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A  Introduction, summaries and conclusion 
 

1. General Introduction 
 

Human activities including fossil fuel burning and land-use change have caused 

the concentration of atmospheric carbon dioxide (CO2) to increase in the last 200 years 

from about 280 parts per million (ppm) in the early days of industrialization to 370 ppm at 

the beginning of the 21st century. Projections of future atmospheric CO2 concentrations 

range between 540 and 970 ppm by the end of the 21st century, depending on future 

anthropogenic emission scenarios (Prentice et al., 2001). CO2 is one of the so-called 

greenhouse gases and its increasing concentration may contribute to global warming.  

Since we live in a ”carbon world”, however, plants and ecosystems might also be affected 

more directly by “CO2-fertilization”, an issue that has received much less public attention 

(Körner, 2000). Any response of natural and agricultural plant communities to rising CO2 

concentrations might then mediate effects on soil biological communities. 

 

In regard to photosynthesis, plant species are grouped into C3, C4 and CAM plants. 

Most plant species, especially in temperate regions, belong to the C3 group. C3 plants are 

less efficient in photosynthesis than C4 plants: 20 - 50% of the fixed carbon is immediately 

lost by photorespiration. Hence, photosynthesis of C3 plants is stimulated by high levels of 

CO2, but the responsiveness differs between species and genotypes. Under ideal 

conditions, increased photosynthesis rates translate into increased plant growth. Often, a 

higher proportion of the extra fixed carbon is allocated into roots, and the root-shoot-ratio 

increases (Rogers et al., 1994). Even if no growth response is observed, CO2 enrichment 

alters live plant-tissue composition. Commonly, the tissue concentration of nonstructural 

carbohydrates like starch and sugars increases. If nutrient supply is limited, stimulated 

photosynthesis under elevated CO2 results in lower nutrient concentration in plant tissues 

than in ambient CO2. In particular, lower N concentrations or wider C:N ratios  are often 

observed (Körner, 2000). Over longer periods of CO2 exposure, initial direct responses of 

plants become smaller because adaptations of photosynthesis to higher CO2 occur. 

Besides C allocation of plants, elevated CO2 also affects transpiration; it generally reduces 

stomatal conductance because aperture and stomata frequencies decline (Morison, 

1998). As a consequence, plants use water more efficiently. In systems where water 

supply is a limiting factor, this indirect CO2-effect of better water use efficiency might play 

a more important role in biomass increases than the direct photosynthesis stimulation 

effect (Volk et al., 2000). 
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Direct CO2-effects such as increased plant biomass are usually much smaller in 

natural ecosystems than in greenhouse studies or in agricultural systems, because other 

resources (e.g. nutrients) usually limit growth and because plants are competitive and 

interacting. Since plants species’ and genotypes’ responses to elevated CO2 differ 

considerably, competitive shifts in natural complex systems are likely to occur under 

changing atmospheric conditions. This indirect CO2-effect is probably more persistent than 

the direct ones (Körner, 2000). 

 

In soils, CO2 concentration exceeds atmospheric levels by a factor of 10, hence 

direct effects of CO2 enrichment on soil organisms are unlikely. The effects of enrichment, 

however, will be mediated to soil microorganisms by plants. Plant responses will alter the 

carbon supply to heterotrophic microorganisms, whereby belowground carbon input will 

most likely increase. Less is known about the effects on the quality of C-inputs. So far, 

only little experimental evidence is available on the quality of rhizodeposits, solely deriving 

from pot studies, and nothing is known about the rhizodeposition of complex communities 

under elevated CO2. Whether microorganisms can utilize extra C-input also depends on 

the availability of other nutrients, especially N. Enhanced plant and root growth, 

accompanied by increased plant nutrient uptake, may affect the dynamic equilibrium 

between plants and microbes in nutrient acquisition. Altered soil moisture conditions under 

elevated CO2 directly influence the living conditions of soil microorganisms. Water 

limitations of microbial activities might be reduced under elevated CO2 (Hu et al., 1999). 

The importance of microbial community responses to CO2 enrichment was highlighted by 

Norby (1997): “The soil system is incredibly complex, with uncounted bacterial, fungal and 

microfaunal species living and interacting amidst a matrix of plant roots and organic and 

inorganic particles, and awash in a nutrient and organic bath. Even if increased CO2 does 

not lead directly to carbon accumulation, a faster cycling rate could induce myriad 

changes in species diversity and functions. These fundamental shifts in ecosystem 

physiology could in the long run be the most important controllers of carbon pools.” 

 

As pointed out above, CO2 responses are strongly ecosystem-specific, varying 

with plant community studied, nutrient availability, soil properties and climatic conditions. 

In the following chapter, the long-term CO2 enrichment in calcareous grassland is 

described in greater detail and its main results are presented. 
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2. The long-term CO2 enrichment in calcareous grassland  
 

Calcareous grasslands are man-made ecosystems that often originated many 

centuries ago by extensive use for grazing. They are among the most species-rich 

habitats in Central Europe, and many rare species, including orchids, are often found. A 

calcareous grassland in the Swiss Jura mountains was selected by the Institute for Botany 

in Basel as a research site to study the structure, dynamics and functions of biodiversity 

under changing atmospheric conditions. A long-term CO2 enrichment experiment was set 

up; it contributed to the Global Change and Terrestrial Ecosystem Project (GCTE) of the 

International Geosphere-Biosphere Programme (IGBP) (Körner, 1995).  

The grassland is located on a southwest-facing slope in the north-western part of 

Switzerland (47°27’30’’N, 7°34’E, 520 m a.s.l.). Mean annual temperature is around 8.5 

°C and annual precipitation is around 900 mm. On calcareous debris, a Rendzina 

developed. The thickness of the Ah horizon varies between 10 and 20 cm, and its texture 

is silty clay loam (Ogermann et al., 1994). For at least several decades the site has been 

used as cattle pasture, leading to the characteristic vegetation of the Mesobromion. The 

dominant species is Bromus erectus Huds., which contributes more than 40% to the 

overall aboveground biomass. Overall, gramoinides contribute nearly 70% to 

aboveground biomass, non-legume dicots 15%, legumes 6%, and mosses 10%. With few 

exceptions, species in this community all are long-living perennials (Huovinen-Hufschmid 

and Körner, 1998). 

For CO2 exposure a novel system was developed. The Screen-Aided CO2 Control 

(SACC) system uses much less CO2 per experiment and replicate than Free Air Carbon 

enrichment (FACE) and has a smaller impact on the microclimate than Open Top 

Chambers (OTCs) (Leadley et al., 1997). Each screen unit consists of clear plastic and a 

pipe at the base of the screen, through which CO2-enriched or ambient air is directed into 

the unit. The units are hexagonal, 50 cm in height, enclose a ground area of 1.27 m², and 

leave a gap of 7 cm to the ground. The gap allows free convection of air and unrestricted 

movement of small animals. The screen breaks the wind, which along with the air blown 

into the screen creates turbulent mixing within the unit and thereby relatively uniform CO2 

concentrations. A fully automated system monitors CO2 concentrations and regulates the 

CO2 injection rate for each unit every ten minutes to maintain the preset CO2 

concentration of 600 ppm. Impacts on microclimate were smaller than usually observed in 

the case of OTCs: Temperatures in SACC units were app. 1.0 K higher over 24 hours 

compared to control plots, and on hot days peak temperature differences were 2.5 K at 

maximum. Precipitation in the centre area of SACC units exceeded 90% of that outside 
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the chamber, resulting in slightly lower soil water contents in plots with SACC units than in 

control plots (Leadley et al., 1997).  

The plots of the field experiment, including unscreened ambient CO2 plots (control, 

365 µl CO2 l-1), screened ambient CO2 plots (365 µl CO2 l-1) and screened elevated CO2 

plots (600 µl CO2 l-1), were organized in four blocks à 6 plots (8 replicates per treatment, 

24 plots in total). The blocks were oriented perpendicular to the slope. The CO2 

enrichment of undisturbed vegetation plots started in March 1994 and operated 24 hours 

a day, except from December to February, when it was shut down. The experiment was 

terminated in June 1999. 

In the first two growing seasons of treatment, ecosystem-level day-time CO2 

uptake was increased at elevated CO2 (25-60%), while night-time CO2 release did not 

change significantly (Stocker et al., 1997). In response to CO2 exposure, plant biomass 

increased significantly between 20% to 29% in the 2nd to 4th growing season. In the 2nd 

and 3rd year of the experiment, significant differences in responsiveness between 

functional groups (legumes, non-leguminous, forbs and graminoids) were detected, but 

the order of responsiveness differed between years. By the 3rd year of CO2 enrichment, 

large species-specific differences in CO2 response had developed. Carex flacca and Lotus 

corniculatus increased their relative contribution to community biomass by 271 and 249%. 

Their strong positive response can be related to increased soil moisture under CO2 

exposure, which may allow C. flacca and L. corniculatus to out-compete less mesophytic 

species (Leadley et al., 1999). Increased soil moisture at elevated CO2 can be explained 

by reduced leaf conductance. The observed effects on leaf conductance were strongly 

buffered by leaf boundary layer and canopy conductance, so only small, non-significant 

decreases of evapotranspiration were found. However, these minute responses of 

reduced water loss accumulated over-time and resulted in significantly higher soil 

moisture in plots exposed to elevated CO2. The largest differences of soil moisture 

between CO2 treatments were usually found at intermediate soil moisture levels. After 

heavy precipitation, at high soil moisture levels, differences were small (Niklaus et al., 

1998b). A study on the root system over the first two years of the experiment revealed no 

differences in root mass (Leadley et al., 1999). Minirhizotron observations also revealed 

no effects of CO2 enrichment on root production or mortality, but a greater proportion of 

roots was found in the top layer (0-6 cm) (Arnone et al., 2000). Plant aboveground C:N 

ratios were increased at elevated CO2, and total amounts of N removed in biomass 

harvest were not affected by CO2 exposure. This indicated that the observed plant 

biomass increases were solely attained by dilution of N. The C/N ratio of legumes was not 

affected by CO2 enrichment, therefore legume growth was not limited by available soil N. 

In a greenhouse study with monoliths from the field site, addition of P lead to increased 
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plant N pools by stimulating the legumes. This indicates that the overall productivity of the 

system is N-limited, whereas effects of elevated CO2 on legume growth and N fixation are 

limited by P (Niklaus et al., 1998a).  

In the 3rd year of the field experiment, microbial biomass and carbon were 

investigated. Microbial biomass carbon did not change under elevated CO2, but microbial 

N did increase significantly, resulting in a narrower microbial C:N ratio (Niklaus, 1998). 

After 6 years of enrichment, the C pools in plant and surface litter had increased, but 

microbial C and soil organic C were not affected (Niklaus et al., 2001b). In a greenhouse 
13C pulse labelling study, intact turves taken from the grassland were labelled for two 

photoperiods with 13CO2. The distribution of the 13C label was then tracked in plants, newly 

produced fine roots, earthworms, soil microorganisms and density fractions for the rest of 

the growing season. Plant 13C pools increased significantly belowground, but the CO2 

enrichment had no effect on 13C in soil microorganisms, fine roots, earthworms, or density 

fractions (Niklaus et al., 2001a). The greenhouse and the in situ study indicate that C 

sequestration under elevated CO2 occurred only in rapidly turning over pools, such as 

plant biomass or detritus, and that potential extra C inputs were rapidly re-mineralised 

(Niklaus et al., 2001b). 
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3. Outline of the thesis 
 

Previous results of the CO2 enrichment in calcareous grassland have shown that 

the plant community responded by a shift in species composition and increased plant 

pools of carbon. A prominent feature was altered soil moisture conditions. The pool size 

microbial biomass, however, did not respond to changes in C supply and soil moisture. 

This thesis aims to analyse the responses of the soil microbial community to the long-term 

CO2 enrichment in greater detail, both in terms of its function and its composition. 

Classical soil biological analysis as well as modern molecular methods were applied; in 

addition to the field experiment, a laboratory incubation experiment was also set up. The 

thesis is composed of 4 parts: 

I. The impact of altered litter quality at elevated CO2 was studied at the microhabitat 

level. In the laboratory incubation experiment, we focused on the response of 

xylanase and invertase to changes in litter quality at elevated CO2 at the soil-litter 

interface (Chapter B). 

On the field scale, the response of the microbial community to plant-mediated effects of 

CO2-enrichment  was examined by  

II. investigating the functional diversity by means of activities of enzymes involved in 

C-, N-, P-, and S-cycling and N-mineralisation (Chapter C) and 

III. analysing microbial community structure using phospholipid fatty acid (PLFA) 

profiles and analysing the bacterial community structure using Polymerase Chain 

Reaction (PCR) followed by Denaturing Gradient Gel Electrophoresis (DGGE) 

(Chapter D). 

IV. In a synthesis with data of other researchers, data on soil microorganisms, soil 

fauna, soil structure and N cycle were compiled (Chapter E). 
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4. Effects of litter produced under elevated CO2 on invertase and xylanase 
activity at the soil-litter interface  

 

Elevated CO2 often alters the live-tissue composition of plants, e.g. the C/N ratio 

widens and the content of nonstructural carbohydrates increases. Litter quality can also 

be affected by altered allocation patterns and changes in plant community structure. 

Though enzymes play a key role in mineralising organic substances, little is known about 

the effects of litter quality at elevated CO2 on enzyme activities.  

Laboratory incubation experiments were conducted to explore the relationship 

between litter quality under elevated CO2 and enzymes involved in carbon cycling. Mixed, 

naturally senescent litter and soil material from ambient CO2 and elevated CO2 plots of the 

long-term CO2 enrichment in calcareous grassland were incubated for 10, 30 and 60 days. 

Using a microtome cutting device, we took soil samples in predefined distances (0.250 

mm – 14 mm) from the litter layer. Litter and soil samples were analysed for invertase and 

xylanase activity. 

The lower litter quality produced under elevated CO2 yielded lower invertase and 

xylanase activities of the litter. The reduced enzyme activities can slow down 

decomposition, at least during the initial stages. Litter addition stimulated the activities of 

both enzymes in adjacent soil but, in contrast to our expectations, in most cases no strong 

gradient of microbial activity developed within the soil. The relatively high contents of clay 

and organic carbon may have prevented the formation of enzymatic gradients. Litter 

quality did not affect invertase activity in adjacent soil, whereas soil xylanase activity was 

higher in soil compartments close to litter from elevated CO2 plots. Possibly, more 

polymeric substances were released from elevated CO2 litter as a result of its lower 

xylanase activity. The laboratory effects of litter quality on soil invertase and xylanase did 

not mirror the field study results. We conclude that CO2-induced belowground C-inputs 

(e.g. increased root mass) and altered soil moisture conditions control enzyme activities 

more than altered litter quality. 
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5. Long-term CO2 enrichment stimulates N-mineralisation and enzyme 
activities in calcareous grassland 
 

Though microbial decomposition and mineralisation are mediated by soil enzymes, 

relatively few studies on the effects of CO2 enrichment on soil microorganisms and their 

activity have measured enzyme activities. We investigated N-mineralisation and activities 

of the enzymes invertase, xylanase, urease, protease, arylsulfatase and alkaline 

phosphates in calcareous grassland, in spring and summer of the 6th growing season of 

CO2 exposure. 

In spring, N-mineralisation increased significantly by 30% at elevated CO2, while 

there was no significant difference between treatments in summer (+3%). The response of 

soil enzymes was also more pronounced in spring, when alkaline phosphatase and 

urease increased most strongly by 32 and 21%, respectively. In summer, differences of 

activities between CO2 treatments were greatest in the case of urease and protease 

(+21% and +17% at elevated CO2). 

N-mineralisation and enzyme activities were stimulated at elevated CO2, though 

microbial biomass did not respond. Contrary to our expectations, we could only partly 

relate this stimulation to increased soil moisture under elevated CO2. At both samplings, 

soil water content was close to field capacity and the water-saving effect under elevated 

CO2 due to reduced evapotranspiration was not yet reflected in different soil water 

contents. Possibly, more pronounced effects of altered soil moisture conditions could be 

detected at drier conditions. The higher soil enzyme activities and N-mineralisation might 

also be related to extra C entering the soil and stimulating soil microbial activity, because 

the responses of soil enzymes were in the same order of magnitude as the increases in 

root biomass measured in March and June 1999. 

In this study, enzyme activities appear to be more sensitive indicators for changes 

in belowground C- and N-turnover than the size of the microbial biomass pool. However, 

more direct measurements of turnover in other studies – e.g. 13C labelling experiments, 

soil respiration measurements, fine root turnover, and cumulated N in aboveground plant 

mass removed in course of the field experiment – showed no change. Perhaps the 

increased C- and N-mineralisation capacity under elevated CO2, observed as stimulated 

enzyme activities and N-mineralisation, translates into faster decomposition during 

periods with otherwise optimal conditions, for example during warm spells with high soil 

moisture and substrate availability. 
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6. Effects of long-term CO2 enrichment on microbial community structure in 
calcareous grassland 

 

We analysed the microbial community structure in a species-rich calcareous 

grassland which had been exposed to elevated CO2 for 6 growing seasons. Previous 

studies have shown that microbial biomass and basal respiration did not respond to CO2 

enrichment, whereas N-mineralisation and enzyme activities were stimulated. As these 

results indicate that changes in the functionality of the soil microorganisms were not offset 

by changes in the bulk parameter microbial biomass, we aimed to analyse the microbial 

community in greater detail. We used two different approaches to study microbial 

community structure: (1) Phospholipid fatty acid (PLFA) profiles, because this technique 

provides quantitative information on community structure and allows a discrimination 

between fungi and bacteria and (2) DNA fingerprints, obtained by Polymerase Chain 

Reaction (PCR) of 16S rDNA fragments followed by Denaturing Gradient Gel 

Electrophoresis (DGGE), which allow a detailed analysis of the bacterial community 

structure. Bacterial diversity was assessed based on Shannon diversity indices.  

In the case of PLFA, only the reduced portion of i17:0 at elevated CO2 in spring 

was significant. The overall profiles, analysed by partial redundancy analysis (RDA), were 

not affected, and the ratio between bacterial and fungal PLFA did not change. DNA 

fingerprints were highly complex. For the summer sampling, RDA revealed significant 

variation in DNA fingerprints in response to CO2 enrichment. This variation must be 

attributed to low intensity bands because dominant bands did not differ between 

treatments. Species richness and diversity, as assessed by the number of detected bands 

and Shannon Diversity index, were not affected by elevated CO2. 

A possible cause for the minute, but significant changes of bacterial community 

structure is altered rhizodeposition. Experimental information on the chemistry of 

rhizodeposits of complex plant communities in undisturbed soils at elevated CO2 is 

currently lacking. As rhizodepostion differs from species to species, and plant response to 

CO2 exposure is species-specific, altered overall rhizodeposition could either result from 

altered rhizodeposition of single species or from changes in plant community structure. 
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7. Six years of in situ CO2 enrichment evoke changes in soil structure and 
soil biota of nutrient-poor grassland 

 
This synthesis presents data on soil microorganisms, soil fauna (protozoans, 

nematodes, acarians, collembolans), soil structure and nitrogen cycle of calcareous 

grassland after CO2 exposure for six growing seasons. 

Microbial biomass, soil basal respiration, and the metabolic quotient were not 

altered significantly. PLFA analysis revealed no significant shift in the ratio of fungi to 

bacteria. Microbial grazer populations (protozoans, bacterivorous and fungivorous 

nematodes, acarians and collembolans) and root-feeding nematodes were not affected by 

elevated CO2. However, total nematode numbers averaged slightly lower under elevated 

CO2 (-16%) and nematode mass was significantly reduced by 43%, caused by a reduction 

in large-diameter nematodes classified as omnivorous and predacious. CO2 exposure 

resulted in a shift towards smaller aggregate sizes at both micro- and macro-aggregate 

scales; this was caused by higher soil moisture under elevated CO2. Reduced aggregate 

sizes reduce pore neck diameters. This can confine the locomotion of large-diameter 

nematodes and therefore possibly accounts for their decrease. 

The CO2 enrichment also affected the nitrogen cycle. The N stocks in living plants 

and surface litter increased, but N in soil organic matter and microorganisms remained 

unaltered. N mineralisation increased considerably, but microbial N did not differ between 

treatments, indicating that net N immobilization rates were unaltered. 
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8. Concluding remarks  
 

This thesis studied the response of the soil microbial community to CO2 

enrichment in calcareous grassland. In a laboratory incubation experiment, lower litter 

quality at elevated CO2 affected xylanase but not invertase activity in adjacent soil. In the 

field, enzyme activities and N-mineralisation were stimulated by plant responses to 

elevated CO2, especially in spring. Results of the laboratory experiment did not go in line 

with results of the field experiment. In conclusion, altered litter quality at elevated CO2 

seemed to be of minor importance in this system. The stimulation of microbial activity in 

the field study can be related to increased C-inputs by plants, e.g. increased root mass, 

and to higher soil moisture at elevated CO2. We also detected minute, but significant, 

variation in DGGE fingerprints of 16S rDNA fragments in response to CO2 enrichment. A 

possible cause for these effects is altered rhizodeposit quality, either due to altered 

rhizodeposition of single plants or to shifts in the plant community structure. Experimental 

evidence of rhizodeposition in complex, natural communities is currently lacking. 

Both the function and structure of the soil microbial community were affected by 

plant community response to CO2 enrichment. The response of microbial activity, 

however, was more pronounced in spring, whereas variation in bacterial community 

structure was more distinct in summer. This study did not directly address the link 

between function and composition. Broad-range approaches were applied to assess 

microbial activity and to analyse microbial community composition: The studied enzymes 

are produced by a wide range of microorganisms, many microbial groups contribute to 

single PLFA, and a eubacterial primer set was used in PCR. Linking the function and 

composition of microbial communities requires focusing on single functional genes which 

encode proteins. This, however, only yields information on small sub-communities. A 

novel approach in environmental microbiology to overcome these limitations are 

microarrays, which can compile many functional genes. Wu et al. (2001), for example, 

developed microarrays containing about 100 functional genes which code for key 

enzymes in processes of denitrification, nitrification and methane oxidation. 
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B Effects of litter produced under elevated CO2 on invertase and xylanase 

activity at the soil-litter interface 
 

Diana Ebersberger and Ellen Kandeler 

 

 
Abstract 

 

Laboratory incubation experiments were conducted to explore the relationship 

between litter quality under elevated carbon dioxide (CO2) and enzymes involved in 

carbon cycling. Mixed litter and soil material from a long-term CO2 enrichment experiment 

were incubated and samples taken after 10, 30 and 60 days. Soil samples were taken 

close to the litter layer using a microtome cutting device. Litter and soil samples were 

analysed for invertase and xylanase activity. The lower litter quality produced under 

elevated CO2 led to lower litter invertase and xylanase activities. Litter addition stimulated 

these activities in the adjacent soil. Invertase activities of adjacent soil were not affected 

by litter quality, while soil xylanase activity was higher in soil compartments adjacent to 

litter from elevated CO2 plots. The reduced enzyme activities of litter produced under 

elevated CO2 can slow decomposition, at least during the initial stages. Since the effects 

of litter quality on enzyme activities in adjacent soil were small, we conclude that CO2-

induced belowground C-inputs (e.g. increased root mass) and altered soil moisture 

conditions are more important controls of enzyme activities than altered litter quality. 

 

Keywords:  decomposition, litter quality, invertase, xylanase 
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Introduction 
 

The current increase in atmospheric CO2 concentration affects carbon cycling in 

terrestrial ecosystems because photosynthesis, particularly in C3 plants, is generally 

stimulated by elevated CO2 concentrations, at least in the short-term (Rogers et al., 1994). 

If other resource constraints are small, CO2 enrichment can boost net primary productivity. 

Even in the absence of plant growth responses, elevated CO2 alters live-plant-tissue 

composition. It also increases leaf concentrations of total non-structural carbohydrates 

and reduces tissue protein, thereby increasing C/N ratios of the green parts of plants 

(Rogers et al., 1994; Cotrufo et al., 1998; Körner, 2000). Although leaf chemistry can 

change considerably under elevated CO2, differences in litter quality between ambient and 

elevated CO2 are often small or even absent, and green leaf chemistry might not be a 

reliable indicator of litter chemistry (Hirschel et al., 1997). Arp et al. (1997) hypothesized 

that nitrogen resorption during leaf senescence is less efficient under elevated CO2. In a 

meta-analysis of field studies, Norby et al. (2001) found that, under ideal conditions, the N 

resorption efficiency did not change under elevated CO2; they concluded that other 

environmental influences on resorption, e.g. herbivory and early frosts, increased the 

variability in litter N concentrations. Apart from leaf chemistry changes, changes in litter 

quality could also derive from shifts in plant community composition. Plant response to 

CO2 enrichment is species-specific, and in natural ecosystems this may permit certain 

species to compete more efficiently for other limited resources like water and nutrients 

(Körner, 1995). Dukes and Field (2000) concluded from a decomposition study in a 

Californian grassland that changes in allocation patterns and species composition are the 

dominant mechanisms for the altered decomposition rates.  

Although numerous studies have been conducted on the influence of litter quality 

on microbial processes during decomposition under elevated carbon dioxide (e.g. 

Henning et al., 1996; Randlett et al., 1996; Ball and Drake, 1997; Torbert et al., 1998; 

Sowerby et al., 2000; Torbert et al., 2000; van Ginkel et al., 2000), the effects on enzyme 

processes are unknown. Enzymes catalyse the mineralisation of organic material and are 

crucial in decomposition processes. Sinsabaugh and Moorhead (1997) argue that 

enzymes are sensitive indicators of litter quality. Microorganisms and their enzymes are 

not uniformly distributed in soil, but mainly colonize the rhizosphere, in larger micropores 

or on deposits of organic matter (Foster, 1988). Kandeler et al. (1999) reported, that in an 

agricultural soil gradients of enzyme activity developed in adjacent soil during the 

decomposition of maize straw. Gaillard et al. (1999) also demonstrated microbial 

gradients in soil during decomposition of wheat straw. These studies indicate that it is 
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promising to examine effects of litter quality on microscale  enzyme activities at the soil-

litter interface. We used soil and litter material from the long-term CO2 enrichment in 

calcareous grassland. In this species-rich grassland, Carex flacca and Lotus corniculatus 

increased their relative contribution to community biomass under elevated CO2 (Leadley 

et al., 1999). The foliar chemistry of grasses changed significantly in response to CO2 

exposure: their nitrogen content fell considerably, while their starch content increased 

markly (Goverde et al., 2002). 

We hypothesise that the different litter quality at ambient and elevated CO2 triggers 

differing enzyme activity gradients in the soil-litter interface. We expect litter quality at 

elevated CO2 to be lower, and therefore enzyme activity of the litter and of the adjacent 

soil to be lower. To test this hypothesis we conducted a laboratory incubation experiment 

in which litter obtained from a long-term CO2 enrichment experiment was put on soil 

cores. These cores were incubated for 10, 30 and 60 days. Soil samples were obtained 

directly adjacent to the litter using a microtome cutting device. Xylanase and invertase 

activities of the litter and soil samples were measured. Xylanase is involved in the 

degradation of the major polymeric constituents of plant litter (Rodriguez-Kabana, 1982; 

Sinsabaugh et al., 1991; Schinner et al., 1996), whereas invertase catalyses the 

hydrolysis of sucrose to glucose and fructose (Frankenberger and Johanson, 1983; Ross, 

1983). By using mixed litter from a long-term field experiment we were able to examine 

the overall effect of litter grown at elevated CO2 on enzyme activity, integrating changes in 

litter chemistry and species composition. 

 

Materials and methods 

 
Litter and soil material 

 
We obtained soil and litter material from a long-term CO2 enrichment study 

conducted in a calcareous grassland in Switzerland for six growing season. Treatments in 

that study included unscreened control plots (356 µl CO2 l-1), screened ambient CO2 plots 

(356 µl CO2 l-1), and screened elevated CO2 plots (600 µl CO2 l-1), using the SACC-system 

for CO2 exposure (Screen-aided-CO2-control, Leadley et al., 1997). A detailed description 

can be found in Leadley et al. (1999). The species-rich grassland, comprising one 

hundred vesicular species, is dominated by Bromus erectus Huds (for details see 

Huovinen-Hufschmid and Körner, 1998). In late June 1999, after six growing seasons 

under CO2 enrichment, naturally senescent litter was sampled from all plots. For the 

incubation experiment, litter from replicates of the screened elevated CO2 treatment, as 

well as litter from replicates of the screened ambient CO2 treatments was mixed. Litter 
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properties, C/N ratio and fibre analysis data, obtained according to Goering and Van 

Soest (1970), are shown in Table B1. Litter quality differed between treatments. Litter from 

elevated CO2 plots had a wider C/N-ratio and higher contents of ash, hemicellulose, 

cellulose and lignin. The soil is classified as rendzina. The texture of the Ah-horizon was 

7% sand, 52% silt and 41% clay,  and its organic C and N contents are 3.9% and 0.33%, 

respectively (Niklaus et al., 2003).  

 
Table B1 Initial properties of mixed litter originating from calcareous grassland exposed to 

ambient and elevated CO2 for six growing seasons. Contents are given in % of total 
dry weight. 

 

  Ambient CO2 Elevated CO2 

C/N-ratio  42 44 

Ash  25.47 (0.29) 27.52 (0.28) 

Cellulose + Lignin  53.08 (0.50) 53.93 (0.41) 

Hemicellulose  9.03 (0.14) 10.71 (0.03) 

 
 

Laboratory incubation experiment 

 
Soil from the Ah-horizon (0-15 cm) of the control plots of the field experiment was 

air dried and sieved through a 2 mm screen. The soil was then adjusted to a gravimetric 

water content of 35% (corresponding to 50% of the maximum water holding capacity) and 

incubated at 15 °C for 4 weeks. During this incubation, easily available substrates such as 

fine roots and carbon supplies resulting from air-drying and sieving (e.g. microbial debris) 

were expected to be consumed by microbial biomass. 

After pre-incubation, 115.3 g moist soil material (corresponding to 85 g dry soil) 

was packed into PCV tubes (3 cm height, 5.6 cm diameter, 74 cm³ volume) and 

consolidated to reach a bulk density of 1.15 g cm-³, which corresponds to the field soil bulk 

density (Ogermann et al. 1994). A total of 54 tubes was prepared and completely filled 

with soil. On top of 36 tubes, we placed 0.60 g mixed litter, cut to ca. 2 mm length, 

originating either from ambient or elevated CO2 plots; 18 tubes of each. A nylon mesh was 

placed on top of the litter and attached to the tube to ensure a firm contact between litter 

and soil. Eighteen tubes were incubated without litter addition, as a control treatment. 

Tubes were incubated at 15 °C. Twice a week, tubes were weighed and water 

contents were adjusted to their initial value. After 10, 30 and 60 days, 18 cores (6 each 

from ambient CO2 litter, elevated CO2 litter and control treatments) were sampled. The 
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litter layer was carefully separated from the soil core, and soil core and litter were then 

stored at –20 °C. 

Samples were obtained from the frozen soil cores in distances from the core 

surface of 0.250 mm, 0.500 mm, 0.750 mm, 1.00 mm, 1.25 mm, 1.50 mm, 1.75 mm, 2.0 

mm, 2.5 mm, 3.0 mm, 3.5 mm, 4.0 mm, 6.0 mm , 8.0 mm, 10.0 mm, 12.0 mm and 14.0 

mm using a cryostat microtome (HM 500 M, MICROM, Walldorf, Germany). During 

cutting, the temperature was kept at –21 °C. The samples were stored at –21 °C until 

enzymatic analysis. 

 

Enzyme analysis 

 
For each date and each treatment, litter and the corresponding microtome samples 

of 3 cores were analysed for invertase or xylanase activity. Invertase activity was 

measured by incubating 0.250 g moist soil or litter material with 5 ml 35 mM sucrose 

solution and 5 ml 2 M acetate buffer (pH 5.5) for 3 h at 50 °C. Released reducing sugars 

reduced potassium hexacyanoferrate (III) in an alkaline solution. Potassium 

hexacyanoferrite (II) was estimated using the Prussian blue colorimetric procedure 

(Schinner et al., 1996). For the determination of xylanase activity, 0.250 g soil or litter was 

incubated in 5 ml of a substrate solution (1.2% w/v xylan from oat spelts suspended in 2 M 

acetate buffer) and 5 ml 2 M acetate buffer (pH 5.5) for 24 h at 50 °C. Reducing sugars 

were measured as described for invertase activity. All enzymatic analyses were carried 

out in duplicate. 

 

Statistical analysis 

 
All results were calculated on a dry weight basis. The mean enzyme activities of 

soil adjacent to the litter were calculated based on the six microtome samples up to 1.5 

mm distance from the core surface for each core. This distance corresponded to the 

range of influence of litter organic matter (Kandeler et al., 1999). The mean enzyme 

activities of soil further away from the litter were calculated based on the microtome 

samples more than 2 mm from the litter or core surface, respectively. Enzyme activities of 

litter and soil were analysed by analysis of variance (ANOVA) using the STATISTICA 

software package. All data were log transformed to obtain normalised data prior to 

analysis. In the case of litter, ANOVA factors were incubation time and CO2 treatment of 

the litter. A priori linear contrasts were used to test for effects of litter origin on enzyme 

activity. In the analysis of soil enzyme activities, ANOVA factors were incubation time, 

litter quality/addition (from ambient CO2/from elevated CO2/without litter) and distance to 
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litter or core surface (adjacent/remote). Effects of litter quality and litter addition on 

enzyme activity of adjacent soil, and differences between adjacent and remote soil, were 

tested by a priori linear contrasts.  

In order to study the formation of gradients of enzyme activities within the soil core, 

enzyme activities were further analysed by polynomial inverse regression (3rd order) 

relating distance to litter layer (x) and activity (y) using Sigma Plot 2000.  

 

 

Results 

 
Figures B1 and B2 show invertase and xylanase activities of mixed litter from a 

calcareous grassland exposed to ambient and elevated CO2 after 10, 30 and 60 days of 

incubation with soil. The ANOVA factor CO2 treatment of litter was significant for both 

studied enzyme activities. Invertase activity of litter from the elevated CO2 treatment was 

significantly reduced by 27% after 10 days of incubation and by 36% after 30 days. The 

reduction  by 12% after 60 days was insignificant. Xylanase activity was significantly lower 

for litter produced at elevated CO2 at all dates. After 10 days of incubation, it was reduced 

by 38%, after 30 days by 22% and after 60 days by 32%.  
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Figure B1 Invertase activity of mixed litter from calcareous grassland produced under 

ambient (white bars) and elevated (black bars) CO2-concentrations, incubated on top 
of soil cores for 10, 30 and 60 days. Means and standard errors of 3 replicates are 
given. *P≤0.05, ** P≤0.01, *** P≤0.001. 
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Figure B2 Xylanase activity of mixed litter from calcareous grassland produced under 

ambient (white bars) and elevated (black bars) CO2-concentrations, incubated on top 
of soil cores for 10, 30 and 60 days. Means and standard errors of 3 replicates are 
given. *P≤0.05, ** P≤0.01, *** P≤0.001. 
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Table B2 presents the invertase activities of the soil. Incubation time, litter addition 

and distance to litter layer or core surface were significant ANOVA factors (Table B3). 

Invertase activities of soil adjacent to litter from ambient and elevated CO2 plots did not 

differ significantly, but activities of control cores without litter addition were significantly 

lower (P<10-4). In cores with litter addition, invertase activity was significantly higher in soil 

adjacent to litter compared with remote soil (P<10-4), while no differences were found 

within control cores.  

 
Table B2 Invertase activity of soil (mg glucose g-1 3 h-1) after 10, 30 and 60 days of 

incubation either with mixed litter produced under ambient CO2 concentrations or 
elevated CO2 or without litter. Adjacent refers to the soil compartment in 0.0-1.5 mm 
distance to the core surface/litter; remote refers to the soil compartment 2.0-14.0 mm 
away from the core surface/litter. Means and standard errors of 3 replicates are 
given. 

 

Duration of incubation Litter addition  Distance from litter/core surface 

   adjacent  remote 

  ambient-CO2 litter   5.74 (0.25)  5.90 (0.67) 

10 days elevated-CO2 litter  6.25 (0.53)  5.81 (0.64) 

 without litter addition   5.60 (0.45)  5.47 (0.46) 

 ambient-CO2 litter   6.88 (0.24)  6.49 (0.09) 

30 days elevated-CO2 litter  7.02 (0.49)  4.16 (0.16) 

 without litter addition   5.09 (0.22)  4.90 (0.35) 

 ambient-CO2 litter   8.51 (0.15)  6.98 (0.25) 

60 days elevated-CO2 litter  6.62 (0.19)  6.66 (0.19) 

  without litter addition   6.27 (0.15)  5.76 (0.02) 

 
 
Table B3 Results of analysis of variance of invertase activities. ANOVA factors were 

duration of incubation, litter addition and distance from core surface.  
 

Source of variation df MS F P 

Duration 2 0.031 22.74 10 -6 

Litter 2 0.031 22.41 10 -6 

Distance 1 0.028 20.30 10 -4 

Duration x Litter 4 0.006 4.45 0.01 

Duration x Distance 2 0.006 4.66 0.02 

Litter x Distance 2 0.005 3.41 0.05 

Duration x Litter x Distance 4 0.009 6.81 10-3 
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Table B4 presents xylanase activities of the soil cores after 10, 30, and 60 days. 

Incubation time, litter addition and distance to litter layer were also significant factors of 

the ANOVA (Table B5). Activity was significantly higher in soil adjacent to litter from 

elevated CO2-plots (P<0.004). Litter addition significantly stimulated xylanase activity 

(P<0.001) in adjacent soil compared with the upper compartment of cores without litter 

addition. Furthermore, in cores with litter addition, activity in adjacent soil was higher than 

in remote soil (P<0.004). In cores without litter addition, no significant differences between 

remote and adjacent soil compartments were found. 

 
Table B4 Xylanase activity of soil (mg glucose g-1 24 h-1) after 10, 30 and 60 days of 

incubation either with mixed litter produced under ambient CO2 concentrations or 
elevated CO2 or without litter. Adjacent refers to the soil compartment in 0.0-1.5 mm 
distance to the core surface/litter; remote refers to soil compartment  2.0-14.0 mm 
away from the core surface/litter. Means and standard errors of 3 replicates are 
given. 

 

Duration of incubation Litter addition  Distance from litter/core surface 

   adjacent remote 

  ambient-CO2 litter   4.20 (0.30) 3.85 (0.41) 

10 days elevated-CO2 litter  5.77 (0.07) 4.77 (0.09) 

 without litter addition   4.77 (0.34) 4.92 (0.34) 

 ambient-CO2 litter   6.20 (0.77) 4.92 (1.21) 

30 days elevated-CO2 litter  7.02 (1.56) 6.94 (1.00) 

 without litter addition   5.45 (0.43) 4.29 (0.19) 

 ambient-CO2 litter   5.95 (0.63) 4.78 (0.34) 

60 days elevated-CO2 litter  8.00 (1.09) 5.86 (0.14) 

  without litter addition   3.90 (0.13) 4.02 (0.29) 

 

 



B Invertase and Xylanase Activity at the Soil-Litter Interface 23

Table B5 Results of analysis of variance of xylanase activities. ANOVA factors were 
duration of incubation, litter addition and distance from core surface. 

 

Source of variation df MS F P 

Duration 2 0.030 6.16 0.01 

Litter 2 0.099 19.98 10 -6 

Distance 1 0.044 8.89 0.01 

Duration x Litter 4 0.022 4.39 0.01 

Duration x Distance 2 0.002 0.31 0.8 

Litter x Distance 2 0.003 0.70 0.5 

Duration x Litter x Distance 4 0.008 1.53 0.2 

 

 

In most cases, the regressions revealed no, or only a weak, relationship between 

distance to litter layer (x) and enzyme activity (y). In only two out of 12 cases with litter 

addition a considerable (R²>50%) and highly significant regression (P<0.0001) could be 

calculated; these gradients are shown in figures B3 (invertase activity after 30 days of 

incubation with litter from elevated CO2 treatment) and B4 (invertase activity, 60 days, 

ambient-CO2 litter). No relationship was found between gradient formation, source of litter 

or incubation time. As only two gradients were detected, the question of whether different 

litter quality triggers different gradients in the soil-litter interface could not be evaluated. 
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Figure B3 Invertase activity  in soil core after 30 days of incubation with litter from elevated-
CO2 plots 
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Figure B4 Invertase activity  in soil core after 60 days of  incubation with litter from ambient-

CO2 plots 
 

Discussion 

 
In the laboratory incubation experiment, xylanase and invertase activities of litter 

produced under elevated atmospheric carbon dioxide were significantly reduced. Slightly 

lower litter quality at elevated CO2 (compare Table 1) was sufficient to reduce enzyme 

activities. Litter composition influences both the physiological regulation of enzyme 

secretion and the physicochemical processes of adsorption and stabilization (Sinsabaugh 

et al., 2002). Luxhoi et al. (2002) analysed invertase and xylanase activities of incubated 

green and brown litter from different species and showed that litter quality affected 

enzyme activity during decomposition. Suppressed activity of enzymes involved in C-

cycling can lower decomposition rates of elevated-CO2 litter. Lower mass loss of litter 

produced under elevated CO2 during initial stages of decomposition was observed in 

several litter bag experiments (Kemp et al., 1994; Hättenschwiller et al., 1999; Frederiksen 

et al., 2001). 

Invertase and xylanase activity were approximately 10 times higher in litter than in 

soil. Litter or particulate organic matter are colonized by microorganisms and these 

produce high amounts of enzymes that are then adsorbed onto the litter (Luxhoi et al., 

2002). In a study on the location of microorganisms using 14C labelled substrate, Chotte et 

al. (1997) concluded that amended particulate residues are populated by microorganisms, 

and that microorganisms within the soil matrix (microaggregates 2-50 µm) are stimulated 

by soluble compounds originating from this residues. In our study, litter addition stimulated 
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enzyme activities in adjacent soil. Though litter addition and hence soluble compounds 

stimulated this activity, in only 2 out of 12 cases a significant relationship between enzyme 

activity and distance to litter layer was detected. This contrasts with the study of Gaillard 

et al. (1999), who found strong gradients of dehydrogenase activity within the first 4 mm in 

soil cores incubated with wheat straw. Kandeler et al. (1999) also observed the 

development of gradients of xylanase, invertase and protease activity after 30 days of 

incubation of maize straw. In both of these experiments, however, the soil clay (and 

organic carbon) contents were considerably lower than in the present study. In a 

decomposition experiment xylanase and invertase activity associated with the clay fraction 

responded only weakly to a maize straw amendment (Stemmer et al., 1999). Little is 

known about the movement of enzymes and organic substances on the micro-scale. A 

high clay content possibly prevents gradient formation within the soil. The relatively high 

organic carbon content also yield higher background variability of enzyme activity. 

Additionally, the point source character of the added litter was possibly weaker in this 

grassland soil than in the experiments of Kandeler et al. (1999) and Gaillard et al. (1999). 

Litter quality had no effect on invertase activities in adjacent soil. For xylanase, 

lower activity in litter from elevated CO2 plots corresponded with increased activity in 

adjacent soil (versus soil amended with ambient-CO2 litter). Perhaps more polymeric 

organic substances were released from elevated-CO2 litter as a result of its lower 

xylanase activity. Soil invertase and xylanase activities in the laboratory incubation did not 

mirror activities measured for bulk soil samples taken at the same date when litter was 

sampled. In the grassland soil, invertase activity was higher and xylanase activity lower in 

elevated CO2 plots (Ebersberger et al., 2003).  

We conclude that in species-rich grassland, changes of belowground C-inputs 

(e.g. increased root mass) and higher soil moisture under elevated CO2 are more 

important controls of soil enzyme activities than lower litter quality. However, the reduced 

enzyme activities of litter produced under elevated CO2 could slow decomposition, at least 

during initial stages of decomposition.  
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Abstract 
 

Elevated concentration of atmospheric carbon dioxide will affect carbon cycling in 

terrestrial ecosystems. Possible effects include increased carbon input into the soil 

through the rhizosphere, altered nutrient concentrations of plant litter and altered soil 

moisture. Consequently, the ongoing rise in atmospheric carbon dioxide might indirectly 

influence soil biota, decomposition and nutrient transformations. 

N-mineralisation and activities of the enzymes invertase, xylanase, urease, 

protease, arylsulfatase, and alkaline phosphatase were investigated in spring and summer 

in calcareous grassland, which had been exposed to ambient and elevated CO2 

concentrations (365 and 600 µl l-1) for six growing seasons.  

In spring, N-mineralisation increased significantly by 30% at elevated CO2, while 

there was no significant difference between treatments in summer (+3%). The response of 

soil enzymes to CO2 enrichment was also more pronounced in spring, when alkaline 

phosphatase and urease activities were increased most strongly by 32% and 21%. In 

summer, differences of activities between CO2 treatments were greatest in the case of 

urease and protease (+21% and +17% at elevated CO2). 

The stimulation of N-mineralisation and enzyme activities at elevated CO2 was 

probably caused by higher soil moisture and/or increased  root biomass. We conclude that 

elevated CO2 will enhance belowground C- and N-cycling in grasslands. 

 

Keywords: elevated CO2, enzymes, grassland, N-mineralisation 
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 Introduction          
           

Since the beginning of industrialisation the global concentration of atmospheric 

carbon dioxide (CO2) has risen from about 280 ppm to 365 ppm, mainly due to fossil fuel 

burning and land-use change. Currently, the concentration is rising 1.5 ppm per year on 

average (IPCC, 2001). Direct effects of elevated CO2 on soil organisms are unlikely 

because CO2 concentrations in soils are already 10-50 times higher than in the 

atmosphere (Lamborg et al., 1983). There are, however, three plant-mediated 

mechanisms by which increased atmospheric CO2 concentration might influence soil 

microbial communities:  

1) Elevated CO2 stimulates photosynthesis of plants, and consequently net primary 

productivity increases. At least part of the extra C fixed is allocated belowground. This can 

result in increased root biomass, root-shoot-ratio, fine root biomass and fine root turnover 

(Rogers et al., 1994).  

2) Chemistry of green leaves is altered; generally, the carbon to nitrogen ratio increases in 

green leaf tissue, in part due to starch accumulation. As soil microorganisms are often 

constrained by available C (Paul and Clark, 1996), it is likely that they respond to these 

changes by increasing biomass and/or activity. However, naturally senesced litter often 

does not show these changes in C/N (Hirschel et al., 1997; Norby et al., 2001). Also, the 

concentration of phenolic compounds such as lignin and tannins sometimes increases, 

reducing decomposability of the plant material. 

3) Elevated CO2 reduces stomatal conductance of plants which results in higher water use 

efficiency. At a plant community level, this often results in decreased stand transpiration 

and higher soil water content (Körner, 2000). Soil matrix potential is an important control 

of soil microbial activity, directly through osmosis and indirectly by altering the supply of 

nutrients. Up to a certain threshold, increasing soil moisture is beneficial to soil microbes 

and their activity (Killham, 1994). 

Responses of plants to elevated CO2 are well studied, and they generally vary with 

the species studied and nutritional conditions. Microbial responses to elevated CO2 in 

complex natural ecosystems are less well understood (Kampichler et al., 1998). In their 

review, Zak et al. (2000) showed that the response of soil microorganisms to elevated 

CO2 is highly variable, no matter whether activity, biomass or effects on the N-cycle were 

studied. This variability cannot be explained by plant life forms. Studies that reported 

changes of soil microbial parameters at elevated CO2 often dealt with soil-plant systems 

characterised by high belowground carbon-input by plants in combination with low carbon 

content of the soil (Zak et al., 2000). In contrast, undisturbed natural systems showed little 

or no responses, even after several years of CO2 treatments (Körner et al., 1997). Most 
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information on soil microbial response to elevated CO2 originates from short-term 

experiments and/or experiments with disturbed soil. Extrapolation of these results to 

mature ecosystems and to longer time scales is limited (Hu et al., 1999). 

Soil microorganisms hold a key position in terrestrial ecosystems as they 

mineralise organic matter. Therefore, any effect of elevated CO2 on soil microorganisms 

may in turn feed back on the response of plant communities to rising CO2 and thus the 

sequestration of extra carbon. Though microbial decomposition and mineralisation are 

mediated by soil enzymes, relatively few studies have included measurements of enzyme 

activities (Kandeler et al., 1998; Körner and Arnone, 1992; Kang et al., 2001). 

The objective of the present study was to assess the effect of elevated CO2 on N-

mineralisation and soil enzyme activities in a long-term in situ CO2 enrichment experiment 

in calcareous grassland. Previous measurements had shown that microbial biomass did 

not change (Niklaus, 1998) and that increased soil moisture under elevated CO2 was 

prominent throughout the growing period (Niklaus et al., 1998). Higher soil moisture 

caused changes in soil structure (Niklaus et al., 2003). In the sixth year of this experiment, 

soil was sampled in spring and summer and N-mineralisation and activities of enzymes 

related to the C-, N-, P- and S-cycling were measured. We hypothesised that  

(1) N-mineralisation and enzyme activities were higher at elevated CO2, though total 

microbial biomass remained unaffected, and, 

(2) that the higher soil moisture under elevated CO2 is the driving factor for changes in 

soil microbial activity, since organic carbon content of this grassland soil is rather high. 

 

 

 Materials and methods 
 

 Study site and experimental design 

 
The study site is located in the foothills of the Swiss Jura Mountains in NE-

Switzerland on a south-west facing slope (20°) at an altitude of 520 m (47°33‘ N, 7°34‘ E, 

Leadley et al., 1999). Soil is classified as transition Rendzina derived from calcareous 

debris. Texture and chemical properties are given in Table C1. The species-rich grassland 

contains over 100 vascular plant species and is dominated by Bromus erectus Huds. 

Average annual precipitation is about 900 mm, average annual air temperature between 

8.5-9.0 °C (Ogermann et al., 1994). Before the field experiment was set up, the grassland 

was extensively used as cattle pasture.  
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Table C1 Texture and chemical properties of the soil, a Swiss calcareous grassland 
  

Soil property  

Clay g kg-1 305 
Silt g kg-1 560 
Sand g kg-1 135 
pH 6.5 
Nt% 0.38 
P mg 100 g-1 < 1 
K mg 100 g-1 6.9 
Mg mg 100g-1 5.0 
Corg% 3.9 
Nt% 0.33 

 

 

The CO2 enrichment experiment was started at the end of March 1994. Twenty-

four plots (1.27 m² area each) were selected and 3 treatments (8 replicates each) 

assigned randomly in a complete block design. Treatments were unscreened control plots 

(365 µl CO2 l-1), screened ambient plots (365 µl CO2 l-1), and screened elevated CO2 plots 

(600 µl CO2 l-1), using the SACC-system for CO2 exposure (Screen-aided-CO2-control, 

Leadley et al., 1997). The system operated 24 hours a day and was only shut down 

between December and end of February each year.  

 

 Soil sampling and storage 

 
Soil was sampled at the end of April (‘spring’) and the end of June 1999 

(‘summer’), when the field experiment was terminated. From each plot, 3 subsamples 

each containing approximately 30 g dry soil were taken from the top 10 cm of the Ah 

horizon and pooled afterwards. Soil samples were stored at -20°C. Before sieving (5 mm 

mesh size), samples were allow to thaw for three days at 4°C. During soil microbial 

analysis, which was finished within two weeks, samples were kept at 4°C. 

  

 Soil microbial activity 

 
Net N-mineralisation was determined by incubating 5.0 g soil under waterlogged 

conditions in an enclosed tube at 40°C for 7 days (Keeney, 1982). Released ammonium 

was extracted with 2M KCl and measured colorimetrically (Kandeler and Gerber, 1988). 

Urease activity was measured by incubating 0.5 g  moist soil with 1.5 ml of a 79.9 

mM urea solution for 2 h at 37°C. Produced NH4
+ was extracted with 12 ml 1M KCl/10mM 
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HCl and determined colorimetrically by an indophenol reaction as described by Kandeler 

and Gerber (1988). 

For the determination of alkaline phosphatase, 0.3 g soil was incubated in 2 ml 200 

mM borate buffer (pH 10.0) and 1 ml buffered disodium phenylphosphate solution at 37 °C 

for 3 h. Released phenol was measured by colour reaction (Hoffmann, 1968). 

The modified method of Ladd and Butler (1972) was used to estimate protease 

activity by incubating 0.3 g  moist soil in 5.0 ml 5mM TRIS buffer (pH 8.1) and buffered 5.0 

ml casein-solution (2% w/v) for 2 h at 50 °C. The aromatic amino acids produced were 

extracted with trichloracetic acid (0.92 M) and measured colorimetically after adding Folin-

Ciocalteau-reagent and expressed as tyrosine equivalents. 

To measure xylanase activity, 0.3 g fresh soil was incubated with 0.9 ml of a 

substrate solution (1.2% w/v xylan from oat spelts suspended in 2 M acetate buffer, pH 

5.5) and 0.9 ml 2 M acetate buffer (pH 5.5) for 24 h at 50 °C. Released reducing sugars 

reduced potassium hexacyanoferrat (III) in an alkaline solution. Potassium hexacyano-

ferrat (II) produced was estimated by a colorimetrical procedure according to the Prussian 

blue reaction (Schinner et al., 1996). 

Invertase activity was determined by incubating 0.3 g soil with 0.9 ml 35 mM 

sucrose solution and 0.9 ml 2 M acetate buffer for 3 h at 50 °C. Reducing sugars were 

determined as described for xylanase activity (Schinner et al., 1996). Results of invertase 

and xylanase activity were expressed as glucose equivalents. 

Arylsulfatase activity was assayed by incubating 0.3 g moist soil in 1.2 ml 0.5 M 

acetate buffer (pH 5.8) and 0.3 ml 0.02 M p-nitrophenyl-sulfate solution for 1 h at 37 °C. 

After adding 0.5 M NaOH, released nitrophenol was estimated colorimetically (Tabatabai 

and Bremner, 1970). 

Analysis of each replicate sample (total n of 48) was carried out in duplicate, 

except for alkaline phosphatase and xylanase activities which were determined in 

triplicate. All results were calculated on a oven dry soil weight basis. 

 

 Soil water content 

 
  Soil water content was determined by drying 10 g moist soil to constant mass at 

105 °C. Measurements were carried out in duplicate. 
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 Statistical analysis 

 
Before statistical analysis, soil microbial activity and water content data were 

standardised by dividing each value by the mean value of the respective parameter in the 

respective season (spring or summer). Standardised activities were then log-transformed 

to obtain normally distributed data. In analysis of variance (ANOVA), all factors were fitted 

sequentially (type I sum of squares) using SPSS 8.0 (SPSS Inc., Chicago, IL). Two 

different models were used for analysis of screen and CO2-effects: (1) Effects on the 

activity of individual enzymes, N-mineralisation and soil water content were tested in a 

model comprising data from both sampling dates and, according to the hierarchical 

design, ANOVA factors were (in that order) Block, Screen/CO2, Plot(CO2), Season, 

Season × CO2. (2) Two ANOVAs, one for the April and one for the June measurements, 

were used to test for overall responses of enzyme activities to the Screen/CO2 treatment. 

These ANOVAs included activities of all enzymes, containing the factors Block, 

Screen/CO2, Plot(CO2), Enzyme, and CO2 × Enzyme. Effects of the Screen/CO2 treatment 

were tested against Plot, the CO2 × Enzyme interaction against the residual. For both 

models, a priori linear contrasts were used to test for effects of screening and CO2 

enrichment alone. 

For both samplings, Pearson's correlation was calculated as measure of 

correlation between soil water content and individual enzyme activities and N-

mineralisation respectively. 

Ecological experiments using natural, unhomogeneized soils in combination with 

relatively low replication result in lower statistical power to detect effects than typical 

laboratory studies. The probability of type I errors has therefore to be balanced against the 

increasing probability of type-II errors (accepting the null hypothesis when it is false, i.e., 

failing to declare a real difference as statistically significant; c.f. Scheiner, 2001). We 

therefore consider effects with P≤0.05 as significant, and effects with P≤0.1 as marginally 

significant. Error estimates given in the text and error bars in figures are standard errors of 

the means. In figures, (*) indicates P≤0.1, * P≤0.05 and ** P≤0.01, *** P≤0.001. 

 

 

 Results  
 

Figures C1 and C2 show the response of N-mineralisation and soil enzyme 

activities of a calcareous grassland to 6 growing seasons of elevated atmospheric CO2. 

Data were in the range previously reported for grassland (Tscherko and Kandeler, 2000).  
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In spring, N-mineralisation increased by 30%  in elevated compared to screened 

ambient CO2 plots (P= 0.02, a priori linear contrast) (Figure C1). In summer, N-

mineralisation was not increased under CO2 enrichment (3.0%, P=0.6). At both sampling 

dates, all measured enzyme activities were higher under elevated CO2 compared to the 

screened ambient treatment (Figure C2), with the only exception of xylanase activity in 

summer. In spring, alkaline phosphatase responded most strongly to the CO2 

enhancement with a significant increase in activity of 32% (P=0.02), followed by  urease 

activity, which was 21% higher at elevated CO2 (p=0.13). In summer, urease activity 

raised by same magnitude (+21%, P=0.2). Protease and invertase activity were marginally 

significantly higher by 17% (P=0.09) and 14% (P=0.07) respectively under elevated CO2 

in summer.  
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Figure C2 Enzyme activities in unscreened control (grey bars), screened ambient CO2
(white bars) and screened elevated CO2 (black bars) plots in a calcareous 
grassland in spring and summer 1999 after 6 years of CO2 enrichment. Means of 
8 field replicates and standard errors are shown. (*) P≤0.1, * P≤0.05
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The ANOVAs testing the overall response of enzyme activities in spring and 

summer (model 2) showed that the interaction between CO2 and enzyme activities was 

insignificant (Table C2) at both samplings. This indicates a uniform response pattern for 

all individual enzyme activities. The overall response of enzyme activities to CO2 exposure 

was significant in spring (P=0.04, a priori linear contrast). At the summer sampling, the 

trend towards increased activities was not statistically significant (P=0.2). At both sampling 

dates, no effects of the treatment screens on the overall enzyme activity were found 

(spring P=0.9, summer P=0.8).  

 
Table C2 Results of ANOVAs for spring and summer data including all enzyme activities 

with factors Block, Screening/CO2, Plot(Screening/CO2) and CO2/Screening x 
Enzyme 

 
   Spring   Summer 

Source of variation df MS F P  MS F P 

Block 7 0.025    0.025   

Screening/CO2 2 0.065 3.32 0.07  0.026 2.19 0.2 

Screening1 1 0.001 0.03 0.9  0.001 0.05 0.8 

CO2
1 1 0.106 5.38 0.04  0.033 1.67 0.2 

Plot(Screening/CO2) 14 0.020    0.012   

Enzyme 5 0.006 0.59 0.7  0.001 0.11 1.0 

Screening/CO2 x Enzyme 10 0.008 0.74 0.7  0.008 0.79 0.6 

Residual 105 0.010    0.010   
1) a priori linear contrasts, tested against plot 
 

At both samplings, soil water contents were higher in elevated CO2 compared to 

screened ambient CO2 plots (6.4% relative increase in spring, 3.7% in summer; Figure 

C3). However, differences between treatments were not significant. This is because soils 

had recently been saturated and the CO2-effect onto evapotranspiration had not yet built 

up to a significant difference in soil moisture. In spring, alkaline phosphatase activity 

(r=0.64, P=0.001), N-mineralisation (r=0.59, P=0.004) and protease activity (r=0.43, 

P=0.045) were positively correlated with soil water content. In summer, no significant 

correlation between soil moisture and enzyme activities was found. 
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Figure C3 Soil water content in unscreened control (grey bars), screened ambient CO2 

(white bars) and screened elevated CO2 (black bars) plots in a calcareous grassland 
in spring and summer 1999 after 6 years of CO2 enrichment. Means of 8 field 
replicates and standard errors are shown. Differences between treatments are not 
significant. 

 

 

Discussion  
 

At the spring sampling and to a lower extent at the summer sampling, microbial 

activity, measured as enzyme activities and N-mineralisation, were higher in soils that had 

been exposed to elevated CO2 for six years. Confirming our first hypothesis, microbial 

activities were stimulated by CO2 enrichment, though microbial biomass did not respond 

to elevated CO2. This was demonstrated by several measurement of soil microbial 

biomass in 1999, which are compiled in table C3. Total PLFA contents were determined 

on the same soil samples which were analysed for enzyme activities. Microbial biomass 

data by Niklaus et al. (2001b) for June 1999 were determined for samples taken at the 

same date.  
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Regarding our second hypothesis that higher soil moisture is the driving factor for 

the effects of elevated CO2, we could only partly relate this stimulation to altered soil 

moisture. At our study site, soil water contents were generally higher under elevated CO2 

and the amplitude of diurnal top-soil moisture cycles was reduced (Niklaus et al., 1998). At 

the samplings undertaken for this study, soil water contents were also slightly, but not 

significantly, higher at elevated CO2. Though at both samplings all measured process 

rates were higher at elevated CO2 (with the exception of xylanase in summer), a 

correlation with soil water was only found in the case of N-mineralisation, alkaline 

phosphatase and protease, and only for the spring sampling. However, indirect evidence 

supporting this hypothesis could be derived from the fact that differences between 

treatments in microbial activities were greater in spring than in summer, as found for soil 

water contents. At both samplings, soil water content was close to field capacity. Such 

high soil moisture is only reached shortly after rainfall, and differences between CO2 

treatments are typically absent or small because the water saving effect under elevated 

CO2 (reduced evapotranspiration) needs some time to translate into significant soil 

moisture differences (Niklaus et al., 1998). Therefore, it is possible that more pronounced 

effects would have been detected under drier conditions, also because soil 

microorganisms would be more limited by water. Hungate et al. (1997a) explained higher 

gross N-mineralisation in the first growing season of CO2 enrichment (ambient CO2 

concentration + 350 µl l-1) in serpentine and sandstone annual grassland by increased soil 

moisture. Rice et al. (1994) related higher microbial activity, measured as soil respiration, 

to better soil water conditions under double-ambient CO2 concentration in a tall grass 

prairie.  

Increased soil moisture is not the only possible explanation for the observed 

effects. The increase in soil enzyme activities and N-mineralisation might also be related 

to extra C entering the soil and stimulating soil microbial activity. Additional C input could 

be due to greater root biomass, greater fine root turnover and higher rhizodeposition 

under elevated CO2. In a 13C labelling study using monoliths taken from this calcareous 

grassland, Niklaus et al. (2001a) found that root biomass increased under elevated CO2, 

while rhizodeposition and root turnover were not affected. Minirhizotron observations in 

the field also suggested that root turnover was not altered, or even decreased, under 

elevated CO2 (Arnone et al., 2000). The responses of soil enzymes were in the same 

order as the increases in root biomass measured in March and June 1999 (see Table C3). 

If rhizodeposition per unit root weight had increased markedly, we would have expected 

enzyme activity to increase even more because the sampled top soil was densely 

explored by roots.  
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Since microbial biomass did not increase under elevated CO2, higher enzyme 

activities could also be due to more plant-derived enzymes entering the soil as a 

consequence of the overall increase of root mass. However, root mass measured in June 

and enzyme activity was only weakly correlated in the case of alkaline phosphatase 

activity in spring (r=0.47, P=0.02) and this enzyme is not exuded by plant roots (Juma and 

Tabatabai, 1988). In a study of the root system in the first two years of this CO2 

enrichment study no differences in root mass were detected (Leadley et al., 1999). A 

greater proportion of roots was, however, found in the top layer (0-6 cm) at elevated CO2. 

The higher surface root density may induced higher activity of heterotrophic soil 

microorganisms (Arnone et al., 2000).  

 

Enhanced enzyme activities under elevated CO2 were also reported by Ross et al. 

(1995) in a short-term chamber experiment with grassland turves exposed to elevated 

CO2 for a total of 220 days (700 µl l-1 CO2). Invertase activity increased significantly in the 

elevated CO2 treatment at two of three sample dates. This was explained by a greater 

input of plant-derived invertase and greater production of invertase in response to 

increased C input. In a similar experiment which lasted 422 days, Ross et al. (1996) found 

only minor and insignificant differences of invertase activity at different CO2 concentrations 

(350, 525, and 700 µl l-1 CO2). Dhillion et al. (1996) studied a Mediterranean model 

ecosystem. After exposure to CO2 concentrations of 700 µl l-1 for several months xylanase 

and dehydrogenase activities were significantly increased (61% and 13%). Cellulase and 

acid phosphatase activities were also considerably but insignificantly higher. Increased 

xylanase activity was related to greater fine root biomass and higher turnover of fine roots 

at elevated CO2. Higher phosphatase activity reflected an increased need for P. Enzyme 

data from long-term field studies with CO2 enrichment is scarce. Moorhead and Linkins 

(1997) studied enzyme activities associated with roots, ectomycorrhizae and organic and 

mineral soil in tussock tundra after 3 years of CO2 enrichment. In contrast to rhizosphere 

compartments, in mineral soil no differences of acid phosphatase, exocellulase and 

endocellulase activity between ambient and double-ambient CO2 treatments were found. 

Körner et al. (1997) exposed alpine grassland to elevated CO2, with and without addition 

of complete mineral fertilizer (NPK and micronutrients). After three years of treatment, 

Mayr et al. (1999) used sensitive enzymes as indicators of C-cycling (CELase, beta-D-

cellobiohydrolase; GLUase, beta-D-Glucosidase) and N-cycling (NAGase, N-acetyl-ß-D-

glucosaminidase; APEase, L-Leucin-7-aminopeptidase). In the no-fertiliser treatment, 

CELase and NAGase showed significantly positive responses to elevated CO2 (680 µl l-1) 

in the 0-5 cm horizon only, while the underlying layers (5-15 cm) did not reveal any 

significant effects. 
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Temporal variability also must be considered. In spring, the stimulation of enzyme 

activities and N-mineralisation was more distinct than in summer. Hungate et al. (2000) 

found a similar temporal pattern for the response of soil microbiota in grasslands and 

concluded that an increased flux of carbon into the soil under elevated CO2 was more 

pronounced in the early part of the growing season. However, Dhillion et al. (1996) 

reported that soil enzymes did not respond to elevated CO2 at an early sampling date, but 

a significant effect was found at a later sampling. Thus, effects of elevated CO2 on 

microbial activity may only be detectable at specific times and are closely linked to plant 

processes.  

 

At both samplings, processes involved in N-cycling, urease and protease activity 

and N-mineralisation, were faster in elevated CO2 soils. This indicates higher N-availability 

to plants and microbes. At the same time, net N immobilisation rates did not change since 

microbial N did not differ between treatments (Niklaus et al., 2003). Increased N cycling in 

this study is remarkable since net N-mineralisation in grasslands is highly variable and 

generally does not respond significantly to elevated CO2 (see review of Zak et al., 2000).  

 Two main mechanisms were hypothesized concerning N-availability under 

elevated CO2, both of which critically feed back on plant productivity (Diaz et al., 1993; 

Zak et al., 1993).  Diaz et al. (1993) concluded that increased C availability under elevated 

CO2 would boost microbial biomass, in turn leading to nutrient immobilisation and thus 

constrained plant responses. In contrast, Zak et al., (1993) reported increased N 

mineralisation rates under elevated CO2, supposedly due to a priming effect of 

rhizodeposition on the mineralisation of native soil organic matter, resulting in higher N-

availability to plants. Our results support Zak’s hypothesis. N-mineralisation and enzyme 

activities were stimulated at elevated CO2, even with microbial biomass remaining the 

same. In June 1999 plant biomass was increased significantly at elevated CO2 (Niklaus et 

al., 2001b; Table C3). Niklaus (1998) found that soil microbial growth in this ecosystem 

was co-limited by available N, at least in the short term (1 week). Probably, plants 

benefited more than microbes from increased N mineralisation, most likely because C still 

limited microbial growth. Similar findings were reported for Californian annual grassland 

(Hu et al., 2001). 

 
Elevated CO2 stimulated N-mineralisation and soil enzyme activities in this 

calcareous grassland.  The increased mineralisation capacity is in line with results by 

Ross et al., (1996) and Hungate et al. (1997b) who reported enhanced C- and N-cycling in 

grassland under elevated CO2, at least during certain times of the year. In our study, 

enzyme activities appear to be more sensitive indicators for changes in belowground C- 

and N-turnover than the size of the microbial biomass pool. However, more direct 
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measurements of turnover such as 13C labelling experiments, soil respiration 

measurements, fine root turnover as observed with a minirhizotron camera, and 

accumulated N in aboveground plant mass removed in the course of this study did not 

change. This raises the question whether substrate availability and environmental 

conditions were limiting decomposition instead of enzyme activities (at least regarding the 

long-term average), or whether the more direct measurements did not provide sufficient 

statistical power to detect differences. However, increased C- and N-mineralisation 

capacity under elevated CO2 may translate into faster decomposition during periods with 

otherwise optimal conditions, for example during warm spells with high soil moisture and 

substrate availability. This is likely to occur in spring, and may be responsible for the faster 

regrowth of plants under elevated CO2 (c.f. LAI development in Niklaus et al. 1998; a 

similar response was observed for net CO2 exchange). The likely driving mechanisms for 

the increased soil enzyme activities are higher soil moisture and root biomass. 
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Abstract  

  
Elevated CO2 generally increases plant productivity, and has been found to alter 

plant community composition in many ecosystems. Because soil microbes depend on 

plant-derived C and are often associated with specific plant species, elevated CO2 has the 

potential to alter structure and functioning of soil microbial communities. We investigated 

soil microbial community structure of a species-rich semi-natural calcareous grassland 

that had been exposed to elevated CO2 (600 µL L-1) for 6 growing seasons. We analysed 

microbial community structure using phospholipid fatty acid (PLFA) profiles and DNA 

fingerprints obtained by Denaturing Gradient Gel Electrophoresis (DGGE) of 16S rDNA 

fragments amplified by the Polymerase Chain Reaction (PCR).  

PLFA profiles were not affected by CO2 enrichment and the ratio of fungal and 

bacterial PLFA did not change. Ordination analysis of DNA fingerprints revealed a 

significant relation between CO2 enrichment and variation in DNA fingerprints in summer 

(P=0.01), but not in spring. This variation was due to changes in low-intensity bands, while 

dominant bands did not differ between CO2 treatments. Diversity of the bacterial 

community, as assessed by number of bands in DNA fingerprints and calculation of 

Shannon diversity indices, was not affected by elevated CO2.  

Overall, only minor effects on microbial community structure were detected, 

corroborating earlier findings that soil carbon inputs did probably change much less than 

suggested by plant photosynthetic responses. 

 

Keywords: 16S rDNA, DGGE, elevated CO2, grassland, PLFA, soil microbial community 
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Introduction 
 

  Terrestrial ecosystems generally respond to the rising atmospheric CO2 

concentration with increased net primary productivity and increased water use efficiency 

(Berntson and Bazzaz, 1996; Morgan et al., 2004). As a result, the amount and quality of 

organic substances entering the soil and fuelling microbial metabolism might change. Soil 

microorganisms and their activity might also be affected by increased soil moisture at 

elevated CO2 (Hu et al., 1999). To date, most research on responses of soil microbial 

communities has focused on microbial biomass, with inconsistent results, reporting no 

response, increases as well as decreases (Zak et al., 1993; Diaz et al., 1993; Allen et al., 

2000; Williams et al., 2000; Zak et al., 2000b). So far, only a few studies have opened the 

black box “microbial biomass” and addressed structural changes within the microbial 

communities. In studies doing so, often specific microbial populations have been 

examined, e.g., Rhizobium species (Schortemeyer et al., 1996; Montealegre et al., 2000) 

or mycorrhizal fungi (Klironomos et al., 1996). In studies using whole community 

approaches, PLFA profiling of microbial communities associated with trees dominate 

(Wiemken et al., 2001; Zak et al., 2000a; Zak et al., 1996;  Ringelberg et al., 1997). With 

the exception of the study by Ringelberg et al., only minor effects of CO2 enrichment on 

PLFA profiles were found. Montealegre et al. (2002) detected changes in PLFA profiles in 

bulk soil but not in rhizosphere soil of Trifolium repens exposed to elevated CO2 for three 

years. Various DNA-based approaches were also used to address the question of 

structural changes in the microbial community. In short-term experiments, Griffiths et al. 

(1998), using %G+C-profiling, found no effects of elevated CO2 in rhizosphere 

communities of ryegrass and wheat. Bruce et al. (2000) also could not detect changes in 

DGGE profiles of bacterial communities from model terrestrial ecosystems exposed to 

elevated CO2. In a FACE study with Lolium perenne/Trifolium repens swards, the 

dominance of Pseudomonas spp. was increased at elevated CO2 in monocultures of 

Lolium perenne, whereas it was decreased in the case of Trifolium repens (Marilley et al., 

1999). These studies were all either conducted in artificial or agronomic systems. There is 

a lack of experimental evidence on the effects of long-term CO2 enrichment on microbial 

community structure in complex undisturbed systems. Microbial responses to elevated 

CO2 may differ in such systems, as, e.g., soil is fully explored by roots and responses of 

individual plant species are integrated on the plant-community level.  

We analysed the microbial community structure in a species-rich calcareous 

grassland exposed to elevated CO2 for 6 growing seasons. Plant productivity increased 

under elevated CO2, with effects ranging from 5 to 31% for aboveground biomass and an 

average increase in root biomass of 16%. Individual species biomass did not increase 
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statistically significantly under elevated CO2 except for two subdominant Carex species, 

which showed large increases. However, species were significantly more evenly 

distributed in elevated CO2-communities, due to small increases in the biomass of low-

abundant species (which were not statistically significant when tested at the species level) 

(Niklaus and Körner, 2004). Evapotranspiration was reduced under elevated CO2, which 

led to significantly higher soil moisture. The largest differences in soil moisture between 

ambient and elevated CO2 treatments were usually found at intermediate soil moisture 

levels (Niklaus et al., 1998). Previous studies have shown that microbial biomass and 

basal respiration did not respond to CO2 enrichment (Niklaus, 1998; Niklaus et al., 2001a), 

whereas N-mineralisation and enzyme activities were stimulated by elevated CO2 

(Ebersberger et al., 2003) (Table D1).  

We used two different methods: (1) PLFA profiles, which give quantitative 

information on community structure and allow discrimination between fungi and bacteria, 

and (2) DNA fingerprints, obtained by PCR-DGGE of 16S rDNA, which allow a detailed 

analysis of the bacterial community structure.  
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Materials and methods 
 

Study site and experimental design 

 
The field research site is located at the foothills of the Swiss Jura Mountains in NE-

Switzerland on a south-west facing slope (20°) at an altitude of 520 m (47°33‘ N, 7°34‘ E, 

520 m a.s.l., Leadley et al., 1999). Average annual precipitation is about 900 mm, average 

annual air temperature between 8.5-9.0 °C. Soil is classified as transition rendzina derived 

from calcareous debris, with a loamy texture (Ogermann et al., 1994). The species-rich 

grassland with over 100 vascular plant species is dominated by Bromus erectus Huds. 

Until the setting up of the field experiment, the nutrient-poor grassland had been 

extensively used as cattle pasture.  

Twenty-four plots (1.27 m² area each) were selected and 3 treatments assigned 

randomly in a complete block design. Treatments included unscreened control plots (365 

µl CO2  l-1), screened ambient plots (365 µl CO2 l-1), and screened elevated CO2 plots (600 

µl CO2 l-1), using the Screen Aided CO2 Control system for CO2 exposure (SACC, Leadley 

et al., 1997). CO2 enrichment started at the end of March 1994. The system operated 24 

hours a day and was only shut down between December and end of February each year.  

 

Soil sampling and storage 

 
Soil sampling took place at the end of April (‘spring’) and end of June 1999 

(‘summer’) when the field experiment was terminated. In the central area of each plot, 3 

bulk soil subsamples (approx. 30 g each) were taken from the top layer (0-10 cm) and 

pooled. Soil samples were sieved through a 5 mm screen and stored at –20°C.  

 
PLFA analysis 

 
Phospholipid fatty acids (PLFA) were analysed following the procedure used by  

Bardgett et al. (1996). Lipids were extracted with a single-phase chloroform-methanol-

citrate buffer mixture (Bligh and Dyer 1959; White et al., 1979), and then fractionated 

using SI-columns (Varian, Harbor City, CA, USA). To the polar lipid fraction, including 

phospholipids, methyl-nonadecanoate was added, and phospholipids were then converted 

to fatty-acid methyl esters by mild alkaline methanolysis. Fatty acid methyl esters were 

analysed by capillary gas chromatography (Perkin-Elmer Autosystem XL, Norwalk, CT, 

USA, fitted with a 50 m capillary column [HP-5, Agilent, Palo Alto, CA,USA] and a flame 

ionisation detector). Methyl esters were assigned to phospholipid fatty acids using 

SUPELCO qualitative standards (Sigma-Aldrich, Taufkirchen, Germany). Mass 
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spectrometry was used to confirm the chemical structures of the methyl esters standards 

separated by gas chromatography. All samples were analysed using a set of 20 fatty 

acids, which were quantified in almost all plots. 

The fatty acid nomenclature used was as follows: total number of carbon atoms: 

number of double bonds, followed by the position of the double bond from the methyl end 

of the molecule. The prefixes a and i indicate anteiso- and iso-branching, and cy refers to 

cyclopropyl fatty acids. Following Frostegård and Bååth (1996), bacterial biomass was 

estimated from the summed concentration of 9 bacterial PLFA (i15:0, a15:0, 15:0, i16:0, 

i17:0, 17:0, cy17:0, 18:1ω7, and cy19:0) and fungal biomass was estimated from the 

concentration of the marker 18:2ω6. The prefixes a and i indicate anteiso- and iso-

branching, and cy refers to cyclopropyl fatty acids.  

 

DNA fingerprints 

 

Soil microbial community DNA was extracted using the FastDNATM SPIN Kit for 

Soil (Qbiogene, Carlsbad CA, USA), following the manufacturer's instructions.  The extract 

was then stored at -20°C. 

The DNA extracted from the soil was amplified using the primer set F984-968GC 

and R1378-1401 (Heuer et al., 1997). These anneal to conserved regions of the 16S 

rDNA of eubacteria and contain a GC clamp. PCR was undertaken as described by 

Marschner et al. (2003). PCR-products were then purified using the QIAquick PCR 

Purification Kit (Qiagen, Valencia, CA, USA) according to the manufacture’s protocol.  

DGGE was performed with 6% acrylamide gels containing a linear chemical 

gradient ranging from 35 to 55 %, the 100 % denaturing solution contained 7 M urea and 

40% (v/v) formamide. Electrophoresis was carried out with the DCode-System (Bio-Rad 

Laboratories, Hercules, CA, USA) in a 1 x TAE buffer at a constant voltage of 90 Volt for 

16h. Standard samples were always run in triplicate on each gel to control the gradient 

and facilitate comparison of the different gels. After electrophoresis, gels were stained 

with the silver stain kit (Bio-Rad Laboratories) following the manufacturer’s protocol. 

Developed gels were scanned and then analysed using image analysis software (Geldoc 

Quantity One 4.0.1, Bio-Rad Laboratories). The position and intensity of each band was  

included in a data matrix for each sampling date. 

 
Shannon Diversity Index 

 

For each sample, we calculated Shannon diversity indices H’ based on DNA-

fingerprints as 
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NN

H nn i

i

i ln´ ∑−=   , 

where ni the intensity of the ith band respectively, and N is the total sum of the intensity of 

all bands respectively. 

 

Statistical analysis 

 

Data of individual PLFA, sums of PLFA, Shannon diversity indices, and number of 

bands in DNA fingerprints were analysed by analysis of variance (ANOVA). All data was 

log-transformed prior to analysis. All ANOVA factors were fitted sequentially (type I sum of 

squares) using SPSS 10.0 (SPSS Inc., Chicago, IL). According to the hierarchical design, 

ANOVA factors were Block, SACC/CO2, Plot(SACC/CO2), Season, Season*CO2. A priori 

linear contrasts were used to test for effects of screening and CO2 enrichment alone.  

 

PLFA profiles and DGGE fingerprints were analysed with CANOCO 4 for Windows 

software (Microcomputer Power, Ithaca, NY, USA). Partial redundancy analysis (RDA) 

was used to analyse the data. RDA is an ordination technique based on principal 

component analysis (PCA). In PCA, ordination axes describe maximum variance of 

multivariate data, while in RDA ordination axes are constrained to be linear combinations 

of environmental variables. Hence, RDA allows direct analysis of treatments effects in 

experiments. The significance of the ordination axis, thus the significance of the 

relationship between environmental data and species composition, can then be tested by 

the Monte Carlo permutation test. Detailed descriptions of these methods are given in ter 

Braak and Smilauer (1998) and ter Braak and Prentice (1988). 

PLFA and DNA data and the two sampling dates were analysed separately. 

Proportions of individual PLFA and bands of DNA fingerprints were considered individual 

species in RDA. Species data were log-transformed. Blocks of the field experiment were 

included as covariables to account for block effects of field experiment and analysis.  

For RDA, treatments were included as environmental variables and three data sets 

for each sampling date were used to test for treatment effects: (1) a data set comprising 

data from all plots, (2) a data set comprising data from screened ambient plots and 

unscreened control plots to test for effects of screening (A vs. C treatment) and (3) a data 

set comprising data from screened ambient CO2 plots and screened elevated CO2 plots to 

test for effects of CO2 enrichment (E vs. A treatment). The Monte Carlo test was used to 

test the null hypothesis that screening and/or CO2 enrichment respectively did not 

significantly affect PLFA profiles and DNA fingerprints. The Monte Carlo test was based 

on 9999 unrestricted permutations of the data within blocks.  
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Effects with P≤0.05 were considered significant, while effects with P≤0.1 were 

considered marginally significant. In the case of individual PLFAs, the significance levels 

were adjusted by Bonferroni-correction to account for multiple tests.  

 

Results 
 

PLFA 

PLFA profiles were dominated by fatty acids 18:1ω7, 18:1ω9 and 16:0, which 

together accounted for more than 50% of the total PLFA (Table D2). Differences between 

ambient and elevated CO2 plots were mostly insignificant. Only the reduced proportion of 

i17:0 at elevated CO2 in comparison to ambient CO2 in spring was significant (F1,21=11.59, 

P=0.003). Branched fatty acids are widely present in Gram-positive bacteria (Basile et al., 

1995). In spring, total PLFA were reduced at elevated CO2 compared to ambient CO2, 

which could  be related to the reduction of bacterial PLFA. Both effects were marginally 

significant (P=0.09). Fungal PLFA and the fraction of 18:2ω6 did not respond to CO2 

enrichment. The ratio between bacterial and fungal PLFA also was not affected by CO2 

exposure (data not shown). No significant effects of screening were detected. Marginally 

significant responses to screening were observed for total PLFA in summer. 
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Multivariate analysis using RDA with Monte Carlo test did not reveal any significant 

relationship between treatments and variation in PLFA profiles (Fig. D1, Table D3). 
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Table D3  Explained variance (Expl. Var.) of species data and significance P (Monte Carlo 
permutation test) of first ordination axis in RDA. A vs. E: effect of CO2 enrichment 
was analysed, A vs. C: effect of screening was analysed 

 

  Spring  Summer 

  Expl. Var. P  Expl. Var. P 

PLFA A vs. E 3.9% n.s.  5.5% n.s. 

 A vs. C 10.2% n.s.  16.3% n.s. 

DNA fingerprints A vs. E 11.6% (*)  13.4% ** 

 A vs. C 8.4% n.s.  7.6% n.s. 
 

 

 
DNA fingerprints 

 
DNA fingerprints were complex, with the number of bands detected in samples 

varying between 25 and 52. This variation could be attributed to differences in gels as the 

number of bands did not differ significantly between treatments (Table D4). An exemplary 

DGGE gel is shown in Fig. D2.  
 

Table D4 Number of detected bands and Shannon-Index H‘ calculated for 16S rDNA 
fingerprints of soil bacterial communities for ambient CO2, elevated CO2 and 
unscreened control plots in calcareous grassland after 6 years of CO2 enrichment, 
means (standard error) of 8 replicates are given. No significant differences between 
treatments were detected. 
 

  Spring   Summer  
 Ambient 

CO2 

Elevated 
CO2 

Control  Ambient 
CO2 

Elevated 
CO2 

Control 

Number of bands 37.5 (3.1) 39.6 (2.9) 41.0 (3.1) 35.3 (3.3) 34.4 (2.9) 36.4 (2.9) 

Shannon-Index H‘ 3.08 (0.30) 3.48 (0.32) 3.80 (0.36) 3.24 (0.07) 3.22 (0.07) 3.28 (0.07)
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Block 4 Block 3 

     Treatment   S     A    A     C    C    E     E    S    A     A    C    C     E     E    S 

 

 
Figure D2 Exemplary DGGE gel showing bacterial DNA fingerprints of soil samples taken in 

summer 1999, after 6 growing seasons under elevated CO2. S denotes standard 
bacterial mixture, A samples from screened ambient CO2 plots, C unscreened 
ambient CO2 control plots, and E screened elevated CO2 plots. 
 

 

RDA with a Monte Carlo permutation test revealed a significant relationship 

between variation in DNA fingerprints and CO2 enrichment in summer (F=1.7, P=0.007); 

the first ordination axis explained 13.4 % of the overall variation in the data set. In spring, 

band variation was marginally significantly related to CO2 enhancement (F=1.4, P=0.07). 
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At both samplings, screening did not affect the composition of the bacterial community 

(Table D3). 

 

Though variation of DNA fingerprints associated with CO2 treatments were found 

to be significant in summer and marginally significant in spring, the source of variation 

between samples from ambient CO2 and elevated CO2 plots could not be identified 

visually in the gel images. Dominant bands were similar in treatments and  treatments 

probably differed in low intensity bands.  Banding patterns were very complex, and varied 

between gels, due to subtle differences in the gel gradients and staining intensity. In 

multivariate analysis, these differences were taken into account by including the 

covariable block into the analysis, because samples were grouped on gels according to 

their block. The variation due to gel differences partly accounted for the relatively small 

explained variation by the significant ordination axes.  
 

Shannon Diversity Indices 

 

There were no differences in DNA diversity in spring (Table D4); in summer, DNA 

diversity averaged higher in elevated CO2 plots than in the ambient CO2 treatments, but 

differences were not statistically significant (Table D4).    

 

 

Discussion 
 

Six growing seasons of CO2 enrichment in calcareous grassland caused minor  

significant changes in bacterial community structure, as shown by PCR-DGGE of 16S 

rDNA fragments analysed by ordination techniques. However, diversity and species 

richness, as estimated by Shannon diversity indices and the number of bands in DNA 

fingerprints, were not affected by CO2 enrichment.  

In case of PLFA, only the reduced fraction of i17:0 was significant while the overall 

profiles were not affected. This is in line with results of most CO2-enrichment studies. 

Insam et al. (1999) studied microbial response to elevated CO2 in a tropical ecosystem. 

Neither bacterial nor fungal PLFA fractions were altered by elevated CO2, but 4 single 

PLFAs were reduced at elevated CO2. In studies with Populus tremuloides and Populus 

gradientata, no changes in microbial community composition were found at elevated CO2, 

as assessed by PLFA (Zak et al., 2000a; Zak et al., 1996). In a model beech-spruce 

ecosystem PLFA patterns at ambient and elevated CO2 were also similar (Wiemken et al., 

2001). CO2-exposure of Pisum sativum plants also did not alter PLFA patterns (RØnn et 
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al., 2002).  In contrast, Montealegre et al. (2002) detected changes in bulk soil PLFA 

profiles of white clover in response to CO2-enrichment, which were statistically significant 

at P<0.1.  

In most studies measuring PLFA, no significant responses to elevated CO2 were 

found. PLFA profiles have shown to be sensitive to soil type and management (Bossio et 

al., 1998) and heavy metal contamination (Frostegård et al., 1993), which represent major 

impacts on the soil habitat. In comparison, possible effects of CO2-enrichment on the soil 

environment and hence on its microbial community are likely to be much smaller. Since 

many microbial groups contribute to individual PLFA the resolution of PLFA profiles is 

limited. So, even if responses of microbial communities to elevated CO2 exist, they are 

possibly too subtle to be easily detected by PLFA analysis.    

We found DNA fingerprints of elevated and ambient CO2 treatments to be only 

different in minor, low-intensity bands. It must be noted, however, that these low-intensity 

bands still account for pre-dominant bacterial populations within the microbial community, 

as only predominant species (minimum 1% of the total bacterial DNA) will appear as band 

in DNA fingerprints produced using DGGE (Myzer et al., 1993; Myzer and Smalla, 1998).  

One possible cause for the detected effects on the bacterial community structure is 

altered rhizodeposition at elevated CO2, as the top soil is densely explored by roots. The 

quantity of rhizodeposition was probably unaltered in this calcareous grassland, as 

demonstrated by C-isotope studies (Niklaus et al. 2001a,  Niklaus et al. 2001b), but 

effects on rhizodeposit quality are unknown. Experimental information on the chemistry of 

rhizodeposits under elevated CO2, especially in undisturbed soils, is generally lacking 

(Cardon, 1996; Darrah, 1996). Hodge et al. (1998) examined exudates from the roots of 

Lolium perenne grown in sterile sand mesocosms for 21 days. Under elevated CO2, 

smaller amounts of phenolic acids and total sugars were released from the seedlings. 

Indirect evidence of rhizodeposition in soil systems can be gained by studies using Biolog 

microplates or similar approaches. Substrate utilisation of microbial communities 

associated with Gutierza sarothrae roots responded to CO2 enrichment indicating changes 

in rhizodeposition (Rillig et al., 1997). Grayston et al. (1998) found effects of elevated CO2 

in sole carbon utilisation patterns of microbial communities from the rhizosphere of 

Danthoia richardsonii and concluded that under elevated CO2 compounds with a higher 

C:N ratio were released.  Rhizodeposition differs from species to species (Uren, 2001), 

and plant responses to elevated CO2 is species-specific (Rogers et al., 1994). Therefore, 

it is difficult to scale up from results of experiments with monocultures at elevated CO2 to 

the overall rhizodeposition of diverse plant communities. In a study by Mayr et al. (1999), 

community-level physiological profiles of soil from a open-top chamber experiment in 

alpine grassland differed between ambient and elevated CO2 treatments. However, 
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because the potential utilisation of all substrate groups increased the quality of 

rhizodeposits was probably not altered. Besides altered rhizodeposition of individual 

species, changes in the overall rhizodeposition of the plant community could also result 

from altered plant community structures. In the grassland studied, individual species 

responses to elevated CO2 were not statistically significant except for two subdominant 

sedges (Carex flacca and C. caryophyllea). This, plus a (at the species-level) non-

significant increase in the biomass of low-abundance species led to higher species 

evenness in elevated CO2 (Niklaus and Körner, 2004). If CO2-effects on individual plant 

rhizodeposition and/or these small effects on plant community composition resulted in 

altered overall quality of rhizodeposits in this calcareous grassland is uncertain, because 

direct measurements are lacking, but the effects detected in bacterial community structure 

might be an evidence for it. 

 

Because fungal biomass has a higher C:N ratio than the bacterial biomass and 

fungal hyphae are able to translocate nutrients across relatively large distances, increased 

C input at elevated CO2 may favour fungi over bacteria in N limited systems (Hu et al., 

2001). Long-term CO2 enrichment in two Californian grassland stimulated the fungal food 

chain more strongly than the bacterial food chain (Rillig et al., 1999). As the PLFA 18:2ω6, 

used as indicator fatty acid for fungal biomass, did not respond to elevated CO2, this 

hypothesis was not confirmed by the results of this study. The proportions of other fatty 

acids which are also related to fungi, like 18:3ω3 and 18:1ω9 (Zak et al., 2000a), also did 

not change under CO2 exposure.  

 

We did not detect any significant differences between screened ambient CO2 plots 

and unscreened control plots in DNA fingerprints or in PLFA profiles. We conclude that 

the screening itself did not cause considerable changes in microbial community structure. 

This was noticeable in terms of the importance of altered soil moisture at elevated CO2. 

Elevated CO2 plots and control plots behaved similarly in terms of soil moisture. Both 

treatments are generally slightly higher in soil water content than ambient CO2 plots, 

especially at intermediate soil moisture levels and the amplitude of diurnal soil moisture 

cycle was reduced (Niklaus et al., 1998; 2003). Because we could not detect any 

windscreen effect, we conclude that these altered soil moisture conditions did not affect 

the soil microbial community structure in the long term. However, it must be noted that at 

the time of the two samplings, soil moisture did not differ significantly between treatments 

(see Table D1). This is because soils had recently been saturated and the CO2-effect on 

evapotranspiration had not yet expanded to a significant difference in soil moisture 
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(Ebersberger et al., 2003). Possibly, effects of altered soil moisture on community 

structure might be detectable at drier conditions.  

 

Conclusion 

 
Overall, CO2 enrichment in calcareous grassland caused only small detectable 

changes in microbial community structure. Other evidence from the same CO2 enrichment 

experiment suggests that substrate availability to microorganisms did not change 

considerably under elevated CO2 (Niklaus et al., 2003). Hence, possible changes in 

substrate quality were not distinct enough to profoundly affect soil microbial community 

structure. However, considering the vast diversity of the soil microbial community, the 

PLFA and 16S rDNA-DGGE approaches we used are broad scale methods with only 

limited resolution. Possibly, there were effects on sub-community or single species level 

that could not be detected by these methods. 
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Summary 
 

Terrestrial ecosystems generally respond to rising atmospheric carbon dioxide 

(CO2) concentrations with increased net primary productivity and increased water use 

efficiency. This may change the amount and quality of organic substances entering the 

soil and fuelling microbial metabolism. Soil microorganisms and their activity might also be 

affected by increased soil moisture at elevated CO2. This thesis was designed to analyse 

the response of the soil microbial community in a species-rich calcareous grassland in the 

Swiss Jura Mountains, which had been exposed to ambient and elevated CO2 

concentrations (365 and 600 µl l-1) for six growing seasons.  

 

In the first study, laboratory incubation experiments were conducted to explore the 

relationship between litter quality under elevated carbon dioxide and enzymes involved in 

carbon cycling. By using naturally senescent, mixed litter from the long-term field 

experiment, the overall effect of litter quality at elevated CO2 on enzyme activity could be 

examined, integrating changes in litter chemistry, litter morphology and species 

composition. Litter and soil material were incubated together, and samples taken after 10, 

30 and 60 days. Soil samples were then obtained close to the litter layer using a 

microtome cutting device. Litter and soil samples were analysed for invertase and 

xylanase activity. The lower litter quality produced under elevated CO2, i.e. wider C/N 

ratio, yielded lower invertase and xylanase activities of litter. Litter addition stimulated 

activities in adjacent soil. Invertase activities of adjacent soil were not affected by litter 

quality, while soil xylanase activity was higher in soil compartments adjacent to litter from 

elevated CO2 plots. The reduced enzyme activities of litter produced under elevated CO2 

can slow decomposition, at least during the initial stages. Since the effects of litter quality 

on enzyme activities in adjacent soil were small, we conclude that CO2-induced 

belowground C-inputs (e.g. increased root mass) and altered soil moisture conditions are 

more important controls of enzyme activities than altered litter quality. 

 

In the second study, functional diversity of the soil microbial community was 

assessed by analysing N-mineralisation and activities of enzymes of the C-, N-, P- and S-

cycle of soil samples taken in spring and summer 1999, in the 6th season of CO2 

exposure. In spring, N-mineralisation increased significantly by 30% at elevated CO2, 

while there was no significant difference between treatments in summer (+3%). Soil 

enzymes mediate microbial decomposition and mineralisation. The response of soil 

enzymes to CO2 enrichment was also more pronounced in spring, when alkaline 

phosphatase and urease activities were increased most strongly, by 32% and 21%, 
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respectively. In summer, activity differences between CO2 treatments were greatest in the 

case of urease and protease (+21% and +17% at elevated CO2). The significant 

stimulation of N-mineralisation and enzyme activities at elevated CO2 was probably 

caused by higher soil moisture and/or increased root biomass. At the same time, microbial 

biomass did not respond. These results indicate that elevated CO2 will enhance 

belowground N-cycling in temperate grasslands. 

 

In the third study, soil samples of spring and summer 1999 were analysed with 

modern molecular methods to study the structure of the soil microbial community. Two 

different approaches were used: (1) phospholipid fatty acid (PLFA) profiles, because this 

technique yields quantitative information on community structure and allows a 

discrimination between fungi and bacteria and (2) DNA fingerprints of the bacterial 

community, obtained by Denaturing Gradient Gel Electrophoresis (DGGE) of 16S rDNA 

fragments amplified by the Polymerase Chain Reaction (PCR). Bacterial diversity was 

assessed based on Shannon diversity indices. PLFA profiles were not affected by 

elevated CO2 and the ratio of fungal and bacterial PLFA did not change. Ordination 

analysis of DNA fingerprints revealed a significant relation between CO2 enrichment and 

variation in DNA fingerprints. This variation must be attributed to low intensity bands. 

Dominant bands did not differ between treatments. Diversity of the bacterial community, 

as assessed by the number of bands in DNA fingerprints and  Shannon diversity indices, 

was not affected. The observed minute, but significant changes in the structure of the soil 

bacterial community might be caused by changes in the quality of rhizodeposits at 

elevated CO2. These could either result from altered rhizodeposition of individual plants or 

from altered species composition of the calcareous grassland. 

 

The 4  part of the thesis synthesises data on soil microorganisms, soil fauna 

(protozoans, nematodes, acarians, collembolans), soil structure and nitrogen cycle of 

calcareous grassland after CO

th

2 exposure for six growing seasons. Microbial biomass, soil 

basal respiration and the metabolic quotient were not altered significantly. PLFA analysis 

revealed no significant shift in the ratio of fungi to bacteria. Microbial grazer populations 

(protozoans, bacterivorous and fungivorous nematodes, acarians, collembolans) and root-

feeding nematodes were not affected by elevated CO2. Total nematode numbers, 

however, averaged slightly lower (-16%) and nematode mass was significantly reduced 

(by 43%) due to fewer large-diameter nematodes classified as omnivorous and 

predacious. CO2 exposure resulted in a shift towards smaller aggregate sizes at both 

micro- and macro-aggregate scales; this was caused by higher soil moisture. Reduced 

aggregate sizes result in reduced pore neck diameters. This can confine the locomotion of 
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large-diameter nematodes and possibly accounts for their decrease. The CO2 enrichment 

also affected the nitrogen cycle. The N stocks in living plants and surface litter increased, 

but N in soil organic matter and microorganisms remained unaltered. N mineralisation 

increased considerably, but microbial N did not differ between treatments, indicating that 

net N immobilization rates were unaltered. 

 

These studies proved that elevated atmospheric CO2 influenced both function and 

composition of the soil microbial community in species-rich grassland. The driving 

mechanisms were probably altered belowground C-inputs into the soil, both in terms of 

quality and quantity, and increased soil moisture under CO2 enrichment. Altered 

aboveground litter quality at elevated CO2 may have only minor effects on soil 

microorganisms. 
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Zusammenfassung 

 
Terrestrische Ökosysteme reagieren auf die gegenwärtige Erhöhung der 

atmosphärischen Kohlendioxidkonzentration mit Steigerung der Nettoprimärproduktion 

und erhöhter Effektivität der Wassernutzung. Dies kann dazu führen, dass sich Menge 

und Qualität der organischen Substanzen, die in den Boden gelangen und den 

heterotrophen Bodenmikroorganismen als Energiequelle dienen, verändern. 

Bodenmikroorganismen und ihre Aktivität können zudem durch die höhere Bodenfeuchte 

unter erhöhtem CO2 beeinflusst werden. Diese Dissertation hatte zum Ziel, die Reaktion 

der bodenmikrobiellen Gemeinschaft in einem Kalkmagerrasen im Schweizer Jura, der 

über sechs Vegetationsperioden mit CO2-angereicherter Luft (600 ppm) begast wurde, 

näher zu charakterisieren. 

 

Im ersten Teil der Dissertation wurde ein Modellexperiment im Labor durchgeführt, 

um den Einfluss der veränderten Streuqualität unter erhöhtem CO2 auf die Aktivität von 

Enzymen des C-Kreislaufes zu bestimmen. Hierzu wurde gemischte Streu aus der 

normal-CO2 und erhöhtes-CO2-Variante des Langzeit-CO2-Versuches mit Boden bei 15 

°C für 10, 30 und 60 Tagen inkubiert. Mit Hilfe eines Gefriermikrotoms wurden dann 

Bodenproben in unmittelbarer Nähe der Streu (0,250 - 14 mm) gewonnen. Die Invertase- 

und Xylanaseaktivitäten der Streu- und Bodenproben wurden bestimmt. Aufgrund der 

geringeren Qualität der Streu, die unter erhöhtem CO2 produziert wurde (z.B. weiteres 

C/N-Verhältnis), waren ihre Invertase- und Xylanaseaktivität generell erniedrigt. Die 

Streuzugabe stimulierte die Enzymaktivitäten im angrenzenden Boden. Die 

Invertaseaktiviät im angrenzenden Boden wurde durch die Herkunft der Streu nicht 

beeinflusst, die Xylanaseaktivität wies jedoch höhere Werte bei Inkubation mit 

Streumaterial aus der erhöhten-CO2-Variante auf. Die geminderten Enzymaktivitäten der 

Streu, die unter erhöhtem CO2 produziert wurde, können geringere Abbauraten, 

zumindest im Initialstadium des Abbaus, zur Folge habe. Da die Streuqualität insgesamt 

nur geringen Einfluss auf die Enzymaktivitäten im direkt angrenzenden Boden hatte, sind 

CO2-induzierte Änderungen der C-Einträge über die Wurzeln und das veränderte 

Bodenfeuchteregime vermutlich bedeutsamer für die Ausprägung der 

Bodenenzymaktivitäten unter erhöhtem CO2 als die veränderte Streuqualität. 

 

In der zweiten Studie wurde die funktionelle Diversität der bodenmikrobiellen 

Gemeinschaft durch die Bestimmung der N-Mineralisation und der Aktivitäten der Enzyme 

aus den C-, N-, P- und S-Kreisläufen charakterisiert. Hierzu wurden Proben im Frühjahr 

und Sommer 1999, in der sechsten Vegetationsperiode des in-situ CO2-
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Anreicherungsversuches, genommen. Unter erhöhtem CO2 war die N-Mineralisation im 

Frühjahr um 30% erhöht, während im Sommer kein signifikanter Anstieg (+ 3%) zu 

verzeichnen war. Die Enzyme reagierten ebenfalls im Frühjahr stärker auf die CO2-

Anreicherung als im Sommer, wobei die Aktivitäten der Alkalischen Phosphatase und 

Urease unter erhöhtem CO2 am stärksten gesteigert waren (+32% bzw. +21%). Im 

Sommer waren die Unterschiede zwischen den CO2-Varianten für Urease (+21%) und 

Protease (+17%) am größten. Die signifikante Steigerung der N-Mineralisation und der 

Enzymaktivitäten kann man auf die höhere Bodenfeuchte und die größere Wurzelmasse 

unter erhöhtem CO2 zurückführen. Die Ergebnisse lassen darauf schließen, dass die CO2-

Erhöhung zu einer Steigerung des N-Umsatzes in Grünlandboden führt. 

 

Im dritten Teil der Arbeit  wurden die Bodenproben aus dem Frühjahr und Sommer 

1999 mit modernen molekularen Methoden analysiert, um detaillierten Einblick in die 

bodenmikrobielle Gemeinschaftsstruktur zu gewinnen. Hierbei wurden zwei verschiedene 

Methoden verwendet: (1) Phospholipidfettsäure(PLFA)-Muster, da diese Technik 

quantitative Information zur Gemeinschaftsstruktur liefert und erlaubt, zwischen 

bakterieller  und pilzlicher Biomasse zu unterscheiden und (2) DNA-Profile, hergestellt 

durch Denaturierende Gradienten-Gel-Elektrophorese (DGGE) von 16S rDNA 

Fragmenten, die mittels der Polymerasen Kettenrektion (PCR) amplifiziert wurden. Diese 

Methode ermöglicht eine detaillierte Analyse der bakteriellen Gemeinschaft. Die 

bakterielle Diversität wurde durch den Shannon-Diversitäts-Index beschrieben. Die PLFA-

Muster und das Pilz-Bakterien-Verhältnis wurden nicht durch die CO2-Anreicherung 

beeinflusst. Ordinationsanalyse (Partielle Redundanzanalyse) der DNA-Profile zeigte, 

dass es im Fall der Sommer-Proben eine signifikante Beziehung zwischen CO2-

Anreicherung und Variation in den DNA-Profilen gab. Diese Variation muss allerdings  

Banden mit geringer Intensität zugeschrieben werden, da sich die dominanten Banden 

zwischen den Varianten nicht unterschieden haben. Die bakterielle Diversität, abgeschätzt 

durch die Anzahl der Banden und durch den Shannon-Index, wurde durch die CO2-

Anreicherung des Kalkmagerrasens nicht beeinflusst. Die geringen, aber signifikanten 

Änderungen in der bakteriellen Gemeinschaftsstruktur wurden möglicherweise durch 

qualitative Änderungen der Rhizodeposition unter erhöhtem CO2 hervorgerufen. Diese 

können entweder aus veränderter Rhizodeposition einzelner Pflanzenarten oder aber aus 

der veränderten Artenzusammensetzung der Pflanzengesellschaft resultieren. 

 

Der vierte Teil der Dissertation besteht aus einer Synthese von Daten zu 

Mikroorganismen, Bodenfauna, Bodenstruktur und N-Kreislauf nach 6 Jahren CO2-

Anreicherung des Kalkmagerrasens. Mikrobielle Biomasse, Basalatmung und 
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metabolischer Quotient zeigten keine signifikante Änderung unter erhöhtem CO2. Es fand 

auch keine Verschiebung des Pilz/Bakterien-Verhältnisses statt. Bodentiere, die 

Mikroorganismen beweiden, wie Protozoen, bakterivore und fungivore Nematoden, Milben 

und Collembolen, und wurzelfressenden Nematoden wurden nicht durch die CO2-

Anreicherung beeinflusst. Die Gesamtindividuenzahl der Nematoden war allerdings etwas 

erniedrigt unter erhöhtem CO2 (-16%), die Nematodenbiomasse war signifikant um 43% 

reduziert. Dies ist auf den Rückgang der Nematoden mit einem großen 

Körperdurchmesser, die als omnivor und räuberisch klassifiziert wurden, zurückzuführen. 

Die CO2-Anreicherung bewirkte eine Verschiebung zu kleineren Aggregatgrößen, sowohl 

auf der Mikro- als auch der Makroaggregateebene, vermutlich verursacht durch die 

erhöhte Bodenfeuchte. Kleinere Aggregatgrößen bedingen geringere 

Porendurchmessern, was die Bewegung großer Nematoden einschränken kann, und 

somit eine Erklärung für ihren Rückgang darstellt. Die CO2-Anreicherung beeinflusste 

auch den N-Kreislauf im Ökosystem. Die N-Vorräte in lebenden Pflanzen und Streu 

stiegen unter erhöhtem CO2, während die N-Vorräte in der bodenorganischen Substanz 

und in den Mikroorganismen gleich blieben. Die N-Mineralisation war zeitweise stark 

erhöht, aber der mikrobielle Stickstoff unterlag keiner Veränderung, so dass die netto N-

Immobilisierungsraten vermutlich unverändert blieben. 

 

Die vorliegende Arbeit zeigt, dass eine Erhöhung der atmosphärischen 

Kohlendioxids sowohl die Funktion als auch die Struktur der bodenmikrobiellen 

Gemeinschaft beeinflussen kann, zumindest in einem artenreichen Kalkmagerrasen. Als 

wichtige Mechanismen haben sich hierbei Veränderungen der Menge und Qualität der 

Kohlenstoffeintrage in den Boden und die erhöhte Bodenfeuchte bei CO2-Anreicherung 

erwiesen. Der veränderten Streuqualität unter erhöhtem CO2 kommt hingegen vermutlich 

nur eine geringere Bedeutung zu. 
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Figure E1 Peak biomass (June) water content in top 10 cm of soil. The effects of 

elevated CO2 and plot screening shown are typical for soil moisture 
conditions throughout the experiment and significant at P<0.01 (repeated 
measures analysis; C = unscreened control plots, A = ambient CO2 plots, E 
= elevated CO2 plots). 75

 
Figure E2 Effects of elevated CO2 on soil structure. (a) Organomineral aggregate 

sizes and (b) microaggregate size distribution after oxidation of soil organic 
matter with hydrogen peroxide and dispersion with pyrophosphate. (Note 
that dispersion is still incomplete. After further dispersion and organic 
matter oxidation, 7% of the minerals were recovered in the sand size 
fraction, 52% as silt, and 41% as clay; C = unscreened control plots, A = 
ambient CO2 plots, E = elevated CO2 plots 76

 
Figure E3 Soil organic C and total N extractable with 0.5 M KCL (C = unscreened 

control plots, A = ambient CO2 plots, E = elevated CO2 plots). 76
 
Figure E4 Biomass of soil microflora as determined by substrate induced 

respiration (SIR). Differences between ambient and elevated CO2 are not 
significant. Peak season data from previous years (June 1995 and 1996, 
Niklaus et al., 1998b) is also included in the figure. Due to the limited 
number of samples that could be handled parallel and the absence of 
windscreen effect in previous harvests (cf. Niklaus et al., 1998b), SIR of 
unscreened controls was not assessed in June 1995 and 1996 (C = 
unscreened control plots, A = ambient CO2 plots, E = elevated CO2 plots). 76

 
Figure E5 (a) Number of nematode individuals and (b) number of collembola, 

acari and total microarthropod individuals in experimental treatments (C = 
unscreened control plots, A = ambient CO2 plots, E = elevated CO2 plots). 77

 
Figure E6 Relative effects of windscreens (at ambient CO2) and CO2 enrichment 

(within windscreens) on soil biota components. (a) Effects on plant 
biomass, above- and belowground, are given for comparison. (b) Effects on 
total soil microflora and on the bacterial and fungal fraction. The 
bacteria/fungi-separation is based on characteristic bacterial and fungal 
PLFA. (c) Effects on soil microfauna, tentatively grouped into bacterial and 
fungal grazers and organisms feeding predominantly on plants. (d) Effects 
on omnivorous or predacious organisms, or group of organisms not sorted 
to species and containing predacious or omnivorous animals (mites). All 
data are weight based, with the exception of microarthropods for which no 
weight data was available and effects are based on the number of 
individuals. 78

 
Figure E7 Peak biomass nitrogen portioning within the ecosystem. Data refer to 

1999 when the experiment was terminated after six growing seasons. All 
data are in g N m-2 ± standard error of the mean. 79
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