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1 Introduction 

 

Free radicals arising from metabolism or environmental sources continuously interact 

in biological systems and there is evidence that oxidants and antioxidants must be in 

balance to mimic molecular, cellular and tissue damage. Such damage can arise from 

our own body metabolism, exposure to environmental stress, infections, micro-

organisms, viruses, parasites etc., and of course during ageing. Biological structures, 

in particular polyunsaturated membrane lipids, DNA and amino acids, are the target 

molecules reacting with ROS. The cellular effects of free radicals are dependent on 

their concentration and the target cell type: at low concentrations ROS are involved 

in signal transduction and thus regulate gene expression, whereas high 

concentrations of ROS cause malignant transformation or apoptosis depending on 

cell type [1,2]. Necrotic cell death mainly occures at very high ROS levels [3].  

It appears as though the action of free radicals on normal and tumour cells is 

diametrically opposite: when free radicals attack normal cells, DNA damage can 

occur, leading to the development of tumours, whereas when the same free radicals 

are produced in excess in tumour cells, there is a beneficial action, namely 

elimination of those cells [4]. Oxidative stress leads to inhibition of tumour cell 

growth by several mechanisms including p53 upregulation, Bcl-2 inactivation and 

telomere shortening [4-6]. Anti-cancer treatments acting via ROS-formation include 

radiation, anthracyclines, hyperthermia and photodynamic therapy. But there are 

also physiological substances like polyunsaturated fatty acides (especially n-3 

PUFAs), cytokines and 2-methoxyestradiol, which express anti-cancer action by the 

mechanisms mentioned above. Fig. 1.1 shows an overview about various factors 

executing tumour regression by ROS-formation.  
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Fig. 1.1: Scheme showing possible interaction of various factors generating ROS on tumour 
regression. Free radical mediated inhibition of tumour growth can be induced by enhanced 
expression of p53, inactivation of Bcl-2, telomere shortening and inhibition of angiogenesis 
(modified [4]). 
 

 

At the moment ionisating radiation and chemotherapy with anthracyclines (especially 

doxorubicin) are the most frequently used ROS-generating anti-cancer treatments. 

Anthracyclines are capable of generating superoxide anions (O2
-), typically by redox 

cycling with oxygen. These drugs contain electron-transfer entities that readily 

accept electrons from biological sources, followed by transfer to oxygen [7], which 

leads to the production of superoxide anions. Conversion of O2
- leads to production 

of other reactive oxygen species like hydrogen peroxide (H2O2) or the highly reactive 

hydroxyl  radical (OH?). The following reactions take part in this process: 

 

2 O2
- + 2 H2O   ?   2 H2O2 + O2     (catalase reaction) 

 

Fe(II) + H2O2   ?    Fe(III) + OH? + OH-  (Fenton reaction)  
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Unfortunately the drug doxorubicin can also undergo redox cycling with cytochrome 

P-450 species in the endoplasmic reticulum of the liver and the sarcoplasmic 

reticulum of cardiac muscle [8]. This reaction causes cardiotoxicity, a serious side-

effect of doxorubicin. The lower level of antioxidant systems, especially the low 

catalase activity in heart cells is a contributing factor. 

Ionisating radiation causes ROS-generation by another mechanism than 

anthracyclines. Because cells are 80% aqueous, the majority of the energy of 

radiation is absorbed by water, resulting in ionisation to hydrogen atoms, solvated 

electrons and most importantly in terms of damage to DNA, hydroxyl radicals. 
 

However, some tumours are resistant to ROS-generating treatments. There are 

several mechanisms affecting tumour response to these treatments. Enhanced 

antioxidative capacities of tumour cells, caused by high intracellular levels of 

antioxidants (e.g. glutathione, vitamin E) or ROS detoxifying enzymes (e.g. 

superoxide dismutase), are important reasons for this phenomenon [9,10]. 

Oxygenation of the tumour is another parameter influencing tumour response to 

anti-cancer therapies. In hypoxic tumours ROS-generating treatments show relatively 

low response rates due to the fact that the low level of molecular oxygen terminates 

the formation of superoxide anions, hydroxyl radicals and hydrogen peroxide [11,12]. 

Development of new, more tumour specific ROS-generating treatments could 

enhance the efficiency of anti-cancer therapies with lesser side-effects. Furthermore, 

using these treatments as adjuvant in established anti-cancer regimes may increase 

the response rate of tumours having poor prognosis at the moment. The studies in 

this thesis are part of this development by investigating the drug 2-methoxyestradiol 

(2-ME) and photodynamic therapy with 5-aminolevulinic acid. Both regimes generate 

ROS by different mechanisms, which lead to the death of tumour cells without any 

serious side-effects. Apoptotic cell death is mostly the consequence of these 

treatments, as mitochondria, playing a critical role in the apoptotic process, are 

damaged easily by ROS [13-15]. ROS induced permeabilisation of mitochondrial 

membranes results in release of various molecules that are crucial for apoptosis. 

Such molecules include procaspases, cytochrome c, endonuclease G  and apoptosis 

inducing factor (AIF), which ultimately induce DNA fragmentation, the endpoint of 
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apoptosis [13,16]. Apoptosis is an energy-requiring process, associated with 

characteristic changes in cell morphology including condensation of chromatin with 

nuclear fragmentation, condensation of the cytosol into apoptotic bodies and 

changes in the cell surface that enable recognition by macrophages. These engulf 

apoptotic cells enabling them to be destroyed in a non-inflammatory manner. In 

contrast, necrosis is characterised by swelling of cell organelles and plasma 

membrane ruptures with the loss of intracellular contents into the surrounding 

medium. This attracts neutrophils which cause an inflammatory response and 

secondary damage to the tissue [17]. 
 

In this thesis two new anti-cancer treatments, (i) chemotherapy with 2-methoxy-

estradiol (2-ME) and (ii) 5-aminolevulinic acid based photodynamic therapy 

(ALA-PDT), were investigated. Both therapies are known to generate reactive oxygen 

species. Due to this fact, the two independent studies presented in this thesis 

determined the anti-cancer effect of 2-ME and ALA-PDT as single therapies and in 

combination with hyperthermia to assess the possible benefit of these combinations.  

The following paragraphs briefly describe the supposed mechanisms of 2-ME and 

ALA-PDT responsible for killing tumour cells. Additionally, the advantages, possible 

side- effects and the clinical relevance of these therapies will be explained.  

 

2-Methoxyestradiol 
 

The natural estrogen metabolite 2-ME is formed by hydroxylation and methyl group 

transfer out of 17ß-estradiol or out of the contraceptiva 17-ethylestradiol [18]. 

Women in the luteal phase or pregnant women have elevated blood levels of 

2-methoxyestrogens in a nanomolar range [19]. 
 

 

 

 

 

 

 

 

 

 

 

Fig. 1.2: Structure of 2-methoxy- 
                 estradiol (2-ME) [20]. 
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The anti-cancer potential of 2-ME is independent of estrogen-receptor binding, 

because estrogen receptor affinities for 2-ME are extremely weak [21]. Selective 

growth inhibition of transformed (cancer) cells or tumours by 2-ME is a result of 

several factors. In 1994 d’Amato et al found that 2-ME inhibits tubulin polymerisation 

by interacting with the colchicine site [22]. Further investigations showed that 2-ME 

increases the insoluble polymerised fraction of cellular tubulin similar to the anti-

cancer drug taxol [23]. The alteration of microtubuli formation induced by 2-ME can 

explain the inhibitory effect on cell growth but it does not elucidate the selective 

inhibition of tumour cells compared to normal cells. One possible explanation of this 

selective effect could be the inhibition of CuZn-superoxide dismutase (CuZn-SOD) by 

2-ME which was recently reported by Huang and colleagues [15]. SOD detoxifies 

superoxide anions to H2O2 in an enzymatic reaction. Due to the high proliferation 

rates of tumour cells, resulting in enhanced levels of endogenous ROS compared to 

normal cells, 2-ME may achieve its selective effect by inhibition of SOD.  

In recent years effect of 2-ME on many different cell types was assessed, showing 

growth inhibition in all tested cancer cell lines. Observed differences in sensitivity 

against 2-ME were dependent on cell line, not on cell type. Investigations on 

pancreatic cancer cell lines showed, that proliferation of 3 out of 4 cell lines were 

inhibited at a concentration between 2 and 3 µM 2-ME, whereas growth inhibition of 

the 4th cell line was achieved at a 4-fold higher concentration [20]. The role of p53 in 

2-ME induced cell death is not clear, because p53 dependent and independent 

mechanisms were described [24,25]. Huober and colleagues reported that cells 

expressing wild-type p53 are more sensitive to 2-ME than cells with mutated p53 

[24]. However this finding could not be validated by Huang [15].  

2-ME induced cell death is associated with apoptosis including caspase activation 

[26], Bcl-2 phosphorylation (inactivation) or down-regulation [20,23] and changes in 

mitochondrial integrity [15,27]. Significance of reactive oxygen species in this 

process is presumably dependent on the investigated cell line [15,27]. 

In vivo 2-ME shows potent inhibition of tumour growth by oral application [24,28]. 

Responsible for the high tumour response rate in vivo are anti-angiogenetic 

properties of 2-ME in addition to the effects mentioned above [28,29]. These in vivo 
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studies demonstrated that 2-ME is a well tolerated, highly effective anti-cancer drug 

confirming the findings of cell culture tests.  

At the moment, efficacy of 2-ME (PanzemTM) is being investigated in four clinical 

trials (phase I and II) in USA. Patiens with myeloma, breast or prostate cancer get 

2-ME orally as single agent therapy. Combination of 2-ME with the microtubule 

stabilising drug Taxotere?  (docetaxel) is also tested. Unfortunately, results are not 

yet available. 

 

 

Photodynamic therapy 
 

Photodynamic therapy (PDT) is based on the administration of tumour-localising 

photosensitisers (generally porphyrin derivates), followed by exposure of the tumour 

region to light [30,31]. Irradiation of the photosensitiser with a specific wavelength 

generates reactive oxygen species including singlet oxygen. PDT promises to be 

more selective than radio- and chemotherapy and can be applied to recurrent 

tumours that have already received maximal doses of conventional treatment. Since 

photosensitisers lack toxicity in the absence of light, adverse reactions at other sites 

of drug accumulation are eliminated and the drug-activating light is harmless in the 

absence of sensitiser. Some limitations of PDT include light-inaccessible tumours and 

large tumour masses. [7]. 

In the last 20 years, several types of photosensitisers were developed and 

investigated. In the present study 5-aminolevulinic acid (ALA) was used as 

‘photosensitiser’. ALA is an endogenous precursor of the highly photosensitising 

protoporphyrin IX (Fig. 1.3). Compared to the first generation photosensitisers like 

Photofrin II?
,
 ALA is more tumour specific and has a higher rate of clearance from 

normal tissue [7]. In vivo ALA formation from glycine and succinyl-coenzyme A is the 

first step in the heme synthesis pathway. Subsequently two ALA molecules are 

formed to porphobilinogen. Further pathway intermediates are uroporphyrinogen, 

coproporphyrinogen and protoporphyrinogen. The latter one is oxidised to 

protoporphyrin IX, which is transformed to heme by incorperation of iron. Under 



Introduction   7 

 

physiological conditions, ALA synthesis is tightly controlled by feedback regulation by 

intercellular heme. Exogenous application of ALA (orally or i.v.) bypass this pathway 

and can therefore lead to higher formation of photosensitive porphyrins in cells [32]. 

Based on the fact that protoporphyrin IX synthesis is located in the mitochondria and 

due to the lipophilic properties of protoporphyrin IX, ROS generated by ALA-PDT 

primarily damage mitochondria, lysosomes and plasma membranes [33]. 

 

 

 

N

NH

HN

N

 protoporphyrin IX

   porphyrin 
intermediates

5-ALA

heme
Fe2+

exogenous
    5-ALA

    glycine
         + 
succinyl CoA

 

 

 
Fig. 1.3: Pathway of porphyrin biosynthesis [32]. First and last two steps of this biochemical  
              pathway are located in the mitochondria, porphyrin intermediates are formed in  
              cytosol.  

 

 

The mechanism of ALA uptake and accumulation in malignant and regenerative cells 

are not completely understood. The active transport of the compound through 

plasma membranes was demonstrated in microorganisms and in cell culture [34,35]. 

However, a cell-type dependent uptake mechanism cannot be excluded [32]. It has 

been suggested that cells with higher turnover rates like tumour cells produce more 

protoporphyrin IX due to decreased ferrochelatase activity [36].  

The initiating step of the photosensitising reaction is the absorption of a light photon 

by protoporphyrin IX, causing a shift of the molecule from its ground state to the 

extremely unstable excited singlet state. The excited protoporphyrin IX molecule 

either decays back to the ground state, resulting in the emission of light in the form 
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of fluorescence, or undergoes intersystem crossing to the more stable triplet excited 

state by electron spin conversion. The interaction of the triplet sensitiser with 

surrounding molecules results in two types of photooxidative reaction. Type I 

pathway involves transfer of electrons or hydrogen atoms producing radical forms of 

the photosensitiser or the substrate. The intermediates may further react with 

oxygen to form peroxides, superoxide anions and hydroxyl radicals, which initiate 

free radical chain reactions. Type II mechanism is mediated by an energy transfer 

process with ground state oxygen, leading to the formation of singlet oxygen and the 

return of the sensitiser to its ground state [32]. It is supposed that type II processes 

predominate in oxygenated systems, whereas type I reactions prevail under hypoxic 

conditions [36]. 

 

 

Fig. 1.4: Diagrammatic presentation of type I and type II photosensitised oxidation  
                 reactions of protoporphyrin IX (PP IX) [37]. 
 

 

In recent years many clinical trials and phase I-III studies have been carried out to 

investigate the clinical efficacy of ALA-PDT. The studies have been focused on skin 

tumours, but there have been also investigation on non skin tumours, e.g. bladder, 

kidney and colon tumours. High clinical response rates were described in these 

studies, however tumour size is the limiting factor for ALA-PDT efficacy. Ineffective 

penetration of ALA in large tumours, hypoxic conditions in the tumour centre and the 

limited irradiation depth may contribute to low response rates in large tumours [32]. 

PP IX

 PP IX*
  type II type I
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 hv
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Side-effects of ALA-PDT differ from topical ALA-treatment and systemic admini-

stration. If ALA is topical applicated irradiation causes only a stringing and burning 

[38]. The side-effects associated with the systemic administration of ALA can be 

more serious. They may include transient liver function abnormalities, nausea and 

vomiting [39]. 

 

 

Aim of this thesis 
 

Both anti-cancer treatments, chemotherapy with 2-ME as well as ALA-PDT, are highly 

specific regimes, demonstrated by high response rates and low side-effects. 

Combination of these regimes with conventional ROS-generating therapies may 

enhance the cytotoxic effect in a synergistic manner by producing excessive amounts 

of free radicals. Data have been shown that ?-radiation plus 2-ME treatment resulted 

in a dramatic increase in cell death compared to single treatments [24,40], whereas 

the successively followed combination of PDT and ?-radiation showed additive and 

synergistic effects, dependent on cell type and treatment regime [41-43]. In 

comparison to these regimes, simultaneous combination of PDT and ?-radiation 

resulted in increased efficiencies [44].  

Interesting findings were observed combining PDT and hyperthermia. PDT followed 

by hyperthermia caused cytotoxicity in a synergistic manner [45,46], reversing the 

sequence of the treatments resulted only in additive tumour damage [30,46].  

On the basis of above mentioned literature data, the studies of this thesis would like 

to elucidate the anti-tumour effect of  

1. 2-ME in combination with a potent ROS inducing treatment (hyperthermia + 

hyperoxia + xanthine oxidase) and  

2. simultaneous administration of ALA-PDT and hyperthermia. 

In addition to point 1 a further objective is to enlighten 2-ME mediated signalling 

pathways leading to apoptosis. This information may avail to estimate the effect of 

2-ME in different therapy regimes. Finally, results of this thesis should help to classify 

2-ME and ALA-PDT as adjuvant therapies.  
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2  Materials and Methods 

 

2.1 Materials 

All chemicals were obtained from Sigma (Deisenhofen, Germany) unless otherwise 

indicated. Cell culture materials were purchased from Biochrom (Berlin, Germany) or 

Greiner (Frickenhofen, Germany). 

2.2 Cell culture 

DS-sarcoma cells of the rat were used for in vitro experiments. Cells were grown in 

RPMI medium supplemented with 10% fetal bovine serum and 2 mM glutamine at 

37°C in a humidified 5% CO2 atmosphere. They were passaged twice weekly. 

2.3 Drug treatment 

2-methoxyestradiol was dissolved in absolute ethanol to give a 20 mM solution and 

stored at -20°C. Cells were treated with 2-ME for up to 96 h. The concentration of 

ethanol in the medium of 2-ME treated and control cells was adjusted to 0.1% (v/v). 

In order to generate additional reactive oxygen species in 2-ME treated cells, the free 

radical generating system xanthine oxidase/hypoxanthine was used. For DHE-assay 

cells subsequently treated with 2-ME (48 h) were incubated in KRH+ buffer (134 mM 

NaCl, 4.8 mM KCl, 1.2 mM KH2PO4, 1.2 mM MgCl2 x 7 H2O, 2.8 mM glucose, 20 mM 

HEPES, 1 mM CaCl2 x 2 H2O, pH 7,4) with or without 1 mM hypoxanthine and 

10 mU/ml xanthine oxidase (Roche, Mannheim, Germany) for 50 min at 37°C. For 

determination of cell viability, cells were grown in medium containing 1 mM 

hypoxanthine and treated with 2-ME at the indicated doses for 48 h. 24 h after 2-ME 

addition 1 mU xanthine oxidase per ml medium was added. 

2.4 Cell proliferation and viability 

Cell numbers were determined by means of a cell counter (Casy?  TTC, Schärfe 

System, Reutlingen, Germany).  

For colony forming efficiency (CFE)-assay cells were treated with different stimulants 

for 48 h. Subsequently, cells were washed twice in medium and transferred into a 

96-well-plate (dilution series from 1 to 512 cells/well). After 5 days, cell clones per 
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well were counted and the CFE was calculated as follows:    

                   CFE [%] = clones per well / seeded cells per well x 100 

Cell uptake of propidium iodide was used to identify dead cells. Drug-treated cells 

were stained with propidium iodide (0.2 µg/ml) in PBS for 10 min at room 

temperature. Thereafter, cells were washed three times in PBS and analysed for 

propidium iodide uptake by flow cytometry (Coulter Epics XL, Hamburg, Germany). 

2.5 SOD activity 

The effect of 2-ME on SOD activity was measured by the inhibition of pyrogallol 

autooxidation [47]. Here, bovine CuZn-SOD (25 ng/ml; Roche, Mannheim, Germany) 

was incubated with or without 0.01, 0.1 or 1 mM 2-ME for 5 min at room 

temperature. 4 µl of this mixture were added to 986 µl assay buffer (50 mM 

Tris/cacodylic acid, 1 mM diethyltriamine pentoacetic acid, 1200 U/ml catalase, 

pH 8.2). The reaction was started by the addition of 10 µl pyrogallol stock solution 

(20 mM pyrogallol in 0.01 N HCl). Pyrogallol autooxidation was measured as the rate 

of change of absorbance at 420 nm over 5 min. SOD inhibitor diethyldithiocarbamate 

(DDC) was used as a positive control for this test system. The amount of SOD 

inhibiting the reaction rate by 50% in the given assay conditions was defined as one 

SOD unit [48]. 

2.6 Determination of superoxide anion radicals (DHE-assay) 

To measure the production of superoxide anion radicals dihydroethidium (DHE; 

Molecular Probes, Leiden, The Netherlands) was used. Superoxide radicals oxidise 

DHE to ethidium which intercalates into DNA producing a red fluorescence [49].  

Cells were washed in PBS and resuspended in PBS with 20 ng DHE/ml for 1 h at 

room temperature. After staining, cells were washed twice in ice cold PBS, 

resuspended and analysed within 1 h by flow cytometry (620 nm). 

2.7 Superoxide anion production by Lucigenin chemiluminescence 

DS-sarcoma cells were incubated for 24 h with 2-ME, DDC or doxorubicin (DOX). 

Subsequently, the medium was replaced with physiological buffer (119 mM NaCl, 

20 mM HEPES, 4.6 mM KCl, 1 mM MgSO4, 0.15 mM Na2HPO4, 0.4 mM KH2PO4, 5 mM 
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NaHCO3, 1.2 mM CaCl2, 11.1 mM glucose, pH 7.4) with a cell density of 4 x 106 

cells/ml. Lucigenin (200 µM; bis-N-methylacridinium nitrate) was added to the cell 

suspension and luminescence, measured with a Bioorbit 1251 luminometer (LKB 

Wallac, Munich, Germany), was integrated for 10 minutes at 37°C. Background 

luminescence was determined in the presence of the superoxide scavenger Tiron 

(10 mM, 4,5-dihydroxy-1,3-benzenedisulfonic acid). Superoxide levels are reported 

as Tiron-inhibited arbitrary units [50]. 

 

2.8 Determination of ROS-formation (DCF-assay) 

ROS production was assessed by oxidation of 2´,7´-dichlorodihydrofluorescein 

diacetate (H2-DCF-DA) (Molecular Probes, Leiden, The Netherlands) to the 

fluorescent product 2´,7 -́dichlorofluorescein (DCF). In the presence of ROS, 

especially hydrogen peroxides and lipid hydroperoxides, H2-DCF is rapidly oxidised to 

highly fluorescent DCF [51]. 

Cells were stained as previously described [52]. 106 cells were incubated in RPMI 

with 5 µM H2-DCF-DA for 45 min at 37°C, then incubated in PBS containing 0.2 µg 

propidium iodide/ml for 10 min at room temperature. Thereafter, cells were washed 

once and resuspended in 1 ml PBS. Flow cytometric analysis was performed within 

1 h (525/620 nm).  

2.9 Biochemical assessment of lipid peroxidation (TBARS assay) 

High amounts of reactive oxygen intermediates result in lipid peroxidation. 

Therefore, analysis of malondialdehyde equivalents (TBARS) as a marker of lipid 

peroxidation end products was carried out as described previously [53,54]. After 

drug treatment, approx. 3 x 106 cells were washed in ice cold PBS, lysed in 260 µl 

solubilisation buffer [10 mM Tris, pH 7.4, 9 g/l NP40, 1 g/l SDS and 250 U/ml 

benzonase (Roche, Mannheim, Germany)] and centrifuged at 20.000 x g for 10 min 

at 4°C. For protein measurement, an aliquot of 50 µl was frozen at –20°C. 200 µl of 

cell lysate or malondialdehyde standards were mixed with 10 µl butylated hydroxy-

toluene (50 mg/ml ethanol) and 200 µl of orthophosphoric acid (0.2 mM). 

Thereafter, 25 µl of 2-thiobarbituric acid reagent (800 mg of 2-thiobarbituric acid 



Materials and Methods  13 

 

dissolved in 50 ml of 0.1 M NaOH) were added. The reaction mixture was then 

incubated at 90°C for 45 min. Formed TBARS were extracted once with 500 µl 

1-butanol. 250 µl of the butanol phase was placed into a 96-well-plate. Malon-

dialdehyde equivalents (TBARS) were measured using a fluorescence plate reader 

(Bio-Tek FL 600, Biotek, Winooski, VT) with excitation at 530 ?  25 nm and emission 

detection at 590 ?  35 nm. For quantitative determination of TBARS, 200 µl of a 

malondialdehyde standard solution were used instead of cell lysate. For this, 50 µl of 

1,1,3,3,-tetramethoxypropane (10 mM) was hydrolysed in 10 ml of 0.01 M HCl for 

10 min at room temperature and then diluted with ultrapure water to suitable 

concentrations. Protein content was measured spectrophotometrically using the Bio-

Rad DC Protein Assay (Bio-Rad, Munich, Germany), according to the manufacturer´s 

protocol. 

2.10 Detection of mitochondrial changes 

Mitochondrial injury can lead to depolarisation of the mitochondrial membrane, a 

frequent early event in apoptosis. The depolarisation is linked to release of pro-

apoptotic factors from the mitochondrion, some of which are familiar players in the 

central apoptosis mechanism [55]. Therefore, the mitochondrial membrane potential 

(? ? m) was determined by using rhodamine 123 as described by Li et al. [56]. 

Treated cells were washed and resuspended in medium at a concentration of 

106 cells/ml. After incubation with 5 µM rhodamine 123 for 20 min at room 

temperature, cells were washed once in medium and resuspended in PBS for flow 

cytometry analysis (575 nm). Carbonyl cyanide m-chlorophenylhydrazone (CCCP) at 

a concentration of 50 µM, was used as a positive control. 

Swelling of mitochondria is another marker of apoptosis [57]. Relative mitochondrial 

mass was measured by flow cytometry using 10-nonyl-acridine-orange (NAO) 

(Moleculare Probes, Leiden, The Netherlands). The fluorescent dye NAO binds 

specifically to the mitochondrial inner membrane independent of energetic state [58]. 

106 cells were washed once in PBS and stained with 10 µM NAO in 1 ml PBS for 

10 min at room temperature. Thereafter, cells were washed in PBS and underwent 

flow cytometry analysis (525 nm).  
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2.11 Caspase activity assay 

The activation of caspases, intracellular cysteine proteases, play a central role in the 

apoptotic process. Once activated, executor caspase-3 -6 and -7 cleave cytoskeletal 

and nuclear proteins and induce apoptotic cell death [59].  

4 x 106 cells  or 7 tumour sections of 40 µm were cut at –20°C in a cryostat and 

lysed in 300 µl ice cold HEPES buffer (10 mM HEPES pH 7.4, 2 mM EDTA, 1 g/l 

CHAPS, 2 mM Pefabloc (Biomol, Hamburg, Germany). The solution was centrifuged 

at 20,000 x g at 4°C for 30 min and 200 µl of the supernatant were mixed with 22 µl 

50 mM DTT and stored at –80°C for caspase-3 and caspase-8 activity assay. The 

aliquot of the supernatant was used for protein content determination with Bio-Rad 

DC Protein Assay (Bio-Rad, München, Germany). For caspase-3-like activity measure-

ment 100 µl of the supernatant were incubated with the fluorogenic caspase-3 

tetrapeptide substrate Ac-DEVD-amino-4-methylcoumarin [60] (Calbiochem, Bad 

Soden, Germany) at a final concentration of 20 µM. For caspase-8 activity 

measurement the fluorogenic caspase-8 substrate Ac-IETD-amino-4-methylcoumarin 

[61] (Bachem, Heidelberg, Germany) at a final concentration of 50 µM was used. 

Cleavage of the substrates was followed by determination of emission at 460 ?  40 

nm after excitation at 360 ?  40 nm using the fluorescence plate reader FL600 

(Biotek, Winooski, VT). 

Relative caspase-3 and caspase-8 cleavage activity was expressed as a function of 

protein content. Activity of control cells or control tumours were set at 100%. 

2.12 Western blot analysis  

4 x 106 cells resp. 7 tumour sections (40 µm) were lysed with 10 mM Tris (pH 7.4), 

9 g/l NP-40, 1 g/l SDS and 5 µl/ml protease inhibitor cocktail and centrifuged at 

20,000 x g for 10 min at 4°C. Generating cell fractions 20 x 106 cells were washed 

and resuspended in 1 ml of a hypotonic buffer (20 mM HEPES-KOH (pH 7.5), 10 mM 

KCl, 1.5 mM MgCl2, 1 mM EDTA, 1 mM DTT, 5 µl protease inhibitor cocktail/ml, 

250 mM sucrose), and incubated for 20 min on ice. They were then homogenised in 

a tissue grinder. The homogenate was centrifuged at 100 x g for 10 min at 4°C, and 

the resulting supernatant was then centrifuged at 10,000 x g for 30 min at 4°C. The 
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second pellet containing mitochondria was suspended in 10 mM Tris (pH 7.4), 0.9% 

NP-40, 0.1% SDS and 5 µl/ml protease inhibitor cocktail. The supernatant contained 

the cytosolic cell fraction [62]. 

Equal protein amounts were run on a 10-12% polyacrylamide gel and blotted onto 

PVDF membranes by semidry electroblotting. Membranes were stained with 

Ponceau S to verify equal protein loading per lane.  

Following antibodies were used for Western blot detection: 

 

antibody source dilution 

rabbit polyclonal anti PARP antibody Santa Cruz Biotechnologies, CA 1:200 

goat polyclonal anti-AIF antibody  Santa Cruz Biotechnologies, CA 1:150 

goat polyclonal anti-cytochrome c antibody Santa Cruz Biotechnologies, CA 1:100 

mouse monoclonal anti-Bax antibody Santa Cruz Biotechnologies, CA 1:100 

mouse monoclonal anti-Bcl-2 antibody Santa Cruz Biotechnologies, CA 1:100 

mouse monoclonal anti-Bcl-xL antibody Santa Cruz Biotechnologies, CA 1:100 

goat polyclonal anti-HSP70 antibody Santa Cruz Biotechnologies, CA 1:200 

rabbit polyclonal anti-HO1 antibody Stress Gene Biotechnologies, 
Victoria, Canada  

1:20 000 

goat anti-rabbit IgG HRP-conjugated Cell signaling, Beverly, MA 1:2000 

rabbit anti-goat IgG HRP-conjugated DAKO, Glostrup, Denmark 1:6000 

rabbit anti-mouse IgG HRP-conjugated Calbiochem, San Diego, CA 1:5000 

goat anti-rabbit IgG AP-conjugated Boehringer Mannheim, 
Mannheim, Germany 

1:3000 

 

Tab. 2.12.1: Characterisation of antibodies used in Western blot analysis. 

 

After blocking (3% milk powder and 0.05% Tween 20 in TBS) the membranes for 

1 h, blots were probed for 1 h with primary antibody and rinsed twice with TBST. 

The membranes then were probed with horseradish peroxidase-conjugated 
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secondary antibody for 1 h. After three washes in TBST the detection was performed 

with chemiluminescence system LumiGLOTM (Cell signaling, Beverly, MA). 

Colorimetric detection was used to determine HO-1 expression as described 

previously [63].  

 

2.13 Real time PCR 

The mRNA expression of FasL and TNF? , two ligands of death receptors (Fas and 

TNF-R1) were measured quantitatively by real-time PCR (iCycler, Bio-Rad, Munich, 

Germany). GAPDH expression served as a control for cDNA amount.  

Total RNA isolation was done with RNeasy mini kit (Qiagen, Hilden, Germany). 2 µg 

of total RNA were transcribed into cDNA using Omniscript RT Kit (Qiagen) and oligo 

dT-primers (end volume: 20 µl) as indicated in manufacturer’s instructions . 

Primers listed below were used for transcription and RT-PCR: 

 

reaction sequence        

reverse transcriptase reaction 5’-TTT TTT TTT TTT TTT TVN-3’ 
V= A or G or C, N= A or G or C or T 

RT-PCR: GAPDH 5’-GTG TTC CTA CCC CCA ATG TAT-3’ 
5’-CCTGTTGCT GTA GCC ATA TTC-3’ 

RT-PCR: TNF?  5’-CAG ATG GGC TGT ACC TTA TC-3’ 
5’-GGA CTC CGT GAT GTC TTA GTA-3’ 

RT-PCR: FasL 5’-TCT GGA ATG GGA AGA CAC ATA-3’ 
5’-ACC AGA TCC CCA GGA TAC TT-3’ 

 

Tab. 2.13.1: Primers used for reverse transcriptase reaction and quantification of TNF? , 
                     FasL and GAPDH mRNA by real-time RT -PCR. 
 
Real time RT-PCR was performed using QuantiTecTM SYBR?  Green PCR Kit (Qiagen) 

following manufacturer’s instructions. Briefly, 1 µl of cDNA were added to the master 

mix (25 µl 2x QuantiTec SYBR Green PCR Master Mix, 1 µl 500 nM Fluorescein, 1 µl 

of each primer [50 pmol/µl], 21 µl RNAse-free water). A calibration curve was run in 

parallel and in duplicate with each analysis, using PCR fragments of the target cDNA 
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in a concentration of 101-109 copies per sample. Negative water blanks were included 

in every analysis. A 15 min denaturation at 95°C activated the Taq Polymerase, 

which was followed by 40 PCR cycles, in accordance with the following protocol: 

denaturation at 95°C (30 seconds), annealing at 57°C for FasL and GAPDH and at 

61°C for TNF?  (30 seconds), and elongation at 72°C (30 seconds). At the end of the 

PCR, a melting curve analysis was performed by gradually increasing the tempe-

rature to 95°C. This was to detect possible formation of primer-dimers. Data 

acquisition was performed during elongation step. 

After PCR was completed the SYBR Green fluorescent signal was transformed into a 

relative number of copies of target molecules. Differences in cDNA amount were 

equalised by expression of the house keeping gene GAPDH.  

 

2.14 Identification of apoptotic cells with 7-AAD 

Staining cells with 7-aminoactinomycin D is a previously described method used to 

identify apoptotic cells in a given cell population [64]. Here, 106 cells were washed in 

HEPES buffer (10 mM HEPES, pH 7.4, 140 mM NaCl, 2.4 mM CaCl2) and stained with 

22 µM 7-aminoactinomycin D (7-AAD) for 20 min at 4°C in the dark. Cells were 

washed once and resuspended in an HEPES buffer. Flow cytometric analysis was 

performed within 1 h (FSC versus fluorescence at 675 nm). 

2.15 DNA fragmentation 

A late biochemical hallmark of apoptosis is the fragmentation of genomic DNA. It is 

an irreversible event that commits the cell to die and occurs prior to changes in 

plasma membrane permeability. 

Approx. 1.5 x 106 cells or 4 tumour sections of 40 µm were resuspended in 500 µl 

lysis buffer [10 mM Tris (pH 8.0), 100 mM NaCl, 25 mM EDTA, 5 g/l SDS). The 

solution was incubated sequentially with 50 µg/ml RNase A (Qiagen) for 60 min at 

RT, and 100 µg/ml proteinase K (Qiagen) at 50°C over night. Subsequently the 

solution was cooled down to RT und gently extracted with 500 µl Roti 

Phenol/Chloroform (Roth, Karlsruhe, Germany). The mixture was transferred to a 

Phase Lock GelTM light tube (Eppendorf, Hamburg, Germany). After centrifugation at 
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14,000 x g for 5 min the upper aqueous phase was decanted and 0.1 volume 3 M 

sodium acetate and 2.2 volumes of absolute ethanol were added. The tube was kept 

at –20°C for 2 h. After centrifugation, the DNA precipitate was washed with 70% 

ethanol and dried for 20 min at RT. DNA was dissolved in TE buffer (pH 8.0) 

overnight at 4°C. To detect DNA fragments, 2 µg of isolated DNA were separated on 

a 1.8% agarose gel in TBE buffer and stained with ethidium bromide. DNA fragments 

were visualized under ultraviolet light. 

2.16 RNA fragmentation 

RNA was isolated from tumour sections (40 µm) cut at –20°C in a cryostat with 

Qiagen RNeasy Mini Kit (Qiagen) according to the manufacturer’s instructions. 1 µg 

of total RNA was analysed on a 1% agarose gel in TBE buffer containing 0.5 µg 

ethidium bromide per ml. 

 

2.17 Glutathione determination with HPLC 

Approx. 40 µg tumour tissue (cut in 40 µm sections) was transferred to a tissue 

grinder, extracted with 2 ml of ice-cold 60 g/l sulfosalicylic acid containing 1 mM 

EDTA, and rapidly homogenised while the protein was directly precipitated. After 

centrifugation (21,000 x g for 5 min at 4°C), aliquots of the clear supernatant and 

protein precipitate were stored  at –80°C. Protein precipitate was resolved in 0.1 N 

NaOH, afterwards protein content was assessed by the method of Bradford. Reduced 

and oxidised glutathione levels were determined as described previously by Kuhn and 

colleagues [65]. 

 

2.18 Histochemical determination of apoptosis (TUNEL-assay) 

Apoptosis associated DNA single and double strand breaks were detected using the 

‘Apoptosis Detection System Fluorescein´ (Promega, Mannheim, Germany) according 

to the manufacturer’s protocol for frozen tissue sections. Tumour sections of 10 µm 

were cut at –20°C in a cryostat and subsequently fixed with 4% freshly prepared 

methanol-free formaldehyde for 30 min at RT. Specimens were washed in phosphate 

buffered saline and permeabilised in 0.1% Triton X-100 in 0.1% sodium citrate 
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solution for 30 min at RT. Positive controls were prepared by incubating tissue 

sections with 0.2 U/µl DNAse I (Boehringer-Mannheim, Mannheim, Germany) in 

40 mM Tris-HCl (pH 7.4), 10 mM NaCl, 6 mM MgCl2 and 10 mM CaCl2 for 10 min at 

RT. Specimens were equilibrated and incubated with the nucleotide mix and the 

TdT enzyme (terminal deoxynucleotidyl transferase) according to the manufacturer´s 

protocol at 37°C for 1 h. Negative controls were treated identically, but in the 

absence of the TdT enzyme. Specimens were washed in 2 changes of sodium citrate-

buffered saline and counter-stained with 4´,6-diamidino-2-phenylindole dihydro-

chloride (DAPI). Samples were mounted in embedding medium (SlowFade Light, 

Molecular Probes, MoBiTec, Goettingen, Germany) and analysed immediately under a 

fluorescence microscope (Axioplan, Zeiss) using a standard fluorescein and DAPI 

filter set. 

 

2.19 Histochemical detection of nitrosative stress 

The analysis of nitrosylated proteins as a marker of the formation of the toxic oxidant 

peroxynitrite anion (ONOO-) [66] was carried out as follows: tumour sections 

(5-10 µm) were cut at –20°C in a cryostat, air dried and subsequently fixed in freshly 

prepared 4% paraformaldehyde for 20 min. Thereafter, specimens were washed 

twice in PBS for 5 min. Non-specific primary and secondary antibody binding sites 

were blocked by incubation of specimens with PBS containing 2% BSA and 10% 

normal donkey serum for 1 h at RT. Excess blocking solution was removed and 

sections were covered with 6 µg/ml anti-nitrotyrosine rabbit polyclonal antiserum 

(Upstate Biotechnology, Lake Placid, NY) diluted in PBS, 2% BSA and incubated 

overnight at 4°C. Sections were rinsed twice for 5 min in PBS and covered with 1:25 

diluted FITC labeled anti-rabbit IgG from donkey for 1 h at RT. Specimens were 

washed in two changes of PBS and counterstained with DAPI. In the cases in which 

sections were stained simultaneously for nitrosylated proteins and blood vessels, 

anti-rat von Willebrand factor sheep polyclonal antiserum (Technically, Ontario, 

Canada) was given (1:500) into the diluted anti-nitrotyrosine polyclonal antiserum 

and detected by Cy3TM labeled anti-sheep IgG from donkey (Dianova, Hamburg, 

Germany). 
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Samples were mounted in embedding medium (SlowFade Light; Molecular Probes, 

MoBiTec, Goettingen, Germany) and analysed immediately under a fluorescence 

microscope (Axioplan, Zeiss, Germany) using standard fluorescein, rhodamine and 

DAPI filters. The specificity of the staining of nitrosylated proteins was verified by 

incubating the diluted anti-nitrotyrosine polyclonal antiserum with 10 mM nitro-

tyrosine in PBS for  h at RT. This solution was used in place of the primary antibody 

and should result in no staining (negative control). 

 

2.20 Matrix metalloproteinase activity 

MMPs are associated with tumour growth, invasion and metastasis. They are 

responsible for the degradation of extracellular matrix proteins, whereby tumour 

angiogenesis and tumour invasion in healthy tissue is submitted [67]. Two members 

of the MMP family, the gelatinases MMP-2 and MMP-9, were investigated by 

zymography. 

Samples were prepared from tissue sections as described in the chapter `Western 

blot analysis’, but the lysis buffer did not contain any protease inhibitors. 

Zymography was performed in 10% SDS-polyacrylamide gels containing 1 mg/ml 

gelatin. Samples (30 µg protein) were mixed with Laemmli sample buffer without a 

reducing agent and subjected to electrophoretic analysis without boiling. Gels were 

washed in 50 mM Tris (pH 7.5) containing 2.5% Triton X-100 for 1 h and were then 

incubated at 37°C overnight in 50 mM Tris (pH 7.5) containing 150 mM NaCl, 10 mM 

CaCl2, and 0.1% Triton X-100. Gels were stained with Coomassie Brilliant Blue [68].  

 

2.21 In vivo studies 

All in vivo studies were kindly performed by Dr. med. habil. Oliver Thews and Dr. rer. 

nat. Debra K. Kelleher, Institute of Physiology and Pathophysiology, University of 

Mainz, Germany. 
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2.21.1 Animals 

Male Sprague-Dawley rats (Charles River Wiga, Sulzfeld, Germany; body weight 160 

to 195 g) housed in a animal care facility were used in the study. Animals were 

allowed access to food and acidified water ad libitum before and throughout the 

investigation. All experiments had previously been approved by the regional animal 

ethics committee and were conducted in accordance with the German Law for Animal 

Protection and the UKCCCR Guidelines [69]. 

2.21.2 Tumours 

Solid DS-sarcomas were induced by injecting DS-sarcoma cells (0.4 ml approx. 

104 cells/µl) subcutaneously into the dorsum of the left hind foot. Tumours grew as 

flat, spherical segments and replaced the subcutis and corium completely. Volumes 

were determined by measuring the three orthogonal diameters of the tumours and 

using an ellipsoid approximation with the formula: V = d1 x d2 x d3 x ? /6 . 

2.21.3 ROS-generating treatment and 2-ME administration 

A previous study demonstrated that 44°C-hyperthermia (HT) for 60 min markedly 

induced the generation of reactive oxygen species, an effect which was even more 

pronounced when HT was combined with xanthine oxidase application and the 

animals allowed to breath pure oxygen [70]. For this reason, the same treatment 

protocol was used to induce oxygen radicals in tumours in vivo in the present study. 

Tumours were treated when they reached a volume of 0.5 to 0.75 ml, approx. 5 to 

7 days after implantation. 

HT was performed by heating the tumour in a saline (9 g/l NaCl) bath set to a 

temperature of 44.3°C. For this, animals were anaesthetised with pentobarbital 

(40 mg/kg, i.p., NarcorenTM, Merial, Hallbergmoos, Germany) and placed on a poly-

styrene board in a ventral position above the saline bath. The tumour-bearing leg 

was immersed into the saline through a hole in the polystyrene layer so that the 

tumour was completely submerged for 60 min. The saline bath temperature was set 

at 44.3°C in order to obtain a temperature of 44.0°C in the center of the tumour as 

has been confirmed in previous studies [70].  
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Fifteen min prior to HT, animals received an i.v. injection of 15 U/kg body weight of 

xanthine oxidase (XO). XO was previously dissolved in distilled water at a concen-

tration of 7.5 U/ml. In contrast to the in vitro experiments, the addition of 

hypoxanthine (substrate of XO) was not necessary because larger amounts of 

hypoxanthine will be formed within tumour tissue by the partial degradation of ATP 

into hypoxanthine (ATP ?  ADP ?  AMP ?  IMP ?  inosin ?  hypoxanthine). 

Additionally during HT, animals breathed pure oxygen spontaneously (respiratory 

hyperoxia; RH) which was flushed around the nose and mouth of the animal at a 

flow rate of 2 l/min by using a loosely fitting face mask. 

Control animals were also anaesthetised but, not treated with HT, XO or oxygen 

breathing. 

2-ME was dissolved in absolute ethanol at a concentration of 10 mg/ml and injected 

at a dose of 17.5 mg/kg 2 h prior to HT treatment. For i.p. injection, the stock 

solution was diluted with 1 ml of peanut oil and the mixture vortexed to obtain a 

stable emulsion. Animals in the control groups received equivalent volumes of the 

vehicle (ethanol + peanut oil) 120 min prior to HT. 

The experimental groups can be described as follows: 

Group 1  (control, n = 17 tumours): Animals were neither treated with ROS-

inducing HT nor with 2-ME.  

Group 2 (HT+RH+XO-treated, n = 13 tumours): Animals received ROS-inducing 

treatment (HT + XO injection + oxygen breathing) but no 2-ME.  

Group 3 (2-ME-treated, n = 11 tumours): Animals were treated with a single 

injection of 2-ME but no HT was applied.  

Group 4 (HT+RH+XO + 2-ME-treated, n = 17 tumours): Animals received a single 

i.p. injection of 2-ME 2 h prior to the ROS-inducing treatment.  
 

On the day of treatment (day 5 to 7 after implantation) tumours in the different 

groups were size-matched to exclude systematic differences in tumour size. 
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2.21.4 ALA-PDT and hyperthermia 

Tumours were heated to a set temperature of 43°C using a infrared-A irradiator  

(Fig. 2.21.4.1), containing a halogen lamp (24V/150W, type HLX6443, Osram, 

Munich, Germany), a waterfilter (Maxs, Sachseln, Switzerland) and a long wave pass 

filter of 420 nm [71]. The waterfilter absorbs practically all energy ?  1400 nm and is 

responsible for two strong, distinct absorption bands at 944 and 1180 nm [72]. 

Without the waterfilter, this absorption would be performed by water in the most 

superficial skin layers, which can lead to painful sensations and exsiccosis. Using a 

feedback control system involving measurement of temperature in the tumour centre 

with 250 µm needle-thermocouples (type 2ABAc, Philips, Kassel, Germany) tumour 

temperature was maintained at 43°C for 60 min, by continuous regulation of the 

radiation source, which switched on and off intermittently. Animals which were 

selected for PDT-treatment received 3 h before irradiation 375 mg/kg 5-amino-

levulinc acid i.v.. Irradiation was performed with the infrared-A irradiator described 

above in combination with a barrier filter of 800 nm to blind out infrared light, which 

is responsible for heat generation in the irradiated tumour. The tumour was 

irradiated with an energy density of 200 mW/cm2 and a power density of 370 J/cm2. 

 
 

 

 

 

 

Fig. 2.21.4.1:  
Longitudinal section 
through the IR-A irradi-
ation source used for 
simultaneously inducing 
HT and ALA-PDT [71]. 
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The experimental groups can be described as follows: 

Group 1 (control, n0h = 7, n18h = 4 tumours): Animals were neither treated with HT 

nor ALA-PDT. 

Group 2 (HT, n0h = 6,  n18h = 4 tumours): Animals received hyperthermia 43°C. 

Group 3 (ALA-PDT, n0h = 6,  n18h = 5 tumours): Animals were treated with ALA-PDT. 

Group 4 (ALA-PDT+HT n0h = 6,  n18h = 4 tumours): Animals received ALA-PDT treat-

ment in combination with hyperthermia. 

Group 5 (ALA alone, n0h =7,  n18h = 5 tumours): Animals received ALA injection, but 

the tumour was not illuminated. This treatment group was added due to 

the fact, that ALA and porphyrins at higher concentrations can generate 

ROS in absence of activating light [73]. 

Group 6 (light alone, n0h =6,  n18h = 4 tumours) Animals were irradiated without ALA 

administration. 

Tumour were excised with a scalpel blade immediately or 18 h after treatment, 

placed in tissue embedding medium (GSV 1, Slee Technik, Mainz, Germany), rapidly 

cooled in liquid nitrogen, and stored at –80°C until further investigation. 

 

2.21.5 Statistical analysis 

Results are expressed as means ± standard error of the mean (SEM) or standard 

deviation (SD). Differences between the groups were assessed by the two-tailed 

Wilcoxon test for unpaired samples. The significance level was set at ?  = 5% for all 

comparisons. For comparing the tumour growth in the in vivo experiments, the time 

taken to reach a previously defined tumour volume of 3.5 ml was determined. These 

time intervals were analysed using Kaplan-Meier statistics and differences between 

the probability curves were assessed using the log-rank test. 
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3 Results 

 

3.1 2-Methoxyestradiol 

 

3.1.1 2-Methoxyestradiol induces cell death by apoptosis 
 

DS-sarcoma cells were treated with various 2-ME concentrations between 0.5 and 

10 µM. Control cells were incubated with 0.1% ethanol. Over a period of 4 days 

proliferation was determined by cell counting. High concentrations of 2-ME (5 and 

10 µM) stopped cell proliferation immediately, whereas low concentrations (0.5 and 

1 µM) showed an increasing inhibitory effect on cell proliferation during the first 3 

days, resulting in growth arrest. 

 

 

 

 

 

 

 

 

 

Fig. 3.1.1.1: Inhibition of cell proliferation by 2-ME. DS-sarcoma cells were treated 
with the indicated 2-ME concentrations for 96 h. Cells were counted 24, 48, 72 and 96 h 
after treatment. Values are means ? SD of three independent experiments. 

 

 

Uptake of propidium iodide was used to measure cytotoxicity of 2-ME. Therefore, 

cells were incubated with 0.5, 1, 5 and 10 µM 2-ME for 72 h. The proportion of 

propidium iodide positive cells increased substantially from 41% (0.5 µM) to 59% 

(1 µM) and reached a plateau at 5 µM with 71%. 
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Fig. 3.1.1.2: 2-ME effectively damaged DS-sarcoma cells. Cells were incubated with 
0.5, 1, 5 and 10 µM 2-ME. After 72 h they were stained with propidium iodide (PI) 
measuring membrane integrity. PI uptake was determined by flow cytometry. Data are 
means ? SD of three independent experiments. 

 

 

The influence of 2-ME on the mitochondrial integrity was determined by flow 

cytometry. Cells were treated with 0.5, 1 and 5 µM 2-ME for 24 h. Measuring 

mitochondrial mass cells were stained with acridine orange. For determining changes 

of mitochondrial inner membrane potential (? ? m) cells were stained with rhoda-

mine 123. Cells treated with 5 µM 2-ME showed a clear increase in mitochondrial 

mass of 66% compared to sham treated cells. After correcting the mitochondrial 

transmembrane potential for the corresponding mitochondrial mass a concentration-

dependent decrease in mitochondrial membrane potential was observed in 2-ME 

treated cells (Tab. 3.1.1.1). 
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treatment mitochondrial mass ? ? m ? ? m/ 

mitochondrial mass 

control 1 1 1 

0.5 µM 2-ME 1.05  ?  0.10 0.84  ?  0.06 0.82  ?  0.06 

1 µM 2-ME 1.02  ?  0.13 0.80  ?  0.06 0.84  ?  0.19 

5 µM 2-ME 1.66  ?  0.34 1.25  ?  0.14 0.78  ?  0.18 

 

Tab. 3.1.1.1: Effect of 2-ME on mitochondrial mass and membrane potential. 
DS-sarcoma cells were incubated with 0.1% (v/v) ethanol (control) or the indicated 2-ME 
concentrations for 24 h. Thereafter, cells were stained with acridine orange to determine 
mitochondrial mass or stained with rhodamine 123 for measurement of the inner mitochon-
drial membrane potential ? ? m by flow cytometry. The quotient of ? ? m/mitochondrial mass 

was calculated to correct ? ? m for differences in mitochondrial mass. Results presented are 

mean fluorescence values relative to vehicle control of at least three independent 
experiments ? SD. 

 

Permeability of mitochondrial membrane is influenced by Bcl-2 family members. Pro-

apoptotic members like Bax and Bid localise to cytosol or cytoskeleton prior to a 

death signal whereas anti-apoptotic members, e.g. Bcl-2 and Bcl-xL, are initially 

integral membrane proteins found in the mitochondria, endoplasmic reticulum or 

nuclear membrane. Following a death signal, the pro-apoptotic members undergo a 

conformational change that enables them to target and integrate into membranes, 

especially the mitochondrial outer membrane [74]. Apoptotic stimuli can induce 

translocation of monomeric Bax to the mitochondria where it becomes an integral 

membrane protein and cross-linkable as a homodimer [75]. It is a fact that some 

Bcl-2 members can form ion channels in artificial membranes [76]. Additionally 

modulation of mitochondrial permeability transition pore (PTP) by Bax and Bak was 

proposed [77].  

Due to the important role of Bcl-2 proteins in the apoptotic process of mitochondria, 

expression of pro-apoptotic Bax and anti-apoptotic proteins Bcl-2 and Bcl-xL were 
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determined by Western blot analysis. Expression of these proteins was measured in 

whole cell lysates as well as in mitochondrial fractions. Therefore, DS-sarcoma cells 

were treated with 1 or 5 µM 2-ME for different time intervals. Cells were harvested 

and whole cell lysates were prepared. Additionally, mitochondria were isolated to 

check the localisation of the three investigated apoptosis influencing proteins. 

Western blot analysis of whole cell lysates showed that protein expression of Bax, 

Bcl-2 and Bcl-xL was not modulated by 2-ME (data not shown). However, in 

mitochondria 2-ME increased the fraction of Bax molecules compared to the anti-

apoptotic molecules Bcl-2 and Bcl-xL. Six hours after incubating cells with 1 or 5 µM 

2-ME, the Bax to Bcl-2 ratio in mitochondria increased 2.2-fold compared to the 

control cells. Similar results were observed in the Bax-to Bcl-xL ratio indicating 

apoptotic changes at the outer mitochondrial membrane. At later time points (48 and 

72 h) ratios of the investigated pro- and anti-apoptotic proteins in mitochondrial 

fraction normalised to control level (data not shown). 
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Fig. 3.1.1.3: 2-ME treatment increased portion of pro-apoptotic Bax in compari-
son to anti-apoptotic Bcl-2 and Bcl-xL. DS-sarcoma cells were incubated with ethanol 
(control), 1 or 5 µM 2-ME for the indicated periods. Mitochondria were then isolated and 
Western blotting was performed (10 µg protein). Relation of densitometric values of Bax and 
Bcl-2, and Bax and Bcl-xL was calculated. Ratio of control cells was set at 1. Data presented 
are means ? SEM of three independent experiments.  
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Two marker proteins for mitochondrial associated apoptosis are cytochrome c and 

AIF. Both proteins can be released out of mitochondria in apoptotic events. 

Cytochrome c release leads to the cytosolic assembly of the apoptosom caspase 

activation complex involving Apaf-1 and caspase-9 [78]. AIF, a caspase-independent 

DNase can translocate from the mitochondrial intermembrane space to the nucleus, 

where it causes chromatin condensation and large scale DNA fragmentation of 

approximately 50 kbp [79]. For determining the protein content of cytochrome c and 

AIF in cytosolic cell fractions, cells were treated with 1 and 5 µM 2-ME for 24, 48 and 

72 h. Western blotting showed that cytochrome c was not released into cytosol but a 

3.6-fold increase in cytosolic AIF was observed after 2-ME treatment with 1 µM for 

48 h. Treatment for 72 h resulted in a 5.8- (1 µM) and 9.0-fold (5 µM) increase in 

cytosolic AIF content. 
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Fig. 3.1.1.4: Time course of the mitochondrial release of cytochrome c and AIF 
into cytosol. Cells were incubated with ethanol (control), 1 or 5 µM 2-ME for 24, 48 and 
72 h. The cytosolic fractions of the cells were then separated and Western blotting was 
performed. Data represent means ? SEM of three independent experiments. Representative 
Western blots for cytochrome c and AIF at each time point are also shown. 
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Due to the very important role of caspases in the apoptotic pathway, activity of 

effector caspases was investigated. Caspase-3, -6 and –7 are counted among 

effector (or downstream) caspases, which finally lead to apoptotic cell death. In this 

study caspase-3-like activity (activity of effector caspases) was determined with the 

fluorogenic substrate Ac-DEVD-AMC. Three different 2-ME concentrations, 0.5, 1 and 

5 µM 2-ME, were tested for caspase-3-like activation in DS-sarcoma cells. Treatment 

with 1 µM 2-ME strongly increased caspase-3-like activity. This concentration 

resulted in a 2.8-fold increase 24 h after 2-ME treatment. After 48 h caspase-3-like 

activity was raised 5.6-fold compared to control cells. Assessment of activity after 

72 h showed a regression in activation (data not shown). 

 

 

 

Fig. 3.1.1.5 Increased caspase-3-like activity after 2-ME treatment. Cells were 
incubated with the indicated 2-ME concentrations. 24 and 48 h after exposure , cells were 
washed and lysed. The lysate was then centrifugated at 21,000 x g for 30 min and the 
supernatants was incubated with the fluorogenic substrate Ac-DEVD-AMC. Cleavage of this 
substrate was detected in a fluorescence reader. Bars represent means ? SD of three 
independent experiments.  
 

 

A consequence of caspase-3-like activation is cleavage of poly-ADP-ribose-poly-

merase (PARP), a DNA repairing enzyme. After activation of effector caspases PARP 

will be cleaved into a 29 and 85 kDa fragment [80]. In this study PARP cleavage was 

investigated 24, 48 and 72 h after 2-ME treatment by Western blot analysis. The 
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occurrence of a second band at 85 kDa indicates partial PARP cleavage 48 h after 

2-ME treatment. The major part of PARP was not cleaved. 
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Fig. 3.1.1.6: Time course of PARP cleavage after 2-ME treatment. Cells were treated 
with ethanol (control), 1 or 5 µM 2-ME for 24, 48 and 72 h. Cells were then harvested and 
analysed for PARP cleavage by Western blotting. Protein load was verified by actin 
expression. Blots shown are representatives of two independent experiments. 
 

Beside the important role of mitochondria in the apoptotic process, activation of 

death receptors like Fas, TNFR1 and TRAIL-R1/2 can also induce apoptosis. Death 

receptor mediated apoptosis of tumour cells could be induced either by autocrine 

production of FasL or TNF?  by the tumour or by release of these factors out of 

lymphocytes. Upregulation of death receptors on tumour cell surface could be 

another mechanism to sensitise tumour cells against FasL or TNF? . 

Fas-ligand binding initiates trimerisation of the Fas (CD95) receptor and this permits 

the immediate recruitment of several proteins that form a complex around the 

cytoplasmic moiety of the receptor - the death initiating signalling complex (DISC). 

DISC proteins bind to each other and CD95 through a series of homologous domains. 

Thus the C-terminus of CD95 binds a DISC protein called FADD, which can activate 

caspase-8 [81]. TNF?  binding to TNFR1 engages similar mechanisms. But the DISC 

complex of TNFR1 contains several proteins, which can activate JNK, NF-?B and 

caspase-2 [82]. Accordingly TNFR1 is involved in pro- and anti-apoptotic pathways 

[83], which applies to Fas as well [84]. 
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To investigate the role of death receptors in 2-ME induced cell death autocrine 

production of FasL and TNF?  after 2-ME administration was determined. DS-sarcoma 

cells were treated with 1 or 5 µM 2-ME for different periods, cells were then 

harvested, RNA was isolated and transcribed into cDNA. Quantification of FasL and 

TNF?  mRNA was done by real time RT-PCR using SYBRTM Green as fluorophore.  

2-ME treatment of DS-sarcoma cells induced upregulation of FasL and TNF?  mRNA 

expression after 24 h. An increased expression of both investigated parameters was 

determined 24 h after 2-ME addition (1 and 5 µM 2-ME), with 1 µM enhancing 

expression more potently than 5 µM 2-ME. Cells treated with 1 µM 2-ME for 24 h had 

a 3.0-fold higher TNF?  expression compared to control cells. Treatment with 5 µM 

2-ME resulted only in a 1.9-fold increase. Similar results were observed in FasL 

expression. 1 µM 2-ME caused a 3.1-fold, 5 µM a 2.3-fold upregulation.  

 

 

Fig. 3.1.1.7: Time course of FasL and TNF?  mRNA expression after 2-ME 
treatment. Cells were treated with ethanol (control), 1 or 5 µM 2-ME for the indicated 
periods. Subsequently, total RNA was isolated and transcribed into cDNA. FasL and TNF?  

mRNA expression was quantified by real time RT-PCR. GAPDH expression was used to 
correct the cDNA amount. Data shown are means ? SEM of three independent experiments. 

PCR analysis of each experiment was performed twice. 
 

Ligand binding to Fas or TNFR1 results in cleavage of caspase-8 leading to the 

activation of effector caspases. 2-ME treatment for 24 h increased caspase-8 activity 

in DS-sarcoma cells only marginal (data not shown). Yet, caspase-8 activity of cells 
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treated with 1 µM or 5 µM 2-ME for 48 h showed a 1.6-fold increase compared to 

control cells. 
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Fig. 3.1.1.8: Slight increase in caspase-8 activity 48 h after 2-ME treatment. Cells 
were incubated with the indicated 2-ME concentrations. 48 h after exposure , cells were 
washed and lysed. Caspase-8 activity was determined using the fluorogenic substrate 
Ac-IETD-AMC. Cleavage of this substrate was detected in a fluorescence reader. Bars 
represent means ? SD of three independent experiments.  

 

 

DNA fragmentation is associated with the endpoint of the apoptotic process. 

Caspase-3 can induce DNA fragmentation by inactivating DFF45/ICAD, which results 

in the formation of the active enzyme DFF40/CAD [85]. Specific cleavage of 

nucleosomes generates the typical 180-200 bp DNA fragments [86]. Mitochondrial 

endonuclease G and AIF are also involved in DNA fragmentation, whereby AIF 

induces large scale fragmentation [16,87].   

2-ME induced DNA fragmentation occurred 72 h after drug administration in a dose 

dependent manner. Control cells did not show any DNA degradation. After 96 h, DNA 

laddering reached the same level in 0.5, 1 and 5 µM 2-ME treated cells. The ob-

served DNA fragmentation is a clear sign of apoptotic cell death. 
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Fig. 3.1.1.9: Time course of DNA fragmentation after 2-ME treatment. DS-sarcoma 
cells were incubated with indicated 2-ME concentrations. After 48, 72, and 96 h cells were 
harvested and genomic DNA was isolated by chloroform/phenol extraction. 2 µg DNA were 
analysed on a 1.8% agarose gel. Gels are representatives of two independent experiments. 

 

 

 

3.1.2 ROS-generation after 2-ME administration 
 

The postulated effect of 2-ME inhibiting superoxide dismutase (SOD) was verified 

with the cell free pyrogallol-assay. Different concentrations of 2-ME (0.01, 0.1 and 

1 mM) were preincubated with recombinant CuZn-SOD for 5 min. Then the SOD 

activity of these mixtures was determined, measuring the rate of pyrogallol 

autooxidation compared to SOD without 2-ME preincubation. Non of the investigated 

2-ME concentrations had an inhibitory effect on SOD activity. In contrast, CuZn-SOD 

inhibitor diethyldithiocarbamate (DDC), which was used as positive control, 

decreased SOD activity in a concentration-dependent manner. 
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Fig. 3.1.2.1: 2-ME did not inhibit SOD activity. 2-ME or SOD-inhibitor DDC (positive 
control) were preincubated with SOD (25 ng/ml) in the indicated concentrations for 5 min. 
SOD activity was then determined by measuring the autooxidation rate of pyrogallol at 
420 nm. Bars indicate the means ? SD of three independent experiments. 

 

Notwithstanding the lack of a SOD inhibitory action of 2-ME, the induction of ROS by 

2-ME was analysed by different methods. Superoxide anion formation in DS-sarcoma 

cells incubated with 1 or 5 µM 2-ME for 24 h were determined by dihydroethidium 

(DHE) oxidation or by Lucigenin chemiluminescence production. Both analysis 

showed an obvious increase in O2
- formation in cells treated with 5 µM, whereas cells 

treated with 1 µM 2-ME had similar O2
- levels as control cells. Flow cytometric 

analysis of DHE oxidation of 5 µM 2-ME treated cells (24 h) resulted in a 2.10-fold 

increase in O2
- level compared to ethanol treated cells (control). Determining the 

superoxide anion formation by Lucigenin chemiluminescence cells incubated with 

5 µM 2-ME showed a 1.96-fold increase compared to sham treated cells. For 

comparison cells were treated with SOD-inhibitor DDC and doxorubicin, a ROS-

generating drug, which resulted in a similar increase in Lucigenin chemiluminescence 

as observed in 5 µM 2-ME treated cells.  
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Fig. 3.1.2.2: Enhanced superoxide anion production in cells treated with 5 µM 
2-ME for 24 h. Cells were treated with ethanol (control), 1 and 5 µM 2-ME for 24 h. 
Afterwards cells were washed and stained with dihydroethidium. Flow cytometric 
quantification of the oxidised product ethidium was done subsequently. Filled curves describe 
the fluorescence of 2-ME treated cells compared to control cells (empty curve). Histograms 
shown are representatives of three independent experiments. 
 
 

 

treatment Lucigenin chemiluminescence  

(Tiron inhibited arbitrary units) 

 

control (ethanol)  1  

1 µM 2-ME 1.00  ?  0.44  

5 µM 2-ME 1.96  ?  0.59  

25 µM DDC 1.69  ?  0.19  

5 nM DOX 1.86  ?  0.40  

 

Tab. 3.1.2.1: Increase in superoxide anion formation after treatment with 5 µM 
2-ME measured by Lucigenin chemiluminescence. Cells were treated with the 
indicated substances for 24 h. Afterwards cells were counted and transferred to physiological 
buffer. Chemiluminescence was determined after administration of Lucigenin or Lucigenin + 
Tiron. DOX and DDC were used as positive controls. Values are means ? SD of three 

independent experiments. 
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Another method detecting reactive oxygen species is based on the oxidation of 

H2-DCF to the fluorescent product DCF. Using this method a concentration 

dependent increase in ROS-formation was observed in cells exposed to 1 and 5 µM 

2-ME for 24 h. Compared to data obtained from DHE- or Lucigenin-assays, this result 

showed a clear concentration-dependent enhancement in ROS-generation, whereas 

the increase was more modest. 

 

treatment  DCF fluorescence (arbitrary units) 

control  1 

1 µM 2-ME  1.21  ?  0.07 

5 µM 2-ME  1.29  ?  0.08 

5 nM DOX  1.45  ?  0.17 

 

Tab. 3.1.2.2: Concentration dependent increase in ROS production after 2-ME  
treatment. DS-sarcoma cells were treated with ethanol (control) and the indicated 2-ME 
concentrations. After 24 h cells were washed and stained with H2-DCF. Cells were then 
washed and analysed within 1 h by flow cytometry. DOX was used as a positive control. 
Values are means ? SD of three independent experiments. 

 

 

Lipid peroxidation is a result of enhanced ROS-formation. To determine this indirect 

marker of oxidative stress, cells were treated with 1 µM and 5 µM 2-ME for 48 h. 

Control cells were supplemented with 0.1 % (v/v) ethanol. Afterwards, lipid 

peroxidation was measured fluorometrically by formation of thiobarbituric reactive 

substances (TBARS). Cells treated with 1 µM 2-ME showed a 1.5-fold increase in lipid 

peroxidation compared to control cells. TBARS in cells, incubated with 5 µM 2-ME, 

increased 2.2-fold. 
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Fig. 3.1.2.3: Enhanced lipid peroxidation after 2-ME treatment. Cells were treated 
with ethanol (control) or the indicated 2-ME concentrations for 48 h. Lipid peroxidation end 
products were determined as thiobarbituric acid reactive substances (TBARS) as described in 
material and methods. Bars indicate the mean ? SD of at least three independent 

experiments. 
 

 

Combination of 2-ME with a further ROS-generating treatment 
 

For further increase of oxidative cell damage 2-ME treatment was combined with the 

ROS-generating system hpoxanthine/xanthine oxidase. This system is widely used to 

generate ROS, especially superoxide anions and hydrogen peroxides, in in vitro 

models [88]. Therefore, cells were grown in medium containing hypoxanthine 

(1 mM). ROS-production was induced by addition of xanthine oxidase (1 mU/ml). DS 

sarcoma cells received four different treatments for 48 h, proliferation activity was 

then determined by colony forming efficiency (CFE): control cells proliferated very 

well which resulted in a CFE of 100%, cells treated with hypoxanthine/xanthine 

oxidase showed a CFE of 89%, 2-ME treated cells had a CFE of 54% and the 

combination of both treatment resulted in a CFE of 34%. The calculated additive 

effect of the combined treatment would be about 48%. Thus combination of 2-ME 

and hypoxanthine/xanthine oxidase showed a synergistic effect on cell growth 

inhibition. 
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treatment CFE  in %  

control 100  ?   6.1  

oxidative stress 89  ?  10.8  

0.25 µM 2-ME 54  ?  12.8  

0.25 µM 2-ME + oxidative stress 34  ?  10.7  

 

Tab. 3.1.2.3: Effective inhibition of cell proliferation by combining 2-ME 
administration and induction of oxidative stress. Cells were treated with 0.25 µM 
2-ME, oxidative stress or a combination of both. Oxidative stress was generated by 
hypoxanthine (1 mM) + xanthine oxidase (1 mU/ml). Control cells were incubated with 0.1% 
(v/v) ethanol. After 48 h cells were washed and transferred to drug free medium and seeded 
at low cell concentrations. Colony forming efficiency (CFE) was determined after a period of 
5 days. Values are means ? SD of three independent experiments.  

 

 

In addition cellular ROS-formation after treatment with 2-ME, hypoxanthine/xanthine 

oxidase or the combination of both was determined by flow cytometry (oxidation of 

dihydroethidium). No increase in intracellular superoxide anion levels were observed 

in cells treated with hypoxanthine/xanthine. In contrast, cells receiving both 

treatments had higher O2
- levels compared to cells treated with 2-ME alone  

(Tab. 3.1.2.4). 
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treatment O2
--formation 

(arbitrary fluorescence units) 

 

control 1  

1 µM 2-ME 1.65  ?  0.35  

5 µM 2-ME 2.58  ?  0.00  

 ox. stress 1.01  ?  0.02  

1 µM 2-ME + ox. stress 1.73  ?  0.12  

5 µM 2-ME + ox. stress 2.89  ?  0.18  

 

Tab. 3.1.2.4: Enhanced superoxide anion production by combining 2-ME and 
oxidative stress treatment. Cells were treated with 1% (v/v) ethanol (control), 1 µM or 5 
µM 2-ME for 48 h. Cells were then treated with oxidative stress (1 mM hypoxanthine/ 10 mU 
xanthine oxidase/ml) for 45 min. Afterwards the superoxide anion formation was determined 
in the cells by flow cytometry (DHE staining). Data represent means ? SD of three 
independent experiments  

 

 

3.1.3 Effect of antioxidants on 2-ME induced cell death 
 

For later clinical application it is very useful to know if antioxidants can reduce the 

response to 2-ME chemotherapy. The effect of six different antioxidants on 2-ME 

induced proliferation inhibition was determined by CFE. The fatsoluble vitamin 

? -tocopherol (vitamin E) and the watersoluble vitamin L-ascorbic acid (vitamin C) 

were used in concentrations which are common in the plasma of healthy persons 

[89]. Butylated hydroxy toluene (BHT), a synthetic fatsoluble ROS-quencher and 

N-acetyl-L-cysteine, a thiol based antioxidant was also tested. Further the effect of 

the hydroxyl radical scavenger mannitol [90] and the drug ambroxol, which 

detoxifies superoxide anions were investigated [91]. Therefore, cells were 

preincubated with the respective antioxidant for 4 h, 2-ME at a concentration of 

0.35 µM was then added. This concentration has been chosen because higher 2-ME 
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doses killed nearly all cells. After 48 h the cells were seeded in 96-well-plates to 

determine colony formation.  

Antioxidants tested did not reduce 2-ME induced proliferation inhibition. Only a 

marginal increase in CFE of antioxidant treated cells could be observed. 

 

treatment CFE  ?   SD (%) 

control 100 

0.35 µM 2-ME 5.4  ?  3.95 

25 µM ? -tocopherol + 0.35 µM 2-ME 11.3  ?  5.20 

10 µM ascorbic acid  + 0.35 µM 2-ME 11.3  ?  6.45 

25 µM BHT + 0.35 µM 2-ME 13.0  ?  10.20 

5 mM N-acety-L-cysteine + 0.35 µM 2-ME 6.6  ?  3.15 

3 mM mannitol + 0.35 µM 2-ME 10.0  ?  5.39 

0.1 mM ambroxol + 0.35 µM 2-ME 7.3  ?  3.23 

 

Tab. 3.1.3.1: Influence of antioxidants on 2-ME induced growth inhibition. 
DS-sarcoma cells were preincubated with different antioxidants for 4 h. Subsequently 
0.35 µM 2-ME was added for another 48 h. Cells were then washed, transferred to medium 
without antioxidants and seeded at low cell concentrations. Colony forming efficiency (CFE) 
was determined after a period of 5 days. Values are means ? SD of three independent 

experiments. 
 

 

Beside the influence of antioxidants on proliferation inhibition, the effect of these 

antioxidants on 2-ME induced caspase-3-like activation was investigated as well. Cells 

were incubated with the antioxidants described above, then 1 µM 2-ME was added to 

the medium for 48 h. Determination of caspase activity showed, that preincubation 

with antioxidants did not significantly reduce 2-ME induced caspase-3-like activation 

(Data not shown).  
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3.1.4 Role of caspases in 2-ME induced apoptosis 
 

To elucidate the role of caspases in 2-ME induced apoptosis, DS-sarcoma cell were 

incubated with the pan caspase inhibitor Z-VAD-FMK (40 µM) for 1 h prior to 2-ME 

addition. Due to an aspartate residue mimicking cleavage site and a fluoromethyl-

ketone (FMK) group forming a covalent inhibitor/enzyme complex, the inhibitor 

instantly and irreversibly binds to the catalytic site of caspases [92]. In order to 

prove the effectiveness of this inhibitor, caspase-3-like activity was measured in 2-ME 

treated cells with or without pan caspase inhibitor. Results presented in Fig. 3.1.4.1 

demonstrate that pan caspase inhibitor could completely block caspase-3-like 

activation by 1 or 5 µM 2-ME.  

 

 
Fig. 3.1.4.1: Complete inhibition of 2-ME induced caspase-3-like activation by pan 
caspase inhibitor Z-VAD-FMK. Cells were treated with 2-ME alone or the combination of 
pan caspase inhibitor Z-VAD-FMK and 2-ME. Caspase inhibitor was given 1 h prior to 2-ME 
administration. After 48 h cells were harvested, lysed and caspase-3-like activity was 
determined using the fluorogenic substrate Ac-DEVD-AMC. Cells receiving no caspase 
inhibitor were treated with DMSO (0.4%), control cells got ethanol (0.1%) additionally. Data 
are means ? SD of three independent experiments. 

 

Cell permeable caspase-8 inhibitor was utilised for a better understanding of 

caspase-3-like activation by 2-ME. Both caspase-8 activation and mitochondrial 

changes occurred after 2-ME treatment. On this account caspase-8 inhibitor 
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Z-IETD-FMK was used to estimate the role of caspase-8 in activation of the effector 

caspases-3, -6 and -7. Therefore, cells were incubated with 15 µM Z-IETD-FMK one 

hour before 2-ME was added. After 48 h caspase-3-like activity was determined. In 

1 µM 2-ME treated cells 83% of 2-ME induced caspase-3-like activation could be 

inhibited by preincubation with caspase-8 inhibitor. Cells treated with 5 µM 2-ME 

showed lower caspase-3-like activation, which could only be halved by caspase-8 

inhibitor (data not shown). 

Pointing to the high efficiency of used pan caspase inhibitor, cleavage of DNA re-

pairing enzyme PARP was investigated. As described in chapter 3.1.1 effector 

caspases cleave PARP in order to inactivate it. 2-ME treatment resulted in partial 

PARP cleavage shown in Fig. 3.1.4.2. Cells which were preincubated with the pan 

caspase inhibitor Z-VAD-FMK showed minimal amounts of cleaved PARP after 72 h. 

These results evidence the nearly complete inhibition of caspases and caspase-

dependent response reactions by the inhibitor Z-VAD-FMK. 

  

 
Fig. 3.1.4.2: Pan caspase inhibitor Z-VAD-FMK blocked 2-ME induced PAPR 
cleavage. Cells were preincubated with 40 µM pan caspase inhibitor Z-VAD-FMK or DMSO. 
After 1 h 2-ME was added at the indicated concentrations for further 72 h. Control cells were 
treated with DMSO (0.4%) and ethanol (0.1%). Cells were harvested and analysed for PARP 
cleavage by Western blotting. Protein load was verified by actin expression. Blots shown are 
representative.  
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Surprisingly, no effect on proliferation and apoptosis was observed in cells treated 

with 2-ME and pan caspase inhibitor in comparison to cells receiving 2-ME treatment 

alone. Fig. 3.1.4.3 shows electrophoretical analysis of genomic DNA of cells treated 

with 1 or 5 µM 2-ME with or without Z-VAD-FMK preincubation. DNA laddering could 

not be blocked by pan caspase inhibitor administration, only a slight reduction in 

DNA fragmentation was observed. Furthermore, cells treated with Z-VAD-FMK and 

2-ME had a larger cell diameter compared to cell receiving 2-ME alone (data not 

shown). 

Fig. 3.1.4.3: Pan caspase inhibitor Z-VAD-FMK did not block 2-ME induced DNA 

laddering. Cells were pre incubated with 40 µM pan caspase inhibitor Z-VAD-FMK. After 1 h 

2-ME was administered at the indicated concentrations for additional 72 h. Cells were then 

harvested and genomic DNA was isolated. 2 µg DNA were loaded to a 1.8% agarose gel and 

separated by electrophoresis.   

 

Quantification of apoptotic cells in 2-ME treated cells with or without Z-VAD-FMK 

preincubation was assessed by staining cells with 7-aminoactinomycin D. Late 

apoptotic or necrotic cells show a bright 7-AAD fluorescence, whereas apoptotic cells, 

which retain membrane integrity, show a 7-AAD fluorescence between dead and 

alive cells. 72 h after addition of 1 µM 2-ME only 12% of DS-sarcoma cells showed 
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an apoptotic staining pattern. Inhibition of caspases reduced the proportion of 

apoptotic cells to 9%. The fraction of dead cells could also be decreased to a low 

extent by pan caspase inhibition. Scatter diagrams point to apoptotic involvement in 

cell death, which is not caspase-dependent. Due to the fact that the fraction of 

apoptotic cells is not increased 24 h after 2-ME treatment (data not shown), 

apoptosis is probably not the only way for 2-ME induced cell death.  

 

 

Fig. 3.1.4.4: Scatter diagrams of 7-AAD stained cells. Cells were incubated with 40 µM 
pan caspase inhibitor Z-VAD-FMK or 0.4% DMSO. After 1 h 1 µM 2-ME was added for 72 h. 
Thereafter, cells were stained with 7-AAD, washed and analysed by flow cytometry. Control 
cells were treated with DMSO (0.4%) and ethanol (0.1%). Scatter diagrams presented are 
representatives of three independent experiments. 
 

 

3.1.5 In vivo experiments 
 

In order to verify the in vitro data, anti-tumour efficacy of 2-ME and the combination 

of 2-ME and the ROS-generating treatment, hyperthermia/hyperoxia/xanthine 

oxidase, was investigated in vivo (by Dr. med. habil. O. Thews, Institute of 

Physiology and Pathophysiology, University of Mainz, Germany). Solid DS-sarcomas 

were induced in the hind feet of Sprague-Dawley rats. The tumours showed an 

exponential growth behaviour up to a volume of 3.5 ml with a volume doubling time 

of approx. 1.9 days. 2-ME treatment (without ROS-generating hyperthermia) slightly 
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slowed down the tumour growth rate to a volume doubling time of 2.5 days. 

However, the mean tumour volume was not significantly different between the 

control group and those treated solely with 2-ME. No tumours were cured in any of 

the animals treated with 2-ME alone. All tumours reached the set volume limit of 

3.5 ml within 9 days (8 days in control animals). Treating animals with the 

combination of 44°C-hyperthermia (HT), xanthine oxidase (XO) and respiratory 

hyperoxia (RH) led to a growth delay of approx. 5 days with a subsequent regrowth 

of the tumour. The regrowth rate after this period was slower compared to controls 

with a volume doubling time of 5.9 days. In three cases, tumours were cured 

showing no regrowth over a period of 30 days. When the ROS-generating HT 

treatment was combined with a single injection of 2-ME the growth delay lasted 

approx. 7 days, with 6 tumours being cured and a probability of local tumour control 

of 51%. The difference in inhibition of tumour growth was significant between both 

treatment modalities (log-rank test p=0.0458). These results demonstrate that 2-ME 

improves the antitumoural efficacy of ROS-generating hyperthermia (HT+XO+RH). 

 

 
Fig. 3.1.5.1: Combination of 2-ME treatment and ROS-generating therapy reduced 
tumour growth in vivo. Kaplan-Meier analysis showing the probability of tumour volume 
being less than 3.5 ml as a function of time after sham-treatment (control) or admin istration 
of 2-ME (17.5 mg/kg body weight) or following ROS-generating treatment (HT/RH/XO) alone 
or combined with 2-ME. At least 11 tumours per treatment group were investigated. 
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3.2 ALA-PDT 

 

In this study anti-tumour efficacy of ALA-PDT and hyperthermia was investigated in 

vivo in the rat DS-sarcoma model. For this purpose ROS-formation, apoptosis 

induction and expression of prognostic relevant proteins were determined in tumour 

tissue. 

 

3.2.1 Induction of apoptosis 
 

Induction of apoptosis was visualised by immunohistochemical detection of DNA 

single and double strand breaks using the TUNEL-assay (Fig. 3.2.1.1). A clear 

increase of apoptotic cells was found in HT and ALA-PDT treated tumours compared 

with control tumours. Apoptotic cells were rarely observed in control tumours, as well 

as in the two additional control groups, which received either ALA (without 

irradiation) or irradiation alone. The latter two groups were not pictured in Fig. 

3.2.1.1. In contrast, an extensive increase in the fraction of apoptotic cells in tumour 

tissue was observed after treatment with ALA-PDT or ALA-PDT+HT. These 

treatments resulted in a expression of distinct areas containing several hundred 

apoptotic cells. In comparison to the 0 h time values, the amount of apoptotic cells 

increased once more 18 h after treatment within the PDT treated groups. HT alone 

also resulted in an increased fraction of apoptotic cells but to a much lesser extent. 

In both time points the greatest amount of apoptotic cells was determined in ALA-

PDT+HT treated tumours. 

In addition, so called apoptotic bodies could be observed immediately after ALA-PDT 

(Fig. 3.2.1.2) or ALA-PDT+HT treatment (not pictured).  
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Fig. 3.2.1.1: Induction of apoptosis visualised by TUNEL-assay. DS-sarcomas 
exposed to sham-treatment, HT, ALA-PDT, ALA-PDT+HT, ALA application without irradiation 
and irradiation alone were analysed for DNA strand breaks using the TUNEL-assay (green 
fluorescence) as described in materials and methods. Nucleoli were stained with DAPI (blue 
fluorescence). Pictures shown are representative. 

 

 
 

Fig. 3.2.1.2: Formation of apoptotic bodies after ALA-PDT treatment. Tumour tissue 
immediately excised after ALA-PDT treatment was stained with DAPI (blue fluorescence) 
visualising nucleoli and analysed for DNA strand breaks by TUNEL-assay (green 
fluorescence). TUNEL positive cells showed clear staining pattern of apoptotic bodies. Picture 
on the right shows the overlay of DAPI and TUNEL-staining. 
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Further clear signs of apoptosis are activation of caspases and DNA fragmentation. 

They occur at different time points during the programmed cell death and are so 

called “hallmarks” of apoptosis. As shown in Fig. 3.2.1.3 the occurrence of DNA 

fragmentation matched well with the extent of apoptosis observed in immuno-

histochemistry. Because DNA fragmentation is one of the late events taking place in 

apoptosis, immediately after treatment (0 h) no DNA fragmentation could be 

observed, but 18 h after treatment, clear signs of DNA fragmentation were detected. 

DNA fragmentation was completely absent in control tumour tissues and increased 

upon treatment, whereby the effect was greatest in ALA-PDT+HT treated tumours.  
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Fig. 3.2.1.3: DNA laddering after hyperthermic and photodynamic treatment. 
Tumours were treated with HT (43°C), ALA-PDT, ALA-PDT+HT, ALA application without 
irradiation and irradiation alone. Control tumours were sham treated. The tumours were 
resected directly or 18 h after treatment. Genomic DNA was isolated by chloroform/phenol 
extraction. 2 µg DNA was loaded on a 1.8% agarose gel and electrophoresis was performed. 
DNA preparations of at least two different tumours per treatment group were analysed. Gels 
presented are representatives. 
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Interestingly, not only DNA but also RNA fragmentation could be observed upon 
treatment. In contrast to DNA fragmentation, the fragmentation of RNA occurred 
very early, already immediately after treatment (0 h), whereby RNA fragmentation 
seemed to occur only in the PDT treated groups. 
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Fig. 3.2.1.4: Specific RNA digestion in tumours treated with ALA-PDT and 
ALA-PDT+HT. Tumours were treated as described in Fig. 3.2.1.3. Total RNA was isolated 
out of cryostat sections with RNAwiz ? . 1 µM RNA was analysed on a TBE-gel. Gels shown are 

representative. 
 

To identify whether activated caspases are involved in HT and ALA-PDT induced 

apoptosis, caspase-3 and caspase-8 activities in tumour tissues were investigated. A 

clear activation of caspase-3-like and caspase-8 activity (Fig. 3.2.1.5) could be 

demonstrated immediately after treatment. 18 h later caspase activities were 

normalised and an increase was no longer detectable (data not shown). Clear 

increases of caspase-3-like and caspase-8 activity were found after HT, ALA-PDT, 

and ALA-PDT+HT, whereby the effect was greatest with HT. Surprisingly, light alone 

also increased the activity of caspase-3 and caspase-8 marginally.  
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Fig. 3.2.1.5: Enhanced caspase-3-like and caspase-8 activity in tumours exposed 
to hyperthermia and hyperthermia + ALA-PDT. Tumours resected immediately after 
treatment (sham-treatment, HT, ALA-PDT, ALA-PDT+HT, ALA application without irradiation 
and irradiation alone) were lysed and caspase-3-like and caspase-8 activity were determined 
measuring the cleavage activity of the fluorogenic substrates Ac-DEVD-AMC and Ac-IETD-
AMC. Data are means ? SEM of at least five tumour samples per treatment group. 

 

 

3.2.2 Investigations of tumour defence mechanisms (“rescue 

response”) 
 

Expression of heat shock proteins affects response to anti-cancer treatments. The 

ability of heat shock proteins protecting biological structures against denaturation 

can decrease the efficiency of anti-cancer therapies. Heat shock protein 70 (HSP70) 

inhibits apoptosis by antagonising AIF [93], activation of SAPK/JNK [94] and 

inhibition of Apaf-1 apoptosom formation [95]. In contrast, it heme oxygenase-1 

(HO-1 or HSP32) detoxifies ROS, because the reaction products of HO-1 activity, 

biliverdin, and its subsequent metabolite bilirubin, have antioxidant properties [96]. 

The expression of HSP70 and HO-1 were investigated by Western blot analysis. 

Immediately after treatment, HSP70 expression did not differ between the treatment 

groups. At time point two (18 h) hyperthermia treated tumours showed a 2.1-fold 

increase in HSP70 protein level. However, the combination of HT with ALA-PDT 

abrogated the HT induced increase of HSP70. PDT alone resulted in a moderate 

downregulation of HSP70 protein expression.  
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In contrast to literature, HO-1 expression was not up-regulated by hyperthermia or 

PDT in this study [97,98]. At both time points tumours treated with HT, ALA-PDT or 

the combined therapy showed a decrease in HO-1 protein content. The highest 

down-regulation in HO-1 expression was assessed in tumours receiving the 

combination of hyperthermia and ALA-PDT. In this group HO-1 protein levels were 

lowered to 24% compared to sham treated tumours (100%). Normally, HO-1 is 

induced by a host of oxidative stress or heat stimuli, and the activation of HO-1 gene 

expression is considered to be an adaptive cellular survival response to exposure to 

environmental stress [99]. 
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Fig. 3.2.2.1: Modulation of HSP70 expression in hyperthermia and ALA-PDT 
treated tumours. Sarcomas were exposed to sham-treatment, HT, ALA-PDT, ALA-PDT+HT, 
ALA application without irradiation and irradiation alone. Immediately or 18 h after treatment 
tumours were excised. Tissue lysates were prepared and HSP70 protein expression was 
determined by Western blotting. The graphs display densitometrical analysis of Western 
blots. HSP70 expression of sham treated tumours (control) were set at 100%. Results 
presented are means ? SEM of at least 4 tumours per treatment group. In addition, a 
representative Western blot at each time point is shown.  
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Fig. 3.2.2.2: Decreased HO-1 expression in hyperthermia and ALA-PDT treated 
tumours. Tumours were treated as described above (see Fig. 3.2.2.1). After tumour 
resection (immediately or 18 h after treatment) tissue lysates were prepared. HO-1 
expression was subsequently analysed by Western blotting using a polyclonal HO-1 antibody. 
Data are means ? SEM of 4 tumours per treatment group. Blots shown are representatives.  

 

 

Normally, matrix metalloproteinases (MMPs) are not counted among “rescue 

response” proteins, but they play an important role in tumour growth, tumour 

angiogenesis and metastasis by degradation of extracellular matrix [67]. Increased 

expression of MMPs has been associated with tumour progression [100]. On the base 

of these facts, activity of MMP-2 and MMP-9, two gelatinases was assessed in tumour 

tissue. Therefore, tumour lysates were analysed by zymography. Immediately after 

anti-cancer treatment no changes in MMP-9 and MMP-2 activity were observed 

between the various treatment groups. In contrast, 18 h after therapy tumours 

which were treated with ALA-PDT or the combination of ALA-PDT and hyperthermia 

showed no MMP-9 activity and only slight MMP-2 activity. Comparing these two 

groups, no benefit of the combined therapy was observed, because PDT alone 

reached nearly maximal MMP inhibition.  

 



54  Results 

0 h

MMP-9

MMP-2

18 h

co
n

tr
ol

co
nt

ro
l

H
T

H
T

A
LA

-P
D

T
 

 

 

A
L

A
-P

D
T

 
 

 

A
L

A
al

o
ne

A
LA

al
on

e

A
L

A
-P

D
T

+
H

T
 

A
L

A
-P

D
T

+
H

T
 

lig
h

t
al

o
ne

lig
ht

al
on

e

 
 

Fig. 3.2.2.3: Photodynamic therapy inhibited MMP-2 and MMP-9 activity 18 h 
after treatment. Tumours received the indicated treatments. Immediately or 18 h after 
treatment tumours were excised. Tumour lysates were prepared and MMP activity was 
determined by SDS-PAGE, gels containing gelatin. Zymographs shown are representatives of 
three independent experiments.  
 

 

3.2.3 Detection of oxidative stress 
 

Glutathione is the major water-soluble antioxidant in the cytoplasm, mitochondria 

and nuclei. It can decrease the efficiency of anti-cancer treatments, due to its 

antioxidant properties: high glutathione levels in tumours are associated with 

multidrug resistance [101]. Furthermore, GSH can form chemical interactions 

between cisplatin or carboplatin, which block their cytotoxic effect [102]. Based on 

this fact, the reduced form of glutathione was assessed in treated tumours by HPLC. 

The oxidised form can be generated by the oxidation of two molecules GSH to GSSG, 

or one molecule GSH and a further thiol containing molecule to GSSX. This reaction 

detoxifies hydrogen peroxide to water and oxygen (or other peroxides to the 

corresponding alcohol and oxygen) catalysed by glutathione peroxidase. 

Tumours treated with hyperthermia, ALA-PDT and the combination of both resulted 

in decreased levels of glutathione. Immediately after treatment, tumours exposed to 

ALA-PDT and hyperthermia showed the highest decrease in GSH content (0.009 

µmol GSH/mg protein in contrast to 0.027 µmol GSH/mg protein in control tumours). 

Single treatment of hyperthermia or ALA-PDT decreased GSH levels as well. 18 h 
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after treatment, ALA-PDT and the combined therapy of ALA-PDT and HT showed a 

further decrease in GSH levels, whereas ALA-PDT alone lowered GSH level strongest.  
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Fig. 3.2.3.2: Levels of reduced glutathione in tumour tissue. Sarcomas were exposed 
to the indicated treatments. Either immediately or 18 h after treatment tumours were 
excised and reduced glutathione (GSH) was determined by HPLC after derivatisation with 
ammonium-7-fluorobenzo-2-oxa-1,3-diazole-4-sulfonate. Data are means ? SD of at least 4 

tumours per treatment group.  
 

A subclass of ROS are reactive nitrogen species. This term describes NO radicals and 

products, which are formed by the reaction of NO with superoxide anions, e.g. 

peroxynitrite and NO2 radicals. With the discovery that peroxynitrite can modify a 

number of biological molecules, including proteins, lipids, and nucleic acids, 

considerable attention has been given to the role of peroxynitrite in oxidative cellular 

damage. Among other changes, peroxynitrite has been shown to promote the 

nitration of tyrosine [103,104]. Besides the oxidation of methionine [105,106] and 

cysteine [107,108] residues of proteins, tyrosine nitration is a well detectable marker. 

Therefore, immunohistological detection of “protein nitrosylation” was performed to 

localise the sites of reactive nitrogen-related damage after the various treatments. 

Compared with the control groups, an increase was observed in the amount of 

“protein nitrosylation” in tumours treated with HT. ALA-PDT and the combination of 

ALA-PDT and HT  resulted in a further increase in nitrosylated proteins within the 

tumour sections, whereby the effect was greatest with ALA-PDT+HT. The amount of 

nitrosylated proteins formed upon treatment did not substantially increase with time. 
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No major differences were observed between the first (0 h) and the second time 

point (18 h) by which nitrosylated proteins were measured. To demonstrate that the 

formation of nitrosylated proteins may be correlated to endothelial cells (blood 

vessels), nitrosylated proteins and endothelial cells were stained simultaneously. As 

shown in Fig. 3.2.3.4, protein nitration corresponded to sites where small vessels 

were present. This may also explain the focal expression of nitrosylated proteins 

which was observed upon treatment.  

 

 

 

 

Fig. 3.2.3.3: Enhanced protein nitrosylation in tumours exposed to hyperthermia 
and PDT. Tissue sections of tumours exposed to sham treatment, hyperthermia, ALA-PDT, 
ALA-PDT+HT, ALA application without irradiation and irradiation alone were analysed for 
nitrosylated proteins by immunohistochemistry. Simultaneously, sections were stained with 
DAPI to visualise nucleoli. Pictures shown are representative. 
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Fig. 3.2.3.4: Localisation of nitrosylated proteins in vessels. Tissue section of a 
ALA-PDT+HT treated tumour was stained for nitrosylated proteins (green fluorescence), for 
von Willebrand factor, a marker protein for endothelial cells (red fluorescence) and for 
nucleoli with DAPI (blue fluorescence). Pictures in the second row demonstrate the 
specificity of antibody binding. Therefore, primary antibody was blocked with 10 mM nitro-
tyrosine for 1 h at RT. Pictures on the right show the overlay of all three stainings. 
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4 Discussion 

 

4.1 2-Methoxyestradiol 

 

Based on the previous reported finding, that 2-ME inhibits superoxide dismutase 

activity, 2-ME was chosen to be a perfect candidate for adjuvant anti-cancer therapy 

with other ROS-generating treatments. At that time mechanisms of 2-ME induced 

apoptosis and the role of reactive oxygen species in 2-ME cytotoxicity were not 

elucidated completely. Therefore, apoptotic events like caspase activation, expression 

of Bcl-2 proteins, mitochondrial and nuclear changes were assessed in the rodent 

carcinosarcoma cell line DS-sarcoma. These investigations showed, that 2-ME 

induced apoptosis via mitochondrial injury. Surprisingly, caspases were not essential 

for the apoptotic process, although they were activated by 2-ME. ROS-formation was 

increased by 2-ME in a dose-dependent manner. However, supplementation of 

DS-sarcoma cells with antioxidants did not inhibit 2-ME induced cell death.  

The main objective of this study therefore was to determine the anti-cancer effect of 

2-ME combined with a further ROS-generating treatment. Both in vivo and in vitro 

this treatment regime showed an synergistic anti-cancer effect compared to single 

treatments, indicating the high therapeutical potential of 2-ME. 

 

Cytotoxicity 
 

This is the first study showing that 2-ME is effective in treating carcinosarcoma cells 

in vitro. Compared to other cell lines, DS-sarcoma cells showed a relatively high 

sensitivity to 2-ME, starting at 0.25 µM. Cell growth of leukaemia and most of 

pancreatic cancer cell lines were inhibited at a concentration range of 1-5 µM [15,20] 

whereas hepatoma cells needed higher concentration (?10 µM) for growth arrest 

[27]. Proliferation of DS-sarcoma cells stopped short after by addition of ?  3 µM 

2-ME, lower 2-ME concentrations caused a decrease in proliferation, growth arrest 

was observed between 48 and 72 h after 2-ME addition. Induction of apoptosis was 

independent of growth arrest. These results agree with the data of the antimicro-
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tubule agents, docetaxel and paclitaxel, which also induce apoptosis without G2/M 

arrest at low concentrations [27]. The enhanced production of ROS in cells treated 

with higher 2-ME concentrations could be involved in inhibition of proliferation which 

occurred almost immediately after 2-ME addition. Oxidative stress is able to inhibit 

cell growth by triggering a G2 checkpoint response that results in a delay in the 

activation of cyclin B/Cdc2 kinase activity at the G2/M border. The cyclin B/Cdc2 

kinase activity , as well as entry into mitosis can be suppressed by the ROS-

generating agent, tert-butyl hydroperoxide [109]. However, this hypothesis could not 

be corroborated by the present findings: Preincubation of DS-sarcoma cells with six 

different antioxidants did not alter the 2-ME induced changes in cell proliferation. 

Comparable results were obtained by Lin, who investigated the effect of magnolol on 

2-ME induced cell death of hepatoma cells [27]. 
 

 

Induction of apoptosis 
 

Investigation of caspase activity, Bax location and nuclear changes in DS-sarcoma 

cells showed that apoptosis is involved in 2-ME induced cell death. Although 

caspases were activated by 2-ME, inhibitor studies showed, that 2-ME induced cell 

death is caspase-independent in DS-sarcoma cells. Caspase-independent apoptosis is 

a well known phenomenon in the literature [110-112]. Many publications describe, 

that pan caspase inhibitors can mostly block PARP cleavage and DNA fragmentation, 

but they are not always able to save cells from dying. Reason for these findings may 

be the fact that apart from caspases Bcl-2 family members play a prominent role in 

apoptosis by changing the integrity of the mitochondrial membrane [113]. Probably, 

2-ME induced caspase activation is not the initial apoptotic event, it may be rather 

the consequence of mitochondrial changes, which are induced by translocation or 

cleavage of proapoptotic Bcl-2 family members. One of these members is Bax, a 

cytosolic protein, that can translocate to the mitochondrial membrane in the case of 

apoptosis induction. There, Bax is able to puncture the outer mitochondrial 

membrane leading to the release of AIF, procaspases, cytochrome c, endonuclease G 

and other factors [16,114]. The present study shows that 2-ME administration clearly 
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induces AIF release out of mitochondria. AIF, a mitochondrial intermembrane space 

protein, migrates to the nucleus and participates in the induction of large scale DNA 

fragmentation (fragments of approximately 50 kbp) and chromatin condensation in a 

caspase-independent way [79]. However, AIF is not responsible for the observed low 

scale DNA fragmentation (~ 200 bp) in DS-sarcoma cells treated with the caspase-

inhibitor Z-VAD-FMK and 2-ME. Normally, DNA fragmentation in nucleosome-size is 

caused by the nuclease DFF40/CAD, that is activated by caspase-3 and –7 [85]. The 

observed DNA laddering after inhibition of caspases may be explained by another 

enzyme, that could be released out of mitochondria. Not more than a year ago, Li 

and coworkers reported on the identification of a mitochondrial nuclease, termed 

endonuclease G, which can cause low scale fragmentation. Endonuclease G can be 

released out of mitochondria either by formation of tBid or by action of Bim  

(Fig. 4.1.2) [115]. Cleavage of Bid to tBid could be induced by caspase-8 [116], 

granzyme B [117] or by lysosomal proteases [118]. In addition, another caspase-

independent mechanism of tBid formation concerning the internalisation of TNF 

receptor-1 complex is also being discussed at the moment (unpublished data of Prof.  

S. Schütze, Insitute of immunology, University of Kiel, Germany). The second 

molecule, modulating the release of endonuclease G is Bim whose apoptotic activity 

is regulated through its dissociation from microtubular dynein motor complex during 

apoptosis whereby no caspases are involved [16]. Endonuclease G represents an 

alternative pathway to DFF40/CAD, which may explain the fact that caspase inhibitor 

Z-VAD-FMK could not abolish 2-ME induced DNA laddering. Data of Bouillet may 

confirm the relevance of Bim and therefore of endonuclease G in the cytotoxicity of 

antimicrotubule agents. He showed that Bim-/- cells treated with the antimicrotubule 

drug taxol survived 10 to 30 times better than taxol treated wild-type cells [119]. 

Since 2-ME is known to be a microtubuli destroying drug as well, it is possible that 

Bim also plays an important role in 2-ME induced apoptosis. 
 

In contrast to AIF, cytochrome c release into cytoplasma could not be observed by 

2-ME treatment. Different localisations of these proteins may contribute to this 

phenomenon: AIF is located in the mitochondrial intermembrane space, whereas 
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cytochrome c is adsorbed to the inner mitochondrial membrane via weak electro-

static interactions [120]. Literature data of Daugas and colleagues showed, that AIF 

release occurred earlier than cytochrome c release [121,122]. The authors supposed, 

that AIF release is probably not dependent on the overall release of intermembrane 

proteins. Moreover, it has been demonstrated that cytochrome c release is not 

essential for the apoptotic process [123].  

A further important questions is: what kind of mitochondrial membrane changes lead 

to the release of AIF ? Mitochondrial permeability transition pore (MPTP) plays a 

central role in releasing proteins out of mitochondria. The structure and composition 

of MPTP include both inner membrane proteins, such as the the adenine nucleotide 

translocase, and outer membrane proteins, such as the voltage dependent anion 

channel (VDAC), which operate in concert and create channels through which 

molecules < 1.5 kDa pass [124]. The three major consequences of MPTP opening 

are an uncoupling of oxidative phosphorylation, the loss of ions and small molecules 

from the mitochondrial matrix and extensive swelling of the mitochondria, which 

could lead to the rupture of the outer membrane [17]. Pro-apoptotic Bcl-2 members, 

like Bax, Bad and Bid, are involved in membrane permeabilisation. Shimizu and 

colleagues reported that Bax and Bak bind to the VDAC of the outer membrane and 

open it [125]. In addition, Bax and Bak probably induce a conformational change in 

VDAC so that proteins > 1.5 kDa can pass through the channel [125]. Another 

possibility is that Bax and Bid form selective channels for cytochrome c and other 

factors from the intermembrane space [126]. In the present study translocation of 

Bax to the mitochondrial membrane was determined within 24 h after 2-ME 

treatment. In addition, a decrease in ? ? m was assessed. In accordance with the 

mentioned literature data, these observations may explain the mechanism of AIF 

release by 2-ME shown in Fig. 4.1.1. 
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Fig. 4.1.1: Postulated mechanism of 2-ME induced AIF release. Normally, Bax is 
located in the cytosol. After addition of the apoptosis inducing drug 2-ME, Bax-homodimers 
translocate to the outer mitochondrial membrane, where they may interact with VDAC. This 
interaction is probably responsible for the observed decrease in ? ? m  by 2-ME and the 

release of AIF. 
 

 

In DS-sarcoma cells, translocation of Bax to mitochondria by 2-ME may be connected 

to the inactivation of the anti-apoptotic protein Bcl-2 which was reported by Attalla et 

al. investigating the effect of 2-ME in leukaemia cells [23]. Inactivation was induced 

by phosphorylation of Bcl-2, whereas total levels of Bcl-2 protein did not change. The 

latter finding could be validated in DS-sarcoma cells, yet phosphorylation of Bcl-2 

was not determined. The timing of Bcl-2 phosphorylation following 2-ME treatment in 

leukaemia cells was similar to the Bax upregulation in the present study. Due to 

these data, we suppose that the pro-apoptotic action of Bax-upregulation is 

enhanced by Bcl-2 inactivation.  
 

Beside the initial role of mitochondrial changes in 2-ME induced cell death, 

upregulation of Fas ligand and TNF?  was observed 24 h after 2-ME treatment. This 

increase in death receptor ligands may amplify the mitochondrial alterations by type 

II reaction (Fig. 4.1.2). Cell response to TNF?  treatment is subdivided into two types. 

Type I cells show strong activation of the DISC and of caspase-8, leading to the 

activation of caspase-3. Type II cells weakly activate DISC and caspase-8, thus they 

must amplify their death signal through the mitochondria [127]. Due to the slight 
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increase in caspase-8 activity after 2-ME exposure, DS-sarcoma cells probably belong 

to the category of type II cells. Beneath the result of enhanced FasL/TNF?  

expression by 2-ME, many questions concerning the role of death receptors remain 

unacknowledged: Does 2-ME also upregulate the expression of Fas and/or TNF-R1? 

Or is the increased expression of TNF?  without effect, as 2-ME may down-regulate 

TNF-R1 which was discussed by Purohit [128]? Additionally, it would be interesting to 

know, whether 2-ME stimulates cells of the immune system to produce FasL/TNF? , 

increasing the anti-tumour effect in a paracrine fashion? Unfortunately at the 

moment there are no answers to these questions because no data about the effect 

of 2-ME on death receptors or their ligands in tumour cells have been published. 

Only Yue and colleagues showed that 2-ME upregulates CD95 (Fas) in endothelial 

cells [129]. Further investigations, for example, the use of inhibitory antibodies 

against Fas and TNF-R1, could clarify the role 2-ME in this pathway. 
 

In addition to the previous presented data of this study, the involvement of p53 in 

2-ME treated DS-sarcoma cells was taken into consideration (Fig. 4.1.2). Several 

publications described the involvement of p53 in 2-ME induced apoptosis [25,130]. 

However, p53 is not generally needed for the cytotoxic effect of 2-ME. Both p53-

dependent and independent mechanisms were reported. Determination of p53 

protein expression in DS-sarcoma cells exposed to 1-5 µM 2-ME resulted in a 

decrease in p53 levels (data not shown) which was not expected, but the finding is in 

accordance with literature data of Kumar et al., who described the same 

phenomenon in human prostate cancer cells [131]. As p53 status of DS-sarcoma 

cells has not yet been investigated it is not clear whether the observed p53 down-

regulation is related to mutations in the p53 gene or not. 
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Fig. 4.1.2: Overview showing regulation of apoptosis (simplified). Apoptotic events 
marked with an asterisk were investigated in this study.  
2-ME generally induces apoptosis by the mitochondrial pathway. Translocation of Bax to 
mitochondria, depolarisation of mitochondrial transmembrane potential (? ? m) and release of 
AIF were observed after 2-ME treatment in DS-sarcoma cells. Although caspase-3-like 
activity was 5-fold increased by 2-ME treatment, pan-caspase inhibitor Z-VAD-FMK could not 
block DNA fragmentation. Upregulation of FasL and TNF?  probably supports the ongoing 
apoptotic process. 
 
 

Considering the results of 7-AAD staining, apoptosis is not the only mechanism 

responsible for 2-ME induced cell death. The small fraction of apoptotic cells in 1 µM 

and in 5 µM 2-ME treated cells indicate an involvement of necrosis in 2-ME 

cytotoxicity. The observed swelling of cells exposed to high 2-ME concentration (?  5 

µM), may support this presumption. Simultaneous induction of apoptosis and 

necrosis by anti-cancer drugs as well as shifting from apoptosis to necrosis at higher 

drug concentrations is a well known phenomenon in anti-cancer therapy [132,133]. 

In the past, cell death was divided into apoptosis and necrosis, though they may 
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represent only two extremes of a continuum of intermediate forms of cell demise. 

There is also a type of cell death, termed aponecrosis, which shares dynamics, 

molecular and morphological features with both apoptosis and necrosis [134]. The 

measured DNA fragmentation and Bax translocation in the present study clearly 

confirm the involvement of apoptosis in 2-ME induced cell death. However, decrease 

in mitochondrial transmembrane potential, which was determined after 2-ME 

treatment, is discussed controversially in the literature; both apoptosis and necrosis 

could be associated with decreased ? ? m [17,135]. In contrast to the observed DNA 

laddering, staining of 2-ME treated cells with 7-AAD did not show a clear staining 

pattern of apoptotic cell death. Based on these facts, we can state that 2-ME induces 

apoptosis in DS-sarcoma cells, in which caspases are not necessary for cell death. 

Supplementary necrosis is probably involved in 2-ME cytotoxicity, especially at higher 

concentration. 

 

ROS-formation 
 

A dose-dependent increase in ROS-formation in 2-ME treated DS-sarcoma cells could 

be assessed by four different methods, although the present study could not 

demonstrate that ROS are initially involved in 2-ME induced apoptosis. Only slight 

ROS-formation was observed in cells treated with 1 µM 2-ME, whereby caspase-3-like 

activation and AIF release were more increased than in cells exposed to 5 µM 2-ME, 

which showed an obvious increase in ROS-formation. In addition, cytotoxic effect of 

2-ME could not be decreased by preincubating the cells with six different 

antioxidants. This finding is in accordance with data of Lin et al., who reported that 

2-ME induced apoptosis in the hepatoma cell line HepG2 was not inhibited by the 

antioxidant magnolol [27]. In contrast, apoptosis in 2-ME treated leukaemia cells 

could be blocked by the antioxidants ambroxol and N-acety-L-cysteine [15]. These 

opposed data may imply a cell-specific action of 2-ME. Assuming that 2-ME 

generates ROS by inhibition of SOD, cells with high levels of SOD could be damaged 

more potently by 2-ME than cells with low SOD-levels. There are several publications, 

which report about elevated SOD levels in leukaemia cells compared to normal 
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lymphocytes [136,137]. Unfortunately, only rare data of SOD levels in sarcoma and 

hepatoma cells exists. It would be helpful to elucidate the role of SOD status in 2-ME 

induced cell death by analysing tumour cell lines, that express different amounts of 

SOD. 

Huang and colleagues were the first and only researchers, who showed, that 2-ME 

inhibits Mg- and CuZn-SOD. They used a cell free system in order to assess the 

effect of 2-ME on purified Mn- and CuZn-SOD activity, resulting in a concentration 

dependent decrease in both SOD activities by 2-ME. To verify this finding, Huang 

exposed cells to [3H] 2-ME for 5 h. Thereafter, cell lysates were prepared and Mg- 

and CuZn-SOD were precipitated with antibodies. Radioactivity of SOD precipitates 

was significantly increased compared to control protein precipitates, confirming the 

result of the cell free assay. Additionally, Huang showed, that overexpression of SOD 

in leukaemia cells decreased the cytotoxic effect of 2-ME. In addition, in cells treated 

with SOD antisense S-oligonucleotides, the 2-ME effect was enhanced [15]. In spite 

of these well-founded results of Huang, data of Kachadourian and the findings of the 

present study could not confirm them. Kachadourian investigated the effect of 2-ME 

on SOD activity by using 3 different in vitro methods (epinephrine oxidation, 

hydroethidine oxidation and pulse radiolysis). None of them showed an inhibitory 

effect of 2-ME on SOD activity. Kachadourian debated, that catecholestrogens 

interfered with the assay used by Huang, indicating a SOD inhibition, which was not 

existent [138]. Our present study could not find a decrease in SOD activity, when 

SOD was preincubated with 2-ME and activity was analysed by the well established 

pyrogallol assay [47].  

Despite these discrepancies, all research groups involved determined an enhanced 

superoxide anion production in cells treated with 2-ME [15,138]. Inhibition of SOD is 

probably not the only explication for O2
--formation. Other reactions, such as redox 

cycling [139] or interference with the respiratory chain [140], have been suggested 

for 2-ME analogues. Both reactions would imply the oxidation of estrogens into 

semiquinone radicals [140], which can result from reaction with cytochrome P450 

[139]. It has been shown that estrogen semiquinone radicals react with oxygen 

yielding O2
- and the corresponding quinones, the latter being, in turn, reduced by 
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cytochrome P450 reductase [139]. But these explanations ignore the results of 

Huang, which showed in cells, that 2-ME binds to SOD and that SOD overexpressing 

cells are less sensitive to 2-ME [15]. However, extensive mechanisms responsible for 

the intracellular binding of 2-ME to SOD may be taken into consideration. It could be 

possible that apart from 2-ME further substances are needed to form an inhibitory 

complex with SOD. Such complex formation could explain the discrepancies between 

findings obtained by SOD activity assays using a cell free system and the results of 

Huang and colleagues who investigated the role of 2-ME on SOD in cells.  

 

Combination of 2-ME with a further ROS-generating treatment 
 

Both in vitro and in vivo 2-ME therapy was combined with a further ROS-generating 

treatment. The O2
- and H2O2 generating system hypoxanthine / xanthine oxidase was 

used as additive treatment in vitro. DS-sarcoma cells treated with 2-ME and 

hypoxanthine/xanthine oxidase (HX/XO) showed a potent decrease in colony 

formation. Compared to single agent treatments, the combination resulted in a 

synergistic anti-tumour effect, underlining the great benefit of 2-ME as adjuvant. 

However, the used in vitro model has some weak points: (1) ROS-generation via 

HX/XO is located outside the cell, only the less polar substance H2O2 can diffuse 

through the cell membrane. (2) Enzymatic production of O2
- by HX/XO is temporary, 

because activity of XO decreases fast in in vitro conditions. Due to these facts, the 

observed in vitro results provide only an indication of the actual effect of the 

combined therapy in vivo. 

For in vivo investigations another ROS-generating treatment was chosen, whose high 

effectiveness was reported by Frank et al [70]. This treatment includes 44°C 

hyperthermia, respiratory hyperoxia and injection of xanthine oxidase. The combi-

nation of this treatment with a single 2-ME application cured 6 out of 17 tumours, 

showing no regrowth over a period of 30 days. In contrast to the 2-ME data obtained 

in vitro, only minor effect of 2-ME (i.p. injection) on tumour growth were found in 

vivo. A reduction in tumour growth rate from 1.9 to 2.5 days (volume doubling time) 

was observed under 2-ME treatment. Tumour cure was not achieved in any of the 
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animals treated with 2-ME alone and only in 3 out of 13 tumours in the group 

receiving the ROS-generating treatment. Several other researchers showed, that oral 

application of 2-ME potently inhibited tumour growth [28,141]. However, oral 

application of 2-ME had not been considered suitable for analysis of the acute impact 

of 2-ME as a ROS-generating treatment modality. Therefore, in the present study a 

schedule was chosen which uses only a single 2-ME dose 2 h prior to the other ROS-

generating treatment. This single application of 2-ME may only incur a limited anti-

tumour effect but supports the hypothesis that a distinct level of ROS (or 

downregulation of antioxidative defence mechanisms) must be reached within 

tumour tissue in order to induce oxidative injury severe enough to cause destruction 

of tumour tissue. Choosing a single i.p. injection of 2-ME, long-term effects like 2-ME 

binding to microtubuli and inhibition of angiogenesis, were precluded.  

The in vivo result point at the therapeutic potential of 2-ME in an adjuvant setting. 

Hereby, the data of Huober, showing a potentiation of the anti-tumour effect through 

the combination of radiation and 2-ME administration, could be confirmed by the first 

time [24]. The high efficiency of treatment regimes including 2-ME application as 

adjuvant, may be caused by overflowing the tumour cell with reactive oxygen 

species. These enormous amounts of ROS cannot be quenched by cellular 

antioxidative defence systems, least of all, if SOD activity is diminished by 2-ME. 
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4.2 ALA-PDT 

 

The objective of this study was to elucidate cellular mechanisms that are responsible 

for the high tumour response rate of rat sarcomas, receiving simultaneously 

hyperthermia and 5-aminolevulinic acid based photodynamic therapy. Therefore, 

ROS-formation (lipidperoxidation, nitration of proteins), apoptotic events and tumour 

“rescue response” were investigated. The findings demonstrate that the combination 

of hyperthermia and ALA-PDT dramatically enhanced protein nitrosylation and 

apoptosis. Heat shock protein and MMP expression were decreased by this 

treatment, influencing the anti-cancer therapy positively. 

 

Apoptosis 
 

Unpublished data of Dr. rer. nat. D.K. Kelleher (Institute of Physiology and 

Pathophysiology, University of Mainz, Germany) showed that synchronous 

combination of ALA-PDT and HT enhances the anti-tumour effect in a synergistic 

manner. 90 days after tumour treatment, only 17% of animals exposed to hyper-

thermia or to ALA-PDT showed no regrowth of the tumour. At the same time, 60% of 

animals treated with the combination of ALA-PDT and HT were cured. All sham-

treated animals reached the set tumour volume limit of 3.5 ml within 8 days.  

Determination of apoptotic related biochemical changes in tumour tissue showed that 

both treatments, HT and ALA-PDT, induced apoptosis in DS-sarcomas. The 

combination of these treatments resulted in an enhanced apoptotic effect which was 

measured by DNA fragmentation analysis and TUNEL-assay. Looking at apoptotic 

events upstream of nuclear changes like caspase activation, unexpected results have 

been observed, because caspase activity did not correlate with the observed nuclear 

changes. Caspase-3-like and caspase-8 activity were greatest in HT and HT + PDT 

treated tumours. Although ALA-PDT as single treatment activated caspases, the 

combination of HT + ALA-PDT did not increase caspase activity compared to HT 

treatment. Massive production of ROS in tumours exposed to HT and ALA-PDT may 

explain this observation. SH groups of caspases are essential for their catalytic 
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activity. On exposure to free radicals these SH groups can be inactivated. In M14 

melanoma cells, O2
- and H2O2 seem to promote cell survival due to the inactivation of 

caspases [142]. The fact, that caspase activity did not correlate with the apoptotic 

end point, may portend that caspases play a secondary role in ALA-PDT induced 

apoptosis. Unfortunately, there are no published data about the necessity of 

caspases in apoptosis by ALA-PDT. Using the photosensitiser hypericin for PDT, 

Vantieghem et al. showed, that the pan caspase inhibitor Z-VAD-FMK could not 

inhibit apoptosis in hybridoma PC60 cells. Whereas in PC60 cells overexpressing 

Bcl-2, caspases were needed for the apoptotic process [143]. This finding confirms 

the key role of mitochondria in photodynamic cell damage. Mitochondrial damage 

induced by PDT is probably the initial event in apoptosis. Consequence of which is 

the release of apoptotic factors like cytochrome c, AIF and procaspases, that induce 

caspase-independent and dependent apoptotic processes. After the release of 

cytochrome c into the cytosol, activation of caspase-9, followed by caspaspe-3, -6 

and –7 has been described for several cell types treated with PDT [144-146]. The 

results of caspase-3-like and caspase-8 activity assay of this study agree with the 

data of Granville et al.. They showed that caspase-8 is activated after cytochrome-c 

has been released during PDT-induced apoptosis, an event which is triggered by 

caspase-3 [145].  
 

Cleavage of RNA is an uncommonly investigated parameter in apoptosis. Houge and 

colleagues reported the specific cleavage of 28S rRNA in several cell lines undergoing 

apoptosis and suspected, that RNA fragmentation may be as general a feature of 

apoptosis as internucleosomal DNA fragmentation [147]. In tumours exposed to 

ALA-PDT and HT RNA cleavage appeared immediately after treatment, whereas no 

RNA fragmentation was observed in the other groups. Analysis of tumours, resected 

18 h after treatment, showed, that RNA cleavage progressed after ALA-PDT + HT 

treatment, and appeared in ALA-PDT treated tumours. However we could not 

corroborate the hypothesis of Houge et al, due to the fact, that DNA fragmentation 

was assessed after HT and ALA-PDT, whereas RNA cleavage was only seen after 
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ALA-PDT. The very fast degradation of RNA in HT + ALA-PDT treated tumours may 

point up the high efficiency of this therapy to damage the tumour.  

 

ROS-generation 
 

ROS formation was induced by ALA-PDT, as demonstrated by immunohistological 

assessment of 3-nitrotyrosine. Formation of 3-nitrotyrosine is a convenient marker of 

reactive nitrogen-centered oxidants like peroxynitrite. Substrates for the generation 

of peroxynitrite, responsible for tyrosine nitration, are superoxide anion and NO. The 

latter is mainly synthesised by endothelial cells, neutrophiles and macrophages. The 

reaction rate of the formation is approximately four times faster than the scavenging 

of superoxide with CuZn-SOD [148,149]. Because of this fast reaction rate, increase 

in superoxide anion level results in peroxynitrite formation, if NO molecules are 

present. Peroxynitrite reacts with a number of biological molecules including small 

molecular weigth nucleophiles and phenolics, proteins, lipids and DNA [150]. 

 

Fig. 4.2.1: Formation of nitrosylated proteins by peroxynitrite. Nitroxide radical and 
superoxide anion radical react to the highly reactive peroxynitrite anion. Reaction of 
peroxynitrite with proteins, leading to the formation of 3-nitrotyrosine residues (protein 
nitration). Intermediate products of this reaction are nitronium cations and NO2-radicals [66]. 
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In this study a significant increase in protein nitrosylation was observed after HT, 

ALA-PDT and the combination of both. In tumours treated with the combined 

therapy, formation of 3-nitrotyrosine was greatest, indicating an enhanced effect of 

this treatment regime. Nitrosylated proteins were located around vessels, due to the 

fact, that NO is generally built by the endothelium. Both, an increase in superoxide 

anion and NO formation could be responsible for the observed protein nitrosylation. 

Several publications have shown that ALA-PDT as well as hyperthermia induce 

superoxide anion formation [151-153]. The vasoactive substance NO is also modu-

lated by PDT and HT. Coutier et al. reported, that PDT with the photosensitiser 

Foscan increased NO release out of macrophages [154] and Gupta and colleagues 

showed that phthalocyanine PDT enhanced nitrite production in fibrosarcoma and 

epidermoid carcinoma cells [155]. Hyperthermia also stimulates the release of NO 

[156]. In recent years many reports related to peroxynitrite and nitrotyrosine have 

been published. But the consequence of tyrosine nitration on protein function is not 

yet fully understood. One effect of protein nitrosylation is the advanced degradation 

of these proteins by the 20S proteasome [157,158]. Additionally, alteration of protein 

function, mainly enzyme inhibition has been reported by several researchers 

[157,159]. Beside this „negative“ regulation, it is supposed, that protein nitrosylation 

is involved in signal transduction, comparable to protein phosphorylation [160,161]. 

Crow supposed, that low levels of peroxynitrite may have signalling function under 

normal physiological conditions. However, higher concentrations probably activate 

apoptosis in peroxynitrite sensitive cell types, whereas more resistant cell types may 

require the peroxynitrite-mediated oxidative damage [162,163]. 

 

“Rescue response” 
 

Regarding the results of tumour “rescue response” proteins after HT and ALA-PDT 

treatment, the enhanced degradation of oxidised proteins discussed above could 

contribute to these findings. Conversely to literature data [97,164,165], hyperthermia 

and ALA-PDT treated DS-sarcomas showed decreased HO-1 expression, although 

HO-1 is generally upregulated by oxidative stress [166]. This phenomenon may be 
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explained by several mechanisms. (1) Highly oxidised/nitrated HO-1-protein may 

underlie enhanced proteolysis [157], (2) Structural protein modification by 

oxidation/nitration may lead to a diminished antibody binding in Western blot 

detection. (3) Hypoxic tumours (like DS-sarcoma [167]) express constitutive high 

levels of HO-1 protein [168,169], which may be responsible for no further HO-1 

upregulation after tumour treatment. The greatest HO-1 downregulation was 

observed in tumours simultaneously treated with HT and ALA-PDT, indicating 

massive alteration in protein metabolism after this treatment. 

Results of HSP70 expression are partly in agreement with published data, due to 

some discrepancies in the literature. As it is well known, hyperthermia upregulates 

HSP70 expression, which was confirmed by a 2.1-fold increase of HSP70 18 h after 

HT treatment. Contrary, ALA-PDT treatment notedly decreased HSP70 expression at 

this time point, which is in good agreement with data of Xue and colleagues. They 

found that in Chinese hamster V79 cells, treated with aluminum phthalocyanine PDT, 

HSP70 mRNA and protein expression was decreased [170]. On the other hand, 

Gomer et al. reported, that Photofrin-PDT induced HSP70 expression in vivo, while it 

failed to induce a cellular HSP response in vitro [164]. Additionally, HSP70 response 

is dependent on the photosensitisers used. Subcellular localisation properties of the 

photosensitiser that govern the site of singlet oxygen generation may be the critical 

determinant in whether photosensitiser-mediated PDT activates the heat shock 

response [164].  

Upregulation of HSP70 is an undesired effect of several anti-tumour therapies, due to 

its ability to inhibit apoptosis [171,172]. This inhibition is provoked by two 

mechanisms: First, HSP70 can bind to Apaf-1, thereby preventing activation of 

capspase-9 [95,173]. Furthermore, HSP70 forms a complex with AIF, which leads to 

the inactivation of AIF [93]. The present study showed that combination of HT and 

ALA-PDT abolished the upregulation of HSP70 by hyperthermia, indicating no 

enhanced tumour protection against this combined treatment. 
 

Beside the enhanced formation of heat shock proteins, tumour cells can protect their 

life by upregulation of antioxidative systems. Glutathione (GSH) is the main water-
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soluble cellular antioxidant, which detoxifies hydroperoxides to H2O and the corre-

sponding alcohol. Determination of reduced glutathione within tumours, showed that 

ALA-PDT treatment decreased GSH dramatically 18 h after treatment. The 

combination of ALA-PDT and HT could not enhance the decrease in GSH amount. 

Specific oxidation of GSH to GSSG/GSSX catalysed by glutathione peroxidase can 

lead to a decrease in GSH. Furthermore, it is known, that thiol containing molecules 

are preferred targets for oxidation by peroxynitrite (Fig. 4.2.1) [174]. Unspecific 

oxidation of GSH may enhance the proteolytic degradation of these peptides. The 

observed progression of GSH decrease between time point 1 and 2 of tumour 

resection corroborates this theory. Oxidation, modification and successive 

degradation of GSH eliminate the GSH-based antioxidative defence system, 

weakening the tumour defence against ROS-generating anti-cancer treatments. A 

study with buthionine sulfoximine (BSO), an agent that reduces GSH levels, showed 

that the efficiency of PDT could be enhanced by lowering intracellular GSH levels 

[175]. These results concerning glutathione may explain the findings of Chen who 

showed, that PDT followed by HT evoked a synergistic tumour response, reversing 

the sequence results only in an additive effect [30]. 
 

Further investigations assessing the effect of ALA-PDT on enzyme activity showed 

that ALA-PDT inhibited enzyme activity in most cases. 18 h after ALA-PDT MMP-9 

activity was totally eliminated and MMP-2 activity was significantly decreased. The 

activity of additional three enzymes, hexokinase, phosphodiesterase-1 and lactate 

dehydrogenase, were investigated (data not shown). Only phosphodiestrase-1 

activity was slightly increased by ALA-PDT, activity of the other enzymes was 

markedly diminished. The combination of HT + ALA-PDT inhibited enzyme activity in 

the same range as ALA-PDT alone. These data support the hypothesis, that ALA-PDT 

modifies proteins, leading to a diminished function and an enhanced proteolysis of 

these proteins. Prior or simultaneous application of ALA-PDT to a further anti-cancer 

treatment may result in a synergistic effect due to photodynamic modifications in the 

tumour cell, which weaken the tumour response against the adjuvant treatment.
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5  Summary 

 

The present thesis deals with two different ROS-generating anti-cancer treatments: 

chemotherapy with the endogenous estrogen metabolite 2-methoxyestradiol and 

5-aminolevulinic acid based photodynamic therapy. Both treatments were investi-

gated with the rat DS-sarcoma model, which can be used in vitro and in vivo. 
 

The first part of this thesis shows that 2-methoxyestradiol induces apoptosis in 

DS-sarcoma cells. Translocation of the pro-apoptotic protein Bax to the mitochondria 

was identified as initial apoptotic event, followed by a decrease in mitochondrial 

transmembrane potential and the release of AIF out of the mitochondria. In addition, 

upregulation of FasL and TNF?  by 2-ME, two death receptor ligands, was observed. 

Although, 2-ME administration resulted in activation of caspases, pan caspase 

inhibitor Z-VAD-FMK could not block 2-ME induced apoptotic cell death pointing to a 

caspase-independent mechanism. Furthermore, an increase in formation of reactive 

oxygen species was observed after 2-ME treatment. However, supplementation with 

different antioxidants could not decrease the toxic effect of 2-ME. This finding may 

indicate, that reactive oxygen species are not involved in apoptosis induction, rather 

they are a consequence of mitochondrial damage. 

In vitro and in vivo combination of 2-ME with another ROS-generating treatment 

resulted in a synergistic anti-tumour effect. 
 

In the second part of the thesis anti-tumour effects of 5-aminolevulinic acid based 

photodynamic therapy combined with simultaneous hyperthermia was investigated. 

Analysis of apoptosis associated nuclear changes clearly demonstrated the high 

efficiency of this treatment regime. Formation of reactive compounds (e.g. ROS, 

nitrogen monoxide, peroxynitrite) which is mainly responsible for toxicity of PDT, 

could be assessed in the shape of massive protein nitrosylation in tumours treated 

with PDT alone or the combined treatment. Detection of decreased amounts of heat 

shock proteins (HSP70 and HO-1) which protect tumour cells against damaging 

influences, lowered glutathione levels and reduced MMP-activity indicate an increase 



76  Summary 

in degradation of proteins. This phenomenon may be caused by excessive generation 

of ROS. 
 

Taken together, the presented studies could demonstrate the high benefit of 

combining 2-ME resp. ALA-PDT with hyperthermia (or other ROS-generating 

therapies), which make them interesting candidates for future clinical applications.  
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6 Zusammenfassung 

 

Die vorliegende Arbeit befasst sich mit zwei unterschiedliche ROS-generierenden 

Therapien zur Krebsbekämpfung: zum einen mit der Chemotherapie des endogenen 

Estrogenmetaboliten 2-Methoxyestradiol, sowie der Photodynamischen Therapie, die 

auf der Gabe von 5-Aminolaevulinsäure basiert. Beide Behandlungsformen wurden 

mit Hilfe des DS-Sarkom Modells der Ratte untersucht, das sowohl in vitro als auch in 

vivo eingesetzt werden kann. 
 

Im ersten Teil dieser Arbeit konnte gezeigt werden, daß 2-ME Apoptose in 

DS-Sarkom Zellen induziert. Als initiales apoptotisches Ereignis wurde die 

Translokation des pro-apoptotischen Proteins Bax an das Mitochondrium 

nachgewiesen, gefolgt von einer Erniedrigung des mitochondrialen Transmembran-

potentials und der Freisetzung von AIF aus dem Mitochondrium. Des weiteren wurde 

eine erhöhte Expression von FasL und TNF? , zwei „death receptor“ Liganden, nach 

2-ME Gabe beobachtet. Obwohl nach 2-ME-Verabreichung eine Aktivierung von 

Caspasen gemessen wurde, konnte die Gabe des Pan-Caspase-Inhibitors Z-VAD-FMK 

den apoptotischen Zelltod nicht verhindern, was auf einen Caspase-unabhängigen 

Mechanismus schließen lässt. Außerdem wurde eine erhöhte Bildung von reaktiven 

Sauerstoffspezies nach 2-ME Administration nachgewiesen, durch die Stimulierung 

mit verschiedenen Antioxidantien konnte jedoch die toxische Wirkung von 2-ME nicht 

gemindert werden. Dieses Ergebnis deutet darauf hin, daß reaktive Sauerstoffspezies 

nicht an der Apoptoseinduktion beteiligt sind, sondern als Folge der mitochondrialen 

Schädigung auftreten.  

Die Kombination von 2-ME mit einer weiteren ROS-erzeugenden Therapie zeigte 

sowohl in vitro also auch in vivo eine synergistische Steigerung der antitumoralen 

Wirkung.  
 

Im zweiten Teil wurde die Tumor-inhibierende Wirkung einer auf 5-Aminolaevulin-

säure basierten Photodynamischen Therapie, welche mit Hyperthermie kombiniert 

wurde, untersucht. Dabei konnte durch Bestimmung von Apoptose-assoziierten 

Veränderungen des Zellkernes der hohe Wirkungsgrad dieser Behandlungsform 
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gezeigt werden. Die Bildung von reaktiven Verbindungen (z.B. ROS, Stickstoff-

monoxid, Peroxynitrit), die hauptsächlich für die PDT vermittelte Toxizität 

verantwortlich sind, konnten in Form von nitrosylierten Proteinen in Tumoren 

bestimmt werden, die mit PDT oder der Kombinationstherapie behandelt wurden. 

Der Nachweis eines verringerten Gehaltes an Hitzeschockproteinen (HSP70 und  

HO-1), die das Tumorgewebe vor schädigenden Einflüsssen schützen, sowie ein 

erniedrigter Glutathionspiegels und eine reduzierte MMP-Aktivität, deuten auf eine 

gesteigerte Inaktivierung und Degradation von Proteinen hin. Diese wird vermutlich 

durch die exzessive ROS-Bildung verursacht.  
 

Zusammenfassend kann festgestellt werden, daß beide Kombinationstherapien  

(2-ME + Hyperthermie und ALA-PDT + Hyperthermie) effektiv das Tumorwachstum 

gehemmt haben, was sie zu interessanten Kandidaten für eine zukünftige klinische 

Anwendung macht. 
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