi-dry 

blotting (Khyse-Andersen, 1984) according to Neumann et al. (1999).  

For immunoblot analysis, the blot was incubated in a 1:75 dilution of a monoclonal antibody 

raised against alternative oxidase (AOX) of Sauromatum guttatum. The AOX antibody was 

kindly provided by Dr. T.E. Elthon (Elthon et al., 1989). Anti-mouse IgG (whole molecule) 

alkaline phosphatase conjugate was used as a secondary antibody (dilution 1:17,500). Colour 
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development was performed with the 5-bromo-4-chloro-3-indolyl phosphate/nitro blue 

tetrazolium liquid substrate system (Sigma, Deisenhofen, Germany).  

 

 
Solutions used for Western Blot analysis: 
 
resolving gel 12 %: 

7.76 mL Rotiphorese A 
3.6 mL Rotiphorese B 
5.6 mL 2 M Tris-HCl pH 8.8 
2.8 mL H2O 
300 µL SDS 
15 µL TEMED 
300 µL 10 % (w/v) APS 
  
Σ 20.4 mL  

 
 
stacking gel 6 %: 

2 mL Rotiphorese A 
0.9 ml Rotiphorese B 
2.5 mL  0.5 M Tris-HCl pH 6.8 
4.4 mL H2O 
100 µL SDS 
10 µL TEMED 
100 µL 10 % (w/v) APS 
  
Σ 10.01 mL  

 
 
elektrophoresis buffer (10- fold concentrated stock solution) 
15.143 g Tris 0.25 M  
5 g SDS 1 % (w/v)  
72.07 g Glycin (as electrolyte) 1.92 M  
 
filled up to 500 mL with H2O (no adjustment of the pH necessary) 
 
 
2-fold sample buffer: 
8 mL 0.5 M Tris-HCl pH 6.8 
10 mL 10 % SDS 
5.8 mL 87 % glycerine 
1 mL 0.2 % bromophenol blue 
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10-fold sample buffer: 
25 mL 1.6 M Tris-HCl pH 6.8 
5 g  SDS 
16.5 mL 87 % glycerine 
0.004 % (w/v) bromophenol blue 
 
 
solution for decoloration: 
450 mL H2O 
450 mL methanol 
100 mL glacial acetic acid 
 
 
Coomassie solution: 
450 mL H2O 
450 mL methanol 
100 mL glacial acetic acid 
2 g Coomassie blue R 250 
 
 
extraction buffer: 
50 mM Na-phosphate buffer pH 7.2 
1 % w/v PVP 
2 % v/v mercaptoethanol 
0.02 % w/v SDS 
2 % v/v DMSO 

 
 
 
derivatisation of the samples for the SDS-PAGE: 
100 µL crude extract 
100 µL sample buffer 2-fold  
10 µL mercaptoethanol 
 
denaturate for 5 min at 100°C; store at –20°C till separation 
 
 
Bradford-solution: 
25 mg  Serva Brilliant blue G 250 
12.5 mL ethanol 
25 mL H3PO4 (85 % v/v) 
 
The dye is presolved in ethanol, phosphoric acid is added and filled with bidistilled H2O up to 
250 mL. The solution is filtered, and after > 12 h filtered again. 
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Blotting-buffer: 
 
kathode buffer, pH 9.4: 
0.025 M Tris 1.51375 g 500 mL-1

0.04 M 6-amino-capronic acid 2.6236 g 500 mL-1

20 % (v/v) methanol  
0.02 % (w/v) NaN3  
 
 
anode buffer, pH 10.4: 
0.3 M Tris 18.165 g 500 mL-1

20 % (v/v) methanol  
0.02 % (w/v) NaN3 100 mg 500 mL-1

 
 
TU buffer, pH 9.4: 
0.025 M Tris  
20 % (v/v) methanol  
0.02 % (w/v) NaN3 100 mg 500 mL-1

 
 
 
Ponceau S solution: dissolve 2 g Ponceau S in 100 mL 3 % (w/v) TCA 
 
 
TBS buffer (10-fold): 
0.5 M Tris 15.138 g 250 mL-1

1.5 M NaCl 21.94 g 250 mL-1

 Tween 80 1.25 mL 250 ml-1

 NaN3 50 mg 250 mL-1

 
 
blocking buffer:  
 
TBS-Puffer with 0.1 % (v/v) Tween 80® (again added 0.5 mL for 1000 mL altogether) and 
0.25 % (w/v) BSA (Fraction V) = 2.5 g BSA 1000 mL-1

 
 
 
ATP-citrate lyase (ACL) assay 
 

The assay of ATP-citrate lyase (ACL) (EC 4.1.3.8) activity was done by N. Langlade and E. 

Martinoia, Université de Neuchâtel, Suisse (Kania et al., 2003). Frozen plant tissues were ground 

in liquid N2 and homogenized with 3 vol. of extraction buffer (0.1 M HEPES-KOH, pH 7.5, 

5 mM MgCl2, 2.5 mM DTT, 3 mM Na-DEDTC (diethyldithiocarbamate), 1 mM EDTA, 1 mM 

benzamidine, 1 mM PMSF, and 3 % PVPP K30). After centrifugation (25 min, 12,000 g, 4°C) 

the supernatant was rapidly used to determine ACL activities and protein concentrations (DC 
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Protein Assay kit; Bio-Rad). ACL activity was determined spectrophotometrically at room 

temperature, using the malate dehydrogenase coupled assay. The assay mixture contained 0.2 M 

Tris, pH 8.4, 10 mM MgCl2, 10 mM 2-mercaptoethanol, 20 mM Na3-citrate, 0.2 mM Coenzyme 

A, 10 mM ATP (omitted in blanks), 0.2 mM NADH, 0.4 U mL-1 malate dehydrogenase. Values 

were taken after 30 min. Blanks were performed by omitting ATP or Coenzyme A, resulting in 

similar values.  

 
 
Inhibitor treatments  
 

Cluster roots accumulate citrate during their development and exude it when a threshold 

concentration is reached. To examine which mechanism(s) may lead to the observed citrate 

accumulation during cluster root development, the following approach was chosen: Still young 

cluster roots were incubated with several metabolic inhibitors to find out if they can be forced to 

react like mature ones when the metabolic step, decreased naturally in mature cluster roots, is 

artificially inhibited in the still young ones. 

A part of the root system of four to five weeks old P-deficient white lupin plants were incubated 

in a small jar (15 - 30 mL), containing nutrient solution and the metabolic inhibitor which 

reaction was to be investigated (H2O2; hydroxycitrate, or monofluoro-acetic acid (MFA)). This 

small jar was fixed to the inside of a bigger pot with a volume of 750 mL with adhesive tape. 

The rest of the root system was kept in the bigger pot containing nutrient solution without the 

inhibitor. Both solutions did not mix and were aerated independently (Fig. 5). Control plants 

were incubated in the same way, but only with nutrient solution without inhibitor in the small jar. 

After the incubation time the roots were rinsed two times in 1 mM CaSO4 solution to remove 

adhering nutrient solution and inhibitor. The different root segments were cut, frozen separately 

in liquid N2, and stored at –80°C till further use. In case of the MFA incubation, when the 

organic acid concentrations in the MFA-treated root segments showed strong effects, further 

incubations were performed, where root exudates were collected localized from young and 

mature cluster root segments after the MFA incubation. For this, the plant root system was rinsed 

in 1 mM CaSO4 solution and spread on a plastic tray after the incubation, and small filter papers 

were put above and below the cluster root segments incubated in the MFA-containing solution to 

collect the root exudates. The rest of the root system was covered with wet paper to prevent 

drying of the roots. After the exudate collection, the filter papers were removed, frozen in liquid 

N2 and stored at -80°C till analysis of organic acid contents. The root segments where the 
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exudates were collected from were weighted, equally frozen in liquid N2 and stored at –80°C till 

analysis of aconitase- and NADP-ICDH activities. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 
 
 
Fig. 5: Incubation of part of the root system with metabolic inhibitors in a separate jar. 
 

 

Incubation of and root exudate collection from white lupin seedling root tips were done in small 

plastic vials. Incubation was performed in nutrient solution alone (control) or in nutrient solution 

with the addition of 10 mM MFA, 20 µM Al or a combination of both, 10 mM MFA and 20 µM 

Al. All solutions were titrated to a pH of 4.5 to keep Al solubilized.  

For incubation, two root tips per vial were put into a 2-mL vial containing the incubation 

solution. The plants were covered with wet filter paper to prevent them from drying. After 12 h 

of incubation, the roots were shortly rinsed in 1 mM CaSO4 solution and the root tips put into 

new vials containing 250 µL of distilled water for exudate collection. After a collection time of 

2 h, the vials containing the water together with the exudates were frozen in liquid N2 and stored 

at   -80°C until analysis. The parts of the root tips reaching into the incubation solution were cut, 

weighted for exudate rate calculation on the base of the root fresh weight, frozen in liquid N2 and 

stored at –80°C. For exudate determination, the liquid containing the exudates were thawed, 

centrifuged, and 20 µL injected for HPLC determination of organic acids.
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Results 
 

 

 

Phosphorus deficiency-induced biosynthesis of carboxylates 
 
 
Carboxylate accumulation and metabolic activity status in different 
developmental stages of cluster roots 
 
During cluster root development from apical root zones via young and mature clusters to 

senescent clusters, a shift from malate to citrate accumulation can be observed up to a threshold 

concentration, where a burst of citrate exudation occurs. In parallel, P nutritional status 

decreases, and P remobilization from Pi storage pools, ATP, and mainly from ribosomal RNA 

takes place, followed by lower protein concentrations and a lower energy status seen as lower 

ATP concentrations (Tab. 1).  

The aim of the following investigations was to elucidate how the key reactions of citrate 

metabolism are influenced by these conditions and how citrate accumulation is brought about. 

 
Table 1: Characteristics of different developmental stages of cluster roots I (Data from Neumann et al., 
1999; Massonneau et al., 2001, and protein concentrations from this work). +P: 10 mm apical root zone 
of lateral roots of P-sufficient plants; -P a: 10 mm apical root zone of lateral roots of P-deficient plants; -P 
y: young cluster roots; -P m: mature cluster roots; -P s: senescent cluster roots; see also p. 11. 
 

root concentration root exudation rate root concentration developme
ntal stage 

 malate citrate   malate citrate Pi ATP RNA protein 

 [µmol g-1 FW] [µmol g-1 FW h-1] [µmol g-1 
FW] 

[nmol g-1 
FW] 

[mg g-1 FW] 

+ P       nd 0.247 ± 0.068 3.43 ± 0.42 

-P a 12.09 ± 4.2   8.65 ± 0.1 0.65 ± 0.21 0.36 ± 0.14 nd 24.3 ± 4.5 0.068 ± 0.049 2.62 ± 0.41 

-P y 12.69 ± 2.3 17.68 ± 5.0 0.14 ± 0.04 0.12 ± 0.05 1.82 ± 0.42 90.9 ± 8.7 0.573 ± 0.073 3.83 ± 0.57 

-P m   3.59 ± 2.2 22.92 ± 3.2 0.09 ± 0.05 0.73 ± 0.26 0.42 ± 0.09 42.6 ± 8.9 0.062 ± 0.029 2.52 ± 0.45 

-P s   0.67 ± 0.3 23.58 ± 2.0  0.0 ± 0.0 0.04 ± 0.03 0.23 ± 0.04 12.1 ± 3.9 0.016 ± 0.002 1.44 ± 0.35 

 

 

Phosphoenolpyruvate carboxylase (PEP-C) is the enzyme of the non-photosynthetic CO2 fixation 

which branches from PEP via oxaloacetate to malate instead of from PEP to pyruvate via 
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pyruvate kinase. The activity of this enzyme was increased in mature clusters, together with an 

increase in specific activity in mature and senescent ones, and together with an increase in citrate 

concentrations (Tab. 2). This activity pattern paralleled enzyme amounts, detected by 

immunoblotting (Fig. 6), which hints to an enzyme regulation mainly by enzyme amount. 

However, in senescent clusters, where PEP-C enzyme amounts per root biomass and per protein 

were very low, specific activity was still very high and probably was caused by a 

posttranslational control of the enzyme. No correlation could be seen between citrate synthase 

(CS) activity and citrate accumulation during cluster root development. This enzyme seems not 

to limit citrate production in citrate metabolism. 

 
Table 2: Characteristics of different developmental stages of cluster roots II (Data from Neumann et al., 
1999; Massonneau et al., 2001, and G. Neumann, unpublished results). -P a: 10 mm apical root zone of 
lateral roots of P-deficient plants; -P y: young cluster roots; -P m: mature cluster roots; -P s: senescent 
cluster roots; see also p. 11. Significant differences between the root segments are indicated by different 
letters (One Way Anova, p ≤ 0.05). 
 

 PEP-C specific 
activity 

  PEP-C activity protein 
concentration

malate 
concentration 

  citrate 
concentration

develop
mental 
stage [µmol NADH min-1 

mg–1 protein] 
[µmol NADH min-1 

g-1 root FW] 
[mg g-1 root FW] [µmol g-1 root 

FW] 
[µmol g-1 root 

FW] 
-P a 0.20 ± 0.03  a  1.10 ± 0.24  a 5.62 ± 0.6  a 15.06  a 10.22  a 
-P y 0.16 ± 0.07  a 1.08 ± 0.51  a 6.03 ± 0.4  a 16.21  a 13.70  b 
-P m 0.42 ± 0.03  b 1.48 ± 0.30  ab 3.56 ± 0.8  b 5.10  b 32.16  c 
-P s 0.54 ± 0.1  b 0.88 ± 0.09  ac 1.72 ± 0.5 bc 0.00  c 28.23  c 
      

  CS specific 
activity 

  CS activity    

 [µmol acetyl-CoA 
min-1 mg-1 protein] 

[µmol acetyl-CoA 
min-1 g-1 root FW] 

   

-P a 0.04 ± 0.01  a  0.22 ± 0.06  a    
-P y 0.05 ± 0.03  a 0.30 ± 0.18  a    
-P m 0.08 ± 0.02  ab 0.28 ± 0.07  ab    
-P s 0.02 ± 0.01  c 0.03 ± 0.02  c    
 

 
 

 

 

 

 

 

 

Fig. 6: Immunoblot analysis of the PEP-C protein in different white lupin root segments. A. with the 
same amount of protein per lane. B. with the same amount of root biomass per lane. (data from G. 
Neumann; method see Neumann et al., 1999). -P a: 10 mm apical root zone of lateral roots of P-deficient 
plants; -P y: young cluster roots; -P m: mature cluster roots; -P s: senescent cluster roots; see also p. 11. 

A                                             |         B       

-P s        -P m         -P y        -P a                         -P s         -P m         -P y        -P a  
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Malic enzyme activity 
 

Malic enzyme (ME) catalyzes the irrevesible oxidative decarboxylation of malate to pyruvate. It 

is the last step of the anaplerotic pathway to circumvent the ADP-demanding glycolytic step 

from PEP to pyruvate by pyruvate kinase. The reaction sequence follows the enzymes PEP-C, 

malate dehydrogenase (MDH), and ME (Plaxton, 1998). It is part of the pH-stat mechanism 

(Davis, 1979, Sakano, 1998). Here the NAD-dependent ME was measured. It is generally 

associated with mitochondria.  

When malic enzyme activity was based on the root fresh weight (Fig. 7B), activities were similar 

in the root tips of +P control plants and P-deficient plants. In young cluster roots the activity was 

even higher, but decreased steeply during cluster root development. The course of activity is due 

to the different protein concentrations in the roots which follow the same pattern (Fig. 7C 9). 

Therefore, based on protein concentration (Fig 7A;C), specific ME activity was in principle the 

same in all root segments. 

 

 

 

Fig. 7: Malic enzyme (ME) activities and protein concentrations in different white lupin root segments. 
A: ME activity on the basis of the protein concentration (specific ME activity). B: ME activity on the 
basis of the root fresh weight. C: protein concentrations. Average ± SD (n = 12 – 16) from four different 
harvests, each with 3-4 replicates. +P: 10 mm apical root zone of lateral roots of P-sufficient plants; -P a: 
10 mm apical root zone of lateral roots of P-deficient plants; -P y: young cluster roots; -P m: mature 
cluster roots; -P s: senescent cluster roots; see also p. 11. Significant differences between the root 
segments are indicated by different letters (One Way Anova, p ≤ 0.05). 
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Pyruvate concentrations 
 

Pyruvate is a key regulatory metabolite in plant glycolysis and an important branch point in 

metabolism (Vanlerberghe and McIntosh, 1997), linking glycolysis and respiration via the TCA 

cycle. It is a precursor for several amino acids, fatty acid biosynthesis and anaerobic 

fermentation (Juszczuk and Rychter, 2002). Since an accumulation of pyruvate in P-deficient 

bean plants were described as a result of its increased synthesis and decreased utilization 

(Juszczuk and Rychter, 2002), pyruvate was determined in white lupin root segments to 

investigate if an imbalance between the “normal“ and anaplerotic pathways might occur, which 

in turn could influence organic acid metabolism.  

There were no significant differences in pyruvate concentrations between lateral root tips of P-

sufficient and P-deficient plants and young cluster roots (Fig. 8). However, pyruvate 

concentrations declined while the clusters aged, which was associated with a corresponding 

decrease in malic enzyme activity based on root biomass.  

 

 

 

Fig. 8: Pyruvate tissue concentrations in different white lupin root segments. Data are the average ± SD 
(n = 14 – 21) from four different harvests, each with 3-6 resplicates. +P: 10 mm apical root zone of lateral 
roots of P-sufficient plants; -P a: 10 mm apical root zone of lateral roots of P-deficient plants; -P y: young 
cluster roots; -P m: mature cluster roots; -P s: senescent cluster roots; see also p. 11. Significant 
differences between the root segments are indicated by different letters (One Way Anova, p ≤ 0.05). 
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Phosphorus deficiency-induced inhibition of citrate turnover 

 
 

Inhibition of aconitase and NADP-dependent isocitrate-dehydrogenase (NADP-
ICDH)  
 

Aconitase and NADP-dependent isocitrate-dehydrogenase (NADP-ICDH) are the enzymes 

converting citrate to isocitrate via cis-aconitate (aconitase) and in the next step isocitrate to 2-

oxoglutarate (2-OG) (NADP-ICDH) in the TCA cycle.  

In all the root segments examined, NADP-ICDH activity was always more than twice compared 

with the aconitase activity (Fig. 9). The pattern of activities in the different root segments were 

very similar to that of ME activity: On the basis of root fresh weight, the highest activities of 

aconitase and NADP-ICDH were found in control root tips, with similar activities in young 

cluster roots. Lower activities of both enzymes occured in root tips of P-deficient plants. During 

cluster root maturation from young to senescent ones, aconitase activities and ICDH activities 

declined significantly, which is parallel to the increasing citrate and decreasing malate 

concentrations in the respective root segments. This might explain the observed change in 

carboxylate concentrations. Calculated on the basis of protein concentration, specific aconitase 

and ICDH-activities were the same in all segments investigated with the exception of mature 

cluster roots, where the activities were higher. Therefore the relative enzyme activities did not 

change contrary to the activities per root biomass.  

Whether the higher specific enzyme activities in mature root clusters were due to a higher 

relative aconitase and ICDH protein content or a higher enzyme activity status could only be 

answered by immunoblot analysis.  
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Fig. 9: Aconitase and NADP-dependent ICDH activity in different white lupin root segments. 
A: activity per g root fresh weight. B: activity per mg protein. Average ± SD (n = 9 – 11) from three 
different harvests, each with 3-4 replicates. +P: 10 mm apical root zone of lateral roots of P-sufficient 
plants; -P a: 10 mm apical root zone of lateral roots of P-deficient plants; -P y: young cluster roots; -P m: 
mature cluster roots; -P s: senescent cluster roots; see also p. 11. Significant differences between the root 
segments are indicated by different letters (One Way Anova, p ≤ 0.05). 
 
 

 

H2O2 – a natural inhibitor of aconitase in P-deficient white lupin ? 
 

Results suggest that citrate accumulation in mature cluster roots might be caused by a reduced 

aconitase activity. Since it is known that H2O2 is a natural inhibitor of the aconitase enzyme 

(Verniquet et al., 1991), its relevance for a reduced aconitase activity in white lupin cluster roots 

and the observed citrate accumulation was tested.  

 

 

Peroxide (H2O2) concentrations 
 

In all the root segments investigated peroxide concentrations were essentially the same (Fig. 10), 

which means that aconitase inhibition is not caused by peroxide. Another explanation for the 

unchanged peroxide concentrations might be an oxidation of this very unstable compound before 

its analysis was performed. On the other hand, H2O2 distribution inside a tissue or inside a single 

cell might be very inhomogeneous and therefore a high concentration inside a certain cell 

compartment might not have been realized when its concentration was determined for whole root 
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segments. An indirect hint to oxidative stress by peroxide is malondialdehyde which is a product 

that results from lipid peroxidation.  

 

 

 

Fig. 10: Peroxide concentrations in different white lupin root segments. n = 14- 21.  
One Way Anova gave no significant differences for P ≤ 0.05. +P: 10 mm apical root zone of lateral roots 
of P-sufficient plants; -P a: 10 mm apical root zone of lateral roots of P-deficient plants; -P y: young 
cluster roots; -P m: mature cluster roots; -P s: senescent cluster roots; see also p. 11.  
 

 

Malondialdehyde (MDA) concentrations  
 

Malondialdehyde (MDA) concentrations were only slightly increased in root tips and in young 

cluster roots of P-deficient plants compared with P-sufficient root tips (Fig. 11). In mature 

cluster root segments MDA concentrations reached similar values as in the root tips of P-

sufficient plants, and in senescent cluster roots MDA concentrations even decreased. This 

indirectly supports the findings that peroxide production is not increased under P-deficient 

conditions in root segments of white lupin and therefore should not be responsible for the 

reduced aconitase activity observed. 
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Fig. 11: Malondialdehyde (MDA) concentrations in different white lupin root segments. n = 10- 14. +P: 
10 mm apical root zone of lateral roots of P-sufficient plants; -P a: 10 mm apical root zone of lateral roots 
of P-deficient plants; -P y: young cluster roots; -P m: mature cluster roots; -P s: senescent cluster roots; 
see also p. 11. Significant differences between the root segments are indicated by different letters (One 
Way Anova, p ≤ 0.05). 
 
 

Effects of the external application of aconitase inhibitors on 
accumulation and root exudation of citrate 
 

Inhibition of the enzyme aconitase by peroxide (H2O2) 
 

Aconitase activities were found to be decreased in mature and especially in senescent cluster 

roots (Fig. 9). Although H2O2 tissue concentrations were not increased in mature or senescent 

cluster roots (Fig. 10), it was tested whether the external application of the aconitase inhibitor 

H2O2 in higher concentrations than found in the root tissue by an in vitro test might be able to 

inhibit aconitase in ageing cluster roots. Therefore H2O2 was applied to young cluster roots and it 

was tested if these clusters could be forced to react like mature cluster roots and increase their 

citrate concentrations and decrease their aconitase activities.   

Citrate/malate tissue concentration ratios as a more sensitive parameter for a change of citrate 

and malate tissue concentrations were only slightly, but significantly increased at shorter 

incubation times of 1.5 h and 3 h at both incubation concentrations tested (5 mM and 10 mM) 

(Fig. 11). This increase was due to a slight, but significant decrease in malate tissue 

concentrations, but not due to any increase in citrate tissue concentration and might therefore not 

influence aconitase activity.   
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Fig. 12: Malate (left) and citrate (right) concentrations and citrate/malate tissue concentration ratios 
(down) in young cluster root segments after incubation with the aconitase inhibitor H2O2, applied at the 
concentrations of 10 mM and 5 mM for 1.5 h, 3 h and 5 h.  
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Inhibition of the enzyme aconitase by monofluoroacetate (MFA) and its influence 
on carboxylate accumulation in young cluster roots 
 

Since aconitase inhibition by peroxide did not increase citrate tissue concentrations, 

monofluoroacetate (MFA) was tried as another known aconitase inhibitor.  

MFA is a metabolic inhibitor which is incorporated into fluoroacetyl-CoA, which then reacts 

with oxaloacetate to form fluorocitrate. Fluorocitrate inhibits the enzyme aconitase, thus 

preventing the conversion of citrate to isocitrate in the TCA cycle (Quastel, 1963 and references 

therein; Lauble et al., 1996). 

 

Inhibition of the citrate-metabolizing enzyme aconitase by external application of monofluoro- 

acetate strongly influenced citrate metabolism in young and mature cluster roots (Fig. 13). 

Citrate concentrations in young cluster roots incubated with 10 mM MFA for 8 h were twice as 

high as in control roots, whereas malate concentrations were reduced to half of those of control 

roots. Citrate/malate ratio therefore increased four-fold due to the MFA incubation. Even mature 

cluster roots showed a further shift towards lower malate concentrations and higher citrate 

concentrations when treated with MFA. The citrate/malate ratio therefore increased two-fold 

even in mature clusters.  

 

 
 
  
Fig. 13: Malate (left) and citrate (middle) tissue concentrations and citrate/malate tissue concentration 
ratios (right) in young and mature cluster root segments after incubation with 10 mM the aconitase 
inhibitor monofluoroacetate (MFA) for 8 h. -P y: young cluster roots; -P m: mature cluster roots; see also 
p. 11. *, **, and *** are significant at the 0.05, 0.01 and 0.001 probability levels, respectively (t-test). 
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Inhibition of the enzyme aconitase by monofluoroacetate (MFA) and its influence 
on carboxylate exudation from young cluster roots 
 

High internal citrate concentrations are thought to be a prerequisite for high citrate exudation 

rates. Artificial inhibition of citrate turnover by blocking aconitase activity with MFA forced still 

young cluster roots to react like already mature ones and accumulate citrate. This leads to high 

internal citrate concentrations. Therefore it was tested if young cluster roots could also be forced 

to release high amounts of citrate.  

 

Localized root exudate collection with filter papers after incubating parts of the root system with 

MFA (Fig. 14) revealed a four-fold increase in citrate exudation rates in young cluster roots 

compared to control root segments and only half of the malate exudation rates. In mature cluster 

roots citrate exudation rates could even be increased further, and malate exudation rates 

decreased significantly compared with mature control root segments. Calculated on the 

citrate/malate exudation ratio, MFA led to a 8.5-fold increase of the exudation rate in young and 

a 3.3-fold increase in mature cluster roots. Exudation rates in MFA-treated young cluster roots 

were even higher than in non-treated mature cluster roots. Therefore a clear relationship between 

a reduced aconitase activity, citrate accumulation, and citrate exudation exists.   

 

 

 
 
Fig. 14: Malate (left) and citrate (middle) exudation rates and citrate/malate exudation ratios (right) in 
young (-P y) and mature (-P m) cluster root segments after incubation with 10 mM of the aconitase 
inhibitor monofluoroacetate (MFA) for 8 h. *, **, and *** are significant at the 0.05, 0.01 and 0.001 
probability levels, respectively (t-test). 
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Inhibition of the enzyme aconitase by monofluoroacetate (MFA) and its influence 
on carboxylate exudation from P-sufficient seedling root tips 

 

Since young cluster roots can be forced to accumulate and exude citrate similar to mature cluster 

roots, it was investigated how seedling root tips react to aconitase inhibition. Another known 

factor that can trigger organic acid exudation from roots is aluminium. Several Al-tolerant plants 

species or plant varieties release organic acids from their root tips under Al-stress. The organic 

acids are thought to complex Al in the apoplast and therefore protect the root tips from Al-

toxicity.  

 

Root exudates collected from MFA, Al- or MFA +Al-incubated root tips were analyzed for 

several TCA organic acids and for lactate (Fig 15). Root exudates from control root tips did not 

contain organic acids in detectable concentrations. Root tips incubated with MFA exuded high 

amounts of malate and citrate, and, to lower amounts, fumarate, c-aconitate, t-aconitate and 

shikimate. When the root tips were incubated with Al, only citrate and lactate and a small 

amount of shikimate were released. The combined treatment with MFA and Al resulted in the 

same exudation pattern as with MFA alone, with the exception of lactate, which was not exuded 

in the combined treatment.  

The MFA treatment initiated malate and citrate exudation rates in seedling root tips similar to 

those found in non-treated young cluster roots (0.25 and 0.41 µmol malate g-1 root FW h-1 in 

MFA-treated root tips and in non-treated young cluster roots, respectively, and 0.23 and 0.35 

µmol citrate g-1 root FW h-1, in MFA-treated root tips and in non-treated young cluster roots, 

respectively). Nevertheless, values are not directly comparable because incubation and collection 

procedures were different. 

These exudation rates show that even seedling root tips can be forced to react like older tissue 

when aconitase activity is inhibited, which again shows a clear relationship between aconitase 

activity, citrate accumulation, and citrate exudation.  
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Fig. 15 Carboxylate exudation rates in seedling root tips after incubation with 10 mM of the aconitase 
inhibitor monofluoroacetate (MFA), 20 µM Al, and a combination of both (Al+MFA) for 12 h, followed 
by a localized root exudate collection for 2 h. mal: malate; cit: citrate; fum: fumarate; c-acon: cis-
aconitate; t-acon: trans-aconitate; shk: shikimate; lac: lactate. Y-axis: common log-scale. 
 

 

 

Inhibition of the enzyme aconitase by monofluoroacetate (MFA) and its influence 
on aconitase and NADP-ICDH activities 

 

The root segments used for root exudate collection after the partial incubation of the root system 

with 10 mM MFA for 8 h (Fig. 15) were harvested and analyzed for aconitase and NADP-ICDH 

activities (Fig. 16).  

 

Incubation with 10 mM of the aconitase inhibitor MFA for 8 h did not change aconitase and 

NADP-ICDH activities in young or in mature cluster root segments compared with the non-

treated control root segments. This is in contrast to the change in the malate and citrate exudation 

pattern (Fig. 15) observed under the same treatment, where, in young cluster roots, malate 

exudation rates decreased and citrate exudation rates increased significantly. As an explanation, 

the results might be caused by the way the measurement was done. The MFA product (-)-

erythro-2-fluorocitrate, the isomer inhibiting the enzyme, might have been removed by the 

dilution of the solutions the enzyme was dissolved in for enzyme activity measurements. 
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However, aconitase inhibition was documented to be either competitive or noncompetitive, 

whereby the competition was reversible, but only a 106-fold excess of isocitrate over the 

enzyme-inhibitor complex did bring enzyme activity slowly back (Lauble et al., 1996, and 

references therein). Therefore it is not completely conclusive that the MFA-product was really 

removed from the enzyme by the dilution by the activity measurement solutions. Another 

explanation would be a fast recovery of the aconitase enzyme or a new production of the enzyme 

protein after the MFA solution was removed for exudate collection. 

 

                         

 

Fig. 16: Aconitase and NADP-dependent ICDH activity in young (-P y) and mature (-P m) white lupin 
cluster root segments after incubation with 10 mM MFA for 8 h. 
Left group: aconitase and NADP-ICDH activity per g root fresh weight. right group: aconitase and 
NADP-dependent ICDH activity per mg protein. Average ± SD (n = 10 – 11) from three different 
harvests, each with 3-4 replicates. No significant differences between the control and the MFA-treated 
samples (t-test, p ≤ 0.05).  
 

 

 

Summarizing, the citrate accumulation and exudation in young cluster roots and citrate exudation 

even from P-sufficient seedling root tips, increased to levels normally found only in mature ones, 

by blocking aconitase activity with an artificial inhibitor, is a strong argument for a crucial role 

of the aconitase enzyme in citrate accumulation and exudation also in mature cluster roots.  
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In situ activity of dehydrogenases (DH) involved in citrate turnover 

 

By histological staining the localization of dehydrogenase (DH) activities in a root cross-section 

can be seen optically. Thereby a soluble tetrazolium salt is reduced by the DH activity and by 

use of an organic acid as a reducing substrate. The resulting insoluble reduced tetrazolium dye 

precipitates and stays as a red-purple stain in the tissue where the reduction occurred.  

Citrate, malate, succinate, isocitrate and cis-aconitate served as substrates for several 

dehydrogenases active in cross sections of the different white lupin root segments. Since the 

staining reactions occur in living tissue, and since most of the dehydrogenases which catalyze the 

oxidation of the substrates belong to the TCA cycle, substrates cannot be unequivocally related 

to definite dehydrogenases. Citrate and isocitrate will be oxidized by ICDH, then by 

ketoglutarate-DH, malate by malate-DH or by malic enzyme, and succinate by succinate-DH and 

via fumarate and malate by malate-DH or by the malic enzyme. However, when a staining 

reaction occurred, the substrate supplied must have been metabolized by its corresponding 

specific dehydrogenase as a first step. It just cannot be ruled out that following reactions 

contributed to the total staining that could be seen. 

No real differences were observed in the staining intensities between the different substrates 

when the same root segments were compared (Fig. 17). The highest staining intensities occurred 

in root segments of +P control roots as well as in root tips and young cluster roots of P-deficient 

plants. In mature cluster root segments DH activities were much lower and were almost not 

visible in senescent cluster roots.  

Since the cross sections were done with a razor blade by hand and were therefore not very thin, a 

dissolution down to single cells was not possible. But is was possible to observe different 

activities in different parts of the root cross sections. In cross sections of +P control root tips, P-

deficient root tips and root axes of young cluster roots the highest DH activities could be 

observed in the area of the central cylinder, and there mainly in the pericycle.  

In young cluster root laterals the highest DH activities could be found in the apical rootlet zones 

of just emerging clusters and in the distal parts of longer young cluster roots (Fig. 17). 

Interestingly, the area of the very root tips showed no colouring. In mature cluster roots, the root 

axis showed a similar staining distribution, though with much less intensity. Cluster root laterals 

showed almost no colouring. In senescent cluster roots even the central cylinder was almost not 

stained at all. The cortex showed no dehydrogenase activity in any of the root segments, not even 

in the epidermis.  
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Fig. 17: Histological formazan staining of dehydrogenase activities in different root zones of P-deficient 
white lupin with citrate and succinate as substrates. -P a: 10 mm apical root zone of lateral roots of P-
deficient plants; -P y: young cluster roots; -P m: mature cluster roots; -P s: senescent cluster roots; see 
also p. 11.  
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The decreasing DH activities during cluster root development, determined by the in situ staining, 

are in accordance with the diminishing activities of the aconitase and NADP-ICDH enzymes 

determined in vitro. They all together might contribute to the citrate accumulation observed in 

mature cluster roots.  

 
 
Reduced respiration 
 

Respiration provides energy in form of ATP for many metabolic processes by the cytochrome 

dependent respiratory chain.  

In respiration, by the cytochrome-dependent respiratory chain, the energy of NADH, derived 

from the TCA cycle, is used to produce ATP from ADP and Pi. However, all plants, as known so 

far, additionally have an alternative respiratory pathway, the so-called alternative oxidase 

(AOX). It reduces molecular oxygen to water in a single four-electron step without conservation 

of energy, that is, independent of ADP or Pi (Day et al., 1996). The AOX pathway is generally 

assumed to maintain electron flow when the cytochrome pathway is blocked to prevent 

overreduction of the cytochrome chain and therefore to prevent production of reactive oxygen 

species.  

In white lupin cluster roots the increasing P deficiency might reduce cytochrome-dependent 

respiration by a lack of substrate for ATP production, which might lead to a kind of feedback 

inhibition back to the TCA cycle by an overreduction of redox equivalents, leaving citrate 

unmetabolized and acccumulating.  

 

 

Respiration rates and cytochrome and alternative oxidase (AOX) capacities 
 

To determine if the origin of a root tissue and the age of a cluster root has an influence on root 

respiration and the distribution between the cytochrome-dependent and alternative oxidase-

dependent respiration capacity, O2 depletion was measured in the different root segments with 

the use of respiration inhibitors.  

 

Total respiration was essentially the same in root tips of P-sufficient and P-deficient plants and 

young cluster root segments of P-deficient plants. In ageing cluster roots total respiration 

decreased from young via mature to senescent cluster roots (Fig. 18). AOX capacity reached 

only 10 % of total respiration in the root tips of P-sufficient and P-deficient plants, whereas in all 
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the cluster root segments this percentage was three to four times higher. The percentage of 

cytochrome-dependent respiration capacity compared to total respiration in all the root segments 

did not show any significant trend. Therefore the observed decrease in total respiration rate, 

being concomitant with the decreasing cytochrome-dependent respiration capacity, means that 

the AOX-dependent respiration capacity was not able to compensate for the decreasing 

cytochrome-dependent respiration.  

 

 
Fig. 18: Respiration, measured as O2 depletion, in different white lupin root segments. Total: respiration 
without addition of inhibitors; cyt capacity: cytochrome-dependent respiration capacity, defined as the 
amount of KCN-sensitive O2 uptake in the presence of 7.5 mM salicylhydroxamic acid (SHAM); AOX 
capacity: alternative oxidase-dependent respiration capacity defined as the amount of SHAM-sensitive O2 
uptake in the presence of  0.5 mM KCN. All values were corrected for residual respiration, measured with 
the addition of both, KCN and SHAM. +P: 10 mm apical root zone of lateral roots of P-sufficient plants; 
-P a: 10 mm apical root zone of lateral roots of P-deficient plants; -P y: young cluster roots; -P m: mature 
cluster roots; -P s: senescent cluster roots; see also p. 11. The results are from several independent 
experiments on different plant subcultures (n = 3-14). 
 

 

Western Blot analysis 

 
To examine the connection between the AOX capacities and protein concentrations, 

immunochemical determination of the AOX protein via Western Blot analysis was performed 

(Fig. 19). The monoclonal antibody raised against the Sauromatum guttatum-AOX also reacted 

with white lupin AOX. Young and mature roots and +P and –P root tips were investigated. The 

main immunoreactive band occurred at 32 kDa. In the younger root segments (+P and –P root 

tips) additional multiple immunoreactive bands could be seen, mainly with molecular weights 

lower than 32 kDa. They are probably degradation products of the AOX protein. In the +P and -P 
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root tips an additional band at approximately twice the molecular weight of the main band with 

low intensity could be detected. Altogether, when the intensities of all the immunoreactive bands 

of a sample are taken together, it seems that AOX protein concentration was highest in –P root 

tips and young cluster roots compared to +P control roots, and decreased significantly during 

cluster root development. The AOX protein concentrations therefore roughly paralleled AOX 

respiration capacity measured as O2 uptake and therefore the amount of the AOX protein seems 

to limit AOX capacity.   

                                 

                              
 

 

Fig. 19: Western Blot analysis of the alternative oxidase protein in d
+P: 10 mm apical root zone of lateral roots of P-sufficient plants; -P a
roots of P-deficient plants; -P y: young cluster roots; -P m: mature cl
roots; see also p. 11.  
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Fig. 20: The effect of the uncoupler carbonyl cyanide m-chlorophenylhydrazone  (CCCP) with the 
concentrations of 0; 0.2; 1; 10, and 20 µM on respiration of different white lupin root segments. +P: 10 
mm apical root zone of lateral roots of P-sufficient plants; -P y: young cluster roots; -P m: mature cluster 
roots; see also p. 11. A: per g root fresh weight. B: per mg root dry weight. The results are from several 
independent experiments on different subcultures of plants; n = 3-24). 

ments. +P: 10 
mm apical root zone of lateral roots of P-sufficient plants; -P y: young cluster roots; -P m: mature cluster 
roots; see also p. 11. A: per g root fresh weight. B: per mg root dry weight. The results are from several 
independent experiments on different subcultures of plants; n = 3-24). 
  

  

Uncoupling the respiration of white lupin root segments with the uncoupler carbonyl cyanide m-

chlorophenylhydrazone (CCCP) did not change respiration rates in P-sufficient root tips or in 

young or mature cluster root segments of P-deficient plants, although a wide range of CCCP 

concentrations (0.2; 1; 10, and 20 µM CCCP) were applied (Fig. 20). This means that the 

respiration-limiting step, especially in the P-deficient mature and senescent cluster roots, is not 

oxidative phosphorylation. 

Uncoupling the respiration of white lupin root segments with the uncoupler carbonyl cyanide m-

chlorophenylhydrazone (CCCP) did not change respiration rates in P-sufficient root tips or in 

young or mature cluster root segments of P-deficient plants, although a wide range of CCCP 

concentrations (0.2; 1; 10, and 20 µM CCCP) were applied (Fig. 20). This means that the 

respiration-limiting step, especially in the P-deficient mature and senescent cluster roots, is not 

oxidative phosphorylation. 

  

  

Oxidative damage of the respiratory chain ? Oxidative damage of the respiratory chain ? 
  

In respiration, the formation of reactive oxygen species often increases under P-limiting 

conditions, when the electrochemical gradient produced by accumulation of protons outside the 

mitochondrial matrix and reduction of the electron transport chain is not dissipated by ATP 

production due to a lack of ADP and Pi. To test if this is also true for the root segments of P-

deficient plants, their peroxide concentrations were determined. However, peroxide 

concentrations as well as malondialdehyde concentrations as a marker for oxidative damage 

were essentially the same for all the root segments investigated (Fig. 10 and 11). As for the 

In respiration, the formation of reactive oxygen species often increases under P-limiting 

conditions, when the electrochemical gradient produced by accumulation of protons outside the 

mitochondrial matrix and reduction of the electron transport chain is not dissipated by ATP 

production due to a lack of ADP and Pi. To test if this is also true for the root segments of P-

deficient plants, their peroxide concentrations were determined. However, peroxide 

concentrations as well as malondialdehyde concentrations as a marker for oxidative damage 

were essentially the same for all the root segments investigated (Fig. 10 and 11). As for the 
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reduced activity of the aconitase enzyme, oxidative damage is rather not the reason for the 

reduced respiration rates observed.  

 

 

Partial root incubation with respiration inhibitors 
 

To test if citrate accumulation goes back to a block in respiration, respiration inhibitors were 

applied to a part of the root system, such as azide to inhibit cytochrome-dependent respiration 

and salicylhydroxamic acid (SHAM) to inhibit alternative oxidase-dependent respiration (Fig. 

21). An artificial block of the respiratory pathway might leave the NADH, normally metabolized 

to produce ATP in the respiratory chain, unused, giving a feedback substrate inhibition to the 

TCA cycle where NADH is built. If TCA cycle enzymes are inhibited, TCA cycle substrates 

such as citrate stay unused and should accumulate. This was to be tested by application of the 

respiratory inhibitors. 

 

Azide and SHAM had both no effect on citrate tissue concentrations in young and in mature 

cluster roots at both incubation times (4 h and 8 h) investigated (Fig. 21). Malate tissue 

concentrations in young cluster roots were lower when azide or SHAM were applied, but 

significant changes occured only after 8 h of incubation. No changes could be detected in mature 

cluster roots, concerning malate concentrations. The increase in the citrate/malate tissue 

concentration ratio as a more sensitive parameter for changes in both, malate and citrate 

concentration (Tab. 3), was therefore mainly due to lower malate concentrations and not to 

increased citrate concentrations as a reaction to respiration inhibitor application. It can be 

concluded that the reduced respiration observed during cluster root development is rather not 

responsible for the citrate accumulation in the respective cluster root segments.  
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Fig. 21: The effect of partial root incubation with the respiration inhibitors azide (1 mM) and SHAM (7.5 
mM) for 4 h and 8 h on malate (left) and citrate (right) concentrations in young (-P y) and mature (-P m) 
cluster roots of white lupin.The results are from several independent experiments on different subcultures 
of plants; n = 12-19 for –P y and n=8-9 for –P m with 4 h incubation and n=2 for –P m with 8 h 
incubation). 
 
 

 
 
Table 3: The effect of partial root incubation with the respiration inhibitors azide (1 mM) and SHAM 
(7.5 mM) for 4 h and 8 h on citrate/malate tissue concentration ratios in young (-P y) cluster roots of 
white lupin.The results are from several independent experiments on different subcultures of plants. 
Significant differences between the root segments are indicated by different letters (One Way Anova, p ≤ 
0.05).  
 
inhibitor treatment          citrate / malate ratio 

duration   4 h   8 h 
   
control 0.51  a 0.39  a 
SHAM 0.57  ab 0.68  b 
azide 0.92  b 0.83  b 
 

 

 

Reduced assimilation of nitrate into 2-oxoglutarate as N acceptor ? 
 

It is generally observed that NO3 uptake in P-deficient plants is reduced, whereas the cause is not 

conclusively found yet. 2-oxo-glutarate as a product of citrate degradation is the C-skeleton 

needed for incorporation of ammonium for amino acid synthesis. A lower nitrate reduction rate 
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by nitrate reductase and a lower incorporation rate of ammonium might lead to an accumulation 

of 2-oxoglutarate and as a feedback inhibition to an increase in citrate concentration. Therefore 

tungstate was applied as a nitrate reductase inhibitor and the malate and citrate concentrations in 

the different root segments were determined.  

 

At all Na2WO4 concentrations tested (300 µM, 600 µM, and 1000 µM), citrate concentrations in 

young cluster roots were only slightly increased, and malate concentrations only slightly 

decreased at the two lower Na2WO4 concentrations applied, without any change at the highest 

Na2WO4 concentration (Fig. 22). The citrate/malate ratio as a more sensitive parameter for a 

change in malate as well as in citrate concentration increased by around 50 % at 600 and 1000 

µM Na2WO4, when the nitrate reductase inhibitor was applied. However, citrate concentrations 

were much lower than usually reached in mature cluster roots. A reduced use of 2-oxoglutarate 

for N incorporation seems rather not to be an important factor to cause the high citrate 

concentrations found in mature cluster roots. 

 

 

 

 
 
Fig. 22: Malate (left) and citrate (middle) concentrations and citrate/malate tissue concentration ratios 
(right) in young cluster root segments after incubation with the nitrate reductase inhibitor Na2WO4, 
applied at concentrations of 300 µM, 600 µM and 1000 µM for 16 h. **: significant at the 0.01 probability 
level (t-test). 
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ATP-citrate lyase (ACL) activity 
 
The possible involvement of the enzyme ATP-citrate lyase (ACL) in citrate accumulation during 

cluster root development was investigated in cooperation with N. Langlade and E. Martinoia 

(Université de Neuchâtel, Suisse). The enzyme ACL cleaves citrate to acetyl-CoA and 

oxaloacetate by use of the energy of ATP (Fig. 23) and therefore is a possible regulation point in 

citrate metabolism. The enzyme‘s activity and expression declined with maturation of the cluster 

roots, parallel to the declining malate concentrations measured in the corresponding clusters 

(Fig. 24). Malate could be produced from the ACL product oxaloacetate via malate 

dehydrogenase. The increasing citrate concentrations found in mature and senescent clusters 

might be caused by a reduced turnover by the decreasing activity of the ACL in connection with 

a reduced ACL expression.  

 

 
Fig. 23: reaction scheme of the enzyme ATP-citrate lyase 
 

 
 
C 
 
 
 
 
 
 
 
 
 
 
 
Fig. 24: A: malate and citrate root 
segment tissue concentrations. B: in vitro 
activities of ATP-citrate lyase in different 
white lupin root segments; C: transcript 
levels of ACL. -P y: young cluster roots; 
-P m: mature cluster roots; -P s: senescent 
cluster roots; see also p. 11. 
(data from N. Langlade and E. Martinoia; 
Université de Neuchâtel, Suisse) 
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Inhibition of the citrate-cleaving enzyme ATP-citrate lyase (ACL) 
 

Citrate degradation was found to be facilitated by ATP-citrate lyase, with decreasing enzyme 

activities when the cluster roots grew older (Langlade et al., 2002). Therefore a partial root 

incubation was tried with the ATP-citrate lyase inhibitor hydroxycitrate at concentrations of 5 

mM for 12 h and of 100 mM for 8 h. However, at both hydroxycitrate concentrations, malate and 

citrate tissue concentrations in young cluster roots and therefore the citrate/malate ratios did not 

show any differences (Fig. 25).  

Besides the obvious explanation that hydroxycitrate had no influence on the ACL and on the 

organic acid concentrations in the root tissue, hydroxycitrate might not have been taken up into 

the root cells. Citrate does not diffuse across the plasma membrane to a higher extent, and 

exudation is probably regulated via anion channels. Therefore, vice versa, hydroxycitrate, being 

chemically very similar to citrate, might be excluded from uptake by the plasma membrane, 

especially because it has to be taken up against an electrical gradient.  

 

 

  

Fig. 25: Malate (left) and citrate (middle) concentrations and citrate/malate tissue concentration ratios 
(right) in young cluster root segments after incubation with the ATP-citrate lyase inhibitor hydroxycitrate 
(HC), applied at the concentrations of 5 mM for 12 h and of  100 mM for 8 h. 
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Discussion 
 

Increased biosynthesis of carboxylates under P-deficient conditions  

 

High levels of citrate accumulation in mature cluster roots of P-deficient white lupin, followed 

by a pulse of citrate exudation, might be due to a variety of metabolic processes. It has been 

reported that enzymatic pathways, leading to citrate production, are stimulated under P 

deficiency, such as the activity of PEP-C and MDH, or the citrate synthase (Johnson et al., 1994; 

1996a+b; Neumann et al., 1999; Neumann and Römheld, 1999; Keerthisinghe et al., 1998; Watt 

and Evans, 1999a; Uhde-Stone et al., 2003a).  

 

 

Phosphoenolpyruvate carboxylase (PEP-C) activity 
 

In vitro activity of phosphoenolpyruvate-carboxylase (PEP-C) (EC 4.1.1.31) per root biomass as 

well as the specific activity was found to be increased in developing cluster roots (Table 1), 

paralleled by a higher amount of the immunodetectable PEP-C protein on fresh weight and on 

protein base (Fig. 6). Interestingly, high specific PEP-C activities in mature and particularly in 

senescent clusters are associated with a declining abundance of the PEP-C protein (Tab. 2). This 

may indicate a posttranslational regulation of the enzyme. Mechanisms of posttranslational 

regulation of PEP-C comprise both, positive (sugar-P) and negative (malate) allosteric control 

(Lepiniec et al., 1994) and protein phosphorylation (Gilbert et al., 1998).  

Maximum PEP-C activity one day before the onset of citrate efflux and two days before its peak, 

followed by a 75 % decrease of PEP-C activity over a period of 3 days, as reported by Watt and 

Evans (1999b), fits to the observation that maximum PEP-C activity precedes citrate efflux and 

suggests a contribution to increased accumulation of citrate in the cluster root tissue prior to 

exudation (Neumann et al., 1999). Accordingly, 14C-CO2 labelling studies revealed that a 

substantial proportion of the C exuded by P-deficient lupin is derived from nonphotosynthetic C 

fixation in roots (Johnson et al., 1996a), probably to replenish the carbon loss by citrate 

exudation.  

Increased PEP-C activity may also reflect a Pi-releasing, anapleurotic reaction, induced under P-

deficient conditions, to circumvent the ATP-dependent pyruvate kinase (PK) reaction, in 

consequence leading to an enhanced malic acid production. Kihara et al. (2003) described a 

higher PEP-C activity at the expense of the PK activity in mature cluster roots of white lupin. 

Additionally, PEP-C is part of the pH stat mechanism (Sakano, 1998; see also Chapter 2). A 
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lower uptake of nitrate under P deficiency (Neumann et al., 2000) leads to an excess uptake of 

cations (a higher cation/anion uptake ratio) particularly expressed in dicotyledonous plants with 

a high inherent demand for Ca, which was also described for white lupin (Dinkelaker et al., 

1989; Pilbeam et al., 1993; Neumann et al., 2000; Sas et al., 2001). In consequence, a higher 

electrical potential due to the surplus of cations taken up into the cytosol causes a depolarization 

of the plasma membrane (PM), activating the PM H+-ATPase to preserve the electrical gradient 

across the plasma membrane. However, the protons released across the PM for electrical reasons 

alkalize the cytosol, which activates PEP-C together with the (anaplerotic) glycolytic pathway 

leading to net production of protons.  

 

 

Citrate synthase (CS) activity 
 

Citrate synthase (CS) (EC 4.1.3.7) activity as the metabolic step converting oxaloacetate and 

acetyl-CoA to citrate did not show a direct relation to citrate accumulation during cluster root 

development (Table 2), as similarly reported by Neumann et al. (1999) and Kihara et al. (2003) 

in a similar way for cluster roots of white lupin, or by Aono et al. (2001) for Sesbania rostrata 

CS mRNA. However, CS activity was described to be increased in P-deficient carrot cells 

(Takita et al., 1999) but also in white lupin (Johnson et al., 1994), although differences between 

developmental stages of cluster roots were not considered in this study. These findings suggest 

that the activity of citrate synthase is probably no limiting step in citrate production even in 

mature cluster roots. Accordingly, so far, overexpression of bacterial CS genes in tobacco under 

P deficiency or Al-stress (Delhaize et al., 2001; Betekong, 2004) did not show citrate 

accumulation, whereas de la Fuente et al. (1997) and López-Bucio et al. (2000) reported higher 

citrate accumulation and exudation in tobacco overexpressing bacterial CS from Pseudomonas 

aeruginosa.   

 

 

Pyruvate concentration and malic enzyme activity 
 

Pyruvate is a key metabolite that links glycolysis with mitochondrial respiration via the TCA 

cycle, and it is a precursor for various amino acids, fatty acid biosynthesis, anaerobic 

fermentation, and in the end, is a precursor for citrate. Even a function as an antioxidant was 

proposed (Juszczuk and Rychter, 2002).  
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The trend for a continuous decline of pyruvate concentrations observed in developing cluster 

roots (Fig. 8) might be explained by the increased PEP-C and MDH activities which promote 

anapleurotic oxaloacetate and malate production while circumventing direct pyruvate 

production.  

In a subsequent reaction leading to an anaplerotic pyruvate production, malic enzyme (ME) 

converts malate to pyruvate, whereby NAD+ or NADP+ is reduced to NADH or NADPH and 

CO2 is released. NAD+-malic enzyme was found to be associated with mitochondria and shows 

an absolute specificity for NAD (Dittrich, 1976). The decrease observed in ME (EC 1.1.1.39) 

activity (Fig. 7) parallels the decreasing pyruvate concentrations in the root segments. However, 

when ME activity was calculated on protein basis, the activity did not decrease during cluster 

root development and was even slightly higher in mature clusters. Therefore declining ME 

activity in ageing cluster roots is probably due to lower protein concentrations in these tissues 

(Fig. 7). Accordingly, high intramitochondrial ME activity was reported in young and nutrient-

sufficient plants (Millar et al., 1998).  

In tobacco suspension cells the concentrations of pyruvate-derived amino acids declined under 

P-deficiency. This was explained by a limited availability of pyruvate, due to adenylate control 

of the enzyme pyruvate kinase (Parsons et al., 1999). Contrary to this, pyruvate accumulation in 

(severely) P-deficient bean plants was observed (Juszczuk and Rychter, 2002). These authors 

explained this by an increased synthesis via PEP-C and PEP phosphatase, and a decreased 

utilization due to an imbalance between the activity of the cytochrome pathway (reduced 

respiration) and the oxidation of organic acids, promoting the accumulation of pyruvate.  

PEP-phosphatase activity increased in mature cluster roots of white lupin compared to root tips 

of +P and –P-plants (Kihara et al., 2003), as also found for Brassica nigra (Duff et al., 1989a+b) 

or Selenastrum minutum suspension cells (Theodorou et al., 1991). Thus pyruvate production via 

PEP-phosphatase-mediated dephosphorylation of PEP might prevent pyruvate concentrations to 

decrease more severely than observed, and could keep pyruvate concentrations high enough to 

provide substrate for citrate production.   

 
 

 

Reduced turnover of citrate under P-deficient conditions 

 

 

Although the metabolic changes on the anabolic side of citrate metabolism such as an increased 

PEP-C activity, or increased MDH and PEP-phosphatase activities, contribute to production of 
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malate, oxaloacetate and pyruvate as citrate precursors, this would still not explain the highly 

selective accumulation of citrate observed in mature cluster roots under P deficiency. 

Additionally, other mechanisms must exist to determine citrate accumulation. A first hint to such 

a mechanism was found by a decreased aconitase activity in mature cluster roots of white lupin 

(Neumann et al., 1999; Neumann and Römheld, 1999), which might explain citrate accumulation 

by a reduced citrate turnover in response to P limitation. 

 

 

Reduced aconitase activity 
 

Conversion of citrate to isocitrate with the intermediate product cis-aconitate, mediated by the 

activity of aconitase, is the first step of citrate degradation. While the mitochondrial aconitase 

enzyme most likely participates in the TCA cycle, the cytosolic enzyme might play a role in 

different metabolic pathways (Sadka et al., 2000a).  

It is known that inactivation of aconitase could cause an accumulation of citrate or other 

metabolic intermediates (Gardner and Fridovich, 1991), although mitochondrial aconitase is not 

normally considered a rate-limiting component of the TCA cycle (Chen et al., 1997). 

Investigation of aconitase in P-deficient white lupin root segments revealed decreasing activities 

during cluster root development (Fig. 9). Accordingly, citrate accumulation, followed by 

compartmentation into vacuoles and concomitant proton influx into the vacuoles was found to be 

caused by a reduction in aconitase activity in sour lemon (Sadka et al., 2000a) and hints to 

aconitase as a key metabolic step in citrate degradation. 

By the first view, the relatively low decrease in aconitase activities seem not to be very 

convincing to explain the very high citrate accumulation observed in mature and senescent 

cluster roots of Lupinus albus. However, the optimal conditions for enzyme activities used in in 

vitro tests might not always mirror the conditions under which the enzymes react in vivo (Watt 

and Evans, 1999; Cots et al., 2002). Variability in enzyme activity that might exist between 

neighbouring root tissues is also not considered, and therefore direct correlation of changes in 

metabolite pools with in vitro enzyme activity data is difficult. Moreover, apart from aconitase 

activity, a range of additional metabolic reactions involved in citrate turnover may be affected by 

P limitation and were subject of further investigations.  
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Reduced activity of dehydrogenases 
 
NADP-dependent isocitrate dehydrogenase (NADP-ICDH) activity 

 
Isocitrate dehydrogenase is the second step in metabolizing citrate by oxidizing isocitrate to 2-

oxoglutarate (2-OG). Thereby adenosine nucleotides are reduced and CO2 is released. The NAD-

dependent enzyme is associated with the mitochondria as part of the TCA cycle, while the 

NADP-ICDH exists as different isoenzymes linked to cytosolic, chloroplastic, peroxisomal and 

mitochondrial compartments. The cytosolic NADP-ICDH isoform seems to be the predominant 

isoenzyme in higher plants, as the major part of the activity detected in leaves and roots is 

associated with this isoenzyme (Gallardo et al., 1995). Hence this was the enzyme examined in 

white lupin cluster roots.  

NADP-ICDH activities paralleled aconitase acitivies in all the different root segments 

investigated, although on a two- to threefold higher level (Fig. 9). On the other hand, the NAD-

specific ICDH generally seems to make up less than 10 % of all ICDH activity (reviewed by 

Palomo et al., 1998). It has been suggested that NADP-specific ICDH (EC 1.1.1.42) represents 

an additional or alternative path to the the NAD-dependent ICDH (EC 1.1.1.41) TCA cycle 

enzyme, and supplies the 2-OG for amino acid biosynthesis and ammonia assimilation (Chen 

and Gadal, 1990a). The antisense inhibition of NADP-ICDH in transgenic tomato plants left 

amino acid concentrations and respiration unchanged. Only the levels of isocitrate and citrate 

increased. The authors assumed that potato can cope with a severe reduction in cytosolic NADP-

ICDH activity without major shifts in growth and metabolism (Kruse et al., 1998). Gallardo et al. 

(1995) found a reduced NAD-ICDH, and an increased NADP-ICDH activity in ripening tomato 

fruits and associated this with a higher demand of 2-OG for glutamate production. In mature 

cluster roots of white lupin cytosolic ICDH transcripts were lower and mitochondrial ICDH 

transcripts similar compared with +P control root tips (Kihara et al., 2003). Specific activities of 

aconitase and NADP-ICDH were the same in all the root segments investigated, with the 

exception of mature cluster roots, where specific activity was even slightly higher. Since total 

protein concentrations decreased during cluster root development, the decreasing aconitase and 

NADP-ICDH activities in the root segments might be due to lower enzyme concentrations in the 

roots. In a similar way, the decline in aconitase abundance under Fe deficiency was speculated to 

be due to an overall functional impairment of mitochondria (Chen et al., 1997).  

In contrast to the results presented here, Kihara et al. (2003) found a higher aconitase activity in 

–P lupin root tips compared to the +P controls, but also a 30 % lower activity in mature clusters 

than in the controls, both, on the base of protein and root biomass. Similarly, they found slightly 
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lower NADP-ICDH activities in –P lupin root tips and only half the activity in mature cluster 

roots compared to the +P control root tips, again in both, on a protein and root fresh weight base. 

Their Western Blot analysis showed that the ICDH protein content paralleled activity, probably 

being regulated at the transcript level. The differences in both investigations might be due to the 

different experimental conditions and another plant variety. The similar activity pattern found 

independent of a protein or root fresh weight base would mean that protein concentrations were 

the same in all the segments investigated, which contrasts to the results gained by Neumann et al. 

(1999), Massonneau et al. (2001) and in this work. 

De Vos et al. (1986) showed that citrate and malate accumulation in Fe-deficient bean roots was 

not due to lower specific aconitase activities, as was supposed, because aconitase contains a 4Fe-

4S-cluster in its active site (DeKock et al., 1960; Bacon et al., 1961; Venkat Raju et al., 1972). 

They suggested a hormonal unbalance, caused by Fe deficiency and leading to proton extrusion, 

which was followed by citrate and malate production as a pH-stat regulation (Landsberg, 1981).   

To decide whether citrate accumulation is definitely due to aconitase and ICDH impairment, 

further investigations are needed. The results so far suggest that a general decrease in protein 

concentration may limit the enzymes’ activities, and other factors such as ROS or IRP regulation 

(see below) might play an additional role.  

 

 

In-situ staining of dehydrogenase activities 
 

In situ activity staining of dehydrogenase (DH) using tetrazolium salts and a selection of suitable  

carboxylates as substrates (citrate, aconitate, isocitrate, succinate, malate) made it possible to 

visualize the areas of DH activities in cross sections of different root segments which may be 

involved in citrate turnover.  

Staining intensities were similar in cross sections of the same root segment irrespective of the 

substrate supplied. This can be explained by co-ordinated reactions of the various 

dehydrogenases present in the tissues, where the product of one reaction is the substrate for 

another one.  

The highest DH activities could be found in growing areas such as the tips of lateral roots of P-

sufficient or P-deficient plants or the tips of young cluster rootlets. The area of the very root tip, 

however, seemed not to show any DH activity. Activity generally was associated with dividing 

cells such as the pericycle in the root cross sections, showing the highest metabolic turnover in 

these growing parts of the tissue, and lower activities in the cortex region of the root cross 

section. In a similar way, Uhde-Stone et al. (2003a) found PEP-C expression localized primarily 
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in the cortex and in the meristem. For in situ hybridization of malate-DH these authors could 

show that expression occurred throughout the just emerging cluster rootlet and in the cortex, but 

not in the apices of mature clusters, and no detectable expression at tip and base of the clusters. 

They interpreted this as a hint that oxaloacetate in part might be directed to citrate rather than to 

malate, which is in accordance with the reports that malate exudation shifts towards citrate 

exudation during cluster root development (Neumann et al., 1999).  

The decreasing dehydrogenase activities found during cluster root development are in 

accordance with the decreasing enzyme activities measured in the different root segments such 

as aconitase, NADP-ICDH or malic enzyme in vitro. This general decrease in activity for 

different enzymes probably has its common cause in the reduced protein and RNA 

concentrations in the respective root segments.  

Lower staining intensities due to bigger, more vacuolated cells in older tissues, which dilute the 

areas where enzyme reactions and therefore staining can occur seem rather not to be the case. In 

mature and even more so in senescent cluster roots small cells with a low percentage of vacuoles 

do also exist around the distal parts of the cluster rootlets. But there no dehydrogenase activities 

could be detected. This finding fits to the observation that cluster rootlet growth is determined, 

although the tissue itself is still young compared to the age of the whole plant. The cells around 

the root tips keep small and do not elongate, and the small, former meristematic cells just stop 

their cell division activity, parallel to a decrease in dehydrogenase activity. It might be 

speculated that a causal relationship exists between the reduction of meristematic activity and the 

reduction of enzyme activities. 

 

 

Reduced respiration 
 

During cluster root development, root respiration (Fig. 18) is severely reduced parallel to 

declining concentrations of intracellular soluble Pi, total RNA, and ATP (Massonneau et al., 

2001), suggesting P limitation of respiration, whereas apical root zones of P-deficient plants, 

compared to P-sufficient ones, show only small changes in total respiration. A reduced 

respiratory activity may thereby also affect activities of dehydrogenases.  

To investigate partitioning of the electron flow between the cytochrome and the AOX pathways, 

specific inhibitors for both pathways were used: KCN or azide for the cytochrome and 

hydroxamic acids such as salicylhydroxamic acid (SHAM) for the AOX pathway, allowing a 

rough estimation of cytochrome and AOX respiration capacities. Both, the capacities of the 

cytochrome and of the alternative pathway declined during cluster root development, suggesting 
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an impairment of both pathways under the conditions of increasing P limitation during ageing of 

cluster roots. However, interpretation of results obtained with use of respiration inhibitors are 

complicated by several problems: (1) They show a lack of specificity and problems with 

penetration into tissues (Vanlerberghe and McIntosh, 1997). (2) Their usefulness depends on the 

assumption that AOX cannot compete with the cytochrome pathway for electrons and is active 

only when the cytochrome pathway is saturated, which is generally not the case (Day et al., 

1996; Vanlerberghe and McIntosh, 1997). The only method at present for quantitative 

measurements of AOX pathway activity would be the use of oxygen isotope fractionation 

(Robinson et al., 1995). Cytochrome c oxidase and AOX differentially fractionate 18O when 

reducing oxygen to water, and this fractionation can be accurately measured with a mass 

spectrometer. This allows calculation of the partitioning of electron flow between the two 

pathways in the absence of added inhibitors. 

Decreasing respiration rates as described for cluster roots of P-deficient white lupin were also 

reported for other plant species with a suboptimal nutrient supply (Hoefnagel et al., 1993b), or P 

deficiency (Theodorou et al., 1991). In contrast, P deficiency did not affect total respiration in 

bean roots (Rychter and Mikulska, 1990) or tobacco suspension cultures (Parsons et al., 1999). 

Both authors attributed this to a higher relative contribution of the alternative oxidase (AOX) 

pathway. Although a clear function for the AOX pathway has yet to be established (Millenaar et 

al., 2001), an increase in AOX activity was found under several stress conditions under which 

the cytochrome pathway may limit carbon flux such as nutrient deprivation, chilling 

temperatures or salt stress (Vanlerberghe et al., 1997). Under P deficiency, the AOX could 

bypass the ADP- and Pi-demanding ATP production and circumvent the dependence on the 

transmembrane potential of the cytochrome pathway.  

A higher AOX capacity was also found for cluster roots of white lupin compared to +P control 

root tips and root tips of P-deficient plants, irrespective of the age of the cluster (Fig. 18). 

However, this increase was not high enough to compensate for the loss of cytochrome pathway 

capacity and continuously declined during cluster root development. Therefore total respiration 

decreased.  

To elucidate whether AOX protein concentrations were responsible for the comparatively low 

upregulation of alternative respiration, immunochemical determination of the AOX protein via 

Western blot analysis was performed (Fig. 19). The AOX antibody binds to a highly conserved 

region of the protein (Finnegan et al., 1999), therefore the signal obtained on immunoblots is 

probably a reflection of the AOX concentration (Millenaar et al., 2001). 

The main immunoreactive band in white lupin root segments occured at 32 kDa, which is in 

accordance with the molecular weight given for the AOX protein, which is between 32 and 39 
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kDa as reported for other plant species (McIntosh, 1994). The highest amount of AOX protein 

was detectable in young clusters, whereas the amount was very low in mature clusters, reflecting 

the corresponding decline in respiratory activity. Interestingly, Shane et al. (2004) presented 

similar results for changes in AOX protein during the developmental time course in cluster roots 

of Hakea prostrata. In white lupin, multiple immunoreactive bands occurred in immunoblots in 

+P and –P root tips. They had a lower molecular weight than the MW of the main band, and 

probably represent degrading products of the AOX protein, cleaved by proteases. Interestingly, 

they occurred only in the youngest root segments. In these root segments also an additional band 

at approximately twice the molecular weight of the main band with low intensity could be 

detected. It could be speculated that this band represents the less active AOX dimer, which was 

described as the precursor of the more active monomeric protein, covalently bound with a 

disulfid bond at the Cys-126 residues. Part of the protein might have been activated during 

cluster root development by reduction of the AOX dimer. This could be in connection with the 

high citrate concentrations found in mature and senescent cluster roots. Vanlerberghe and 

McIntosh (1997) described an increase of AOX activity mediated by citrate, which was probably 

due to the production of NADPH during citrate oxidation. They concluded that NADPH seemed 

to be required for AOX reduction via a thioredoxin or glutathion system. Declining levels of 

AOX protein during cluster root development suggest a regulation at the transcriptional level, 

determined by the concentration of the AOX protein. Since total protein concentration decreases 

during cluster root development, AOX protein concentration per root biomass decreases even 

more. Therefore generally lower protein concentrations in older cluster roots cannot be the only 

reason for the lower AOX protein concentrations. Other factors such as overproportionally lower 

rates of transcription or lower mRNA or AOX protein stability could also play a role. 

Additionally, AOX actual flux was suggested to be subject to fine metabolic control 

(Vanlerberghe and McIntosh, 1997). Under P deficiency and in the highly specialized clusters, 

metabolism might differ to a large extent compared to other plant species without nutrient 

deficiencies. 

 

Reduced nitrate assimilation 
 

Nitrate uptake and N assimilation decreases under P deficiency (Lee, 1982; Schjorring, 1986; 

Rufty et al., 1990; 1993; Buwalda and Warmenhoven, 1999; Neumann et al., 1999) and nitrate 

accumulates in the roots (Gniazdowska and Rychter, 2000). 2-oxoglutarate is the C-skeleton 

used for N assimilation and might accumulate under P deficiency, leading to a feedback 

inhibition of citrate turnover. However, the causes for lower nitrate uptake under P-deficient 
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conditions are still not clear. Several, sometimes contradicting, explanations were given: (1) a 

lower ATP availability due to the P deficiency lowers the adenylate energy charge and energy-

driven pro-cesses such as nitrate uptake (Rufty et al., 1993) and limits the synthesis of the 

membrane transport system for NO3, which was indicated in kinetic experiments with P-stressed 

barley (Rufty et al., 1991). However, ATP availability seems to be high enough to increase H+-

ATPase activity in mature cluster roots to support acidification of the rhizosphere and the export 

of H+ as counter-ions for the citrate released (Kania et al., 2001). On the other hand, under P 

limitation ATP might be used only for crucial metabolic steps, or the need for N assimilates 

might be reduced, leading to a lower nitrate reduction; (2) a lower root hydraulic conductivity 

due to a lower fluidity of the plasma membrane (Radin and Matthew, 1989; Carvajal et al., 

1996a) might cause lower nitrate transport from root to shoot and might result in an increased 

nitrate accumulation in the roots (Rufty et al., 1993; Gniazdowska et al., 1999), whereby nitrate 

uptake might be decreased by feedback inhibition (Gniazdowska et al., 1999); (3) a reduced 

nitrate reductase (NR) activity (Pilbeam et al., 1993; Gniazdowska and Rychter, 2000), although 

enough reducing power in form of NADH and NADPH were available (Gniazdowska et al., 

1999). Nitrate reductase activity may also be regulated by reactive oxygen species, causing a 

reversible inactivation of the enzyme (Solomonson and Barber, 1990). 

Contrary to the hypothesis that the use of 2-OG in N assimilation is decreased and therefore 2-

OG accumulates due to a lower nitrate reduction by inhibition of NR, Vanlerberghe et al. (1990) 

described a large increase in the glutamine (Gln) to glutamate (Glu) ratio in a green alga during P 

limitation. They explained it as an indication that there was ample reduced N available to the Gln 

synthetase-Glu synthase (GS/GOGAT) cycle and that it was the availability of C in form of 2-

OG to the cycle that limited N assimilation.  

In conclusion, several approaches could explain a reduced nitrate assimilation, and it might 

depend on many metabolic conditions which of the ways actually cause a reduced nitrate 

assimilation. On the other hand, tungstate has a lot of different effects on metabolism and might 

increase citrate/malate ratio in another way than in inhibiting nitrate reductase, especially since it 

only worked slightly after a long incubation time and higher concentrations applied.  

 

 

Reduced ATP-citrate lyase activity 

 

Searching for genes with differential expression in young and mature cluster roots, Langlade et 

al. (2002) identified an ATP-dependent citrate lyase (ACL). This enzyme cleaves citrate by use 

of HS-CoA and ATP to produce oxaloacetate and acetyl-CoA and releases ADP and Pi. It 
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showed its highest activity in young cluster roots. Activity successively declined during cluster 

root maturation down to less than 20 % in senescent clusters (Fig. 24; Langlade et al., 2002; 

Kania et al., 2003). Specific activity, on the base of root segment protein concentration, showed 

the same pattern of decline. The change from malate to citrate accumulation during cluster root 

development is paralleled by the reduction in ACL activity, and a good correlation was found 

between the malate/citrate ratio in root exudates and ACL activity. This indicates that ACL may 

play a key role as a metabolic switch between malate and citrate accumulation during cluster root 

development under P deficiency (Langlade et al., 2002).  

The function of the enzyme has been linked with the formation of acetyl-CoA in seedlings as a 

precursor for the biosynthesis of lipids and terpenoids (Ratledge et al., 1997). Fatty acid 

production is localized in plastids or in the cytosol, depending on the plant species. However, de 

novo synthesis of acetyl-CoA from pyruvate, decarboxylated via the pyruvate-DH, probably 

takes place mainly in mitochondria. Pyruvate dehydrogenase activity is insufficient in nongreen 

plastids to account for the observed rates of fatty acid biosynthesis (Lenmark and Gardeström, 

1994). This results in the situation that acetyl-CoA is produced anew in mitochondria, but is 

needed in the cytosol or in plastids for lipid biosynthesis, and cannot be transported across 

subcellular membranes. Therefore it is thought that citrate can act as an acetyl-CoA transport 

substitute. The citrate-malate shuttle system (Watson and Lowenstein, 1970) provides 

convincing evidence that citrate generated in the mitochondria can be exported into the cytosol, 

and thus would be able to enter the plastids, where the citrate then could be cleaved by ACL to 

give acetyl-CoA in the compartment needed for fatty acid synthesis. The oxaloacetate produced 

would be converted to malate via the malate dehydrogenase and transported back to the 

mitochondria, replenishing the TCA cycle (Rangasamy and Ratledge, 2000b). The correlation of 

the highest ACL activities with the elongation zone of roots suggests that one role of ACL may 

indeed be linked to lipid biosynthesis (Langlade et al., 2002).  

ACL might have an additional function in plants: PEP metabolism is shifted towards the 

production of oxaloacatate and malate by the activities of PEP-C and MDH at the expense of 

pyruvate production via PK as an anapleurotic reaction under P-deficiency (see above). 

However, via the PEP phosphatase and the PEP-C, MDH and the malic enzyme reactions, two 

metabolic pathways still exist to produce the pyruvate needed for the de novo synthesis of citrate.  

Since the metabolic block leading to citrate accumulation under P-deficient conditions might be 

at the side of citrate degradation, ACL then might have the task to prevent citrate accumulation. 

This functions at less severe P-deficiency in young cluster roots, where ACL activity is 

upregulated and prevents citrate accumulation by cleaving it. Oxaloacetate thereby is reduced to 

malate, which was observed to accumulate in young cluster roots. Only in later stages of cluster 
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root development, ACL activity and ATP availability decrease, leading to the citrate 

accumulation observed. In this point of view, under less severe P deficiency, ACL in its second 

function reacts as a kind of backup system to prevent citrate accumulation, which ceases to 

function under more severe P deficiency. Langlade et al. (2002) found two gene products for the 

enzyme, whereby the expression pattern of both paralleled activity, meaning that the enzyme 

probably is regulated at the transcriptional level. This is in accordance with the decreasing 

protein and RNA concentrations found in ageing cluster roots, and the generally decreasing 

dehydrogenase activities found in cross sections of different root segments by activity staining. 

Decreasing specific activities of ACL during cluster root development hints to an 

overproportional decrease in activity in addition to the decrease due to the generally lower 

protein concentrations.  

An additional way of citrate degradation exists. The glyoxysomal pathway is a 5-enzyme short 

cut of the TCA cycle, and in addition to its established function in the postgerminative growth of 

oilseeds, it has also been detected as a salvage pathway for structural lipids in various plant 

tissues under natural or induced senescence conditions (Gut and Matile, 1988; De Bellis and 

Nishimura, 1991; Chen et al., 2000; Cots et al., 2002). Interestingly, in white lupin citrate 

accumulation occurs in senescing cluster roots, and an EST of malate synthase as part of the 

glyoxysomal pathway showed higher expression in ageing cluster roots (Uhde-Stone et al., 

2003b). Therefore it might be worth to investigate if the glyoxylate cycle prevents an even 

higher citrate accumulation as already observed and has an anapleurotic function similar to ACL, 

but takes effect later in cluster root development. ACL, which is more active in younger clusters, 

might bring about fatty acid production, and the glyoxylate cycle, which is more active in older 

clusters, might salvage lipids in these ageing tissues.  

 
 
Factors determining reduced citrate turnover 
 

The present study revealed downregulation of various metabolic sequences potentially involved 

in citrate turnover during cluster root development in P-deficient white lupin. Possible reactions 

comprise a reduced aconitase activity, lower dehydrogenase activities, a lower respiration, a 

lower use of 2-oxoglutarate for N assimilation, and reduced ATP-citrate lyase activity. However, 

regulatory factors determining the P deficiency-induced inhibition of these metabolic pathways 

and their relative contribution to citrate accumulation are still unknown and were in the scope of 

more detailed investigations.  
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Reduced activity of aconitase 
 

Inhibition of aconitase by H2O2 production ? 
 

Plant mitochondrial aconitase is rapidly inactivated by H2O2 (Verniquet et al., 1991). The 

enzyme is very susceptible to reactive oxygen species such as the superoxide radical or H2O2 due 

to its 4Fe-4S-cluster in its active site, where the Feα can be oxidized and lost from the enzyme 

(Hausladen and Fridovich, 1996). Increased H2O2 concentrations could be expected in plants 

under P-deficiency (Parsons et al., 1999; Juszczuk et al., 2001b; Malusà et al., 2002), but H2O2 

determination in different cluster root segments showed that concentrations rather declined when 

P deficiency became more severe during cluster root development (Fig. 10). Arguments for and 

against an aconitase inhibition by H2O2 exist. The concentrations of 0.4 – 0.5 µmol H2O2 g-1 root 

FW in cluster roots of P deficient white lupin (Fig. 10) are comparable to those found in nutrient-

sufficient winter wheat seedling leaves (0.5 – 0.8 µmol H2O2 g-1 leaf FW (Okuda et al., 1991) or 

for bean, spinach and mungbean leaves (~0.35-0.65 µmol H2O2 g-1 leaf FW) (Patterson et al., 

1984). This makes an aconitase inhibition due to high H2O2 concentrations rather improbable. 

Additionally, citrate protects aconitase from H2O2-derived inactivation (Verniquet et al., 1991). 

However, the lowest aconitase activities were found in the root segments with the highest citrate 

concentrations. Perhaps aconitase impairment might have been even more severe without the 

protection by the high citrate concentrations in mature and senescent cluster roots. 

Verniquet et al. (1991) found inhibition of aconitase activity in isolated potato tuber 

mitochondria at concentrations of less than 100 µM H2O2. Very low concentrations of H2O2 such 

as 25 µM inhibited over 70 % of tobacco aconitase activity (Navarre et al., 2000). Estimating the 

H2O2 concentration in the cluster roots as 500 to 800 µM when a root density of 1g mL-1 is 

assumed, then the measured H2O2 concentrations are far above the H2O2 inhibition level for 

aconitase activity. To maintain aconitase activity, H2O2 then must be intercepted very 

effectively, or the enzyme aconitase must continuously be produced anew. Since protein 

concentrations and mRNA levels decrease during ageing of cluster roots, new enzyme 

production could be inhibited under more severe P deficiency and therefore aconitase activity 

might decrease due to a lower replacement of the oxidized enzyme. Interestingly, the H2O2 

treatment of P-sufficient tobacco suspension cells caused a dramatic, but short-term increase in 

citrate (Vanlerberghe and McIntosh, 1996), whereby the authors could not understand the 

transient nature of this increase. Perhaps H2O2 was degraded quite fast (half-lives for H2O2 were 

given within minutes for cells, and up to 1 h when applied to protoplasts (Neill et al., 2002)), and 

the plants were able to produce new aconitase till citrate concentrations were measured. 
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To explain the unaltered H2O2 concentrations measured under P deficiency, H2O2 as a highly 

reactive substance might have reacted with other substrates before its determination was 

completed, especially at higher concentrations. On the other hand, its distribution inside a tissue 

or inside a single cell might be very inhomogeneous and therefore a high concentration inside a 

certain cell compartment might not have been realized when its concentration was determined 

for whole root segments.  

To simulate such a supposed, local high peroxide concentration, H2O2 at higher concentrations 

than found in the root tissue in in vitro measurements were applied to a part of the root system. It 

was to be tested if young cluster roots could be forced to react like mature clusters in increasing 

their citrate concentration and decreasing their aconitase activity.  

Citrate/malate tissue concentration ratios as a more sensitive parameter for a change of citrate 

and malate tissue concentrations were only slightly, but significantly increased at shorter 

incubation times of 1.5 h and 3 h at both incubation concentrations tested (5 mM and 10 mM 

H2O2) (Fig. 11). This increase was due to a slight, but significant decrease in malate tissue 

concentrations, but not due to any increase in citrate tissue concentrations. Peroxide might 

therefore not influence aconitase acitivity. However, in cannot be completely ruled out that the 

high peroxide concentrations applied impaired plant metabolism independent of any aconitase 

reaction. Peroxide is known to be a strong oxidative agent which reacts quite unspecific. A 

metabolic disturbance on a more general level therefore might also have prevented any citrate 

accumulation.  

 

 

Nitric oxide (NO) as an aconitase inhibitor ? 
 

On the other hand, aconitase activity might be inhibited by other factors than H2O2. Nitric oxide 

(NO), in addition to its free radical behaviour, was recognized as a signal molecule, implicated 

for a variety of plant processes, including leaf expansion (Leshem, 1996), root growth (Gouvea 

et al., 1997), or for the full activation of plant disease resistance and programmed cell death 

(Delledonne et al., 1998). Tobacco aconitases, like their mammalian counterparts, are inhibited 

by NO (Navarre et al., 2000). Aconitase is more vulnerable than other Fe-S- or heme-containing 

enzymes to this inhibition (Castro et al., 1994). In animals, NO reversibly inactivates aconitases 

by promoting the loss of the 4Fe-4S cluster (Drapier, 1997). Since cluster root development is 

associated with rapid appearance of senescence symptoms, which could be interpreted as 

programmed cell death, inhibition of aconitase could be due to NO production. Nitric oxide 
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synthase activity, producing NO from arginine, was described for white lupin roots and nodules 

(Cueto et al., 1996).  

An increase in citrate concentration in Fe-deficient sunflower was assumed to be due to an 

inhibition in citrate breakdown (Venkat Raju et al., 1972). Additionally, under Fe-deficient 

conditions white lupin produces cluster roots like under P deficiency, although with differences 

in morphology and physiology, and with an even greater citrate release from -Fe than from -P 

plants (Hagström et al., 2001). A link between citrate metabolism in Fe-deficient and in P-

deficient plants in connection with IRP (iron-regulated proteins) and NO regulation might exist.  

 

 

Substrate limitation of respiration ? 
 

Cytochrome pathway capacity decreased parallel to total respiration, suggesting that the 

cytochrome pathway determines total respiration, whereby the increase in AOX capacity that did 

take place was not high enough to compensate for the loss of the cytochrome capacity (Fig. 18).  

Especially under P-deficient conditions, cytochrome respiration might be under adenylate control 

(Vanlerberghe and McIntosh, 1992): A low availability of ADP and Pi inhibits ATP synthesis, 

which is brought about by dissipating the electrochemical gradient, and is established by electron 

transport via the cytochrome pathway. Additionally, a lower respiration rate would mean a lower 

turnover of reduced nucleotides, which may lead to an inhibition of the TCA cycle by a feedback 

mechanism and an accumulation of citrate. Uncoupling of the electron flow from ATP 

production would increase O2 consumption, as was found for Catharanthus suspension cultures 

under P deficiency (Hoefnagel et al., 1993a), or in tobacco suspension cells under P-deficient 

and P-sufficient conditions (Parsons et al., 1999). To test if root respiration in white lupin is 

under adenylate control (a lack of ADP limits respiration), respiration was measured by use of 

the uncoupler CCCP (Fig. 20). Although a whole range of concentrations were tested, no 

increase in respiration could be observed in root tips of P-sufficient plants nor in cluster roots. 

Therefore even under the severe P-deficient conditions in senescent cluster roots, respiration was 

not limited by deficiency of ADP or Pi. Similarly, in roots of bean plants, the application of an 

uncoupler increased O2 consumption only in P-sufficient plants, but not under P limitation 

(Rychter and Mikulska, 1990). The authors attributed this to a partial inhibition of the 

cytochrome pathway. External supply of glucose in addition to the uncoupler again increased 

respiration in bean only in P-sufficient roots, and failed to stimulate respiration under P 

deficiency. This indicates that factors other than substrates (ADP, Pi) and metabolic demand for 

ATP limit the respiration rate under P-deficient conditions (Wanke et al., 1998).  
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P deficiency-induced oxidative damage ? 
 

Increased production of reactive oxygen species (ROS) under P deficiency and oxidative damage 

of membranes and respiratory chain components by the activity of reactive oxygen species 

(ROS) such as the superoxide radical (O2• -) are reported (Parsons et al., 1999). The superoxide 

radical then may be rapidly converted to peroxide (H2O2) by mitochondrial superoxide dismutase 

(SOD). The mitochondrial electron transport chain is a major source of ROS generation in 

eucaryotic cells, including plant cells (Purvis et al., 1995; Parsons et al., 1999), where the main 

production site is at complex III with a one-electron transfer to molecular oxygen to generate the 

superoxide anion (Boveris et al., 1976; Parsons et al., 1999; Sweetlove et al., 2002). 

To elucidate whether oxidative stress could be responsible for the reduced respiration found in 

ageing cluster roots of white lupin, H2O2 concentrations were determined in the different root 

segments (Fig. 10). Surprisingly, H2O2 concentrations rather declined when P deficiency became 

more severe during cluster root development and therefore could not be accounted for the 

reduced respiration rates observed. Since H2O2 as a very aggressive molecule might have already 

reacted with other parts of the cell before its determination was performed, or ROS other than 

H2O2 might cause the oxidation of respiratory components, malondialdehyde (MDA), which is 

formed by lipid peroxidation due to oxidative stress (Halliwell and Gutteridge, 1989), was 

determined as well. However, MDA concentrations were also not increased during cluster root 

development, and so far there is no indication for oxidative damage by enhanced production of 

ROS in cluster roots. This leaves a general impairment of the respiratory components or their 

insufficient production due to lower protein concentrations to explain the lower respiration rates.  

On the other hand, there is nothing known in plants about mechanisms by which cytochrome 

capacity is regulated (Vanlerberghe et al., 2002). It was speculated that cytochrome pathway 

capacity in plant mitochondria is controlled by a phosphorylation cascade modulated by redox 

signals. This idea is especially interesting in the view that P deficiency might influence 

phosphorylation and can be associated with redox processes.  

 

Pyruvate acts allosterically on the reduced AOX to stimulate its activity in isolated mitochondria 

(Millar et al., 1993), and there is genetic evidence that pyruvate will accumulate if there is an 

imbalance between respiratory carbon metabolism and electron transport (Vanlerberghe et al., 

1997). In this way, no such imbalance seems to be the case in white lupin cluster roots, and the 

lower pyruvate concentrations in ageing cluster roots are rather not responsible for the 

decreasing AOX capacity measured. On the other hand, so far it was not possible to directly 

assess the influence of pyruvate on AOX activity in vivo (Millenaar et al., 2001). Pyruvate 
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probably does not play a role in vivo at all: The pyuvate concentrations needed for AOX 

activation are very low and normal pyruvate concentrations are far above this threshold value 

(Millenaar et al., 1998).  

The most established hypothesis for AOX function is that this protein reduces the generation of 

reactive oxygen species (ROS) in mitochondria. It presumably prevents overreduction of 

respiratory chain components such as ubiquinone (Day and Wiskich, 1995; Vanlerberghe and 

McIntosh, 1997; Maxwell et al., 1999; Parsons et al., 1999). Thereby it shunts electrons off the 

cytochrome pathway directly from ubiquinone to molecular oxygen, and is independent of 

oxidative phosphorylation. Accordingly, it was found that external H2O2 application to plant or 

fungal cells can increase AOX expression (Vanlerberghe and McIntosh, 1996). In consequence, 

it was hypothesized that ROS acts as a signal to increase AOX expression (Vanlerberghe et al., 

2002). Therefore it is tempting to suggest that the low increase in AOX capacity in cluster roots 

of white lupin, compared to P-deficient bean or tobacco plants, can be attributed to a low 

increase in H2O2 concentrations, giving a signal too small for enough AOX production to 

compensate for the loss of cytochrome capacity.  

Citrate treatment of cells or inhibited internal citrate turnover can induce the synthesis of AOX 

(Vanlerberghe and McIntosh, 1996; Pastore et al., 2001). However, this was not the case in white 

lupin cluster roots. Quite contrary, the higher the citrate concentrations in cluster roots, the lower 

the AOX activity. In accordance with this finding, an inhibition of the alternative pathway was 

described by Lambers et al. (1997) when massive amounts of citric acid were produced. These 

authors also concluded that the increased carbon costs associated with the release of organic 

acids, when P is in short supply, are partly balanced by lower carbon costs associated with 

respiration via the alternative path.  

It was suggested that a plant cell maintains signal pathway(s) able to actively regulate 

cytochrome pathway capacity, and that the fate of such cells (survival or programmed cell death) 

is dependent upon the level of AOX (Vanlerberghe et al., 2002). Interestingly, it was suggested 

(Neumann, pers. comm.) that cluster root structures might be a kind of “throw away” structures 

“designed” to be abandoned after a short life-span. This could mean a programmed cell death as 

defined by Vanlerberghe et al. (2002).  

In addition, decreases in respiratory rate often occur as plant tissues age (Azcon-Bieto et al., 

1993; McDonnell and Farrar, 1993; Atkin and Cummins, 1994). The decline in cytochrome 

pathway activity with age was supposed to reflect a decline in the demand for ATP associated 

with the slower growth rates in ageing tissue (Amthor, 1989; Millar et al., 1998). In white lupin 

clusters two factors might combine: the P deficiency which limits ATP availability, and the 
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aging of the cluster roots. Both together may lead to a more severely limited respiration with a 

reduction of both, cytochrome and alternative pathway capacity.  

More generally, the low Pi, mRNA, and protein levels might prevent the production of urgently 

needed proteins such as the aconitase or nitrate reductase proteins, or proteins necessary for 

membrane integrity and intactness. Interestingly, it was not possible to isolate intact 

mitochondria from mature and senescent cluster roots (Watt, Dissertation) nor was it possible to 

isolate protoplasts from mature clusters which were tight enough for patch clamp studies (Zhang 

et al., 2004; Yan (pers. comm.); this work). Such a general impairment of enzyme production 

and therefore also of membrane  components might explain the fact that so far no single cause 

for the citrate accumulation observed under P-deficient conditions could be found.  

 

 

Citrate accumulation as related to artificial inhibition of selected metabolic 
sequences 
 

As an additional approach to identify metabolic sequences of citrate turnover in P deficiency-

induced accumulation of citrate in cluster roots of white lupin, the effects of inhibitors for the 

respective metabolic pathways on citrate accumulation were investigated. To minimize the 

problem of systemic side effects, inhibitors were applied locally to selected root zones only for 

short time periods.  

 

 

Influence of an inhibited respiration by azide or SHAM on citrate tissue 

concentrations 
 

Reduced respiration seems to have only a small feedback influence on carboxylate 

concentrations in cluster roots. When respiration in young cluster roots was inhibited by partial 

root incubation with respiration inhibitors, citrate/malate tissue concentration ratio increased 

(Fig. 21). The increase was higher when the cytochrome compared to the AOX pathway was 

inhibited, which supports the view that the AOX pathway does not play such an important role 

under cytochrome-limiting conditions as it does in other plant species. The increase in the 

citrate/malate ratio was mainly due to lower malate concentrations and not to increased citrate 

concentrations. This suggests that the reduced respiration rates found in cluster roots under P 

deficiency are not primarily responsible for the increase in citrate concentrations found in mature 

cluster roots. 
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Inhibition of the aconitase enzyme by external application of MFA 
 

Monofluoroacetate (MFA) is a metabolic inhibitor that acts by being incorporated into 

fluoroacetyl CoA, which then reacts with oxaloacetate to form fluorocitrate. Fluorocitrate 

inhibits the enzyme aconitase, thus preventing the conversion of citrate to isocitrate in the TCA 

cycle (Quastel, 1963, and references therein; Lauble et al., 1996). 

Inhibition of the citrate-metabolizing enzyme aconitase by external application of 

monofluoroacetate strongly influenced organic acid metabolism in young and mature cluster 

roots (Fig. 13). The strong increase in citrate concentrations and strong decrease in malate 

concentrations in the young cluster roots means a shift in their carboxylate pattern normally 

found only in more mature clusters. Even mature cluster roots showed a further shift towards 

lower malate concentrations and higher citrate concentrations when treated with MFA. Aconitase 

therefore seems to be a key enzyme which determines organic acid metabolism while a cluster 

root develops. Aconitase activity might therefore be responsible for the transition of malate 

accumulation towards citrate accumulation while the cluster roots reach their mature state. 

It was suggested that citrate exudation is triggered when a treshold value of citrate concentration 

is reached (Neumann et al., 2000; Peñaloza et al., 2002). This treshold seems to be reached in 

young, MFA-treated clusters, because they released high amounts of citrate (Fig. 14). The citrate 

exudation rates of these MFA-treated young clusters were even higher than in non-treated mature 

clusters. Since citrate exudation is supposed to also be triggered by cytosolic acidification (Kania 

et al., 2003), it would be interesting to investigate changes in cytosolic pH under MFA treatment.  

Even white lupin seedlings, not suffering from any nutrient deficiency, showed malate and 

citrate exudation from their root tips when aconitase activity was blocked by MFA (Fig. 15). 

Accordingly, citrate accumulation was observed in MFA-treated tobacco suspension cells 

(Vanlerberghe and McIntosh, 1996). Maize seedling roots reacted to MFA incubation with 

malate and shikimate exudation (data not shown). Therefore it can be assumed that aconitase 

generally is a key metabolic step, limiting normal citrate degradation when its activity is 

impaired. The exudation of malate and shikimate in maize might be due to alternative metabolic 

steps to transform citrate.  

 

Summarizing, artificial reduction in aconitase activity can increase citrate concentrations and 

citrate exudation rates in root segments normally not accumulating citrate and not exuding 

citrate. This leaves the aconitase enzyme as a key metabolic step that determines citrate 

accumulation in mature cluster roots under P deficiency. Additionally, this finding supports the 
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concept of a citrate threshold concentration which has to be reached before citrate is exuded. 

Furthermore, anion channels responsible for high citrate exudation rates already exist under P-

sufficient conditions or are inducible in these roots within hours when citrate concentrations 

increase.  

 

When aconitase activity was measured in young and mature cluster roots after incubation with 

MFA, no change in activity could be observed (Fig. 16). This is in contrast to the increase in 

citrate concentration and exudation rates which occurred after the same incubation. However, the 

root segments used for determination of aconitase activity were harvested after exudate 

collection for 2 h, which was done without further application of MFA. According to the 

conjecture that the loss of aconitase activity might be due to a lower replacement of enzyme, 

aconitase perhaps was newly produced in these still growing tissues after removal of the 

inhibitor and re-gained the activity it had before MFA was applied. On the other hand, the MFA 

product (-)-erythro-2-fluorocitrate, the inhibitory isomer of the enzyme, might have been 

removed by dilution by the solutions the enzyme was dissolved in for enzyme activity 

measurements. However, aconitase inhibition was documented to be reversible only by a 106-

fold excess of isocitrate over the enzyme-inhibitor complex (Lauble et al., 1996, and references 

therein). Therefore it is not completely conclusive that the MFA-product was really removed 

from the enzyme by dilution from the activity measurement solutions. 

 

 

Inhibition of nitrate reductase (NR) by tungstate 
 

The nitrate reductase inhibitor tungstate (Na2WO4) was applied to young cluster roots to examine 

if a loss of nitrate reductase activity influences carboxylate concentrations in cluster roots due to 

a possible lower nitrogen incorporation into 2-oxoglutarate (2-OG), which would lead to a 

reduced consumption of citrate as precursor for 2-OG. Citrate concentrations increased slightly 

in response to tungstate treatments at moderate concentrations, while malate concentrations were 

slightly reduced, resulting in a corresponding increase of the citrate/malate ratio (Fig. 22). 

However, the observed changes in carboxylate concentrations were not comparable with the 

alterations of malate and citrate levels characteristic for maturation of cluster roots. Therefore 

nitrate reduction as the first step of inorganic N incorporation into C skeletons via nitrate 

reduction and the GS/GOGAT pathway seems to have a small, but not a crucial influence on the 

balance of TCA cycle metabolites, at least not enough to explain the high citrate accumulation 

observed in mature cluster roots. On the other hand, tungstate, a molybdate analogue, inhibits 
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formation of the active nitrate reductase enzyme in vivo by preventing incorporation of 

molybdenum (Wray and Filner, 1970; Deng et al., 1989). Therefore the NR enzyme is still 

synthesized, but the nitrate-reducing activity is defective. As treatment of plants with tungstate 

inhibits formation of new active nitrate reductase, the decrease in NR activity reflects the actual 

rate of NR degradation (Lillo et al., 2003). The low effect of tungstate application on carboxylate 

concentrations in the cluster roots of white lupin might be in accordance with this. The nitrate 

reductase was already produced before the tungstate treatment started. Therefore the influence of 

a P deficiency-induced nitrate reductase activity on organic acid metabolism might be much 

higher than estimated from this tungstate application experiment.  

 

 

Inhibition of the ATP-citrate lyase (ACL) by external application of hydroxycitrate 
 

The attempt to inhibit the ATP-citrate lyase (ACL) enzyme by application of different 

concentrations and different durations of incubation with hydroxycitrate did not show any effect 

on citrate or malate concentrations in the young cluster roots (Fig. 25). Two possibilities exist: 

(1) an inhibition of the ACL does not influence internal concentrations of citrate or malate at all, 

or the activity of the ACL is not an important or limiting step in organic acid metabolism under P 

deficiency. (2) The inhibitor hydroxycitrate, being chemically very similar to the organic acid 

citrate (a hydroxyl-group at the C2 instead of a –H) might not be taken up into the root cells in 

sufficient amounts to exert inhibitory effects on ACL. 

 

 

Conclusions and outlook 
 

Citrate accumulation in mature cluster roots is probably not only be caused by an increased 

production by a higher activity of enyzmes such as glycolytic bypass reactions, and the activities 

of the PEP-C, Malate-DH and citrate synthase enzymes. Many hints exist that citrate also 

accumulates due to a reduced degradation. In consideration can be a reduced aconitase activity, 

decreased activities of dehydrogenases in the TCA cycle, reduced nitrate assimilation with its 

lower use of organic acid carbon skeletons, or a lower respiration, and a lower degradation by 

ATP-citrate lyase. Higher enzyme activities on the anabolic side cannot completely explain the 

high citrate accumulation observed.  

Although the artificial inhibition of respiration and nitrate reductase did slightly increase the 

citrate/malate ratio in young cluster roots, and therefore seem to influence citrate and malate 
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metabolism, the highest effect was seen when aconitase was inhibited by MFA. Citrate 

concentrations in still young clusters as well as citrate exudation rates were increased to amounts 

usually only found in mature ones, and even P-sufficient seedling root tips could be forced to 

exude citrate. This are strong hints for a crucial role of aconitase in citrate accumulation and 

exudation in white lupin cluster roots. A lower aconitase activity was also identified as the cause 

for citrate accumulation in sour lemon during fruit growth compared to sweet lime (Sadka et al., 

2001; 2002). Citrate exudation could even be triggered by MFA in P-sufficient seedling root tips, 

which shows a clear relationship between citrate accumulation and citrate exudation. In yeast,  

aconitase or ICDH gene-deficient mutants showed higher citrate accumulation (Anoop et al., 

2003). Transgenic lines of plants or yeast, missing or overexpressing single or multiple genes 

influencing citrate production or degradation, might help to elucidate the importance of each 

single enzyme in citrate metabolism. 

 

Nitric oxide (NO) has numerous physiological effects in plants (Bethke et al., 2004) and might 

play a crucial role in plant metabolism also under P deficiency, as a stimulated NO flux was 

found under P limitation (Stöhr and Ullrich, 2002). It presumably inhibits aconitase activity by 

oxidizing its catalytic Fe-S cluster, or via a connection with IRP proteins (Navarre et al., 2000). 

It decreases the respiratory cytochrome c oxidase activity (Millar and Day, 1996), and Zottini et 

al. (2002) have shown that NO induces an increase in AOX expression in plant cell cultures. It 

would be interesting to investigate the influence of NO also as a regulatory agent on metabolism 

of white lupin under P deficiency. 
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Chapter 2: Mechanisms of citrate export in cluster roots 
 

 
Introduction 
 

Cluster roots of P-deficient white lupin plants show specialized metabolic adaptations to the lack 

of phosphorus. An increase in carboxylate production and tissue concentration, followed by 

exudation, especially of citrate in mature clusters, was often described (e.g. Dinkelaker et al., 

1989; Johnson et al., 1996a+b; Keerthisinghe et al., 1998; Gilbert et al., 1999; Neumann and 

Römheld, 1999; Neumann et al., 1999, 2000). Much less is known about the carboxylate 

transport itself. Due to the pH stat mechanism (Sakano, 1998) increased production of 

carboxylates also produces protons. This provokes metabolic disturbances since the cytosolic pH 

has to be kept constant at a pH of 7.3 – 7.5 (Sanders and Bethke, 2000), and high concentrations 

of carboxylates might complex cations such as Ca2+, which as a second messenger has to be kept 

at defined low concentrations in the cytosol (Marschner, 1995). White lupin is able to cope with 

this situation by exuding the citrate from mature clusters across the plasma membrane, probably 

when its internal concentration reaches a threshold value of 20-30 µmol g-1 root FW (Neumann 

et al., 2000; Peñaloza et al., 2002). However, in senescent clusters the citrate concentrations are 

still very high, but almost no exudation occurs, which is not due to an artifact by microbial 

degradation of released citrate (Neumann et al., 1999). Contrary to this, malate concentrations 

and exudation rates decrease in parallel during cluster root development. Citrate exudation 

therefore cannot be explained by passive diffusion across leaky membranes impaired by P 

deficiency. Thus a regulated release mechanism was suggested (Neumann et al., 1999). This 

view was further supported by the finding that anion channel inhibitors such as ethacrynic acid 

or anthracene-9-carboxylic acid (A-9-C) inhibited citrate exudation, and citrate exudation via an 

anion channel was postulated (Neumann et al., 1999).  

Based on inhibitor studies, a similar transport mechanism has been postulated for Al-induced 

release of malate in wheat (Ryan et al., 1995; 1997), where malate exudation also was reduced 

when the anion channel inhibitors niflumate or A-9-C were applied. A direct proof for the 

involvement of anion channels in Al-induced exudation of malate in wheat and of citrate in 

maize has been recently demonstrated by patch-clamp studies (Kollmeier et al., 2001; Piñeros 

and Kochian, 2001; Zhang et al., 2001).  
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Ion transport across membranes via channels is brought about by the effect of the 

electrochemical potential gradient. The plasma membrane enzyme H+-ATPase uses the energy of 

ATP to transport protons from the cytoplasm out of the cell against their diffusional direction, 

which establishes an electrical gradient due to the accumulation of positive charges in the 

apoplasm, leaving more negative charges in the cytosol. Concomitantly a chemical gradient is 

established for the higher proton concentration outside the cell (lower apoplastic pH) and a lower 

proton concentration in the cytosol (higher cytosolic pH). Both gradients, taken together, are 

called the electrochemical gradient or proton motive force, which is described mathematically by 

the Nernst equation. Potentials of about –120 mV and pH differences of two pH units are 

routinely observed across plasma membranes (Palmgren, 1998), and even values of –200 to –300 

mV are common in plant cells (Sanders and Bethke, 2000). The energy stored in the 

electrochemical gradient can then be used for ion transport across channels or transporters, 

energetically downhill, and is called secondary active transport.  

Generally, transport activated by the plant H+-ATPase is involved in many physiological 

functions, e.g. mineral nutrition in the root, metabolic translocation, regulation of cytoplasmic 

pH, and cell turgor-related functions, such as organ movement and cellular growth (reviewed by 

Arango et al., 2003). More specifically, the intracellular pH is mainly regulated by the PM H+-

ATPase and by malate production or degradation (Palmgren, 1998) by way of the pH stat 

mechanism (Sakano, 1998). The PM H+-ATPase, however, is not the only factor which 

determines the size of the membrane potential and contributes to H+ extrusion. Metabolic 

processes, e.g. CO2 and lactate production, and changing permeability of the membrane to anions 

and cations may be equally important factors (Palmgren, 1998). 

It is known that certain cell types have much higher concentrations of H+-ATPase than others. In 

general, cell types with abundant H+-ATPase are specialized for intense active transport and 

accumulate solutes from their surroundings. For example, H+-ATPase is localized in root hairs 

and root epidermal cells and is important for nutrient uptake and active loading of solutes into 

the xylem (Palmgren, 2001). 

H+-ATPases were identified in plants, fungi, protozoa and Archaebacteria (Palmgren, 1998). 

Many H+-ATPase isoforms were described, e.g. 12 H+-ATPase genes in Arabidopsis, 9 in 

Nicotiana plumbaginifolia (Palmgren, 2001) and 10 in rice (Arango et al., 2003). Plasma 

membrane H+-ATPases are believed to have ten transmembrane segments (Palmgren, 2001), 

consisting of a single catalytic subunit of about 100 kDa. How many subunits exist altogether in 

the native state is uncertain, but a cluster of 3 x 2 subunits, arranged as a hexameric structure, 

was proposed (Boutry, pers. comm.). A number of quantitative differences in catalytic and 

regulatory properties between isoforms exist (Palmgren, 2001). 



 
 
                                 Mechanisms of citrate export in cluster roots                                               84 
—————————————————————————————————————— 

 

Citrate exudation from mature clusters across the plasma membrane via the postulated anion 

channel is probably also a secondary active transport. In the neutral pH of the cytosol citrate 

exists to about 93 % as citrate 3- (Marin et al., 1981) and therefore has to be transported as an 

anion. In addition to the electrical gradient supporting the efflux of citrate from the cytosol, a 

concentration gradient also exists since the citrate concentration is higher in the cytosol than in 

the outer medium. Therefore citrate exudation across an anion channel would even rather be a 

facilitated diffusion. 

In comparison to the bulk soil with a pH of 7.8 (Dinkelaker et al., 1989), rhizosphere 

acidification to a pH of 4.5 as reached in mature clusters of P-deficient white lupin, means that 

the H+-ATPase has to establish a 500-fold higher proton concentration in the apoplast compared 

to the cytosol.  

 

The following hypothesis can therefore be stated: Under P deficiency citrate accumulates in 

white lupin cluster roots. The physiological changes brought about by citrate accumulation leads 

to the opening of a putative anion channel in mature clusters when a certain threshold value of 

citrate concentration is reached, which results in a burst of citrate exudation. To maintain the 

electrical gradient across the plasma membrane, and for charge balance, protons are 

concomitantly released by an activated H+-ATPase.  

The aim of this work was to characterize the physiological changes of the PM H+-ATPase in 

cluster roots of white lupin under P-deficient conditions in relation to citrate transport across the 

plasma membrane via the putative anion channel. Another question was how this putative 

channel is characterized and how it is regulated. Until this study was finished, no direct evidence 

for such an anion channel was given.  

 

 

Two methodological approaches were chosen: 

 

1. Hydrolytic and proton transport activity of the H+-ATPase was to be determined in highly 

purified inside-out plasma membrane (PM) vesicles in a membrane-physiological approach. 

In inside-out plasma membrane vesicles the physiologically inner membrane side of the 

living cell is on the outer side of the vesicle and therefore accessible for externally supplied 

substrates such as ATP or citrate. Vesicles isolated from roots of P-deficient and P-sufficient 

control plants were to be investigated with respect to the supposed increase in proton 

transport necessary to enable the high acidification observed in mature clusters. Activity of 
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the H+-ATPase was also to be measured with respect to the pH and electrical balance in the 

cytosol when a high amount of citrate transport out of the cell dissipates the electrochemical 

gradient. Isolated vesicles offer several advantages over intact cells in studying transport 

mechanisms: the vesicles are devoid of cytoplasmic constituents of the intact cell, and their 

metabolic activities are limited to those enzymes associated with the membrane itself. The 

energy source for transport of a particular solute can be determined by studying which 

substrate stimulates solute accumulation (Sze, 1985). Another question was the relation 

between membrane energetization, H+-ATPase, and citrate transport across the plasma 

membrane. This work with isolated PM vesicles was done in co-operation with Stefano 

Cesco and Roberto Pinton from the University of Udine, Italy. 

2. Protoplasts were to be isolated for patch-clamping studies to characterize the putative citrate 

channel in the plasma membrane of cluster roots of white lupin. 
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Materials and methods 

 

Vesicle isolation and characterization 
 

Plasma membrane (PM) vesicles were isolated from root systems with cluster roots of P-

deficient plants (-P) and from roots of +P control plants in a small scale procedure according to 

Giannini et al. (1988), using a sucrose gradient centrifugation. The aim was to investigate PM 

transport properties important for citrate exudation of mature cluster roots under P deficiency.  

For this, 14 g of freshly harvested root material was cut and rinsed in a solution of ice-cold non-

aerated 0.1 mM CaSO4 solution. After removing the water on a filter paper and weighing, the 

roots were ground thoroughly in a mortar with a pestle with 56 mL of the homogenization (MO) 

solution (Tab. 7), 1 mM PMSF, 20 µg Chymostatin mL-1 and PVPP (0.5 g g-1 root FW). All the 

steps were done on ice, all centrifugations at 4°C. The breis was filtered through six layers of 

cheese cloth into a beaker. The filtrate was pipetted into 2 mL Eppendorf vials and centrifuged at 

17,130 g for 6 min to precipitate cell debris, and the supernatant was transferred into new 2 mL 

vials. After another centrifugation at 17,130 g for 25 min the tips of the vials were cut, the 

supernatant was poured away and a total of 1 mL of the resuspension solution (Tab. 6), 

containing 20 µg of freshly added Chymostatin solution, was distributed evenly into all the vials. 

The pellets were resuspended in the solution. Care has to be taken that no air gets into the 

solution to avoid oxidation of the membranes. The resuspended solution was transferred into a 

total of four vials and MO solution was added to fill each vial to a volume of 2 mL, then the 

solutions were mixed and centrifuged for another 25 min at 17,130 g. After removal of the 

supernatant the pellets were resuspended in a total of 800 µL of MO solution, giving the 

microsomal fraction. 

To get a pure plasma membrane-derived fraction, a sucrose-gradient separation of the 

membranes was performed: 540 µL of the 38 %-sucrose GS solution (Tab. 8) was filled into 2-

mL vials. The surface of the solution has to be smooth. 1260 µL of the 25 %-sucrose gradient GS 

solution was layered on top with help of an insulin syringe with a very thin needle. To get a 

smooth interlayer, the tip of the needle was put into the 38 %-sucrose gradient and pulled up 

above the surface. A thread of the 38 % solution evolved, along which the 25% solution was 

carefully filled in to avoid any turbulence in the interlayer between the two solutions. 200 µL of 

the vesicle suspension was layered on top of each vial containing the gradient solution using the 

same procedure, and centrifuged for 60 min at 20,820 g with slow accelaration and 

deacceleration to avoid mixing of the gradients. After centrifugation, the interlayers were drawn 

off with an insulin syringe, whereby care had to be taken that the pellet on the inner side of the 



                                    
 
                                   Mechanisms of citrate export in cluster roots                                           87 
—————————————————————————————————————— 

vial and the suspension forming the interlayer were both carefully removed. The suspension of 

the four gradients were transferred into six new vials and MO solution was added until all the 

vials were filled. After mixing thoroughly, the suspensions were centrifuged for another 60 min 

at 20,820 g, the supernatant removed and an amount of MR solution (Tab. 6) added until a 

certain protein concentration was gained (here: 1 mL of MR solution). This suspension gave the 

highly purified vesicles. 

 
Table 4: Homogenization stock solution (MO) for vesicle isolation (for preparation of 1000 mL, stocks 
of 50 or 75 mL each are stored at -20°C). 
sucrose 85.575 g 250 mM  
glycerol 126 g 10 % v/v  
glycerol-1-phosphate 2.16 g 10 mM  
MgSO4 x 7H2O 0.4929 g 2 mM  
EGTA 0.761 g 2 mM  
EDTA-acid 1.1688 g 4 mM  
BTP 7.057 g 25 mM  
titrate to pH 7.6 with solid MES  
 
 
Table 5: GS stock solution: for preparation of 0.5 L, stocks of 25 mL each are stored at -20°C. 
EGTA 0.38 g 2 mM  
MgSO4 x 7 H2O 0.24 g 2 mM  
BTP 0.7 g 1.24 mM  
glycerol-1-phosphate 1.08 g 10 mM  
EDTA-acid 0.292 g 2 mM  
titrate to pH 7.4 with solid MES   
 
 
Table 6: MR stock solution (resuspension medium) (for preparation of 50 mLwith stocks of 1 mLeach, 
stored at -20°C) 
BTP 0.0282 g 2 mM  
glycerol 12.6 g 20 % v/v  
EGTA 0.03805 g 2 mM  
EDTA 0.0292 g 2 mM  
titrate to pH 7.0 with MES   
 
 
Table 7: Homogenization solution: 
stock solution stored at –20°C ( per 50 mL)   
choline  iodide   2.85 g  
ATP  0.0551 g 2 mM 
DTT  0.0154 g 2 mM 
PMSF  830 µL  1 mM 
chymostatin  50 µL 20 µg/mL 
ascorbic acid  0.044 g 5 mM 
PVPP  0.5g g-1 root FW directly into the mortar 
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BSA was not used to permit the measurement of the protein concentration. The choline iodide, 

ATP, DTT and ascorbic acid (can be stored in the fridge overnight) were weighted into a beaker. 

The MO stock solution was added just before the beginning of the vesicle isolation, as well as 

the PMSF and Chymostatin stock solutions. 

 
Table 8: Gradient Solution (GS) Stock solution (per 25 mL) 
choline iodide  1.425 g   
ATP 0.0275 g   
DTT  0.0077 g   
ascorbic acid 0.022 g   
PMSF  415 µL   
chymostatin  25 µL   

25 und 38 % (w/w) sucrose     
 
 
Protein concentration of the vesicle solution was determined after a modified method of 

Bradford (1976), with 150 µL of standard (up to 7.5 µg BSA) or sample, 50 µL NaOH (20 mM), 

and 2.8 mL of Bradford solution per vial. Protein concentration was measured photometrically at 

595 nm against a blank after 15 min of colour reaction time. 

 

To characterize the vesicles according to their subcellular origin, and therewith the purity of the 

vesicle suspension, the activities of the several ATPases, derived from the different subcellular 

membrane fractions, were determined essentially according to Gallagher and Leonard (1982). 

For this, 100 µL of vesicle suspension, containing 0.5 µg protein, were incubated for 30 min at 

38ºC in a waterbath in 500 µL of a reaction medium containing buffer, ATPase substrates, SDS 

to break up the vesicles to reach the ATPase activities from the outside-out and inside-out 

vesicles, and specific inhibitors (Table 9): vanadate for plasma membrane ATPase, azide for 

mitochondrial ATPase, nitrate for vacuolar ATPase and molybdate for other phosphatases 

releasing Pi. As P-standards, 50 µL K3PO4 (0.5 mM) + 50 µL H2O and 100 µL K3PO4 (0.5 mM) 

were used instead of the vesicle suspension. Blanks were done with 100 µL MR solution.  

 

 
Stock solutions used for the ATPase assays: 
 
- acridine orange (AO) 1 mM 
- Brij 35 0.72 % 
- BTP 0.45 M 
- CaSO4 10 mM 
- citric acid-BTP 150 mM, pH 6.5 (pH adjusted with solid BTP) 
- EDTA-MES 200 mM, pH 6.5 
- HCl 1.23 N (12.108 g 37 % HCl filled up to 100 g) 
- KCl 1 M 
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- K3PO4 0.5 M 
- malic acid-BTP 150 mM, pH 6.5 (pH adjusted with solid BTP) 
- MES 0.9 M 
- MES-BTP  150 mM, pH 5.5, 6.0, 6.2, 6.3, 6.4, 6.5, 6.6, 6.9, 7.0, 7.1, 7.3, 7.5, 8.0 
- Mg-ATP 150 mM (MgSO4 x 7 H20 0.0739 g + ATP 0.1653 g, dissolved in 2 mL H2O, 

prepared directly before use and stored on ice). 
- Na2MoO4 70 mM 
- NaN3 70 mM 
- PMSF 60 mM, dissolved in 2-propanol 
- SDS 10 % (w/v) in H2O 
- succinic acid-BTP 150 mM, pH 6.5 (pH adjusted with solid BTP) 
- sucrose 1 M 
- vanadate 10 mM in 20 mM NaOH (for 100 mL: 0.09095g V2O5 in 1 mL of 2 N NaOH + ca. 

50 mL H20; stir overnight, then fill up to 100 mL). 
 
 
 
Table 9: Different inhibitor treatments to determine the activities of the different ATPases in the vesicle 
suspension derived from different subcellular membrane fractions. 
 
substance inhibitor combinations       
 KNO3

KNO3+ 
V2O5

KNO3+
NaN3

KNO3+ 
NaMoO4

KCl  KNO3
KNO3
+NaN3

KCl 

          
 --------------------------------------------- Vol. [µL] -----------------------------------------------
buffer  
pH 6.5 200 200 200 200 200 Buffer 

pH 8.0: 200 200 200 

KNO3 60 60 60 60 -  60 60 - 
V2O5 - 24 - - -  - - - 
NaN3 - - 10 - -  - 10 - 
NaMoO4 - - - 5 -  - - - 
KCl - - - - 60  - - 60 
          
Mg-ATP 20 20 20 20 20  20 20 20 
Brij 8. 3 8. 3 8. 3 8. 3 8. 3  8. 3 8. 3 8. 3 
H2O 211.7 187.7 201.7 206.7 211.7  211.7 201.7 211.7 
vesicle 
suspension 100 100 100 100 100  100 100 100 

total 
volume 
[µL] 

600 600 600 600 600  600 600 600 

 

 

 

The ATPase reactions were stopped by addition of 1 mL of solution 1 (Tab. 10), then the vials 

were stored on ice again. 10 min after storing on ice, solution 2 (Tab. 11) ( 1.5 mL) was added 

on ice and the rack was put into the water bath at 38ºC for another 10 min, then to room 

temperature and the reaction of the Pi, which was set free by the activity of the ATPases, with the 
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colour reactants was determined photometrically at 705 nm after 10 min of colour reaction 

according to Forbush (1983). 

 
 
Table 10: Solution 1 to stop the ATPase reaction 
ascorbic acid 3 % (w/v) 6 g dissolved in 40 mL of H2O 
HCl 0.6 N 100 mL of 1.23 N HCl 
ammonium molybdate 0.5 % (w/v) 10 mL of stock solution (70 mM) 
SDS 3 % (w/v) 60 mL of a 10 % (w/v) stock solution 
 
Solution A has to be stored in the dark and has to be used within 30 min after preparation. 
 
 
 
Table 11: Solution 2 for the colour reaction with Pi. 
tri-sodium-citrate 6 g   
Na –arsenate x 7H2O 6 g   
H2O 300 mL   
glacial acetic acid 6 mL   
 
 
For the vanadate-sensitive plasma membrane ATPase assay alone, the reaction medium of 

Tab. 12 was used. Vanadate-sensitive and vanadate-insensitive ATPase activity was 

differentiated by adding 24 µL vanadate solution instead of H2O. 

 
 
Table 12: Vanadate-sensitive and -insensitive plasma membrane ATPase reaction medium. 
substance concentration volume of the stock solutions used [µL] 
  - vanadate + vanadate 
BTP-MES  50 mM pH 6.5 200 200 
Mg-ATP 5 mM 20 20 
Na2MoO4 0.6 mM 5 5 
KNO3 100 mM 60 60 
NaN3 1.5 mM 10 10 
Brij 0.01 % 8.3 8.3 
V2O5 0.4 mM - 24 
H2O  196.7 172.7 
vesicle suspension (0.5 µg protein) 100 100 
 
 
 
To determine the pH dependence of the vanadate-sensitive ATPase from the vesicles derived 

from the plants grown with or without P supply, the vanadate-sensitive ATPase assay was 

performed with MES-BTP buffer solutions with the pH values of 5, 5.5, 6.0, 6.2, 6.4, 6.5, 6.7, 

6.9, 7.0, 7.3, 7.5, and 8.0 according to Tab. 13. Vanadate-sensitive and vanadate-insensitive 

ATPase activity was differentiated by adding 24 µL vanadate solution instead of H2O. 
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Table 13: pH-dependent vanadate-sensitive and –insensitive plasma membrane ATPase reaction medium. 
 
substance concentration volume of the stock solutions used [µL] 
  - vanadate + vanadate 
BTP-MES  50 mM pH 5.0 – 8.0 200 200 
Mg-ATP 5 mM 20 20 
Na2MoO4 0.6 mM 5 5 
KNO3 100 mM 60 60 
NaN3 1.5 mM 10 10 
Brij 0.01 % 8.3 8.3 
V2O5 0.4 mM - 24 
H2O  196.7 172.7 
vesicle suspension (0.5 µg protein) 100 100 
 
 
Proton pumping activity of inside-out vesicles and therefore proton accumulation into membrane 

vesicles was assayed by the absorbance change of acridine orange (AO) as a pH-sensitive dye 

taken up by the vesicles and accumulating inside the vesicles, dependent of the acidification 

inside the vesicles due to the proton transport by the PM H+-ATPase activity. For this, stock 

solutions of 343 µL MES-BTP buffer, pH 6.5; 10 µL AO solution; 100 µL KNO3; 33 µL Mg-

ATP; 250 µL sucrose, and vesicle suspension with 50 µg protein and a volume of H2O filling the 

assay solution up to 1000 µL were mixed and the decrease in absorption of acridine orange was 

followed photometrically at 492 nm. To test the amount of vanadate-sensitive ATPase activity, 

the assay was done with addition of 40 µL V2O5. The influence of organic acids on the proton 

pumping activity was determined by adding 13 µL of 150 mM citrate- malate- or succinate-BTP, 

pH 6.5, to the assay solution. Addition of 10 mM EDTA-BTP chelated the Mg2+ ions necessary 

for H+-ATPase activity, which resulted in the dissipation of the pH gradient brought about by the 

activity of the H+-ATPase. 

 

 

Citrate transport across vesicle membranes 

 

Citrate transport across the vesicle membrane was determined by use of 14C-citrate, whereby 

isolated plasma membrane vesicles were incubated for 60 min with an incubation solution at 

room temperature (Tab. 14). The vesicles were separated from the solution by filtration across 

cellulose nitrate filters (pore size 0.45 µm, 25 mm diameter), whereby the protein-containing 

vesicles stick to the membranes. The filters were cleaned with two-times rinsing with 1.5 mL 

washing solution (Tab. 15) each. The filters containing the vesicles were given into szintillation 
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vials, dissolved in 2 mL ethylacetate and radiation was measured after addition of 2 mL 

szintillation liquid. To determine unspecific binding of vesicles, the vesicle suspension was 

boiled to denaturate proteins before adding the labelled citrate. Alternatively 0.01 % Brij ®35 

(0.72 % with 3.5 µL) was added to the vesicle suspension to open the vesicles and preventing 

citrate accumulation inside the vesicles. Unspecific binding of citrate to the filters was 

determined by incubating the filters in 10 mM unlabelled citric acid before the experiments were 

performed.   

 
 
Table 14: Incubation solution for 14C-Citric acid transport determination 
stock solution volume used final concentration 
MES-BTP 150 mM pH 6.5 84 µL 50 mM 
sucrose solution 1 M 37.5 µL 150 mM 
BSA 0.05 mg mL-1 5 µL 1 µg mL-1

Mg-ATP 150 mM 8.4 µL 5 mM 
14C citric acid  0.401 µmol mL-1 16 µL if diluted 1/8 3.2 µM – 0.1 µCi 
vesicle suspension 80-100 µL 30 µg protein 
H2O To fill up to 250 µL  
 
 
Table 15: Washing solution (à 100 mL) 
stock solution volume used final concentration 
MES-BTP 150 mM pH 6.5 33.3 mL 50 mM 
sucrose 1 M 15 mL 150 mM 
BSA 0.05 mg mL-1 2 mL 1µg mL-1

H2O To fill up to 100 mL  
 
 
 
 

Acidification of the cytosol 
 

The investigation was done by N. Langlade and E. Martinoia, Université de Neuchâtel, Suisse 

(Kania et al., 2003). Different parts of lupin roots were collected as described by Massonneau et 

al. (2001). Four to ten root segments were rinsed briefly in distilled water and incubated during 

1 h at 22°C in Eppendorf reaction tubes containing 1 mL of 20 mM propionate, pH 4.0, 20 mM 

MES-KOH at pH 4.0, or 20 mM HEPES-KOH at pH 7.0. Citrate and malate concentrations were 

determined in these root washings using the citric acid test kit and L-malic acid test kit 

(Boehringer, Mannheim, Germany). The presence of applied chemicals has been verified not to 

influence the determination method.  
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Isolation of protoplasts from mature cluster roots and root tips 
 

The protocol for protoplast isolation was developed for white lupin cluster roots in part as a 

combination of methods given by Lin (1980), Xu et al. (1981), Power and Chapman (1985), 

Schachtman et al. (1991), Blackhall et al. (1994), Sevón et al. (1995), Spangenberg and Potrykus 

(1995), Gleddie (1995), and Steinecke and Schreier (1995).  

 
Mature cluster rootlets from 4 to 6 weeks old plants were separated from their root axis with a 

razor blade (that is, only the lateral "brushes“ were used), given shortly on a filter paper to 

remove adhering water and cut into small pieces with a razor blade in a petri dish containing the 

enzyme solution (100 mg root fresh material mL-1 solution) (Tab. 16). To infiltrate the enzyme 

solution into the intercellular space, a slight vacuum was applied. The infiltrated roots were 

incubated in the petri dish at 30°C in the dark at 50 rpm in an incubator. Because the phenols 

exuded from the roots tend to inactivate the enzymes, the enzyme solution was changed after two 

hours of incubation. 

Protoplasts were isolated after a total of 5 hours of incubation. The whole volume was separated 

into aliquots of 0.5 mL, being transferred separately to other petri dishes with a cut pipette tip 

and squeezed very carefully with a small glass vial to release the protoplasts from the cell walls. 

This suspension was filtered through a 300 µm plastic mesh into test tubes. The mesh was rinsed 

with a five-fold volume of flotation solution and scratched carefully with the pipette tip on the 

mesh to release more protoplasts. The contents of each test tube were carefully mixed and 1 mL 

of washing solution layered on top of each test tube, followed by centrifugation for 10 min at 

175 g. The upper solution was collected directly above the interlayer with a pasteur pipette with 

a broad opening. The content of one test tube was divided to two Eppendorf reaction tubes and 

filled up with washing solution. After mixing and centrifugating for 6 min at 175 g, the 

supernatant was removed and the pellet carefully resuspended in fresh washing solution. This 

step was repeated once or twice again. Finally the supernatant was removed after the last 

centrifugation and the pellet resuspended in the remaining supernatant (approx. 70–100 µL). 

Subsamples of this suspension were used to determine protoplast density in a Fuchs-Rosenthal 

counting chamber. The vitality of the protoplasts were tested with a 0.1 % (w/v) Phenosafranin 

solution (phenosafranin dissolved in washing solution) and added 1:1 (v/v) to the suspended 

protoplasts. Intact protoplasts are able to keep the red phenosafranin out of their cells and 

therefore are not coloured red.  
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Table 16: Solutions used for protoplast isolation 
 
Enzyme solution Cellulase "Onozuka" RS 2 % (w/v)  
 Cellulase YC 1 %  
 Macerozyme R-10 1 %  
 Pectolyase Y-23 0.1 %  
    
 sucrose  0.4 M (= 13.7 %) 
 KNO3 1 mM 
 CaCl2 x 2 H2O 1 mM 

results in 610 mOsm 
for the complete 
enzyme solution 

 MgSO4 x 7 H2O 1 mM  
 KI 0.964 µM  
 CuSO4 x 5 H2O 0.1 µM  
    
 MES 5 mM  
 BSA 0.5 %  
 PVP 2 %  
 DTT 1 mM  
 Na-ascorbate 10 mM  
 pH adjusted to 5.5  
    
Flotation solution sucrose 0.4 M (= 13.7 %) 
 KNO3 1 mM 
 CaCl2 x 2 H2O 10 mM  

results in 610 mOsm 
for the complete 
enzyme solution 

 MgSO4 x 7 H2O 1 mM  
 KI 0.964 µM  
 CuSO4 x 5 H2O 0.1 µM  
 MES 5 mM  
 Ficoll 12 % (w/v)  
 PH adjusted to 5.5  
    
Washing solution sorbitol 0.5 M 
 KNO3 1 mM 
 CaCl2 x 2 H2O 10 mM 

results in 610 mOsm 
for the complete 
enzyme solution 

 MgSO4 x 7 H2O 1 mM  
 KI 0.964 µM  
 CuSO4 x 5 H2O 0.1 µM  
 MES 5 mM  
 Ficoll 12 % (w/v)  
 pH adjusted to 5.5  
 
 
 

Isolation of root hair protoplasts from seedlings and cluster roots 
 

Root hair protoplasts from seedlings and cluster roots were isolated using a protocol modified 

from Cocking (1985) and Gassman and Schroeder (1994) with adjustments for white lupin. 

Cluster root segments of white lupin or seedling root tip segments (up to several cm from the 

apex) were placed into enzyme solution (Tab. 17) in a water bath shaker at 30°C and 100 rpm for 
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about 30 min. After the enzyme treatment the root segments were washed twice with washing 

solution for 5 min at 4°C on a rotary shaker at 100 rpm and then were put into a small volume 

(approx. 200 – 400 µL) of isolation solution on a microscope slide for about 30 min. The lower 

osmolality of the isolation solution led to osmotic expansion and hatching of root hair 

protoplasts. After the 30 min the root segments were shaken gently to free the protoplasts and 

pulled out of the isolation solution. The protoplast density then could be counted in a Fuchs-

Rosenthal chamber and the vitality determined with the phenosafranin method (see above).  

Osmolality was calculated from the reduction of the freezing point in the solution measured with 

a KNAUER-Osmometer with a NaCl solution as a standard.  

 

Table 17: Solutions used protoplast isolation from root hairs 
 
Enzyme solution Cellulase "Onozuka" RS 1 % (w/v)  
 Cellulysin 1 %  
 Macerozyme R-10 1 %  
 Pectolyase Y-23 0.02 %  
    
 sucrose  0.68 M (= 12.4 %) results in 860 mOsm  
 KCl 10 mM of the complete solution 
 CaCl2 x 2 H2O 1 mM  
 MgCl2 x 2 H2O 2 mM  
    
 MES 10 mM  
 BSA 0.1 %  
 Na-ascorbate 10 mM  
 pH adjusted to 5.5  
    
Washing solution sucrose 0.75 M (= 13.7 %) results in 860 mOsm  
 KCl 10 mM of the complete solution 
 CaCl2 x 2 H2O 1 mM   
 MgCl2 x 2 H2O 2 mM  
 MES 5 mM  
 ascorbic acid 10 mM  
 pH adjusted to 5.5  
    
Isolating solution sucrose 0.15 – 0.333 M results in 200-400 mOsm
 KCl 10 mM of the complete solution 
 CaCl2 x 2 H2O 1 mM  
 MgCl2 2 mM  
 MES 10 mM  
 pH adjusted to 5.5  
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Results 
 

 

Purification of plasma membrane vesicles 
 

Since various ATPases have been localized in membranes of different subcellular compartments, 

high purification of plasma membrane (PM) fractions is a prerequisite for investigations of PM 

H+-ATPases. Highly purified plasma membrane vesicles were isolated from root systems with 

cluster roots of P-deficient plants (-P) and from roots of +P control plants in a small scale 

procedure using a sucrose gradient centrifugation.  

 

The purity of the vesicle preparations was tested by determining the activity of marker enzymes 

with use of phosphatase inhibitors and specific inhibitors for the several H+-ATPases originating 

from different plant membranes. For this, the ortho-phosphate (Pi) set free by the phosphatase 

and ATPase activities were measured (Table 18). The high vanadate-sensitive ATPase activities 

of around 90 % of vesicles derived from –P and +P plants showed that the vesicle preparations 

were enriched with PM-derived membranes. Only minor impurities of vacoular membranes 

(nitrate-sensitive vacuolar ATPases), mitochondrial membranes (azide-sensitive mitochondrial 

ATPases) or free phosphatases (molybdate-sensitive) were detected. Therefore this method was 

viable to isolate vesicles which could be used to further investigate the phosphorylating and 

proton transport activities of the PM H+-ATPase. The latency, which gives the percentage of 

tight vesicles, was high enough to allow proton transport studies. The latency is defined as the 

percentage of the difference between the total phosphatase activity of vesicles and phosphatase 

activity of tight vesicles to the total phosphatase activity of the vesicles. The total phosphatase 

activity of vesicles is determined when the vesicles are opened by the addition of a detergent, so 

that the ATP-cleaving areas of the ATPases on both, the inside and the outside of the vesicle, can 

react. The activity of tight vesicles is determined without the addition of a detergent, where only 

the ATP-cleaving areas of the ATPases on the outer side of the vesicle can react.  
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Table 18: Purity of vesicle preparations characterized by inhibition of marker enzymes (ATPases). 
 

 ATPase or phosphatase activity [µmol Pi mg-1 protein h-1] 

inhibitor assay pH  marker ATPase + P - P 

vanadate 6.5 plasma membrane 64.9 83.4 

molybdate 6.5 phosphatase 17.3 43.1 

azide 8.0 mitochondria 0.9 2.7 

nitrate 8.0 vacuole 14.7 5.6 

latency [%]   62 42 

 

 

 

Characterization of the plasma membrane H+-ATPase in roots of white lupin as 
related to the P-nutritional status 
 

 

Alterations of plasma membrane H+-ATPase activity during cluster root 

development 
 

When vanadate-sensitive PM H+-ATPase was measured at different stages of cluster root 

development, the highest activity per cluster was found in mature clusters (Fig. 28 A), which is 

in accordance with the highest acidification and the highest rate of citrate exudation found in 

these root segments (Fig. 26). A lower pH of the nutrient solution as the cultivation medium of 

the  plants is paralleled by an increase in citrate exudation into the nutrient solution (Fig. 27). 

Accordingly, immunoblotting of the PM H+-ATPase protein (Fig. 33) showed a 97 kDa H+-

ATPase band with a 69 % higher intensity when the vesicles were derived from cluster roots of 

P-deficient plants compared with roots from P-sufficient control plants. This increase in PM H+-

ATPase protein amount parallels H+-ATPase hydrolytic and proton transport activity (Fig. 

29+32). 

On the basis of cluster root fresh weight, activity was highest in young clusters, with decreasing 

activities towards older stages (Fig. 28 B), whereas on the basis of protein concentration H+-

ATPase was the same in young and mature clusters and activity decreased in senescent ones 

(Fig. 28 C).  
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Fig. 26: Spatial variation of pH, plasma membrane H+-ATPase activity, and exudation of citrate along 
cluster roots of P-deficient white lupin.  
 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Fig. 27: Development of citrate exudation rate per 
plant (above) and pH in the nutrient solution 
(below) in +P control plants and P-deficient plants 
during plant growth (from: Neumann et al., 1999)  
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Fig. 28: Vanadate-sensitive PM H+-ATPase hydrolytic activity measured as phosphate release by ATP 
cleavage in PM vesicles derived from different segments of cluster roots of P-deficient plants. A: H+-
ATPase activity per cluster; B: per cluster fresh weight; C: per protein. 

 ATP 
cleavage in PM vesicles derived from different segments of cluster roots of P-deficient plants. A: H+-
ATPase activity per cluster; B: per cluster fresh weight; C: per protein. 
  

  

  

  

ATP hydrolysis ATP hydrolysis 
  

Plasma membrane H+-ATPase activity, measured as phosphate release by ATP hydrolysis in PM 

vesicles (Fig. 29), was the same when the vesicles were derived from two weeks old + P and –P 

plants. After three to five weeks of plant growth H+-ATPase activity was on average 60 % higher 

in vesicles derived from -P plants compared to +P plants, demonstrating that the plants increased 

their H+-ATPase activity as a reaction to P deficiency after consumption of the P seed reserves.  

Plasma membrane H+-ATPase activity, measured as phosphate release by ATP hydrolysis in PM 

vesicles (Fig. 29), was the same when the vesicles were derived from two weeks old + P and –P 

plants. After three to five weeks of plant growth H+-ATPase activity was on average 60 % higher 

in vesicles derived from -P plants compared to +P plants, demonstrating that the plants increased 

their H+-ATPase activity as a reaction to P deficiency after consumption of the P seed reserves.  
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Fig. 29: Plasma membrane H+-
ATPase hydrolytic activity 
measured as phosphate release 
by ATP cleavage in PM vesicles 
derived from roots of two to five 
weeks old P-sufficient (+P) or P-
deficient (-P) plants.   
 

 

 

 

pH optimum 
 

Hydrolytic activity of the H+-ATPase, measured as phosphate release by ATP cleavage in PM 

vesicles (Fig. 30), was determined at different pH values in the assay solution to elucidate how 

the PM H+-ATPase activity depends on the surrounding pH. Activity approximated a Gauss 

distribution with the highest H+-ATPase activity at a pH of 6.35 in vesicles from -P plants and a 

pH of 6.50 from +P control plants, calculated from a 5th order linear regression. This 

demonstrates that under P deficiency the pH optimum of the PM H+-ATPase is shifted by 0.15 

pH units to more acidic conditions.     

 
 

 
 
 
 
 
 
Fig. 30: PM H+-ATPase hydrolytic 
activity measured as phosphate 
release by ATP cleavage in PM 
vesicles derived from roots of five 
weeks old P-sufficient (+P) or P-
deficient (-P) plants at different pH 
values in the assay solution. 
Maximum activity for +P at pH 
6.50; for -P at pH 6.35.  
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Plasma membrane H+-ATPase activity as affected by carboxylates 
 

To determine whether citrate or malate in the cytosol might influence H+-ATPase activity, citrate 

and malate were applied to the H+-ATPase assay solution at concentrations of up to 10 and 

15 mM for citrate and malate, respectively. The different concentrations for citrate and malate 

were chosen to apply the same amount of carboxylic groups for both, the citrate and the malate 

solution. 

Independent of the kind of carboxylate and the concentration supplied, H+-ATPase activity was 

always higher in vesicles derived from plants grown under P-deficient conditions. Increasing 

malate concentrations had no influence on the H+-ATPase activity in the -P and the +P vesicles 

(Fig. 31). However, low citrate concentrations of < 0.1 mM increased H+-ATPase activity, but 

when citrate concentrations were higher than a threshold value of approximately 4 mM, H+-

ATPase activity decreased, independent of the P status of the plants the vesicles were derived 

from. This means that citrate interferes with H+-ATPase activity. A low amount of citrate 

activates H+-ATPase, whereas a higher amount of citrate inhibits the H+-ATPase and decreases 

its activity.  

 
 

 
 
 
Fig. 31: Plasma membrane H+-ATPase hydrolytic activity measured as phosphate release by ATP 
cleavage in PM vesicles derived from -P and +P control plant roots dependent on citrate (A) and malate 
(B) concentrations in the assay solution.  
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Proton transport across membranes 
 

Proton transport activity of the H+-ATPase in vesicles derived from P-deficient plants was 

monitored by the use of acridine orange as a dye that changes its absorbance dependent on the 

pH and acridine orange accumulation inside vesicles at a lower pH (Fig. 32). Proton pumping 

activity was largely insensitive to nitrate, but was almost completely inhibited by vanadate, 

which indicates the presence of tightly sealed inside-out plasma membrane vesicles. Absorption 

quenching was reversed by the addition of 10 mM EDTA as a chelator of Mg2+. Addition of 

7.5 mM malate increased proton pumping activity, whereas 5 mM citrate and therefore the same 

concentration of carboxylic groups inhibited this activity. This is in accordance with the 

altogether unchanged hydrolytic activity of the H+-ATPase at higher malate concentrations and 

the lower activity at higher citrate concentrations (Fig. 31). 

 

 

 

 

 
 

 

 

 

 

 

 

 
 
 
 
 
 
Fig. 32: Effect of NO3 (100 mM), 
vanadate (0.1 mM), malate (7.5 mM) and 
citrate (5 mM) on the pH gradient 
formation in PM vesicles, determined by 
the       absorbance change of acridine 
orange at λ = 492 nm. Vesicles were 
isolated from P-deficient roots. 
Acidification was stopped by the addition 
of 10 mM EDTA-BTP. 
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Table 19: Uptake of 14C labelled citrate and H+ pumping activity by addition of citrate alone or citrate + 
Mg-ATP for energetization in PM vesicles derived from P-deficient (-P) and +P control plants.  
 
 + P - P 

uptake of 14C-citrate 

[pmol h-1 mg-1 protein] 
34.2 76.7 

H+ pumping activity 

[∆A492 min-1 mg-1 protein]: 
  

2 mM citrate 3.6 x 10-3 6.0 x 10-3

2 mM citrate + Mg-ATP 4.4 x 10-3 16.0 x 10-3

 

 
 
Carboxylate exudation and intracellular pH 
 

The pulse of citrate exudation in mature cluster roots after a threshold level of citrate 

concentration is reached suggests a controlled citrate exudation mechanism. Reduced citrate 

exudation when anion channel inhibitors were applied support this idea. The release of 

carboxylates via anion channels under Al-stress were recently proven by patch-clamp studies in 

wheat and in maize (Kollmeier et al., 2001; Piñeros and Kochian, 2001; Zhang et al., 2001). 

However, so far nothing is known about factors which might trigger the opening of the channels.  

The following investigations were done by Langlade and Martinoia, Université de Neuchâtel, 

Suisse. To assess whether modifications in the intracellular pH may be involved in the induction 

of carboxylate exudation in roots of P-deficient white lupin, weak organic acids such as 

propionic acid, acetic acid and methyl trichloroacetic acid (methyl-TCA), which are not 

metabolized by plants, were applied to the root medium at pH 4.0. According to the ion-trap 

principle, the protonated acids easily cross the plasma membrane and are deprotonated at the 

neutral pH of the cytosol, which decreases cytosolic pH.  

 

During an incubation period of 1 h with propionic acid, release of citrate and malate dramatically 

increased, especially in +P control plants and young, P-deficient root tissue such as apical root 

zones and young clusters, normally not releasing high amounts of carboxylates (Fig. 34). Similar 

results were obtained with acetic acid or methyl-TCA (data not shown). This high exudation 

rates, triggered by cytosolic acidification, were not an effect of low external pH values, since a 

low external pH value alone (MES-buffer at a pH of 4.0) did not change carboxylate exudation 

rates in the root segments which showed high carboxylate release rates when propionic acid was 
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applied. In contrast, there were no consistent effects in mature and senescent clusters. This may 

be explained by a low cytosolic pH in these root segments already before propionate application, 

induced by the high levels of intracellular citrate accumulation. 

 

 

 

 
 
Fig. 34: Citrate and malate 
concentrations in different root segments 
of white lupin as affected by buffering 
the external pH and application of 
propionate. N1: 10 mm apical root zone 
of first order laterals in P-sufficient 
plants; N2: 10 mm apical root zones of 
first-order laterals in P-deficient plants; 
Juv: juvenile root clusters; Imm: 
immature root clusters completely 
developed but secretory activity not yet 
expressed; Mat: mature root clusters; 
Sen: senescent root clusters (data from 
Langlade and Martinoia). 
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Protoplast isolation 
 
Protoplast isolation from mature cluster root laterals 
 

Protoplasts were to be isolated for patch-clamp studies from mature cluster roots of P-deficient 

lupin plants to investigate the putative carboxylate channel responsible for the citrate exudation 

pulse observed in mature clusters when a threshold value of citrate tissue concentration is 

reached. The aim was to establish a protoplast purification protocol to gain protoplasts viable for 

tight sealing in patch-clamp studies.  

Yield of protoplasts derived from mature cluster root laterals were generally very low and varied 

much between different isolations. The highest yield reached was approx. 100,000 protoplasts g-1 

root biomass of laterals, but mostly it was much lower, meaning that the protoplasts were very 

fragile. Staining with phenosafranin (Fig. 35 A+B) revealed a percentage of 70 % of living 

protoplasts directly after isolation and ~ 50 % several hours later. Incubation in enzyme solution 

for more than 8 h decreased protoplast yield and viability sharply. Incubation for more than 12 h 

resulted in no protoplasts at all.  

Mannitol or sorbitol as osmoticum in the enzyme solution led to much lower yields compared to 

sucrose. Most protoplasts appeared to be desintegrated at the same osmolality of mannitol or 

sorbitol compared with sucrose.  

Oxidizing phenols might have been one cause for protoplast destruction due to membrane 

damage, since the enzyme solution and the root tissue got darker in the course of incubation 

although high amounts of antioxidants and protecting agents were used. Even the incubating 

solution was changed after two hours to remove phenolic compounds.  

The root tissue, put under the microscope directly from the enzyme solution, was optically 

completely unchanged compared with non-incubated tissue. The tissue could be macerated only 

mechanically with pressure and rubbing in the petri dish with the bottom of a glass vial, meaning 

that the cell wall bonds between cells and the cell wall structure itself could not be dissolved, but 

only loosened, making it available for mechanical breaking. Using a salt solution for washing the 

protoplasts gave a much higher protoplast yield. Since these high salt concentrations might be 

disadvantageous at clamping, this procedure was not followed further.  

Patch-clamping of mature cluster root protoplasts isolated by the described procedure with 

adjustments was tried by Yan et al. (pers. comm.), but the protoplasts broke before 

measurements could be performed.  
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To find out whether mature cluster root protoplasts were just too old for isolation, or if the 

isolation procedure had a crucial flaw, or if protoplast isolation from white lupin tissue is 

generally not possible, the same isolation procedure was applied to cotyledons, which are often 

used for protoplast isolation. Here the yield was orders of magnitude higher (Fig. 35 C), being in 

the range of counts given in literature, showing that the problem rather was on the side of the 

protoplasts isolated from mature cluster roots, which probably are physiologically too old for 

isolation.  

 

 

Protoplast isolation from root tips 
 

As an alternative, protoplast isolation was performed with root tips of P-deficient plants, which 

gave higher protoplast yields than mature cluster roots. However, the calyptra, the root cap 

covering the root tip itself, could not be removed completely from the root tip before isolation. 

Therefore the origin of the protoplasts could not be determined without doubt, although 

protoplasts derived from the calyptra seemed to contain less inner structure together with a 

thinner plasma membrane layer than those from the root tip itself. The already loosely connected 

cells of the calyptra seemed to be isolated much easier than the root cap cells themselves. 

 

 

Protoplast isolation from root hairs 
 

There are still contradicting results whether root hair cells themselves are able to release 

carboxylates. To answer this question, protoplasts derived from root hairs were also to be patch-

clamped. Root hairs in white lupin exist along seedling roots, beginning about one cm behind the 

root tip, and ending some cm more basal. Root hairs also grow on cluster roots, beginning on 

young cluster roots, and building dense mats of long root hairs in mature and senescent clusters.  

The isolation procedure was done according to Cocking (1985) and Gassmann and Schroeder 

(1994) with modifications for white lupin. When the root segments were put into the hypo-

osmotic isolating solution on the microscope slide, the swelling of root hair protoplasts emerging 

from the tips of root hair cells could be observed directly (Fig. 35 D-G). The root hair tip is the 

area where the cell walls get thin and breakeable enough due to the digestive enzyme activity so 

that the expanding protoplasts can break through. Root hair protoplasts could be produced by this 

procedure only from young root hairs from seedling root tips; the shorter the root hairs, the 
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higher the percentage of root hairs that released protoplasts. No protoplasts could be released 

from root hairs from any cluster roots, not even from very young ones.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 35: Protoplasts isolated from: A+B: mature cluster root laterals. Red colouration inside the 
protoplasts means low viability. C: from cotyledons. D-G: root hair protoplasts isolated according to the 
methods of Cocking (1985) and Gassmann and Schroeder (1994). 
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Discussion 
 

 

Plasma membrane H+-ATPase characterization 

 

The concomitant release of citrate and protons (Neumann et al., 1999) (Fig. 26) from a specific 

root zone (Marschner et al., 1987; Dinkelaker et al., 1989; Neumann et al., 1999), later called 

“mature“ cluster roots of P-deficient white lupin plants, hints to a common regulation of citrate 

exudation and H+-ATPase activity. Therefore H+-ATPase activity was to be tested in relation to 

P status, citrate accumulation and exudation in different root zones of white lupin plants. For 

this, plasma membrane (PM)-derived vesicles from P-deficient, cluster-containing roots of white 

lupin and from roots of +P control plants were isolated in a small-scale procedure using a 

sucrose gradient for further purification. 

 

 
Characterization of the root H+-ATPase as related to the P-nutritional status 
 
 

Hydrolytic activity of the PM H+-ATPase, measured as ortho-phosphate (Pi) release by ATP 

cleavage, was the same in vesicles derived from two weeks old plants independent of the P 

supply during growth. This means that the plants did not suffer from an internal P deficiency 

high enough to impair the activity of the PM H+-ATPase. The plants probably still had a 

sufficient amount of P available from the seed reserves. After three to five weeks of growth, 

however, hydrolytic activity of the H+-ATPase increased in vesicles derived from P-deficient 

plants, whereas vesicles derived from +P control plants did not show changes in activity (Fig. 

29). This is in accordance with the acidification of the root’s surrounding, observed as a lower 

pH in the nutrient solution of plants grown under P deficiency, together with high citrate 

exudation rates from the root system (Fig. 27). Stoichiometric calculations between the amounts 

of carboxylates (citrate + malate) and protons, released by P-deficient white lupin roots, and 

different exudation curves over time from both groups of substances, revealed that the exudation 

of carboxylates is not the only cause for acidification (Sas et al., 2001). Phosphate deficiency 

results in a higher cation/anion uptake ratio (Dinkelaker et al., 1989; Sas et al., 2001) due to a 

lower nitrate uptake (Neumann et al., 1999). For reasons of charge balance more protons are 

exuded by the H+-ATPase when more cations than anions are taken up.  

Already under non-limiting conditions the H+-ATPase is expected to consume a significant part 

of the available ATP in highly metabolizing cells (Arango et al., 2003). A higher ATP turnover 
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for hydrolysis by PM H+-ATPase in spite of a lower ATP concentration status under P-deficient 

conditions (Massonneau et al., 2001) means that an even higher percentage of ATP must have 

been used for H+-ATPase activity than under non-limiting conditions. This high priority of the 

use of ATP for H+-ATPase activity under P-deficient conditions stresses the importance of this 

metabolic step.  

Western blot analysis, using a polyclonal antibody against the maize PM H+-ATPase, revealed a 

higher protein amount of a 97 kDa immunostained band in samples derived from vesicles 

isolated from P-deficient roots compared to vesicles from +P control plants, which hints to a 

transcriptional regulation. The molecular weight found is in accordance with the monomeric PM 

H+-ATPase with a molecular weight of around 100 kDa on average found in many plants 

(reviewed by Palmgren, 2001). The fact that the enzyme is encoded, in various species, by a 

multigene family hints at the possibility of regulation at the transcriptional level (Arango et al., 

2003). However, it is not possible to test whether an antibody can discriminate between different 

isoforms (Williams and Gregory, 2004). H+-ATPase genes might be activated by various abiotic 

and biotic environmental factors and the amount of H+-ATPase might be increased under 

conditions requiring greater transport activity (Arango et al., 2003). The density of the H+-

ATPase protein also changes with the developmental stage of the plant tissue, and is influenced 

by sink-source relations (Williams and Gregory, 2004), since sucrose is taken up in a sucrose/H+ 

symport (Giaquinta, 1977; Bush, 1989). Cluster roots show a fast transformation from a sink to a 

source organ during cluster root development, which might contribute to the lower H+-ATPase 

protein found in older cluster roots.  

 

 

Plasma membrane H+-ATPase activity in different cluster root segments 
 

The amount of  H+-ATPase hydrolytic activity in different developmental stages of cluster roots 

was dependent on the basis of the measurements. H+-ATPase activity per cluster root segment 

was highest in mature clusters (Fig. 28), which was to be expected due to the strong acidification 

brought about by this root segment. Here also the highest citrate exudation rates were found (Fig. 

26). This effect of the highest activities might at least in part be due to the highest surface area in 

this root segment. Mature clusters have fully developed cluster rootlets with a long and dense 

mat of root hairs. Young clusters have a much lower mass than mature and senescent ones, 

shorter rootlets and no or shorter root hairs. On the basis of fresh weight, H+-ATPase activity 

decreased while the cluster segments grew older. The young clusters are quite small compared to 

the mature or senescent clusters because they consist of still growing tissue with short laterals, 
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but they already have a high H+-ATPase activity. Perhaps the high percentage of the still 

growing root tips of the young cluster laterals reacted like root tips of non-cluster roots and 

therefore acidified. Hydrolytic activity per amount of protein decreased only in senescent cluster 

roots.  

According to the acidification of the rhizosphere of the different cluster root segments a lower 

activity of the young clusters compared to the mature ones was to be expected. The relatively 

high activity of the young clusters compared to the mature ones might also have been caused by 

classification of the clusters, where the young ones might have already been in transition to 

being mature ones. However, the low H+-ATPase activity in senescent cluster roots in all 

calculations hints to a general P limitation of the H+-ATPase as also found for other metabolic 

processes in these old root zones (Chapter 1). 

 

 

Plasma membrane H+-ATPase activity depending on the external pH 
 

An adaptation of the H+-ATPase to a lower apoplastic pH created by a higher H+-ATPase 

activity of P-deficient plants was observed in form of a shift of the optimal pH value by 0.15 pH-

units to more acidic conditions in the reaction medium for the maximum hydrolytic activity of 

the isolated vesicles derived from P-deficient plant roots compared to +P control roots. The 

general pH optimum of a proton pump with less than a pH of 7 is already more acidic than the 

normal pH value of the cytoplasm (Mimura, 2001). This finding is in accordance with those of 

Yan et al. (2002), who also reported a more acidic pH optimum in active cluster roots. A lower 

pH optimum could be seen as an adaptation to a lower cytosolic pH. The accumulation of 

carboxylates under P deficiency by a higher synthesis and reduced degradation (see Chapter 1), 

causing a higher proton production and lower proton incorporation due to the pH stat mechanism 

(Sakano, 1998), results in lower cytosolic pH values.  

Differential expression of H+-ATPase isoforms seems to be common in plants (Baxter et al., 

2003; Arango, 2003), and might also explain the lower pH optimum of the lupin H+-ATPase in 

mature cluster roots (Yan et al., 2002). A number of quantitative differences in catalytic and 

regulatory properties between isoforms were described (Palmgren, 2001). Even five subfamilies 

were separated, which differed functionally in their regulatory properties (Dambly and Boutry, 

2001; Arango et al., 2003). It was found that different H+-ATPase isoforms with distinct kinetics 

(Luo et al., 1999) might operate within the same cell (Oufattole et al., 2000). The overlapping 

expression found e.g. in Nicotiana plumbaginifolia (Moriau et al., 1999) suggests caution in 

interpreting enzyme kinetics for H+-ATPases analyzed at the organ level, since the data reflect 
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contributions from several isoforms. Different isoforms with different Km and different 

sensitivities to orthovanadate were described and it was mentioned that such findings reveal the 

futility of using crude plant homogenates as the starting material for biochemical analyses of 

enzymes that occur in multiple isoforms (Sanders and Bethke, 2000).  

 

 

Plasma membrane H+-ATPase activity as affected by carboxylates 

 

Mature cluster roots are characterized by very high internal citrate concentrations of 20-25 µmol 

g-1 root fr. wt. (Neumann et al., 1999), which is seen as a prerequisite for the pulse of citrate 

exudation observed in these root segments (Neumann et al., 2000; Peñaloza et al., 2002), 

together with a strong acidification of the mature cluster root rhizosphere. High carboxylate 

concentrations may have detrimental effects on plant cell physiology. Citrate as a chelator can 

complex Ca2+ and Mg2+  ions, therefore disturb Ca- and Mg homeostasis, and might decrease 

cytosolic pH and impair the cytosolic pH stat mechanism (Neumann et al., 2000). To avoid this, 

cytosolic citrate concentrations usually are kept below 5 mM (Jones, 1998). Therefore the 

influence of carboxylates at different concentrations on the activity of the H+-ATPase was to be 

tested. 

 

In the present work, higher citrate concentrations of more than 4 mM inhibited H+-ATPase 

hydrolytic activity in purified vesicles, whereas malate at the same concentration of carboxylic 

groups did not have any significant influence, independent of the P status of the plants the 

vesicles were isolated from (Fig. 31). This hints to a citrate-specific inhibitory effect on H+-

ATPase activity, independent of the acidic nature of citrate. An artifact due to Mg2+ 

complexation by the citrate and therefore a lack of available Mg-ATP as substrate for the 

ATPase can be ruled out, since an even ten times higher Mg concentration did not give any 

differences in activity (data not shown).  

When H+-ATPase proton transport across the vesicle membrane, derived from P-deficient plant 

roots, was monitored from the initial slope of absorbance quenching of acridine orange (AO), 

5 mM citrate again showed an inhibitory effect on proton transport compared to the proton 

transport determined with the addition of NO3
-  alone as a counter-ion for proton transport (Fig. 

32). However, malate at the same carboxylic group concentration even increased proton 

transport. The low impurities of membranes of other origin than the plasma membrane was 

documented with the almost complete proton transport inhibition by addition of vanadate. This 
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means that both, the hydrolytic and proton transport activity of the plasma membrane H+ -

ATPase, was impaired by higher citrate concentrations.  

Protein pumping activity was also monitored from the initial slope of AO absorbance quenching 

in vesicles derived from P-deficient plants and from +P control plants when only 2 mM citrate 

were applied (Tab. 19). Even without energetization of the plasma membrane and inactivity of 

the H+-ATPase due to a lack of its substrate Mg-ATP, citrate transport occurred. This might be 

explained by a pH difference between the outer medium (pH 6.5) and the inside of the vesicles 

(pH 7.0). A passive proton flux took place due to the addition of NO3
- to the outer medium and 

its easy influx into the vesicle lumen, supporting proton transport. Without addition of ATP, 

proton transport activity was higher in vesicles derived from P-deficient plants compared to 

vesicles from +P control plants, which hints to differences in membrane transport or membrane 

permeability to NO3
- and protons independent of any activity of the H+-ATPase. When ATP was 

added and H+-ATPase was able to be active, proton transport in +P control vesicles stayed the 

same, whereas proton transport in -P vesicles was increased 2.5-fold. Therefore the main proton 

transport across the plasma membrane under P-deficient conditions is brought about by the 

activity of the P deficiency-induced H+-ATPase. 

Unfortunately, a direct correlation between the hydrolytic and the proton transport activity 

cannot be calculated, since the monitoring of acridine absorbance quenching is rather not 

quantitative. The AO signal is not linearly related to changes in the rate of H+ pumping (Venema 

and Palmgren, 1995). Even the mechanism by which AO reports pH gradients is not yet fully 

understood (Palmgren, 1991), and it is suggested that the observed absorbance changes during 

the H+-ATPase assay are simply due to accumulation of free protonated dye in the intravesicular 

lumen and subsequent dimerization, dependent on the concentration inside. What is measured as 

absorbance decrease at 495 nm is thus the disappearance of AO monomers (Palmgren, 1991, 

1998).  

 

From the results of an increased H+-ATPase activity at moderate citrate concentrations and a 

decreased activity at high citrate concentrations it might be concluded that high citrate exudation 

rates serve as a means to prevent detrimental effects of high citrate concentrations on plant 

metabolism and H+-ATPase activity in vivo. So far it is not known how this inhibitory effect of 

high citrate concentrations on H+-ATPase activity is brought about. Phenolics were described to 

inhibit H+-ATPase (Erdei et al., 1994). Furthermore, it would be interesting to investigate if the 

ratio of ATP hydrolysis and proton transport is sustained. A 1:1 stoichiometric relationship 

between ATP hydrolysis and proton transport is supported by measurements (Palmgren, 2001) 

and was suggested to be reasonable for the ATPase under conditions where it generates maximal 
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pH gradients and membrane potentials (Venema and Palmgren, 1995). But these authors have 

also demonstrated a change in coupling ratio of an ion pump induced by glucose under in vivo 

conditions. They interpreted this as pointing to a physiological role for uncoupling as a 

mechanism for regulating pump activity, although kinetic controls must operate to avoid 

undesired H+ leakage or futile consumption of ATP. The phenomenon of variable transport 

coupling ratio may be of biological relevance (Palmgren, 1998). In Beta vulgaris, for example, 

an indication was found that osmotic regulation of H+-ATPase in the plasma membrane is 

achieved via modulation of the coupling between H+ transport and ATP hydrolysis, and that such 

regulation involves 14-3-3 proteins (Babakov et al., 2000). 

The enzyme H+-ATPase is known to be tightly regulated. The C-terminal end of the PM H+-

ATPase serves a role as an autoinhibitory regulatory domain, whereby 14-3-3 proteins will bind 

if a serine or threonine is phosphorylated in the binding site of the target. This binding activates 

the enzyme (reviewed e.g. by Palmgren, 1998; 2001). 14-3-3 proteins are present as multigene 

families in most organisms,  are dimeric, and bring about signal-induced changes in the target by 

conformational changes that mediate their biological effects. Apart from the H+-ATPase, over 

100 proteins have been found to interact with 14-3-3 proteins, such as various protein kinases, 

receptor proteins, enzymes such as nitrate reductase or proteins involved in transcriptional 

control of gene expression (reviewed e.g. by Yaffe, 2002; Ferl, 2004). It would be interesting to 

investigate the effect of citrate on the H+-ATPase in respect of this control mechanism.  

Apart from the regulatory mechanism itself, citrate exudation might prevent a reduced H+-

ATPase activity caused by citrate accumulation in the cytosol. This citrate exudation across the 

plasma membrane might be an alternative reaction due to an impaired vacuolar citrate 

compartimentation as a result of P deficiency. The energy-consuming process of citrate 

accumulation inside the vacuoles might already be impaired when plasma membrane transport is 

still possible, or the vacuoles might be too leaky to allow the high citrate accumulation necessary 

to prevent cytosolic accumulation. 

 

 

Citrate transport across the plasma membrane 
 

A direct way to determine citrate transport across membranes is by incubating tight vesicles 

derived from P-deficient roots and from +P control roots with radioactively labelled 14C-citrate. 

Vesicles derived from P-deficient lupin roots showed a 2.2-fold increase in citrate transport in 

comparison to the +P control when Mg-ATP was supplied to support H+-ATPase activity, 

together with a three-fold increase in vesicle acidification (Tab. 19). This hints to an induced 
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citrate transport across the plasma membrane of P-deficient cluster roots in connection with a 

higher activity of the PM H+-ATPase. However, citrate transport already seems to occur in P-

sufficient plant roots, although on a lower level. Higher citrate transport rates might have 

occurred if only mature cluster roots were used for the investigation instead of the whole root 

system. The whole root system was used to get enough plant material to make the experiments 

possible.  

 
 
Protoplast isolation from mature cluster root laterals 
 

To characterize citrate transport across the putative citrate channel in the plasma membrane of 

mature clusters of P-deficient white lupin plants, patch-clamp studies were to be performed with 

protoplasts isolated from mature cluster roots.  

By a combination of several protoplast isolation protocols (Lin, 1980; Xu et al., 1981; Power and 

Chapman, 1985; Schachtman et al., 1991; Blackhall et al., 1994; Sevón et al., 1995; Spangenberg 

and Potrykus, 1995; Gleddie, 1995, and Steinecke and Schreier, 1995), protoplast preparations 

were gained after 5 h of cell wall digestion to up to 100,000 protoplasts g-1 root biomass with a 

vitality of 70 %. Similar yields were gained by Sinha et al. (2003) from white lupin, too, 

although from primary roots of 14-d-old in-vitro seedlings grown under full-nutrient conditions. 

Protoplasts from such plants are much easier to isolate. However, protoplast yields from the 

mature cluster roots of P-deficient plants were often much lower, and vitality decreased sharply 

within hours. Membrane intactness was very critical due to oxidative damage. The brown colour 

of the incubation medium was probably due to phenols and their oxidation. Even the change of 

the incubation medium after half of the digestion time and addition of high amounts of 

antioxidants and phenol-binding substances did not prevent protoplast damage. Only relatively 

short digestion times did bring protoplast yield at all. Incubation in enzyme solution for more 

than 8 h decreased protoplast yield and viability sharply. However, protoplast yield to amounts 

usually described in literature could be gained when white lupin cotyledons were used. This 

shows that the origin of the tissue the protoplasts were to be isolated from was the problem and 

rather not the isolation method per se.  

Patch-clamp studies of the protoplasts derived from mature clusters according to this protocol 

were not possible. The seals between the membrane and the pipette were not tight enough to 

make measurements possible (Yan, pers. comm.). More vital protoplasts from root hairs, isolated 

by a special short time isolation procedure (~ 30 min) (Cocking, 1985; Gassmann and Schroeder, 

1994), could only be gained from seedling root hairs, but not from mature or even young cluster 
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root hairs. This is another hint that cluster root development differs strongly from the 

development of tissue without P deficiency, even at the same time after emergence. However, 

Zhang et al. (2004) were able to isolate epidermal protoplasts from mature clusters in a similar 

short-time digestion procedure and identified a citrate-permeable anion channel by patch-

clamping. Citrate efflux was stimulated by hyperpolarization of the plasma membrane. 

Interestingly, they also found citrate transport mechanisms in roots of P-sufficient plants, 

although to a lower extent, similar to the findings in the citrate transport experiments with inside-

out vesicles in the present work. Zhang et al. (2004) even described citrate transport inhibition by 

the anion channel antagonist anthracene-9-carboxylic acid, which is in accordance with the 

reports of Neumann et al. (1999) for intact plants.  

Al-induced exudation of malate in wheat and of citrate in maize via anion channels has also been 

recently demonstrated by patch-clamp studies (Kollmeier et al., 2001; Piñeros and Kochian, 

2001; Zhang et al., 2001). Additionally, a wheat gene encoding an aluminium-activated malate 

transporter was found and cloned (Sasaki et al., 2004). 

 

 

Regulation of the citrate release mechanism in cluster roots of P-deficient white 
lupin  
 

Results so far support the hypothesis that in mature cluster roots of P-deficient white lupin citrate 

is exuded transiently across the plasma membrane via an anion channel, together with an 

increased proton transport due to an increased H+-ATPase activity to maintain the 

electrochemical gradient of the plasma membrane. However, the nature of the signal which 

triggers the citrate exudation pulse is still unknown. The high citrate concentrations of ~ 30 µmol 

citrate g-1 root biomass observed before the citrate exudation pulse occurs suggests a link 

between both events. This link is supported by the finding that an artificial increase in citrate 

concentrations already in young cluster roots or seedling roots tips by application of the 

aconitase inhibitor monofluoroacetate induces citrate exudation rates in these young root tissues 

comparable to those of mature cluster roots. Anion channels can be modulated by carboxylate 

anions themselves, as demonstrated for vacuolar anion channels of CAM plants (Cerana et al., 

1995) and for stomatal guard cells (Hedrich and Marten, 1993). Possibly a connection exists 

between citrate exudation and P deficiency-induced changes in cytosolic pH.  

The accumulation of high amounts of carboxylates in cluster roots of P-deficient white lupin due 

to a higher production rate should decrease cytosolic pH by the pH stat mechanism as described 

by Sakano (1998). It is not the production of carboxylates per se that leads to the accumulation 
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of protons and therefore a lower pH. The explanation is found in metabolic steps in glycolysis, 

where a hydrogen atom bound undissociable in a hydroxyl or aldehyde group in a molecule, or 

as H2O, is dissociable after the reaction and therefore reacts as a ‘pH-active’ proton. Examples 

are the reactions of hexokinase, phosphofructokinase and glycerinaldehyde-P-dehydrogenase. 

Summarized, the production of carboxylates in mature cluster roots in combination with a lower 

respiration (Neumann et al., 1999; Massonneau et al., 2001) may acidify the cell, which might be 

the sources of protons which acidify the rhizosphere. 

The concept of the pH stat in plants was only recently widely recognized. Interestingly, in 

humans, intense exercise leading to the production of lactate is generally still believed to 

contribute to the muscular acidosis observed. However, by a similar way as in plants, the protons 

are produced in glycolysis and not by the production of lactate (Robergs und Amann, 2003).  

However, cytosolic pH must stay stable for metabolic reasons. High citrate concentrations in 

plants might interfere with cytosolic Ca- and Mg-concentrations and metabolic regulation. 

Therefore the concominant occurence of citrate accumulation and cytosolic acidification might 

serve as a signal to release citrate via anion channels.  

In order to examine whether cytosolic acidification is a signal to release carboxylates, the cytosol 

of cells of different root segments were acidified artificially. For this, roots were incubated with 

a solution containing weak organic acids such as propionic acid, acetic acid and methyl 

trichloroacetic acids at a pH of 4.0. These substances can cross the plasma membrane easily in 

their protonated form due to the low external pH and deprotonate when taken up into the cytosol 

with its much higher pH, and therewith lowering the cytosolic pH. After one hour of incubation, 

malate and citrate exudation increased dramatically in root tips and young and immature cluster 

roots, which usually do not release high amounts of these acids (Fig. 34). Acetic and methyl 

trichloroacetic acid had similar effects (data not shown). It was ruled out that the exudation was 

triggered just by the low external pH by applying a buffer solution with MES at the pH 4.0. Here 

the exudation rates did not change compared to the control solution at pH 7.0. Interestingly, 

Zhang et al. (2004) reported the opening of a citrate channel in white lupin cluster root 

protoplasts by hyperpolarization of the plasma membrane.  

No effect on malate and citrate release rates by cytosolic acidification was seen in mature and 

senescent cluster roots. There the cytosolic pH should already be low due to the citrate 

accumulation. Moreover, malate and citrate exudation rates were already very high in mature 

clusters and could not be increased further. In senescent cluster roots carboxylate exudation 

obviously is no longer regulated by a decreased cytosolic pH, since exudation rates stayed low, 

with and without artificial cytosolic acidification. The fact that root tips and young and immature 

clusters can release high amounts of carboxylates might be explained by channels that already 
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exist in the membranes of even very young tissue and are responsible for release of carboxylates. 

Perhaps it is the opening of the channels that determines carboxylate release, as also suggested 

by Delhaize et al. (2001). The short reaction time of one hour shows that production of the 

channels were not newly initiated in this young tissue. The channels already existed and were 

sensitive to a changing cytosolic pH. To confirm that the exudation was really a cytosolic pH 

effect, cytosolic acidification was prevented by either pre-incubating the roots for 24 h with 

phosphonate or resupply of phosphate to re-establish P-sufficient conditions. Here incubation 

with propionic acid did not trigger carboxylate exudation (data not shown). 

High citrate concentrations could conceivably alter the osmotic balance and metal-ion 

homeostasis of the cell due to its metal-complexing features (Gardner and Fridovich, 1991). 

Therefore it can be expected that the concentrations of carboxylates in the cytosol must be 

closely controlled in order to conform to the kinetic and inhibitory requirements of the enzymes 

involved in cellular metabolism (Jones, 1998). Under these aspects, citrate accumulation can be 

seen as a metabolic disorder the plant has to cope with, either by compartmentation, export, or 

exudation. White lupin has the advantage that it can release the citrate accumulating to high 

amounts in a kind of exudation burst from the special structures of cluster roots, which, in this 

combination, has the positive side effect of efficient P mobilization (Neumann and Martinoia, 

2002). Release of carboxylates due to P deficiency also occurs in other plant species. However, 

the spectrum of carboxylates released depends on the plant species (Gerke, 1995; Gerke et al., 

2000a). Moreover, the release rates in non-cluster root systems are much smaller and P 

mobilization is much lower as seen in species producing cluster roots.  

 

As a summary of the findings so far, a possible reaction scheme for citrate-permeable anion 

channels in cluster roots of P-deficient white lupin plants will be presented: 

Cytosolic pH can be lowered by P deficiency or MFA-induced citrate accumulation, similar to 

the external application of weak organic acids (e.g. propionic acid). The P deficiency-induced 

biosynthesis of carboxylates via higher glycolysis results in a higher production of protons by the 

pH stat mechanism. Inhibited citrate turnover further supports proton accumulation (Sakano, 

1998). The PM H+-ATPase, showing a lower pH optimum under P deficiency, is stimulated by 

the reduced cytosolic pH, and hyperpolarizes the plasma membrane, which activates the opening 

of the anion channel. Citrate release depolarizes the plasma membrane, and the anion channels 

close again. Due to the severe P deficiency in senescent cluster roots, H+-ATPase activity is 

finally limited, hyperpolarization of the plasma membrane ceases and with this citrate exudation 

is stopped. A similar relation between carboxylate exudation and cytosolic acidification was 

described for maize root tips under anaerobiosis, leading to accumulation and exudation of 
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lactate (Xia and Roberts, 1994). The induction of PM H+-ATPase activity and a hyperpolarized 

plasma membrane is also discussed for the Al-induced malate exudation from apical root zones 

of Al-tolerant wheat varieties (Ahn et al., 2004). To test this hypothesis, it would be necessary to 

investigate the subcellular distribution of citrate concentrations, pH values, and membrane 

potentials.  

 
 
Conclusions 
 

The results presented here give hints to a H+-ATPase-coupled citrate transport via an anion 

channel, which is preferentially expressed in citrate-releasing mature cluster roots. Since 

unphysiologically high citrate concentrations inhibit the H+-ATPase, a tight regulation between 

citrate concentrations and H+-ATPase activity can be postulated.  

Citrate exudation, induced by MFA or weak organic acids, shows that exudation is not specific 

for citrate itself. Other carboxylates such as malate or fumarate are also exuded to a higher 

amount. In mature clusters citrate accumulation and therefore citrate exudation predominates 

over all other carboxylates. Induced carboxylate exudation from young cluster roots or even P-

sufficient seedling root tips confirms the observation that citrate channels were already found in 

+P control plants (Zhang et al., 2004).  

Carboxylate channels which exist already in seedling root tips explain why in investigations of 

differential gene expression no hints to citrate channels in cluster roots of P-deficient plants were 

found. Recently, near-isogenic wheat lines differing in Al tolerance at a single locus (Alt1), 

showed differences in malate exudation under Al stress. This means that the Alt1 codes for an 

anion channel or for channel-regulating properties (Ahn et al., 2004). If the Alt1 codes for a 

carboxylate channel, its sequence information might be helpful to identify and characterize 

carboxylate channels also in cluster roots of white lupin on a molecular level. More precise 

information about the regulation of the H+-ATPase on the several levels possible (transcriptional, 

translational and post-translational, such as the regulation by phosphorylation and 14-3-3 

proteins, or regulation via phytohormones) and its relation with carboxylates needs further 

investigation.  
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Chapter 3: Role of modifications of atmospheric CO2 
concentrations on root exudation and rhizosphere processes in 

cluster roots 
 
 
Introduction 
 

Root-induced P mobilization by cluster roots of P-deficient white lupin so far was mostly 

investigated under P deficiency under otherwise optimal growth conditions. Additional stress 

factors such as heat, drought, Al-toxicity, pH values of the soil, or nitrogen or micronutrient 

deficiencies were not considered. However, under natural growth conditions additional stress 

factors are often combined with P deficiency and modify the plant’s reaction to P deficiency. 

Additionally, plant-physiological investigations are mostly done in nutrient solution.  

The aim of the present study was to investigate elevated atmospheric CO2 concentrations as one 

example of modified growth conditions on mechanisms of P mobilization in P-deficient white 

lupin. 

 

Atmospheric CO2 concentrations have increased from 280 µmol mol-1 in the pre-industrial age 

(mid 18th century) to up to 373 µmol mol-1 in the year 2002 (Keeling and Whorf, 2003), mainly 

due to combustion of fossil fuels, and deforestation (IPCC, 2001). In the last 40 years, CO2 

concentrations increased by 17 %. When the data so far are extrapolated, CO2 concentrations 

will double till the end of this century compared with the pre-industrial value (IPCC, 2001).  

Independent of a higher global temperature, this increase in CO2 concentration will influence 

plant growth and the interaction of plants with nutrients and soils. Most experiments conducted 

with elevated CO2 concentrations showed a higher biomass gain when the plants were growing 

at sufficient nutrient supply (Hodge and Millard, 1998). However, no increase in biomass 

occurred when nutrients were limiting, as described for Sitka spruce (Murray et al., 2000), for 

tropical tree species (Winter et al., 2001), for soybean (Sa and Israel, 1998), wheat (McKee and 

Woodward, 1994), clover (Duchein et al., 1993), cork oak (Maroco et al., 2002), pine (Conroy et 

al., 1988, 1990b), Poa alpina (Baxter et al., 1997), grassland communities (Stöcklin et al., 1998; 

Stöcklin and Körner, 1999), or lucerne, faba bean, perennial ryegrass, wheat, maize, poplar and 

tomato (Goudriaan and de Ruiter, 1983). However, some species show an increase in biomass 

even under limiting nutrient supply, e.g. Quercus alba (Norby et al., 1986), N2-fixing tree 

species (Norby, 1987; Norby and O’Neill, 1989) or Eucalyptus (Conroy et al., 1992).  
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Similarly, the data of effects of CO2 concentrations on root/shoot (R/S) ratios and therefore the 

allocation of carbohydrates between shoot and root are confusing and ambiguous. The 

compilation of the published data, however, suggests that, on average, R/S changes little at 

elevated CO2 concentrations (Norby, 1994; Rogers, H. et al., 1996), although differences 

between plant groups were described. A higher root/shoot ratio was documented for herbaceous 

plants, a decrease for trees, and no change for cereals (Farrar and Williams, 1991). It was 

suggested that the sensitivity of resource allocation is due to factors other than CO2 

concentration, e.g. nutrient supply (Salsman et al., 1999), or due to the plant species investigated, 

and dependent on whether a plant is annual or perennial (Yoder et al., 2000). Often it is not clear 

if the increased root/shoot ratio is an effect of an elevated CO2 concentration or indirectly 

induced by nutrient deficiencies.  

The higher biomass production observed at elevated CO2 concentrations is deducible to a higher 

assimilation rate (Eamus, 2000). Photosynthetic CO2 fixation is supported by higher CO2 

concentrations since RUBISCO is not CO2-saturated at ambient CO2 concentrations, and 

photorespiration is reduced due to the higher CO2 to O2 ratio at elevated CO2 concentrations 

(Sage et al., 1989; Betsche, 1994; Eamus, 2000). 

In a survey of 60 experiments, growth at elevated CO2 concentrations increased photosynthesis 

by 58 %. The frequently observed acclimation of photosynthesis to elevated CO2, which is 

characterized by higher carbohydrate concentrations, lower concentrations of soluble proteins 

and RUBISCO, and an inhibition of photosynthetic capacity, cannot completely compensate for 

the stimulation of the assimilation rate by high CO2 concentrations (Drake et al., 1997). 

However, a restriced rooting volume and therefore an artificially restricted sink strength might 

be responsible for some of the acclimation effects described (Arp, 1991; Barrett and Gifford, 

1995), if not for most of them (Eamus, 2000). However, a downregulation of photosynthesis was 

also described when the rooting volume was not restricted (Socias et al., 1993; Drake et al., 

1996; Bernacchi et al., 2003).  

 

The phenomenon of the ‘locally missing carbon’, in which leaf photosynthetic rate is much 

higher than the biomass gain, was hypothesized to be explainable by root turnover, root 

respiration, or exudation (Cheng and Johnson, 1998). In a mixed grass experiment at elevated 

CO2 concentration, total root rhizosphere deposition was increased by 56 % and root biomass by 

less than 25 % (Hungate et al., 1997). An increased allocation of 14C-labelled photosynthate 

(Hodge and Millard, 1998) and increased carbohydrate concentrations (Norby, 1994) have been 

found in roots at elevated CO2. This increased input of C to roots could stimulate higher rates of 

exudation of soluble organic compounds (Norby, 1994), and increase nutrient availability. 
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However, no general trend for exudation rates at elevated CO2 concentrations were found, and 

exudation rates depend on plant species and experimental conditions. In some experiments 

higher root exudation rates were found (Cheng and Johnson, 1998), and a 60 % increase in 

soluble C at elevated CO2 concentration was explained by a higher root exudation (Cheng et al., 

1993). Sometimes the increase was only marginal (Norby et al., 1987), sometimes exudation 

rates were unchanged (Uselman et al., 2000), and even lower exudation rates were described as 

for Lolium perenne (Hodge et al., 1998). The nature of the exudates, however, may be more 

important for ecosystem function than their overall quantity (Cardon, 1996), which e.g. may be 

viable for carboxylates which mobilize sparingly soluble phosphates, or plant-derived 

phosphatases. An important aspect is the question whether elevated CO2 concentrations increase 

the concentrations of nutrient-mobilizing root exudates in the rhizosphere or whether the effect 

of higher exudation rates are the result of a bigger root system with unchanged exudation rates 

per root mass or root length, and therefore unchanged rhizosphere concentrations. 

 

The question arises how plants with very specialized strategies as reaction to nutrient 

deficiencies can cope with an elevated CO2 concentration. White lupin was chosen as a model 

plant because under P deficiency it produces cluster roots with an exceptionally high ability for P 

mobilization by exuding organic metal chelators (carboxylates, phenolics), protons and 

phosphatases. The question was how a plant with such a specialized adaptation to P-deficient 

conditions reacts to elevated CO2 concentrations with respect to formation and function of 

cluster roots, expression of chemical changes in the rhizosphere and P acquisition from sparingly 

soluble P sources.  

 

Experiments were performed in a collaboration with the Institute of Soil Science and Land 

Evaluation, Section Soil Biology (A. Rothe, J. Wasaki, and E. Kandeler) aiming to characterize 

related modifications of rhizosphere-microbial community structures.  
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Materials and methods 
 

 

Plant cultivation and harvest 
 

White lupin seedlings (Lupinus albus L. cv. Amiga; Südwestdeutsche Saatzucht, 76437 Rastatt, 

Germany) were desinfected with 30 % H2O2 for 15 min, rinsed with tap water, soaked in 10 mM 

CaSO4 for 4 h and pre-germinated in wet filter paper containing 2.5 mM CaSO4 for 4 d in the 

dark at 25°C. After emerging of the seedlings, the  plants were illuminated in a growth chamber 

for another two days before they were transferred to nutrient solution or rhizoboxes.  

Growth chamber conditions were adjusted to a 16/8 h day/night cycle with a light intensity of 

300 µmol m-2 s-1 and a constant temperature of 25°C at day and 20°C at night with a relative 

humidity of 60 %. When the plants were transplanted either into nutrient solution or into 

rhizoboxes, they were further cultivated in two different growth chambers with either 400 µmol 

mol-1 (ambient) or 800 µmol mol-1 (elevated) atmospheric CO2 concentrations but otherwise the 

same growth conditions as described above.  

 

For experiments in nutrient solution, 10 seedlings were cultivated in a 2.5-L aerated pot 

containing 2 mM Ca(NO3)2; 0.7 mM K2SO4; 0.1 mM KCl; 0.5 mM MgSO4; 30 µM Fe-EDTA; 

10 µM H3BO3; 0.5 µM MnSO4; 0.5 µM ZnSO4; 0.2 µM CuSO4; 0.01 µM (NH4)6Mo7O24, with 

addition of 2.5 mM CaSO4 per pot in solid form to prevent Ca deficiency due to high 

transpiration rates of the plants. For +P control plants 250 µM KH2PO4 were added. P-deficient 

plants were cultivated without any additional P source in the nutrient solution.   

 

For experiments in rhizoboxes, two seedlings each were transplanted into a rhizobox. The 

rhizoboxes were prepared as follows: Air-dried soil (C-horizon of a luvisol, a calcareous sub-

soil; Wippenhausen, Weihenstephan, Germany; CaCO3-content 21.5 %; pH 7.5; P2O5 content 

(CAL): < 10 mg kg-1 soil; K2O content < 40 mg kg-1 soil, and a low-P loamy soil) were sieved to 

a grain size of 2 mm. A mixture of 90 % of the loess soil and 10 % of the loamy soil were mixed, 

250 g of the dry mass of the mixture were fertilized with 100 mg N kg-1 soil as Ca(NO3)2; 150 

mg K kg-1 as K2SO4; 50 mg Mg kg-1 as MgSO4 and 20 µmol Fe kg-1 as Fe-EDTA. For –P 

treatments no P was added, whereas +P controls were additionally fertilized with 80 mg P kg-1 as 

Ca(H2PO4)2. The soil mixture was watered to 8 % water content and filled into one rhizobox. For 

this, a wet fleece was layered on the back wall of the rhizobox and the fertilized soil was filled in 

and distributed evenly. The seedlings were planted into the rhizobox, a plastic foil layered on the 
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soil and the cover plate tightened. The foil between the soil and the cover plate prevents the roots 

to stick to the cover plate. 30 mL of water were added into the holes in the back of each 

rhizobox. With this, soil water content was adjusted to 20 %. The rhizoboxes were weighted and 

watered each day to this weight.  

 

 

Root exudate collection and determination of carboxylates 
 

Localized root exudate collection with use of filter papers, determination of the numbers of 

cluster roots and harvest of the plants grown in nutrient solution was performed at 21, 24, 27, 30, 

33, and 36 days after sowing, each time starting 3 h after beginning of the day cycle to prevent 

the influence of possible diurnal rhythms. The high number of six harvests was used to cover a 

dense time course of the metabolic and growth changes induced by the two CO2 concentrations. 

The original idea to collect root exudates and to harvest plants each at the same physiological 

age under both CO2 concentrations turned out to be not viable. Plant habitus and morphology 

changed within hours and in different fastness at the different CO2 concentrations. It became 

apparent that it needs direct comparison between plants to determine the same physiological age. 

However, in the present study, a time span of several days occurred between the same 

physiological age. 

Localized root exudate collection from plants in rhizoboxes with use of filter papers and harvest 

of the respective cluster roots was performed at the days 15, 20, 27, and 35 after sowing, and the 

whole plants were finally harvested at day 35.  

Carboxylate determination was performed as described in “General methods”. 

 

 

 

Plants cultivated in nutrient solution 
 
Determination of ortho-phosphate (Pi) in root tissue and shoot tips 

 

Inorganic ortho-phosphate (Pi) was determined in the cluster roots and in shoot tips according to 

the method of Bollons and Barraclough (1997) to reveal the availability of soluble, “metabolic” 

Pi, easily to be used by the plants, and being under metabolic turnover. The frozen plant material 

was ground in liquid N2 with a mortar and a pestle, 50 mg of the ground material was extracted 

with 1 mL of an ice-cold 2 % acetic acid solution and stored on ice until all the samples were 
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extracted. After centrifugation at 10,000 g for 10 min at 4°C, the supernatant was used for Pi 

determination according to the molybdate method of Murphy and Riley (1962). For this, 1 mL of 

the supernatant or 400 µL of the supernatant + 600 µL of 2 % acetic acid solution was added to 

1 mL of the mixed reagent (Table 20), the optical density was measured at 720 nm in a 

spectrophotometer after 20 min of colour development and absorptions were compared with that 

of known Pi standards (up to 50 µM Pi). 

 

 

Table 20: Preparation of the mixed reagent for Pi determination 

sulphuric acid 5 N dilute 70 mL of concentrated sulphuric acid to 500 mL 

ascorbic acid (0.1 M) dissolve 1.32 g of ascorbic acid in 75 mL of water; prepare fresh each 
day. 

potassium antimonyl 
tartrate (1 mg Sb mL-1) 

dissolve 0.2743 g of potassium antimonyl tartrate in distilled water and 
dilute to 100 mL 

mixed reagent mix thoroughly 125 mL of 5 N sulphuric acid and 37.5 mL of 
ammonium molybdate; add 75 mL of ascorbic acid solution and 12.5 
mL of potassium antimonyl tartrate solution; this reagent should be 
prepared as required as it is not stable for more than 24 h 

 

 

 

Plants cultivated in rhizoboxes 

 

Enzymatic citrate determination 
 

Citrate determination was done with an enzymatic test kit (r-biopharm, Darmstadt, Germany - 

Boehringer Mannheim, Cat. No. 139 076) adjusted for white lupin root material. 

Citrate concentrations were determined from root segment material. For extraction, 5 mL of ice-

cold 5 % H3PO4 were added per 1 g root fresh weight and homogenized on ice with a mortar and 

a pestle. The homogenate was transferred into an Eppendorf vial and a spatula tip of activated 

charcoal was added. The mixture was vortexed and stored on ice while the other root samples 

were extracted. The mixture was centrifuged at 20,000 g for 15 min at 4°C. The supernatant was 

transferred into a new Eppendorf vial and neutralized with 5 M KOH to a neutral pH. The 

volumes of the supernatant and of the KOH added were noted. The neutralized solution was 

centrifuged again and the new supernatant was used for citrate determination according to the 

test protocol supplied with the test kit.  
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Determination of total phosphate in root and shoot tissue 
 

Root and shoot dry material was analyzed for its total P concentration according to Gericke and 

Kurmies (1952). For this, 200 mg of the dry material was filled into a porcelain dish and ashed at 

500°C for 4 h in a muffle furnace. After cooling down, several drops of deionized water and then 

HNO3 1:3 (v/v) were added, dried on a heating plate and again ashed at 500°C for another two 

hours. After cooling down, the samples were two times heated with 2 mL of HNO3 1:3 (v/v) till 

dryness to precipitate SiO2. The ash was then dissolved in 2 mL HCl 1:3 in the dish and 

transferred into a 20 mL flask, whereby the dish was washed with ~ 10 mL of hot water which 

was also filled into the flask. The solution was boiled for at least 2 min in the flask on a heating 

plate with addition of one boiling stone to transmute the meta- and pyrophosphates produced by 

the ashing and heating to dryness back to orthophosphate. Only orthophosphate reacts with the 

molybdate-vanadate solution to a yellow colour complex. After cooling down, the solution was 

filled up to 20 mL with H2O and filtered with a blue-band filter. For spectrophotometric analysis, 

1 mL of the filtered solution was added to 1.5 mL of the molybdate-vanadate reagent (Table 22) 

and 2.5 mL of HCl 1:30 to a total volume of 5 mL. The optical density was measured at 436 nm 

in a spectrophotometer after 20 hours of colour development and absorptions were compared 

with that of known Pi standards (up to 15 mg phosphate-P L-1). 

 

Table 21: Preparation of acids and molybdate-vanadate solution to determine phosphate-P. 

1:3 HNO3 dilute 1 part of 65 % HNO3 with 2 parts of deionized water 

1:3 HCl dilute 1 part of 37 % HCl with 2 parts of deionized water 

  
molybdate-vanadate 
solution a)   1:3 HNO3

 b)   ammonium vanadate solution 0.25 % (w/v) 

 c)   ammonium molybdate solution 5 % (w/v) 

 mix the solutions a – c in the relation of 1:1:1 
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Determination of acid and alkaline phosphatase in rhizosphere soil  
 

Acid and alkaline phosphatase activity was determined by hydrolysis of the artificial substrate 

methylumbelliferyl (MUB)-phosphate yielding the fluorescent product methylumbelliferone. 

One to five g of soil were suspended in 100 mL of sterilized water and sonicated for 2 min with 

an energy of 50 J s-1. 50 µL of the soil suspension were added to 50 µL of a 0.1 M MES buffer 

solution, pH 6.1 (for acid phosphatase) or 50 µL of a 0.1 M Trizma buffer solution, pH 7.6 (for 

alkaline phosphatase) and 100 µL of substrate (10 mM MUB-phosphate in the corresponding 

buffer) into a microplate. The plates were incubated at 30°C and fluorescence was registered 

with a microplate reader (Company Town State©) after 0, 30, 60, 120, and 180 min of incubation 

with an excitation wavelength of 360 nm and fluorescence reading at an emission wavelength of 

460 nm. Standards were prepared in the same buffers and 50 % methanol with concentrations up 

to 1 mM. 
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Results 
 

 

Plants grown in nutrient solution 
 

Plant growth and development 
 

The influence of an elevated atmospheric CO2 concentration on plant growth and physiological 

parameters in P-deficient white lupin grown in hydroponic culture was measured each third day 

from day 21 to day 36 after sowing.  

Plant development was generally accelerated at elevated CO2 concentrations. No clear effects on 

shoot growth but earlier P deficiency-induced expression of senescence symptoms in older 

leaves could be seen. Root growth was clearly stimulated at elevated CO2 (Fig. 36+37).  

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Fig. 36: Shoot and root fresh weight 
of P-deficient white lupin plants under 
ambient (400 µmol mol-1) and elevated 
(800 µmol mol-1) atmospheric CO2 
concentrations at six different days of 
harvest (days after sowing). *, **, and 
*** are significant at the 0.05, 0.01 
and 0.001 probability levels, 
respectively. 
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Fig. 37: Above: P-deficient white lupin plants cultivated at ambient (400 µmol mol-1) and elevated (800 
µmol mol-1) atmospheric CO2 concentrations 26 days after sowing. Below: Shoots and roots of P-deficient 
white lupin plants cultivated at ambient (400 µmol mol-1) and elevated (800 µmol mol-1) atmospheric CO2 
concentrations 26 days after sowing.  
 

 

Root/shoot ratio increased during plant growth from day 24 to day 36 at ambient CO2 

concentrations while P deficiency became more severe (Fig. 38). At the elevated CO2 

concentration root/shoot ratio was even higher at each single harvest from day 24 to day 36, 

compared to the values at ambient CO2 concentration, with an average increase by 58 %. Part of 

this increase in root/shoot ratio was due to earlier wilting and abscission of leaves from day 30 to 

36, but can be predominantly attributed to stimulation of root growth. 

ambient CO2 elevated CO2

elevated CO2ambient CO2
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Fig. 38: Root/shoot mass ratio of P-
deficient white lupin plants under 
ambient (400 µmol mol-1) and elevated 
(800 µmol mol-1) atmospheric CO2 
concentrations at six different days of 
harvest (days after sowing). 
*, **, and *** are significant at the 
0.05, 0.01 and 0.001 probability levels, 
respectively. 
 

 

 

 

Cluster root development 
 

Cluster roots emerged earlier at elevated CO2 concentrations (Fig. 39), leading to higher numbers 

of cluster roots between 21 and 30 days after sowing in plants grown at elevated CO2. 

Thereafter, there was no difference between CO2 treatments.  

 

 

 

 

 

 
 
Fig. 39: Total number of cluster roots 
per plant of P-deficient white lupin 
plants at ambient (400 µmol mol-1) and 
elevated (800 µmol mol-1) atmospheric 
CO2 concentrations at six different 
days of harvest (days after sowing). 
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cluster roots at the elevated CO2 concentration was a consequence of a general stimulation of 

root growth and not of an overproportional induction of cluster root formation.   

 

 

 

 

 

Fig. 40: total number of cluster roots 
per root fresh biomass of P-deficient 
white lupin plants at ambient (400 µmol 
mol-1) and elevated (800 µmol mol-1) 
atmospheric CO2 concentrations at six 
different days of harvest (days after 
sowing). 
 

 

 

 

Accelerated cluster root development at elevated CO2 concentrations was also reflected by 

differences in the proportion of cluster roots in the different developmental stages (Fig. 41). 

According to the total number of cluster roots between 21 and 30 days after sowing the 

proportion of young, mature and senescent clusters was always higher at the elevated CO2 

concentration, but thereafter the differences disappeared.  

 

Fig. 41: Distribution of cluster roots of different developmental stages (young, mature, and senescent) at 
ambient (400 µmol mol-1) and elevated (800 µmol mol-1) atmospheric CO2 concentrations at six different 
days of harvest (days after sowing). 
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Cluster root function 
 

According to earlier observations (Chapter 1), citrate and malate were the dominant carboxylates 

in root exudates collected from individual root clusters of white lupin. Exudation of malate 

declined with increasing age of the clusters while a peak of citrate exudation was observed in 

mature clusters. Based on root biomass, there were no significant differences in root exudation of 

carboxylates between CO2 concentrations. However, carboxylate exudation rates showed a high 

variability. This is typical for exudate collections from individual clusters. The classification into 

three developmental stages according to morphological characteristics (see “General methods”, 

p. 11), cannot account for gradual changes in cluster root activity within and between the 

different stages of development.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 42: Malate (upper row) and citrate exudation rates (lower row) in different white lupin cluster root 
segments (young, mature, and senescent, see also p. 11) at six different days after sowing at ambient (400 
µmol mol-1) and elevated (800 µmol mol-1) atmospheric CO2 concentrations. 
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Accumulation and exudation of citrate in mature cluster roots seems to be related to a declining 

metabolic availability of Pi (Chapter 1). Since elevated CO2 concentrations accelerated plant 

development and expression of P deficiency symptoms in white lupin, the effects of elevated 

CO2 concentrations on Pi availability was determined in different developmental stages of cluster 

roots. According to earlier findings (Tab. 1), Pi concentrations strongly declined with increasing 

age of the root clusters but there were no clear differences between CO2 concentrations (Fig. 43). 

This is in accordance with the observation that citrate exudation from individual root clusters 

was also not affected by elevated CO2 concentrations. 

During the whole growth period, high Pi concentrations were maintained in young, growing 

tissues with a high Pi demand, such as young cluster roots and apical buds of the shoot (Fig. 44), 

suggesting a high capacity for Pi retranslocation from older tissues.  

 

 

 

 

 

Fig. 43: Pi concentrations per root biomass in different cluster root segments (young, mature, and 
senescent, see also p. 11) at ambient (400 µmol mol-1) and elevated (800 µmol mol-1) atmospheric CO2 
concentrations at six different days of harvest (days after sowing). **: significant at the 0.01 probability 
level. 
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Fig. 44: Pi concentrations per shoot 
biomass in the shoot tip at ambient 
(400 µmol mol-1) and elevated (800 
µmol mol-1) atmospheric CO2 
concentrations at six different days 
of harvest (days after sowing). *: 
significant at the 0.05 probability 
level. 
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Plants grown in rhizoboxes 
 

 

To investigate P deficiency responses of Lupinus albus in soil culture as affected by elevated 

atmospheric CO2 concentrations, plants were grown in rhizoboxes in a calcareous Loess subsoil 

containing sparingly soluble Ca-phosphates as dominant P fraction, with and without additional 

P fertilization at ambient (400 µmol mol-1) and elevated (800 µmol mol-1) CO2 concentrations.  

Plant growth and cluster root function and development was monitored over a period of 35 days 

with sequential exudate collections after 15, 20, 27, and 35 days after sowing. At each harvest 

date cluster roots in different developmental stages appearing at the soil surface of the 

rhizoboxes were selected for collection of root exudates and rhizosphere soil solution by use of 

chromatography paper (Dinkelaker et al., 1997; Engels et al., 2000). Rhizosphere soil was 

collected to determine phosphatase activities, and the respective clusters with adhering 

rhizosphere soil were excised for microbial diversity studies and rhizosphere phosphatase 

activity determinations in a cooperation project with the Institute of Soil Science and Land 

Evaluation, Section Soil Biology (A. Rothe, J. Wasaki, and E. Kandeler). 

 

 

Plant growth and development 
 

Comparing the 35 days old plants between the two P supplies, there were no significant 

differences in root and shoot biomass production at both CO2 concentrations. However, at the 

elevated CO2 concentration a slight but significant increase in shoot biomass was detectable at 

both P supplies (Fig. 45).  

 

 

 

 

 

 

 

 

 

 



 
 
                               Role of modified CO2 concentrations on cluster roots                                 136 
—————————————————————————————————————— 

 

 

 

 

 

 

 

 

 
 
 
Fig. 45: Shoot and root dry weight of white lupin 
plants grown in rhizoboxes at ambient (400 µmol 
mol-1) and elevated (800 µmol mol-1) 
atmospheric CO2 concentration with sufficient 
(+P) and without (-P) external P supply, 35 days 
after sowing. *; **: significant at the 0.05 and 
0.01 probability level, respectively (t-test) (data 
from J. Wasaki and A. Rothe). 
 

 

 

 

 

Cluster root development 

 

Cluster root formation was observed in the +P and the -P treatments. However, the total number 

of cluster roots for each harvest was significantly higher in -P treatments compared to P-

sufficient control plants, independent of the CO2 concentration (Tab. 22). In both P treatments, 

elevated atmospheric CO2 concentrations tended to increase the number of cluster roots and 

accelerated cluster root development (higher proportion of older clusters) during 27 days after 

sowing for +P control plants and during 20 days after in the P-deficient plants (Fig. 46). Similar 

to the results obtained in hydroponic culture, the differences disappeared in later stages of plant 

development.  
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Tab. 22: Number of cluster roots of white lupin plants removed for further investigations at different 
harvest times (DAS: days after sowing). Plants were grown in rhizoboxes at ambient (400 µmol mol-1) 
and elevated (800 µmol mol-1) atmospheric CO2 concentrations grown with sufficient (+P) and without 
(-P) external P supply (data from J. Wasaki and A. Rothe). 
 

 

harvest [DAS]  +P  -P 

 400 µmol mol-1 
CO2

800 µmol mol-1 
CO2

400 µmol mol-1 
CO2

800 µmol mol-1 
CO2

     
15 9 12 15 24 

20 9 20 22 24 

27 8 15 23 23 

35 10 9 26 19 

     

total 36 56 86 90 

mean 9.0 14 21.5 22.5 

SD 0.8 4.7 4.7 2.4 
 

 

 

 

Fig. 46: Distribution of cluster roots at different developmental stages (four harvest dates) of white lupin 
plants grown in rhizoboxes, at ambient (400 µmol mol-1) and elevated (800 µmol mol-1) atmospheric CO2 
concentrations grown with sufficient (+P) and without (-P) external P supply (data from J. Wasaki and A. 
Rothe). 
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Cluster root function 
 

Citrate exudation 

 

Rhizosphere soil solution containing root exudates was collected from different root zones of 

white lupin grown in rhizoboxes by use of filter papers with a high soaking capacity. Short-term 

collection (2 h) was performed to minimize microbial degradation of carboxylates and to recover 

a high proportion of root exudates (Neumann and Römheld, 2000). Citrate as the major 

carboxylate released under P-deficient conditions was analyzed by an enzymatic test.  

 

Citrate was detected in all samples, but particularly high amounts were found in samples 

obtained from cluster roots and especially from mature and senescent ones (Fig. 47). Phosphorus 

deficiency significantly increased citrate exudation in mature and senescent clusters with a trend 

for increased exudation at elevated CO2 concentrations although the differences compared with 

plants grown at ambient CO2 were not significant. 

 

 
 

 
 
 
 
 
Fig. 47: Citrate exudation from root 
segments of P-sufficient (+P) and P-
deficient (-P) plants (a: 10 mm apical 
root zone of lateral roots; y: young 
cluster roots; m: mature cluster roots; s: 
senescent cluster roots; see also p. 11) 35 
days after sowing at ambient (400 µmol 
mol-1) and elevated (800 µmol mol-1) 
atmospheric CO2 concentrations (data 
from G. Neumann). 
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Phosphatase activity 

 

Acid and alkaline phosphatases are enzymes released from P-deficient plant roots (acid 

phosphatases) and microorganisms (acid and alkaline phosphatases) and are involved in 

mineralization of organic P forms in soils. Root secretory acid phosphatases, detected in Lupinus 

albus and many other plant species under P-deficient conditions may contribute to some extent 

to acquisition and retrieval of organic P in the rhizosphere (Neumann and Römheld, 2000).  

 

There was a very similar activity distribution pattern of acid and alkaline phosphatases in the 

rhizosphere soil obtained from different root segments of white lupin in rhizobox cultures, 

although activity of alkaline phosphatase was generally lower than that of acid phosphatase (Fig. 

48). Phosphorus deficiency increased phosphatase activities in all root segments, but particularly 

in senescent cluster roots. There was a trend for increased phosphatase activities at elevated CO2 

concentrations although differences were in most cases not significant.  

 

 

 

Fig. 48: Rhizosphere acid and alkaline phosphatase activity [nmol substrate turnover h-1 g-1 rhizosphere 
soil] of white lupin plants grown in rhizoboxes at ambient (400 µmol mol-1) and elevated (800 µmol 
mol-1) atmospheric CO2 concentrations grown with sufficient (+P) and without (-P) external P supply (a: 
10 mm apical root zone of lateral roots; y: young cluster roots; m: mature cluster roots; s: senescent 
cluster roots; see also p. 11) 35 days after sowing (data from J. Wasaki and A. Rothe). 
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Phosphate concentrations and contents  

 

Root and shoot total P concentrations were lower when the plants were grown without P addition 

to the soil (Fig. 49). However, there were no differences in root or shoot P concentrations 

between CO2 concentrations. Comparison of shoot P concentrations revealed that in all 

treatments the plants suffered from P deficiency although this was more severely expressed in 

the -P treatments.  

Total P content declined only in the shoot tissue of P-deficient plants but there were no 

differences in P root content between P treatments. CO2 concentrations had no effect on P 

contents in white lupin grown with or without additional P supply. Independent of the CO2 

concentration, P contents were higher in the roots than in the shoots under sufficient P supply 

and under P-deficient conditions.  

 

 

                    P concentration                                                       P content 

 
Fig. 49: Shoot and root total P concentration per dry weight (left) and P root and shoot contents (right) of 
white lupin plants grown in rhizoboxes at ambient (400 µmol mol-1) and elevated (800 µmol mol-1) 
atmospheric CO2 concentrations grown with sufficient (+P) and without (-P) external P supply 35 days 
after sowing. No significant differences (t-test) (data from J. Wasaki and A. Rothe). 
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Discussion 
 

The aim of this investigation was to elucidate white lupin’s metabolic prerequisites for internal P 

efficiency and P-mobilizing strategies in combination with an additional factor, in this case an 

elevated CO2 concentration. Root exudation rates in white lupin plants at elevated CO2 

concentrations were determined previously, following the exudation pattern of one generation of 

clusters over their life time (Watt and Evans, 1999b), or by exudate collection over the whole 

root system in quite young plants (Campbell and Sage, 2002). Here the exudation rates were 

determined from different cluster root segments over a time span of two weeks. Another question 

was if lupins are able to mobilize more P from sparingly soluble P sources in soil at elevated 

CO2 concentrations. 

 

 

Plant growth and development 
 

Independent of the cultivation method, plant development was accelerated at elevated CO2 

concentrations, and P deficiency and senescence symptoms such as yellowing, wilting, and 

abscission of leaves could be seen much earlier, especially in the plants grown in nutrient 

solution. At elevated CO2 concentrations premature leaf senescence and more pronounced P 

deficiency symptoms were also found in strawberry (Chen and Lenz, 1997). Even in nutrient-

sufficient wheat, premature senescence contributed to photosynthetic decline (Sicher and Bunce, 

1998), and in cotton leaves, yellowing and photosynthetic decline was described at elevated CO2 

concentrations (Chang, 1975; Betsche, 1994). These findings were interpreted by Betsche as a 

‘perturbation’ at the metabolic level.  

In white lupin cultivated in nutrient solution, shoot growth was rather unaffected by the CO2 

concentration (Fig. 36). However, leaf senescence occurred much earlier and stronger and might 

have opposed any possible growth effects. Root growth was much faster at the elevated CO2 

concentration.  

CO2-induced maturation due to induced Pi limitation should be aggravated under already limiting 

P supply. P-limiting conditions would deteriorate metabolism in chloroplasts even more as 

already described for nutrient-sufficient conditions (Betsche, 1994), which might contribute to 

the yellowing, wilting, and abscission of leaves.  

Quite contrary, shoot growth was slightly higher at elevated CO2 concentrations in plants in 

rhizobox culture, but root growth was unchanged. The harvest of a higher amount of cluster roots 

from plants at elevated CO2 (Fig. 45) might have reduced root growth. More generally, 
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especially the root-related data at both CO2 concentrations have to be considered with care. Due 

to three intermediate harvests of cluster roots the system was already changed before the plants 

were harvested as a whole. Additionally, the calcareous soil with its high pH value, high 

bicarbonate content and low micronutrient availability, which was used for plant cultivation, 

might have reduced root growth. It is known that Lupinus albus prefers more acidic soils (Peiter 

et al., 2000; 2001).  

However, the same root biomass at both CO2 concentrations might also be no artifact as a result 

of the experimental conditions. Plants that do not react with an increase in biomass even at high 

P supply when the CO2 concentration is elevated tend to accumulate starch, as described for 

cotton (Rogers et al., 1993). This might be due to the ‘metabolic perturbation’ already described 

(Betsche, 1994). Interestingly, white lupin also accumulates starch in the leaves under P 

deficiency at elevated CO2 concentrations (Campbell and Sage, 2002) to amounts similar to 

those described in cotton. Therefore a similar ‘metabolic perturbation’ might be assumed. 

Additionally, the greater CO2-induced increase in non-structural carbohydrate in cotton was 

explained by more limited sink in cotton as a determinant plant than in other plants which are 

indeterminate (Rogers et al., 1993). Perhaps the sink strength in lupin roots is also limited due to 

the determinate growth of cluster roots, although the high amount of exudates might be seen as 

an additional sink.  

Contrasting results were described for root/shoot ratios at elevated CO2 concentrations, ranging 

from a greater root/shoot ratio (Hocking and Meyer, 1991; Rogers, H. et al., 1992; McKee and 

Woodward, 1994), via no change (Larigauderie et al., 1994; Hodge and Millard, 1998) to a lower 

root/shoot ratio (e.g. Salsman et al., 1999). In white lupin, root/shoot ratio increased during plant 

growth at ambient CO2 while P deficiency became more severe (Fig. 38). At the elevated CO2 

concentration this ratio was increased even further at each harvest. Interestingly, the increase in 

the root/shoot ratio in the plants grown at elevated CO2 was much faster at the first harvests 

compared to the plants grown at ambient CO2. This might also be explainable by a faster growth 

and therefore a faster growth into P deficiency at elevated CO2 concentrations. This increase was 

mainly due to a faster root growth, but was further supported by the earlier wilting and 

abscission of leaves. 

In contrast, Campbell and Sage (2002) found no increase in the root/shoot ratio in 22 days old 

lupin plants at elevated CO2 concentrations under P deficiency, and only a slight increase in the 

root/shoot ratio compared to P-sufficient plants when both were grown at ambient CO2 

concentration. Perhaps the low amounts of P supplied to the P-deficient plants in their 

experiment already prevented severe P deficiency, enough to suppress a greater change in 

root/shoot ratio.  
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A higher root/shoot ratio needs a higher C partitioning into the root to allow the necessary 

increase in root biomass compared to the shoot biomass.  

 

 

Cluster root development 
 

A higher amount of cluster roots at elevated CO2 concentrations at the earlier harvests found in 

nutrient solution and in rhizoboxes (Fig. 39+46) was also described by Campbell and Sage 

(2002) in earlier stages of plant growth. Accelerated cluster root development at elevated CO2 

concentrations was also reflected by differences in the proportion of cluster roots in the different 

developmental stages. According to the total number of cluster roots between 21 and 30 days 

after sowing the proportion of young, mature and senescent clusters was always higher at the 

elevated CO2 concentration and thereafter the differences disappeared, cluster root production 

ceased and the amount of clusters eventually became the same at both CO2 concentrations. This 

is probably due to a lower photosynthesis at this already severe P deficiency (Fredeen et al., 

1990; Barrett and Gifford, 1995). Therefore less carbohydrates are available for the production 

of new clusters, a state which is reached earlier at elevated CO2 concentrations.  

However, the capacity for an increase in the amount of cluster roots at higher CO2 concentrations 

seems to be limited. Comparing the increase in the number of cluster roots from a CO2 

concentration of 200 µmol mol-1 to ambient and from ambient to 740 µmol mol-1 CO2, Campbell 

and Sage (2002) found indications that cluster root allocation might already meet its limits at the 

current atmospheric CO2 concentration. Similar results for plant growth were found for several 

annual weedy herbaceous species (Bunce, 2001). 

No significant differences between CO2 treatments were observed for the proportion of cluster 

roots relative to the whole root system (Fig. 40), demonstrating that increased formation of 

cluster roots at 800 µmol mol-1 CO2 was a consequence of a general stimulation of root growth, 

due to more lateral root initiation (Skene, 2000) and not of an overproportional induction of 

cluster root formation.   

 

 

Function of cluster roots 
 

Independent of the cultivation method, root exudation per cluster or per cluster root weight was 

unchanged at elevated CO2 concentrations (Fig. 42+47). In nutrient solution the carboxylate 

exudation pattern in different stages of cluster root development with a citrate exudation peak in 
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mature clusters and decreasing malate exudation rates during growth (Neumann et al., 1999; 

2000) was also confirmed at elevated CO2 concentrations. A transient carboxylate exudation was 

also described for Lupinus albus (Kamh et al., 1999) and for Hakea undulata (Dinkelaker et al., 

1997) when cultivated in soil. However, in the present study citrate exudation rates in mature and 

senescent clusters were essentially the same from plants grown in rhizoboxes. This might be 

explained by the problem to differentiate mature from senescent clusters in soil. Additionally, it 

is known that root life-span is increased when the plants grow in soil, probably due to P 

mobilization and P uptake, resulting in a better P status than in plants grown in nutrient solution 

without any P supply. In contrast to plants grown in nutrient solution with optimal P supply, 

plants grown in soil often have a slight P deficiency even when they are supplied with P. In 

white lupin, even +P control plants produced cluster roots and exuded citrate, although to a much 

lower amount. The P added to the soil often binds to the soil matrix, and since it is transported to 

the plant only by diffusion, its availability is lower than in nutrient solution where all the P is 

easily accessible. This was seen in the +P control plants after 35 days of growth, which also 

suffered from slight P deficiency (~ 1 mg P g-1 plant dry weight is already well below the value 

of around 2 mg P g-1 dry weight given for well-supplied plants (Marschner, 1995)). However, P 

concentrations in +P control plants were still higher than in -P plants, but might explain cluster 

root production and citrate exudation.  

The higher carbohydrate transport from the shoot into the root, as seen in the higher root/shoot 

ratio at elevated CO2 concentrations, did not result in a higher citrate release from individual 

clusters. Similar results were described by Watt and Evans (1999b) who documented the 

exudation rates of one generation of cluster roots during their life cycle and found that elevated 

CO2 concentrations did not change the rate of citrate efflux per unit of length of cluster root, 

although it did shorten the period over which this efflux occurred.  

The same exudation rates of citrate and malate on the basis of root dry weight were also found 

when collected over the whole root system of 22 days old P-deficient lupin plants (Campbell and 

Sage, 2002). Taken together, the exudation rates of the cluster roots themselves do not react to 

elevated CO2 concentrations. But considering that, at least in younger plants in the fourth week 

of growth, when the amount of cluster roots which do release citrate is higher at elevated CO2 

concentrations, then the exudation rate per plant should be higher. Exactly this was found by 

Campbell and Sage (2002) for citrate in 22 days old whole root systems of P-deficient plants at 

elevated CO2 concentrations. In consequence, white lupin probably enhances its P-mobilizing 

ability not by higher concentrations of root exudates in the rhizosphere, but mainly by more sites 

per plant where intensive mobilization of P occurs. Similarly, a higher cumulative release of C in 

Plantago (Hodge and Millard, 1998) was due to a larger root system, which was also described 



 
 
                                 Role of modified CO2 concentrations on cluster roots                               145 
—————————————————————————————————————— 

for both, crop and pasture species (Hocking and Barrett, 2003). It was generally suggested that 

rhizodeposition does scale linearly with root mass (Darrah, 1996). On the other hand, a higher 

citrate production on a unit root dry weight base under P deficiency at elevated CO2 in 

Eucalyptus was cited by Cardon (1996), and a higher production and exudation of citrate was 

described in an Australian pasture grass and other plant species (Gifford et al., 1996).  

In white lupin under P deficiency, the increased C distribution into the roots at elevated CO2 

concentrations are not transformed into higher cluster root exudation rates. This might be 

explained by a reduced citrate turnover as cause for citrate accumulation rather than an increased 

citrate production. Citrate degradation is independent of the C supply and therefore also 

independent of the CO2 concentration. Quite contrary, phytosiderophore production under Fe-

deficiency in barley (and other gramineous species) root tips depend on photosynthetic activity 

(Erenoğlu et al., 1996). Therefore phytosiderophore exudation increased at elevated CO2 

concentrations (unpublished results).   

 

 

Activity of phosphatases 

 

Acid and alkaline phosphatase activities in the rhizosphere of Lupinus albus continually 

increased during cluster root development (Fig. 48), parallel to an increasing P deficiency, and 

were especially high in senescent clusters. However, atmospheric CO2 concentrations did not 

significantly increase phosphatase activities. 

The increased activity of acid phosphatase, an enzyme to hydrolyse the ester bonds of organic P 

compounds, is known to be an adaptation of plants to low internal P concentrations (Dracup et 

al., 1984; Lefebvre et al., 1990; Hunter and Leung, 2000; Miller et al., 2001; Gaume et al., 

2001). The strict correlation between phosphatase activities and P concentrations in the roots 

might explain the highest phosphatase activities in the senescent clusters, which was also found 

in nutrient solution (Neumann et al., 1999; Wasaki et al., 1997, 2003). Accumulation of the 

enzyme might also explain that the highest activities were found in sensecent clusters, especially 

since the white lupin-derived enzyme is known to be very stable for several days even in soil.  

Acid phosphatases mainly originate from roots, and only to a low amount from microorganisms, 

whereas alkaline phosphatases mainly originate from microorganisms (Marschner, 1995). The 

acid phosphatase secreted from white lupin roots has a broad pH optimum and an even higher 

pH stability (Tadano et al., 1993). For this reason the alkaline phosphatase activities measured in 

the present study might actually originate from white lupin-derived acid phosphatases. This 

would explain the almost identical distribution pattern of alkaline phosphatase activities in 
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comparison to the acid phosphatase activities. The "alkaline phosphatase" activities measured 

therefore probably were also the acid phosphatase activities, but measured at a less optimal pH 

and therefore with lower activities. 

Essentially unaltered phosphatase activities at ambient and elevated CO2 concentrations might be 

caused by the unaltered P concentrations in the respective cluster roots at the different CO2 

concentrations. Internal phosphate concentrations  in the end determine acid phosphatase 

secretion. 

However, the properties of white lupin phosphatases might be an exception in plants, because a 

higher acid phosphatase activity at elevated CO2 concentrations was described for wheat (Barrett 

et al., 1998), an Australian pasture grass (Gifford et al., 1996), for Bromus madritensis (Dhillion 

et al., 1996), or for Eriophorum in tussock tundra in Alaska (Moorhead and Linkins, 1997), 

although not for pine, where acid phosphatase activity even decreased (DeLucia et al., 1997). It 

was suggested that in case of a generally higher phosphatase activity as a general response to 

elevated atmospheric CO2 concentrations under P limiting soil conditions, a higher P acquisition 

from the organic P pool in the field could be assumed for the future (Barrett et al., 1998). 

Especially increased exudation of both, phosphatases and organic acids, was assumed to be an 

important driver of the ecosystem long-term response to elevated CO2 concentrations in P-

limited ecosystems (Canadell et al., 1996). 

 

 

P acquisition and P nutritional status of the plants  
 

Citrate accumulation, followed by a pulse of citrate exudation in mature cluster roots under P 

deficiency, seems to be related with the internal P status of the corresponding cluster (Chapter 1). 

To investigate this relation to CO2 supply, ortho-phosphate concentrations were determined in 

different cluster root segments at several harvests in plants cultivated in nutrient solution. Ortho-

phosphate was chosen as parameter since Pi concentrations give a better view of the 

physiological status of P deficiency. It is the Pi that is physiologically active.  

As already found for citrate concentrations and exudation rates, Pi concentrations were also not 

changed by different CO2 concentrations in the corresponding cluster root segments (Fig. 43). 

Therefore it can be stated that at elevated CO2 concentrations plants develop faster and show P 

deficiency earlier, leading to earlier production and faster development of cluster roots. 

However, the sensecence program of individual cluster roots, which in consequence determines 

P concentration, P remobilization and citrate accumulation, is quantitatively unchanged.  
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Interestingly, even after 36 days of growth, Pi concentrations in young cluster roots still had 

similar high Pi levels as two weeks before. This means that the young root tissue had a very high 

P demand which was met even as the other tissues were already severely P-deficient. Since the 

plants did not get any external P and had to use the P originally derived from the seeds, P must 

have very efficiently been resupplied within the plant. A similar efficient retranslocation of P 

could be observed in the shoot tips, where P concentration also was kept at the same high levels 

for two weeks, and independent of the atmospheric CO2 concentration. Correspondingly, it was 

suggested that cytosolic P concentrations are conserved at levels sufficient to maintain C supply 

at rates required by growing tissues under conditions of chronic low P supply (Gifford et al., 

2000).  

 

Lupinus albus grown in rhizoboxes did not grow better when supplied with soluble P, which 

documents the high P efficiency of this plant species. A general inhibition of root growth by the 

soil used (calcareous subsoil with a high pH) is rather improbable because biomass production 

was similar between plants grown in rhizoboxes and those grown in nutrient solution.  

Furthermore, total P uptake was in the same order of magnitude between +P control plants 

(1.1 mg P plant-1) and -P plants (0.6 mg P plant-1), when the seed reserves of 1.8 mg P plant-1 

were also considered. For the +P plants the P taken up was 10 % of the P added to the soil, which 

is a very high percentage. The P taken up by the P-deficient plants is the total amount of the 

plant-available P (PCAL = 1.25 mg per rhizobox), which means that most of the P taken up under 

P deficiency was mobilized by the roots from the sparingly soluble Ca-P fraction (82.5 mg P per 

rhizobox). P mobilization from organic P sources was rather low, because 90 % of the soil was 

an anorganic subsoil. Accordingly, an intense growth and activity of cluster roots could be 

observed under P deficiency. However, even in the +P control plants shoot P concentrations 

were in the range of P deficiency, although P concentrations were slightly higher than in the -P 

plants. Root P concentrations however were the same, which means a P retention in the roots 

under P deficiency. This might be explained with the high P demand for cluster root production 

and P-mobilizing activity. 

A compensatory adjustment to nutrient deficiency at elevated CO2 concentrations, when the 

availablity of nutrients is limited, could be an increased phosphate use efficiency (PUE), 

meaning that per unit phosphate more biomass can be achieved, or, in other words, the minimum 

P tissue concentration can be lowered further at elevated CO2. However, this was not the case in 

white lupin grown in rhizoboxes with the same total P concentrations at both atmospheric CO2 

concentrations. Interestingly, nutrient solution-grown white lupin plants did show an increased 

PUE. The total P content in the plants were the same at both CO2 concentrations since the P 
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solely came from the seed P reserves. Even under severe P deficiency total plant biomass was 

higher at elevated CO2 concentrations due to a higher root biomass, which results in a higher 

plant biomass per unit phosphate.  

Generally, there are few consistent responses emerging between species or life forms concerning 

the effects of an elevated atmospheric CO2 on tissue P concentration, giving examples for and 

against effects (Gifford et al., 2000). However, it seems that nitrogen use efficiency (NUE) could 

be increased at elevated CO2 concentrations (Woodin et al., 1992; Reeves et al., 1994; Murray et 

al., 2000), probably due to a lower RUBISCO concentration (Stitt, 1991; Tissue et al., 1993; 

Drake et al., 1997). The same carboxylation rate with a lower RUBISCO concentration is 

possible since a higher intercellular CO2 concentration increases the carboxylation rate of 

RUBISCO (Sage et al., 1989). Phosphorus use efficiency (PUE) rather is not altered (Norby et 

al., 1986; Reeves et al., 1994; Temperton et al., 2003), although a higher PUE was also described 

(Woodin et al., 1992; Conroy et al., 1992; Bassirirad et al., 1996; Roberntz and Linder, 1999). 

Even differences in PUE exist between roots and shoots (Tremblay et al., 1988). 

 

No CO2 effect on P nutrient status could be observed in white lupin plants cultivated in 

rhizoboxes. However, this was rather not to be expected in this experiment. A higher cluster root 

production as it occurred under moderate P deficiency at earlier stages of plant growth might 

have resulted in a higher P mobilization and a better P nutritional status of the plants at elevated 

CO2 concentrations. But the cluster roots had to be harvested for microbial diversity 

measurements, and were therefore not available for further P mobilization. In a culture system 

with an unlimited soil volume and undisturbed cluster root development a CO2 effect might 

occur, leading to a higher amount of active cluster roots per plant, a higher P mobilization and a 

higher biomass, especially since elevated CO2 is supposed to lead to increased mineralization 

rates as a direct result of increased root activity (Zak et al., 1993). Additionally, an increased 

growth rate at elevated CO2 concentrations is thought to be sustainable only with a concomitant 

increase in availability and/or acquisition of growth-limiting nutrients (Bassirirad et al., 2001).  

Another parameter might have influenced plant growth and P efficiency at the different CO2 

concentrations. Plants grown in small pots exhibit many of the responses found in plants 

acclimated to high CO2 concentrations (Arp, 1991), such as higher carbohydrate concentrations 

and inhibition of photosynthetic capacity. In the end, photosynthetic rates of plants grown at 

elevated CO2 concentrations are lower than the rates of plants grown at ambient CO2 at the same 

Ci (intercellular CO2 concentration) (Sage et al., 1989; Stitt, 1991; Xu et al., 1994). A reduced 

sink strength of the roots by a limited rooting volume by small pots which induces a source-sink 

imbalance and therefore a feedback inhibition of photosynthesis and a lower biomass gain 



 
 
                                 Role of modified CO2 concentrations on cluster roots                               149 
—————————————————————————————————————— 

especially in the roots might be responsible for the acclimation effect (Thomas and Strain, 1991). 

The rhizobox volume for growth of white lupin was about 300 cm3 and therefore far below the 

pot size where pot effects were described (Arp, 1991). To prevent root restriction the plants were 

grown only for a short time and therefore did not need a big soil volume. However, the rooting 

volume was further restricted by the construction of the rhizoboxes, where the roots are forced to 

grow along a plexiglass plate preventing part of the root system from growing into the soil 

volume. Therefore acclimation due to a restricted root growth by the size and construction of the 

rhizoboxes is possible and might explain that root growth, in contrast to shoot growth, especially 

in the P-deficient plants, was not increased at elevated CO2 concentrations. On the other hand, 

root restriction might have been alleviated by the intermediate harvests of cluster roots.   

 

Root morphology is crucial for the plant's reaction to P limitation. Watt and Evans (2003) 

reported similar data for biomass and P content when they compared plant growth and P 

acquisition between white lupin and soybean. They found that white lupin acquires its P from 

clusters by extraction of P from sparingly soluble P sources, especially under a limited supply of 

soluble P. The root system is characterized by a low capacity to use soluble P, which is 

expressed in a similar biomass between plants grown in soil with and without additional soluble 

P, as also found in this study. The small soil volume exploited by white lupin clusters contains 

only a small percentage of the soluble P available over the whole soil volume, but the clusters 

can mobilize the fixed P in this small part of soil efficiently, especially with the higher amount of 

clusters under P-limiting conditions. Contrary to this, soybean as an example for another root 

morphology is able to produce a longer and finer root system and acquires soluble P more 

readily, and reaches more of the soluble P when it is added to the soil. This is expressed in a 

higher biomass and higher P concentrations in shoot and root. Similarly, an increased P 

acquisition efficiency in bean was not related to chemical modification of the rhizosphere, but to 

root architecture and morphology (Lynch, 2003).  

Plants like white lupin, specialized in mobilizing sparingly soluble P by cluster roots, might be 

able to cope with an elevated CO2 concentration at low-P sites without a loss of biomass, 

although with no increase in growth when P supply is high.  

 

In conclusion, the question remains if the reactions of P-deficient white lupin to elevated CO2 

concentrations are due to an aggravated P deficiency, brought about by a faster development and 

therefore a faster development of P-deficient metabolic conditions, or if an elevated CO2 

concentration changes the plant’s metabolism per se. Most of the effects described so far can be 

explained by a faster development, and are also seen in plants under P deficiency at ambient CO2 
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at a later stage, such as a higher root/shoot ratio, lower Pi concentrations at the transition from 

slight to severe P deficiency, faster leaf wilting, and abscision and its explanation by an induced 

P deficiency, higher P contents, and the same exudation rates from the cluster roots on a mass or 

length basis. A more rapid maturation of plants exposed to elevated CO2 concentrations were 

also described for bean (Porter and Grodzinski, 1989), rice and wheat (Conroy et al., 1994), or 

native annual plant species of North America (Omer and Horvath, 1983). On the other hand, it 

cannot be ruled out that the faster development of P-deficient conditions causes changes that do 

not occur when the transition rate is slower. Many parameters were not examined at all, such as 

the influence of phytohormones like auxins or ethylene, which are involved in cluster root 

formation (Gilbert et al., 2000; Skene and James, 2000) or P concentrations within different plant 

tissues or even its distribution within a cell.  

 

 

Microbial diversity 
 

An analysis of the structural and microbial diversity of rhizosphere microorganisms of white 

lupin was performed in a co-operation with the Institute of Soil Science and Land Evaluation, 

Section Soil Biology (A. Rothe, J. Wasaki, and E. Kandeler). The functional characterization of 

the rhizosphere microorganisms by use of marker enzymes of the C, N, and P cycle and the 

analysis of the structural diversity of bacterial populations via DGGE analysis of the 16 S rDNA 

showed an influence of the CO2 concentrations especially by the different developmental stages 

of the cluster roots. This might be explainable by differences in exudation activities. Similar 

results were also gained in preliminary experiments by Marschner et al. (2002). Since the 

exudation activities of the cluster roots are not influenced by atmospheric CO2 concentrations, no 

significant effects of different CO2 concentrations were seen on microbial diversity in the white 

lupin rhizosphere.   
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General conclusions and outlook 
 

 

Chemical mobilization of sparingly available soil P forms by plant roots requires intense 

expression of root-induced chemical changes in the rhizosphere, comprising alterations of 

rhizosphere pH, release of metal chelating compounds, and secretion of phosphohydrolases. 

Cluster rooted plant species, such as members of the Proteaceae, Casuarinaceae, and several 

leguminous plants, including Lupinus albus, are adapted to habitats of extremely low soil 

fertility. These plant species are among the few proven examples for an efficient chemical P 

mobilization in soils (Jones, 1998; Neumann and Römheld, 2000) and can therefore serve as 

model systems to study regulatory aspects of the related mechanisms (Neumann et al., 1999; 

Neumann and Martinoia, 2002). A detailed understanding of these mechanisms is a prerequisite 

for attempts to improve efficiency for P acquisition in crop plants by strategies for management 

of rhizosphere chemistry using approaches of fertilization management, breeding, or 

biotechnology.  

In cluster-rooted plant species, the efficient expression of chemical P mobilization in the 

rhizosphere seems to be determined by two factors, comprising (1) a morphological and (2) a 

physiological component. The morphological component includes adaptive responses to P 

deficiency leading to formation of closely-spaced clusters of lateral rootlets with limited growth, 

densely covered with root hairs. These root structures increase the secretory surface area 

involved in release of P-mobilizing root exudates, leading to a concentration effect in the small 

soil volume around the root clusters. Since cluster root formation can occupy up to 60 % of the 

total root system, this strategy provides an efficient step by step extraction of small soil 

compartments during plant development.  

The physiological component comprises the preferential expression of metabolic alterations, 

leading to selective accumulation and intense secretion of P-mobilizing root exudates in cluster 

roots. The elucidation of regulatory mechanisms which determine the related physiological 

adaptations was the scope of the present study.  

Citrate is among the most efficient metal-chelating carboxylates which can mediate Pi desorption 

and solubilization from Fe-, Al- and Ca-phosphates. The present work presents further evidence 

that selective accumulation of high amounts of citrate prior to a transient burst of intense citrate 

exudation during cluster root development in P-deficient white lupin is probably a consequence 

of two general mechanisms: (1) a higher production rate, and (2) a decline in citrate turnover. 

The pulse of citrate exudation from mature root clusters during a period of 1-3 days is mediated 
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by activation of a citrate transport mechanism linked with increased expression and activity of 

the plasma membrane H+-ATPase, which leads to a concomitant extrusion of protons. The 

involvement of an anion channel, postulated on base of the data from inhibitor experiments 

(Neumann et al., 1999) has been recently confirmed by patch-clamp studies (Zhang et al., 2004). 

A higher production rate of citrate precursors is brought about by an activation of Pi-independent 

glycolytic bypass reactions and the induction of non-photosynthetic CO2 fixation via PEP-

Carboxylase, with possible adaptive functions to P limitation such as: (1) more economic Pi 

utilization at the metabolic level under P-deficient conditions (Plaxton, 1998); (2) stabilization of 

the cytosolic pH in response to P deficiency-induced excess cation uptake (Dinkelaker et al., 

1989; Sakano, 1998; Sas et al., 2001), and anaplerotic carbon supply to balance C-losses 

associated with increased root exudation under P stress (Johnson et al., 1996a). Due to the PEP-

C-mediated non-photosynthetic CO2 fixation, these adaptive responses are unequivocally linked 

with enhanced biosynthesis of carboxylates, such as oxaloacetate and malate as precursors for 

citrate production. However, the selective accumulation of citrate during cluster root 

development seems to be rather determined by reduced turnover of citrate as a consequence of 

limited P availability for various metabolic sequences involved in citrate degradation. Declining 

concentrations of soluble Pi, ATP, and ribosomal RNA during cluster root development are 

associated with a reduction of respiration, and a reduced activity of enzymes involved in citrate 

turnover in the TCA cycle. In this context, the inhibition of aconitase may play a crucial role in 

mediating citrate accumulation, since artificial inhibition of aconitase by local application of 

monofluoro-acetic acid was able to induce citrate accumulation as also citrate exudation, at a rate 

comparable with mature cluster roots even in root tissues such as young cluster roots and roots of 

P-sufficient seedlings, usually inactive in root exudation of citrate. Although the present study 

demonstrates down-regulation of various additional enzymes involved in citrate catabolism in 

the TCA cycle, it is not clarified yet whether the generally lower respiration rate observed in 

mature and senescent cluster roots leads to a feedback inhibition of citrate turnover in the TCA 

cycle, or whether there is a specific inhibition of aconitase activity. Increased production of H2O2 

in the P-deficient tissue, which could act as a potent inhibitor of aconitase (Verniquet et al., 

1991), was not detectable during cluster root development, and accordingly there was no 

indication for increased lipid peroxidation, frequently associated with accumulation of H2O2. 

Another factor with high potential for aconitase inhibition could be an increased production of 

NO. Nitric oxide was found to impair the aconitase enzyme  (Navarre et al., 2000). This aspect 

requires further investigation. Interestingly, the lower respiration rate seems rather be related to a 

general impairment of the respiratory apparatus (e.g. limitation of protein biosynthesis reflected 

in declining protein concentrations during cluster root development) and not to a limited 
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availability of ADP and Pi as respiratory substrates. This is indicated by the absence of any 

increase in respiration after uncoupling oxidative phosphorylation by use of CCCP. Other 

potentially P-limited metabolic pathways involved in citrate turnover may comprise citrate 

cleavage to acetyl-CoA and oxaloacetate via ATP-citrate lyase and P deficiency-induced 

inhibition of nitrate assimilation. Although downregulation of enzymes involved in these 

pathways such as ATP-citrate lyase and NADP-isocitrate dehydrogenase has been demonstrated 

during cluster root development, in vivo inhibitor studies failed to induce a significant citrate 

accumulation and the rate of contribution to citrate accumulation remains to be elucidated.  

The continuous decline in metabolic Pi availability during cluster root development, which limits 

reactions involved in citrate catabolism, probably reflects Pi retranslocation from mature and 

senescent cluster roots to the young, emerging clusters, characterized by a high proportion of 

meristematic, growing tissue with a high demand for metabolic energy. Therefore, mature cluster 

roots are exposed to more severe P limitation, associated with the respective modifications in 

citrate catabolism, while P supply to the growing tissues in young cluster roots is still maintained 

at a sufficient level.  

From an evolutionary point of view, this suggests that the adaptive responses of the carboxylate 

metabolism to P limitation in cluster roots of Lupinus albus are based on common reactions to P 

deficiency with a role in internal P utilization and widespread distribution in higher plants 

(Neumann and Römheld, 2000), such as (1) induction of Pi-dependent metabolic bypass 

reactions (e.g. PEP-C induction) and (2) P retranslocation from older tissues to young, actively 

growing organs. A similar example for an adaptive response based on a set of common 

sequences in plant metabolism is the synthesis of Fe-mobilizing phytosiderophores in 

graminaceous plant species from nicotianamine with ubiquitous distribution in higher plants 

(Neumann and Römheld, 2000). 

 

Based on calculations of carboxylate turnover and a limited correlation between root carboxylate 

concentrations, enzyme activities, and root exudation, Watt and Evans (1999b) suggested that 

citrate exudation may be rather controlled by the export mechanism than by citrate accumulation 

in the cluster root tissue. However, aconitase inhibitor experiments in the present study 

demonstrate a close relationship between citrate accumulation and subsequent exudation. Citrate 

accumulation to a threshold concentration of 20-30 µmol g –1 root fresh weight prior to the pulse 

of exudation may indicate a role of cytosolic citrate accumulation in the regulation of the export 

mechanism. Differential interactions of malate and citrate have been demonstrated for the 

activity of the plasma membrane (PM) H+-ATPase, which is involved in citrate export. The fact 

that external application of low-molecular weight organic acids with potential to decrease the 
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cytosolic pH can induce citrate exudation (Kania et al., 2003) suggest a contribution of cytosolic 

acidification, which has shown to be associated with high accumulation of carboxylates in the 

root tissue (Xia and Roberts, 1994). Also changes in membrane potential seem to be involved in 

the regulation of citrate export, since a recently identified citrate-permeable anion channel in 

cluster roots of Lupinus albus (Zhang et al., 2004) is activated by membrane hyperpolarization. 

A current working hypothesis is based on the assumption that citrate accumulation in cluster 

roots induces cytosolic acidification, which leads to activation of proton extrusion by the PM H+-

ATPase. Thereafter, the resulting hyperpolarization of the plasma membrane may activate the 

anion channel, mediating citrate export. Future research activities are necessary to confirm the 

postulated changes in cytosolic pH and cytosolic citrate concentrations during cluster root 

development by use of NMR techniques in combination with membrane-physiological studies to 

evaluate the potential effects on citrate export. Homology analysis with the recently identified 

gene potentially encoding for the Al-regulated malate channel in wheat roots (Ahn et al., 2004) 

may enable also a molecular genetic characterization of the citrate channel in Lupinus albus.   

 

Compared with apical root zones in lateral roots, P deficiency-induced metabolic alterations in 

cluster roots are associated with an increase in root exudation by a factor 3 – 30 calculated on a 

base of root biomass or root length (Neumann et al., 1999; 2000). However, also the high density 

of lateral rootlets (and root hairs) in cluster roots contribute to accumulation of root exudates in 

the rhizosphere by providing an increased root surface area with secretory activity. Assuming an 

average length of 5 mm per rootlet and a density of 50 rootlets per cm of the lateral root axis for 

cluster roots in Lupinus albus (Dinkelaker et al., 1995), carboxylate exudation may increase at 

least by a factor of 25 compared with normal lateral roots. Even higher values may be expected 

due to the presence of root hairs, and in cluster roots of Proteaceae, reaching rootlet densities of 

up to 1000 per cm. Moreover, mature cluster roots with the highest secretory activity exhibit no 

more growth activity (Watt and Evans, 1999b), and root exudates can be released over an 

extended period of time (2-3 days) into the same volume of rhizosphere soil. In contrast, normal 

lateral roots are characterized by root growth rates of up to 1.5–2.5 cm per day, resulting in an 

average residence time of approximately 5 h in a given soil volume for the apical root zone 

which usually exhibits the highest rates of root exudation (Jones et al., 1996; Neumann and 

Römheld, 2000). The prolonged secretory activity of cluster roots in the same soil compartment 

may therefore additionally increase the accumulation of root exudates in the rhizosphere by a 

factor of approximately 10-15 compared with normal lateral roots. These model calculations 

demonstrate that, compared with metabolic alterations, characteristics of cluster root morphology 

and development are at least of equal importance for a significant rhizosphere accumulation of 
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P-mobilizing root exudates. Future attempts for biotechnological manipulation of carboxylate 

exudation towards improved nutrient acquisition of crop plants must therefore not only consider 

the complexity of regulatory processes involved in carboxylate metabolism and transport, but 

also aspects of root morphology. Thus, it is not surprising that up to now, simple overexpression 

or antisense repression strategies of single genes are frequently not reproducible (Delhaize et al., 

2001). 

 

The experiments with elevated atmospheric CO2 concentrations demonstrate a differential 

influence of CO2 on cluster root development and cluster root function. For future research 

activities, this underlines the importance to consider also the influence of environmental factors 

on expression of adaptive plant responses to P limitation.  
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Abstract 
 

 

In many tropical and subtropical areas crop production is severely limited by a deficiency of 

plant-available phosphorus (P) in the soils. Therefore plant mechanisms to mobilize the sparingly 

soluble P fraction are of high interest. One such mechanism of P-deficient plants is the exudation 

of carboxylates and protons from roots. White lupin (Lupinus albus L.) was chosen as a model 

system to investigate plant metabolism under P deficiency which enable the plant to release 

extraordinarily high amounts of citrate and protons from its cluster roots (bottlebrush-like 

clusters of short rootlets of determinate growth which form along secondary lateral roots). The 

aim of this work was to determine the reasons for the high citrate acccumulation observed in 

mature cluster roots of P-deficient white lupin and to characterize the regulation of citrate 

release.  

A threshold citrate concentration is seen as a prerequisite for the transient pulse of intense citrate 

exudation associated with rhizosphere acidification which occurs over a time period of 2-3 days.  

Biochemical changes on the anabolic side of citrate metabolism such as increased activities of 

phosphoenolpyruvate carboxylase (PEP-C) or malate dehydrogenase (MDH) cannot solely 

explain the very high citrate accumulation observed during cluster root development, although 

these reactions supply the cluster roots with citrate precursors. In addition, pyruvate 

concentrations decrease in developing cluster roots, probably in relation to the decreasing malic 

enzyme activities in the respective clusters.  

Citrate accumulation might also be caused by an impaired citrate turnover. Aconitase, the 

enzyme catalyzing the turnover of citrate via cis-aconitate to isocitrate, showed decreasing 

activities during cluster root development. NADP-isocitrate dehydroganase (NADP-ICDH) 

activities, as the next metabolic reaction which oxidizes isocitrate to 2-oxoglutarate, paralleled 

aconitase activities in all the different root segments investigated, although on a two- to threefold 

higher level. For this, aconitase rather than NADP-ICDH activities seem to limit citrate turnover. 

Specific activities of aconitase and NADP-ICDH were the same in all the root segments 

investigated.  

Aconitase is rapidly inactivated by H2O2, which can be produced at increased rates under P 

limitation. However, neither H2O2 concentrations nor malondialdehyde concentrations as a 

marker for lipid peroxidation under oxidative stress were increased in clusters with low aconitase 

activities. Artifical inhibition of aconitase by incubating young cluster roots with high amounts 

of externally applied H2O2 did not change citrate and malate concentrations in these root 
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segments. However, a strong increase in citrate concentrations and a strong decrease in malate 

concentrations in young cluster roots, together with high citrate exudation rates, could be 

observed when monofluoroacetate (MFA) as another aconitase inhibitor was applied. Inhibition 

of the aconitase enzyme therefore forced still young clusters to react like mature ones. This hints 

to aconitase as a key metabolic step in citrate turnover. High rates of carboxylate exudation were 

measured even from seedling root tips when incubated with MFA.  

Decreasing dehydrogenase activities as found during cluster root development by in situ staining 

with formazan were independent of the substrate supplied (citrate, aconitate, isocitrate, succinate, 

malate). This is in accordance with the decreasing enzyme activities measured in the different 

root segments such as aconitase, NADP-ICDH or malic enzyme in vitro. A reduced nitrate 

reductase (NR) activity under P deficiency, resulting in a lower drainoff of 2-oxoglutarate for N 

assimilation, seems not to play an important role for citrate accumulation, since an artificial NR 

inhibition with tungstate did not significantly increase citrate concentrations in young cluster 

roots.  

The change from malate to citrate accumulation during cluster root development is paralleled by 

a reduction in ATP-citrate lyase (ACL) activity, an enzyme cleaving citrate to oxaloacetate and 

acetyl-CoA. The good correlation between the citrate/malate ratio in root exudates and ACL 

activities indicates that ACL plays a key role as a metabolic switch between malate and citrate 

accumulation during cluster root development under P deficiency. The enzyme might prevent 

high citrate concentrations under less severe P deficiency, when ACL activity is not limited by 

ATP availability. The attempt to inhibit the ACL enzyme by application of hydroxycitrate (HC) 

did not show any effect on citrate or malate concentrations in the young cluster roots. However, 

HC was probably not taken up into the root cells and could therefore not exert any inhibitory 

effects.  

Decreasing total respiration rates as found for developing cluster roots might affect citrate 

accumulation directly by reduced consumption of citrate in the TCA cycle or indirectly by H2O2-

induced inhibition of aconitase activity. However, a reduced respiration rate did not result in 

higher H2O2 concentrations in white lupin. Cytochrome pathway capacity decreased parallel to 

total respiration, suggesting that the cytochrome pathway determines total respiration. An 

increase in alternative oxidase (AOX) capacity did take place in cluster roots, but was not high 

enough to compensate for the decreased cytochrome capacity. The AOX enzyme often occurs 

under P deficiency or under oxidative stress, probably to bypass a limiting Pi-and ADP-

dependent cytochrome pathway. The amount of the AOX protein, determined by 

immunodetection, paralleled AOX capacity. However, the availability of Pi and adenylates was 

not limiting  for total respiration, since uncoupling oxidative phosphorylation with CCCP did not 
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increase the respiration rate. The citrate/malate ratio in young clusters with high rates of 

respiration and low inherent levels of citrate accumulation was only slightly increased by short-

term application      (4 -8 h) of azide and SHAM as respiration inhibitors.  

 

The concomitant release of citrate and protons from mature cluster roots of P-deficient white 

lupin plants hints to a common regulation of citrate exudation and H+-ATPase activity in this 

specific root zone. Highly purified inside-out plasma membrane (PM) vesicles were isolated in a 

membrane-physiological approach to determine H+-ATPase characteristics involved in citrate 

exudation under P deficiency.  

Increased hydrolytic activity of the PM H+-ATPase derived from P-deficient plants parallels an 

increase in rhizosphere acidification and citrate exudation and hints to a causal relationship. 

Western blot analysis revealed a higher H+-ATPase protein amount under P deficiency. The 

optimum pH of the H+-ATPase was shifted towards more acidic conditions under P-deficiency, 

which might be an adaptation to the supposedly decreased cytosolic pH brought about by the pH 

stat mechanism when carboxylates accumulate. Lower citrate concentrations (2 mM) stimulated 

PM vesicle acidification even in the absence of ATP, which was further enhanced by the 

addition of Mg-ATP, and particularly expressed in PM vesicles isolated from roots of P-deficient 

plants. Accordingly, 14C-citrate was taken up at higher rates into vesicles derived from P-

deficient white lupin compared with vesicles of P-sufficient control plants. Therefore citrate 

transport predominantly occurs in roots of P-deficient plants, and is linked with the activity of 

the PM H+-ATPase to maintain the electrochemical potential gradient which is reduced by citrate 

export out of the cell. Citrate exudation combined with an increase in H+-ATPase activity seems 

to prevent citrate accumulation up to concentrations which might exert inhibitory effects on the 

PM H+-ATPase. Such an inhibition was seen by diminished intravesicular proton accumulation, 

detected with the pH probe acridine orange, when 5 mM citrate were applied to the vesicle 

preparation. No such inhibitory effects were observed by malate application, which hints to a 

citrate-specific reaction.  

Lowering the cytosolic pH by external application of propionate stimulated citrate and malate 

exudation in non-cluster laterals and in young clusters. Therefore a causal relationship might 

exist between citrate accumulation and exudation by acidification of the cytosol. The threshold 

citrate concentration at which citrate exudation is triggered perhaps is reached when citrate 

accumulation leads to acidification of the cytosol. Carboxylate exudation in young cluster roots 

and seedling root tips hints to a putative anion channel which already exists in young tissue and 

might be regulated in relation with H+-ATPase activity and cytosolic pH.  
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Protoplasts, isolated from mature cluster roots, did only give very low yield and were not viable 

for seals high enough for patch-clamp studies. This might be due to the fast senescence in the 

developing clusters which also seems to change membrane integrity. High yields could only be 

gained from seedling root tips, or cotyledons. Similarly, protoplast isolation from root hairs also 

was only possible from seedling root tips or non-cluster lateral root tips, but even not from just 

emerging root hairs of young cluster roots.  

 

To determine the influence of a second growth factor in addition to P deficiency on citrate 

metabolism, white lupin was cultivated in nutrient solution and in rhizoboxes at ambient (400 

µmol mol-1) and at elevated (800 µmol mol-1) atmospheric CO2 concentrations. 

Plant development was accelerated at elevated CO2 concentrations, and P deficiency and 

senescence symptoms such as yellowing, wilting, and abscission of leaves could be seen much 

earlier.  When cultivated in nutrient solution, shoot growth was rather unaffected by the CO2 

concentration, whereas root growth was much faster at elevated CO2. Quite contrary, shoot 

growth was slightly higher at elevated CO2 concentrations in plants in rhizobox culture, but root 

growth was unchanged. However, the harvest of a higher amount of cluster roots from plants at 

elevated CO2 or the calcareous soil might have reduced root growth of the plants grown in 

rhizoboxes. 

Higher root/shoot ratios under P deficiency were further increased at elevated CO2 

concentrations. The amount of clusters was higher in plants grown in nutrient solution at 800 

µmol mol-1 CO2 from day 21 to day 33 after sowing, but thereafter the differences disappeared. 

No significant differences between CO2 treatments were observed for the proportion of cluster 

roots relative to the whole root system. Independent of the cultivation method, root exudation per 

cluster or per cluster root weight was unchanged by the elevated CO2 concentration. The 

distribution of citrate and malate exudation in different cluster root segments with decreasing 

malate exudation and a peak of citrate exudation in mature clusters was also confirmed at 800 

µmol mol-1 CO2. The increased carbon distribution into the root at 800 µmol mol-1 CO2, seen in a 

higher root/shoot ratio, was not transformed into higher exudation rates from the single cluster. 

Acid and alkaline phosphatase activities in the rhizosphere of L. albus continually increased 

during cluster root development independent of the CO2 supply. 

Phosphatase activities and carboxylate accumulation and exudation rates were essentially 

unchanged by different atmospheric CO2 concentrations. This might be due to also unaltered Pi 

concentrations in the respective root segments, because internal P concentrations seem to 

determine these parameters. Since citrate accumulation and exudation probably depends on 

citrate degradation, which is not influenced by the amount of carbon supplied for anabolic 
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processes, elevated CO2 concentrations do rather not change citrate concentration and exudation. 

Accordingly, no significant effects of different CO2 concentrations were seen on microbial 

diversity in the rhizosphere of white lupin.   

So far, no single cause or mechanism was found to be responsible for the high citrate 

concentrations measured in mature cluster roots, although citrate degradation seems to be 

important and aconitase probably plays a key role. A general impairment of metabolism due to 

decreasing concentrations of Pi, adenylates, RNA, and proteins rather seems to bring about 

decreasing enzyme activities and reduced respiration. Various regulatory mechanisms via 

phosphorylation/ dephosphorylation, phytohormones, nitric oxide, or others also have to be 

considered.  
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Zusammenfassung 
 

In vielen tropischen und subtropischen Gebieten wird die Produktion landwirtschaftlicher 

Erzeugnisse durch einen Mangel an pflanzenverfügbarem Phosphat (P) limitiert. Deshalb sind 

Mechanismen von Pflanzen, die schwer lösliche P-Fraktionen mobilisieren, von hohem 

Interesse. Einer dieser Mechanismen unter P-Mangel besteht aus der Mobilisation schwer 

verfügbaren Phosphats durch die Wurzelexsudation von Carboxylaten und Protonen. 

An Weisslupine (Lupinus albus L.) als Modellpflanze sollte der Stoffwechsel unter P-Mangel 

untersucht werden, der die Pflanze in die Lage versetzt, extrem hohe Mengen an Citrat und 

Protonen von ihren Clusterwurzeln (flaschenbürstenartige Bündel kurzer Seitenwurzeln mit 

begrenztem Längenwachstum, die an Lateralwurzeln zweiter Ordnung gebildet werden) 

abzugeben. Das Ziel der Arbeit war es, die Ursachen der hohen Citratakkumulation zu ermitteln, 

wie sie in den reifen Clusterwurzeln der Weisslupine unter P-Mangel gefunden wird. Ebenso 

sollte die Regulation der Citratabgabe charakterisiert werden.  

Das Erreichen eines Citrat-Schwellenwertes wird als Voraussetzung für den vorübergehenden, 

zwei bis drei Tage andauernden Puls einer intensiven Citratabgabe gesehen, die mit einer 

Ansäuerung der Rhizosphäre einhergeht. Die Stoffwechselveränderungen auf der anabolen Seite 

des Citratstoffwechsels, wie die erhöhten Aktivitäten der Phosphoenolpyruvat-Carboxylase oder 

der Malat-Dehydrogenase, können die Verschiebung von einer Malatanreicherung zu der sehr 

hohen Citratanreicherung, wie sie während der Clusterwurzelentwicklung beobachtet wird, nicht 

vollständig erklären, obwohl die Clusterwurzeln dadurch mit Vorläufersubstanzen des Citrats 

versorgt werden. Zusätzlich nimmt die Pyruvatkonzentration in den sich entwickelnden 

Clusterwurzeln ab, was wahrscheinlich in Zusammenhang mit der nachlassenden Aktivität des 

Malat-Enzyms in den entsprechenden Clustern zu sehen ist.    

Die Citratanreicherung könnte auch durch einen gestörten Citratumsatz hervorgerufen sein. Das 

Enzym Aconitase, das den Umsatz von Citrat über cis-Aconitat zu Isocitrat katalysiert, zeigte in 

den sich entwickelnden Clusterwurzeln nachlassende Aktivität. Die Aktivität der NADP-

Isocitrat-Dehydrogenase (NADP-ICDH), die als nachfolgenden Stoffwechselschritt den Umsatz 

des Isocitrats zu 2-Oxoglutarat katalysiert, nahm parallel zu der Aktivität der Aconitase in allen 

untersuchten Wurzelabschnitten ab, in den entsprechenden Wurzelabschnitten jedoch mit einer 

jeweils zwei-bis dreifachen höheren Aktivität. Deshalb limitiert wahrscheinlich eher die 

Aconitase als die NADP-ICDH den Citratumsatz. Die spezifischen Aktivitäten der Aconitase 

und der NADP-ICDH waren jedoch in allen untersuchten Wurzelabschnitten jeweils gleich.  

Die Aconitase wird durch H2O2, welches bei P-Mangel mit erhöhter Rate produziert werden 

kann, schnell inaktiviert. Es waren jedoch weder die Konzentrationen an H2O2 noch die des 
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Malondialdehyds als Markersubstanz für Lipidperoxidation unter oxidativem Stress in den 

Clusterwurzeln erhöht, die geringe Aconitaseaktivität zeigten.       

Eine künstliche Hemmung der Aconitase durch eine Inkubation der noch jungen Clusterwurzeln 

mit hohen H2O2 –Konzentrationen veränderte die Citrat- und Malatkonzentrationen jedoch nicht. 

Ein starker Anstieg der Citratkonzentration und eine starke Abnahme der Malatkonzentration, in 

Kombination mit hohen Citratabgaberaten, konnte jedoch in jungen Clusterwurzeln beobachtet 

werden, die mit dem Aconitasehemmstoff Monofluoracetat (MFA) behandelt wurden. Die 

Hemmung der Aconitase zwang damit die noch jungen Clusterwurzeln, wie reife Clusterwurzeln 

zu reagieren. Das deutet auf die Aconitaseaktivität als eine Schlüsselreaktion beim Citratumsatz 

hin. Hohe Abgaberaten an Carboxylaten wurden sogar in Wurzelspitzen von Keimlingen nach 

MFA-Inkubation beobachtet.  

Nachlassende Aktivitäten von Dehydrogenasen, wie sie während der Clusterwurzelentwicklung 

durch in situ-Färbung mit Formazan festgestellt wurden, waren unabhängig vom angebotenen 

Substrat (Citrat, cis-Aconitat, Isocitrat, Succinat, Malat). Das stimmt mit den nachlassenden 

Enzymaktivitäten wie der Aconitase oder der NADP-ICDH in den verschiedenen 

Wurzelabschnitten überein, wie sie in vitro gemessen wurden. Eine nachlassende Nitratreductase 

(NR)- Aktivität unter P-Mangelbedingungen, die zu einem geringeren Verbrauch von 2-

Oxoglutarat für die N-Assimilation führt, scheint jedoch keine wichtige Rolle für die 

Citratakkumulation zu spielen, da eine künstliche Hemmung der NR mit Wolframat keinen 

signifikanten Anstieg der Citratkonzentrationen in jungen Clusterwurzeln bewirkte.  

Der Wechsel von einer Malat- zu einer Citratakkumulation während der 

Clusterwurzelentwicklung verläuft parallel zu einer nachlassenden Aktivität der ATP-Citrat 

Lyase (ACL), einem Enzym, das Citrat zu Oxalacetat und Acetyl-CoA spaltet. Die gute 

Korrelation zwischen dem Citrat/Malat-Verhältnis in den Wurzelexsudaten und der ACL-

Aktivität weist darauf hin, dass ACL bei dem Wechsel von der Malat- zur Citratakkumulation in 

den sich entwickelnden Clusterwurzeln unter P-Mangel eine Schlüsselrolle spielt. Das Enzym 

verhindert eventuell die Anreicherung hoher Citratmengen bei mäßigem P-Mangel, solange die 

Aktivität der ACL noch nicht durch eine limitierte ATP-Verfügbarkeit eingeschränkt ist. Der 

Versuch, die ACL durch die Anwendung von Hydroxycitrat (HC) zu hemmen, zeigte keinen 

Einfluss auf die Citrat- und Malatkonzentrationen in den jungen Clusterwurzeln. Das HC wurde 

jedoch wahrscheinlich gar nicht in die Wurzelzellen aufgenommen und konnte deshalb keine 

hemmende Wirkung entfalten. 

Nachlassende Gesamtrespirationsraten, wie sie in den sich entwickelnden Clusterwurzeln 

gefunden wurden, könnten eine Citratakkumulation auslösen, entweder über einen nachlassenden 

Verbrauch von Citrat im Citratzyklus, oder indirekt über eine H2O2-induzierte Hemmung der 
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Aconitaseaktivität. Nachlassende Gesamtrespirationsraten führten bei Weisslupine jedoch nicht 

zu einer erhöhten H2O2-Konzentration. Die Kapazität der cytochromabhängigen Atmungskette 

nahm parallel zur nachlassenden Gesamtrespirationsrate ab, was darauf hindeutet, dass diese die 

Gesamtrespirationsrate bestimmt. Eine Zunahme der Kapazität der Alternativen Oxidase (AOX) 

wurde zwar in den Clusterwurzeln gefunden, war aber nicht hoch genug, um den Verlust der 

Kapazität der cytochromabhängigen Atmungskette zu kompensieren. Der alternative 

Atmungsweg des Enzyms AOX tritt oft unter P-Mangel oder oxidativem Stress auf, 

wahrscheinlich um die gehemmte, auf Pi- und ADP angewiesene cytochromabhängige 

Atmungskette zu umgehen. Der durch Immunodetektion ermittelte Gehalt an AOX-Protein 

verlief parallel zur AOX-Kapazität. Die Verfügbarkeit von Pi oder Adenylaten limitierte die 

Gesamtrespiration jedoch nicht, da eine Entkopplung der oxidativen Phosphorylierung mit 

CCCP die Respirationsrate nicht erhöhte. Das Citrat/Malat-Verhältnis in jungen Clusterwurzeln 

mit hohen Respirationsraten und ursprünglich geringer Citratakkumulation erhöhte sich durch 

die Kurzzeit-Applikation (4-8 h) von Azid oder SHAM als Atmungsinhibitoren nur geringfügig.  

 

Die gleichzeitige Abgabe von Citrat und Protonen von reifen Clusterwurzeln der Weisslupine 

unter P-Mangel weist auf eine gemeinsame Regulation der Citratabgabe und der H+-ATPase-

Aktivität hin. Hochreine Plasmamembran (PM)-Vesikel mit inside-out-Orientierung wurden in 

einem membranphysiologischen Ansatz isoliert, um die Eigenschaften der H+-ATPase und ihren 

Zusammenhang mit der Citratexsudation unter P-Mangel zu untersuchen.  

Der Anstieg der hydrolytischen Aktivität der PM H+-ATPase von P-Mangelpflanzen verlief 

parallel zu einer verstärkten Ansäuerung der Rhizosphäre und der Citratabgabe, was auf eine 

gemeinsame Ursache hinweist. Eine Western-Blot-Analyse zeigte eine höhere Menge an H+-

ATPase-Protein in Proben, die von P-Mangelpflanzen stammten. Das pH-Optimum der H+-

ATPase war unter P-Mangelbedingungen zu einem saureren pH-Wert verschoben, was eine 

Anpassung an einen vermutlich verringerten cytosolischen pH-Wert sein könnte, hervorgerufen 

durch den pH-Stat-Mechanismus, wenn verstärkt organische Säuren unter P-Mangel gebildet 

werden. Geringere Citratkonzentrationen (2 mM) stimulierten eine Ansäuerung der PM-Vesikel 

sogar in Abwesenheit von ATP. Bei Zugabe von Mg-ATP verstärkte sich die Ansäuerung, dabei 

besonders stark in PM-Vesikeln, die von P-Mangelpflanzen isoliert worden waren. Entsprechend 

wurde 14C-markiertes Citrat mit einer höheren Rate in die Vesikel aufgenommen, die von P-

Mangelpflanzen stammten. Daraus kann geschlossen werden, dass Citrattransport hauptsächlich 

in den Wurzeln von P-Mangelpflanzen stattfindet und mit der Aktivität der PM H+-ATPase 

gekoppelt ist, die den elektrochemischen Potentialgradienten aufrechterhält, der vom 

Citratexport aus der Zelle heraus verringert wird. Citratexsudation in Kombination mit einer 
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erhöhten H+-ATPase-Aktivität, wie sie an isolierten PM-Vesikeln durch eine erhöhte 

hydrolytische und Protonentransportaktivität bei Angebot von relativ geringen 

Citratkonzentrationen gemessen werden konnte, scheint eine Citratakkumulation auf 

Konzentrationen zu verhindern, die die H+-ATPase hemmen könnten. Solch eine Hemmung der 

H+-ATPase wurde durch eine geringere intravesikuläre Protonenanreicherung, detektiert mit der 

pH-Sonde Acridin Orange, bei einer Applikation von 5 mM Citrat festgestellt. Bei der 

Applikation von Malat traten keine hemmenden Effekte auf, was auf eine citratspezifische 

Reaktion schließen lässt.  

Eine Absenkung des cytosolischen pH-Werts durch die Applikation von Propionat stimulierte 

die Citrat- und Malatexsudation von clusterlosen Seitenwurzeln und von jungen Clustern. Der 

Schwellenwert der Citratkonzentration, ab dem die Citratexsudation ausgelöst wird, ist eventuell 

dann erreicht, wenn die Citratanreicherung zu einer Ansäuerung des Cytosols führt. Die Abgabe 

von Carboxylaten aus jungen Clusterwurzeln und aus Wurzelspitzen von Keimlingen weist auf 

einen vermuteten Anionenkanal hin, der bereits in jungem Gewebe existiert und eventuell in 

Zusammenhang mit der Aktivität der H+-ATPase und dem cytosolischen pH-Wert reguliert wird.  

 

Aus reifen Clusterwurzeln isolierte Protoplasten erreichten nur eine sehr geringe Ausbeute und 

waren nicht dicht genug für die angestrebten Patch-Clamp-Untersuchungen. Das mag an der 

schnellen Seneszenz der sich entwickelnden Cluster liegen, die ebenfalls die Membranstabilität  

zu verändern scheint. Hohe Ausbeuten ließen sich nur von Wurzelspitzen von Keimlingen oder 

von Keimblättern erreichen. In ähnlicher Weise war die Isolation von Protoplasten aus 

Wurzelhaaren auch nur bei Wurzelspitzen von Keimlingen oder clusterlosen Seitenwurzeln 

möglich, jedoch nicht einmal bei sich gerade gebildeten Wurzelhaaren junger Clusterwurzeln.   

 

Um den Einfluss eines zweiten Wachstumsfaktors zusätzlich zum P-Mangel auf den 

Citratstoffwechsel zu untersuchen, wurde Weisslupine in Nährlösung und in Wurzelkästen bei 

400 µmol mol-1 und 800 µmol mol-1 atmosphärischer CO2-Konzentrationen angezogen.     

Die Pflanzenentwicklung war bei einer CO2-Konzentration von 800 µmol mol-1 beschleunigt, 

und P-Mangel-und Seneszenzsymptome wie Gelbfärbung, Welke oder Abfallen der Blätter 

traten viel früher auf. Bei Pflanzen in Nährlösung war das Sprosswachstum von der CO2-

Konzentration unbeeinflusst, das Wurzelwachstum jedoch bei 800 µmol mol-1 CO2 viel höher. 

Im Gegensatz dazu war das Sprosswachstum bei Pflanzen in den Wurzelkästen leicht erhöht, 

aber das Wurzelwachstum unverändert. Jedoch die Ernte von größeren Mengen an 

Clusterwurzeln von Pflanzen, die bei 800 µmol mol-1 CO2 gewachsen waren, hat wahrscheinlich 

das Wurzelwachstum vermindert. Der kalkhaltige Boden hat eventuell ebenfalls das 
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Wurzelwachstum der Pflanzen in den Wurzelkästen beeinträchtigt. Ein bereits gestiegenes 

Wurzel/Sprossverhältnis der unter P-Mangel gewachsenen Pflanzen war bei 800 µmol mol-1 CO2 

noch einmal erhöht. Die Anzahl der Cluster der Pflanzen in Nährlösung war bei 800 µmol mol-1 

CO2 von Tag 21 bis 33 nach Aussaat höher, danach verschwanden die Unterschiede jedoch 

wieder. Die Anzahl der Clusterwurzeln pro Gesamtwurzelmasse wurden von untschiedlichen 

CO2-Konzentrationen nicht verändert. Unabhängig von der Anzuchtmethode veränderten 800 

µmol mol-1 CO2 die Wurzelexsudation pro Cluster oder pro Clustergewicht ebenfalls nicht. Die 

Verteilung der Citrat- und Malatexsudation in den verschiedenen Wurzelabschnitten mit 

sinkender Malatexsudation und einer kurzfristigen extremen Citratexsudation in reifen 

Clusterwurzeln trat bei 800 µmol mol-1 CO2 ebenso auf wie bei 400 µmol mol-1 CO2. Die erhöhte 

Kohlenstoff-Verlagerung in die Wurzel bei 800 µmol mol-1 CO2, feststellbar durch das größere 

Wurzel-Spross-Verhältnis, wurde nicht in eine höhere Exsudationsrate pro Cluster umgesetzt. 

Die Aktivitäten der Sauren und Alkalischen Phosphatase in der Rhizosphäre von Lupinus albus 

nahmen während der Clusterwurzelentwicklung kontinuierlich zu, waren jedoch unabhängig von 

der CO2-Konzentration.  

Die im wesentlichen unveränderten Phosphataseaktivitäten und die unveränderte Anreicherung 

und Abgabe von Citrat bei 400 und 800 µmol mol-1 CO2 werden wahrscheinlich durch die 

ebenfalls unveränderten Pi-Konzentrationen in den entsprechenden Wurzelabschnitten 

hervorgerufen, da die interne P-Konzentration diese Parameter zu bestimmen scheint. Da 

Citratanreicherung und Abgabe wahrscheinlich hauptsächlich durch die Rate des Citratabbaus 

geregelt wird, die unabhängig von der C-Versorgung ist, verändert eine erhöhte CO2-

Konzentration diese Parameter ebenfalls nicht. Entsprechend waren auch keine signifikanten 

Einflüsse des CO2 auf die mikrobielle Diversität in der Rhizosphäre der Weisslupine 

festzustellen. 

Nach bisherigen Erkenntnissen scheint die hohe Citratkonzentration in reifen Clusterwurzeln 

nicht durch einen einzelnen Faktor hervorgerufen zu werden, obwohl der Citratabbau offenbar 

wichtig ist und die Aconitase eventuell eine Schlüsselrolle spielt. Vielmehr scheint eine 

allgemeine Beeinträchtigung des Stoffwechsels durch nachlassende Konzentrationen an Pi, 

Adenylaten, und Protein verminderte Enzym -und Atmungsaktivitäten hervorzurufen. 

Verschiedene Regulationsmechanismen wie Phosphorylierung/Dephosphorylierung, der Einfluss 

von Phytohormonen, oder Stickstoffmonoxid, müssen ebenfalls berücksichtigt werden.
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