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General Introduction 

1 General Introduction 
 
 
 

 Gibberella zeae (Schwein.) Petch (anamorph: Fusarium graminearum Schwabe) is 

a filamentous ascomycete that infects diverse plant species and those of economic 

importance include maize and small grains such as wheat, barley, rye, triticale, and rice 

(Cook, 1981). This major causal agent of scab or Fusarium head blight (FHB) of wheat, 

reduces grain yield and quality and contaminates cereal grains with trichothecene and 

estrogenic mycotoxins that render the harvest non-marketable and pose health risks in feed 

and food products (Marasas et al., 1984, Dubin et al., 1997). Disease symptom is 

characterized by a water- soaked appearance of the spikelets which eventually become 

straw-coloured. Where conditions are highly favorable, pink-red mycelium and conidia 

developed on the spikelets and infection spreads through the entire head. Kernels ultimately 

become discoloured, shrivelled and chalky white in appearance hence the name “scab” 

(Wiese, 1987). Conidia (asexual) and ascospores (sexual) are produced which are both 

important in infecting wheat heads in the field (Stack, 1989). From 1991 to 1997 US 

farmers lost $ 2,600 million due to severe head blight epidemics and subsequent mycotoxin 

contamination of wheat and barley (Windels, 2000) and an additional $ 870 million from 

1998 to 2000 (Nganje et al. 2001).  

Aside from G. zeae, FHB is caused by several other species and the most common 

are G. avenaceae R. J. Cook (anamorph: F. avenaceum Corda ex. Fr.), F. culmorum (Smith) 

Sacc., F. poae (Peck) Wollenw., and Monographella nivalis (Schnaffit) E. Müller 

(anamorph: Microdochium nivale). G. zeae is normally prevalent in continental regions in 

Asia, North and South America and Europe whereas in temperate or maritime regions, F. 

culmorum is most common (Parry et al., 1995). There has been subsequent epidemic 

outbreaks of FHB recently in the USA and Canada, South America, Asia, and Europe (Xu 

and Chen, 1993, Parry et al., 1995, McMullen et al., 1997). These epidemics in nature could 

strike suddenly, but its appearance could be inconsistent in years, requiring high humidity 

and rainfall during flowering in the presence of susceptible host and aggressive strains of 

the pathogen.  

The saprophytic part of the life cycle of G. zeae occurs on maize stubbles and 

provides a reservoir of inoculum for the next season (Sutton, 1982). Wheat field 

management includes reduced tillage that prevent soil erosion and shortened wheat-corn 

rotations that provide maximum growing of the two crops. These practices may have 
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enhanced adaptation of pathogen population by selecting for aggressive strains and 

provided favorable environment which resulted in disease outbreaks (Teich and Hamilton, 

1985). Prospects to control FHB by chemicals were poor because no fungicides have been 

found so far to be effective in controlling the disease (Milus, 1994). Resistance breeding is 

the most economical, environmentally friendly and effective way to control the disease 

(Schroeder and Christensen, 1963). Fusarium head blight resistance is quantitatively 

inherited with a considerable genetic variation among breeding materials (Mesterhazy, 

1995, Miedaner, 1997). 

 G. zeae produces trichothecene type A toxins (HT-2 toxin, T-2 toxin) and type B 

toxins (deoxynivalenol, 3-acetylnivalenol, 15-acetyldeoxynivalenol, nivalenol, fusarenone-

X, calonectrin) and zearalenone (Marasas et al., 1984, D’Mello and MacDonald, 1997). 

Type B toxins could be subdivided into two major chemotypes: (1) nivalenol chemotype 

which produces nivalenol (NIV) and fusarenone-X and (2) deoxynivalenol chemotype 

which produces deoxynivalenol (DON, vomitoxin) and acetyldeoxynivalenol (ADON). As 

a member of the sesquiterpenoid family of natural products, trichothecene toxins such as 

DON are potent eukaryotic protein inhibitor (Sharma and Kim, 1991, Snijders, 1994) 

causing decreased food consumption and weight gain in non-ruminant animals followed by 

diarrhea, vomiting, reproductive and haematological problems (Ueno, 1987). Human 

ingestion of contaminated grains is associated with alimentary toxic aleukia, nausea, 

depression of the immune system, skin necrosis and hemorrhage of lungs and 

gastrointestinal tract (Marasas et al., 1984, Beardall and Miller, 1994). Trichothecenes are 

also phytotoxins causing chlorosis, necrosis, and wilting (McClean, 1996). For this reason, 

these compounds might contribute to the pathogenicity and/or aggressiveness of the 

pathogen. DON producers of G. zeae and F. culmorum are considered more aggressive on 

wheat and rye than NIV producers (Gang et al., 1998, Cumagun et al., 2004). 

G. zeae is homothallic, i.e., a single mycelium is capable of reproducing sexually, 

but can be outcrossed under laboratory conditions to allow meiotic analysis (Bowden and 

Leslie, 1999). Outcrossing has not yet been directly observed in the field, but has been 

speculated on data from laboratory studies using phenotypic markers such as vegetative 

compatibility groups (VCGs) (Bowden and Leslie, 1992) and molecular markers (Schilling 

et al., 1997, Miedaner et al. 2001). Based on the sequence analysis of six genes, O’Donnell 

et al. (2000) classified the fungus into seven biogeographically structured lineages which 

may eventually be regarded as species. These lineages have come from different regions of 

the world: Lineages 1 to 5 coming from the Southern Hemisphere (two in South/Central 
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America, three in Africa) and the recently derived lineage 6 and 7 from the Northern 

Hemisphere, lineage 6 being restricted to Asia (Japan). An eighth lineage from Brazil has 

been recently discovered (Ward et al., 2002). At least four of these lineages can cause 

typical FHB disease in wheat. Lineage 7, being the most dominant, is the only lineage that 

has been so far reported in Europe and North America. 

As used in our studies, the term pathogenicity means the ability to cause disease 

while aggressiveness refers to the quantity of disease induced by a pathogenic isolate on a 

susceptible host in a system in which the isolates do not interact differentially with host 

cultivars (Vanderplank, 1968). Aggressiveness of G. zeae is non-host specific, i.e., races 

have not been found in populations of this fungus (Mesterhazy, 1995, Van Eeuwijk et al., 

1995). Quantitatively varying levels of aggressiveness have been demonstrated in G. zeae in 

field and international collections (Miedaner and Schilling, 1996, Miedaner et al., 2001). 

High genotypic diversity in a collection of 24 isolates from 23 locations in Kansas, each 

belonging to different VCGs (Bowden and Leslie, 1992) and even from single wheat heads 

(Bowden and Leslie, 1997) was reported. Miedaner et al. (2001), using random amplified 

polymorphic DNA (RAPD) markers, found high degree of variation among isolates within 

species from different countries. Sources of genetic variability are mutation, somatic 

recombination by heterokaryosis and sexual recombination that are likely due to large 

population sizes and short asexual generation times of G. zeae. Additionally, genetic 

variation in fungal populations can be affected by genetic drift, gene flow, and selection 

(McDonald and McDermott, 1993). It has ever been a challenge to investigate to which 

extent variations in pathogen aggressiveness and mycotoxin production are due to genetic 

or non-genetic effects. 

Little is understood about genetics of pathogenicity and aggressiveness in G. zeae. 

So far, only trichothecenes have been conclusively identified as an aggressiveness factor by 

gene technology. This was done by disrupting TRI5, the gene that encodes trichodiene 

synthase, the first enzyme in the trichothecene gene cluster to generate a trichothecene-

deficient isolate (Proctor et al., 1995). The inability to produce trichothecenes did not affect 

pathogenicity in wheat or maize but aggressiveness by producing significantly less disease 

on both hosts (Proctor et al, 1995, Desjardins et al., 1996, Harris et al., 1999, Bai et al., 

2002). In addition to trichothecenes, the role of cell-wall degrading enzymes, hormones and 

metabolites including zearalenone and fusarins on aggressiveness cannot be ruled out 

(Miedaner, 1997, Wanyoike et al., 2003). Recently, a mitogen-activated protein kinase 

homologue Gpmk1 has been identified as pathogenicity factor (Jenczmionka et al., 2003). 
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Advances in genomics to identify and characterize genes involved in these traits have also 

been initiated. Kruger et al. (2002) established an EST (expressed sequence tag)-data base 

comprising of many sequences, unique to wheat scab interaction. To further enrich the 

database and improve gene characterization, Trail et al. (2003) have recently generated 

7996 ESTs from three cDNA libraries and identified 2110 putative genes of the fungus.  

Use of segregating populations of G. zeae offers an alternative approach to study 

pathogenicity and aggressiveness of G. zeae by analysis of the inheritance of these traits 

including mycotoxin production. Jurgenson et al. (2002) constructed the first amplified 

fragment length polymorphism (AFLP)-based genetic map of G. zeae  consisting of 1048 

markers that mapped to 468 loci on nine linkage groups. The application of this map has 

become evident in the first part of our research with the aim to map pathogenicity and 

aggressiveness in an interlineage cross of a low NIV- producing isolate R-5470 from Japan 

and high DON-producing isolate Z-3639 from Kansas, USA, estimate the number of QTLs 

responsible for these traits and determine if either pathogenicity or aggressiveness in the 

greenhouse is associated with the type or amount of mycotoxin produced under laboratory 

conditions. The second part aims to analyse polymorphisms by AFLP and RAPD markers 

within lineage 7 of two medium DON producing parents (FG24 from Szeged, Hungary and 

FG3211 from Sersheim, Germany) and their progeny and compare genetic similarity of the 

parents of the different lineages. The third part aims to analyse the inheritance of 

aggressiveness traits (head blight rating and relative plot yield) and DON production of the 

progeny of the same intralineage cross and estimate the relative size of environmental, 

progeny and progeny-environment interaction variance of these traits across three field 

environments. The fourth part takes into account the covariation between fungal 

colonization (measured as Fusarium exoantigen content) and DON production of G. zeae 

on wheat plants and provide adequate evaluation of fungal aggressiveness. The fifth part 

provides insights on the stability of aggressiveness in a segregating population of G. zeae in 

both greenhouse and field environment which could eventually contribute to minimal costs 

in testing aggressiveness for plant breeders, pathologists and biotechnologists.  
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ABSTRACT 

Cumagun, C. J. R., Bowden, R. L., Jurgenson, J. E., Leslie, J. F., and Miedaner, T. 2003. 
Genetic mapping of pathogenicity and aggressiveness of Gibberella zeae (Fusarium 
graminearum) toward wheat. Phytopathology 93: 000-000.   
 

Gibberella zeae is the major fungal pathogen of Fusarium head blight of wheat and 
produces several mycotoxins harmful to humans and domesticated animals. We identified loci 
associated with pathogenicity and aggressiveness on an Amplified Fragment Length 
Polymorphism (AFLP)-based genetic map of G. zeae in a cross between a lineage 6 nivalenol 
producer from Japan and a lineage 7 deoxynivalenol producer from Kansas. Ninety-nine 
progeny and the parents were tested in the greenhouse in two years. Progeny segregated 
qualitatively 61:38 for pathogenicity:nonpathogenicity. The trait maps to linkage group IV 
adjacent to loci that affect colony pigmentation, perithecium production, and trichothecene 
toxin amount. Among the 61 pathogenic progeny, the amount of disease induced 
(aggressiveness) varied quantitatively. Two reproducible quantitative trait loci (QTL) for 
aggressiveness were detected on linkage group I by simple interval analysis. A QTL linked to 
the TRI5 locus (trichodiene synthase in the trichothecene pathway gene cluster) explained 
51% of the variation observed and a second QTL some 50 cM away, 29% of the phenotypic 
variation. TRI5 is tightly linked to the locus controlling trichothecene toxin type. The two 
QTLs, however,  were likely part of the same QTL by composite interval analysis.  Progeny 
that produced deoxynivalenol were, on average, about twice as aggressive as were those 
producing nivalenol. No transgressive segregation for aggressiveness was detected. The rather 
simple inheritance of both traits in this interlineage cross suggests that relatively few loci for 
pathogenicity or aggressiveness differ between lineage 6 and 7. 
 
Additional keywords: AFLP, cereal, deoxynivalenol, nivalenol, scab, trichothecenes, Triticum 

aestivum 
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Gibberella zeae (Schwein.) Petch (anamorph: Fusarium graminearum Schwabe) causes scab 

or head blight of wheat and other small grains. As one of the most important plant diseases in 

the United States and in many other parts of the world (30), it incurs serious economic losses 

not only in terms of yield (53), but also by contamination of the grain with trichothecene 

mycotoxins. These compounds are potent inhibitors of eukaryotic protein synthesis, and can 

cause serious mycotoxicoses in both humans and domesticated animals (29,42). 

Trichothecenes also are toxic to plants (17), and these compounds are thought to play a role in 

pathogenicity, i.e., ability to cause disease, aggressiveness, or both, i.e., quantity of disease 

induced by a pathogenic isolate on a susceptible host (11,17,41).  

Genotypic differences among isolates of G. zeae from collections and field populations have 

been extensively described (5,13,31,33,54,55). O’Donnell et al. (38) proposed that the species 

is divided into a series of seven phylogenetic lineages based on DNA sequences of six genes. 

Interestingly, sequences of trichothecene pathway genes do not generate the same phylogenies 

(51). The lineages have different geographic distributions, differ in production of 

trichothecene mycotoxins, and may differ in their ability to cause disease on particular crops. 

Deoxynivalenol (DON) and its acetylated derivatives 3-acetyldeoxynivalenol (3-ADON), 

and nivalenol (NIV) are the most important trichothecenes found in cereals (29). DON, also 

known as vomitoxin, is the most common trichothecene in Europe and North America (40). 

NIV-producing strains of G. zeae have been reported in Europe (4), Africa (45), Asia (44), 

and South America (14) but not in North America (1). The occurrence of high NIV-producing 

strains that produce little or no DON, and vice versa, is now well established (32), and a 

single gene (TRI13) responsible for the differential ability to produce DON or NIV has been 

identified (25). NIV is considered to be more toxic to animals than is DON (46). 

The role of trichothecenes in plant disease is not clear. A positive correlation between 

aggressiveness and DON production by G. zeae and F. culmorum has been reported (15,19), 

but other results have showed no correlation or have been inconsistent (2,26,50). A 

trichothecene-deficient G. zeae mutant induced by disruption of TRI5, the gene encoding the 

first enzyme in the trichothecene pathway, was still pathogenic to wheat, rye (11,41), and 

maize (17), but was less aggressive than its wild-type progenitor. Recently, Bai et al. (3) 

reported that DON-non-producing strains could cause initial infections on wheat spikes, but 

could not spread beyond the initial infection, suggesting that DON is an aggressiveness, rather 

than a pathogenicity factor (17, 41). There are several reports that DON-producing strains are 

more aggressive towards plants than are those that produce NIV (27,32,34); however, there is 

at least one contrary report (7). 
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We took an alternative approach to studies of pathogenicity and aggressiveness of G. zeae 

by utilizing the progeny of a cross used to generate a previously constructed genetic map of 

G. zeae (21). The mapping cross was made between a lineage 6 nivalenol producer and a 

lineage 7 deoxynivalenol producer. The existing genetic map makes it possible to perform 

quantitative trait locus (QTL) analysis on the progeny. In addition, because the progeny 

segregate for both the amount and type of trichothecene toxin produced, we could test the 

hypothesis that these traits are related to either the pathogenicity or the aggressiveness of the 

strain. 

Our objectives in this study were: (i) to estimate the number of QTLs responsible for 

pathogenicity and aggressiveness and to locate the QTLs on the existing map of G. zeae, and 

(ii) to determine if either pathogenicity or aggressiveness is associated with the type or 

amount of mycotoxin produced under laboratory conditions. A preliminary report of this 

study has been published (10).  

 

MATERIALS AND METHODS 

 

Mapping population. The mapping population analyzed is the same as that used by 

Jurgenson et al. (21) to create a genetic map for G. zeae. A DON-producing strain, Z-3639 

[member of lineage 7 (38)], isolated from wheat in Kansas (5), and a NIV-producing strain, 

R-5470 (member of lineage 6 (38), isolated from barley in Japan, and provided by Paul E. 

Nelson (Department of Plant Pathology, Pennsylvania State University, University Park, PA) 

served as the parents. The map is based on the segregation of 1048 polymorphic Amplified 

Fragment Length Polymorphism (AFLP) markers to 468 loci in 99 haploid progeny. The total 

map length is approximately 1300 centiMorgans (cM) with nine linkage groups and an 

average distance between loci of 2.8 cM. 

Inoculum production. G. zeae was cultured on synthetic nutrient-poor agar (SNA; 

Nirenberg, 1981) in 90 mm diameter Petri dishes that were incubated at 24°C in the dark for 

the first 24 h and afterwards exposed to two black light tubes (Philips TLO, 40 W/80, Royal 

Philips Electronics, Amsterdam) for 25/22°C (day/night) for 1-2 weeks until conidia formed. 

Not all strains produced sufficient conidia under these conditions. These strains grew as flat 

pionnotal colonies that conidiated when cultured on potato dextrose agar (PDA, Merck, 

Darmstadt, Germany). Conidia were washed from the plates with sterile tap water and the 

concentration adjusted to 5 × 104 spores/ml following a count in a haemacytometer.  
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Greenhouse tests and evaluation. Seeds of a susceptible German spring wheat genotype, 

Munk, were sown in plastic trays and cultivated in a greenhouse. After approximately 10 

days, seedlings were transplanted in groups of six into plastic pots (13 × 13 cm2) containing 

compost soil and cultivated in a cool greenhouse with no temperature regulation.  Plants were 

fertilized with nitrogen during the growing stage. Four plant heads/pot for a total of five 

pots/strain were inoculated at mid-anthesis. Approximately 10 µl of a spore suspension was 

injected into the left and right floret of a central spikelet on both sides of each head (4 × 10 µl 

injections per head) with a hypodermic needle (0.5 mm gauge) in a controlled plant growth 

chamber (21°C day/19°C night). Inoculated plants were covered with plastic sheets and 

incubated for 48 h in the dark (90-100% relative humidity), then uncovered and incubated for 

an additional 48 h (60-80% relative humidity) under artificial light. Due to limited space in 

the plant growth chamber, the progeny were chosen randomly and tested in 3-5 batches with 

both parental strains included in each batch. After the first four days of incubation, plants 

were transferred to a heated greenhouse with a mean temperature of 18-20°C and a day length  

(artificial light) of 16 h. The number of infected spikelets was counted  11, 14, 18 and 23 days 

after inoculation and calculated relative to the total number of spikelets per head. To minimize 

error, results from the four evaluation dates for each experiment were averaged (= raw values) 

and the means adjusted relative to the respective batch mean consisting of 10-24 pathogenic 

progeny per batch. This experiment was conducted over two years (2001, 2002). Toxin data 

were the same as used for producing the genetic map (21). 

Statistical analyses. Data analyses were based on pot means, i.e., the mean of four heads.  

When the entire set of progeny was analyzed, the data were not normally distributed (Fig. 1). 

Therefore analysis of variance (ANOVA) was calculated only for the pathogenic progeny. In 

the pathogenic progeny subpopulation, error variances were homogeneous across years 

according to Bartlett's test (43). The two years were treated as a series of random 

environments according to Cochran and Cox (9). Estimates of variance components were 

calculated as described by Snedecor and Cochran (43). Broad-sense heritabilities (H2) were 

estimated on an entry-mean basis (12) as the proportion of genotypic to phenotypic variance. 

All analyses were performed with the computer package PLABSTAT (H. Friedrich Utz, 

University of Hohenheim, Stuttgart). The effects of genotypes, replicates and years were 

assumed to be random variables. Data were analyzed for both raw and adjusted disease 

severity.  

Initial detection of QTLs for pathogenicity or aggressiveness was done with Map Manager 

QTX11 software (28) and MAPMAKER for MacIntosh (24). Markers were subjected to 
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simple interval analysis (16) using QGENE (35) to identify significant associations between 

AFLP markers and aggressiveness with a significance level at Logarithm of Odds (LOD) 3.0 

(23). Relationships between QTLs were investigated by composite interval mapping using 

PLABQTL (47). Two separate analyses were run: all progeny, and pathogenic progeny only. 

QTL analyses were performed with adjusted disease severity values only.  

 

RESULTS 

 

Assessment of pathogenicity and aggressiveness. Disease severity increased with time 

(Table 1), with Z-3639 always the most aggressive (26% of the spikelets was infected 11 days 

post-inoculation to 53% of the spikelets infected 23 days post-inoculation). The mean values 

for the pathogenic progeny followed a similar pattern (18-36% infected spikelets over this 12-

day period). R-5470 and the 38 non-pathogenic progeny were always the least aggressive, 

with the number of infected spikelets at 11 days post-inoculation < 0.3%. This value increased 

to only ~1.6% by 23 days post-inoculation.  

The frequency distribution of disease severity appeared bimodal (Fig. 1). The Kansas 

parental strain, Z-3639, was the most aggressive entry (average adjusted disease severity 

215% across years) and the Japanese strain, R-5470, was essentially non-pathogenic (average 

adjusted disease severity 4.3% across years). Thirty-eight progeny were not pathogenic 

(adjusted disease severity < 25%) with the members of this subpopulation reacting similarly 

to the Japanese parental strain. Sixty-one of the progeny were pathogenic in both years 

(adjusted mean disease severity ≥ 25%). The 61 pathogenic progeny varied in their disease 

severity, which was interpreted as differences in aggressiveness. Segregation was similar in 

both years and no transgressive segregants were observed.  

Significant (P= 0.01) differences in aggressiveness (Fig. 1) were confirmed in an ANOVA 

of the results from the pathogenic progeny (Table 2). Progeny × year interaction also was 

significant (P < 0.01). Estimates of the broad-sense heritability (H²) of aggressiveness across 

both years for raw and adjusted values were 0.82 and 0.81 (Table 2). The variances observed 

for both the raw and the adjusted data were similar in proportion.  

Chromosomal localization and gene action and interaction. When the set of all progeny 

was analyzed by single marker regression, several markers on linkage group (LG) IV, 

including three phenotypic markers, PER1 (perithecial production), PIG1 (red pigment 

production), and TOX1 (trichothecene toxin amount), had highly significant LODs for marker 

class means for disease severity (Table 3). Simple interval analysis revealed a large peak near 
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PIG1 and another similar peak around locus 4P in both years. Composite interval analysis 

showed that the peak at 4P decreased (2002) or disappeared (2001) when background effects 

at PIG1 were controlled. This suggested that the two peaks are related. When pathogenicity 

was treated as a qualitative trait segregating 61:38 (new locus was designated PATH1), it 

mapped adjacent to PIG1, PER1, and TOX1 (Fig. 2). The mapping program also could place 

PATH1 near locus 4P with slightly lower LOD. This again suggested that the two regions of 

LG IV are related. No other significant QTLs on other linkage groups were detected in the 

analysis of the full set of progeny. 

When only the pathogenic progeny were analyzed by single marker regression, none of the 

markers on LG IV had a significant LOD. However, a large region on LG I, including 

markers TRI5 and EAAMTG0665K, were associated with aggressiveness (Table 3). 

Differences in marker class means associated with these QTLs were smaller than the 

differences associated with the markers on LG IV, but still statistically significant (P < 0.01). 

Simple interval analysis revealed a QTL peak near TRI5 and a smaller peak near 

EAAMTG0655K in both years (Fig. 3).  Composite interval analysis showed that the peak at 

EAAMTG0655K disappeared in both years when background effects at TRI5 were controlled. 

No reproducible QTLs were detected on any of the other seven linkage groups. 

The two QTLs on LG I explain 51 and 29%, respectively, of the observed variation for 

aggressiveness in this cross (Table 3). The alleles for nonpathogenicity and for lower 

aggressiveness all originated from the R-5470 parent, although some recombinants can be 

noted in each case (Table 4). The LG I-1 and LG I-2 QTLs for aggressiveness are not 

additive, since the mean disease severity (as adjusted percent infected spikelets), 62-68%, is 

the same for those with neither or either one of the two Z-3639 alleles, while the mean disease 

severity for progeny with both the LG I-1 and LG I-2 Z-3639 alleles is 131% (Table 4).  

Relationship of toxin production to aggressiveness. Amongst the 99 progeny from this 

cross, 54 were previously classified as moderate- to high-level producers and 45 were 

classified as very low producers of trichothecene mycotoxins in vitro (21).  Toxin amount was 

strongly related to disease severity, with all of the nonpathogenic progeny classified as low-

level producers (Fig. 4A). The adjusted mean disease severity for high-level producers was 

98% and the mean for low-level producers was 18%, which was significantly different (P < 

0.0001). Fifty-four high-level producing progeny were classified for ability to produce 

nivalenol or deoxynivalenol (Fig. 4B). Twenty-six strains that produced nivalenol and twenty-

eight that produced deoxynivalenol had adjusted mean disease severities of 131% and 67%, 

respectively (P < 0.0001). 
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DISCUSSION 

 

This study is the first to assign specific chromosomal regions in G. zeae to differences in 

disease severity using QTL analysis. Most QTL analyses have been made in plant or animal 

systems, although there are a few studies with fungi, e.g. Hawthorne et al. (18) and Welz and 

Leonard (52). We exploited an existing relatively dense genetic map (21) based on 99 

progeny from a wide cross of a lineage 6 nivalenol producer from Japan and a lineage 7 

deoxynivalenol producer from Kansas.  

On the basis of a two-year greenhouse experiment, pathogenicity consistently segregated in 

a qualitative manner, 61:38. The pathogenicity locus in G. zeae was designated PATH1 and 

mapped to LG IV (Fig. 2). Even under very favorable conditions for disease, nonpathogenic 

strains could only rarely spread beyond the inoculated spikelets. Although inheritance of 

pathogenicity as a single Mendelian gene has been reported in other fungi (e.g. Cochliobolus 

carbonum (36), nonpathogenicity is an unusual character for field isolates of G. zeae (31, 32). 

The segregation ratio for PATH1 was significantly different from 1:1 (P = 0.02).  Segregation 

ratios on LG IV are known to be distorted in this cross due to a putative chromosomal 

rearrangement and selection for a nit marker that was required to make the cross (21). The 

rearrangement could explain the observation of two related peaks on LG IV and the ambiguity 

of the linkage relationships for PATH1. Since the second peak was reduced or removed by 

composite interval analysis, it is likely that it is part of the same QTL as the first peak. If 

PATH1 was at or near the breakpoints of the putative inversion on LG IV, there could appear 

to be two loci due to artifacts of the mapping process. Interestingly, when nonpathogenic 

progeny were removed from the analysis, no QTLs on LG IV could be detected. Therefore, 

the pathogenicity locus on LG IV was important for pathogenicity, but not for aggressiveness. 

The parental strains differ in several additional phenotypic traits including pigmentation 

(PIG1) and level of toxin produced (TOX1) that map on linkage group IV (21). Pigmentation 

and pathogenicity are correlated in several plant pathogens including Colletotrichum 

lagenarium (39), Nectria haematococca (18), and Magnaporthe grisea (8), and PIG1 was the 

marker most closely linked to PATH1. The level of toxin produced has been reported as a 

pathogenicity factor in the interaction between G. zeae and wheat and maize (3,11,17,41). The 

TOX1 locus is associated with the amount of toxin produced in vitro, maps near PATH1 on 

LG IV, and might play a role in determining pathogenicity. The large difference in disease 

severity between high toxin producers and low producers favors that hypothesis. The absence 

of progeny that produce high levels of deoxynivalenol or nivalenol, but that are 
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nonpathogenic also supports the hypothesis. However, the existence of progeny (Fig. 4A) that 

produce low levels of toxin in vitro, but that are highly pathogenic argues against that 

hypothesis. It is possible that some progeny genetically capable of being high producers failed 

to produce high toxin levels in vitro. In that case, TOX1 and PATH1 could, in fact, be the 

same locus. It should be noted, however, that the type of toxin, but not the amount of toxin 

correlated between field and in vitro data (15). 

Hou et al. (20) recently reported that a mitogen-activated protein kinase gene (MGV1) in G. 

zeae is involved in processes related to sexual reproduction and pathogenicity. Both the 

Japanese parental strain, R-5470, and the MGV1 mutant (20) produce low levels of toxin, 

have reduced female fertility, and are non-pathogenic. Thus, R-5470 may carry a pleiotropic 

mutation similar to that in MGV1.  

If the pathogenic progeny are evaluated as an independent subset, then the variation 

remaining for mean disease severity is still significant, and the effect of the locus on LG IV is 

masked. Under these conditions, two additional linked QTLs were identified on LG I that 

account for 51 and 29% of the variation associated with this trait in this cross (Table 3, Fig. 

3). Since the smaller peak was removed in both years by composite interval analysis, it is 

likely part of the same QTL. We consider the differences affected by this QTL to be 

differences in aggressiveness sensu Vanderplank (48). Although quantitative differences in 

disease severity have been reported for field isolates of G. zeae (31-33), this study is the first 

to demonstrate quantitative differences in aggressiveness in a segregating population and to 

evaluate the genetic basis for these differences. QTL analysis clearly distinguished these loci 

for aggressiveness on LG I from those controlling pathogenicity  on LG IV.  

Interestingly, the TRI5 gene, which encodes the enzyme trichodiene synthase (6) in the 

trichothecene biosynthetic pathway gene cluster in G. zeae, was closely linked to QTL LG I-1 

(Table 3). TRI5 presumably serves as a marker for the trichothecene cluster in which TRI13, 

the gene that determines whether nivalenol or deoxynivalenol will be produced (25), also 

resides. As far as we can tell, the genes in the trichothecene cluster other than TRI13 are all 

functional in both strains. The TRI13 allele from Z-3639 is presumably non-functional, which 

leads to the production of deoxynivalenol instead of nivalenol. On average, the 

deoxynivalenol-producing progeny from our cross were about twice as aggressive on wheat as 

the nivalenol-producing progeny (Fig. 4B). This result is consistent with correlations 

observed in field collections (27,32,34). Thus, our data are consistent with the hypothesis that 

the QTL for aggressiveness on LG I results from allelic differences at one or more of the loci 

in the trichothecene gene cluster, probably TRI13. 
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Previous studies (32,33) suggested that aggressiveness is a continuous character and 

therefore probably the result of numerous quantitative genes. In contrast, this study suggests 

that only two reproducible loci affecting disease severity were segregating in this wide cross 

between lineage 6 and 7. We also found no evidence of transgressive segregation, which 

would support the hypothesis that many quantitative genes control aggressiveness. Still, some 

aggressiveness QTLs could have been missed in this study. First, it is possible that the parents 

were not polymorphic for some important QTLs. Second, the statistical power of the analysis 

is reduced by the relatively small number of pathogenic progeny and the segregation 

distortion on LGs II, IV, V, and VI. Third, some QTL may have been masked by 

environmental variables or might be more readily detected in field trials instead of greenhouse 

experiments. Additional mapping populations with more progeny might enable us to detect 

other QTLs that have lesser effects and perhaps map elsewhere in the genome. To assess 

accurately the effect of aggressiveness factors other than toxin type and remove toxin 

production from consideration as a pathogenicity factor, a cross between strains that produce 

similar levels of either deoxynivalenol or nivalenol but differ in the level of disease severity 

should be analyzed. 

Our results may have implications for the evolution of more aggressive G. zeae populations. 

We expected to see some transgressive segregation in the progeny. However, none of the 

progeny were more aggressive than the lineage 7, deoxynivalenol parent. Therefore, the risk 

of nivalenol-producing immigrants resulting in highly aggressive new strains into regions 

dominated by DON producers may be low. If highly resistant wheat genotypes are grown on a 

large scale, aggressiveness might increase in the pathogen population as a whole. Specific 

wheat cultivar × fungal strain interactions are unknown in this organism (49), but the lack of 

observed interactions may be due, at least in part, to ignorance of the genetics of the pathogen. 

Now that a QTL for aggressiveness has been confirmed on LG I, it is possible to look for 

cultivar × strain interactions, e.g. by testing the aggressiveness of nivalenol and 

deoxynivalenol strains on highly resistant wheat varieties. Thus, QTL mapping of these traits 

in the G. zeae could identify genes involved in specific interactions between the host and the 

pathogen and provide basic information needed for the management of both host and 

pathogen populations within the wheat agro-ecosystem. 
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TABLE 1. Mean disease severity across two years (percentage of infected spikelets, raw 
values) in the greenhouse 11, 14, 18, and 23 days after inoculation of Gibberella zeae 
strains Z-3639 and R-5470, and the mean of 61 pathogenic and 38 non-pathogenic progeny 
of a cross between these two strains 
 
Entry  Days after inoculationy 
 11 14 18 23 
Z-3639 26 a 39 a 47 a 53 a 
Pathogenic progeny 18 a 24 b 29 b 36 a 
Least significant difference  (P = 0.05) 11 15 17 23 
R-5470  0.3 0.4 0.7 1.6 
Non-pathogenic progenyz 0.1 0.2 0.4 1.0 

y Numbers followed by different letters in the same column are significantly different at P = 
0.05. 
z Analysis of variance was not calculated because the frequency distribution deviates from 
normality.  
 
 
 
 
TABLE 2. Variance component estimates and entry-mean heritabilities of disease  
severity of 61 pathogenic progeny of Gibberella zeae with raw values and following  
normalization to the respective batch means across two years 
 
Parameter DF Raw values Adjusted 
Sources of variation    

Year (Y) 1 4.96 -x 
Progeny (P) 60 127 **y 1500 ** 
P x Y 60 50 ** 600 ** 
Pooled Error 487 25  590  

Heritability (H2)  0.82 0.81 
90% C.I. for H2z  0.70-0.89 0.69-0.89 
x Negative estimate. 
y ** Significant at P = 0.01 (F-test). 
z Confidence intervals (C.I.) on H2 were calculated by the method of Knapp and Bridges 
(22). 
 
 

 22



Cumagun et al. (2004) Phytopathology (in press) 
 

TABLE 3. Marker and marker position, phenotypic and genetic effects, maximum LOD 
scores, and proportions of phenotypic variance explained by markers (R²) for percentage 
infected spikelets in progeny of Gibberella zeae cross Z-3639 × R-5470 in two subsamples 
tested in the greenhouse for two experimental years 
 
Subsample  

Linkage 
group 

 
Nearest marker 

 
Marker
Posi-
tionx 

Phenotypic 
difference of 

marker classesy 

 
LOD 

 

R² 
[%]z 

Additive 
genetic 
effect 

 region   (cM) Z-3639 R-5470    
All progeny LG IV-1 TOX1 24 99 18 12 43 -76 
  PER1 33 100 10 16 51 -84 
  PIG1 40 100 2.3 20 60 -91 
  4B  43 96 9.2 15 50 -84 
 LG IV-2 4P  100 98 7.3 18 56 -89 
Pathogenic  LG I-1 TRI5 111 130 66 9.6 51 -63 
progeny    
only 

LG I-2 EAAMTG0655K 156 118 65 4.6 29 -50 

x Based on existing genetic map of G. zeae (21). 
yAll marker class differences were significant at P < 0.001. Adjusted mean disease severity 
expressed as percentage of infected spikelets following normalization to the respective 
batch means from two different years. 

z R2 = Percent phenotypic variance explained by each locus using single marker regression 
analysis. 

 
 
 
 
TABLE 4. Marker class means for adjusted mean percentage infected spikelets at loci TRI5 
and EAAMTG0655K on linkage group I for 61 pathogenic progeny from Gibberella zeae 
cross Z-3639 × R-5470 tested in the greenhouse in two different years  
 

TRI5y 
EAAMTG0655K Z-3639 R-5470 Mean 

Z-3639 131 (31)z 68 (10) 100 (41) 
R-5470 66 (1) 62 (19) 64 (20) 
 Mean 99 (32) 65 (29)  

y Percentage infected spikelets. 
z Numbers in parentheses indicate number of progeny represented in mean. 
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Fig. 1. Frequency distribution of disease severity, percentage of infected spikelets adjusted 
to the batch mean, for 99 progeny from the cross of Gibberella zeae strains Z-3639 
(parental mean 215%) and R-5470 (4.3%) in the greenhouse in 2001 (■) and 2002 (□). The 
least aggressive group contains all 38 of the nonpathogenic progeny.  
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Fig. 2. Location of qualitative gene (PATH1) controlling pathogenicity on linkage group IV 
based on segregation in 99 progeny in the greenhouse in 2001 and 2002. 
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Fig. 3. Location of QTLs for aggressiveness on linkage group I (LG I) of Gibberella zeae 
based on segregation in 61 pathogenic progeny tested in the greenhouse in 2001 (dotted 
line) and 2002 (solid line). Bar indicates 20 cM. The LOD significance likelihood of 3.0 is 
marked.  
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Fig. 4. Frequency distributions of infected spikelets (%) adjusted to their respective batch 
means in wheat cultivar Munk inoculated with progeny from the cross of Gibberella zeae 
strains Z-3639 (high DON producer) and R-5470 (low NIV producer) in the greenhouse 
across two experimental years. A. High (□) or low (■) toxin production scored for all 
progeny (21). B. Deoxynivalenol (□)  or nivalenol (■) scored for high toxin producers only 
(21).  
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ABSTRACT 

 

A parent cross between two deoxynivalenol-producing Gibberella zeae FG24 

(Szeged, Hungary) x FG3211 (Sersheim, Germany) belonging to lineage 7 was analysed 

for segregation of polymorphic markers among 153 progeny using Amplified Fragment 

Length Polymorphism (AFLP) and Random Amplified Polymorphic DNA (RAPD). Fifty 

six RAPD primers and 31 AFLP primer combinations were screened for polymorphism 

between the parents. High proportion of segregation distortion among progeny was 

observed using selected primers. Genetic distance of the two parents was compared to 

isolates lineage 7, Z-3639 (Kansas) and lineage 6, R-5470 (Japan). Rate of polymorphism 

between Z-3639 and R-5470 was about three to four times greater than between FG24 

and FG3211. Isolate Z-3639 was closely associated to FG24 and FG3211 whereas R-

5470 was genetically separated based on cluster analysis, thus confirming their lineage 

grouping. Genetic distances among the four parents using AFLP and RAPD markers were 

correlated, but association between molecular markers and the aggressiveness of G. zeae 

population could not be established.  
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INTRODUCTION 

 

Fusarium head blight, caused by Gibberella zeae (Schwein.) Petch (anamorph: 

Fusarium graminearum Schwabe) is a destructive disease of wheat, causing reduction in 

yield and impairing quality of grains by contamination of toxicogenic mycotoxins such as 

deoxynivalenol (DON), its derivative 3-acetyldeoxynivalenol (3-ADON), and nivalenol 

(NIV), which are harmful to humans and animals (Marasas et al., 1984; McMullen et al., 

1997). The role of these mycotoxins have been implicated as aggressiveness factors in 

plant pathogenesis (Proctor et al., 1995; Bai et al., 2002). 

 Genetic variation of aggressiveness among isolates of G. zeae collected within a 

single field or from different geographical areas is commonly reported (Miedaner and 

Schilling, 1996; Miedaner et al., 2001; Muthomi et al., 2002), but the mechanisms of such 

variation is not well understood. The application of PCR-based technologies such as 

Amplified Fragment Length Polymorphisms (AFLP) and Random Amplified 

Polymorphic DNA (RAPD) and other DNA based markers have facilitated greatly the 

genetic analyses of phytopathogenic fungi (Brown et al., 1996). Based on the DNA 

sequences of six genes, O’Donnell et al. (2000) proposed that G. zeae consists of seven 

phylogeographical lineages coming from different geographical origins which may 

eventually be considered as species. Recently, a high-density genetic linkage map of G. 

zeae has been published (Jurgenson et al., 2002). The map was constructed from an 

interlineage cross between Kansas parent Z-3639 and Japanese parent R-5470 generating 

99 progeny. Analysis of Quantitative Trait Loci (QTL) associated with pathogenicity and 

aggressiveness of this population has been done recently (Cumagun et al., 2004). For 

linkage mapping and QTL analysis, we attempted to use another population from an 

intralineage cross between two DON-producing parents FG24 (Hungary) and FG3211 

(Germany) with 153 progeny. Both isolates were characterized by pink white colony, red 

pigmentation on potato dextrose agar (PDA), and aerial growth habit. Aggressiveness and 

DON production of the two parents did not differ greatly, but we expected that these 

characters will segregate quantitatively in the progeny.  Based on classification proposed 

by O’Donnell et al. (2000), these isolates belong to lineage 7. Map construction, however, 

has been laborious and unsuccessful due to the monomorphic character of the parents and 

the high frequency of segregation distortion, i.e., markers deviating from the Mendelian 

ratio. We therefore resorted simply to assessing the polymorphism of progeny population 
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by AFLP and RAPD markers and comparing the genetic similarity and  distance of the 

two parents with Z-3639 and R-5470.  

 

MATERIALS AND METHODS 

Crossing population  

Two pairs of parents, FG24 (Hungary) x FG3211 (Germany) and Z-3639 (Kansas) 

x R-5470 (Japan), were crossed in the lab of B. Bowden and J. Leslie at Kansas State 

University, USA (Bowden and Leslie, 1999). FG24, FG 3211, and Z-3639 belong to 

lineage 7 and R-5470 to lineage 6 (O’ Donnell et al., 2000). Only the first parent cross 

consisting of 153 progeny was analysed for segregation.  

Culture media, DNA extraction and quantification 

One hundred fifty seven isolates of G. zeae (including the four parents) were 

routinely cultivated in SNA (synthetic nutrient-poor mineral agar) according to Nirenberg 

(1981). Mycelia of the parent isolates and their progeny were produced in 100 ml flasks 

containing 20 ml of liquid SNA (without agar), and supplemented with 0.1% yeast extract 

and 10-fold increase of sugars. A 100 ml flask was inoculated with 1-3 mycelial plugs of 

a vigorously growing culture of each isolate and incubated at room temperature with 

natural light for 4 to 6 days on a shaker at 100 rpm. After incubation, pure mycelia were 

filtered off from the liquid culture on filter paper disks using a Buechner type funnel and 

a filter flask connected to a water jet pump. Mycelia were washed once with sterile-

distilled water on the filter paper and scraped off after excess liquid had been removed. 

Mycelia were immediately frozen at –20 oC for storage and then freeze-dried for 48 h 

prior to DNA extraction. Dried mycelia were crushed into a fine powder in a mixer-mill 

MM2 (Retsch, Haan, Germany) at 80 rpm for 30 sec.  

Total genomic DNA was isolated from 50 mg mycelium by a microextraction 

protocol according to Möller et al. (1992) including treatment with RNase A. The 

reaction tube consists of powdered mycelium with 500 µl TES (Tris-EDTA-SDS) (100 

mM Tris, pH 8.0, 10 mM EDTA, 2% SDS) and 50-100 µg Proteinase K from an 

appropriate stock solution. The reaction was incubated for 30 min (minimum) up to 1 h at 

55°-60°C with occasional gentle mixing. Salt concentration was adjusted to 1.4 M with 5 

M NaCl (= 140 µl), added with 1/10 vol (= 65 µl) 10% CTAB and incubated for 10 min 

at 65°C. One vol SEVAG (= 700 µl) (chloroform: isoamylalcohol, 24:1) was added, 

mixed gently, incubated for 30 min at 0°C and centrifuged for 10 min at 4°C, rpmmax. 
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Supernatant was transferred to a 1.5 ml tube, added with 225 µl 5 M NH4Ac, placed on 

ice for approx. 30 min and centrifuged, 4°C, rpmmax for 15 min. Supernatant was then 

transferred to a fresh tube; 5 µl RNase (10 mg/ml) was added and incubated for 37°C. A 

0.55 vol isopropanol (= 510 µl) was added to precipitate DNA and centrifuged 

immediately for 5 min, rpmmax. Pellets, upon removal of supernatant, were washed twice 

with cold 70% ethanol, air-dried, and dissolved in 50 µl TE (Tris-EDTA). 

DNA was quantified by diluting stock DNA with 1:10 and 1:50 with water and 

afterwards run in an electrophoresis chamber for 3 h at 50 V. Bands were stained with 

ethidium bromide and photographed under UV. Intensity of bands were quantified using 

standard digested Lambda DNA.  

 

AFLP analysis 

AFLP analysis was based on Vos et al. (1995) with some modifications using non-

radioactive staining (Zhong and Steffenson, 2001). AFLP core reagent kit (Life 

Technologies, Inc., Grand Island, NY) was used to digest and ligate DNA as template for 

PCR. AFLP primers (Life Technologies Inc., Bethesda, MD) with one selective base were 

used in preamplification. The sequences of the preamplification primers were: 5’-CTC 

GTA GAC TGC GTA CCA ATT C-3’ (E + C) and 5’-GAC GAT GAG TCC TGA GTA 

A-3’ (M + A). Amplification was performed in a 46 µl reaction volume using a Thermo 

Cycler (MJ Research Inc. Watertown MA), programmed for 20 cycles of 94°C for 1 min, 

56°C for 1 min, 72°C for 1 min, and 94°C for 30 s. The PCR reaction contained 25mM 

dNTP (deoxynucleotide triphosphates) stock, 10x Taq polymerase buffer, 5 units Taq 

DNA polymerase, 50 ng each of EcoRI and MseI preamplification primer, and a 5-fold 

dilution of template DNA. Preamplification products were run in 1% agarose gel at 85 V 

for 90 min to check the success of amplification. Primers with two selective bases were 

used for selective amplification (Table 1). The amplification reactions were performed in 

a 20 µl reaction volume, containing 10x PCR buffer, 5 units Taq DNA polymerase, 27.8 

ng EcoRI, 6.7 ng MseI + 0.89 µM dNTPs, and a 5-fold dilution of the preamplified DNA 

template. The PCR reaction consisted of 94°C for 30 s, 65°C for 30 s with a step-down of 

annealing temperature by 0.7 C/cycle, followed by 12 cycles at 72°C for 1 min, 94°C for 

30 s, 56°C for 30 s, 72°C for 1 min, 94°C for 30 s and finally 22 cycles at 56°C for 30 s 

and 72°C for 5 min. 

 After the amplification reactions, PCR products were added with an equal volume 

of formamide dye to each sample, denatured by heating for 3 min 90°C and quickly 
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chilled on ice immediately prior to gel loading. A 4.4 µl sample was loaded onto an 6% 

polyacrylamide gels (Sequa Gel, Biozym, Oldendorf) including Low Mass Ladder™ 

(Life Technologies Inc., Bethesda, MD) as a standard size marker. Electrophoresis was 

performed initially for 5 min at 1000 V (pre-heating) and 1200 V for 3 h. Gels were 

visualized by silver staining (DNA Silver Staining System, Promega, Madison, WI). 

AFLP bands from 100 to 2000 bp in size were scored using TotalLab v1.10 software 

package (Nonlinear Dynamics. Ltd, Newcastle upon Tyne). 

 

RAPD analysis 

RAPD analysis was according to Schilling et al. (1994) using RAPD decamer 

primer kit # UBC 100/1 (University of British Columbia, Vancouver) and OPT (Operon 

Technologies, Alameda, CA) with their sequences as shown in Table 2. PCR 

amplifications were conducted in a 50-µl reactions containing 1 x Taq polymerase buffer 

(50 mM KCl, 10 mM Tris, pH 7.5, 1.5 mM MgCl2), 25 mM MgCl2, 5 units of Taq DNA 

polymerase (Amersham Pharmacia Biotech, Germany), 1 mM of dNTP, and 5 mM of 

each decamer primer. 

Three cycle profiles were as follows: 94°C for 3 min, 35°C for 1 min, and 72°C 

for 2 min (cycle 1); 94°C for 1 min, 35°C for 1 min, and 72°C for 2 min (cycles 2-44); 

and a final cycle of 5 min at 72°C. Samples were prepared for electrophoresis by adding 5 

µl gel loading buffer. Reaction mix (11 µl) was loaded and DNA fragments were resolved 

by electrophoresis (2 V cm-1) in 1.5% agarose and 1 x TAE (Tris-acetate-EDTA) for 5 h 

aside with a 200 bp O’RangeRuler DNA ladder (MBI Fermentas, Germany). Gels were 

stained in ethidium bromide and photographed under UV light with a Polaroid camera.  

 

TRI5 analysis  

Ten ng of genomic DNA from each parent and progeny were digested with 4 units 

of MseI (New England BioLabs, Beverly, MA) for 2 h. Digested DNA were amplified 

with two primers: 5’-GGCATGGTTGTATACAGC–3’ and 5’CAGAGTGATCTCATGG 

CAGG–3’ and run on 1% agarose gel at 75 V for 2 hr. Gels were stained and visualized 

as described previously.  

 

Data analyses  

AFLP and RAPD bands were scored manually and analysed as binary data with 1 

(band present) and 2 (band absent) at a particular location in each lane. Using the program 
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Tools for Population Genetic Analyses (TFPGA) version 1.3 (Miller, 1997), genetic 

similarity between isolates were calculated (Nei, 1972). A dendrogram was constructed 

using the unweighted pair-group method (UPGMA) following Wright’s (1978) 

modification of Roger’s (1972) distance.  

 

 

RESULTS AND DISCUSSION 

 

The number of AFLP and RAPD polymorphic markers in the G. zeae parent 

isolates  Z-3639 and  R-5470 was about four times as much as in  FG24 and  FG3211 

(Table 1 and 2), which is consistent with the rate of polymorphism (Table 3). One to 12 

polymorphic markers per AFLP primer combination within  100 bp to 2000 bp and one to 

four per RAPD primer were detected between FG24 and FG3211. Genetic similarity 

between these two parents was quite high despite their geographical separation as 

compared to Z-3639 and R-5470 (Fig. 1, Table 4).  Dendrograms generated from both 

AFLP and RAPD markers showed that the two European parents closely resembled the 

Kansas parent confirming their lineage grouping while the Japanese parent was obviously 

far distant from the three parent isolates, thus belonging to a separate lineage (Fig. 2A and 

2B). Molecular analysis was also associated with the cultural characters of the four 

parents. About 50% difference of the observed AFLP bands between the Kansas and 

Japanese parent is consistent with that of Jurgenson et al. (2002), although we used silver 

staining method. 

 A total of 71-122 bands per lane were generated using AFLP compared to 1-11 

using RAPD. AFLP examines the whole genome and is highly reproducible (Vos et al., 

1995). These features make AFLP a more reliable technique than RAPD. Reproducibility 

is due to the specificity of primer annealing and is homologous to the adapter sequence 

and the restriction site sequence. RAPD has been critized for lack of reproducibility 

(Williams et al., 1990).  We found, however,  a good association between the two markers 

although the two methods of analysis could reveal genetic variation in different regions of 

the genome. Despite the advantages of AFLP, use of additional primer combinations 

could not detect enough polymorphism between FG24 and FG3211. This is consistent to 

the finding that some isolates of G. zeae coming from Southern and Eastern Europe are 

closely associated based on their principle coordinate analysis (Schilling, 1996). A total 

of 31 AFLP primer combinations were screened for polymorphisms between the parents 
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FG24 and FG3211 (Table 1 and Table 3), from which only six primer combinations that 

generated the highest polymorphisms were used for the progeny population. For RAPD 

analysis, only four (UBC 23, 29, 30, and 43) out of 56 primers, which generated two to 

four polymorphic markers, were selected for the progeny population. Both marker 

systems showed a very low polymorphism between the two parents in this cross and high 

segregation distortion among the progeny which made it difficult to construct the map. 

Bowden et al., (2002) encountered the same problem using a narrow cross within lineage 

7. The Kansas parent Z-3639 was paired with PH-1 from Michigan. To solve the problem 

of segregation distortion associated with the nit marker technique, one parent that had a 

deletion in the MAT2 (mating type 2) gene was used which made it heterothallic. This 

technique avoided segregation distortion associated with nit markers. Segregation 

distortion was also reported in the Z-3639 x R-5470 cross (Jurgenson et al., 2002). This 

problem was confirmed in the FG24 x FG3211 cross where out of 45 AFLP polymorphic 

markers detected, only 28 loci (62%) segregated in a 1:1 Mendelian ratio. It is even worse 

in the case of RAPD, where one out of nine loci has a 1:1 segregation distortion. (data not 

shown). Segregation distortion was also observed in Phytophthora infestans and 

Leptosphaeria maculans (Van der Lee et al., 1997; Pongam et al., 1998). This is a 

common phenomenon in linkage analysis when linkage between markers and genes 

favors or acts against the survival of the individual progeny. Haploid organisms are more 

affected because the selection that causes the distortion can act virtually during the whole 

haploid life cycle (Pedersen et al., 2002). Segregation distortion could also be due to 

differential viability of ascospores isolated from different progeny genotypes. Extending 

the length of the PCR primers may reduce segregation distortion for AFLP markers 

(Nikaido et al., 1999). Frequent linkages among AFLP markers were also observed in our 

study. 

 Electrophoretic analysis of the TRI5 fragment digested with MseI revealed 

monomorphic bands between the parents and the progeny, suggesting genetic homology 

between the European isolates for this locus. There was no association between 

phenotypic data (aggressiveness) from three field environments and molecular markers. 

Similarly, variation in aggressiveness and mycotoxin production was not related to 

variation in RAPD patterns (Miedaner et. al., 2001; Muthomi et al., 2002). The degree of 

correlation between virulence and molecular markers is often low in populations that 

reproduce sexually (Burdon and Roelfs, 1985),  suggesting that DNA analysis provides a 
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weak predictive information about the variation of aggressiveness and the potential for 

new pathotypes to evolve. 

 Overall, the high genetic similarity we found between the two European parents 

limits contruction of a genetic map. As a fallback plan, we recommend to test 

polymorphisms of a collection of G. zeae isolates within lineage 7. It is possible that we 

selected the monomorphic FG24 and FG 3211 parents by chance. If lineage 7 isolates are 

highly monomorphic indeed, it would be worth to continue mapping the FG24 x FG3211 

cross despite the huge amount of work required.  
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Table 1. Primers used for AFLP analysis of Gibberella zeae isolates and number of 

polymorhic bands for two pairs of isolates 

 

No of polymorphic bands (100-2000 bp)Primer combination Sequence 5’-3’ 
FG24/FG3211 Z-3639/R-5470 

E-AA+M-AA AGA CTG CGT ACC AAT TCA A 
GAT GAG TCC TGA GTA AAA 

1 17 

E-AT+M-CA* AGA CTG CGT ACC AAT TCA T 
GAT GAG TCC TGA GTA ACA 

5 35 

E-GA+M-AA AGA CTG CGT ACC AAT TCG A 
GAT GAG TCC TGA GTA AAA 

2 8 

E-TG+M-AG AGA CTG CGT ACC AAT TCT G 
GAT GAG TCC TGA GTA AAG 

3 11 

E-AA+M-AG AGA CTG CGT ACC AAT TCA A 
GAT GAG TCC TGA GTA AAG 

2 NDb 

E-GA+M-TA* AGA CTG CGT ACC AAT TCG A 
GAT GAG TCC TGA GTA ATA 

3 14 

E-TT+M-AA AGA CTG CGT ACC AAT TCT T 
GAT GAG TCC TGA GTA AAA 

3 ND 

E-TT+M-AC AGA CTG CGT ACC AAT TCT T 
AGA CTG CGT ACC AAT TCA C 

2 ND 

E-CG+M-CG AGA CTG CGT ACC AAT TCC G 
GAT GAG TCC TGA GTA ACG 

3 18 

E-GA+M-AA AGA CTG CGT ACC AAT TCG A 
GAT GAG TCC TGA GTA AAA 

NPa 5 

E-GA+M-TC AGA CTG CGT ACC AAT TCG A 
GAT GAG TCC TGA GTA ATC 

3 15 

E-TG+M-AG AGA CTG CGT ACC AAT TCT G 
GAT GAG TCC TGA GTA AAG 

NP 19 

E-AA+M-CA AGA CTG CGT ACC AAT TCA A 
GAT GAG TCC TGA GTA ACA 

NP 16 

E-CC+M-AT AGA CTG CGT ACC AAT TCC C 
GAT GAG TCC TGA GTA AAT 

3 15 

E-CC+M-TT AGA CTG CGT ACC AAT TCC C 
GAT GAG TCC TGA GTA ATT 

2 NP 

E-GA+M-AT* AGA CTG CGT ACC AAT TCG A 
GAT GAG TCC TGA GTA AAT 

7 33 

E-TG+M-AA AGA CTG CGT ACC AAT TCT G 
GAT GAG TCC TGA GTA AAA 

1 17 

E-AA+M-AC AGA CTG CGT ACC AAT TCA A 
AGA CTG CGT ACC AAT TCA C 

2 19 

E-AT+M-CG AGA CTG CGT ACC AAT TCA T 
GAT GAG TCC TGA GTA ACG 

3 14 

E-CC+M-GT AGA CTG CGT ACC AAT TCC C 
GAT GAG TCC TGA GTA AGT 

0 4 

E-GC+M-GT AGA CTG CGT ACC AAT TCG C 
GAT GAG TCC TGA GTA AGT 

NP NP 

E-TG+M-GA AGA CTG CGT ACC AAT TCT G 
GAT GAG TCC TGA GTA AGA 

NP NP 

E-AA+M-CC AGA CTG CGT ACC AAT TCA A 
GAT GAG TCC TGA GTA ACC 

3 NP 
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Table 1. (continued) 
 

No of polymorphic bands (100-2000 bp) Primer combination Sequence 5’-3’ 
FG24/FG3211 Z-3639/R-5470 

E-AA+M-TG AGA CTG CGT ACC AAT TCA A 
GAT GAG TCC TGA GTA ATG 

1 10 

E-AT+M-GA AGA CTG CGT ACC AAT TCA T 
GAT GAG TCC TGA GTA AGA 

NP NP 

E-GC+M-AG* AGA CTG CGT ACC AAT TCG C 
GAT GAG TCC TGA GTA AAG 

12 10 

E-GC+M-TC AGA CTG CGT ACC AAT TCG C 
GAT GAG TCC TGA GTA ATC 

1 4 

E-TT+M-CC AGA CTG CGT ACC AAT TCT T 
GAT GAG TCC TGA GTA ACC 

NP NP 

E-AA+M-AT AGA CTG CGT ACC AAT TCA A 
GAT GAG TCC TGA GTA AAT 

3 19 

E-CC+M-CG* AGA CTG CGT ACC AAT TCC C 
GAT GAG TCC TGA GTA ACG 

9 20 

E- TG+M-TT* AGA CTG CGT ACC AAT TCT G 
GAT GAG TCC TGA GTA ATT 

10 NP 

Total 
 

 84 323 

aNP, no amplification products.  
bND, not determined. 

*Selected for further analysis (N = 6). 
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Table 2. RAPD primers used for analysis of Gibberella zeae and number of bands 

polymorphic for two pairs of isolates 

 

No of polymorphic bands Primera Sequence 5’-3’ 

FG24/FG3211 Z-3639/R-5470 

UBC1 CCTGGGCTTC 1 2 

UBC2 CCTGGGCTTG 1 6 

UBC3 CCTGGGCTTTA NPb 2 

UBC4 CCTGGGCTGG 0 2 

UBC5 CCTGGGTTCC NP NP 

UBC6 CCTGGGCCTA 0 2 

UBC7 CCTGGGGGTT NP NP 

UBC8 CCTGGCGGTA 0 1 

UBC9 CCTGCGCTTA NP NP 

UBC10 GGGGGGATTA NP NP 

UBC12 CCTGGGTCCA 1 6 

UBC13 CCTGGGTGGA 2 5 

UBC14 CCTGGGTTTC NP NP 

UBC15 CCTGGGTTTG 0 NP 

UBC17 CCTGGGCCTC 0 4 

UBC18 GGGCCGTTTA 0 NP 

UBC20 TCCGGGTTTG NP NP 

UBC21 ACCGGGTTTC 0 NP 

UBC22 CCCTTGGGGG NP NP 

UBC23* CCCGCCTTCC 2 8 

UBC24 ACAGGGGTGA 0 NP 

UBC25 ACAGGGCTCA 1 7 

UBC26 TTTGGGCCCA NP NP 

UBC27 TTTGGGGGGA NP NP 

UBC28 CCGGCCTTAA NP 3 

UBC29* CCGGCCTTAC 3 NP 

UBC30* CCGGCCTTAG 4 3 

UBC32 GGGGCCTTAA 1 3 

UBC33 CCGGCTGGAA 0 1 

UBC34 CCGGCCCCAA 0 4 

UBC35 CCGGGGTTAA 0 2 

UBC36 CCCCCCTTAG NP NP 
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Table 2. (continued) 

 
No of polymorphic bands Primera Sequence 5’-3’ 

FG24/FG3211 Z-3639/R-5470 

UBC37 CCGGGGTTTT 1 NP 

UBC38 CCGGGGAAAA 0 NP 

UBC39 TTAACCGGGC NP 0 

UBC40 TTACCTGGGC 0 0 

UBC41 TTAACCGGGC 0 NP 

UBC42 TTAACCCGGC 1 1 

UBC43* AAAACCGGGC 2 2 

UBC44 TTACCCCGGC 0 0 

UBC45 TTAACCCCGG 0 NP 

UBC46 TTAAGGGGGC NP NP 

UBC47 TTCCCCAAGC NP NP 

UBC48 TTAACGGGGA NP NP 

UBC49 TTCCCCGAGC 0 1 

UBC50 TTCCCCGCGC 0 NP 

UBC59 TTCCGGGTGC 0 2 

UBC66 GAGGGCGTGA 0 2 

UBC72 GAGCACGGGA 0 4 

UBC77 GAGCACCAGG 0 0 

UBC78 GAGCACTAGC 0 3 

UBC85 GTGCTCGTGC 0 0 

UBC90 GGGGGTTAGG 2 NP 

UBC98 ATCCTGCCAG 0 2 

OPT16 GGTGAACGCT 0 0 

OPT19 GTCCGTATGG NP NP 

Total  22 78 

aPrimer code (University of British Columbia, Vancouver, Canada;  Operon 

Technologies,  Alameda, CA). 
bNP, no amplification products.  

*Selected for further analysis (N = 4) 
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Table 3. Rate of polymorphism detected by AFLP and RAPD analysis  in FG24/FG3211 

and Z-3639 / R-5470 crossing parents for selected AFLP primer combinations 

 

AFLP  RAPD Category 

FG24/ 

FG3211

Z-3639/ 

R-5470 

 FG24/ 

FG3211 

Z-3639/ 

R-5470 

Number of primers tested  6  5 36  31 

Total number of fragments detected 446 415 191 206 

Average number of fragments detected/primer 

combination 

74 83 5.3 6.6 

Number of polymorphic fragments 46 122 22 78 

Rate of polymorphism (%) 10.3 29.4 11.6 37.9 

Average number of polymorphic fragments/primer 

combination 

7.6 24.4 0.6 2.5 

 

 

 

 

 

Table 4. Genetic similarity of the parents using AFLP and RAPD markers  

according to Nei (1972) 

 Genetic similarity 

Parents AFLP a RAPD b 

FG24/FG3211 0.93 0.89 

Z-3639/R-5470 0.65 0.47 
aBased on 6 AFLP primer combinations. 
bBased on 36 RAPD primers. 

 42



Cumagun et al. (2003) (unpublished)  

 

400 bp 

800 bp 

1200 bp 

2000 bp 

 

Fig. 1.  AFLP gel showing low poly

2) in contrast with  Z-3639 (lan

combination E-GA+M-AT. Molecul

 

 

 

M 1 2 3 4

 M   1   2   3   4 

morphism between  FG24 (lane 1) and FG3211 (lane 

e 3) and R-5470 (lane 4) amplified with primer 

ar marker (M) is a 2000 bp ladder. 

43



Cumagun et al. (2003) (unpublished)  

A Genetic Distance  

R-5470 

Z-3639

FG3211 

FG24 

 

 

 

 

 

 

 

 

B  
 

 
Genetic distance  

R-5470 

Z-3639 

FG3211

FG24 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Dendrograms of four parents of  Gibberella zeae  based on AFLP  (A) and RAPD 

markers (B). Genetic distances were revealed by UPGMA cluster analysis using Roger’s 

distance (1972) and Wright’s (1978) modification. Genetic distances for AFLP and 

RAPD were calculated  from the combined data of six primer combinations and 26 

primers, respectively.   
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Abstract 
 
Gibberella zeae is a devastating pathogen of wheat and other small-grain cereals, causing yield losses and 
reducing grain quality by producing the trichothecene deoxynivalenol (DON) which is harmful to animals and 
humans. We analyzed 153 progeny from a cross between two European DON-producing isolates of G. zeae 
for aggressiveness and DON production in three environments (location-year combinations) in Germany. 
Aggressiveness, measured as head blight rating and relative plot yield, and DON production showed 
continuous distribution for each environment and across environments. There was significant (P = 0.01) 
genotypic variation for all three traits. Transgressive segregants occurred for all three traits. Both repeatability 
estimates within an environment and heritability estimates on an entry-mean basis for head blight rating and 
DON production were medium to high (0.5-0.7). Progeny-environment interaction accounted for about 29% 
of the total variance for the two aggressiveness traits and 19% for DON production. The large genetic 
variation derived from a cross between two rather similar European parents indicates a potential for 
increasing fungal aggressiveness in the G. zeae  population.  

 

Introduction  
 

Gibberella zeae (anamorph: Fusarium graminea-
rum Schwabe) is an important plant pathogen 
worldwide. The fungus infects several major crops, 
including  maize, wheat, barley, rye, and triticale. 
In wheat, G. zeae causes seedling blight, crown rot, 
root rot, and head blight. Head blight or scab of 
wheat causes epidemics in many wheat areas 
worldwide (Dubin et al., 1997; McMullen et al. 
1997). The disease reduces grain quality as well as 
yield,  leading to poor germination of infected 
grains, reduction in baking quality, and mycotoxin 
contamination. Deoxynivalenol (DON), and its 

derivatives 3-acetyl-DON and 15-acetyl-DON, 
nivalenol (NIV), as well as  zearalenone (ZEA), the 
major mycotoxins produced by G. zeae (Marasas et 
al., 1984), pose animal and human health risks. In 
North America and Europe, DON is the most 
frequently encountered mycotoxin (Müller and 
Schwadorf, 1993; Placinta et al., 1999; Bottalico 
and Perrone, 2002).  

Aggressiveness is the quantity of disease 
induced by a pathogenic isolate on a susceptible 
host (Van der Plank, 1968). Several studies 
indicate that large genetic variation in 
aggressiveness among G. zeae isolates exists as 
sampled from various parts of the world (Bai and 
Shaner, 1996; Miedaner et al., 2001), within a 
country or state (Dusabenyagasani et al.,1999; 
Walker et al., 2001)  and  even  within  populations  

* This paper is dedicated to Prof. Dr. H.H. Geiger, Hohenheim, 
on the occasion of his 65th birthday. 
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from individual fields (Miedaner and Schilling, 
1996). There is also quantitative variation in 
mycotoxin production of G. zeae among a 
collection of isolates from winter rye (Miedaner et 
al., 2000). However, little is known about the 
genetic basis of aggressiveness and DON 
production by G. zeae. Knowledge of genetics of 
aggressiveness and DON production of G. zeae is 
important in developing resistant cultivars and in 
estimating durability of resistance. Resistance to G. 
zeae head blight in wheat is quantitatively 
inherited. All known cultivars are infected but the 
degree of infection greatly varies (Bai and Shaner, 
1996). 

Several studies on the role of trichothecenes in 
plant diseases suggest that DON production 
increases aggressiveness of G. zeae (Proctor et al., 
1995; Desjardins et al., 1996; Harris et al., 1999). 
Proctor et al. (1995) showed that a DON-deficient 
isolate of G. zeae generated by gene disruption 
remained pathogenic on wheat and rye but was less 
aggressive than the wild type. The finding that 
trichothecenes enhance the aggressiveness of G. 
zeae suggests that it could be possible to reduce 
head blight of wheat and mycotoxin problems 
caused by this fungus by breeding trichothecene-
resistant crops. Disease-causing capacity of the 
trichothecene-deficient mutant of G. zeae, 
however, indicates that there are other factors that 
contribute to aggressiveness, such as cell-wall 
degrading enzymes (Schwarz et al., 2002; 
Wanyoike et al., 2002) and other metabolites. 
Studies on host resistance and genetic modification 
of the pathogen are required to understand the role 
of DON in plant pathogenesis. Resistant cultivars 
will remain the most practical and effective control 
against head blight of wheat (Martin and Johnston, 
1982). 

Sexual recombination of G. zeae has been 
demonstrated under laboratory conditions, and 
should also occur in the field as indicated by high 
genotypic diversity reported within individual 
fields (Bowden and Leslie, 1992; Miedaner and 
Schilling, 1996). In the study reported here, a 
crossing population of G. zeae with two DON-
producing parents was tested in three field 
environments to analyze the inheritance of 
aggressiveness and amount of DON produced and 
the effect of environmental variation and isolate–
environment interaction on aggressivenesss traits 
and DON production. A  preliminary  report of this  

work concerning onefield environment has been 
published (Cumagun et al., 2002). 
 
 
Materials and Methods  
 
Crossing population and field tests 

 
Two DON-producing strains of G. zeae, FG24 
from Szeged, Hungary, and FG3211 from 
Sersheim, Germany, both isolated by T. Miedaner, 
served as parents for the crossing population. Both 
strains belong to lineage 7 (O’Donnell et al., 2000). 
The parents were chosen from a previous 
experiment (Miedaner et al., 2000) to represent 
different aggressiveness and DON production 
levels.  Methods for crossing G. zeae were 
described in detail by Bowden and Leslie (1999). 
G. zeae is homothallic and can outcross or self. 
Therefore, complementary nitrate non-utilizing 
(nit) mutations were employed as suitable markers. 
Parents were crossed and single ascospore cultures 
were isolated in the lab of B. Bowden and J. Leslie 
at Kansas State University, U.S.A. Moderately 
susceptible German winter wheat cultivar Drifter 
was inoculated in three field environments in 
Southwest Germany: Hohenheim (HOH) near 
Stuttgart (400 m above sea level, 8.5 oC mean 
annual temperature, 685 mm mean annual 
precipitation) in 2001 and 2002 and Oberer 
Lindenhof (OLI) near Reutlingen (700m above sea 
level, 6.6 oC mean annual temperature, 952 mm 
mean annual precipitation) in 2002.  

 
Inoculum production, inoculation, field design, 
 disease and yield assessment 

 
Conidia from 153 single-ascospore progeny of the 
cross of G. zeae and the two parents were mass 
produced following the procedure of Miedaner et 
al. (1996). Wheat grains (~300 g) previously 
soaked overnight in tap water were placed in 1 l 
milk bottles. Bottles were sealed with aluminum 
foil and autoclaved twice on successive days, at 
121oC for 20 min at 1 atm. Cooled wheat medium 
was inoculated with 10-20 ml of the conidial 
suspension, prepared by flooding one week-old 
SNA (synthetic-nutrient poor agar culture, 
Nirenberg, 1981) of G. zeae with sterile distilled 
water (SDW), and shaken to distribute the 
inoculum. After incubation at 18oC in the dark for 
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4 weeks, colonized wheat grainswere taken out of 
the bottles, mixed with SDW, and placed in a thin 
layer in plastic trays (40x 60 cm2). Trays were 
completely covered with plastic sheets and placed 
about 40 cm below two black light tubes (Philipps 
TLO, 40W/80, Royal Philipps Electronics, 
Amsterdam) for 3 days. Plastic sheets were folded 
back from part of the tray when wheat grains were 
colonized by the fungus. Colonized wheat grains 
were sprayed with sterile water while breaking-up 
clumps of moldy grains by hand and inoculum was 
air-dried for 2 to 3 days at room temperature, 
enclosed in plastic bags, and stored in a cold 
chamber at 5 oC until inoculation. Conidia 
concentration was adjusted to 500,000 conidia ml-1 
for each isolate with the use of a haemacytometer. 
Plants were inoculated with this concentration at a 
rate of 120 ml m-2 at anthesis. Inoculum 
suspensions were added with one to two drops of 
liquid cleansing agent to make sprays more 
efficient. Inoculation was done in three batches 
because of the large number of progeny. Batch 1 
consisted of progeny numbers 1-51; batch 2, 
progeny numbers 52-102; and batch 3, progeny 
numbers 103-153. The progeny of the three batches 
were sprayed onto host plants in three successive 
days relying on natural moisture. 

A split-plot design was used with the batches as 
main plots and the progeny as subplots in three 
replicates. Within the main plots, plots inoculated 
with the two parental isolates consisted of 10 
replicates each  to increase accuracy in comparing 
them with their progeny. Uninoculated plots were 
also included  to calculate relative yield 
components. Subplots were randomized following 
a complete block design. Three-row microplots 
were used (1.2 m length and 0.625 m width) for 
each isolate and plots were arranged in a chess-
cross design, i.e., each plot inoculated with an 
isolate was surrounded by four border plots of 
similar size planted with triticale to avoid plot-by-
plot interference.  

Two aggressiveness traits were assessed: head 
blight rating per plot and plot yield relative to the 
non-inoculated control. Head blight was rated by 
visual estimation (0-100%) of the whole plot when 
differences in head blight severity among 
treatments could be observed.  This rating includes 
number of heads infected (incidence) and amount 
of bleached spikelets per head (severity). Due to 
artificial inoculation, plots were evenly infected 
according to the aggressiveness of the respective  

isolates. Timing of the next rating depended upon 
the rate of disease development from the previous 
disease rating. In HOH 2001, disease was rated 18, 
20, 25, 32, and 44 days after inoculation and in 
HOH 2002 and OLI 2002, 14, 16, and 21 days after 
inoculation. Arithmetic means of the head blight 
ratings of each assessment date were averaged for 
further analyses. Grain weight was determined by 
cutting the whole plot by hand, threshing in a small 
combine, drying the grain to about 13% moisture, 
sieving to remove fragments of glumes and rachis, 
and cleaning again. For relative plot yield, yield of 
each progeny from the inoculated plots was 
calculated relative to the respective mean of the 
control plots and expressed in percentage.  

 
Mycotoxin analysis 

 
Wheat grain was ground and mycotoxins were 
extracted by weighing out 5 g of each sample in 
100 ml flasks containing 100 ml double distilled 
water. Sample suspensions were placed in a rotary 
shaker (200 rpm) for 5 min and about 1 ml of the 
suspension was transferred into Eppendorf tubes 
and centrifuged (14000 rpm) for 5 min. One ml of 
supernatant served as stock solution for dilution 
preparations. Dilutions were prepared from the 
stock solution to optimize ELISA analysis. 
Mycotoxin content (DON and 3-acetyl-DON) of 
ground wheat grain samples was analyzed using 
RIDASCREEN™ FAST DON (R-biopharm 
GmbH, Darmstadt, Germany), an enzyme 
immunoassay for the quantitative analysis of 
deoxynivalenol in cereals, malt, and feed, and a 
microtiter plate spectrometer (TECAN SLT Lab 
Instruments, Crailsheim, Germany). Due to high 
cost of ELISA, only two replicates from each field 
experiment were analyzed.  
 
 
Statistical analyses 
 
Plot means were used for analyses of variance. 
Residuals were independent and followed a normal 
distribution for head blight rating, but not for 
relative plot yield and DON production. The latter 
two trait values were adjusted to normality by 
square root transformation. The three environments 
(year-location combinations) were analyzed as a 
series of random environments according to 
Cochran and Cox (1957). Estimates of variance 
components (σ2)  were  calculated  as  described by  
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Snedecor and Cochran (1989, page 322). An 
appropriate model for a split-plot design was 
derived to take into account the partitioning into 
three batches: σ2

e + σ2
r:e+ σ2 

b + σ2 
be + σ2

br:e + σ2
p:b 

+ σ2
pe:b + σ2, where e = environment, r:e = replicate 

within environment,  b = batch, be = batch-
environment interaction, br = batch-replicate 
interaction, p:b = progeny within batch, pe:b = 
progeny-environment interaction within batch, and 
σ2 = error variance. Coefficient of variation (cv%) 
of the respective variance components was 
calculated as square root of the estimate relative to 
the population mean. This allows direct 
comparison between trait means of different units. 
Repeatability estimates were calculated by 
partitioning the phenotypic variance of spatial 
replications within one experiment according to the 
formula σ2

p /(σ2
p + σ2) (Falconer, 1989) where p = 

progeny. Broad-sense heritabilities (h2) were 
estimated on an entry-mean basis (Fehr, 1987) as 
the ratio of genotypic to phenotypic variance using 
the formula: h2 = σ2

p /(σ2
p + σ2

pe/E + σ2
e/RE ), 

where R = number of replicates and E = number of 
environments. Confidence intervals of heritability 
were computed according to Knapp and Bridges 
(1987). All statistical analyses were computed 
using the statistical package PLABSTAT (Utz, 
2000). All effects were assumed to be random 
variables. 

 
 

Results 
 

Flowering dates of wheat were different in the 
three environments. Wheat fields in HOH 2002 
flowered one week earlier than in OLI 2002 due to 
climatic differences. This situation resulted in a 
one-week difference in inoculation period between 
the two locations. Mean temperatures, relative air 
humidity, and total precipitation varied 
considerably among three field environments and 
even among batches and days of inoculation (Table 
1). 

Uninoculated plots had a mean head blight rating 
of 0.9% and mean DON levels of 1.15 mg kg -1 
across field environments. Several head blight 
ratings in the field were taken at successive dates 
from 14 to 44 days after inoculation depending 
upon disease progress (Table 2). Disease progress 
was slightly different among environments. First 
symptoms   appeared   in  2002   earlier  and   were 
  

about four times more severe 20-21 days after 
inoculation than in 2001. All head blight ratings 
showed genotypic differences at the 1% probability 
level and were highly intercorrelated (r ≥ 0.7, data 
not shown). For the further analyses, therefore, the 
mean of the three ratings shown was used. 

Both parents were rather similar, i.e., low to 
medium in aggressiveness and DON production 
(Table 3). Significant differences between the 
parents were only found in head blight rating and 
DON production in HOH 2002 and DON 
production in OLI 2002. Genotypic variation was 
highly significant in each batch and combined 
across all batches for mean head blight rating, 
relative plot yield, and DON production. Mean 
head blight rating and relative plot yield in HOH 
across years were relatively stable. Differences in 
disease levels could be attributed in part to 
differences in temperature and relative humidity, 
which influenced infection period. However, mean 
head blight rating in HOH for both years could not 
be compared directly in terms of disease severity 
because of large differences in disease progress in 
2001 and 2002 (Table 2). The highest head blight 
infection occurred in HOH 2002, which could be 
linked to its highest mean temperature among field 
environments. 

Relative plot yields in HOH 2001 and 2002 were 
similar and slightly lower in OLI 2002 (Table 3). 
Lower mean relative plot yield in 2002 than in 
2001 is an indication of higher disease severity in 
HOH 2002 because infection occurred earlier. 
Mean DON production in HOH 2001 was almost 
thrice as much as in HOH 2002 although head 
blight rating and relative plot yield  did not differ 
much. Batch 1 had the lowest disease and DON 
level for both years in HOH and batch 3 in OLI 
2002. Repeatability estimates for each environment 
were medium to high for head blight rating and 
DON production and low to medium for relative 
plot yield.  

All progeny of G. zeae cross FG24 x FG3211 
caused head blight, reduced grain weight, and 
produced DON. The progeny  differed significantly 
for these traits (Figure 1). There was a wide range 
of mean head blight rating, relative plot yield, and 
DON production across environments. The three 
traits showed a continuous distribution across 
environments. 

Analysis of variance combined across field 
environments showed a significant genotypic  
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variation among progeny within batches for head 
blight rating, relative plot yield, and DON 
production (Table 4). The effect of the batch was 
not significant; however, batches reacted 
differently according to the environment. An 
important source of variance was the interaction 
between progeny and environment within batches, 
but progeny within batch  was also significant. 
These interactions led to medium heritability 

 

Table 2. Mean head blight rating (%) on successive dates on wheat cultivar Drifter inoculated with 153 progeny of Gibberella 
zeae in three field environments  
 

 Days after inoculation 
Environment a 14 16 18 20 21 25 Mean 

HOH 2001  - b - 5.1  13.5 - 34.3 33.7 c 
HOH 2002 28.4 36.4 - - 46.9 - 37.4 
OLI 2002 12.9 24.6 - - 37.1 - 24.9 
a HOH = Hohenheim near Stuttgart; OLI = Oberer Lindenhof near Reutlingen. 
b Not determined. 
c Mean of five ratings (18, 20, 25, 32, and 44 days after inoculation) with the latter two ratings not shown here. 
 
 
 
Table 3. Means, repeatabilities, significance of genotypic variation on wheat cultivar Drifter for head blight rating, relative plot 
yield, and deoxynivalenol (DON) production inoculated with 153 progeny of Gibberella zeae cross FG24 x FG3211 and their 
parents in three batches of 51 isolates each in three field environments  

 
Head blight rating (%) Relative plot yield (%) DON production 

(mg kg –1) 
Environment a Batch/ 

Parent 
Mean Repeatability Mean Repeatability Mean Repeatability 

HOH 2001 1 29.0 55.9** 69.0 30.1** 17.7 50.3** 
 2 34.6 72.1** 71.1 58.2** 30.0 64.6** 
 3 37.6 64.2** 64.3 20.6** 37.2 46.8** 
 1-3 33.7 66.9** 68.1 30.1** 28.4 65.5** 
 FG24 13.9a b - 80.2a - 10.3a - 
 FG3211 15.0a - 90.0a - 12.3a - 
        
HOH 2002 1 30.8 45.3** 68.1 45.4** 9.9 53.1** 
 2 39.3 71.9** 57.2 58.7** 13.1 37.9** 
 3 41.9 66.4** 55.3 39.1** 12.7 58.0** 
 1-3 37.4 67.0** 62.6 51.1** 11.9 45.9** 
 FG24 10.2a - 98.7a - 3.1a - 
 FG3211 37.2b - 65.8a - 12.3b - 
        
OLI 2002 1 27.6 57.1** 55.7 56.1** 12.5 78.9** 
 2 27.5 72.6** 53.1 73.7** 15.7 70.0** 
 3 19.7 45.2** 55.3 25.4** 17.0 63.9** 
 1-3 24.9 59.9** 54.7 54.3** 15.1 71.0** 
 FG24 13.4a - 71.5a - 8.3a - 
 FG3211 21.6a - 58.6a - 9.2b - 
 
** Significant genotypic variation at probability level P = 0.01 (F-test). 
a HOH = Hohenheim near Stuttgart, OLI = Oberer Lindenhof near Reutlingen. 
b Numbers followed by the same letter are not significantly different at 5% level for comparison of parents. 

estimates for aggressiveness. Error variance was 
similar  for head blight rating and DON 
concentration and lowest for relative plot yield.  

Correlations between head blight rating and 
relative plot yield (r = -0.9, P = 0.01) head blight 
rating and DON production were high (r = and 0.7, 
P = 0.01). Correlation between relative plot yield 
and DON production was lower (r = -0.6, P = 
0.01).   
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Discussion 
 

Significant variance in segregation for aggressive-
ness and DON production  was  found  among  the  

153 progeny of a cross between two strains of G. 
zeae, FG24 and FG3211. The parents differed little 
in these phenotypic characters, although they were 
collected in different areas, southwestern  Germany 
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Figure 1. Frequency distribution of head blight rating, relative plot yield, and DON production in the susceptible wheat cultivar Drifter
inoculated with 153 progeny of Gibberella zeae cross FG24 x FG3211 combined across three field environments (untransformed data);
LSD5% = least significant difference at probability level P = 0.05. 
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and southern Hungary. Strains FG24 and FG3211 
were both DON-chemotype isolates, producing 
DON in low to medium amounts. Cultural 
characters were identical, i.e., both were 
characterized by pink white colony and red 
pigmentation on potato dextrose agar (PDA) and 
aerial growth habit (data not shown).There was 
only a slight difference in aggressiveness. Based on 
a classification proposed by O’Donnell et al. 
(2000), both isolates belong to lineage 7 of F. 
graminearum.  

The handling of 153 progeny in field 
inoculations, where the spore concentration of each 
isolate must  be adjusted and each isolate must be 
applied separately, requires much labor and time. 
To reduce the workload to a manageable level, we 
randomly divided the progeny into three batches 
that were inoculated on three subsequent days. This 
procedure increased the non-genetic variance due 
to interactions between batches and environment 
and batches and replicates (Table 4). In Middle 
Europe in general, there are daily differences in 
temperature, rainfall, and humidity that may 
contribute to this interaction (Table 1). The 
interaction between progeny and environment 
within batches was also highly significant. This led 
to medium-sized heritability for head blight rating, 
although the repeatabilities of the single batches in 
the individual environments were medium to high, 
ranging from 0.5 to 0.7 for the same trait. The latter  

demonstrates good genotypic differentiation in the 
individual experiments. Heritability estimate was 
highest for DON production.  

Table 4. Coefficients of variation (%) for head blight rating, relative plot yield, and deoxynivalenol (DON) production in the susceptible wheat 
cultivar Drifter inoculated with 153 progeny of Gibberella zeae cross FG24 x FG3211 in three batches of 51 isolates each, calculated across 
three (aggressive traits) and two (DON production) replicates, respectively, and three field environments.  
 

Parameter d.f. Head blight rating Relative plot yield  
(transformed) 

d.f. DON production 
(transformed) 

Source of variation:      
Environment (E) 2 16.83 4.90 2 24.84** 
Replicate (R): E 6 8.85* 2.92 3 5.58* 
Batch (B) 2 - a - 2 10.86 
B x E 4 15.24** 1.67 4 8.82** 
B x R: E 12 8.52** 2.39** 6 4.08** 
Progeny (P):B 150 14.69** 4.25** 150 13.31** 
P x E: B 300 22.66** 7.59** 300 16.24** 
Pooled Error 897 18.83 9.97 446 17.41 

Heritability (h2)  0.47 0.43  0.67 
90% C.I. on h2 b  0.29-0.59 0.25-0.57  0.56-0.75 

 
Data for relative plot yield and DON were normalized by square root transformation 
a Negative estimate. 
b Confidence intervals (C.I.) on h2 were calculated using the method of Knapp and Bridges (1987). 
*, ** Significant at probability levels P = 0.05, and 0.01, respectively (F-test). 

In view of the medium heritabilities obtained, the 
quantitative variation found for all traits does not 
necessarily implicate polygenic inheritance. The 
fact that some progeny were significantly more 
aggressive, caused lower yields and produced 
higher DON levels than the most aggressive parent, 
however,  indicates that more than one gene control 
these traits, and that these genes act additively. 
These transgressive segregants, comprising almost 
80% of the population,  still occurred after square-
root transformation of the data on relative plot yield 
and DON production. This implies genetic effects 
caused by different unlinked alleles for the traits in 
both parents that recombined in the progeny. This 
type of inheritance corresponds to the inheritance 
of the resistance of wheat to Fusarium head blight 
(Snijders 1990; Kolb et al. 2001; Miedaner et al. 
2003). The pathosystem reveals a similar 
quantitative inheritance in both host and pathogen. 
We have demonstrated this for the first time using a 
segregating population of G. zeae. Quantitative 
variation of aggressiveness has been reported in 
other plant pathogenic fungi. For instance, 
aggressiveness of the smut pathogen Ustilago 
hordei in barley (Emara and Sidhu, 1974) and of 
Gaeumannomyces graminis var. triciti in wheat 
(Blanch et al., 1981) is quantitatively inherited. 
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In pathosystems with quantitative variation of 
aggressiveness and resistance, strong interactions 
with environment are likely to occur 
(Dusabenyagasani et al., 1997; Campbell and 
Lipps, 1998). In particular, G. zeae and wheat 
might react differently to the same environment, 
thus the effect of genotype x environment 
interaction of each organism will multiply in 
infection trials. Indeed, the progeny x environment 
interaction was one of the most important sources 
of variance, accounting for 29% of total variance 
for aggressiveness and 19% for DON production. 
This finding emphasizes the importance of multi-
environmental trials. The highest head-blight rating 
occurred at HOH 2002, but in HOH 2001 the DON 
production was two to three times higher.  

Correlation between head blight rating and DON 
production was high. For the latter trait, however, 
covariation with fungal colonization should be 
further analyzed because isolates are likely to 
produce different amounts of mycelium within the 
same host genotype (Miedaner et al., 2000). The 
large genotypic variation obtained by crossing two 
parents from the same lineage implicates a high 
possibility of adaptation of the pathogen to 
different environments and hosts by sexual 
recombination (McDonald and Linde, 2002). 
Indeed, several studies found a high genotypic 
variation within individual field populations for 
aggressiveness, DON production, vegetative 
compatibility groups, and molecular markers 
(Bowden and Leslie 1992; Miedaner and Schilling 
1996; Miedaner et al. 2001, Walker et al. 2001). 
According to O’ Donnell et al. (2000), all European 
isolates are lineage 7. Crosses within a lineage are 
most common and therefore, of highest practical 
relevance. Crosses between different lineages 
might occur  through global seed trade. Genetic 
diversity and the potential of the fungus to shift 
towards greater aggressiveness or toxin production 
by hybridization within and between lineages 
should be appreciated (O’Donnell 2000). This 
general statement could be proven experimentally 
by our study. As a consequence, even larger genetic 
variation in G. zeae populations would be expected.  

The use of aggressive isolates is important in 
selecting resistant wheat germplasm. Molecular 
tools permit characterization of genes and 
quantitative trait loci (QTL) linked to 
aggressiveness (Hou et al. 2002; Cumagun et al. 
2004). Sexual recombination in nature occurs in G.  

zeae regularly by production of perithecia on wheat 
and on maize stubble in autumn (Sutton 1982; 
Parry et al., 1995). A maize-wheat crop rotation, as 
frequently used in Middle Europe and the USA, 
allows at least one recombination per year and 
gives the fungus the chance to produce new 
recombinants. According to population-genetic 
theory, fungi with mixed recombination, masses of 
asexually produced conidia, and regularly 
undergoing  sexual recombination (selfing and 
outcrossing) have the highest risk for adaptation to 
host resistance (McDonald and Linde, 2002). 
Because no specific interaction of isolates and host 
genotypes in G. zeae occurs (Van Eeuwijk et al., 
1995), directed selection should not play a major 
role in these populations. On the long term, 
however, genetic potential for a gradual, unspecific 
adaptation with increasing aggressiveness levels in 
populations of G. zeae could occur  in reaction to 
host resistance.  
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Gibberella zeae causes head blight of cereals and contaminates grains with mycotoxins 

like deoxynivalenol (DON). To determine the correlations among aggressiveness traits, 

fungal colonization, and DON production, 50 progeny from a segregating population of 

G. zeae were inoculated onto a susceptible winter wheat cultivar in three field 

environments. Aggressiveness traits were measured as head blight rating and plot yield 

relative to noninoculated plots. Fungal colonization, measured as Fusarium exoantigen 

(ExAg) content, and DON production were analysed with two enzyme-linked 

immunosorbent assay (ELISA) formats. Disease severity was moderate to high based on 

head blight rating and relative plot yield. Fusarium ExAg content and DON production 

ranged from 0.26 to 1.41 units and from 4.18 to 43.70 mg kg–1, respectively. Significant 

(P = 0.01) genotypic variation was found for all traits. Heritability for Fusarium ExAg 

content was rather low due to high progeny-environment interaction and error. 

DON/Fusarium ExAg ratio did not vary significantly (P > 0.1) among progeny. 

Correlation between DON production and Fusarium ExAg content across environments 

was high (r = 0.8, P = 0.01), but no covariation existed between aggressiveness traits and 

DON/Fusarium ExAg content ratio.  

Key words: aggressiveness, deoxynivalenol, ELISA, exoantigens, Gibberella zeae, head 

blight of wheat  
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Introduction 
 

Gibberella zeae Schw. (Petch), the perfect stage of Fusarium graminearum Schwabe, is 

a destructive fungal pathogen causing head blight or scab of wheat (Bai & Shaner, 1994) 

and barley (McMullen et al., 1997; Leonard & Bushnell, 2003). The disease is a concern 

because the fungus causes serious losses in grain yield and infected grains harbour 

trichothecenes such as deoxynivalenol (DON) which are detrimental to livestock and 

human health (Marasas et al.,1984; Placinta et al., 1999). 

Although other aggressiveness factors may contribute to the disease, the role of DON 

has received a considerable attention (Proctor et al., 1995; Desjardins et al., 1996; Harris 

et al., 1999). Close association between aggressiveness and DON production  has been 

found earlier for F. culmorum (Gang et al., 1998) and F. graminearum (Miedaner et al., 

2000, Mesterhazy, 2002). From these studies, however, it is also clear that isolates 

considerably differ in host colonization. This factor must, therefore, be taken into 

account. An immunoassay based on exoantigens (ExAgs), a soluble mixture of 

extracellular fungal products, was first reported by Kaufman & Standard (1987) for 

measuring fungal biomass within host tissue. Abramson et al. (1998) found a linear 

correlation between ExAgs of F. graminearum, detected by an indirect enzyme 

immunoassay, and DON content (r = 0.76-0.80). A genus specific enzyme-linked 

immunosorbent assay (ELISA) has also been developed for the detection of Fusarium 

species in cornmeal (Iyer & Cousin, 2003).  

Fungal colonization has been found to be a predictive and sensitive indicator of DON 

(Lamper et al., 2000). Using a competitive PCR assay, Nicholson et al. (1998) 

demonstrated in the field greater colonization on wheat ears by trichothecene-producing 

wild-type isolate and gene revertants than by non-trichothecene producing isolates of F. 

graminearum. In greenhouse tests, trichothecene-producing isolates caused greater 

colonization than a non-trichothecene-producing isolate generated by gene disruption 

(Eudes et al., 2001). In some cases, however, fungal biomass in vivo was not 

proportional to the development of disease symptoms and DON production when 

different field isolates were investigated (Gilbert et al., 2001; Asran & Buchenauer, 

2003). It is crucial to calculate DON production relative to the amount of fungal biomass 

in host tissue. Significant genetic variation for these traits have already been reported for 
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collections of G. zeae from different origins (Miedaner et al., 2000; Gilbert et al., 2001; 

Mesterhazy, 2002) and even within populations derived from individual wheat fields 

(Miedaner & Schilling, 1996). The tested genotypes, however, were field isolates with 

no proven genetic relationship. In the present work, we analysed a segregating 

population of 50 progeny of G. zeae to examine the inheritance of and the relationship 

between fungal biomass (expressed as Fusarium ExAg content), disease symptoms, 

reduction in plot yield, and DON production in wheat grain.  

 

Materials and Methods  
 

Crossing population 

 

Two lineage 7 (O’Donnell et al., 2000) and DON-producing strains FG24, isolated from 

Szeged, Hungary by a co-author, and FG3211 from Sersheim, Germany, served as 

parents. The choice of the parents was  based on differences in aggressiveness and DON 

production  in the field in a previous study across two locations (Miedaner et al., 2000). 

Because G. zeae is homothallic, complementary nitrate nonutilizing (nit) mutations were 

employed as suitable markers to distinguish heterozygous from homozygous perithecia. 

The crossing and single spore isolation were performed in the laboratory of Drs. R. L. 

Bowden and J.F. Leslie at Kansas State University, USA.  Methods for crossing G. zeae 

were described in detail by Bowden & Leslie (1999). Perithecia were produced on carrot 

agar plates. Plates were inverted and ascospores were collected on the lid. Ascospores 

were then dilution plated on minimal medium. Progeny were collected as random 

colonies on minimal medium (containing nitrate as the sole nitrogen source) plates. No 

more than 20 colonies were saved from each carrot agar plate to reduce the probability of 

sampling the same meiotic events. We selected only wild type progeny from the cross 

and discarded nit mutant progeny. All progeny were single-spored with a 

micromanipulator. Fifty single-ascospore progeny, which were pre-selected from 153 

progeny, and the two parents were analysed. The pre-selection was carried out in such  a 

way that the distribution  of aggressiveness of the original population is represented in 

the smaller sample (Fig. 1).  
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Field design 

 

A moderately  susceptible German winter wheat cultivar (‘Drifter’) was planted in three 

field environments in Southwest Germany: Hohenheim (HOH) near Stuttgart (400 m 

above sea level, 8.5°C mean annual temperature, 685 mm mean annual precipitation) in 

2001 and 2002 and Oberer Lindenhof (OLI) near Reutlingen (700m above sea level, 

6.6°C mean annual temperature, 952 mm mean annual precipitation) in 2002. 

Randomization of plots was according to a complete block design with three 

replications. Two parental isolates were grown with 10 plots each for higher accuracy of 

comparison with their progeny. Noninoculated plots for each experiment were grown for 

assessment of relative yield components. Three-row microplots were used (1.2 m length 

and 0.625 m width) for each isolate and plots were arranged in a chess-cross design, i.e., 

each plot with an entry (= isolate) was surrounded by four border plots of similar size 

and planted with triticale to avoid plot -by-plot interference. 

 

Inoculum production, inoculation and disease assessment 

 

Mass production of isolates was according to the procedure of Miedaner et al. (1996). 

Wheat grains previously soaked overnight in tap water were used as substrate and placed 

in 1 L milk bottles. Bottles were sealed with aluminum foil and autoclaved twice on 

successive days, at 121°C for 20 min at 1 atm. Each flask containing cooled wheat 

medium was inoculated with 10-20 mL of conidial suspension, prepared by flooding a 1-

week-old SNA (synthetic-nutrient agar, Nirenberg, 1981) culture with sterile distilled 

water. Bottles were vigorously shaken to distribute the conidia. After incubation at 16-

18°C in the dark for 4 weeks, colonized wheat grains were taken out of the bottles, 

mixed with sterile distilled water, and placed in a thin layer in plastic trays (40 x 60 

cm2). Trays were completely covered with plastic sheets about 40 cm below two black 

light tubes (Philips TLO, 40W/80, Royal Philips Electronics, Amsterdam) for 3 days. 

Sheets were folded from one side of the tray when vigorous sporulation occurred. 

Colonized wheat grains were mixed to avoid clumping, air-dried for 2 to 3 days at room 

temperature, enclosed in plastic bags, and stored in a cold chamber at 5°C until 

inoculation. Concentration was adjusted to 500,000 conidia mL-1 for each isolate with 

the use of a haemacytometer. One to two drops of liquid cleansing agent were added to 

 59



Cumagun et. al. (2004) Plant Pathol. (accepted) 

inoculum suspensions to reduce surface tension and make sprays more efficient. Plants 

were inoculated at anthesis using a small hand-held sprayer with a capacity of ~300-500 

mL conidial suspension. The sprayer was  connected with a hose to a compressor on the 

tractor to ensure a  constant pressure (3 bar) of spray at the rate of 120 ml m-2. All plots 

reached anthesis simultaneously at a given location.  

Two aggressiveness traits were assessed: head blight rating (%) and plot yield 

relative to noninoculated control (%). Head blight was rated by visual estimation (0-

100%) of the whole plot. Rating started when differences in head blight severity among 

treatments were observed.  This rating includes number of heads infected (incidence) and 

amount of bleached spikelets per head (severity). Timing of the next rating depended 

upon the rate of disease development from the previous disease rating. In HOH 2001, 

disease was rated 18, 20, 25, 32, and 44 days after inoculation and in HOH 2002 and 

OLI 2002, 14, 16, and 21 days after inoculation. Arithmetic means of the head blight 

ratings of all assessment dates were used for further analyses. Due to artificial 

inoculation, plots were evenly infected according to the aggressiveness of the respective 

isolates. Grain weight was determined by harvesting the whole plot by hand, threshing in 

a small combine, drying to a minimum amount of water content, sieving to remove 

fragments of glumes and rachis, and cleaning again. For relative plot yield, grain weight 

of the inoculated plots was calculated relative to the respective mean grain weight of the 

untreated plots and expressed as a  percentage.  

 

Fusarium exoantigen analysis  

 

A serological method developed to quantify fungal biomass in grain samples was used 

(Rabenstein 2002). For sample preparation, 0.1 g grain flour was grinded in 2 mL 

extraction buffer (phosphate buffered saline (PBS),without Tween, containing 0.01 M 

ethylenediaminetetraacetic acid disodium salt (EDTA, Sigma code: E 5513) in a mortar 

and pestle and incubated overnight at 4°C in a refrigerator. Each sample was tested at 

least two times in each of two replications in an indirect ELISA format already described 

for the detection of Rhynchosporium antigens in barley leaves (Foroughi-Wehr et al., 

1995). The methods for antiserum production in rabbits and purification of 

immunoglobulin (IgG) are essentially as described by Foroughi-Wehr et al. (1995). 

Altogether 8 polyclonal antisera (PAS) were raised in rabbits against surface washings 
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and/or mycelium homogenates from cultures of Fusarium culmorum (Fc) and F. 

graminearum (Fg) and the antisera were characterized using ELISA variants (Banks & 

Cox, 1992, Danks et al., 2001) and Western blot analysis (Gan et al., 1997). Antiserum 

PAS Fc 7/2 to soluble ExAgs fractions of F. culmorum which revealed in ELISA a 

strong reaction with mycelia extracts of all tested cereal infecting Fusarium species was 

selected for the test development. This antiserum also was therefore chosen because it 

showed in ELISA variants no cross-reactions with mycelia extracts of other fungus 

species outside of the genus Fusarium and detects in Western blotting experiments 

specifically glycoprotein bands in Fusarium infested wheat grains (Rabenstein, 2002). 

The plate trapped antigen (PTA)-ELISA was performed in NUNC PolySorb ELISA 

plates (code:475094) using polyclonal IgG of antiserum PAS Fc 7/2 as follows: A 100 

µL antigen extract per well was incubated for 2 h at 37°C (plates were poured out 

without washing). A 200 µL blocking solution per well was added (1 % nonfat dry milk 

powder (TM) in PBS), further incubated for 1 h at 37°C, and subsequently washed three 

times with PBS-Tween 20. A 100 µL per well IgG of PAS Fc 2/7 (conc. 1 µg mL-1) was 

added in blocking solution and incubated for 1 h at 37°C and washed four times with 

PBS-Tween. A 100 µL per well alkaline phosphatase-conjugated goat anti-rabbit IgG 

(H+L) (DIANOVA, Hamburg, Germany, code: 111-055-003) diluted 1:2000 in 0.05 M 

Tris-HCl-buffer (pH 8.0) containing 1% TM was added and incubated for 1 h at 37°C, 

washed four times with PBS-Tween. Finally, 200 µL substrate per well was incubated 

with p-nitrophenyl phosphate (1 mg mL-1 in substrate buffer pH 9.6) for 1 h at room 

temperature and absorbance was measured at 405 nm with TECAN “Rainbow” ELISA 

reader (TECAN SLT Lab Instruments, Crailsheim, Germany). 

 

Mycotoxin analysis 

 

Wheat grains were ground into fine flour with a 1-mm sieve and mycotoxins were 

extracted by weighing out 5 g of each sample in a 100 mL Erlenmeyer flask containing 

100 mL double distilled water, covered with parafilm and placed in a rotary shaker (200 

rpm) for 5 min.  About 1 mL of the suspension was transferred into Eppendorf tubes and 

centrifuged (14000 rpm) for 5 min. The supernatant was collected and served as stock 

solution for dilution preparations optimum for analysis.Mycotoxin production in mg kg-1 

DON and 3-acetyldeoxynivalenol (3-ADON) from ground wheat grain samples was 
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analysed using RIDASCREEN™ FAST DON (R-biopharm GmbH, Darmstadt, 

Germany), which is an immunoassay for the quantitative analysis of DON in cereals, 

malt and feed. The test plates were measured at 405 nm with the aid of a microtiter plate 

spectrometer (TECAN SLT Lab Instruments, Crailsheim, Germany) and DON content 

was calculated by using a software package distributed by the manufacturer. Calculation 

was based on the extinction of five standard solutions in water (0 ppm, 0.222, 0.666, 2 

ppm, and 6 ppm ) provided by the immunoassay kit per plate. The test cannot 

differentiate between DON and 3-ADON and has negligibly low, or no cross reactivity 

to nivalenol and Fusarenon X. Due to high cost of DON-ELISA, only two replicates 

from each field experiment were analysed. 

 

Statistical analyses 

 

Plot means were used for analysis of variance for each location separately. Residuals 

were independent and followed a normal distribution for head blight rating, but not for 

Fusarium ExAg content and DON production. The latter two trait values were adjusted 

to normality by by natural log (ln) and square root transformation, respectively. Error 

variances were homogeneous across locations according to Bartlett's test (Snedecor & 

Cochran, 1989). The three environments (year-location combination) were then analysed 

as a series of random environments according to Cochran & Cox (1957). To allow direct 

comparison between trait means of different units, coefficient of genotypic variation 

(cv%) of the respective variance components (σ2) was calculated according to the 

formula (σ/mean) x 100. Repeatability estimates were calculated by partitioning the 

phenotypic variance of spatial replications within one experiment according to the 

formula σ2
g /(σ2

g + σ2
e) where σ2

g = genotypic variance and σ2
e = error variance 

(Falconer & MacKay, 1996). Estimates of variance components were calculated as 

described by Snedecor & Cochran (1989). Broad-sense heritabilities (h2) were estimated 

on an entry-mean basis (Fehr, 1987) as the ratio of genotypic to phenotypic variance 

using the formula: h2 = σ2
g/(σ2

e/RE + σ2
ge/E + σ2

g), where σ2
ge = genotype-environment 

interaction variance, R= number of replicates and E = number of environments. 

Confidence intervals of heritability were computed according to Knapp & Bridges 

(1987). All correlations between traits were calculated without the parents. All statistical 

analyses were computed using the statistical package PLABSTAT (Utz, 2000). The 
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effects of progeny were considered as fixed whereas the effects of environments and 

replicates were assumed to be random variables. 

 

Results 
 

Mean fungal exoantigen levels in grain from the untreated plots were both 0.03 units for 

HOH2001 and HOH2002 and 0.1 units for OLI2002 (data not shown). The latter 

indicates slight contamination by G. zeae or possibly by other Fusarium spp. Slight 

infection was visible in control plots (0.73%). Among progeny, there was a wide range 

of means for aggressiveness traits; head blight rating and relative plot yield were 4.3 to 

48.1%, and 48.4 to 95.9%, respectively. Mean DON production of the progeny was 

highest in HOH2001 and lowest in HOH2002, although head blight rating, relative plot 

yield, and ExAg content were similar (Table 1). 

Mean head blight rating ranged from 5.03 to 47.75% among 50 progeny (Fig. 1). 

This range was identical to that of the original 153 progeny. Mean Fusarium ExAg 

content and DON production ranged from 0.26 to 1.41 optical density (OD) units and 4.2 

to 43.7 mg kg–1, respectively (Fig. 2). Mean head blight rating and DON production of 

the parent FG3211 were higher across environments than those of FG24 while Fusarium 

ExAg content of the two parents was similar. All traits exhibited a continuous 

distribution with performance of the parents not significantly different from each other 

across environments. DON production in the majority of progeny was higher than the 

parents. Some progeny significantly exceeded the higher parent value indicating 

transgressive segregation for higher DON production. Significant genotypic 

differentiation existed for all traits except for DON/Fusarium ExAg ratio when 

combined across environments (Table 2). Coefficients of variation among progeny were 

approximately as high as progeny-environment interaction for head blight rating and 

relative plot yield. Estimate of error was highest  for DON/Fusarium ExAg ratio. All 

traits were least affected by replicates. Medium heritabilities were obtained for 

aggressiveness traits and DON production.  

The two aggressiveness traits, head blight rating and relative plot yield, were tightly 

associated (r = -0.90, P = 0.01, data not shown) as well as Fusarium ExAg content and 

DON production (r = 0.82, P = 0.01) (Fig. 3). Head blight rating was correlated to both 

DON production and Fusarium ExAg content but DON/ExAg ratio did not show any 

 63



Cumagun et. al. (2004) Plant Pathol. (accepted) 

covariation (Fig. 4). These trait correlations were consistent in HOH2001 and HOH2002 

(r = 0.59-0.70), but lower in OLI2002 (r = 0.35-0.59). Coefficients of correlation 

between relative plot yield and DON production and between relative plot yield and 

Fusarium ExAg content were more similar than for head blight rating (-0.62, -0.55, 

respectively, P = 0.01). Due to missing genotypic variance, correlation to 

DON/Fusarium ExAg ratio could not be given.  

 
Discussion 
 

Large genetic variation in aggressiveness, fungal colonization, and mycotoxin 

production has been found in a segregating population of G. zeae across field 

environments. Analysis of progeny allows conclusions on the inheritance of these traits. 

The  parents were not very different from each other although they were selected for 

differences in a previous study (Miedaner et al., 2000).  Obviously, the strong isolate-

environment interaction found also in this study prevented this earlier result to be 

repeated. Despite the phenotypic similarity of the parents, their progeny varied 

significantly (P = 0.01) indicating the segregation of several genes for each of the traits 

with additive gene action. Medium heritabilities for the two aggressiveness traits and 

DON production in the host indicate the importance of the genetic component. Fusarium 

ExAg content in individual environments showed also significant (P = 0.01) genotypic 

differences in HOH2001 and HOH2002, but not in OLI2002 (data not shown). A 

possible cause might be the considerable amount of ExAgs detected in the untreated 

plots in OLI2002 due to contaminating Fusarium species although only slight symptoms 

were visible. Contaminating Fusarium spp. also present in the plots inoculated with the 

progeny could have biased the effect of the inoculated isolates of G. zeae. Several studies 

in Europe revealed that grains infected with F. graminearum are also infected by other 

Fusarium species (Schütze et al., 1997; Waalwijk et al., 2003). In HOH2001 and 

HOH2002 Fusarium ExAgs in the untreated plots were not detectable. High ExAg 

content in each environment was related to lower plot yield. This was consistent with the 

finding that levels of fungal biomass measured as ergosterol (ERG) increased as kernel 

weight decreased (Dowell et al., 1999; Danks et al., 2001). Several studies have shown 

that ERG production is closely associated with aggressiveness (Lamper et al., 2000; 

Mesterhazy, 2002).  
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All progeny were inoculated on the same susceptible wheat variety, equalizing the 

effects of host genotype on aggressiveness traits or DON and Fusarium ExAg 

production. All 50 progeny and their parents invaded the heads successfully as shown by 

disease symptoms, i.e., all progeny were pathogenic despite their large differences in 

DON production. Similarly,  a transgenic isolate of G. zeae with a deleted gene for toxin 

production was still able to successfully infect wheat, rye, and maize, although 

aggressiveness was reduced (Proctor et al., 1995; Desjardins et al., 1996; Harris et al., 

1999; Bai et al., 2001).  

DON production was tightly correlated with Fusarium ExAg content (Fig. 2) being 

in agreement with  earlier findings (Miedaner et al., 2000; Wanyoike et al., 2002b). In 

contrast, Asran & Buchenauer (2003) and Gilbert et al. (2001) found no correlation 

between disease severity and ERG content caused by G. zeae in maize seedlings and 

wheat, respectively.  

The ratio of DON/Fusarium ExAgs did not vary significantly (P > 0.1), i.e., all 

progeny produced a similar amount of DON relative to their amount of mycelium in the 

host tissue. Similar results have been reported for 42 isolates of F. culmorum using ERG 

as a measure for fungal biomass (Gang et al., 1998). Wanyoike et al. (2002b) also found 

low to moderate correlations only between DON/ERG ratio and head blight rating of 15 

isolates of G. zeae. It cannot be concluded from such studies what was the cause or the 

effect. A high DON production of a progeny might be the cause for a fast invasion of 

host tissue and allow the isolate to produce high amounts of mycelium. Alternatively,  

the aggressive isolate might speed up invasion because of a third unknown factor 

consequently produce more DON. Such factors might be other mycotoxins or cell-wall 

degrading enzymes such as cellulase, xylanase, and pectinase (Balazs & Bagi, 1997; 

Wanyoike et al., 2002a; Schwarz et al., 2002). Molecular analyses will provide more 

insights into these processes in the future. Mitogen-activated protein kinases (MAPKs) 

have already been identified as important for pathogenicity and development of 

perithecia in G. zeae (Hou et al., 2002). Further research should also take into account 

the early phases of pathogenesis for explaining causes of aggressiveness because DON is 

already produced after 48 h p.i. (Evans  et al., 2000). Doohan et al. (1999) reported a 

high relative TRI5 (trichothecene gene cluster encoding trichodiene synthase) expression 

with a minimum amount of GUS activity (β-D-glucuronidase activity) on wheat 

seedlings infected by a F. culmorum GUS transformant G514 (which constitutively 
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expresses GUS) 10 days after inoculation. At the end of pathogenesis, however, the 

relationship between the two traits was inverse. In contrast to previous studies, all 

isolates tested here were progeny from the same cross, thus possessing the same genetic 

background and mycotoxin profile. This assures that differences in DON or mycelium 

production were not just caused by isolate-environment interaction, that might play a 

role when isolates from different geographic origins are tested, or by different profiles of 

those mycotoxins that have not been analysed. As a consequence, it is essential to 

consider DON production, fungal colonisation (ExAg content) and DON/ExAg ratio of 

each isolate in order to establish associations between disease symptoms and fungal 

characteristics relating to aggressiveness. 
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Table 1 Means for head blight rating, relative plot yield, Fusarium exoantigen (ExAg) 
content, deoxynivalenol (DON) production and DON/Fusarium ExAg ratio in the 
moderately susceptible wheat genotype Drifter inoculated with 50 progeny of Gibberella 
zeae cross FG24 x FG3211 and their parents in three field environments  
 
Trait Isolates Environmenta 
  HOH2001 HOH2002 OLI2002 
     
Head blight rating (%) Progeny 30.01 30.31 22.89 
 FG24 13.87 10.22 12.44 
 FG3211 14.95 37.21 21.58 
     
Relative plot yield (%) Progeny 72.65 73.11 57.08 
 FG24 96.18 98.68 71.48 
 FG3211 80.30 65.80 58.64 
     
Fusarium ExAg content (OD units)b Progeny 0.80 0.75 1.07 
 FG24 0.42 0.50 1.00 
 FG3211 0.30 0.71 1.12 
     
DON production (mg kg–1) Progeny 27.45 9.69 13.55 
 FG24 9.40 3.09 8.29 
 FG3211 12.30 12.32 9.24 
     
DON/Fusarium ExAg ratio Progeny 36.41 14.36 13.56 
 FG24 23.74 6.87 7.52 
 FG3211 25.80 15.56 6.54 

 

aHOH = Hohenheim near Stuttgart, OLI = Oberer Lindenhof near Reutlingen. Numbers 
designate years. 
bOptical density measured at 405 nm. 
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Table 2  Coefficients of variation (cv%) for head blight rating, relative plot yield, 
Fusarium exoantigen (ExAg) content, deoxynivalenol (DON) production and 
DON/Fusarium ExAg ratio in the moderately susceptible wheat genotype inoculated 
with 50 progeny of Gibberella zeae cross FG24 x FG3211 averaged across three field 
environments 
 
Parameter Head blight 

rating 
Relative 
plot yield 

Fusarium 
ExAg content 
(transformed) 

 

DON 
production 

(transformed) 

DON/ 
Fusarium 

ExAg ratio

Source of variation:      
Environment (E) 14.54* 12.44 9.81+ 19.33* 24.61** 
Replicate: E 5.37** 7.03** 4.84** 5.78**    -a 
Progeny (P) 26.65** 12.77** 8.61* 18.35** 4.40 
P x E 25.43** 12.97** 13.52** 12.85** 10.83 
Pooled Error 18.56 16.23 19.69 14.71 25.91+ 

Heritability (h2) 0.72 0.62 0.37 0.79 -c 
90% C.I. on h2b 0.53-0.82 0.37-0.76 0-0.61 0.65-0.87 -c 
 
+, *, **Significant at probability levels P = 0.1,  P = 0.05, and 0.01, respectively. 
aNegative estimate. 
bConfidence intervals (C.I.) on h2 were calculated using the method of Knapp & Bridges 
(1987). 
cNo significant genotypic variance (P > 0.1).  
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Figure 1 Frequency distribution of head blight rating of  all 153 progeny and 50 selected 
progeny of Gibberella zeae cross FG24 x FG3211 combined across three field 
environments in the moderately susceptible wheat genotype Drifter (untransformed 
data). Arrows indicate the parents.  
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Figure 2 Frequency distribution of (a) Fusarium exoantigen (ExAg) content, and (b) 
deoxynivalenol (DON) production in the moderately susceptible wheat genotype Drifter 
inoculated with 50 progeny of Gibberella zeae cross FG24 x FG3211 combined across 
three field environments (untransformed data); LSD5% = least significant difference at 
probability level P = 0.05. Arrows indicate the parents.  
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Figure 3 Association between deoxynivalenol (DON) production and Fusarium 
exoantigen (ExAg) content for 50 progeny of Gibberella zeae combined across three 
field environments. (untransformed data); LSD5% = least significant difference at 
probability level P = 0.05. Arrows indicate the parents.  
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Figure 4 Associations between head blight rating and (a) deoxynivalenol (DON), (b) Fusarium exoantigen (ExAg) content, and (c) 
DON/Fusarium ExAg ratio for 50 progeny of Gibberella zeae combined across three field environments (untransformed data); LSD5% = least 
significant difference at probability level P = 0.05. Arrows indicate the parents.  
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7 General Discussion 
 

7.1 Methods and limitations of the study  

 

For genetic studies in fungi, making crosses is a basic approach to generate 

populations segregating for traits important for fitness and survival of the organism and 

analyse the genetic basis of phenotypic differences of these traits. This technique is a 

prerequisite to phenotypic and molecular analyses. The genus Gibberella  exhibits two 

reproductive strategies which are needed for sexual reproduction: heterothallic (self-sterile) 

and homothallic (self-fertile). Heterothallism in some Gibberella species like G. pulicaris and 

G. fujikuroi facilitates genetic analysis; therefore, the regulation mechanism has been easily 

analysed by crossing two different mating types (Phinney et al., 1967; Desjardins and 

Beremand, 1987). In contrast, G. zeae is homothallic, vegetatively incompatible, and lacks a 

parasexual cycle. These characteristics make it difficult and laborious to carry out genetic 

analysis by crosses in this fungus because of the need to use marked strains to identify 

heterozygous perithecia. Based on the literature, the frequency of heterozygous perithecia of 

G. zeae can be as low as 0 to 35% (Bowden and Leslie, 1999) and 0 to 21% (Desjardins et al., 

2000) in those genomic regions where the nit loci are located. To circumvent this barrier, Lee 

et al. (2001) used drug resistance genes and MAT (mating type) gene manipulation to obtain 

sexual recombinants of G. zeae. By targeted manipulation of MAT, there is a complete 

conversion of the fungus from homothallic to heterothallic (Lee et al., 2003). In the present 

work, nitrate nonutilizing (nit) mutants of the parents have been used as suitable markers to 

distinguish homozygous from heterozygous perithecia, but the disadvantage of this technique 

is the occurrence of segregation distortion, i.e., markers deviate significantly from the 

Mendelian ratio. For mapping QTLs of important fungal traits like pathogenicity, 

aggressiveness, and mycotoxin production, two populations with the following parent crosses 

were used: (1) pathogenic, high DON-producing Z-3639 from Kansas and nonpathogenic, 

low NIV-producing R-5470 from Japan belonging to lineage 7 and 6, respectively (O’Donnell 

et al., 2000; Jurgenson et al., 2000); and (2) two medium DON-producing FG24 from Szeged, 

Hungary and FG3211 from Sersheim, Germany, both aggressive lineage 7 isolates. 

Pathogenicity, as defined in our study, is  the ability to cause disease while  aggressiveness  

refers to the quantity of disease induced by a pathogenic isolate on a susceptible host in a 

system in which the isolates do not interact differentially with host cultivars (Vanderplank, 
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1968). Disease severity of the first population was recorded in the greenhouse for two years 

and aggressiveness traits (head blight rating and relative plot yield), Fusarium exoantigen 

(ExAg) content (for 50 progeny) and deoxynivalenol (DON) production of the second 

population in three field environments. 

Lineage 6 (R-5470) has not yet been reported in Europe (O’Donnell et al., 2000). 

Because of quarantine and plant health reasons, we have not tested the aggressiveness of the 

first population consisting of 99 progeny in German fields. If it were so, we may have found 

other aggressiveness QTLs in the field that were perhaps masked by controlled environment 

variables in the greenhouse. Correlation of aggressiveness of the second population between 

field and greenhouse, however, was moderate to high. We have not mapped QTL for 

mycotoxin production in this particular cross because data on the toxin produced of all 

progeny were not measured, but their in vitro amounts were treated qualitatively, i.e., as low 

and high DON or NIV content (Jurgenson et al., 2002).  

 An unusual character of the first cross is the nonpathogenic reaction of the Japanese 

parent R-5470. Based on previous studies, nonpathogenic field isolates of G. zeae are rarely 

observed (Mesterhazy, 1981; Miedaner et al., 2000). We used a highly susceptible wheat 

genotype, an extremely disease-favorable environment, and delivered a relatively heavy 

inoculum load directly through the glumes into four central florets per head, but even under 

these very favorable conditions for disease development, nonpathogenic strains only rarely 

could spread beyond the inoculated spikelets. There was only one case in the literature in 

which F. graminearum cultures were almost nonpathogenic in barley but these isolates were 

old cultures dating over 50 years in storage (Takeda and Kanatani, 1991). Another hypothesis 

could be that R-5470 was not representative for the gene pool of G. zeae due to laboratory 

mutation (Bowden, personal communication). This could happen because genetic instability 

in culture is a common phenomenon in Fusarium species (Nelson et al, 1981). Besides that, 

we do not have any information from the collector, the late Dr. Paul E. Nelson, (Department 

of Plant Pathology, Pennsylvania State University, University Park, PA) on cultural characters 

or pathogenicity of R-5470 when it was originally isolated.  

Our original goal, aside from mapping aggressiveness in a population of a widely 

divergent cross of G. zeae, was to detect QTLs for aggressiveness and mycotoxin production 

in a second cross between two European strains. These results should have a higher impact on 

what is happening in natural populations and verify whether the data from the first cross are 

representative. Furthermore, this cross between two DON-producing aggressive parents of the 

same lineage may provide a better view of elucidating the genetic basis of aggressiveness. 
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Two problems became evident during this study. Firstly, FG24 x FG3211 population was not 

polymorphic enough to generate a genetic map of the fungus within a reliable time frame. The 

rate of polymorphism between  the interlineage parents Z-3639 and R-5470 was about three to 

four times greater than between the intralineage parents FG24 and FG3211 using AFLP and 

RAPD markers. Secondly, about one third of the 46 polymorphic markers had distorted 

segregation ratios. Consequently, QTL mapping of aggressiveness and DON in the FG24 x 

and FG3211 population was not initiated.  

 

7.2 Genetic basis of pathogenicity and aggressiveness  

 
Pathogenicity, based on the definition given, connotes a qualitative aspect of the trait, 

i.e. either a pathogen or not. To our knowledge, studies on the inheritance of pathogenicity 

and/or nonpathogenicity are unavailable. Aggressiveness, as most often referred to in the 

literature as pathogenicity, is often described as a polygenic trait (Blanch et al., 1981; 

Hawthorne et al.,1994; Wroth, 1998). Influence on the rate of evolution of pathogen 

aggressiveness will depend to a large extent on how aggressiveness is genetically controlled. 

Mostly, genetic studies of aggressiveness by Fusarium species in wheat are lacking and data 

on quantitative inheritance of these traits are based on collection of field isolates (Miedaner et 

al., 1996; Miedaner, 1997). Segregating populations generated by inducing sexual 

reproduction in the lab are more useful for this purpose than a collection of pathogen isolates 

representing a wide range in aggressiveness. Gene disruption experiments have contributed 

greatly to our understanding on the role of mycotoxins on aggressiveness, but the technique 

limits the number of isolates for testing.  

QTL analysis of Z-3639 x R-5470 population mapped pathogenicity and 

aggressiveness on different linkage groups and thus confirmed the genetic distinction between 

the two traits. A consistent bimodal distribution of pathogenicity and nonpathogenicity in the 

cross (61:38 pathogenicity:nonpathogenicity) for two years, confirms the high heritability 

obtained and provides a clear evidence of a single major gene segregating for this trait, 

although segregation ratio was distorted due to putative chromosomal rearrangement in the 

genome and the use of the nit marker technique in crossing the strains (Jurgenson et al., 

2002). Designated as PATH1, this qualitative pathogenicity locus was mapped on linkage 

group IV that is located near loci PIG1 (red pigmentation), PER1 (perithecial production) and 

TOX1 (toxin level). Recent analyses indicate that at least two of these traits are controlled by 

MAP kinase genes connected to pathogenicity (Hou et al, 2002; Urban et al., 2003). PIG1 
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accounted for the greatest portion of the variation among the pathogenic and nonpathogenic 

progeny.  

The two segregating populations - FG24 x FG3211 and Z-3639 x R-5470 (within the 

pathogenic progeny) - exhibited quantitative inheritance of aggressiveness traits. This implies 

that more than one gene was involved in the expression of these traits. On the contrary, only 

two QTLs were mapped by simple interval mapping in the Z-3639 x R-5470 population. Not 

even composite interval mapping could increase the number of QTLs with appreciable effects. 

Both aggressiveness QTLs among the pathogenic progeny were mapped on linkage group I. 

We presume that there was only one locus because two QTLs were reduced into one locus by 

composite interval mapping. This single-gene hypothesis could be explained from an 

“receptor–elicitor” perspective. The nonpathogenic R-5470 may encode an elicitor that binds 

to the host receptor which results in no disease reaction. In the case of Z-3639, no recognition 

takes place and therefore disease occurs. This could explain the monogenic inheritance of 

pathogenicity in this cross. Alternatively, the nonpathogenic isolate may have had a knock-out 

mutation at the tip of linkage group IV that took out genes responsible for host colonization, 

e.g. extracellular enzymes (Bowden, personal communication). Besides, the ability of the 

isolate to penetrate the host could not be measured as this factor was ruled out by single-

spikelet inoculation with a syringe. All pathogenic isolates inherited the pathogenic allele 

from the Kansas isolate. Even the nonpathogenic R-5470, however, contributed to the 

aggressiveness of the pathogenic isolates. R-5470 itself could not cause infection due to 

missing pathogenicity but its alleles for aggressiveness were expressed among the 

recombinant progeny.  

 An alternative hypothesis in explaining a single locus relies primarily on the low 

number of progeny (N =61). Hence, the power of detecting more QTLs was low especially if 

the rest of the putative QTLs had relatively small effects. In a model study with ten simulated 

QTLs and a high heritability (0.90), Beavis (1998) demonstrated that only three to seven 

QTLs could be detected within a population of about 100 progeny. It should be  noted that all 

assumptions underlying a single locus for aggressiveness are valid for Z-3639 x R-5470 cross 

only. Additionally, some aggressiveness loci might not differ between the parents of this cross 

and, therefore, did not contribute to segregation.  

Continuous distribution of aggressiveness traits does not necessarily imply polygenic 

inheritance. It could also be under mono- or digenic control with a large effect of the 

environment (Allard, 1960). Heritability estimate in the greenhouse experiment was 0.8, 

implying that genotype-environment interaction was influencing the trait. Moreover, the 
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frequency distribution of the pathogenic subpopulation was continuously distributed, but 

deviated from normality indicating that only a few loci were segregating for aggressiveness in 

this cross. The FG24 x FG3211 population was characterized by high isolate-environment 

interaction due mainly to the manner in which the 153 progeny were tested. Progeny were 

inoculated in three batches at three consecutive days to reduce the amount of work to a 

manageable level. Microclimatic conditions in subsequent days of inoculation, however, 

might have been critical in influencing disease severity (Reinbrecht, 2002). Consequently, this 

strategy of inoculating large number of progeny most probably enhanced nongenetic effects 

as shown by the high importance of batch-environment and batch-replicate interaction. 

Reproducibility of  inoculation within one batch (= inoculation day) was demonstrated by the 

medium to high repeatability estimates. Despite different environmental conditions, 

aggressiveness in this cross might be under different genetic control than that of the first 

cross.  Pathogenicity seems to be less affected by the environment than aggressiveness of the 

Z-3639 x R-5470 cross.  

Quantitative inheritance of aggressiveness has been observed in other fungal 

pathosystems. A cross between a weakly pathogenic and a highly pathogenic isolate of 

Gaeumannomyces graminis exhibited continuous range of aggressiveness in the greenhouse 

with no evidence of major gene nor non-additive effects (Blanch et al., 1981). Analysis of 

progeny from a very high and very low aggressive parents of Nectria haematococca that 

differed also in colony pigmentation showed quantitative genetic control of aggressiveness 

(Hawthorne et al., 1997). Six to twelve effective factors (or QTLs) were found, owing most 

likely to the high number of progeny analysed (N=800). These two pathosystems have in 

common with G. zeae that pigmentation allele explained the highest proportion of phenotypic 

variation in aggressiveness.  

For comparison to the field, one third of the progeny (N=42) of the FG24 x FG3211 

population was tested for their aggressiveness in the greenhouse. Aggressiveness in the two 

environments was moderately correlated when calculated on the basis of mean aggressiveness 

of three field environments. Greenhouse aggressiveness could be a predictive measure of the 

disease severity caused by the same isolates in the field; thus could reduce the costs for 

aggressiveness tests. Although methods of inoculation were different, i.e., injection for 

greenhouse and spray for field, disease spreading within the head seems to be the major 

component of aggressiveness. In contrast,  the correlation between the two methods was low 

to medium using 20 wheat genotypes with the same isolate of F. culmorum in a 

multienvironment trial (Miedaner et al., 2003). Two of the components in FHB resistance, 
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namely initial infection and spread of symptoms within a spike, seem to be not fully and 

genetically related in wheat (Buerstmayr et al., 2003).  

 

7.3 Genetic basis of trichothecene type and production  

 

Biosynthetic pathway genes of trichothecene production of Fusarium are closely 

linked and constitute a gene cluster. The expression of these genes is under complex 

regulation (Tag et al., 2001). So far, 11 genes involved in trichothecene production have been 

identified in F. sporotrichioides and F. graminearum and 10 of the genes are clustered 

(Brown et al., 2001). These clusters are presumably conservative and narrow; thus minimal or 

no genetic recombination during meiosis could take place. One QTL in this genomic region 

might correspond to several genes that are located in close vicinity. One locus for 

aggressiveness was located in our population near TRI5, part of the trichothecene gene cluster 

that encodes a trichothecene synthase, on linkage group I. TRI13, the gene that determines 

whether DON or NIV will be produced is in the same cluster (Lee et al., 2002). On the basis 

of this knowledge, we presume that TRI5 could be a proxy for TRI13 as the QTL that peaked 

on this marker clearly distinguished the aggressiveness of the two mycotoxin chemotypes. On 

average, DON-producing isolates were twice as aggressive as the NIV-producing isolates. 

The type of mycotoxin produced, either DON or NIV was inherited in a Mendelian way 

(Jurgenson et al., 2002).The amount of toxin produced was governed by TOX1 on linkage 

group IV. TOX1 for the Z-3639 x R-5470 population also segregated as a single Mendelian 

character (Jurgenson et al., 2002). The localization  of this gene is in contrast with the 

reported regulatory gene TRI10 controlling toxin production within the trichothecene cluster 

on linkage group I (Tag et al., 2001). TOX1 should be further studied because of its large 

effect on toxin biosynthesis (Jurgenson et al., 2002). The putative qualitative segregation of 

toxin level in the Z-3639 x R-5470 population does not contradict to the quantitative 

inheritance of DON production observed in the FG24 x FG3211 population because toxin 

levels in the first cross were assessed into two discrete classes only, i.e., high DON and high 

NIV which were associated  to specific AFLP fragment sizes 1700 bp and 2100 bp, 

respectively. Horizontal transfer of DNA has been suggested to be a driving force in the 

formation of gene clusters in fungi and bacteria (Rosewich and Kistler, 2000). A number of 

genes related to pathogenicity are also clustered in plant pathogenic fungi. In Aspergillus, 

mycotoxin genetic clusters might serve as survival mechanism prior to harvest under adverse 

ecological conditions (Sidhu, 2002). Several studies showed that DON is synthesized during 
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pathogenesis by G. zeae a couple of hours after inoculation (Evans et al., 2000, Savard et al., 

2000, Bai et al., 2002). Miller et al. (1983) demonstrated that stressful conditions favor 

trichothecene production by G. zeae. 

 The effect of environment on DON production of the progeny was very evident. This is 

consistent with the finding that trichothecene biosynthesis could be highly affected by 

environmental conditions such as temperature, substrate, and moisture content (Greenhalgh et 

al., 1983; Mesterhazy, 2002). Isolates of G. zeae highly varied in their DON production in a 

reproducible manner under optimal growth conditions (Mirocha et al., 1989; Gang et al., 

1998; Walker et al., 2001). In our study, DON had a lower environment stability than 

aggressiveness.  

Fumonisins of G. fujikuroi are closely related to trichothecenes of G. zeae in their role 

as a putative aggressiveness factor in seedling blight of maize as revealed by genetic and 

molecular analyses (Desjardins et al., 1996). Although the genetic map of G. fujikuroi is 

already existing (Xu and Leslie, 1996), QTL mapping has not been initiated but the ability to 

produce fumonisins, particularly fumonisin B1, is inherited as a single gene or group of 

closely linked genes (Desjardins et al., 1992). Later studies confirmed that these single gene 

differences could represent gene clusters in G. fujikuroi (Desjardins et al., 1996). Similar 

inheritance in the synthesis of naphthazarine toxins is reported  for N. haematococca (Marasas 

et al., 1984).  

 

7.4 Association between aggressiveness and mycotoxin production 

 

High correlations between aggressiveness traits and DON production in planta of G. 

zeae across three field environments suggest that the two traits were controlled by the same 

QTL. The strength of relationship between aggressiveness and DON production was higher 

from isolates of a segregating population than from a collection of field isolates. Investigating 

the role of toxins as aggressiveness factors has been a milestone in fungal genetic analysis 

(Proctor et al., 1995; Harris et al., 1999). A disrupted TRI5 gene from a nonproducing 

trichothecene mutants of G. zeae initially tested in a growth chamber caused less disease 

compared to the trichothecene-producing wild type in wheat. These findings favoured the 

view that trichothecene production is an aggressiveness factor and not an essential 

pathogenicity factor. Difference in the aggressiveness of the wild type and mutant deficient 

strain, however, was not significant in all wheat cultivars. Low levels of disease caused by a 

nonproducing trichothecene mutants suggests that there are other factors that contribute to the 
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disease caused by G. zeae. Aside from trichothecenes, G. zeae produces enzymes, hormones 

and other metabolites, such as zearalenone and fusarins which might play a role in 

pathogenesis. Wanyoike et al. (2002) demonstrated that reduced gold labelling densities 

present in the infected host cells suggest that these polysaccharide degrading enzymes could 

be important pathogenicity factors of G. zeae during infection of wheat spikes or components 

of aggressiveness. Enzymes such as cellullose, polygalacturonase, β-glucanase, xylanase, and 

proteinases are suspected to be involved in the grain colonization and pathogenesis (Balazs 

and Bagi, 1997; Schwarz et al., 2002) whose function in cell wall degradation is a major 

characteristic of necrotropic pathogens (Brasier, 1987). There are indeed many possible 

components of aggressiveness and therefore it is not surprising that aggressiveness of G. zeae 

or F. culmorum has a quantitative-genetic basis (Miedaner et al., 1996; Miedaner et al., 2000). 

DON is reported to aid in fungal colonization (Snijders and Krechting, 1992; Nicholson et al., 

1998). We found a rather high correlation between DON production and Fusarium exoantigen 

(ExAg) content of 50 progeny of  the G. zeae cross FG24 x FG3211, suggesting the feasibility 

of using ExAg content as an indirect measure for the presence of DON in the grain. Although 

the genetic make-up of the population originated from one cross, ExAg has low heritability, at 

least as reported here, partly due to high progeny by environment interaction and error. If 

QTL for Fusarium ExAg content could only be mapped, we expect that it should be residing 

near or within the aggressiveness QTL. Our study showed that all isolates produced the same 

amount of DON relative to their ExAg content. The respective ratio had no significant 

genotypic variation (P > 0.1), although the single components, DON and ExAg content, 

varied. This also demonstrated that DON itself cannot be the only component of 

aggressiveness. Based on correlation and QTL studies, however, it cannot be decided whether 

two factors have a causative or merely correlative association. Furthermore, close linkage 

between two loci, e.g. as found for PATH1 and TOX1 or one major locus for aggressiveness 

and TRI5 in our studies provide no hint for a causal association. This question can only be 

solved if such linkage disequilibria are formed consistently on several different crossing 

populations or if the underlying genes are cloned and identified. 

 

7.5 Significance for population structure of G. zeae and breeding for resistance 

 

Miedaner (1997) proposed that sudden increase in aggressiveness in the presence of 

FHB resistant varieties is unlikely considering that G. zeae, undergoes saprophytic phase, is 

not highly specialized as a pathogen, and because no races could be found that specifically 
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infect host genotypes. Host resistance is therefore likely to be durable. In view of the rather 

simple inheritance of aggressiveness however, aggressiveness level of natural populations of 

G. zeae might gradually increase if oligogenically inherited host resistances are widely grown. 

For example, the Chinese resistance source Sumai 3, that is used worldwide in breeding 

programs because of its outstanding resistance performance, has been shown to harbor only 

two QTLs explaining about 50% of the total variance (Buerstmayr et al., 2003). Kolmer and 

Leonard (1986) already demonstrated the gradual erosion of quantitative resistance in corn by 

a selection for virulence of Cochliobolus heterostrophus in the lab. This might also be true for 

other pathosystems (McDonald and Linde, 2002). The high propagule number of G. zeae 

produced in disease epidemics reinforces the role of mutation as an evolutionary force. 

Spontaneous mutation frequency per aggressiveness gene in fungi is estimated at 1 x 10-6 on 

average (Fincham et al., 1979). G. zeae has large population size and possesses a mixed 

reproduction system with both sexual and asexual reproduction. Asexual reproduction occurs 

more frequently than sexual reproduction. Cultural practices such as maize-wheat rotation 

would induce sexual reproduction, allowing at least one recombination per year, and 

dramatically increase asexual spore production. At the current situation, we consider G. zeae a 

medium-risk pathogen because gene flow plays a minor role only (McDonald and Linde, 

2002). As a soil-borne pathogen, long–distant transport is limited and can only occur by 

seedborne inoculum. Nevertheless, the large genetic variation of G. zeae in individual field 

populations (Bowden and Leslie, 1992; Miedaner and Schilling, 1996) implies that sexual 

recombination and mutation should play a role in the pathogen evolution. Nothing is known 

about the time frame and relative importance of such processes in the field. Therefore, erosion 

of host resistance by the pathogen cannot be ignored. Owing to the presence of transgressive 

segregation observed within a European cross of G. zeae, we present evidence that 

aggressiveness could increase in the long run and may lead to a gradual unspecific adaptation 

in the progeny of crosses within lineage 7. Zhan et al. (2002) found greater stability, higher 

genotype diversity and smaller selection coefficients of Mycosphaerella graminicola isolates 

collected from the moderately resistant wheat cultivar compared to a susceptible one. This 

clearly shows that host genotype may have an impact on the dynamics of pathogen 

populations even in quantitative host-pathogen-interactions. Resistance to FHB could erode 

over longer periods of time when highly resistant host varieties are grown on large acreages. 

A resistant genotype to FHB was found highly stable in 16 environments  (Mesterhazy, 1995). 

The experiment, however, was  conducted in small plots. 
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There are two challenges faced by wheat breeders selecting for high FHB resistance: 

(1) oligo-to polygenic inheritance of resistance to G. zeae; and (2) impact of environment on 

disease. Solutions to these challenges involves investigation of both pathogen and host 

components. The counterpart of quantitative resistance of the host is aggressiveness of the 

pathogen. The study of pathogen fitness traits including mycotoxin type and production 

should help elucidate host resistance mechanisms and environmental factors that affect 

disease development. Several studies have concentrated on quantitative resistance of the host 

with very limited work on the quantitative aggressiveness of G. zeae. The role of toxins as 

aggressiveness factors should be supported by plant genetic analysis. If toxin production 

increases pathogen aggressiveness, it follows that increase in host resistance to the toxin 

should decrease aggressiveness in populations of G. zeae (Snijders and Krechting, 1992). Due 

to our specific cross Z-3639 x R-5470, we found, by QTL analysis, a genetic difference 

between pathogenicity and aggressiveness. Pathogenicity and aggressiveness are confusing 

terms for students of plant pathology. Different authors use different terms to describe the 

same concept or use the same terms for different biological concepts as had been cited before. 

The term aggressiveness is not so much used in plant pathology. For example, the British 

Society of Plant Pathology rejected the term aggressiveness and considered it to be 

synonymous with pathogenicity (Holliday, 1989). The distinction between the two 

terminologies by genetic mapping better defines these fitness traits and should be adapted by 

plant pathologists.   

 

7.6 Research needs and outlook  

 

We found that Kansas parent Z-3639 closely resembled the two European parents 

from wheat in aggressiveness and DON production but was genetically separated from the 

Japanese parent R-5470 as shown by AFLP and RAPD analyses. Genetic similarity of the 

European parents correlated well with the findings of O’Donnell et al. (2000) on lineage 

grouping and Carter et al. (2002) on the basis of three RAPD profile groups, in which isolates 

from the USA and North-West Europe formed a single group C. In view of these results, our 

major concern is whether it would be worthwhile to continue mapping the FG24 x FG3211 

population. As an initial strategy, we recommend to analyse the polymorphism of a larger 

collection of G. zeae isolates belonging to lineage 7 by AFLP and RAPD markers. If we find 

substantial polymorphism within lineage 7, it was by chance that we had selected low 

polymorphic parents. If not, mapping would still be the direction of this research. In a wheat -
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agroecosystem, only isolates of lineage 7 would most likely be coming together by trade in 

Europe. In principle, mapping an intralineage cross of G. zeae is possible when the parents are 

polymorphic enough (Bowden et al., 2002; Gale and Kistler, personal communication). To 

avoid segregation distortion when using nit marker, a deletion in the MAT2 gene should be 

used  to induce heterothallism (Bowden et al., 2002). 

Crosses of other lineages with more progeny might assist in detecting other QTLs that 

have lower effects and perhaps map elsewhere in the genome. To assess accurately the effect 

of aggressiveness factors other than toxin type and remove toxin production from 

consideration as a pathogenicity factor, an ideal cross for analysis would be between strains 

that produce similar levels of either DON or NIV but differ in the level of disease severity. 

This phenotype character is, however, difficult to find because of the correlation between 

aggressiveness and DON production. Host-isolate interactions have not been reported (Van 

Euwijk et al., 1995) due perhaps to much concentrated efforts on host studies but not on the 

genetics of the pathogen. Now that a QTL for aggressiveness has been found, it is possible to 

look more deeply into cultivar-isolate interactions, e.g. by mapping resistance in a segregating 

wheat population that is inoculated with different isolates. In the barley-leaf rust pathosystem, 

Qi et al. (1998) observed race-specificity of some quantitative resistance loci by comparing 

the respective QTLs when two different rust isolates were inoculated. But QTL analysis is 

just a starting point in genetic studies. Research should gradually move from initial 

chromosomal location of QTLs towards gene identification. After a wide genome scan, fine 

mapping of specific chromosome regions using the markers linked to QTLs of interest, would 

be the next step. Molecular tools allow QTLs  to be isolated, cloned by recombinant DNA 

technology, and used for functional and evolutionary studies.  

Genomics is the latest research trend in biotechnology that analyses the whole genome 

of an organism. Partial genome sequence information and expressed sequence tag (EST) 

collections of G. zeae have become available (Trail et al., 2003). These data will speed up 

gene identification involved in host–pathogen interaction and provide new insights into the 

evolution of fungal parasitism (Leach et al., 2003). The trend of G. zeae genetic research - 

from AFLP map to EST – may lead to a construction of a detailed genomic map. Bacterial 

artificial chromosome (BAC) library construction is underway to generate contigs for 

scaffolding sequencing information and for linking to the AFLP map. Due to the simple 

inheritance of aggressiveness that was genetically caused by only a few loci in the Z-3639 x 

R-5470 cross, there is a good chance to truly dissect quantitative variation at the molecular 
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level. These advances will unravel knowledge gaps in the genetics of G. zeae and offer 

exciting possibilities for deployment of effective FHB management.  
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8 Summary  

 

 Fusarium head blight (FHB), caused by Gibberella zeae (Schwein.) Petch (anamorph: 

Fusarium graminearum Schwabe), is one of the principal diseases responsible for extensive 

damage in wheat fields and contamination of grain with the mycotoxins deoxynivalenol 

(DON) and nivalenol (NIV), rendering the harvest unsafe for human and animal consumption. 

Control of FHB is difficult because of the complex nature of host-pathogen-environment 

interaction and the nonavailability of highly effective fungicides. Agronomic practices and 

resistance breeding, therefore, offer the best strategies for disease management. Mapping by 

molecular markers provides an accurate approach for genetic analyses of simple and complex 

traits particularly pathogenicity, aggressiveness, and mycotoxin production. Pathogenicity, as 

defined here, is the ability to cause disease whereas aggressiveness is the quantity of disease 

induced by a pathogenic isolate on a susceptible host in which isolates do not interact 

differentially with host cultivars. The project aims to (1) map pathogenicity and 

aggressiveness of G. zeae based on a published genetic map (2) estimate genetic diversity of 

four parent isolates by PCR-based markers (3) examine the inheritance of pathogenicity, 

aggressiveness, mycotoxin type (DON/NIV), and DON production on a phenotypic basis, (4) 

analyse genetic covariation among aggressiveness, DON, and fungal colonization, (5) and 

compare aggressiveness of 42 isolates in greenhouse and field environments. 

 Two crosses of G. zeae using nit (nitrate nonutilizing) marker technique were 

performed: (1) pathogenic DON-producing Z-3639 (Kansas, USA) x nonpathogenic NIV-

producing R-5470 (Japan) belonging to lineage 7 and 6, respectively, and (2) DON-producing 

FG24 (Hungary) x FG3211 (Germany), both aggressive lineage 7 isolates. For the first cross, 

99 progeny segregated in a consistent 61:38 for pathogenicity: nonpathogenicity in a two-year 

greenhouse experiment. Among the 61 pathogenic progeny, disease severity, measured as 

percentage infected spikelets, varied significantly (P = 0.01). Heritability for aggressiveness 

was high. Pathogenicity locus was mapped on linkage group IV near loci PIG1 (red pigment 

production), TOX1 (trichothecene toxin amount), and PER1 (perithecial production) 

explaining 60%, 43%, and 51% of the phenotypic variation, respectively. Two large 

aggressiveness QTLs were mapped on linkage group I linked to the locus TRI5 (trichodiene 

synthase in the trichothecene gene cluster) and an amplified fragment length polymorphism 

(AFLP)   marker (EAAMTG0655K), explaining 51% and 29% of the observed phenotypic 

variation, respectively. These unlinked loci suggest that genetic basis between pathogenicity 

and aggressiveness were different. TRI5 is located in the same gene cluster as a previously 
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identified gene known as TRI13, which determines whether DON or NIV will be produced. 

DON-producing progeny were, on average, twice as aggressive as were those producing NIV. 

Loci were only detected in the two linkage groups mentioned from the nine linkage groups 

present in the map.  

For the second cross FG24 x FG3211 with 153 progeny, head blight rating and relative 

plot yield were used as aggressiveness traits. DON production was measured by a commercial 

kit enzyme immunoassay. These three traits were quantitatively inherited among 153 progeny 

across three environments. Repeatabilities within each environment were medium to high but 

heritabilities across environments were medium only due to high progeny-environment 

interaction. DON was a less environmentally stable trait than aggressiveness. Transgressive 

segregants were detected frequently. This implies that even a cross within a lineage could lead 

to an increase in aggressiveness. Mapping of this cross was not initiated because the parents 

were not polymorphic enough to construct a genetic map. Instead, the parents were analysed 

for polymorphism in comparison to the parents of the first cross using 31 AFLP primer 

combinations and 56 random amplified polymorphic DNA (RAPD) primers. Polymorphism 

between Z-3639 and R-5470 was about three to four times higher than between FG24 and 

FG3211. Cluster analysis revealed that R-5470 was genetically separated from the other three 

parents, thus confirming the lineage assignments.  

Among preselected 50 progeny from the same field experiments that showed normal 

distribution for aggressiveness - head blight rating, fungal colonization, and DON production 

were correlated (r = 0.7, P = 0.01). Fungal colonization measured as Fusarium exoantigen 

(ExAg) content using enzyme-linked immunosorbent assay (ELISA) varied also 

quantitatively, but heritability was lower due to high progeny-environment interaction and 

error. Strong correlations among all traits indicate control by similar genes or gene 

complexes. No significant variation was observed for DON/ExAg ratio. Aggressiveness traits 

and DON production were more environmentally stable compared to Fusarium ExAg content. 

Our findings imply that aggressiveness may have other components apart from mycotoxin 

production. Genotypic variation for aggressiveness among the 42 progeny in one greenhouse 

and three field environments was significant and their correlation was moderate (r = 0.7,        

P = 0.01). High heritability in both environments again indicates that aggressiveness was a 

relatively stable trait, although methods of inoculation differed, i.e., injection for greenhouse 

and spraying for field experiments. Greenhouse aggressiveness could predict aggressiveness 

in the field, and thereby should reduce costs for resistance and phytopathological studies.  
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 In conclusion, we consider G. zeae as medium-risk pathogen with the potential to 

evolve to a higher level of aggressiveness due to sexual recombination. Erosion of 

quantitative resistance in FHB cannot be ignored, especially if host resistances with 

oligogenic inheritance, e.g. Sumai 3 from China, are used on a large acreage. Consequently, 

the rather simple inheritance of pathogenicity and aggressiveness in G. zeae could lead to a 

gradual increase of aggressiveness. These results should enhance efforts of plant breeders to 

use several, genetic distinct sources of resistance in order to avoid possible FHB outbreaks in 

the future.  
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9 Zusammenfassung 

 

Ährenfusariosen, die im Wesentlichen von Gibberella zeae (Schwein.) Petch 

(anamorph: Fusarium graminearum Schwabe) verursacht werden, können zu hohen 

Ertragsverlusten und der Kontamination mit Mykotoxinen führen. Hauptsächlich werden die 

Mykotoxine  Deoxynivalenol (DON) und Nivalenol (NIV) produziert, die eine 

gesundheitsschädigende Wirkung auf Mensch und Tier haben. Wegen der hohen Wirt-

Pathogen-Umwelt-Interaktion sowie wenig effizienter Fungizide ist die Bekämpfung von 

Ährenfusariosen problematisch. Pflanzenbauliche Maßnahmen und Resistenzzüchtung 

können zu einer Verminderung des Pilzbefalls führen. Die Kartierung mit molekularen 

Markern bietet die Möglichkeit, sowohl einfach wie auch komplex vererbte Merkmale zu 

untersuchen. Pathogenität und Aggressivität stellen zwei wichtige Bedingungen der Infektion 

und der Befallsentwicklung von Ährenfusariosen dar. Pathogenität wird dabei als die 

Fähigkeit eines Isolats definiert, Krankheitssymptome auf einem anfälligen Wirt 

hervorzurufen. Aggressivität beschreibt die Stärke des Befalls, wenn die Isolate nicht 

differentiell mit den Wirtsgenotypen interagieren. Zielsetzung des Projektes war (1) die 

Kartierung der Pathogenität und der Aggressivität von G. zeae, aufbauend auf einer bereits 

publizierten genetischen Karte, (2) die Analyse der Diversität aller Eltern-Isolate mit PCR-

basierenden Markern, (3) die Untersuchung der Vererbung von Pathogenität, Aggressivität, 

Mykotoxin-Typ (DON/NIV) und DON-Produktion, (4) die Analyse der genetischen 

Kovariation zwischen Aggressivität, DON und Myzelwachstum und (5) der Vergleich der 

Aggressivität von 42 Isolaten im Gewächshaus und Feld.  

Es wurden zwei Kreuzungen mittels nit (nitrate nonutilizing)-Markern durchgeführt, 

zum einen wurde das pathogene, DON-produzierende Isolat Z-3639 aus Kansas (USA) mit 

dem nicht-pathogenen, NIV- produzierenden Isolat R-5470 (Japan) der Abstammungslinien 7 

bzw. 6 gekreuzt, zum anderen wurden die beiden DON-produzierenden, aggressiven Isolate 

FG24 (Ungarn) und FG3211 (Deutschland) der Abstammungslinie 7 gekreuzt. Die 99 

Nachkommen der ersten Kreuzung spalteten in einem zweijährigen Gewächshausversuch 

qualitativ in einem Verhältnis 61:38 für das Merkmal Pathogenität. Die Aggressivität, 

gemessen als Prozent infizierter Ährchen, variierte signifikant (P=0,01) zwischen den 61 

pathogenen Nachkommen. Die Heritabilität für die Aggressivität war in dieser Kreuzung 

hoch. Die Pathogenität wurde auf der Kopplungsgruppe IV nahe den Loci PIG1 

(Pigmentierung), TOX1 (Trichothecen-Gehalt), und PER1 (Perithezienproduktion) lokalisiert. 

Sie erklärten 60%, 43% bzw. 51% der phänotypischen Varianz. Zwei Loci für die 
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Aggressivität waren auf der Kopplungsgruppe I mit TRI5 (Trichodiensynthase) und einem 

AFLP- (amplified fragment length polymorphism) Marker (EAAMTG0655K) gekoppelt und 

erklärten 51% bzw. 29% der phänotypischen Varianz. TRI5 befindet sich im gleichen Gen-

Cluster wie TRI13, das über die Bildung von DON oder NIV entscheidet. Die DON-

produzierende Teilpopulation war im Durchschnitt zweimal so aggressiv wie die NIV-

produzierende Teilpopulation. Es wurden keine weiteren Loci für die Pathogenität oder 

Aggressivität auf den restlichen sieben Kopplungsgruppen dieser Karte gefunden. Daraus 

lässt sich schlussfolgern, dass beide Merkmale in dieser Kreuzung auf unterschiedliche Weise 

vererbt werden.  

Für die zweite Kreuzung FG24 x FG3211 mit 153 Nachkommen wurden die 

Ährenbonitur und das relative Ährengewicht als Merkmal für die Aggressivität in einem 

Feldversuch über drei Umwelten ermittelt. Zusätzlich wurde die DON-Produktion mittels 

eines handelsüblichen Immunotestes gemessen. Alle drei Merkmale zeigten eine quantitative 

Verteilung. Trotz einer mäßigen bis hohen Wiederholbarkeit in den Einzelumwelten, war die 

Heritabilität in der Serienverrechnung wegen der hohen Genotyp-Umwelt-Interaktion nur 

mäßig. Die DON-Produktion zeigte eine geringere Umweltstabilität als die Aggressivität. 

Transgressionen wurden häufig beobachtet. Dies zeigt, dass auch eine Kreuzung innerhalb 

einer Abstammungslinie zu einer höheren Aggressivität führen kann. Die Kartierung der 

zweiten Kreuzungsnachkommenschaft konnte nicht durchgeführt werden, weil der 

Polymorphismus zwischen den Eltern zu gering war. Statt dessen wurden die Eltern dieser 

Kreuzung mittels 31 AFLP-Primerkombinationen und 56 RAPD- (random amplified 

polymorphic DNA)-Primern mit den beiden Eltern der ersten Kreuzung verglichen. Der 

Polymorphiegrad zwischen Z-3639 und R-5470 war etwa drei bis viermal höher als zwischen 

FG24 und FG3211. Die Cluster-Analyse ergab, dass R-5470 von den anderen drei Eltern 

genetisch stark verschieden war, wodurch die Zugehörigkeit zu einer anderen 

Abstammungslinie als die der restlichen Isolate gerechtfertigt werden kann. 

Bei fünfzig selektierten Nachkommen, die im Feldversuch über drei Umwelten eine 

Normalverteilung für die Aggressivität zeigten, korrelierten die Ährenbonitur, das 

Myzelwachstum und die DON Produktion relativ gut (r = 0,7; P = 0,01). Auch das 

Myzelwachstum, gemessen als Fusarium-Exoantigen (ExAg) mittels ELISA (enzyme-linked 

immunosorbent assay), variierte quantitativ. Die Heritabilität für dieses Merkmal war jedoch 

aufgrund der hohen Bedeutung von Genotyp-Umwelt-Interaktion und Fehler niedrig. Die 

Korrelation zwischen allen Merkmalen zeigt, dass sie von ähnlichen Genen oder 

Genkomplexen kontrolliert werden. Es wurde keine signifikante Variation für das 
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DON/ExAg-Verhältnis nachgewiesen. Die Aggressivitätsmerkmale und die DON-Produktion 

waren umweltstabiler als der Fusarium-ExAg-Gehalt. Diese Ergebnisse belegen, dass neben 

der Mykotoxinproduktion noch andere Merkmale zur Aggressivität beitragen.  

Die genotypische Variation für die Aggressivität bei 42 Nachkommen im Gewächshaus und 

an drei Feldumwelten war signifikant (P = 0,01), die Korrelation war mäßig hoch (r = 0,7; P = 

0,01). Dies zeigt, dass die Aggressivität stabil vererbt wurde, obwohl zwei unterschiedliche 

Inokulationsmethoden angewandt worden waren. Die Einzelährcheninjektion im 

Gewächshaus einerseits und die Sprühinfektion im Feld andererseits. Daher können die 

Ergebnisse aus den  Gewächshausversuchen zur Vorhersage der Aggressivität im Feld genutzt 

und damit die Kosten für solche Untersuchungen gesenkt werden.  

Zusammenfassend sollte G. zeae als Pathogen mit einem mittleren Risiko zur 

Überwindung von Resistenzen eingestuft werden. Allerdings kann evolutionär durchaus ein 

höheres Aggressivitätsniveau durch sexuelle Rekombination erreicht werden. Die Erosion 

quantitativer Resistenz bei Ährenfusariosen sollte dabei nicht vernachlässigt werden. Dies gilt 

besonders dann, wenn Wirtsgenotypen mit oligogenischer Vererbung der Resistenz, wie 

beispielsweise die chinesische Sorte ‘Sumai 3’, einen großen Anteil der Anbaufläche haben. 

Die einfache Vererbung der Pathogenität und Aggressivität bei G. zeae kann dann zu einer 

graduellen Erhöhung der Aggressivität führen. Daher sollten Pflanzenzüchter mehrere, 

genetisch unterschiedliche Resistenzquellen für die Sortenentwicklung nutzen, um in Zukunft 

größer Epidemien durch Ährenfusariosen zu vermeiden.  
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