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A Recapitulating overview 1 

A RECAPITULATING OVERVIEW, RESULTS AND CONCLUSION 

1 BACKGROUND AND DEFINITIONS 

Agricultural production processes release material (e.g., nutrients, pesticide residues) and 

non-material emissions into the environment. Physical releases, like pressure, are 

subsumed as non-material emissions. The emissions influence adjacent ecosystems after 

transport, transformation and deposition processes. Thus undesired effects in ecosystems 

may be caused by agricultural land use. Emissions which arrive in ecosystems - after 

having been transformed - are defined as inputs in this study. The inputs may cause 

harms on receptors when received in ecosystems. Receptors represent spatial or 

functional parts of the environment which respond to inputs (Merkle and Kaupenjohann, 

2000a). 

 

The connection of both the production system and affected ecosystems (e.g., the 

agroecosystem itself, lakes or forests) is required as a prerequisite for the assessment of 

agricultural impacts on the environment. The evaluation of agricultural impacts, however, 

still remains critical. Firstly, the variety of emissions and inputs occurring aggravates a 

judgement. The diverse emissions and input properties impair ecosystems in different 

ways. For instance, toxicity predominately hits the level of species, elements or processes 

whereas nutrifying inputs affect the level of whole systems by influencing the ecosystem 

balance. Secondly, spatial and temporal scale transitions complicate the establishment of 

cause-effect-relationships. When looking at specific emissions one has to deal with time 

delays in the emergence of effects. Notwithstanding, time has been insufficiently 

integrated into ecosystemic investigations (von der Wiesche and Werner, 1998). Thirdly, 

the high complexity of ecosystems with their hierarchically structured organisation enables 

to quantitatively portray only some representatives of the numerous biotic and abiotic 

interactions (Mühle and Claus, 1996; van Ittersum and Rabbinge, 1997). Recent 

assessments of environmental impacts remain restricted to reductive approaches 

regarding system compartments or specific environmental media (Müller, 1992; 

Münchhausen and Nieberg, 1997). Consequently, the evaluation of environmental impacts 

of agriculture still has to be considered as fragmentary. Additionally, loading capacities, 

threshold, reference, precaution values and ranges of tolerance of receptors serving as a 

basis for quantitative evaluations are scarcely available. 
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Indicators have been proposed to serve as a tool solving both the problem of high 

complexity of ecosystems and the problem of high effort required in taking direct 

environmental measurements (Bockstaller et al., 1997). Thus, here the hypotheses is 

formulated that an indicator approach may be the adequate solution for the problem of 

connecting agricultural production systems and affected ecosystems. Following, the main 

questions to be answered are: 

• Is it possible at all to relate both emissions of production systems and effects in 

ecosystems by means of indicators? 

• How must such indicators look like? 

• How to develop the indicators necessitated? 

• What importance has to be attached to time dimensions? 

 

The present study shall contribute to the evaluation of sustainable agriculture in Central 

Europe in interdisciplinary co-operation with other institutes of the University of Hohenheim 

and the University of Stuttgart. In this context a conceptual model of indicators shall be 

provided as a basic tool to implement sustainable agriculture. 

 

 

2 ENVIRONMENTAL INDICATORS AND INDICATOR MODELS 

Having decided to choose an indicator approach the next step is a review of the state of 

the art. As Verbruggen and Kuik (1991) stated, up to now, no practical means for an 

assessment of the objectives of sustainability exist. This holds true for the agro-

environmental domain where the urgent need for evaluation tools is continuously growing 

(Girardin et al., 1999b). The tools can be provided by means of indicators. A variety of 

indicator literature is currently available. Several types of indicators, indicator models and 

indicator frameworks may be distinguished which are discussed in the following. 

 

Since an uniform or standardised indicator definition is lacking at present an own definition 

is introduced. In the context of the present work an indicator is defined as a measurable 

variable which characterises systems or system components by reducing complexity and 

integrating information. 
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The current literature shows that indicators are used for different purposes varying from, 

for example, environmental monitoring to synthesising masses of data. According to the 

purpose intended, the indicators have to meet specific requirements (Walz and al., 1997). 

A number of scientific and application features that should be used for selecting indicators 

is listed in the tables B1 and B2. 

 

The review of the literature ensued a huge amount of indicators for various issues of 

concern (ecosystem health, sustainability, soil health, environmental monitoring). 

However, no indicators exist which can be applied in general (Bakkes et al., 1994). The 

indicators are context dependent, based on concrete objectives and targets. To order the 

indicators a classification is suggested. The available types of environmental indicators 

may be divided into two categories (tables B3a and B3b): (1) simple, case- or site-specific 

indicators with a reductive view and (2) systemic, functional indicators. In the present work 

the rare systemic indicators are discussed in more detail. 

 

A number of the available indicators form part of an indicator model. Indicator models 

serve for a definite purpose. Usually, such models aim at an extensive description of 

relations between economy and ecology (Hoffmann-Kroll et al., 1995). To create purpose 

depending indicator models the OECD model (OECD, 1993) or related approaches are 

often taken as a basis. The indicators of indicator models include miscellaneous domains. 

Basic domains to characterise influences exerted on the environment are pressure, state 

and response (OECD, 1993) or stress and response indicators (Friend and Rapport, 1991; 

Rapport and Friend, 1979). These indicator models have in common that they cover 

scales from regional to global, whereas models for the local scale are rare. Some indicator 

models like the AMOEBA model (ten Brink, 1991) need reference systems, e.g., a 

previous natural state or a desired ideal state. 

 

It is shown in this work that indicator models frequently belong to indicator frameworks or 

indicator systems representing the superstructure behind. The frameworks include societal 

values and goals, an indicator model with several indicator types and an evaluation 

system. A framework is required to organise the process of indicator development and 

selection (Cairns et al., 1993). Furthermore, it should organise individual indicators or 

indicator sets in a coherent manner. 
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The question arises from the existence of the numerous indicators and indicator models, 

how the indicator were derived. Several authors emphasise that there is no defined 

method to build up indicators (Cairns et al., 1993; Girardin et al., 1999a). However, two 

principal strategies can be detected: Indicators are either developed by expert judgement/ 

questionnaires or they are deduced scientifically based. 

 

Many of the indicators are taken of preexistent lists and are selected with little or no 

modifications (Mitchell et al., 1995). The analysis exposes that the indicators are often 

presented without specifying the selection process. They are deduced with subjective 

expert questionnaires. Mitchell et al. (1995) developed a methodological approach to 

derive indicators for sustainability. However, transparent approaches providing 

transferable methods to develop systemic indicators for agricultural systems are still 

lacking (von Wirén-Lehr, 2000, acc.). 

 

Two main strategies are pursued corresponding to the evaluation of environmental 

degradation at the community or ecosystem level in case that the indicators are deduced 

scientifically based (Gentile and Slimak, 1992; Munkittrick and McCarty, 1995). Either a 

bottom-up or a top-down approach is used. Bottom-up, known results of effects in simple 

systems are transferred to higher more complex systems. Likewise, indicators may be 

developed bottom-up. In turn, causative agents are determined top-down for an alteration 

with regard to environmental degradation (Cairns et al., 1993). Accordingly, during the 

indicator development a goal at a complex level is stepwise broken down. Drawbacks are 

linked to both procedures: The bottom-up approach may not be goal adequate, whereas 

the top-down approach is not suitable to solve new problems because it only considers 

already discovered problems (Zieschank et al., 1993). 

 

A multistage procedure (seven steps) is developed of how to generally identify indicators 

in the present study (figure B3). The goal definition, serving as general starting point, 

determines the following methodological steps: The non-measurable principal goal can be 

broken down into objectives (figure B1) which represent the basis of the indicator 

derivation. Next, the target group (decision-makers, scientists, farmers etc.) has to be 

defined because the degree of complex information may be higher if the indicators are 

intended to be used by specialists for complex goals (Braat, 1991). Subsequently, the 

indicator building with respect to issues of concern is carried out. Thereby a conceptual 
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model is required. The data needed have to be gathered and potential indicators are 

compiled. The final indicators are identified in a next step according to the selection 

criteria. The theoretically deduced indicators are validated in a case study by means of a 

test of usefulness. To assess the progress towards the objectives the indicators should be 

quantifiable. Thus they are compared to reference or threshold values. The final step of 

the procedure is the evaluation of developed indicators by experts. 

 

In summary, the research needs concern 

• suitable indicators to analyse ecosystems affected by emissions of agricultural 

production, 

•  the synthesis of top-down and bottom-up procedures for the indicator development, 

•  a comprehensible and transparent method for the indicator derivation of 

environmental impacts of agriculture. 

 

3 OBJECTIVES 

General aim of the study is the provision of a methodological instrument to assess effects 

on ecosystems resulting from agricultural production processes by linking both the 

production system and the affected ecosystem. For this purpose an indicator approach is 

chosen. Figure A1 shows an overview of the single investigations of the study. 

 

The examination of existing literature concerning environmental indicators, indicator 

models and frameworks (part B) provides an overview on the state of the art. The critical 

review of available indicators reveals that neither appropriate types of indicators to link 

both production systems and ecosystems nor comprehensible methods for the deduction 

of indicators are currently available. It is concluded from the results of the review (part B) 

that an essential task is to develop a plausible, transparent and comprehensible method to 

derive suitable indicators (part C). 

 

To illustrate and possibly improve the developed methodological procedure the 

applicability is tested with regard to material- and non-material inputs in a case study 

(parts D and E). The case study especially focuses on the agroecosystem itself as affected 

ecosystem. An assessment of environmental impacts of agricultural production remains 

difficult because of the manifold types of emissions, pathways and inputs occurring. To 
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reduce the amount of parameters to be assessed and to involve the determining variables 

the effective parameters must be identified. Consequently, a classification of emissions 

and inputs as a prerequisite for a reasonable derivation of indicators is performed 

(appendix, tables X1 and X2). The yielded indicators are as far as possible related to 

threshold values for a final quantitative evaluation. 

 

The implementation in the case study demonstrates the significance of time dimensions. 

Testing the non-material input of soil pressure (part D) already shows that spatial 

variations as well as temporal aspects, e.g., system reversibility/recovery, represent 

essential issues to be considered. Thus a special focus of the test for material inputs is laid 

on temporal dimensions of emissions, effects and depending indicators (part E). 

 
Figure A1: Overview about the single investigations which were carried out (EEI: Ecosystemic 

effect indicator. The capital letters relate to the single chapters of the present study) 
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Having presented the results of the state of the art (part A2), main results and conclusions 

of the work are summarised in the following sections. Details can be gathered from the 

paper manuscripts of the parts B to E. 

 

 

4 DERIVATION OF ECOSYSTEMIC EFFECT INDICATORS 

The study aims at the development of a transparent and comprehensible method to 

provide indicators. The following frame conditions have been set:  

(1) A method has to be created not limited to a concrete landscape or site. Consequently, 

a deductive proceeding is not feasible. Hence a function based approach is performed. 

(2) The target groups of the indicators intended represent the scientific community as well 

as planners.  

(3) The methodological approach has to start at determined targets and objectives. The 

utility functions of ecosystems represent the target in this study. Such functions 

comprise the regulation (filter, buffer, transformation), production, habitat and storage 

function (de Groot, 1992; Fränzle et al., 1993). In managed landscapes, however, the 

protection of functions is insufficient. Thus an assignment of targets and values to 

functions is necessitated (Doppler, 2000 i.p.). 

 

Depending on the targets and objectives the indicator requirements were established (cf. 

table B1 and B2). The indicators destined to link emissions of agricultural production and 

effects in ecosystems must be meaningful for the maintenance of ecosystem functioning 

as well as sensitive for the impacting inputs. Furthermore, the indicators have to be 

integrative, methodologically transparent and desirably functionally linked to the sources of 

impacts. Finally, the availability of data remains a main constraint that determines the 

whole indicator development. 

 

In the present work I propose ecosystemic effect indicators as a new type of indicators. 

According to the requirements these indicators are defined as follows: >>Ecosystemic 

effect indicators represent receptors sensitive to material and non-material inputs. They 

indicate the functioning of ecosystems<< (part C). 
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One essential feature for the development consists in a combination of top-down and 

bottom-up procedures (figure C1). This strategy enables to derive indicators which 

generate a cause-effect relation – independent of the hierarchical level of the ecosystem 

the indicators are identified on. 

 

Since the ecosystem functioning has to be maintained, the indicator derivation is based on 

utility functions on the one hand. On the other hand the derivation is based on agricultural 

measures and their specific inputs in an affected ecosystem. The suggested approach 

relates both the ecosystem and the emissions of the agricultural system. 

 

In the first step a compilation of characteristics for the diverse utility functions (appendix, 

tables X3 – X12) is performed top-down. Ecosystems may be characterised by the 

hierarchical order of superior relations and properties of subsystems located on level II 

(e.g., food-webs) (figure A2). These superior relations and properties may be subdivided 

into subsystems located on level I (e.g., primary producers). The subsystems can be split 

into elements (e.g., earthworms) or single processes (e.g., respiration) located on level 0 

(Doppler, 2000 i.p.). 

Figure A2: The diverse hierarchical levels of ecosystems and their interactions. Higher system 

levels control lower ones. In turn, the potential of higher ones is restricted by the 

behaviour of the lower. Lower levels may also directly influence higher ones 
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Next step is to look at one specific input. A list of observable biotic and abiotic receptors 

and probable effects is compiled bottom-up for this input (appendix, tables X13 – X20). 

The receptors represent potential effect indicators for the input considered. 

 

Finally, the lists with characteristics of the selected utility function and the list of potential 

effect indicators for a specific input are overlapped and intersections are identified with 

assistance of expert knowledge. The result is a selection of ecosystemic effect indicators 

for the utility function regarded and the input chosen. The procedure has to be conducted 

for each function under consideration and for each input of interest. In this way one yields 

sets of ecosystemic effect indicators for the ecosystem under investigation (appendix, 

table X21). 

 

The goal set and the requirements properly specified simplify the selection of suitable 

ecosystemic effect indicators. Time is recognised as an additional aspect in this work 

which may not be ignored in facilitating the indicator selection. It is proposed to arrange 

the temporal heterogeneity of receptors' sensitivities as well as the dynamics of inputs 

occurring and to look for intersections on similar temporal scales. 

 

As advantage of the procedure corroborates that it is not site-specific and can be applied 

to various ecosystems. However, the implementation will have diverse expressions at 

each natural site. Therefore, the application requires that certain parameters are known. In 

a next step, the method newly developed and its applicability have to be tested with regard 

to its operativeness in a case study. 

 

 

5 APPLICABILITY OF ECOSYSTEMIC EFFECT INDICATORS: NON-MATERIAL 
INPUT 

The developed method was tested in an exemplary case study. At first, an agroecosystem 

as directly affected ecosystem and the soil pressure as a non-material emission were 

examined. The data used in the case study were gathered in the 

"Sonderforschungsbereich No. 183" in the Kraichgau-Region, Germany (Lorenz, 1992; 

Zeddies, 1995). The production and utilisation of energy crops was taken as an example. 

To examine energy crops provides the advantage of a clear cut frame with a well defined 
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production and utilisation system besides the topicality of energy crops with regard to 

sustainability. An exemplary cultivation procedure for Triticale to be used as biofuel for a 

distinct heat provision supplied the emission and the respective input data. 

 

The focus of this work is laid on the emission of soil pressure during the tilling steps (table 

D1) and its effects in an agroecosystem. Various undesired side effects of agriculture were 

extensively examined in literature, e.g., acidification or pollution, whereas soil degradation 

was less studied. The spatial extension of the emission predominately appears as banded 

impact. Soil pressure represents an input periodically emerging which strongly depends on 

the pressure and duration of the mechanical loading of the machinery used. This input 

causes short-term (regarding plough layer compaction) as well as long-term (regarding 

subsoil compaction) effects of mainly local significance. 

 

As the first step of the indicator derivation procedure the characterisation of the utility 

functions was carried out. Done for the first time the compilation is extensive. 

Nevertheless, once compiled it provides the advantage to be subsequently utilised for the 

development of ecosystemic effect indicators concerning other inputs. For each utility 

function the describing characteristics were compiled top-down (appendix, tables X3 - X12, 

examples depicted in table D2). The examination ensued that such characteristics may not 

always be facile assigned to the diverse levels due to complexity. 

 

Here, the habitat function will be exemplary focused. Food networks as a relation of level II 

belong to the habitat function. They can be split up into characteristics like consumers, 

producers, predator-prey-ratios etc. on level I. The characteristics of level I are further 

broken down into air-filled porosity, water-filled porosity, macro-porosity, individuals of 

earthworms etc. 

 

The effects possibly occurring and the receptors were compiled bottom-up in the second 

step. Generally, inputs cause various effects on different hierarchical levels (figure E1). 

The present study demonstrates the manifold unfavourable consequences of soil pressure 

(table D3, X13). Conceivable effects of the input soil pressure predominately influence 

characteristics of level 0 and I. Soil pressure strongly affects the pore spectrum, macro 

porosity, air-filled porosity, penetration resistance etc. which are meaningful for the 

subsystem of porosity. In turn, the soil structure, aeration and the nutrient cycling which 
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represent essential characteristics for the habitat function may be impaired on the level II. 

Beyond, soil pressure affects other receptors and a number of other effects occurs 

(appendix, table X13 and X14). 

 

Considering soil pressure distinctly indicates the importance of noting temporal features. 

The hypotheses underlying this issue are (1) The subsoil impairment is of higher relevance 

because it is regarded as being persistent. (2) Without an interruption of cultivation, there 

remains not enough time for the system to regenerate. (3) Moreover, reversibility of effects 

is rarely observed. 

 

The habitat, filter, buffer, transformation, storage and production function have been 

defined as utility functions characterising the affected agroecosystem. By overlapping the 

lists of characteristics for the utility functions (compiled top-down) and the list with potential 

effect indicators for soil pressure (compiled bottom-up) a set of ecosystemic effect 

indicators is yielded (table D4). Macro porosity is found as an ecosystemic effect indicator 

for the habitat function. Representative ecosystemic effect indicators for the transformation 

function are the respiratory intensity and the metabolic quotient. The intersection of the 

lists of characteristics and potential effect indicators ensues the pore spectrum, above all 

the pore volume between 1 and 100µm as ecosystemic effect indicator for the filter 

function. The field capacity is detected as ecosystemic effect indicator for the storage 

function (concerning water), and the penetration resistance or the macro porosity are 

ecosystemic effect indicators for the production function. 

 

In some cases the deduction of ecosystemic effect indicators proves to be limited. Firstly, 

antagonistic effects aggravate the determination of a decisive indicator. Secondly, if an 

input predominately influences non-chemical characteristics the development of an 

ecosystemic effect indicator for a chemically determined function may be restricted. Thus a 

direct ecosystemic effect indicator could not be identified for the buffer function with regard 

to the mechanical input of soil pressure. 

 

The developed ecosystemic effect indicators were related to threshold or reference values 

as far as available in literature (table D5). Existing threshold values permit to maintain 

certain characteristics of ecosystem functioning. These values may be opposed to 

technically permitted limits. For instance, Horn (1999) argued that contact pressures of 50 
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kPa and axle loads of 2,5 t already entail irreversible deformation of silty soils in humid 

spring. Other recommendations were that the loads on single axle units should not exceed 

6 t (Danfors, 1994). It has to be taken into account, however, that usually threshold values 

cannot be directly derived from existent data. The setting of thresholds is subjected to 

considerable uncertainty and frequently reflects decisions on the basis of value 

judgements. Further a relation to thresholds is restricted through a deficiency of limits in 

current research. 

 

The present work elucidates that an application of the indicator derivation procedure for 

non-material input succeeds. To be applied by farmers the information of ecosystemic 

effect indicators must be transferred into decision aid tools. Developing such decision aid 

tools requires a consideration of external factors, e.g., moisture, site properties, machinery 

used etc. Finally, these decision aid recommendations may be qualitative ones, e.g., the 

use of another machinery on a silty soil. Quantitative ones may also result, e.g., a soil 

moisture content that must be at a specific state before tilling. 

 

 

6 APPLICABILITY OF ECOSYSTEMIC EFFECT INDICATORS: MATERIAL INPUTS 

Having successfully applied the method to derive ecosystemic effect indicators for a non-

material input as a next step the method was tested for material inputs with a special focus 

on temporal features. Part A5 already stressed that time is of high relevance. Two reasons 

to turn the attention on time dimensions appear: Firstly, in contrast to space time is 

incommensurable systematically dealt with in actual impact assessment (von der Wiesche 

and Werner, 1998) but plays an important role. Secondly, the sustainability background 

requires the observation of short-term as well as long-term consequences of impacts. 

Short-term considerations of acute effects are often carried out whereas long-term 

assessments with a focus on accumulation and chronic effects are rarely performed. 

 

As for the non-material example the data used were based on the example of a cultivation 

procedure for Triticale in the Kraichgau-Region. The production and utilisation of, e.g., 

Triticale revealed a big amount of data for emissions and inputs. To handle this variety a 

classification and categorisation of substances separated into emissions and inputs was 

performed (appendix, tables X1 and X2). Criteria used were scope and scale (Scheringer, 
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1999). The proceeding to estimate the relevant substances simplifies the following 

derivation of ecosystemic effect indicators. Consequently, it is not necessary to deduce 

ecosystemic effect indicators for all imaginably occurring emissions. The classification of 

emissions and inputs (table E1; appendix, table X1 and X2) served to decide which 

material emissions and inputs to take for a detailed examination in the present study. 

 

Scope criteria for the selection of relevant emissions depicted the persistence, toxicity and 

frequency of use of the substances applied. The fungicide carbendazim and the heavy 

metal cadmium contained in phosphate fertilisers were pre-selected as potential stressors. 

Carbendazim is frequently applied against fungal diseases in wheat. In general, the 

stability of carbendazim does not exceed one year (Perkow and Ploss, 1999). 

Carbendazim has been identified as a chemical stressor for the soil fauna (Förster et al., 

1996; Römbke and Federschmidt, 1995). A special interest is laid on heavy metals 

because of their inherent persistence. Phosphate fertilisers usually comprise amounts of 

heavy metal contaminants derived from the phosphate rock. Thus phosphate applications 

involve regular cadmium additions (Wilcke and Döhler, 1995). Cadmium tends to 

accumulate in the surface soil over time thereby potentially disturbing soil ecosystems and 

even influencing human health. 

 

Concerning the first step of the indicator derivation procedure the characterisation of the 

utility functions was taken from the results yielded in part D (table D2; appendix, tables X3 

– X12). 

 

A worst case scenario was assumed in the present investigation where the whole amount 

of active substance applied attains the soil surface. The focus of effects with respect to 

time aspects should be the short-term scale for carbendazim. An effect may be 

immediately initiated or at least occurring within one year (Domsch, 1992; Perkow and 

Ploss, 1999). The effects of carbendazim are characterised through a selective impact on 

determined receptors (table E4; appendix, table X15 and X16). Effects on unspecific soil 

biological parameters could not be proved. The table E4 portrays potential effect indicators 

for the input of carbendazim. 

 

In turn, for cadmium the focus on the middle- and long-term scale is required. Cadmium 

may affect certain receptors on a short-term scale, e.g., a population of microorganisms. 
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More frequent, however, are effects on a larger time scale because cadmium tends to 

accumulate in soil. This may entail harmful effects after having reached a risky 

concentration. A broad spectrum of effects due to cadmium is listed (table E3; appendix, 

table X17 and 18). The receptors include plants, microorganisms, the macrofauna and 

even humans. However, the effects often depend on soil properties. 

 

A variety of feasible combinations for the ecosystemic effect indicators results from the 

characteristics of the utility functions on the one hand and the potential effect indicators on 

the other hand. The integration of time aspects simplifies the selection of a representative 

ecosystemic effect indicator for cadmium and carbendazim. It is necessary to look for 

intersections between the time frame of stress impact and the process sequence or 

sensitivity of the receptors with respect to time dependence. The farmer applies 

carbendazim in spring when several of the receptors, e.g., earthworms are highly sensitive 

because their reproduction takes place (figure E4). Consequently, the number of juvenile 

earthworms is yielded as a ecosystemic effect indicator regarding the input carbendazim 

and the habitat function. 

 

The inputs of cadmium and carbendazim primarily cause biological and chemical effects. 

Therefore, direct ecosystemic effect indicator could not be yielded for the filter function 

which represents a physically dominated utility function. The number of macropores might 

be an indirect indicator for carbendazim with regard to the filter function. Identified 

ecosystemic effect indicators for the inputs of carbendazim and cadmium in the present 

study can be gathered from the table E5. 

 

The test of the indicator derivation method for material inputs improved the supposition 

that the inclusion of temporal aspects for a simplification of the indicator selection is useful. 

On the one hand the consideration of temporal dimensions is important with regard to time 

and frequency of stress occurrence and duration. On the other hand the test for material 

inputs demonstrates the relevance of attending the alterations in sensitivity of receptors. 

This refines the approach to deduce ecosystemic effect indicators. Since many impact 

examinations focus on short-term effects in current research, however, limitations may 

appear. 
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7 ECOSYSTEMIC EFFECT INDICATORS: A TOOL FOR ASSESSING 
ANTHROPOGENIC IMPACTS ON ECOSYSTEMS WITHIN THE FRAME OF 
SUSTAINABLE AGRICULTURE? 

When considering impacts of agricultural land use on ecosystems one has to deal with 

manifold emissions and subsequent inputs. The complexity of hierarchical, temporal and 

spatial scales aggravates a judgement. An indicator approach can be taken as a suitable 

proceeding to reduce the complexity. In the present study a classification of emissions and 

inputs was proposed and performed that supplies a fundament to judge their relevance as 

one starting point of the developed indicator derivation procedure. Quantitative as well as 

qualitative estimations are provided as a prerequisite to deduce appropriate indicators. 

 

The interpretation of existing indicators revealed that the task is characterised by two main 

types of available indicators disposable. Nevertheless, the following drawbacks appear: 

Firstly, current research provides simple case- or site-specific indicators. Such indicators 

are restricted to the problem they were deduced for and are not transferable to other 

problems or sites. A critical analysis demonstrated that these indicators are not suited to 

the purpose of a systemic approach to link emissions of agricultural land use and effects in 

ecosystems not located in a specific landscape. Further existing are systemic indicators, 

however, also inappropriate for the purpose intended. Secondly, it was pointed out that 

scientifically based strategies to develop indicators are accessible (Cairns et al., 1993). 

Transparent approaches providing transferable methods to deduce systemic indicators, 

however, are lacking. Existing approaches with other goals have not yet been transferred 

to agricultural production. 

 

A comprehensible method to derive systemic indicators was successfully developed and 

critically tested in this work. An analysis and compilation of system key functions or 

elements provides the basis to develop a site-independent indicator derivation strategy. A 

model-based derivation of indicators enables to deduce indicator sets suitable to describe 

the condition of diverse systems referring to the dynamic and systemic aspects of 

sustainability. The method developed in the present study is featured by a transparent 

argumentation. Overlapping the characteristics derived top-down and the potential effect 

indicators compiled bottom-up stands out by a comprehensible proceeding. Nevertheless, 

the selection of final ecosystemic effect indicators with expert knowledge implies a certain 
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subjectivity influenced by the question posed, the goal determined, the site examined and 

the priority set by the experts. 

 

A further question remains: how to extrapolate effects on a low hierarchical level to 

consequences on higher levels? As figure E1 demonstrates impacts not always trace from 

one level to another. They can directly impair higher levels. The performed 

characterisation of utility functions (top-down; appendix, tables X3 – X12) allows for a 

precise analysis which characteristics are essential for a specific function on the one hand. 

On the other hand the compilation of potential effect indicators (bottom-up; appendix, 

tables X13 - X20) permits to check the characteristics directly impaired or indirectly 

influenced. Thus the indicators identified correspond to the different hierarchical levels. 

 

Already cited in literature are indicators for the whole functioning as well as for subsystem 

functions (Rapport, 1998). Or, indicators exist for endpoints of impacts. The ecosystemic 

effect indicators go beyond existing indicators in so far as they integrate a reference to the 

functioning of ecosystems and not only indicate effects. 

 

The case study illustrated the applicability of the indicator derivation method for varying 

inputs. Testing the approach for the non-material input elucidated the motivation of 

indicator selection (part D). The case study showed that no indicator can be derived if an 

input does not significantly impair the utility function under consideration with regard to the 

selection of the ecosystemic effect indicators. Beyond, if the impacts cause antagonistic 

effects it will scarcely be possible to detect an ecosystemic effect indicator. 

 

The implementation of the methodological approach for the example of toxic substances 

revealed that careful attention should be paid to the temporal issue (part E). The input 

cadmium is an impact inducing main effects on a long-term scale because of accumulating 

over time in the soil ecosystem. Regarding time features the monitoring aspect to follow a 

development of disturbances over time represents an essential issue. Ecosystemic effect 

indicators predominately have another intention but they additionally permit to monitor 

long-term effects of agricultural land use by periodically checking the indicators identified 

at a specific site. 
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Ecosystemic effect indicators aim at the target group of the scientific community as well as 

planners. The ecosystemic effect indicators are found as described above for the problem 

of assessing agricultural impacts on ecosystems. Depending on the main focus a selection 

of other indicators according to the tables X13 – X20 (appendix) is conceivable. The 

approach including the tables provided in the appendix supports planners to develop 

ecosystemic effect indicators according to their specific problem/goal and site. 

 

The ecosystemic effect indicators do not address farmers. Farmers need other 

information. They cannot measure, e.g., macro-porosity in field. This requires a transfer of 

the ecosystemic information to the production part in form of decision aid tools. In some 

cases direct recommendations may be deduced from the ecosystemic effect indicators, 

e.g., to apply Thomas phosphate containing less cadmium instead of Triple 

superphosphate, that allows farmers to maintain the sustainability of their agroecosystem. 

Hence they are enabled to efficiently produce on a long-term scale. 

 

Despite the advantages of the developed indicator derivation procedure one significant 

constraint restricts a final sustainability assessment. To quantitatively evaluate impacts of 

agricultural land use necessitates threshold values or limits. At least, reference or 

tolerance values are required. Therefore, the ecosystemic effect indicators are brought into 

relation to threshold values. However, these quantitative data for an assessment are rarely 

available or not yet explored. Frequently, the databases comprise data derived from 

toxicity tests, e.g., NOEC or LC values which can be hardly applied to field conditions. As 

far as available the threshold values belong to respective scales (Doppler and Böcker, 

1999). If existent, the threshold values were frequently developed on the level of elements 

(cf. appendix, table X22). In a reductionistic way, however, a systemic synthesis is aspired.  

 

The identification of ecosystemic effect indicators according to the method suggested may 

make the determination of threshold values more effective. To which level a substance 

input, e.g., carbendazim, may be tolerated by an affected ecosystem is decided based on 

the indicator most sensitive for this input and significant for the ecosystem functioning. 

 

A restriction may also occur through difficulties in specifically assigning effects to inputs. 

As one reason interactions may impede exact cause-effect-relationships. For instance, the 

addition of zinc lessens the plant uptake of cadmium (Grant et al., 1998; McLaughlin et al., 
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1995). Also time delays appearing between the release of an emission and effect 

occurrence may hinder an assignment. This coincides with effects for whom the initiator 

may not be unambiguously determined. In some cases, the indicator selection may be 

aggravated by the aspect that the potential indicator is meaningful for the input considered 

but does not fit very well to a specific utility function. 

 

The present work treated effects appearing on the on-site scale. In implementing the 

indicator approach for adjacent ecosystems on larger scales to assess off-site effects one 

has to deal with the transport problem which is not yet adequately resolved. Effects in 

ecosystems spatially away from the agroecosystem allow neither quantitatively nor 

qualitatively to precisely trace cause-effect relations. The gap between site of emission 

and site of effect is characterised by diverse spatial and temporal scale transitions where 

complex transport and transformation processes occur. 

 

 

8 CONCLUSIONS 

Ecosystemic effect indicators prove to be a promising tool for an assessment of 

anthropogenic impacts on ecosystems. To conclude the questions posed (part 1: 

background) may be answered as follows: 

 

The interpretation of current literature reveals that both simple or systemic environmental 

indicators provided in literature are not suitable for the integrative approach intended in 

this work. Therefore, the new type of ecosystemic effect indicators embedded in an 

indicator model on the ecosystem scale (local and regional) is developed. 

 

Seven steps necessary to generally build up indicators are exposed in the present study 

including a clear method to derive the ecosystemic effect indicators which are function 

oriented. The complexity of relations between agricultural emissions and effects in 

ecosystems requires an optimal methodological integration of requirements and selection 

criteria for the indicators concerning scientific as well as application features. By combining 

top-down and bottom-up strategies the indicator derivation method is developed. The utility 

functions of ecosystems on the one hand and the inputs of agricultural production on the 

other hand represent the starting points of the approach. 
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Results of the case study demonstrate the applicability of the developed indicator 

derivation method for the on-site scale. The example of the input of soil pressure shows 

that the indicators may fairly well be related to threshold values allowing for quantitative 

statements. In many cases, however, such quantitative threshold limits are lacking, 

consequently restricting a final quantitative assessment of impacts of agricultural 

production on ecosystems. 

 

It ensues from the application of the indicator derivation method for material inputs that 

great importance has to be paid to time aspects. On the one hand the frequency and 

duration (and potential accumulation) of impacting stress and on the other hand the 

temporal sensitivity of receptors are concerned. Integrating temporal aspects into the 

consideration simplifies to select the ecosystemic effect indicator appropriate for a specific 

input. 

 

The present study shows the successful linkage of agricultural emissions and effects in 

ecosystems for the on-site scale. When implementing the indicator derivation method in 

adjacent ecosystems difficulties will appear in establishing quantitative cause-effect 

relations. 

 

As main foci of future research are proposed:  

(1) The application of the approach to derive ecosystemic effect indicators for adjacent 

affected ecosystems where the temporal and spatial scale transitions become 

significant. A suitable subject would be an affected aquatic ecosystem where 

momentous influences are expected by the emissions of nitrogen and phosphate. This 

impairment particularly concerns the system balance. Nutrification and acidification 

represent effects predominately influencing the system level whereas toxic substances 

like pesticides or heavy metals affect the species or population level. The application of 

the method to deduce ecosystemic effect indicators would conceivably succeed for an 

aquatic ecosystem. Opposed to the on-site scale different statements are expected 

concerning causality where relations might be more imprecise and loading capacities 

where more qualitative statements might result. 

(2) Further, the research should be forced in methods reasonably aggregating indicators to 

reduce the effort in considering large numbers of indicators. 
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(3) Another useful field would be the transformation of ecosystemic effect indicators into 

decision aid tools which may directly be implemented by farmers. 

 

Ultimately, regarding the discussion of limits the collaboration with social scientists is 

necessarily required. Transparency is needed in providing scientific fundamentals. As 

society sets preferences and priorities the precaution principle is postulated with regard to 

sustainability assessments. 

 

The political decision makers define limits. To pave the way such threshold limits should 

be scientifically preferably based. 
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B STATE OF THE ART OF ENVIRONMENTAL INDICATORS – USABILITY 
FOR THE DERIVATION OF ECOSYSTEMIC EFFECT INDICATORS 

ABSTRACT 

Environmental indicators are gaining more and more attention. They represent powerful 

tools which address different issues of concern. This paper reviews the state of the art of 

methods for indicator building, the various types of environmental indicators, how to 

classify them, the indicator models and their underlying frameworks. The options and 

limitations of environmental indicators are analysed with respect to their applicability in 

assessing the effects of agricultural production processes upon ecosystems. On the basis 

of this analysis we outline an approach for the derivation of ecosystemic effect indicators. 

Most papers considered address the issues of sustainability/sustainable development, 

ecosystem health/integrity and environmental monitoring. Currently, methods for the 

development of indicators are often unclear and non-transparent. Existing conceptual 

approaches to indicators show a high diversity with regard to their methodological (e.g., 

derivation procedure) and theoretical (e.g., goals) elements as well as their applicability. 

Our analysis ensued a lack of suitable systemic, function-oriented indicators that can be 

applied to assess the effects of agricultural production on affected ecosystems. We 

propose a fundamental seven step strategy to build indicators in the current study. The 

elaboration of these steps is mainly determined by the first step where goals and 

objectives are defined, including the definition of the target groups. As a result of our 

consideration we advocate a modified indicator model, a new type of indicator and a 

method for its derivation. 

 

 

INTRODUCTION 

Impacts of human activities on the environment are growing. Such impacts have to be 

assessed systemically, especially against the background of sustainability. Sustainability is 

an important and relevant political issue. Beginning at the conference of the United 

Nations in Rio de Janeiro 1992 and based on the Brundtland Report (WCED, 1987), the 

idea of sustainable development is a central goal of societal development and will 

increasingly influence future policies. Sustainable development touches various domains. 
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Besides ecological aspects, economic and social aspects are also implied. The concept of 

sustainability is rather political than scientific (ten Brink, 1991). Because of the mainly 

abstract and theoretical character of sustainable development, the implementation still 

remains critical. As Verbruggen and Kuik (1991) stated “although sustainable development 

has become a key concept, practical means to evaluate an initiative in relation to the 

objectives of sustainability do not exist”. 

 

The need for an integrated systemic framework (Waltner-Toews, 1996) and evaluation 

tools with regard to environmental effects is growing, particularly for sustainable 

agriculture. Recent sustainability assessments of agricultural systems have to be 

considered limited, since they are based on simplifications and normative settings of 

boundaries that reflect, and subsequently assess, only parts of the current situation (von 

Wirén-Lehr, 2000, i.p.). In most cases the research was sectorally carried out, 

concentrating on compartments or specific environmental media (Müller, 1992). 

Consequently, the evaluation of environmental impacts of agriculture (especially on 

ecosystems) still is fragmentary. Moreover, ecosystems are highly complex that 

complicates an exact determination of their limits and regeneration rates. Additionally, due 

to the lack of empirical data only few of the numerous diverse biotic and abiotic 

interactions and interdependencies can quantitatively be portrayed (Mühle and Claus, 

1996; van Ittersum and Rabbinge, 1997). 

 

There are global efforts to quantify and assess the influences of agricultural production on 

the environment in order to draw conclusions for agricultural and environmental policy. 

Agricultural production and utilisation of goods, e.g., processing of products or combustion 

in heating plants have outputs that are material (e.g., pesticides) and non-material (e.g., 

soil pressure). The outputs are transported and transformed as a function of space and 

time. The resulting concentration and deposition (inputs) may have significant impacts and 

may cause complex effects upon the environment at different scales. This concerns both 

the environmental abiotic (soil, air, water) and biotic (species, communities) resources.  

 

Environmental indicators are increasingly employed to assess the environmental impacts 

of various anthropogenic stresses on ecosystems. They have been proposed as a tool to 

solve the problem of high complexity of ecosystems as well as to reduce the amount of 

effort put into taking direct measurements and determining limits (Bockstaller et al., 1997). 
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Indicators are not only a medium to reduce complexity they also serve as an auxiliary 

means for evaluation purposes. Thus they may play a role in the implementation of 

sustainability.  

 

Our current study is part of an interdisciplinary project on sustainability in agriculture, titled 

“Sustainable Production and Utilisation of Energy Crops” (SPUEC) with focal points on 

consequences of crop production and utilisation systems in Central Europe. The project 

focuses on the ecological aspect of sustainability as have Hansen and Oestergard (1996). 

We regard the life cycle of crops as being ecologically sustainable if none of the 

ecosystems affected (either the agroecosystem itself or others, e.g., aquatic ecosystems 

or forests) and its components is impaired in the long run (Härdtlein et al., 1998). The 

basic aim of our integrated approach is to develop a tool that relates the production 

systems to affected ecosystems considering the entire system. Therefore, we are in need 

of systemic, transferable environmental indicators.  

 

Indicator derivation turns out to be a critical issue. A comprehensive framework to deduce 

indicators for the health of ecosystems is still lacking (Cairns et al., 1993) or characterised 

by a poor theoretical underpinning (Mitchell et al., 1995). 

 

This paper focuses on putting in order the huge quantity of environmental indicators, 

models, frameworks and building processes for indicators, leading to an outline of gaps 

with regard to our purpose - aiming at an ecosystem approach. Indicator requirements 

associated to environmental indicators are presented in detail. Additionally, we elucidate 

the process of indicator building, the various types of environmental indicators, their 

classification, and appropriate indicator models. Subsequently, we present how the diverse 

indicator types and models are embedded in indicator frameworks. We discuss the 

indicator types and models with respect to their capabilities, their transferability and 

applicability in the SPUEC context. In particular, the objectives of our paper are 

- to compare the existing indicator types and models and their actual capabilities, 

- to analyse what is usable for our intention, and 

- to identify what is additionally needed for our purpose. 

Based on this literature review we present a short overview of a new indicator model and 

derivation approach for ecosystemic effect indicators (EEI). 
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STATE OF THE ART OF ENVIROMENTAL INDICATORS 

A historical overview about the development of environmental indicators was given by 

Rapport (1992). The author defines three main waves related to i) natural history ii) 

ecosystem sciences and iii) ecologically sustainable development. Our paper concentrates 

on recent developments in the fields of ecosystem sciences and sustainable development, 

whereas the environmental assessment approaches (SETAC, 1992; SETAC, 1993) etc. 

are not considered. Others are working on such impact assessment methods (e.g., de 

Haes et al., 1999; Hickie and Wade, 1998). 

 

 

Definition 

The items “environmental” and “ecological” indicator are often synonymously used in the 

indicator literature. However, according to Linster (OECD, 1998; pers. com.) environmental 

indicators include the ecological ones. The latter comprise the fields of ecology and 

ecosystem functioning in the narrower sense (Linster (OECD) 1998; pers. com.). In this 

article we examine environmental indicators. 

 

Indicators are “simple things that are believed to reflect or “indicate” things that are not 

directly measurable” (Waltner-Toews, 1996). In general, an indicator represents a 

synthesis of information or data (OECD, 1993). In particular, however, almost every 

indicator article includes a different indicator definition. As Mitchell et al. (1995) stated, an 

indicator “transmits information concerning complex systems so as to make them more 

comprehensible”. Accordingly, McQueen and Noack (1988) termed an indicator “a 

measure that summarises information relevant to a particular phenomenon, or a 

reasonable proxy for such a measure”. An indicator is a variable, “hypothetically linked to 

the variable studied, which itself cannot be directly observed” (Chevalier et al. (1992) in 

Waltner-Toews (1994)). Thus a variable in “its generic sense is an operational 

representation of an attribute of a system and each variable has a set of possible values” 

(Klir, 1985). The latter was used by Gallopin (1994) as the basis to define indicators as 

“variables which may be nominal, ordinal or cardinal”, and “at given level of aggregation 

they are definable as individual variable, as functions of other variables or as correlated 

with other variables”. A similar point of view is taken by Bakkes et al. (1994) and van 

Harten et al. (1995) who point out that indicators are measurable variables or pieces. For 
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instance, indicators describe the state of biotic and abiotic resources that should be 

reached and kept in the long run with regard to spatial and temporal concerns (Kalk et al., 

1995). We define an indicator as a measurable variable which characterises systems or 

system components by reducing complexity and integrating information. 

 

 

Use of indicators 

The main task of environmental and ecological indicators is to steer actions (Bakkes et al., 

1994), to provide easily accessible information, to improve communication about the state 

of the environment and to aid in environmental policy (Walz et al., 1997). Environmental 

indicators are used for the following purposes:  

 

- Demonstrating the progress towards goals and objectives (Mitchell et al., 1995). 

- Synthesizing masses of data (Mitchell et al., 1995). 

- Communicating data to discipline experts, policy makers, non-experts or the public 

(Mitchell et al., 1995). 

- Environmental monitoring for the characterisation and observation of the condition 

and quality of ecosystems (Hunsaker et al., 1993), their parts and the whole 

environment, particularly for an early warning (Arndt et al., 1996). Indicators assess the 

impact of stressors on one or several objectives (Bockstaller et al., 1997). 

Environmental monitoring is partitioned into i) monitoring the factors influencing the 

environment and the current situation, ii) the assessment and evaluation of the 

environmental condition and iii) the prognosis of the further development of the 

environment (Zierdt, 1997). 

- Formulation of environmental measures as the basis of technological approaches 

for environmental quality (Rennings, 1994).  

- Environmental controlling of enterprises, production systems or management 

activities for the identification of the appropriate target groups of environmental policy 

measures (Münchhausen and Nieberg, 1997). 

- Facilitating political decision making and setting of priorities (Müller and Wiggering, 

1999). 
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- Evaluation of environmental measures (e.g., for agricultural policy), assessing the 

success of environmental protection measures, testing political success and assessing 

policy consequences (Münchhausen and Nieberg, 1997). 

- Expression of interactions of ecology and economy for an economic environmental 

evaluation (Zieschank and Nouhys, 1995). 

 

 

Indicator requirements and selection criteria 

The specific goal or purpose of each investigation planned determines the formulation of 

the indicator requirements. It is obvious that differences in requirements for environmental 

indicators exist. Consequently, an exact description of such requirements is essential. The 

indicator selection follows the criteria previously determined. Cairns et al. (1993) arrived at 

the following list of ideal indicators (table B1): 

 

 
Table B1: List with ideal indicators differentiated into indicator requirements and criteria for 

indicators ordered into more scientifically and application relevant tasks (Cairns et al., 

1993). Some of the characteristics summarise the background information necessary 

before an indicator is scientifically defensible. The requirements which are of special 

interest and great importance to our indicator development are bold 

 

Scientific features Application features 

1. Sensitive to stressors without an all or none 

response  

10. Socially relevant 

2. Diagnostic of the stressor causing the problem 11. Broadly applicable 

3. Integrative 12. Measurable 

4. Biologically relevant  13. Interpretable 

5. Non-destructive of the ecosystem 14. Cost-effective 

6. Continuity in measurement over time  

7. Of an appropriate scale  

8. Non-redundant  

9. Timely (providing information quickly enough)  
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Other authors present similar requirements (table B2). Moreover, Griffith (1998) provided 

an overview of recent articles and further references. The various indicator requirements 

and selection criteria can be assigned to a hierarchy: from general to specific. The specific 

criteria tend to relate to the technical application, whereas the general criteria are more 

related to the goals and objectives. Important to the applicability of indicators are the “three 

Rs”: robustness, relevance and reliability (Rapport, 1990). 

 

 
Table B2: Indicator requirements and criteria for indicators as presented by various authors, 

combined and classified into two categories: scientific and application features. Only 

the more universal requirements are listed below. The requirements which are of 

special interest and great importance to our indicator development are bold. Compiled 

after Bockstaller and Girardin (1999); Braat (1991); Gallopin (1997); Girardin and 

Bockstaller (1997); Müller (1998); OECD (1993); Pankhurst et al. (1997); SRU (1994); 

SRU (1996); Turco et al. (1994); van Harten et al. (1995); Walz et al. (1997) 

 

Scientific features Application features 

Sensitivity Data availability 
Predictive meaning Methodological transparency 
Problem relevance Comprehensibility / easy interpretation 

Scientific basis, methodological transparency Broad applicability 

Reflection of some aspect of ecosystem 
functioning 

Measurability (readily available or available at 

reasonable costs) 

Quantification  International comparability and compatibility 

Possibility of aggregation Feasibility 

Representativeness Justifiable effort 

Relevance of endpoint Cost effective 

Reproducibility Participation by the public in the use  

Space scale relation  

Time scale relation  

 

 

The mutually exclusive nature of some of the characteristics (table B1; B2 and B11) is 

often disregarded. Usually, it is necessary to develop indicators scale-related. Species, 

population or sub-community level indicators are more sensitive than ecosystem-level 

properties (Schindler, 1990). Consequently, indicators at low biological and spatial scales 
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(molecular, cellular level) often show low ecological relevance and predictive value. 

However, they are highly stress specific, indicate short-term responses and are 

characterised by a high signal-to-noise ratio. Indicators of higher spatial scales 

(communities, ecosystems) show high ecological relevance and predictive values. They 

have a low stress specificity and indicate long-term responses (Gentile and Slimak, 1992). 

It may be possible to predict ecosystem-scale effects of previously unstudied perturbations 

by knowing their most sensitive targets in the ecosystem. Sensitivity concerns the material 

and non-material inputs due to agricultural production as well as the possible effects and 

changes within ecosystems. The sensitivity of the indicator affects the integration of 

temporal variability (Breckling and Müller, 1997; Schubert, 1991). Single stresses may 

cause diverse effects depending on their timing and the susceptibility of the recipient 

ecosystem (Rapport, 1992). This necessitates a consideration of the spatio-temporal scale 

of the exposure as well as the time scales of response when selecting and evaluating 

ecosystems’ response (Hunsaker et al., 1993). This means examining short-term and 

long-term sensitivities. 

 

An accordant scale is important not only for the goal intended but also for the 

implementation process of the indicators. For instance, if an indicator reflects a national 

scale it is not suitable for a farmer. It must be noted that in some cases (e.g., in the phase 

of decision making) highly aggregated indices or macroindicators (appendix 1) are 

necessary. In other cases disaggregated single indicators are needed, e.g., during the 

problem identification phase.  

 

Other requirements for indicators are ease of data collection and minimal costs. The 

indicator should be measurable using standard procedures with documented performance 

and a low measurement error. 

 

To develop indicators for assessing environmental impacts of agriculture on ecosystems it 

is essential to get reliable and quantitative information about the manifold effects on 

environmental targets and ecological functions. The environmental indicators needed for 

that purpose have to meet a series of requirements. They must be highly sensitive. They 

should be relevant to the objective they indicate with a functional linking to the stressor. 

The deduction of the indicators should be scientifically based. Their integration capability 

should to be high. Integration capability in this context means that the indicators should be 
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capable of integrating different receptors as well as interactions of different inputs whether 

they are synergistic (e.g., soil tillage and decomposition of pesticides (Düring and Hummel, 

1992) or antagonistic. Furthermore, the indicators should be transformable into decision 

aid instruments. Moreover, the needed indicators should permit distinctions between 

production intensities and types of ecosystems concerning the hemerobie, e.g., all 

degrees between highly anthropogenic systems and natural systems (Kowarik, 1988) 

should be made. 

 

 

Indicator building 

The top-down and the bottom-up procedures 

In principle, there are two main approaches to the evaluation of environmental degradation 

at the community and ecosystem level (Gentile and Slimak, 1992; Hunsaker and 

Carpenter, 1990; Munkittrick and McCarty, 1995). The top-down method directly assesses 

alterations in ecosystems. Subsequently, problems and causative agents are determined 

top-down (Cairns et al., 1993). By evaluating the multiple and cumulative effects of 

chemical and non-chemical stresses the approach is particularly appropriate for the 

regional and global scale (Gentile and Slimak, 1992). A similar procedure is used in 

deriving indicators. Starting with a defined goal, it is resolved into a number of objectives 

(figure B1) which are necessary to fulfil this goal (Hansen and Oestergard, 1996). 

Subsequently, the objectives are subdivided into causal factors and finally into indicators. 

Indicators then represent the degree to which the goal is achieved (Rennings, 1994). The 

top-down procedure only considers already discovered problems, and may not be suitable 

for new problems (Zieschank et al., 1993). 
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Figure B1: The procedure from the non-measurable superior goal (sustainable agriculture) top-

down to the general objective (utility functions) and the directly measurable, specific 

objectives 

 

 

On the other hand, bottom-up methods apply laboratory data of effects on simple systems 

to develop a paradigm reflecting more complex natural ecosystems. Indicators may also 

be developed bottom-up. Starting with a detailed and complete description of a current 

situation, e.g. degradation of different receptors by an impact, one aggregates the potential 

indicators and selects to the top, represented by macroindicators (SRU, 1994) (figure B2). 

Unlike the top-down approach, the bottom-up approach may be not goal adequate 

(Zieschank et al., 1993). 
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Figure B2: The bottom-up approach: the aggregation of potential indicators and specification of 

macroindicators 

 

 

The most promising procedure to yield appropriate results is a combination of both bottom-

up and top-down. It is necessary to aspire a synthesis: deriving indicators with the top-

down approach and aggregating them in a bottom-up direction (Müller et al., 1998). 

 

 

The process of indicator building and selection 

The words indicator building, construction, creation, derivation, development, as well as 

elaboration are synonymously used in literature. Even “selection” is applied with the same 

meaning. But to provide basics for policy and decision makers requires a consistent use of 

terms that reflect the same ideas. 

 

To build indicators broad management and policy goals, protective values and explicit 

ecosystem objectives must first be formulated. The indicators suitable for the problem 

which has to be solved must be determined (Beese, 1996). Indicators are always 
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developed according to an objective. Usually, concepts deduce single indicators or 

indicator sets to “translate” the defined values and goals into measurable parameters. 

 

Many of the currently available environmental indicators have been selected from 

preexisting lists with little or no modification (Mitchell et al., 1995). The process of indicator 

building is often non-transparent in available indicator models. Frequently, indicators are 

presented without specifying the selection process. Often they are developed with very 

subjective expert questionnaires (Münchhausen and Nieberg, 1997; Nieberg and 

Isermeyer, 1994), or one falls back upon existing ones. Notwithstanding we have identified 

seven steps for the indicator building (figure B3). 

 
Figure B3: The building and specification of indicators, seven steps for the indicator 

elaboration/building 

 

 

1. Definition/identification of goals (SRU, 1994). Indicators cannot be identified until 

goals and objectives are specified and values and targets are determined (Doppler and 

Vandré, 1999). The main, non-measurable goal can be broken into general objectives 

(Cairns et al., 1993) which are replaced by measurable ecosystem objectives (figure 

B1). The objectives represent the basis for the indicator derivation (SRU, 1998). 
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2. Determination of the target group. The end-user for whom the indicators are tailored 

must be defined (scientific community, planning community, policy/decision-makers, 

public etc). The degree of complexity of the information may be higher if the indicator is 

intended for an use by specialists (Braat, 1991). 

3. Indicator building for issues of concern. Two main streams are pursued. Firstly, an 

estimation by authors is done. The indicators are formulated by the authors themselves 

or result from subjective expert questionnaires. This approach rapidly provides sets of 

static, case- and site-specific indicators. However, their use is restricted due to the lack 

of information about the development of the indicators and their low transferability. 

Secondly, a scientific derivation is performed. For some issues indicators should be 

newly constructed. This construction should be done scientifically and in consultation 

with those having relevant subject-knowledge (Mitchell et al., 1995). It results from a 

scientific examination of general functions, processes and structures of systems 

founded on a model-based perception of ecosystems (Young, 1997). This scientifically 

based deduction method requires extensive knowledge about the system under 

investigation. Such a deduction allows for systemic indicators and stands out by a high 

transparency as well as a good transferability. 

Different approaches to indicators are commonly used. Either a mass of data is taken 

and communicated using a series of highly specific indicators or the data is taken and a 

few composite indicators are constructed from them or a key indicator is taken as being 

representative of the full array of indicators (Mitchell et al., 1995; von Wirén-Lehr, 

1999). The data is obtained from direct or indirect measurements as well as from 

modelling estimates. Qualitative data will be inserted in cases lacking in quantitative 

data. The indicator building includes the following: i) creation of a conceptual model; ii) 

identification of parameters (biotic and abiotic, Elliott, 1997) and listing of potential or 

candidate indicators; iii) checking for the data availability. 

4. Specification of criteria for the assessment of the indicators (Walz et al., 1997). 

Comparison of the list of developed potential indicators with selection criteria (Walz et 

al., 1997), followed by the selection of the final indicators. 

5. Determination of references and threshold values. To assess the progress towards 

an intended objective or the desirable state the indicators should be quantifiable. In 

cases where indicator values are already available the indicators may be compared to 

reference conditions. These are either sustainability criteria, policy targets or historical 

conditions. If indicator values are not available, it might be possible to deduce threshold 
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values from the constructed indicators. The reference system being a non-manipulated 

system offers the best guarantee for the preservation of the fundamental values. The 

closer one comes to the reference the larger the maintenance of ecological 

sustainability will be (ten Brink, 1991). 

6. Test of usefulness (Bockstaller and Girardin, 1999). A validation test may assess 

whether the primary objectives have been achieved. Thus the theoretically developed 

indicators and their applicability are tested in a case study. 

7. Evaluation by experts. Once the indicators have been developed, they should be 

reviewed by the target group for whom they are intended with regard to the previously 

defined requirements (Mitchell et al., 1995). For instance, the scientific community will 

evaluate indicators with respect to the indicator properties desired or the objectives of 

the indicator concept. 
 

Classification of indicators 

We fully agree with Rapport (1994) who stated “the indicators are not just one grouping, 

but a number of groups”. Generally, manifold types of indicators can be distinguished 

according to their focus of characterisation, views (integrative/systemic or traditionally 

reductionistic), their functions, as well as their goals and objectives (table B3a, B3b). Since 

the beginning of the 1970s a partitioning of overall environmental indicators in ecosystem 

sciences into different types has been carried out. The main types treated were: response 

and stress indicators (Rapport, 1992). Stress has been defined as a detrimental or 

disorganising influence (Odum, 1985). At that time three foci evolved: “purity”: mostly with 

regard to chemical purity but also to the concept of “pristine nature”; “ecosystem integrity” 

a concept that was not operationalised then, but having already tried to find key indicators. 

Better results, however, were obtained for disintegrities; and “amenities”: i.e. nature’s 

services (Rapport, 1992). Meanwhile, more indicator types appeared. 

 

Environmental indicators may be divided into two categories: 

- simple, case or site-specific indicators with a reductionistic view (table B3a) 

- systemic functional indicators (table B3b). 
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Table B3a: Classification of available environmental indicators with an emphasis on simple indicators. The classification represents the 

authors’ opinion of best fit. It is possible that some articles are more appropriate to other areas 

 

Author Indicator types Derivation Orientation Target group Spatial scale of 
use 

Goal 

  1: Estimation by 
authors or 
expert 
questionnaires 

2: Scientific 
deduction 

3: Not specified 

1: Application 

2: Theory 
 

1: Scientific 
community 

2: Planning, 
management 
community 

3: Farmer 
4: Policy/decision 

makers 

1: Local scale 

2: Regional scale 

3: National scale 
4: Global scale 

1: Soil health/quality 

2: Ecosystem 
health/integrity 

3: a) Sustainability/ 
sustainable 
development 

b) Sustainable 
agriculture 

4: Environmental 
monitoring/reporting 

(Arndt et al., 1996) Bioindicators * 
(accumulation 
indicators, 
reaction indicators) 

1 1 1 1, 2, (3) 4, (2) 

(Bockstaller and Girardin, 1999; 
Bockstaller et al., 1997; 
Girardin and Bockstaller, 1997) 

Simple indicators 
Composite indicators 

2 1 3 1, 2 3b 

(Braat, 1991) Predictive indicators 
Retrospective 
indicators 

1 1 1, 2, 4 3 3a 
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Author Indicator types Derivation Orientation Target group Spatial scale of 
use 

Goal 

(Cairns et al., 1993) Compliance indicators 
Diagnostic indicators 
Early warning 
indicators 

1 1, 2 2, 4 1, 2 2, 3a, 4 

(Costanza, 1994) Vigor indicators 
Productivity indicators 
Resilience indicators 

3 2 1  2 

(Dick, 1997) Bioindicators 3 1 1 1 1, 4 
(Doran and Parkin, 1994;  
Doran et al., 1996; Doran and 
Safely, 1997) 

Soil quality/health 
indicators 

1 1 1, 2 1, 2 1, 3a 

(Doube and Schmidt, 1997) Bioindicators 1, (2) 1 1, (3) 1, 2 1 
(Dubsky et al., 1998) Agri-ecological 

indicators 
1 1 1, 4 2 3b 

(Elliott, 1997) Bioindicators 3, (1) 1, 2 1 1 1, 3a 
(Friend and Rapport, 1991; 
Rapport and Friend, 1979) 

Stressor indicators 
Response indicators 

2 1 4 3 4 

(Gilbert, 1996) Sustainability 
indicators 

1, 2 1 1, 2 1 - 3 3a 

(Gunkel, 1994) Bioindicators 1 1 1 1 4, (2) 
(Halberg, 1998) Resource use 

indicators 
environmental impact 
indicators 

1 1 3, (4) 1, (2) 2 

(Hansen and Oestergard, 1996; 
Hansen, 1996) 

(Sustainability) 
indicators 

1, (2) 1 1, 3, 4 1 3b 
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Author Indicator types Derivation Orientation Target group Spatial scale of 
use 

Goal 

(Harris et al., 1996) Soil health indicators 
Soil quality indicators 

1 1, 2 1, 2 1 1, 3b 

(Hoffmann-Kroll et al., 1995) State indicators 
Impairment indicators 

1 2, (1) 1, 4 3, (2) 4 

(Hülsbergen and Diepenbrock, 
1997) 

Agro-environmental 
indicators 

2 2 1, (3) 1 3b 

(Hunsaker and Carpenter, 
1990) 

Stressor indicators 
Exposure indicators 
Habitat indicators 
Response indicators 

3 1 1, 2 2, 3 4 

(Karlen and Stott, 1994; Karlen 
et al., 1997) 

Soil quality indicators 1 2, (1) 1 2, (1), (3) 1, 3a,b 

(Lorenz et al., 1997) Pressure indicators 
State indicators 
Impact indicators 
Response indicators 

3 1 2 2, 3, (1) 3a 

(Luxem and Bryld, 1997) Indicators of 
sustainable 
development 

3 1 4 3, (4) 3a 

(Mathes et al., 1991) Ecological indicators 3 2 1 1 4 
(McCullum et al., 1995) Soil quality indicators 

Soil health indicators 
3 2, (1) 1, 2 1 2 

(Mitchell et al., 1995) Sustainability 
indicators  

2, (1) 2 1 1 - 4 3a 

(Münchhausen and Nieberg, 
1997) 

Agro-environmental 
indicators 

1 1 1, 4 2, 3 4 
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Author Indicator types Derivation Orientation Target group Spatial scale of 
use 

Goal 

(Nieberg and Isermeyer, 1994) Agro-environmental 
indicators (direct 
indicators, indirect 
indicators) 

1 1 3, 4 2 3b 

(OECD, 1993; OECD, 1997) Pressure/driving force 
indicators 
State/condition 
indicators 
Response indicators 

1 1, (2) 1, 4 3, 4 3a, 3b, 4 

(Opschoor and Reijnders, 

1991) 

 

Pressure indicators 
Environmental effect 
indicators 

1 2 1 2, 3 3a 

(Radermacher et al., 1998) Descriptive indicators 
Normative indicators  
Stress indicator  
Impact indicators 
(accumulation, effect, 
risk) 

3 2 1, 4 3 3a, 4 

(Rapport, 1992; Rapport, 1994) Ecological indicators 
(diagnostic indicators 
Risk indicators 
Synoptic or bottom-
line indicators  
“healthiness” 
indicators) 

3 1, 2 1, 4 2, 3 2, 3a 

(Roper and Ophel-Keller, 1997) Bioindicators 3 1 1 1 1 
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Author Indicator types Derivation Orientation Target group Spatial scale of 
use 

Goal 

(SRU, 1994) Source indicators 
Dispersion and 
transformation 
indicators 
Impact indicators 

3 1 1, 4 3 3a, 4 

(Syers et al., 1995) Sustainable land 
management 
indicators 

3 1 1 1, 2, 3 3 

(Turco et al., 1994) Microbial indicators 1 1 1 1 1, 3a 
(Walz et al., 1997) Pressure indicators 

State indicators 
Response indicators 

1 1 1, 2, 4 3 4 

(Zierdt, 1997) Nature indicators 3 1 1, 2 2 4 
(Zieschank et al., 1993) Scarcity indicators 

Denaturing indicators 
Stress indicators 
Impact indicators 

1 2, (1) 1, 4 3 4 

( ): limited useable for that issue 

*Bioindication as part of ecotoxicoloy differentiates three essential groups (Arndt et al., 1996): active, passive biomonitoring and bioindication with 
synecological aspect (indicating concrete key reactions in ecosystems depending on dominant organisms) 
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Table B3b: Classification of available environmental indicators with an emphasis on systemic indicators. The classification represents the 

authors’ opinion of best fit. It is possible that some articles are more appropriate to other areas 

 

Author Indicator types Derivation 

1: Estimation by 
authors or 
expert 
questionnaires 

2: Scientific 
deduction 

3: Not specified 

Orientation 

1: Application 

2: Theory 

 

Target group 

1: Scientific 
community 

2: Planning, 
management 
community 

3: Farmer 

4: Policy/decision 
makers 

Spatial scale of 
use 

1: Local scale 

2: Regional scale 

3: National scale 

4: Global scale 

Goal 

1: Soil health/quality 

2: Ecosystem 
health/integrity 

3: a) Sustainability/ 
sustainable 
development 

b) Sustainable 
agriculture 

4: Environmental 
monitoring/reporting 

 
(Beese, 1996) 

 
Analytical indicators 
Joint indicators 
Systemic indicators 
Normative indicators 

 
3 

 
2 

 
1 

 
1, 2 

 
(2) 

(Dilly and Blume, 1998) Orientors 3 2 1 1, 2 3a 
(Gallopin, 1997) Sustainability 

indicators 
3 1 4 3 3a 

(Gupta and Yeates, 1997) Bioindicators 1 1 1 1 1 
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Author Indicator types Derivation Orientation Target group Spatial scale of 
use 

Goal 

(Müller, 1998; Müller and 
Wiggering, 1999) 

Functionality 
indicators 

2 1, 2 1, 4 1, 2, 3 2 

(Sparling, 1997) Bioindicators 1 1, (2) 1 1 1 
(ten Brink, 1991) Amoeba as an 

indicator 
2 1 1, 4 1, 2, 3 3a 

(van Straalen, 1997) Community 
bioindicators 

2 1, (2)i 1, 4 1 1, 4 

(Xu et al., 1999) Structural indicators 
Functional indicators 
Ecosystem level 
indicators 

3, (1) 2 1 1 2 

(Young, 1997) Sustainability index 3 2 1 3 3a 

( ): limited useable for that issue 
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In tables B3a, and B3b we propose a classification of indicator approaches according to 

our categories simple and systemic. We give an overview about the various ideas shared 

in the indicator literature. 

 

The systemic indicators will be considered in more detail, since we aim at an integrative 

systemic approach. Beese (1996) created indicators based on ecosystem functions, 

especially the multifunctional use of forests. He developed indicators located on different 

hierarchical levels which permit the examination of the actual state of the ecosystem and 

its development. Finally, an evaluation is included. The functionality indicators deduced by 

Müller (1998) are based on the background of ecosystem theory. The goal represents 

ecosystem integrity. Integrity means that the main orientation of ecosystem protection is to 

maintain the organisation of the ecosystem and the development in self-organising 

process sequences (Kay, 1993). The functionality indicators are based on system 

orientors partly being essential processes and functions of ecosystems. These indicators 

serve to answer concrete questions, e.g., for the framework of the German Environmental 

Economic Evaluation. However, they allow neither an assessment of impacts nor the 

determination of limits for impacts and inputs. 

 

 

Existing indicator models and approaches 

Frequently, the various indicator types form part of an indicator model. By means of 

indicator models it is tried to describe relations between economy and ecology (Hoffmann-

Kroll et al., 1995). These models consist of a frame of different horizontal categories 

juxtaposed with accordant indicators (e.g., state or response indicators, figure B4). The 

ecologically oriented models are based on simplified schemes of linkages between 

ecological and economic systems (Rennings, 1994). In general, assumptions regarding 

cause/source-effect-chains are explicitly named. Often, these causal models assume 

linear relations between the human activities and the environment, being aware, however, 

that the real relations are more complex (OECD, 1993), e.g., due to spatial and temporal 

scale transitions. 

 

Dominant are stress models like the Canadian Stress Approach (Friend and Rapport, 

1991; Rapport and Friend, 1979). The Pressure-State-Response approach (OECD, 1993) 
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which was derived from the Canadian Stress Approach applied to ecosystems (Rapport 

and Friend, 1979) is rapidly gaining international prominence. Originally ‘response’ stood 

for ecosystem response (Bakkes et al., 1994). Nowadays, it is mainly used to denote the 

response of society (Gallopin, 1997; OECD, 1993). An overview of the most relevant 

available indicator models and approaches is given in table B4. 
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Table B4: Characteristics of existing indicator models that are mostly cause-effect oriented, their purpose, indicators and limitations concerning 

our intention 

 

Model Stress Pressure-state-response Actor-acceptor Source-transmission-effect 

Purpose Rely ecosystem and man in a 

system connection 

Integration of environmental 

decision making 

Economic evaluation of the 

environment 

Determination of environmental 

quality standards 

Indicator types Stress/stressors 

Response 

Pressure 

Condition 

Response 

Cause/actor 

Acceptor 

Emission 

Transmission 

Effect 

Assumption Existence of spatially related 

environmental report system 

Determination of state through 

impact of society 

No linear cause-effect-chains; 

cognitive conducted relation 

Estimation of the whole damage 

potential 

Limitations Simplified cause-effect-chains  

No consideration of ecological 

functions 

Regional or higher scale 

Minor consideration of effects 

International or national scale 

Main focus on state conditions 

Mainly economic evaluation 

Functions and structures not 

considered 

National scale 

Indicator categories not sufficiently 

filled with usable indicators 

Reference (Friend and Rapport, 1991; 

Rapport and Friend, 1979) 

(OECD, 1993) (Zieschank et al., 1993) (SRU, 1994) 
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Stress Response Environmental Statistic System Approach (STRESS) (Friend and 

Rapport, 1991; Rapport and Friend, 1979) 

The aim of the Canadian model is to relate environmental stress, its impact on and 

reactions of ecosystems and/or man in a system. Its focus lies on the interface between 

the production-consumption activity of man and the transformation of the state of the 

environment. Stressors are outputs like emissions, which have a certain extension in 

space and which could alter the natural and human environment. Stress is the pressure 

exerted by stressors (e.g., the spatially determined inputs like concentrations and 

depositions) on the environment. Two types of indicators are divided: the first type are 

stress indicators and stressors (human activities as sources of stress on ecosystems) 

partitioned into six main sources of stress. The second type are responses (Friend and 

Rapport, 1991; Rennings, 1994). Environmental response to stressor activities are 

distinguished from human collective and individual responses to environmental 

degradation and resource depletion (Friend and Rapport, 1991; Rapport and Friend, 

1979). The model aims at the regional or higher scale and does not consider ecological 

functions. A critical point of this model is the simplified cause/source-effect-chains 

(Rennings, 1994). They do not reflect the much more complex reality of ecological effect 

interrelations. Therefore, the Stress approach might be better regarded as a kind of a 

classifying system.  

 

AMOEBA-Approach (ten Brink, 1991) 

AMOEBA is a general method of ecosystem description and assessment. The setting of a 

verifiable ecological objective is a prerequisite for the approach. A reference system, a 

historic or current reference area relatively undisturbed, is always needed in this approach. 

Having used indicators of the actual environmental situation ten Brink (1991) developed an 

ecological index (non-weighted addition of the indicator deviation from a reference circle) 

related to state conditions. The AMOEBA approach was applied to the North Sea and 

major rivers in the Water Management Plan. Further, the approach can be applied to many 

other systems at diverse scales. The AMOEBA approach appears to be of reasonably 

universal applicability (Bakkes et al., 1994). However, it is also oriented towards real 

objects and limited to the monitoring of the actual state, and does not allow ascertaining 

limits of impacts on ecosystems considered. 
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Pressure-State-Response-Approach (PSR) (OECD, 1993) 

This model aims at the integration of ecological aspects during economic decision making 

and at the employment of indicators in environmental performance reviews. The model is 

based on the assumption that actions of the economic system (production, use of 

resources) always influence the state of the environment by loadings. In turn, 

environmental alteration necessitates reactions of the economic system. Thus the model 

belongs to the cause-effect related type. However, the Driving Force-State-Response 

model states that there is yet no causality implied among indicators between cells, neither 

horizontally (driving force-state-response) nor vertically (social-economic-environmental-

institutional) (Gallopin, 1997; OECD, 1997). Three types of indicators are subdivided in this 

model: pressure, state and response indicators with regard to environmental performance. 

Recently, the term pressure was modified into driving force (D) (OECD, 1997; UN, 1995). 

The DSR-Model addresses the issue of sustainable development with a consideration of 

the ecological and the human subsystem. The limiting issues of these two models, PSR 

and DSR, with respect to the needs of the SPUEC project are models' orientation on the 

national or international scale, a primary focus on state conditions and a minor integration 

of environmental effects. 

 

Actor-Acceptor-Model (AAM) (Zieschank et al., 1993) 

The model was developed for an economic assessment and evaluation of the environment 

starting with its actual state. Economic activities may ensue negative accompaniments 

which should be considered in societal decision making. Therefore, this model is intended 

to gather environmental alterations. The model belongs to the cause-effect related type. 

There are six types of indicators in this model dedicated to sources of environmental 

loading, environmental media (air, water) and impacts. Transport and effects of inputs 

through environmental media are also implied. Acceptors are real objects in the 

environment which are touched by impacts. The indicators do not describe linear cause-

effect-chains. Rather, they indicate “a heuristic meaning, a cognitively conducted relation” 

(Zieschank et al., 1993). The methodological basis of this approach is the ecological risk 

analysis. Initially the method uses a top-down approach, later, to differentiate full-scale and 

textual issues, a bottom-up approach is used. The approach examines at the national 

scale. Ecosystem functions or structures are not regarded in this approach.  
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Source-Transmission / Transformation-Effect-Model (STE) (SRU, 1994) 

The STE-Model aims at determining environmental quality standards. It is based upon 

effects on different targets and considers cause-effect-chains. All acidifying substances 

have to be summed up in a whole acid damage potential. For example, it is not sufficient 

to regard only one acidic substance, e.g., H2SO4. Three types of indicators are used: i) 

emissions and structural interventions/changes, ii) transmission, transformation and 

accumulation and iii) effects on targets. These types of indicators are not sufficiently 

defined and not yet applicable. 

 

Further approaches to indicators belong to the fields of life cycle assessment, risk and 
environmental impact assessment, which are not examined in this review. Examples of 

this type of research represent the approaches of Belaoussouff and Kevan (1998); Cairns 

(1998); de Haes et al. (1999); Gentile and Slimak (1992); Giampetro (1997); Hickie and 

Wade (1998); Hunsaker et al. (1993); ISO (1998); Lenz, (1999); Klein and Klein (1990); 

SETAC (1993); van der Werf (1996). 

 

 

Indicator frameworks 

The terms “indicator systems” and “indicator framework” are interchangeably used. 

Indicator frameworks or systems are the superstructures incorporating societal values and 

goals. They include indicator models with manifold indicator types, an assessment and 

evaluation. For example, the Actor-Acceptor-Model was developed for the framework of 

the German Economic Ecological Evaluation (Zieschank et al., 1993).  

 

There is no framework that generates indicators for every purpose (OECD, 1993). Several 

analytical frameworks have been utilised comprising a “sector approach” - checking 

indicators of environmental impact from the point of view of economic sectors. There is 

also the “media approach” which considers living resources, air, water and land. Further 

on, the “goals approach” selects indicators in accordance with administrative mandates 

(Gallopin, 1997). The purpose of an indicator framework should be to organise the process 

of indicator selection and development (Cairns et al., 1993) as well as to organise 

individual indicators or indicator sets in a coherent manner. To establish an indicator 

system requires decisions concerning indicator types, classification of environmental 
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problems, spatial and sectoral aggregation (Walz et al., 1997). The frameworks can help to 

identify data collection needs. The guidance of overall data and of information collecting 

processes are additional uses (Gallopin, 1997). 

 

 

Options and limitations of environmental indicators and indicator models with 
regard to sustainable production 

Huge sets and types of indicators are accessible today. Moreover, many indicator models 

are available. Nevertheless, the review revealed that current indicator concepts are 

characterised by the following drawbacks:  

 

Firstly, there is a lack of transparent and comprehensible derivation procedures that can 

be applied case- and site-unspecific in the field of sustainable agriculture. As pointed out, 

strategies to deduce indicators which are scientifically based are accessible (Cairns et al., 

1993; Mitchell et al., 1995; Xu et al., 1999). However, the derivation of indicators for 

sustainable agriculture is often unclear, since existing approaches with other goals (e.g., 

ecosystem health or sustainable development) have not yet been transferred to 

agricultural production. Indicator sets have to be suitable to describe the condition of 

various systems with reference to systemic and dynamic aspects of sustainability. 

Considering the agricultural production system as one compartment of the whole 

landscape cultured, indicator sets providing information not only on imbalances (e.g., 

releases) of the agricultural production system itself are required. Indicators should also 

characterise external depositions and off-site effects of emissions resulting from 

agricultural production (e.g., toxic effects in aquatic ecosystems due to pesticide residues). 

Such indicators should be independent of specific system conditions. A model-based 

deduction of indicators is able to meet these requirements, e.g., based on an analysis of 

system key functions or elements (Mitchell et al., 1995). The new type of indicators 

introduced for our project to assess impacts of agricultural production on ecosystems 

requires a transparent derivation method.  

 

Secondly, systemic integrative indicators indicating the impact of loadings from agriculture 

on the one hand and being meaningful for ecosystem functioning on the other hand are 

lacking. We demonstrated that there are many case- or site-specific indicators (table B3a). 
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Available indicators are specific to the process which they are part of and are always 

designed with an explicit target group in mind (Braat, 1991). There are no universal sets of 

environmental indicators (Bakkes et al., 1994). However, it is essential to create indicators 

that can be assigned to different systems and altering conditions considering long-term as 

well as short-term effects. Reactions, i.e. effects upon, for example, ecological processes, 

and related indicators with respect to time and space scales in adjacent ecosystems can 

vary to a great extent (Kümmerer and Held, 1997; Ulrich, 1993). Outputs from a source 

may travel short distances to a sink over short times or they need long time to travel long 

distances. Understanding of ecological functioning developed on small scales cannot be 

easily extended to larger scales. The diverse sets of mutually reinforcing ecological 

processes leave their imprints on spatial and temporal patterns at different scales 

(Peterson et al., 1998). 

 

One recommendation for the improvement of existing indicators is the development of 

modelling the linkages between source and effect to the greatest extent possible (Müller 

and Wiggering, 1999). The question is, how these causes and effects on various scales 

may be linked? A model similar to the PSR model is assumed to be a useful taxonomy for 

ordering indicators but without an underlying functional causality (Gallopin, 1997). Still 

remaining is the indication of the functional linkage between the outputs of production 

processes and the effects in sinks, e.g., upon ecosystems with respect to time and space 

scales. 

 

The systemic-integrative nature of many aspects of sustainability reinforces the 

importance of searching for whole system variables for which appropriate indicators can 

be derived (Gallopin, 1997). Notwithstanding the above mentioned indicators are 

frequently reductionistic, regarding only one aspect of a system without considering the 

whole system. Looking at the currently available indicator types one recognises that there 

are many sectoral indicators, especially in the field of bioecology. Integrative ecological 

approaches for the protection of the environment against loadings of dangerous 

substances are, to a great extent, lacking. Already existing are indicators that aggregate or 

integrate information of loadings. However, these indicators were created for other scales, 

e.g., national or international levels and are difficult to transfer to local or regional scales. 
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The main emphasis of source or pressure indicators lies on the description of emissions or 

on the continuos registration of impacts. Hence source indicators can be one part of the 

indicator model required to characterise the emissions of production systems. State and 

impact indicators are restricted to the recording of the actual environmental situation and 

the consequences of impacts. At most, a comparison with the desirable environmental 

situation is possible. Besides the rather sectorally oriented indicators, others exist aiming 

at systemic-integrative, functional views (Beese, 1996; Müller, 1998). In the foreground, 

these indicators regard the state of the environment. They can be assigned to the type 

state indicator. These indicators give an overview of the actual situation and the temporal 

development of the environment (Hoffmann-Kroll et al., 1995). The state indicators are 

mainly useful for monitoring and controlling. The response or reaction indicators are 

anthropozentric. They represent the response of society to recorded environmental 

problems, e.g., management indicators for farmers to develop ecologically harmless 

practices. This indicator type may be applied in our intention. 

 

We have to note that often no clear distinctions are made between impact and 

management indicators relating to human reactions (Wahmhoff 1998, pers. com.). We 

should clearly separate these two types of indicators. An effect-related indication ensures 

broad scientific discussions. Having a full description from source (e.g., the agricultural 

production) to sinks (e.g., a lake) allows for a clear elucidation of options concerning 

emission reduction. 

 

In recent research, no empirically gathered indicators for the functionality of ecosystems 

can be found (Hoffmann-Kroll et al., 1995; Müller and Wiggering, 1999). Attempts for the 

derivation of such macroindicators can be seen in Müller et al. (1998). Schneider and Kay 

(1994a,b) identified thermodynamic non-equilibrium, exergy flows and exergy gradients as 

holistic indicators recommendable for ecosystem functions. Yet, these indicators are not 

directly applicable, do not indicate the effects of inputs on ecosystem functions and do not 

allow a quantitative determination of limits. 

 

As a consequence integrative, systemic indicators for the goal of sustainable agriculture 

must be developed based on the specific objective of the utility functions (figure B3). The 

needed indicators must be ecologically oriented and scientifically based.  
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Thirdly, the available indicator models and the associated frameworks are not directly 

applicable to our purpose and were often constructed with another scale in mind. Often, 

they aim at the national or international scale whereas we aim at the local (ecosystem) or 

regional (landscape) scale. It is possible to assume the coarse frame of existent indicator 

models for our purpose. A combination of the PSR- and the AAM-model with three 

indicator types is conceivable. However, the indicator types need further development. 

They must be differently defined. Since they are intended to support farmer decisions, it is 

necessary to create indicators that can be transformed into decision aid instruments 

directly related to producer and user practices.  

 

In summary, promising indicator concepts have been proposed. However, the available 

models are not directly applicable to assess agriculture, in particular to achieve “ecological 

sustainability” that is oriented on ecosystem functioning. Thus a modification, combination 

or a further development of existing indicator concepts is needed to achieve the targets of 

SPUEC. We prefer a primarily causality chain oriented model consisting of three types of 

indicators. The source-(state)effect-reaction (SER) systematic (figure B4) is related to the 

main constituents of the Pressure-State-Response model, representing best the intention 

of the SPUEC project. The first indicator type, the stress indicators, examine the source of 

pressures and causes from the agricultural production system for alterations of the 

ecosystems, e.g., emissions. (1, figure B4). Next, in general, the state indicators indicate 

the quality, state or condition of the environment that may arise from various driving forces 

(OECD, 1997). But we need indicators showing effects on the affected ecosystems (2, 

figure B4). Thirdly, the reaction indicators express the responses of the environment, 

policy or society, to the actual and perceived alterations in the environment. The 

development, selection and use of the environmental indicators which are utilised to 

characterise the response of ecosystems to various impacts will be crucial to attain the 

purpose intended (Ward, 1992). The need of information about reactions and decisions of 

the producers and users in the form of management indicators has emerged for our project 

(3, figure B4). 



B State of the art of environmental indicators  52 

 
Figure B4: Frame of the projects’ stressor-effect-reaction model (SER) aiming to bring SPUEC in 

relation to affected ecosystems. SI: stress indicator, EEI: ecosystemic effect indicator, 

MI: management indicator. Area marked in grey is the ecosystems part for which EEI 

are to be developed. Source means the activities (1) resulting of the SPUEC such as 

fertiliser and pesticide use, soil tillage, transport of energy crops, burning of the crops, 

etc. The resulting outputs, their transport in air, soil or water and their transformation 

have to be summed up in stressor indicators. Receptors (2) for all material and physical 

inputs in the affected ecosystems exist. The EEI are derived to assess the effects of 

SPUEC. Determining acceptable ranges or limits with these effect indicators, allows the 

dissemination of information and decision aid instruments to the agents (3). 

 

 

Methodologically on the ecosystems’ part three steps are considered necessary. To start 

with, the affected ecosystems are identified and described. Furthermore, protective values 

and target objectives must be set (Doppler and Böcker, 1999). These can be the utility 

functions (de Groot, 1992; Fränzle et al., 1993). Secondly, from these functions 

ecosystemic effect indicators (EEI) are derived (Merkle and Kaupenjohann, 2000a). 

Thirdly, the indicators are used to ascertain thresholds or acceptable ranges.  
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METHODOLOGICAL APPROACH TO DERIVE ECOSYSTEMIC EFFECT INDICATORS 

The SPUEC project intends to derive indicators for the whole ecosystem functioning. This 

will facilitate cause-effect-assessments of inputs. The principle of combining both top-down 

and bottom-up approaches for the indicator development is applied to build the EEI. The 

approach integrates ecosystem functioning (e.g., the objective utility functions) and inputs 

resulting of the agricultural production process. Our indicator derivation procedure includes 

three steps: 1. Compilation of a list with characteristics of each ecosystem function 

considered (top-down). 2. Compilation of a list with potential effect indicators for a certain 

input (bottom-up). 3. Overlapping of the two lists and identification of the specific EEI. The 

procedure can be seen in detail in Merkle and Kaupenjohann (2000a). Subsequently, a 

test of the indicators in a case study follows (Merkle and Kaupenjohann, 2000b). 

 

 

CONCLUSIONS AND FUTURE TASKS 

The analysis of existing environmental indicator literature revealed that there are manifold 

indicator types and indicator models. Various concepts address different issues of 

concern, e.g., sustainability/sustainable development, ecosystem health/integrity and 

environmental monitoring. Concepts and approaches of environmental impact and risk 

assessment were not regarded in this review. 

 

Indicators are usually developed by i) estimation by authors or ii) a deduction scientifically 

based. However, we pointed out that transparent methods of indicator derivation are rare. 

Nevertheless, seven steps that are necessary for the indicator construction have been 

identified: the definition of goal determines the subsequent methodological steps. The next 

steps are: the determination of the target group (scientists, farmers, landscape planners or 

policy makers); the indicator building according to the issues of concern (conceptual 

model, data gathering, listing of potential indicators); a specification of selection criteria; 

the determination of references and threshold values; a test of usefulness (case study). 

The last step is the evaluation of the developed indicators by experts.  

 

Most environmental indicators may be assigned to the categories i) simple and ii) systemic 

indicators. Despite the variety of available indicators we could not identify indicators 

suitable for analysing ecosystems affected by outputs of agricultural production processes.  



B State of the art of environmental indicators  54 

The reviewed indicator models are mostly oriented on a causality chain regarding different 

indicator types. Often, the indicator models were created for an extensive description of 

relations between economy and ecology and aim at the national or global scale. They 

contain diverse indicator types. Source or pressure indicators indicate emissions or the 

continuos registration of impacts. State or condition indicators examine the registration of 

the actual environmental situation and the consequences of impacts. Response or reaction 

indicators show the responses of society to recorded environmental problems.  

 

We conclude that we must develop a comprehensible and transparent indicator derivation 

approach for our project with a new type of systemic, function-oriented indicators: the 

ecosystemic effect indicators. The indicators are embedded in an indicator model on the 

ecosystem scale (local and regional). 

 

Next, our indicator derivation approach (Merkle and Kaupenjohann, 2000a) will be tested 

experimentally. A case study will be carried out for this purpose. A further step is to 

develop and present sets of effect indicators for the various ecosystems affected. This has 

been done for an agroecosystem (Merkle and Kaupenjohann, 2000b). Additionally, we will 

derive EEI for a close to nature ecosystem. 
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APPENDIX 

 

Indicator: Measurable variable which characterises systems or 

system components by reducing complexity and 

integrating information 

 

Ecosystemic effect indicator: Receptors which are sensitive to material and non-

material inputs. EEI indicate the functioning of 

ecosystems 

 

Macroindicator:  Aggregated, whole system describing indicators 

 

Indicator model: Frame of different juxtaposed horizontal types of 

indicators. The types are related to each other, each type 

indicating and describing another part of the considered 

problem issue and making sense in combination with the 

others 

 

Indicator framework: Superstructure incorporating societal values and goals, 

an indicator model with different indicator types, and an 

assessment or evaluation 
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C DERIVATION OF ECOSYSTEMIC EFFECT INDICATORS - METHOD 

ABSTRACT 

Anthropogenic activities and agricultural production in particular release material 

emissions and energy into the environment. Hence, production causes side effects in 

ecosystems. To assess these effects integrative system-level indicators are needed. 

Numerous environmental indicators are available, however, lacking is a sound theoretical 

basis. Accordingly, the derivation of indicators is often unclear and non-transparent. 

Frequently, environmental indicators aim at monitoring and controlling, only integrating 

sectoral aspects. The associated indicator models were often created for the assessment 

of relations between anthropogenic actions and the environment on a national or global 

scale. Systemic, functional, holistic indicators are rare. Due to the gaps of indicator 

research a new category of indicators and an approach for their derivation is necessary. In 

this paper we present the idea of ecosystemic effect indicators (EEI) and propose a 

conceptual approach to deduce these indicators. Thus a set of indicators can be derived 

that is tailored to the needs of the indicator user, but remains rooted in the principle of 

ecosystem functioning. The indicators demonstrate the relationship between agricultural 

production and its effects in the agronomic production system itself and adjacent 

ecosystems. Depending upon both ecosystem functioning and inputs, ecosystemic effect 

indicators must fulfil certain requirements. They provide information to assess loading 

capacities of ecosystems. By transferring the indicators into decision criteria they are 

applicable for the farmer. Recently, the applicability of the proposed conceptual approach 

is tested in a case study. 

 

 

INTRODUCTION 

Agricultural production releases material and non-material emissions into the environment. 

After being transported and transformed the resulting depositions and concentrations 

affect the environment on different scales. The effects in ecosystems are to be analysed. 

In the discussion about impacts of agriculture on ecosystems it is important to get reliable 

and quantitative information about the various effects on environmental targets and 

functions. Much knowledge about effects and impacts of agricultural production is 
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available. However, in most cases the research was limited to individual components, 

concentrating on single compartments or specific environmental media (Müller, 1992). 

 

Approaches devised for individual components dominate both the production systems side 

and the ecosystems side. To account for the holistic character of systems the present 

paper attempts to realise an integrative approach. We treat the outputs from the 

production system into the environment on the one hand and the inputs into adjacent 

ecosystems on the other hand. System outputs include material and non-material 

emissions, matter and energy (refer to Odum, 1991), emitted from the production system, 

e.g., nutrients, soil pressure, NOx etc. Harvest goods are not included. System inputs into 

ecosystems are energy or matter emitted by the source system, e.g., nutrients, pesticides 

and heavy metals which may affect an ecosystem. In case of the agronomic production 

system the system outputs concurrently represent inputs in the agroecosystem as affected 

ecosystem itself. 

 

This study is part of an interdisciplinary project on sustainable agriculture titled 

“Sustainable Production and Utilisation of Energy Crops“ (SPUEC) in which the utilisation 

of energy crops forms part of the production system. The supply of energy from organic 

substances is assumed to be ecologically sustainable if none of the affected 

agroecosystems including their functioning is irreversibly changed by outputs from the 

energy supply system in the long run (Härdtlein et al., 1998). The project takes a system 

approach. Thus the required indicators should be rooted in ecosystem functioning 

specified by the utility functions. Our understanding of “ecological sustainability” implicates 

that the possibility of further development of the ecosystems and their parts needs to be 

ensured. Ecosystems are affected if their functioning is impaired by emissions of the 

production and utilisation of goods. As affected ecosystems are considered both the 

agronomic production system itself as well as other adjacent systems (e.g., aquatic, 

oligotrophe or forest ecosystems). 

 

Often a reductionistic approach dominates the understanding of the components of the 

production system as well as these of the ecosystem. The complexity of systems is only 

seen in parts and the interrelationships are not well understood (Haworth et al., 1996). It is 

necessary to develop an instrument to represent the complex relationships between 

effects of external inputs and ecosystems. So far, there are many concepts, case studies 
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and models to evaluate agronomic production systems economically. That is not sufficient 

from the ecological point of view, however. Recently, there has been considerable 

discussion about sustainability which incorporates economic, social and ecological 

aspects. The latter needs loading capacities or target values which preserve systems 

functionality. An integrative ecological assessment including both emissions from 

production systems and environmental effects in ecosystems has to be set first in the 

discussion of sustainable production. 

 

Indicators represent a valuable tool when direct measurements cannot be realised 

(Bockstaller et al., 1997). An indicator is a variable “hypothetically linked to the variable 

studied, which itself cannot be directly observed” (Chevalier et al., 1992 in Waltner-Toews, 

1994). Here we define an indicator as a measurable variable which characterises systems 

or system components by reducing complexity and integrating information. Thus indicators 

can serve as instruments to show complex relationships and to simplify them. They might 

be used to express the difference between the actual environmental state and the desired 

one (SRU, 1994). The main task of environmental indicators is to steer actions (Bakkes et 

al., 1994) and to provide easily accessible information. Environmental indicators also serve 

for an improvement of the communication about the state of the environment and they aid 

in environmental policy (Walz and al., 1997). Often such indicators aim at environmental 

monitoring or the control of enterprises, production systems or management activities for 

the identification of the suitable target groups for environmental policy measures 

(Münchhausen and Nieberg, 1997). Indicators are mostly specific to the process they were 

developed for.  

 

Although there are huge sets of indicators available (Merkle and Kaupenjohann, 1998, 

subm.) integrative system-level indicators for the functionality of ecosystems that are 

empirically gathered are still lacking (Hoffmann-Kroll et al., 1995; Müller and Wiggering, 

1999). Most indicators are reductionistic and consider only a few components of the 

system. The indicators available are often based on real objects or actions/activities 

(Bockstaller et al., 1997; Nieberg and Isermeyer, 1994), but not on ecosystem functions. 

However, environmental sustainability requires the maintenance of environmental 

functions and potentials in the long run (Beck, 1998). Thereof ensues a need for indicators 

depicting functions and showing the effect of inputs on these functions. 
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Indicator models, e.g., the pressure-state-response-model (OECD, 1993) or the actor-

acceptor-model (Zieschank et al., 1993) were mainly created for a national or global scale. 

They are needed to evaluate the discrepancies between the state of the environment and 

the desired environmental quality. These models aim at assessing the interrelationships 

between economic and ecological systems. 

 

Frequently, the available indicators are not based on a sound concept. Comprehensible 

methods for their derivation are lacking (Cairns et al., 1993, Lorenz et al., 1998). 

Therefore, the new category of indicators introduced for our purpose also requires a 

transparent derivation approach. In this paper we present a conceptual approach for our 

purpose aiming at the assessment of complex relations between SPUEC and the 

environment using EEI. 

 

 

ECOSYSTEMIC EFFECT INDICATORS (EEI) 

The systemic-integrative nature of sustainability points out the importance of system-level 

parameters for which appropriate indicators have to be devised (Gallopin, 1997). We aim 

at deriving indicators for the ecosystem functioning and facilitating cause-effect-

assessments of inputs due to production processes, e.g., SPUEC. Based on a literature 

review (Merkle & Kaupenjohann, 1998, subm.), we propose a new category of indicators: 

EEI which are defined as follows: 

 

>> Ecosystemic effect indicators are receptors sensitive to material and non-material 

inputs. They indicate the functioning of whole ecosystems. << 

 

Receptors are spatial or functional parts of the environment which can be located on 

diverse hierarchical levels, e.g., the groundwater, the pore volume, plants or 

microorganisms, and which respond to inputs. An earthworm may be such a receptor, e.g., 

for fungicides. It is an important element for the matter decomposition, nutrient supply, 

hence for the whole nutrient cycle. 

 

The effect indicators have to bridge the gap between societal goals, targets and 

environmental quality standards. In comparison to existing approaches, we refer to the 
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target “preservation of ecosystem functioning“. In contrast to other approaches the effect 

indicators should not serve for a continuous environmental observation and monitoring. 

They should indicate, when - at which concentration -, and how - according to the 

impairment of a function - an input affects a receptor. As a result the assessment of 

loading capacities is enabled. Consequently, the status of the effect indicators have only to 

be defined once. 

 

 

Requirements 

EEI shall fulfil certain requirements for the SPUEC. Firstly, such indicators have to be 

meaningful for the ecosystem functioning. Secondly, they must be highly sensitive 

regarding the material and non-material inputs due to agricultural production as well as 

regarding the potential effects and changes. Sensitivity needs to account for both temporal 

variability within a year and its integration (Müller et al., 1998; Schubert, 1991). Single 

stresses can have manifold effects depending on their timing and the susceptibility of the 

recipient ecosystem (Rapport, 1992). Therefore, it is necessary to consider time scales of 

response in selecting and evaluating ecosystems response (Hunsaker et al., 1993) with 

regard to both short-term and long-term sensitivities. Thirdly, the effect indicators should 

be capable to integrate interactions of diverse inputs (a synergism, e.g., soil tillage and 

decomposition of pesticides or an antagonism). Fourthly, it is intended to provide decision 

support for the farmers. There is a necessity to identify indicators from which decision 

criteria can be deduced for agricultural management practices. Thus, the indicators 

desirably must be functionally linked to the sources of inputs and their effects. Determining 

risk potentials or loading capacities with these effect indicators, provides information and 

decision criteria to the farmers to maintain and achieve, rspectively, the “ecological 

sustainability“. 

 

Moreover the data availability has to be taken into consideration for the application of 

effect indicators. Knowing which indicator is needed for the indication of inputs from 

SPUEC in affected ecosystems, the next step is to outline how to derive the EEI by 

relating inputs and the ecosystem functioning. 
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DERIVATION OF ECOSYSTEMIC EFFECT INDICATORS 

Supposition 

We propose a conceptual model to identify effect indicators. The model is based on a 

hierarchical concept of ecosystems. At least, four hierarchical levels may be distinguished 

in ecosystems (O’Neill et al., 1986; Beese, 1996). The specific levels of organisation are 

linked to specific spatial and temporal scales (Wagenet, 1998). The highest level (III) in 

ecosystems is the overall ecosystem functioning including the utility functions like 

regulation, production, habitat and career (Fränzle et al., 1993; Gilbert and Janssen, 

1998). Level II consists of superior relations (interactions) between subsystems (Doppler, 

1998), level I are subsystems i.e. elements plus processes between them, and level 0 

consists of elements (biotic, e.g., species or abiotic, e.g., soil structure). While the 

ecological functions aim at ecosystem health, the production function has also to 

incorporate a socioeconomic component because system assessment without that 

component is incomplete (McCullum et al., 1995). Although the major focus of our 

approach is ecological sustainability, the maintenance of environmental quality needs also 

to incorporate economic and social issues. This aspect is implemented by considering the 

production function.  

 

Procedure 

In principle, either a top-down or a bottom-up approach for the indicator derivation exist 

(Gentile and Slimak, 1992; Munkittrick and McCarty, 1995). The societal goals and valued 

targets are firstly identified and defined in the top-down approach. Secondly, the 

requirements are set depending on the goals. Thirdly, available indicator sets and models 

are analysed and assessed (SRU, 1994). Starting at a very high level of aggregation of the 

data pyramid aggregation levels decrease step by step dependent upon the purpose. The 

indicators resulting reflect the degree of achieving of the (societal) goals, e.g., ecosystem 

health or sustainable agriculture. A limitation of the top-down approach is that not for all 

issues adequate indicators already exist (Rennings, 1994). An example for the top-down 

approach is the work about functionality indicators of Müller (1998). In his work the basic 

goal represents ecosystem integrity.  

 

The bottom-up approach starts with a detailed description of the current situation of the 

issue under consideration, but without a concrete goal definition. By identifying the most 
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appropriate receptors for inputs and afterwards selecting and/or aggregating them, the 

developed indicators are integrated into existing concepts or indicator models. The bottom-

up approach may not be adequate in achieving of specific goals (Zieschank et al., 1993) 

as goals are not explicitly defined beforehand. 

 

We combine both the top-down and the bottom-up approach for the derivation of EEI. The 

top-down part of our indicator derivation starts at the ecosystem functioning (figure C1) 

which is rendered precise through the utility functions, a clearly set goal definition. 

Descending from the highest level, i.e. the ecosystem functioning, the resolution gets finer 

and finer. Ecosystem functioning is described by many characteristics which can be 

elements, processes, properties or part functions. The characteristics of the levels II to 0 

should be identified. As many receptors as possible are identified for the input part bottom-

up. Afterwards the necessary receptors are related to the ecosystem function under 

consideration and then selected. By combining the top-down and the bottom-up part a link 

between functioning and inputs ensues. The corresponding indicators represent 

processes, part functions etc., and are also diagnostic for an effect of the stress exerted on 

the ecosystem. The general procedure may be explained by the following example: 

 
Figure C1: Procedure for the derivation of ecosystemic effect indicators 
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To start the procedure, firstly choose an affected ecosystem (e.g., the agroecosystem). 

Secondly, choose a specific ecosystem function, e.g., the production function. Find out all 

important characteristics at the different levels (0, I, II) for the chosen function  (figure 

C1). Thereby keep in mind potential effects of the considered input. A broad range of 

characteristics  results, e.g., nutrient cycling, soil aeration, aggregation etc. The list of 

characteristics is oriented on functions. These characteristics may be called potential 

indicators. Thirdly, regard one input, e.g., soil pressure, and its potential effect on the 

selected function. For the chosen input identify and compile elements, processes etc. 

influenced by the specific input. A second result will be a list of receptors , potential 

effect indicators, which is oriented on inputs (stress). In case of soil pressure the soil 

structure, infiltration capacity, porosity etc. are influenced. These receptors can be chosen 

based on the effect on particular characteristics at certain concentrations or magnitudes of 

stress. 

 

An approach to simplify this procedure may be to establish two classes in order to reduce 

the huge size of potential indicators. The spatial extension of processes and structures is 

low while process frequencies are fast at lower hierarchical levels. Higher levels have 

greater spatial extension but lower frequencies of process signals than lower ones. 

Moreover higher levels constrain lower levels due to their larger time constraint (Wagenet, 

1998). Stress also determines space and time frequencies. Therefore one class (i) has to 

contain the elements or processes of the diverse organisation levels differentiated into the 

specific space and time scale they operate on. The other class (ii) has to include the tact 

and frequencies of the specific input. The key characteristic we look for has to be situated 

at a comparable organisation level. Starting point for this approach might be the soil 

subsystem which plays a key role for the whole ecosystem covering buffer capacities as 

well as the storage for matter and energy. 

 

The final step of the procedure, the identification of the EEI is the decisive one. Find out 

the intersection between  and  based on expert knowledge. The two lists of 

characteristics and the potential indicators, are compared and overlaps are created. This 

intersection, key characteristics of the specific ecosystem, will contain EEI. Such indicators 

depend upon the specific function and the input under consideration. The porosity has 

been established as ecosystemic effect indicator for the production function and the input 

soil pressure in the example. 
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The algorithm has to be applied for each ecosystem function and each input of interest. 

Finally, sets of effect indicators for the selected ecosystem will be resulting. Later on, sets 

of EEI for all ecosystems considered will be available. 

 

A further goal is to develop decision criteria. After the definition of thresholds the decision 

criteria can be derived of the EEI. In the example above porosity can be transferred into 

loading frequencies or the weight of tillage machines allowed. 

 

 

POTENTIALS AND LIMITATIONS OF EEI 

With the conceptual model for the derivation of EEI we developed an approach as much 

as possible reproducible. McCullum et al. (1995) already stated that some form of 

standard to assess measurements of system components would be ideal.  

 

The approach implies the development of specific indicators for various production 

systems and production intensities because the bottom-up part of our approach starts at 

the specific input (kind and quantity). We solve the problem cited in literature (Gallopin, 

1994) that to differentiate indicators referring to land use, management practices and 

production intensities is difficult by including the diverse inputs respective their intensities 

already at the beginning. 

 

Increasing complexity across level 0 to III in ecosystem hierarchy leads to a general 

problem during indicator derivation: Indicators should be most integrative on the one hand. 

This requirement would prefer indicators on high levels. On the other hand increasing 

complexity evokes the problems to trace cause-effect-relationships. The EEI derived by 

our approach indicate typical characteristics of the ecosystem functioning (derived top-

down) which are at the same time affected by an input (derived bottom-up). We develop 

indicators which portray the link between ecosystem functioning and inputs through this 

approach.  

 

Ideally indicators should have target values that characterise desirable conditions 

(McCullum et al. 1995). If it is not possible to determine limits, a desirable trend direction 

should be stated at least (Mitchell et al., 1995). EEI should as much as possible allow to 
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ascertain scientifically based, quantitative limits or target values in form of critical loads or 

critical physical impacts, e.g., a level of soil pressure that must not be exceeded to ensure 

soil structure stability in order to avoid erosion. Another example might be a load of Cd that 

must not be exceeded to avoid leaching into the groundwater. Concerning an evaluation, 

the threshold values for key indicators are only applicable with the knowledge that they will 

vary depending upon land use, site specific properties, ecosystem or landscape. In many 

cases these specific values (thresholds, standards etc.) embody a subjective value 

judgement (Gallopin, 1994). Moreover the assessment of a specific function of greatest 

concern as part of the ecosystem functioning has to be performed first (Doran et al., 1996) 

which also implies subjectivity. 

 

The determination of quantitative loading capacities for the EEI is independent upon the 

distance between production site and affected ecosystem. However, in cases where the 

affected ecosystem is far away from the production site (cf. n on the transition scale, fig. C 

1) this quantification shows no direct link to the outputs from the production system. Thus 

cause-effect-relationships between outputs from the production site and the inputs and 

effects resulting in ecosystems cannot be quantitatively traced. Direct and quantitative 

linkage will usually become impossible as scale transitions in the transport chain will 

introduce a variety of additional or concurrent impacts complicating the cause-effect-

relationship. Hence if production site and affected ecosystems have to be linked across 

scales the decision criteria for agricultural production derived of the effect indicators (refer 

to figure C1) become qualitative. The more scale transitions have to be considered the 

more qualitative becomes the decision criteria, e.g., a range of pesticide amount which 

must not be exceeded or riparian vegetation that has to be established. 

 

 

CONCLUSIONS AND FUTURE TASKS 

A variety of indicators and indicator models is available. However, neither a method to 

bring the effects of agricultural production, in particular of SPUEC, in relation to the 

affected ecosystems and their loading capacities exists. Nor there is an useable 

integrative, system-level indicator type. Thus with this paper we propose an approach for 

the derivation of effect indicators for ecosystems. 
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The EEI provide information about the cause-effect-relationship between production 

processes and their effects on the affected ecosystems. Therefore, they serve as useful 

tools in the assessment of SPUEC. To maintain “ecological sustainability“, knowledge 

concerning the loading capacities of effects on ecosystem functioning is needed. Such 

loading capacities or target values could be critical levels, critical physical impacts, critical 

loads or risk potentials. We conclude that these loading capacities may be quantitatively 

ascertained on the basis of the EEI derived in our approach. This might only be possible in 

a qualitative manner for adjacent ecosystems.  

 

Thus in the next step we will develop EEI for an agroecosystem. A further step is to 

develop and present sets of effect indicators for the various types of affected ecosystems, 

e.g., for “in a natural state” ecosystem. The applicability of the indicators will then be tested 

in a case study in south-western Germany. Furthermore their conceptual and operational 

validity must be proved. 

 

Finally, the ecosystemic effect indicators have to be implemented in an indicator model 

regarding also indicators for the driving forces and reactions of the SPUEC. 
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D ECOSYSTEMIC EFFECT INDICATORS FOR AGROECOSYSTEMS 

ABSTRACT 

Side effects of agricultural productions in ecosystems have to be assessed. To support the 

sustainability of the ecosystems system-level indicators are needed. Various 

environmental and sustainability indicators are accessible, but the theoretical underpinning 

is often poor or even missing. Therefore, we have derived a method to deduce 

ecosystemic effect indicators which are adapted to the needs of the indicator user. 

Depending on incoming inputs and utility functions of ecosystems, ecosystemic effect 

indicators are developed by combining a top-down and a bottom-up approach. Such 

ecosystemic effect indicators are mainly enrooted in soil characteristics or processes that 

form an essential basis for the whole ecosystem functioning. In this paper we implement 

our previously presented indicator derivation procedure. Our approach is tested in a case 

study. The ecosystem functioning is level-dependent characterised. As an example of an 

impact the soil pressure is categorised in view of its effects in agroecosystems. Finally, a 

set of indicators for agroecosystems which relates emissions of agricultural production to 

the affected agroecosystem itself is presented. The macro porosity ensues as ecosystemic 

effect indicators for the habitat function, the respiratory intensity and the metabolic quotient 

for the transformation function, the pore spectrum for the filter function, the penetration 

resistance or the macro porosity for the production function and the field capacity for the 

storage function. Relating these indicators to threshold values as far as they are available 

in literature allows quantitative statements within the frame of sustainable agriculture. 

 

 

INTRODUCTION 

Agricultural production frequently causes undesirable effects in ecosystems. To judge 

environmental impacts of agriculture especially with respect to sustainability it is essential 

to get quantitative information about the manifold effects on environmental targets and 

ecological functions. 

 

We demonstrate an instrument and its application to assess the effects of emissions and 

releases of agricultural production with regard to ecosystems. Special focus will be laid on 
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the agroecosystem itself. The aim is to link emissions and releases (= outputs, e.g., 

leaching of pesticide residues or phosphorus from fertiliser application) from agriculture 

with ecosystems (e.g., lakes or forests). This enables to relate the depending effects on 

functions and elements to threshold values in ecosystems. 

 

Currently, knowledge about effects and impacts of agricultural production processes on 

ecosystems is accessible. However, research has been focussing on single compartments 

or individual systems in most cases. Moreover, many instruments remain restricted to the 

characterisation of the agricultural production system itself. There have been little efforts to 

link production systems with ecosystems in order to assess their mutual impairment on a 

system level. 

 

Recently, there has been increasing concern of sustainability that encompasses economic 

and social as well as ecological aspects. The latter which is object of investigation within 

our project need loading capacities or target values that preserve ecosystem functioning. 

 

Affiliated is the present study to an interdisciplinary project on sustainable agriculture. To 

discuss sustainable agriculture an integrative ecological assessment including both 

outputs from production systems and environmental effects in ecosystems has to be set 

first. This objective will be achieved by means of indicators. Previously, we have 

developed an approach to deduce ecosystemic effect indicators (Merkle and 

Kaupenjohann, 2000a). 

 

This paper focuses on the implementation of our indicator derivation procedure proposed 

in a former study. In summary (1) the goal ecosystem functioning with respect to the target 

‘utility functions’ is characterised. (2) Effects of agricultural production in ecosystems are 

illustrated by means of a case study. Exemplary soil pressure is analysed for the manifold 

inputs. (3) Finally, we propose and discuss a set of ecosystemic effect indicators (EEI) for 

an agroecosystem. 

 
 
Ecosystem functioning 

Protection always requires the setting of values and target objectives (Doppler and Böcker, 

1999). Up to now, there is no consensus on general targets of nature conservation 
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(Doppler and Vandré, 1999). In order to achieve quantifiable targets of ecological 

sustainability we address ecosystem functioning as a prerequisite of system sustainability. 

If the system is sustainable it is also healthy (Rapport, 1994). 

 

Lavelle (1996), Fränzle (1998) and Herrick (2000) bring the soil into the focus of all 

terrestrial ecosystems because it is one of the principal regulating compartments. It plays a 

key role in sustainable land use (Harris et al., 1996). The soil condition is vital to both food 

and fibre production and ecosystem functioning (Doran and Safely, 1997). Soil represents 

the starting point of our consideration for the chosen target, the utility functions (de Groot, 

1992; Fränzle et al., 1993), which are important for the whole ecosystem. The following 

functions are subsumed under the item “utility”: 

 

• Regulator function, subdivided into i) filter: capability of mechanical retention 

regarding particles and colloides; ii) buffer: retention capacity for dissolved 

substances by chemical processes, e.g., sorption; iii) transformation: potential of 

biotic transformation of natural and xenobiotic substances. 

• Habitat function: quality for being used as substrate for animals, biota and plants. 

• Storage function: ability to store water, nutrients and the genetic pool. 

• Production function: capacity of food and plant production. 

 

First three compiled represent ecological functions aiming at ecosystem health, whereas 

the production function incorporates also a socioeconomic component. 

 

Since ecosystems are hierarchically organised complex systems (Müller, 1992; O'Neill et 

al., 1986), diverse levels can be distinguished where higher system levels control lower 

ones. In turn, the potential of higher ones is restricted by the behaviour of the lower 

(O'Neill et al., 1986). Ecosystem functioning subdivided into the utility functions is located 

on the highest level. Thereunder succeeds the level (II) of superior relations between 

subsystems (e.g., food-chains or cycling), followed by the level (I) of subsystems (e.g., 

decomposition encompassing elements, like earthworms, and single processes, like 

shreddering) (Brussaard et al., 1997). The lowest level of our view (0) is the level of 

elements (e.g., bacteria or soil aggregates). 
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Agricultural outputs and their effects 

The undesirable outputs of agricultural systems may be differentiated into material 

emissions (e.g., pesticide or fertiliser residues) and non-material releases (e.g., soil 

pressure). These emissions and releases can be regarded as inputs into adjacent 

ecosystems after transport and transformation. In case of considering the agronomic 

production system itself as affected ecosystem, outputs and inputs are identical.  

 

Effect may be defined as an enrichment of pollutants above the normal concentration or as 

a physical impact (Arndt, 1987). In Gregor et al. (1996) and Umweltbundesamt (1993) 

effect directly refers to the impact of pollutants. Being chronic or acute effects must be 

distinguishable from any natural variation. The gravity of an effect depends on the 

temporal sensitivity of a receptor (Fränzle, 1998; Wiens, 1989), e.g., in spring while growth 

the soil macrofauna is much more sensitive for inputs than in autumn. Each output affects 

different spatial and temporal scales. Outputs cause various effects which directly or 

indirectly impact organisms, resources or processes. The toxic contamination by 

pesticides, soil erosion after tillage, element leaching after fertiliser application, 

acidification of adjacent lakes or nutrification of neighboured fens may be exemplary 

mentioned (Haber and Salzwedel, 1992; Stahr and Stasch, 1996; White, 1997). Effects are 

more or less complex and evolve from effect chains or effect networks (Doran et al., 1996; 

Müller and Wiggering, 1999), e.g., acidification provoking mobilisation of heavy metals or a 

decrease in biodiversity. Effects can also pass across hierarchical levels (Reagan and 

Foldham, 1992). 

 

Several unfavourable consequences of agriculture have been extensively studied, e.g., 

nutrification, acidification, pollution or erosion, whereas soil deterioration was less 

investigated. However, it should be stronger considered because subsoil compaction by 

vehicles with high axle loads seems to pose the most severe long-term threat to soil 

productivity (Hakansson, 1994). 

 

We focus on soil pressure as an input on the agronomic production site. The pressure and 

duration of the mechanical loading are the decisive parameters. The resulting compaction 

in soil is load and time dependent. Wheel and axle loads on the one hand and speed and 

frequency of passes on the other hand are significant parameters responsible for changes 

of soil structure (Dürr et al., 1995). For Russian condition Rusanov (1991) found that 
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increasing tractor weight leads to yield losses of up to 35%. The accelerated 

mechanisation in agriculture and the enhancement of machinery weights are main factors 

causing soil compaction (Lipiec and Simota, 1994). Thus the consequences for future soil 

productivity are object of increased concern, predominately the risk of permanent 

deterioration of subsoil (Hakansson, 1994). 

 

Compaction has been estimated to be responsible for the degradation of an area of 33 

million ha in Europe (van Ouwerkerk and Soane, 1994). That implies also economic 

issues. Compaction may contribute to increases in soil erosion and the loss of nutrients to 

atmosphere and groundwater. In turn, these effects affect social issues and economic 

losses on the farm-level.  

 

The conflict to raise the productivity on the one hand and to ensure both the sustainable 

productivity as well as other soil functions on the other hand is crucial in pertaining soil 

compaction (Petelkau, 1998). This highlights the tensions between ecology and economy.  

 

Two main temporal aspects have to be regarded: short-term effects, mainly consisting in 

plough layer or topsoil compaction and long-term effects, encompassing subsoil 

compaction (Hakansson and Medvedev, 1995). In the past, the ability of processes like 

wetting/drying, freezing/thawing or biological activity to reverse compaction were 

overestimated (Hakansson and Petelkau, 1994). Nowadays, subsoil compaction is 

assumed to be persistent (Hakansson and Reeder, 1994). Other long-term effects 

commonly are succession effects: water infiltration capacity decreases, water and wind 

erosion increase (Horton et al., 1994). Chemical processes are also influenced, e.g., a rise 

in anaerobic conditions with the consequence of nitrogen losses through denitrification. 

Accordingly, biological activity decreases. Thus, matter transformation is retarded. 

Compaction may even reduce biodiversity (Brussaard and van Faassen, 1994).  

 

Effect indicators 

The assessment of environmental effects by indicators is restricted due to the complexity 

of ecosystems. A quantification of cause-effect-relationships is hardly possible with respect 

to complex effect networks. Nevertheless, indicators are useful tools to reduce the 

complexity of system description and to integrate manifold system information (Bockstaller 
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et al., 1997; Giampetro, 1997). Numerous single ecological and sustainability indicators as 

well as indicator frameworks are available (Bakkes et al., 1994; Freyenberger et al., 1997; 

Merkle and Kaupenjohann, 1998, subm.). However, deficiencies exist in comprehensible 

methods for indicator deduction, or, the frameworks were made using another scale 

(OECD, 1993; OECD, 1997). Established impact indicators address solely the impact of a 

single stress (e.g., tobacco - O3) but do not depict ecosystem functioning. Joergensen 

(1998) advocates for ecological indicators that enable a reasonable assessment of 

ecosystem health and describe the damage caused by a pollutant at the ecosystem level. 

Obviously, a lack emerges concerning indicators which link agricultural action and 

ecosystem response. 

 

Thus we have developed EEI which are defined as follows: "Ecosystemic effect indicators 

are receptors sensitive to material and non-material inputs. They indicate the functioning of 

ecosystems" (Merkle and Kaupenjohann, 2000a). The receptors are spatial or functional 

parts of the environment that can be located at different hierarchical levels and which 

respond to inputs (Merkle and Kaupenjohann, 2000a). Examples represent 

microorganisms, plants, the pore volume or the groundwater. This definition refers to living 

organisms or materials which are affected and includes interrelated collections of living 

organisms, i.e. ecosystems (Umweltbundesamt, 1993). 

 

 

METHOD TO DEDUCE ECOSYSTEMIC EFFECT INDICATORS 

Our study is exclusively based on available literature data. Similar to SETAC (1993) we 

have chosen a proceeding equivalent to life cycle impact assessment (LCIA) starting with 

an inventory analysis. Secondly, according to the classification step of LCIA data from the 

inventory analysis are grouped into effect categories. Three areas of protection are 

dishinguished as classes of endpoints in LCIA: human health, natural resources and 

natural environment (ISO, 1998). The main focus of our project lays on the latter two.  

 

In this context we are not so much interested in the inventory and classification steps, but 

we also strive for effect characteristics. The third step in LCIA, the characterisation, is 

based on scientific knowledge about environmental processes. The outcome of the 
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characterisation step may be referred to as effect profile consisting of a number of input 

measures or descriptions. 

 

The main difference between the LCIA proceeding and the approach presented here is 

that our indicator derivation does not start at effect categories (e.g., global warming) but at 

defined targets (e.g., utility functions). Such targets can be adjoined to different effect 

categories. 

 

 

Classification of emissions and releases and the depending inputs 

The aim of this step is to outline which scales are affected as well as to assess the 

importance of an emission or a release. We study three main parts: Firstly, the 

preprocessing chains, production and utilisation encompassing the spatial and temporal 

kind of a source (e.g., point, area, periodic or continuos) and properties of the emission or 

release (e.g., persistence). Secondly, the transport and transformation (that link emission 

and release with input) which imply the discharge pathway and the kind of transport 

process are considered. Thirdly, effects of inputs in ecosystems including effect radius 

(local, regional, global), effect period (short-term or long-term) and effect place (e.g., lake) 

are addressed. 

 

 

Ecosystemic effect indicator derivation 

Often indicator deduction is performed without theoretical underpinning (Mitchell et al., 

1995). Suitable indicators are selected by two main procedures: an estimation by authors 

or by expert questionnaires and a scientific derivation. The EEI approach is mostly 

assigned to the latter. Combining top-down and bottom-up approaches the proceeding 

relates an emission (e.g., soil pressure of tillage) and an ecosystem potentially affected 

(e.g., the agroecosystem). First step of the derivation procedure is to resume the 

characteristics describing the target and the corresponding partial targets top-down (figure 

D1). The characteristics are located on diverse hierarchical levels. 



D Ecosystemic effect indicators for agroecosystems 74 

 

 
Figure D1: Derivation procedure for ecosystemic effect indicators combining a top-down and 

bottom-up approach altered after Merkle and Kaupenjohann (2000a) 

 

 

Secondly, one has to select an input, to look at its probable effects, hence to identify the 

potential effect indicators bottom-up. Thirdly, intersections between I. and II. (figure D1) 

are determined and EEI are identified by connecting the characteristics of each utility 

function with the potential effect indicators using expert knowledge (Merkle and 

Kaupenjohann, 2000a). The decisive criteria for the selection process are mentioned in our 

definition. The intersection step highly depends on the priority set by the targets. 

 

As advantage of the present approach the derivation proceeding is site-independent. The 

implementation of EEI, however, will have different expressions at each natural site and 

therefore requires certain known parameters. Consequently, the data availability is an 

important supposition. To verify the indicator procedure and to demonstrate what can be a 

result with location specific peculiarities the approach was tested in an exemplary case 

study. 
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CASE STUDY 

The data set was collected in the Kraichgau-Region (South-western Germany; Lorenz, 

1992). Annual rainfall is 800 mm, average air temperature 9-9,5 °C. Typical soils are haplic 

luvisols located on plateaus, calcaric regosols on the upper part of the slopes and cambic 

cumulic anthrosols on the lower end of the slopes. The natural settings regarding texture, 

aeration and soil water are: loamy silt, bulk density 1,4-1,5 g · cm-³, macro pore volume 40-

45 Vol-%, air capacity 8-10 %, available field capacity 15-23 %, pH 6,6-7,5 (Lorenz, 1992). 

Emissions, releases and the respective input data were descended from a cultivation 

procedure representative for Triticale. All necessary measures of the chosen tillage system 

can be gathered from table D1. We focus on soil pressure of the tilling steps. 

 
Table D1: A cultivation procedure for Triticale - example; period considered: one year, field 5 ha 

 
Measure Season Number of 

vehicle passes 
Length of tilling 
time (h · ha-1) 

Engine power (kW) / 
weight (t) 

Ploughing autumn 1 1,3 83 / 5,6 
Seedbed preparation autumn 2 0,8 83 / 5 
Fertilisation spring/autumn 4 1 / 0,4 54 / 3,6 
Drilling autumn 1 0,5 52 / 3,9 
Plant protection spring 3 1,1 52 / 3,3 
Liming  summer 1 0,2 83 / 4,6 
Harvesting summer 4 2,6 83 / 10 
Stubble treatment summer 1 0,7 83 / 5,4 

 

 

Classification of emissions and releases and the depending inputs 

The classification in view of soil pressure is a periodical, banded impact with short- 

(concerning plough layer compaction) and long-term (regarding subsoil compaction) 

effects of mainly local significance. Our case study shows 17 passes by vehicles per year. 

More than 40 wheel passes may occur in row crops due to more than 10 passes by 

vehicles (Hakansson and Reeder, 1994). Horn (1999) reported 23 passes by vehicles per 

year as a maximum in winter wheat. Only 27 % of the area was not overran and 58 % 

were passed three to six times. Even repeated passes with moderate wheel loads and 

ground compact pressures may result in deep compaction and persistent negative crop 

responses (Petelkau and Dannowski, 1990). 
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Characteristics of the utility functions 

The first and second step of the indicator derivation exemplary demonstrate the multitude 

of feasible characteristics describing ecosystem functioning and accordingly potential 

effect indicators for the input soil pressure (table D2 and D3). Conceivable effects will 

predominately impair characteristics at level 0. The characterisation of the utility functions 

has only to be done once, since it is transferable to other ecosystems. 

 
Table D2: Characteristics of the utility functions, level-dependent. Exemplary specified are 

characteristics meaningful for ecosystem functioning, derived top-down. Compiled after 

Blume (1992); Brussaard et al. (1997); Doran et al. (1996); Fränzle (1998); Harris et al. 

(1996); Karlen et al. (1997); White (1997) 
 

Function Level II (relations) Level I (subsystems) Level 0 (elements) 

Habitat Food-networks Nutrient content 
Consumers 
pH value 
Redox potential 
Predator-prey-ratio 

Air-filled porosity  
Water-filled porosity 
Macro porosity 
Mycorrhizal fungi 

Transformation Nutrient cycling Aeration (air capacity) 
Biological activity 
Decomposers  
Reducers 
Density/composition of 
microbial communities 

Content/ kind of micro-
organisms, above all bacteria 
Number/kind of fungi, 
earthworms, insects etc. 
Available field capacity 
Respiratory quotient 

Filter Structure Porosity 
Peptisation 

Pore spectrum 
Particle size 
Water-filled porosity 
Hydraulic conductivity 
Field capacity 

Buffer  Neutralisation 
Adsorption 
Desorption 
Precipitation, Crystallisation  

Content of anions, cations 
Exchange capacity 
Electrical conductivity 
Particle size and surface 
Organic matter 
Clay content and composition 
Total surface of active soil 
particles 

Production Biomass production Adequate content of 
nutrient, water, air 

Base saturation 
Pore volume 
Penetration resistance 

Storage Water cycling Field capacity Pore spectrum 
Pore volume 
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Potential effect indicators 

Since soil compaction strongly affects compartments and whole ecosystems, it has been 

object of several investigations. Available studies are concerned with effects of soil 

compaction in general (cf. Soane, 1983) or with special issues. Many analyses were 

performed on effects on physical properties, e.g., the physical and mechanical parameters 

of arable soils (Semmel, 1993). Stepniewski et al. (1994) checked effects on soil aeration 

properties. They present indicators of the soil aeration status. The effects on soil micro 

structure were investigated (Kooistra and Tovey, 1994) as well as on hydraulic properties 

(Horton et al., 1994). Brussaard and van Faassen (1994) focused on effects on soil biota 

and on soil biological processes. 

 
Table D3: Potential effect indicators in view of soil pressure, level-dependent - resumed bottom-

up. Compiled after Blume (1992); Brussaard and van Faassen (1994); Dürr et al. 

(1995); Horton et al. (1994); Kooistra and Tovey (1994); Lipiec and Simota (1994); 

Soane (1983); Soane and van Ouwerkerk (1994); Stepniewski et al. (1994) 

 

Level 0 Level I Level II Function 
Macro porosity 
Pore spectrum 
Pore continuity 
Pore volume 
Field capacity 
Penetration resistance 

Porosity Structure Filter 
Habitat 
Transformation 
Production 

Air-filled porosity 
Air capacity 

 Aeration  Habitat 

Earthworms 
Bacteria 
Metabolic quotient  

Decomposers Nutrient cycling Transformation 
Habitat 
Buffer 
Production 

 

 

Set of ecosystemic effect indicators 

The third step of the derivation procedure provides an intersection of the two lists (table D2 

and D3) in accordance to each utility function and input chosen. Soil pressure is an input 

which mainly impacts physical properties. Hence, the indicator set is primarily based on 

such properties. In table D4 we propose EEI being overlaps as described above. 

 

Input 
soil pressure 
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Table D4: Proposal for an EEI set for the utility functions regarding soil pressure as an input and 

its principal effect of soil compaction, derived through an intersection of characteristics 

and potential effect indicators (table D2 and D3). For further details refer to the text 

 

Function Ecosystemic effect indicator 

Habitat Macro porosity+ 
Transformation Respiratory intensity and metabolic quotient+ 
Filter Pore spectrum, above all the pore volume between 1 and 100 µm* 
Buffer - * 
Production Penetration resistance or macro porosity (depends on the used crop or plant)* 
Storage Field capacity* 

+: Decisive regarding plough layer condition 
*: Decisive regarding plough layer and subsoil condition 
-: For the buffer function there is no EEI with regard to soil pressure 
 

 

Habitat and transformation are functions predominately determined by the plough layer 

condition. In contrast, the long-term sustainable productivity and functioning principally 

depends on subsoil condition. For filter, buffer, production and storage the plough layer as 

well as the subsoil condition are strongly relevant. 

 

Based on existing scientific knowledge we resumed threshold values and ranges of 

tolerance as far as known with regard to our proposed EEI (table D5). However, it has to 

be taken into account that commonly threshold values cannot be directly derived from the 

scientific data available. Therefore, the setting of thresholds often signifies decisions on 

the base of value judgements and is subject to considerable uncertainty. 

 

 
Table D5: Thresholds, standard values and ranges of tolerance, respectively, which are available 

in literature according to the EEI proposed for soil pressure 

 

Ecosystemic effect indicator Threshold/ standard value/ 
range of tolerance* 

Author 

Macro porosity 15% (> 30µm) 
10% (> 30µm) 

(Cieslinski, 1989) 
(Dexter, 1988) 

Pore spectrum (1-100µm) ≅≅≅≅ cavity 
volume 

10% (very low) 
40% (extremely effective as filter) 

(Blume, 1992) 

Field capacity -  
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Ecosystemic effect indicator Threshold/ standard value/ 
range of tolerance* 

Author 

Penetration resistance 1Mpa 
 
>1,5-3 MPa = 15-30 bar (50% - 0% 
root growth) 

(Bengough, 1990; Petelkau, 
1980) 
(Horn, 1999) 

Air-filled porosity 10%  (Brussaard and van Faassen, 
1994; Dürr et al., 1995; 
Stepniewski et al., 1994) 

*: No specification is made for different land use or site conditions 
-: No threshold value available 
 

 

DISCUSSION 

Indicator sets have to be suitable to describe the condition of various systems referring to 

systemic and dynamic aspects of sustainability. Such sets should be independent of 

specific system conditions. A model-based deduction of indicators will be able to meet this 

requirement, e.g., based on an analysis of system key functions or elements (Mitchell et 

al., 1995). The derivation procedure for EEI is deduced from an analysis of significant 

characteristics according to the procedure described above. 

 

Motivation of indicator proposal and indicator selection 

The indicator selection is coined by the difficulty to balance between both high stress 

specificity and high ecological relevance (Gentile and Slimak, 1992). Despite we have 

chosen the EEI referring to the following points: i) sensitivity to input, ii) meaningfulness for 

considered function, iii) spatio-temporal relations, that means short-term reaction but also 

significance for long-term effects were borne in mind. 

 

Important habitat characteristic for roots, animals and biota among others are represented 

by the macro porosity. Macro porosity is one of the most directly affected and quick 

reacting characteristics (Danfors, 1994) and it has a long-term meaning for ecosystem 

functioning. Stepniewski et al. (1994) suggest air-filled porosity as a suitable indicator for 

soil aeration, whereas we looked for a characteristic essential for the whole habitat 

function including enough living space for organisms.  
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The transformation function, mainly relating to biological processes, depends upon the 

habitat function. On this account effects are mostly indirect. Investigations of mechanical 

loading effects on microbial biomass in silty soils (Luvisols) demonstrated a decrease of 

microbial biomass and an increase of the metabolic quotient, clearly indicating stress 

(Kaiser, 1992). Microorganisms play a decisive role in matter transformation. 

 

The filter function is primarly based on abiotic properties, predominately on the soil pore 

system which is strongly influenced by pressure. Hence, a characteristic suitable for that 

issue is the pore spectrum, chiefly that between 1 and 100 µm (Blume, 1992). 

 

One of the main causes reported for the impediment of root growth by compaction is the 

penetration resistance which is also affected by soil pressure (Dürr et al., 1995). If the 

roots cannot penetrate the productivity and yield will be reduced. Penetration resistance is 

an EEI valid for many plants and crops. Yet, Dexter (1986) discovered that some plant 

species are able to penetrate into soil aggregates. In these cases macro porosity will be 

the receptor hindered and therefore the EEI more suitable for the production function. 

 

The storage function is seen as the capacity to store water in this context. The 

characteristic sensitive to soil pressure as well as meaningful for this function represents 

the field capacity. 

 

No EEI can be given in some cases. Firstly, if inputs do not impair the characteristics of 

the considered utility function specifically and significantly no meaningful EEI can be 

derived. For example, the input soil pressure affects non-chemical characteristics. Hence, 

for the buffer function as a chemical characteristic we have not detected an EEI. Secondly, 

if the effects are antagonistic it will also be difficult to mark a decisive indicator. This may 

require a further development of the method. 

 

Aggregation of EEI 

When applying the method to one input in an agroecosystem one may yield various EEI. 

To reduce the number one possibility is to aggregate the EEI. We suggest the macro 

porosity as suitable aggregated indicator for soil pressure and its main effect compaction. 

The condition of the cavity system is essential for plant growth, soil water and soil aeration, 
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cycling and mechanical soil properties (Dürr et al., 1995). The indicator proposal (table D6) 

demonstrates that macro porosity is directly or indirectly important for filter, habitat, 

production and transformation function. 

 

The question arises from the aggregation how and whether to integrate normative 

elements. The diverse EEI for one chosen input may be aggregated to only one or two 

EEI. Partly this aggregation is possible scientifically based, partly priorities of normative 

constraints flow in. If one cannot merge these functions on a scientific basis, a weighting of 

the importance of particular functions is necessary. Further on, it still remains open if an 

aggregation is useful at all. Ultimately, the indicators obtained imply or reflect both 

normative and scientific options. 

 

Indicators in relation to threshold values, statements for sustainability or not? 

Indicators should have target values that characterise desirable conditions (McCullum et 

al., 1995). Presently, standardised fixed thresholds referring to our purpose do not exist. 

Several authors, however, mention target or threshold values which are recommended not 

to be exceeded (cf. table D5). Related to existing limits in literature the EEI permit 

statements concerning loading capacities thought to maintain the ecosystem functioning, 

thus supporting an assessment of the system sustainability. Nevertheless, threshold 

values vary largely with land use or specific soil functions. Where these values for 

indicators are lacking they have to be established (Doran et al., 1996). The EEI provide the 

potentiality to calculate site-dependent loading capacities with available formula (e.g., in 

DVWK, 1997). 

 

Available threshold values permit to maintain certain characteristics of ecosystem 

functioning. In turn, these threshold values can be related to current permitted technical 

limits, e.g., axle loads of agricultural machinery. For instance, Horn (1999) mentions axle 

loads of 2,5 t and a contact pressure of 50 kPa entailing irreversible soil deformation of 

silty soils in humid spring. Danfors (1994) recommends that loads to avoid negative effects 

on single axle units should not exceed 6 t and those on tandem axle units should not 

exceed 8-10 t. 
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Transferability to agricultural production 

Since EEI predominately address ecosystems they are an essential prerequisite for 

sustainable agriculture based on unimpaired ecosystem functioning. To provide 

recommendations for the farmers’ practice the EEI have to be transferred into decision aid 

tools. Restrictions for farmers’ tilling methods may be derived from the threshold values of 

the EEI. These restrictions can have the form of decision criteria. Thereby distinguishable 

are more qualitative ones, e.g., to establish riparian vegetation or field margins. On the 

other hand the statements can be more quantitative, e.g., a pesticide amount that must not 

be exceeded or a soil moisture content that must be at a specific state before tilling. 

 
 

CONCLUSIONS AND FUTURE TASKS 

Our results show that EEI are a promising instrument to assess anthropogenic impacts, 

especially caused by agricultural emissions, on ecosystems. The examination 

demonstrated that our site-independent derivation procedure for EEI can be implemented. 

The EEI yielded may depict diverse peculiarities dependent upon the examined location. 

Therefore, we conclude that slight modifications ought to be carried out assigned to the 

investigated ecosystem with its natural settings. 

 

Furthermore our analysis pointed out that in some cases not for every utility function and 

each input suitable indicators can be derived. But this relates only to unclear or 

inconsistent effects. We emphasise that an EEI is also not necessarily required in these 

cases. 

 

Relating the agricultural production system to affected ecosystems the method yields 

indicators that are important for sustainable ecosystem functioning. In case that threshold 

values for the selected EEI already exist quantitative statements may enable to assess 

agricultural production and its effects within the frame of sustainable agriculture. 

 

Vital information about sustainable ecosystem functioning is implicated in the EEI. Applied 

to the agricultural production system the EEI provide support essential for the development 

of decision aid tools for farmers. 
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To reduce the number of EEI (for one ecosystem concerning various inputs) an 

aggregation for several inputs is possible. The case study performed has outlined that 

macro porosity may be an aggregated EEI for an agroecosystem with regard to soil 

pressure. 

 

Three main tasks of further research should to be treated: (1) other inputs, (2) another 

ecosystem, and (3) a further target of preservation. (1) Presently, we work on EEI for a 

pesticide chosen and the nitrogen fertilisation. We plan to consider the effects of heavy 

metals, e.g., cadmium contained in fertilisers and to derive EEI for this concern. (2) 

Subsequently, efforts should be forced to derive EEI for adjacent ecosystems keeping the 

fact in mind that for such ecosystems EEI have to handle with the scale issue. This issue 

eventually implicates adaptations of the method to other realities. Thus, the approach will 

be applied to a close to nature ecosystem. The focus of this issue will be which spatio-

temporal dimension of indicators is suited to assess sustainable agriculture. (3) Moreover, 

we will test the applicability for other targets, e.g., species preservation to consolidate the 

indicator derivation method. 
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E APPLICATION OF ECOSYSTEMIC EFFECT INDICATORS WITH 
REGARD TO CADMIUM AND CARBENDAZIM IN AGRICULTURAL 
SYSTEMS - FOCUSSING THE TEMPORAL SCALE 

ABSTRACT 

Ecological impact assessment essentially contributes to an evaluation of the sustainability 

of agricultural systems. However, the temporal dimension of this assessment is mostly 

lacking. An indicator approach providing ecosystemic effect indicators to support an impact 

assessment of agricultural production on ecosystems was evaluated. One major aim of the 

present study was to test this indicator approach for material inputs which result from 

agricultural emissions and finally cause effects in surrounding ecosystems. Furthermore, 

temporal aspects should be integrated into indicator derivation. As sample substances the 

fungicide carbendazim and cadmium contained in P-fertilisers which show effects on 

different times scales were selected as substances to be examined in a case study. The 

case study was conducted at the University of Hohenheim, Stuttgart. The used data set 

was collected in South-Western Germany. This study showed that it is realistic to base the 

derivation procedure on "main functions of ecosystems". The indicator derivation included 

the following steps: In a first step the agricultural emissions were classified according to 

the criteria scale, scope and balance. Following the indicator development was performed: 

Firstly, utility functions of the ecosystem were deduced. The essential processes and 

elements were defined. Secondly, receptors of impacts sensible to cadmium and 

carbendazim were identified and compiled. Finally, the ecosystemic effect indicators were 

identified by overlapping characteristics of the functions and receptors. As a major result 

two sets of ecosystemic effect indicators are presented in this article: first for carbendazim 

which mainly causes effects on a short-time scale and second for cadmium whose effects 

occur on a longer time scale. This examination showed that an integration of the temporal 

dimension is suited to facilitate the indicator selection. 

 

INTRODUCTION 

Ecosystems are complex systems exposed to a multitude of stress and impacts. To 

assess agricultural management systems, e.g., in the context of sustainability, all impacts 

resulting from agricultural production on ecosystems have to be evaluated. However, the 
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evaluation of environmental impacts of agricultural production still remains critical because 

of the (1) manifold types of emissions and inputs occurring and (2) different temporal and 

spatial scales of impacts which vary to a great extent. 

 

Impact assessment in ecosystems has to consider different hierarchies: organisational, 

spatial and temporal hierarchies. The processes interconnected within the organisational 

hierarchies depend on the various spatial and temporal levels (de Kruijf, 1991). Currently, 

spatial dimension is often included in ecological impact assessment, e.g., Wiens (1989); 

Haila (1998). Whereas the temporal dimension is only rarely regarded (von der Wiesche 

and Werner, 1998). Even though the dimension of time provides an essential access for 

systemic considerations in ecology (Kümmerer, 1997). 

 

In the present study, the assessment of agricultural systems and their impacts is based on 

an indicator approach as previously developed (Merkle and Kaupenjohann, 2000a). Within 

this concept utility functions of ecosystems (de Groot, 1992; Fränzle et al., 1993) represent 

the starting point of indicator derivation. The derivation method for indicators has been 

verified for the impact due to soil pressure (Merkle and Kaupenjohann, 2000b). From the 

big number of potential receptors which have to be assessed the most important ones 

have to be extracted. Therefore the first step is an analysis of relevance. The criteria scale 

(length of space-temporal effect chains), balance and scope are decisive for this analysis. 

The emissions1 and resulting inputs2 are classified for the estimation of relevance 

according to the following aspects: i) kind and type of emitted substance, ii) its 

transport/transformation and iii) its potential impact in affected ecosystems. Emissions 

could travel very fast from a source to a sink or they need a long time. Accordingly, 

reactions and effects in adjacent ecosystems can vary to a great extent regarding time and 

space distances. Therefore, a classification and an estimation of relevance of agricultural 

emissions represent a suitable prerequisite for the test of the indicator approach. Thus we 

define types of emissions and impacts expressing frequency, mobility, persistence of 

                                            
1 Emissions include material and non-material releases of the agricultural production system, e.g. nutrients, 

soil pressure, NOx etc. Harvest goods are not included.  
2 Inputs include energy or matter emitted by the production system, e.g. nutrients, pesticides and heavy 

metals which reach an ecosystem. 
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substances and initiating various effects. Categories potentially affected by inputs are: 

toxicity, equilibrium (nutrification, acidification) and biodiversity.  

 

It is the major aim of this study to apply the indicator approach to material impacts. In 

summary the objectives are: 

(1) to test the applicability of the indicator derivation method previously developed for 

material emissions of the fungicide carbendazim and of cadmium, which is mostly 

contained in P-fertilisers, and their corresponding effects in agroecosystems in a 

case study, 

(2) to show and apply an approach to classify emissions and to analyse their 

relevance by the example of emissions resulting of producing Triticale 

(Triticosecale Wittmack) as an energy plant, 

(3) to integrate temporal dimensions into the consideration. To evaluate the effect of 

potential stressors on ecosystems it is proposed to identify the accordance of 

stress dynamics (emissions) and highest sensitivities of receptors on similar 

temporal scales. 

 

 

IMPACTS OF AGRICULTURAL PRODUCTION ON ECOSYSTEMS 

The evaluation of impacts on ecosystems demands the definition of a goal where aims and 

assumptions are clearly named. The ecosystemic effect indicator approach is based on 

targets and values which are assigned to utility functions of ecosystems (Doppler, 2000). 

The term utility functions (de Groot, 1992; Fränzle et al., 1993) of ecosystems covers the 

soil functions habitat, production, storage and the regulation function which is subdivided 

into the filter, buffer and transformation function. By reflecting the basic capacity of the soil 

to function (Herrick, 2000) these functions have to be maintained on a long-term scale. 
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Figure E1: Utility functions of ecosystems and their characteristics and receptors which are level-

dependent. The receptors may differently be affected by inputs dependent upon time 

 

Inputs may affect receptors of an ecosystem (figure E1). Effects caused by emissions of 

agricultural production may immediately emerge. Reactions on a short-term scale 

represent behavioral, physiological or morphological responses (figure E1). For instance, if 

a high dose of a pesticide reaches the topsoil at certain points it may hurt soil-organisms. 

Results may be, e.g., an upset of predator-prey balances. But effects may also occur with 

a time delay, that means on a middle- or long-term-scale, e.g., alterations of system 

equilibrium through substance accumulations or reactions of receptors like communities or 

relations between subsystems. This may cause alterations at higher hierarchical levels. 

Thereby the entities at the highest hierarchical level imply slow time constants, whereas 

the lowest levels (figure E1) are characterised by quick time constants (Müller, 1992; 

Ulrich, 1994). If the stress resulting from an input is severe it may also directly affect 

receptors of the level of subsystems or even of superior relations and properties (figure 

E1). 
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Temporal scales and long-term considerations 

Even though relevance of time is acquainted (SRU, 1994) deficits exist between 

requirements and reality in ecosystem research. The time horizon of measurements or 

examinations often notably differs from the time scales required for an adequate 

evaluation of the results (Kümmerer, 1997). For instance, ecosystem research frequently 

aims at time scales of one to several centuries but it carries out experiments at short time 

scales from seconds to a few years. If the manifoldness of time scales, their interactions 

and interdependencies in evaluation studies are not regarded the consequences of 

impacts are only incompletely gathered (Kümmerer and Held, 1997a). 

 

Conforming to Levine and Knox (1994) and Frede et al. (1994) short-term is defined as 

hourly to seasonal, middle-term as years to decades and long-term as decades to 

centuries (figure E2). Ecotoxicology provides widespread information on acute toxicity of 

various substances (on a short-term scale). Examinations which aim at a middle-term 

timeline are rare, however (von der Wiesche and Werner, 1998). Also, in the field of long-

term effects many gaps appear (Blume, 1992; Wagenet, 1998). Notwithstanding, impact 

assessments with the background of sustainability imply the consideration of all time 

scales: (1) acute effects, (2) effects occurring on middle-term scales and (3) effects 

appearing after long time. 
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Figure E2: Potential receptors (processes) of inputs in agroecosystems, their temporal dimensions 

and the time scales of consideration. Data used from Edwards and Bohlen (1996); 

Frede and Bach (1997); Lenz (1995); Richter et al. (1996); Sparks (2000) 

 

Persistence and toxicity 

Persistence a central criterion for the evaluation of substances (Klöpfer, 1994) and toxicity 

of substances are criteria which need to be considered in conjunction with temporal 

aspects. Persistence is defined as the property of substances which is chemically stable 

versus influences and forces of the environment. The persistence of substances can be 

quantitatively described through its half-life period or concerning gases through its medium 

atmospheric lifetime (Hulpke et al., 1993, p. 540). The duration of impacts resulting from 

emissions depends on the persistence of the substance. With respect to toxicity the terms 

acute and chronic are commonly used to define the toxicity of a substance along with the 

duration of an impact. 
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Time dependency of effects 

Not only the characteristics of the harmful substances are decisive for effects but also at 

which time an impacting substance hits a certain ecosystem. The resulting effect mainly 

depends on: (1) on the emission side i) point in time (Dahlin et al., 1997), ii) concentration, 

intensity of impacting stress, iii) potential duration of impacting stress, as well as iv) 

substance properties like mobility or toxicity. For instance, some substances may only 

impact ecosystems during one vegetation period, e.g., the active substance Isoproturon 

causing acute effects. Several substances or impacts actively react or influence the 

system more than one production cycle, e.g., nitrogen or soil pressure. (2) On the 

ecosystem side the sensitivity of the receptor expresses how rapidly or how intensely the 

ecosystem may be influenced by stress (Holling, 1986). 

 

The sensitivity of the receptors for impacts depends on season related factors (Schubert, 

1991). The altering sensitivity of receptors within a year (cf figure E4) as well as the time 

delays of direct (e.g., death of organisms after application of pesticides) and indirect (e.g., 

a slower matter decomposition) effects are factors highly important with regard to the 

temporal dimension. For instance, if the input affects the juvenile state of an organism the 

harm caused will have a deep scope. Furthermore, sensitivity and elasticity of a system 

depend on the system history, e.g., time, duration and kind of preceding loading 

(Kümmerer and Held, 1997b). 

 

 

Ecosystemic effect indicator approach 

To evaluate the impacts caused by agricultural production an indicator approach has been 

developed (figure E3; Merkle and Kaupenjohann 2000a). This approach includes as a first 

step a classification of emissions and impacts in considering time aspects. All following 

steps of the derivation approach should also show relations to time features: Step one: 

Compilation of a list with level-dependent characteristics of each utility function for the 

ecosystem considered (top-down). Step two: Compilation of a list with receptors for a 

certain input (bottom-up). These receptors represent potential effect indicators. Step three: 

Overlapping of the two lists and identification of the specific ecosystemic effect indicators 

(EEI) by means of expert knowledge. A simplification of step three arises through the 

integration of temporal aspects: decisive is when the impact affects a sensitive process or 
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element. Furthermore, the EEI selection is oriented on the goals and the indicator 

requirements defined at the beginning of the examination. 

Figure E3: Procedure for the derivation of ecosystemic effect indicators. Modified after Merkle & 

Kaupenjohann (2000a) 

 

 

CASE STUDY 

The production of Triticale as an energy plant (Lewandowski et al., 1999) is investigated in 

the exemplary case study. Data for this conceptual case study originated from studies of 

the "Sonderforschungsbereich No. 183" (Lorenz, 1992; Zeddies, 1995). The emissions 

and the respective input data descend from a cultivation procedure representative for 

Triticale (Diekmann, pers. com.; Merkle and Kaupenjohann, 2000b). Data concerning 

effects are drawn out from literature. The databases include laboratory toxicity tests and 

field studies evaluating multiple end-points of biological hierarchy. 

 

We check the relevance of impacting substances before the EEI derivation. The 

proceeding starts with an inventory analysis according to the life cycle impact assessment 

(LCIA; SETAC, 1993). Similar to the classification step of LCIA data of emissions and 

inputs from the inventory analysis are grouped into several effect categories. The effect 
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assessment characterises the relationship between the intensity of exposure to an agent 

and the magnitude of ecological effects (Cairns, 1998). 

 

Relevant emissions are preselected according to their potential toxicity (low, middle, high), 

persistence and frequent use in a second step. In the present study, we preselected two 

relevant potential stressors: the fungicide carbendazim and the heavy metal cadmium. 

Carbendazim has been selected as exemplary substance since fungicides are generally 

highly toxic to earthworms. Special interest is laid on heavy metals because of their 

inherent persistence. 

 

Carbendazim (= methyl benzimidazol-2-ylcarbamate) is frequently used against fungal 

diseases in wheat. The active compound shows a persistence of up to 230 days in 

agricultural soils (Domsch, 1992; Chemistry, 1994; Perkow and Ploss, 1999). Therefore, a 

consideration of Carbendazim is important. Carbendazim has been identified as chemical 

stressor especially for the soil fauna in laboratory tests (Römbke and Federschmidt, 1995; 

van Gestel et al., 1992; Paoletti, 1999) microcosm studies (Förster et al., 1996) and field 

experiments (Eder et al., 1992; van Gestel, 1992).  

 

Cadmium tends to accumulate in the topsoil after application (Mortvedt and Beaton, 1995). 

Heavy metal contaminants may disturb soil ecosystems, e.g., by affecting the structure of 

soil invertebrate populations (Spurgeon et al., 1995). Further, adverse effects on animal 

health have been detected (Thornton, 1992) and cadmium may even influence human 

health (Mortvedt, 1996). 

 

 

Classification of cadmium and carbendazim emissions in agroecosystems 

To outline which temporal scales are affected and to judge the importance of the emission 

the emissions are assessed by an analysis of matter balances. Where data derived from 

matter balances is lacking we at least aim at a qualitative classification in a catalogue and 

an evaluation of the appearance probability. 

Sources of cadmium in agroecosystems 

Generally employed commercial phosphate fertilisers contain small amounts of heavy 

metal contaminants derived from the phosphate rock (Mortvedt, 1996). Close relationships 
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exist between concentrations of phosphate and cadmium in superphosphates and the 

sources of phosphate rock (Williams and David, 1973). Phosphate rocks always contain 

cadmium, although concentrations vary widely from < 1 mg ⋅ kg-1 to > 100 mg ⋅ kg-1 

(Richards et al., 1998). The typical applications of phosphate in Western Europe involve 

annual additions of 2 - 5 g Cd ⋅ ha-1 (Gunnarson, 1983). Mortvedt and Beaton (1995) state 

that 3,3 g Cd ⋅ ha-1 are applied with 20 kg P ⋅ ha-1. 

 

We assume in our case study that 160 kg ⋅ ha-1 basal dressing are added once every three 

years including Triple superphosphate which contains 25 – 30,6 mg Cd ⋅ kg-1  (Wilcke and 

Döhler, 1995; Biomasse, 1998). However, it is difficult to estimate accumulations of 

cadmium applied with phosphate fertilisers since mechanisms for removal and addition 

cannot be easily assessed (Mortvedt and Beaton, 1995). 

 

Concerning the temporal effects it is mentioned that cadmium in phosphorus applications 

may have short- and long-term impacts with regard to cadmium phytoavailability. Plants 

generally take up only 1 - 5% of the soluble cadmium added to soils (Grant et al., 1998). 

Parts of the soluble cadmium can be leached or absorbed by organisms. Moreover, 

nitrogen fertilisers may increase cadmium uptake of plants, although the fertiliser does not 

contain significant levels of cadmium. This may be due to soil acidification, increases in 

osmotic strength of the soil solution or ion exchange reactions (Grant et al., 1998). 

 

Sources of carbendazim in agroecosystems 

In the present case study, one fungicial treatment of Triticale is suggested using 

carbendazim (applied as DEROSAL, Hoechst AG, 360 g a.i. l-1) at the recommended 

application rate of 0,18 kg a.i. ha-1. 

 

The application process itself represents the main source of carbendazim within the 

Triticale production system. During the annual field application, the initial compound 

directly reaches plants, topsoil and atmosphere. A second important source of 

carbendazim and pesticides in general is the handling process at the farm yard during the 

preparation and cleaning of the spraying equipment (Thorstensson and Castillo, 1997). 

Since farm yard gravel offers only unfavourable conditions for biodegradation and 

adsorption, the spilled pesticides easily penetrate into surface and groundwater. However, 



E Application of ecosystemic effect indicators  94 

it is impracticable to include carbendazim emissions from spillage in the present case 

study because quantity as well as frequency of this source of pesticide emissions may not 

be determined. 

 

The toxicity of the fungicide is strongly dependent on its persistence. Since carbendazim 

degradation is lower in soils with high pH and high clay content (Liu and Hsiang, 1994), the 

toxic potential of the compound is higher in these soils. In general, the stability of 

carbendazim does not exceed one year (Perkow and Ploss, 1999). Since the half-life of 

the compound does not exceed 230 days (DT 50 in soils 50-230 days depending on soil 

conditions; Domsch, 1992), we expect no accumulation of the compound in agricultural 

soils over the years. Therefore, the assessment of carbendazim impacts on agro-

ecosystems remains restricted to a time scale of one year or one crop rotation, 

respectively. 

 

On the basis of a classification, the emission may be ranked regarding their potential 

effects and impacts. Emission criteria of the classification may be gathered of table E1: 

 
Table E1: Categories of the material emissions carbendazim and cadmium and their exposition 
 
Category  Carbendazim Cadmium 

Production (of the 
substance used) 

(X) X Source of emissions 

Product application X   X1) 

Unique2)   X3)  

Periodical X X (P-fertilisation) 

Continuous   

Temporal aspects of emission 

Time of application June September 

Point    (X)3)  

Banded (X)  

Spatial kind of source 

Area X X 

Volatility  medium low 

Water solubility low low 

Emission properties 
 

Persistence medium4) high 

Exposition/ 
process of transport 

Water/soil: 
solution 

particle bounded 

X 

X 

X 

X 

X 

X 
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Category  Carbendazim Cadmium 

 Air:  
gaseous 

particle bounded 

X 

X 

(X) 

X 

 

X 

1) Contained in inorganic fertilisers 

2) Depending on the duration of observance 

3) Point emission occurring at filling or cleaning of plant protection equipment 

4) T 90 in soils < 365 days (Domsch, 1992; Perkow and Ploss, 1999) 

(X)  Of secondary importance 

 

 

Classification of cadmium and carbendazim inputs in agroecosystems 

The input pathway and the input amount as well as substance dispersion and substance 

persistence primarily influence the external exposition (Fränzle, 1998). Emissions are 

transported and transformed. The emitted substance which arrives in an ecosystem 

represents an input which cause potential effects. The agroecosystem represents at the 

same time site of emission and site of potential effect for cadmium and carbendazim. 

 

Both pesticides and fertilisers predominately attain the topsoil at first where most of the soil 

organisms live (Frede and Bach, 1997). As a consequence, especially these organisms 

are firstly mared and the depending functions are strongly affected. Since the EEI 

derivation in this investigation remains concentrated on the soil system, a worst case 

scenario is assumed where the whole quantity of substance applied attains the topsoil (4 – 

4,8 g cadmium ⋅ ha-1 ⋅ a-1, 0.18 kg a.i. carbendazim ⋅ ha-1 ⋅ a-1). Major exposure route of 

cadmium to receptors is via pore water (Umweltbundesamt, 1998). Following, all receptors 

which are in contact to the pore water might be affected. 

 

 

Temporal scales of effects regarding Cadmium and Carbendazim 

The temporal scale of potential effects notably differs. For instance, the input of cadmium 

may affect receptors on a short-term scale (table E2), e.g., high concentrations of 

cadmium decrease the respiration of soil microorganism populations (Lepp, 1981; Williams 

and Wollum, 1981). Or the activity of cellulase, phosphatase, amylase and nitrogenase 

descents (Blume, 1992; Williams and Wollum, 1981). More frequent, however, effects 
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occur after a middle- or long-term period (Semu and Singh, 1996) because of the cadmium 

accumulation over time. Enrichment of this metal in plants, e.g., legumes or crops may be 

a feasible consequence (Guttormsen et al., 1995). An enhanced cadmium concentration 

entails a greater time-dependent hazard of harmful effects on animals, plants and humans. 

Effects may appear after having reached the damage threshold. Accordingly, the input of 

cadmium in agroecosystems requires a long-term consideration. However, information on 

long-term effects of cadmium in field are rare. Particularly, the corresponding thresholds 

are not known (Blume, 1992). 

 

The input of carbendazim in agroecosystems shows fast reactions of receptors (table E2). 

The effects are mostly immediately initiated that means being acute ones. Since the half-

life of the compound does not exceed 230 days (Domsch, 1992) the time of consideration 

for carbendazim effects should be concentrated on the short-term scale (table E2). 

 
Table E2: Temporal criteria of effects for the material inputs carbendazim and cadmium 

 

Category  Carbendazim Cadmium 

short-term  X (X) 

middle-term (X) X 

Time scale of effect 

long-term  X 

 

 

Resumed primary effects of carbendazim belong to the short-term scale whereas graver 

effects of cadmium are expected on middle- or long-term scales. 

 

 

Ecosystemic effect indicators for the inputs Cadmium and Carbendazim 

The first step of the EEI derivation was the characterisation of the utility functions (figure 

E3). A list of feasible characteristics was derived for each function (Merkle and 

Kaupenjohann, 2000b). The second step was the compilation of receptors, the potential 

effect indicators, for the inputs of cadmium and carbendazim. 
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Potential effect indicators 

A broad spectrum of effects in agroecosystems caused by cadmium arises (table E3). 

Cadmium effects in soils can depend on soil properties like texture, humus content and 

pH. Earthworms are suitable receptors for assessing the impact of heavy metals because 

of their limited mobility (Paoletti, 1999). Peregrine earthworms may rapidly respond when a 

heavy metal impact occurs (Doube and Schmidt, 1997). Earthworm acute toxicity tests in 

laboratory experiments revealed that cadmium affects earthworm reproduction and this 

influences population dynamics (Spurgeon et al., 1995). Furthermore, the cocoon 

production of earthworms is sensitive to cadmium (van Gestel et al., 1992). In the field, 

earthworms feed on solid soil constituents and therefore accumulate pollutants, e.g., 

cadmium (Lee, 1985). Earthworms accumulate cadmium up to an enrichment factor of 

about 11 - 22 (Domsch, 1985). Besides the fauna, enrichments in flora of about 12 - 18% 

(leaf tissue and roots) were found (Blume, 1992; Grant et al., 1998; Lepp, 1981). Generally 

the pollen and the stigma are sensitive to a surplus of cadmium. Low cadmium 

concentrations in the stigma may hamper the growth of pollen (Schüürmann and Markert, 

1998, p. 609). 

 

Effects of carbendazim are characterised by a selective impact on specific receptors (table 

E4). Especially the number and biomass of enchytraeids and juvenile earthworms is 

affected by carbendazim (Förster et al., 1996; Römbke and Federschmidt, 1995; van 

Gestel et al., 1992). The respective effects on litter decomposition and mineralisation in 

soils are of particular interest. They influence fertility and aeration of soils and therefore the 

availability of nutrients and oxygen to primary producers (Coleman and Hendrix, 1988). 

Effects of carbendazim on unspecific soil biology parameters, e.g., SIR-microbial biomass, 

urease activity and soil respiration could not be proved (Förster et al., 1996; Lampe and 

Aldag, 1979; Nowak and Hurle, 1984). In table E3 and E4 potential effect indicators for the 

material inputs of cadmium and carbendazim are summarized. 
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Table E3: Examples of potential effect indicators and their meaningfulness for higher 

organisational levels with regard to the input of cadmium, compiled bottom-up. Data 

used from Blume (1992); Grant et al. (1998); Lee (1985); Lepp (1981); 

Umweltbundesamt (1999); van Gestel et al. (1992); Williams and David (1973); 

Williams and Wollum (1981)  

 

Level 0 (elements/processes) Level I (subsystems) Level II (superior 

relations) 
Function 

Biomass of earthworms  

Biological activity of microorganisms 

Decomposition Nutrient cycling Transformation 

(Diffusion into) sesquioxide particles  

Formation of Cd-Chloride-

Complexes 

Cd2+-leaching (pH<5,5)  

Ion exchange capacity Ion exchange Buffer 

Biological activity of microorganisms 

(cellulase, phosphatase, amylase, 

nitrogenase activity in 

microorganisms) 

Reproduction rate of earthworms 

Assimilation 

Decomposition 

Nutrient turnover 

Biomass 

production 

Production 

Ratio of actinomycetes/bacteria 

Cocoon production of earthworms 

Cd-accumulation in plant individuals 

Respiration of microorganisms 

Predator-prey-ratio Food-chains/-webs 

 

Habitat 

 
 

Table E4: Potential effect indicators and their meaningfulness for higher organisational levels with 

regard to the input of the fungicide carbendazim, compiled bottom-up. Data used from 

Eder et al. (1992); Förster et al. (1996); Khan et al. (1987); Römbke and Federschmidt 

(1995); van Gestel et al. (1992) 

 

Level 0 (elements/processes) Level I (subsystems) Level II (superior relations) Function 

Earthworms (number and 

biomass of juveniles) 

Fragmentation of organic 

matter 

Humus content and kind  

Humin substances 

Decomposition Nutrient cycling 

Food-chains/-webs 

Transformation 
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Level 0 (elements/processes) Level I (subsystems) Level II (superior relations) Function 

Ammonification 

Nitrifying organisms 

Ammonifying organisms 

Nitrogen turnover Nutrient cycling 

Biomass production 

Production 

CMCase Decomposition Food-webs 

Nutrient cycling 

Habitat 

 

 

EEI identification with regard to time relations 

The temporal aspect is recognised as an additional aspect which must not be ignored in 

facilitating the indicator selection. Therefore, we propose to arrange the temporal 

heterogeneity of receptors' sensitivities as well as the dynamics of emissions and inputs 

occurring and to look for intersections on similar temporal scales (step three of the 

indicator derivation). The farmer applies carbendazim in late spring (figure E4). Potential 

receptors for this fungicide may be elements like earthworms, especially their cocoon 

production and their reproduction behaviour (table E4). The sensitivity of the earthworms is 

highest in spring when the main time of reproduction takes place (figure E4). To identify an 

EEI representative for the input of the fungicide carbendazim and, e.g., the habitat function 

requires regarding intersections between the time frame of stress impact (June) and 

process sequence or high sensitivity of the receptor potentially affected (earthworm 

reproduction). The number of juvenile earthworms (table E5) results as EEI for the 

example mentioned. Filser (1995) observed similar effects in her examinations of the 

influence of fungicides (with copper) on Collembola. It was essential to look at times with 

highest receptor sensitivities in identifying the indicators most suitable for this definite 

input.  
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Figure E4: Frequency of inputs in an agroecosystem, portrayed by the example of pesticide 

applications, and the sensitivity of potential receptors, portrayed by the example of 

earthworm reproduction. Danger of harm is higher when reproduction proceeds. 

Impacts trace on diverse levels 

 

Cadmium represents an input which primarily influences the agroecosystem by 

accumulation on a middle- or long-term scale. However, searching an EEI representative 

for accumulated cadmium in agroecosystems signifies not necessarily a long-term process 

(table E3, E5). In fact, a characteristic located on a low hierarchical level of short reaction 

time may be the indicator most suitable, e.g., the biological activity of microorganisms. It 

ensues as a result that both the emergence of an impact (long-term) and the reaction of a 

receptor (immediately, time-delayed) often are but must not necessarily be located on a 

corresponding scale. 
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Table E5: EEI sets for the utility functions of ecosystems regarding cadmium and carbendazim as 

inputs, developed by an intersection of the characteristics and potential effect 

indicators 

 

Function EEI - Cadmium EEI - Carbendazim  

Habitat Ratio of actinomycetes/bacteria 

Cocoon production of earthworms 

Respiration of microorganisms 

Number of juvenile earthworms or 

reproduction rate of earthworms or cocoon 

production of earthworms 

Transformation Biomass of Earthworms (especially of 

Dendrobaena veneta, Lumbricus terrestris) 

Biomass of earthworms and enchytraeids 

Filter - Number and distribution of macropores* 

Buffer With Cd occupied ion exchange sites Humus composition 

Production Biological activity of microorganisms 

(cellulase, phosphatase, amylase, 

nitrogenase activity in microorganisms) 

Reproduction rate of earthworms 

Biomass of earthworms and enchytraeids 

Storage 
(concerning water 
and nutrients) 

- Humus composition 

-: A direct EEI cannot be identified with regard to carbendazim and cadmium 

*: Indirect EEI 

 

DISCUSSION 

The present case study showed that the EEI derivation method is also suitable for material 

inputs in agroecosystems. Therefore, the EEI derivation method represents a powerful tool 

to develop transferable indicators for environmental impacts in a site-independent manner. 

The yielded EEI, however, are location specific adapted. They can depend on the site, the 

agricultural production system and the respective emissions. To be interpreted the EEI 

have to be seen in the context they were deduced. The derivation process stands out as 

highly transparent. Therefore, it is easy to comprehend by different target groups like 

scientists or landscape planners. The users can alter or upgrade the lists obtained in step 

two of the derivation procedure according to their specific task in case of applying the EEI 

to other questions or integrating new research results. Subsequently, step three of the 

derivation procedure has to be adapted. Thus, similar to a location specific 

parameterisation the planners themselves are allowed to derive problem oriented 

indicators. 
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The implementation of the methodological approach for material inputs by the example of 

toxic substances illustrated that careful attention should be paid to temporal aspects. The 

examination of cadmium impacts raised the problem of substance accumulation over time. 

Indicators have to be identified with long-term meaningfulness which are, however, short-

dated sensitive in this case. This is enabled by compiling temporal aspects of stress 

appearance and by taking into account the varying sensitivity of potential receptors for 

specific inputs. Subsequently, intersections such that characteristics of similar temporal 

and organisational scales cross are looked for. However, in some cases such a cross may 

not be possible. 

 

Innovations of the developed indicators compared to existing approaches 

EEI go beyond existing indicators in so far as they not only indicate effects but also 

integrate a direct reference to functions and functioning of ecosystems. As yet, effects on 

ecosystem functions usually are assessed by studying the functions themselves. There 

can be indicators for subsystem functions as well as for the whole ecosystem functioning 

(Rapport, 1998). Or effects are assessed by looking at appropriate endpoints of impacts 

for whom indicators are needed (Weeks, 1998). The question of how to extrapolate effects 

which occur at one level to impacts at a higher hierarchical level still remains critical (de 

Kruijf, 1991). Frequently, the EEI are settled on the level of elements but integrate 

meaningfulness for higher organisational levels. With respect to the varied inputs the 

possibility was realised that for two distinct inputs and one ecosystem function the same 

EEI may be identified (table E5). Harris et al. (1996) examined soil quality with the 

assumption that all soil quality and health indicators must address one or more of the 

functions of soil quality. The authors confirmed that some indicators occur in different 

biological, physical or chemical categories. These indicators support the same function 

whereas some indicators occur in the same category supporting distinct functions. 

 

Assessment of agricultural production 

To perform an assessment of agricultural production, e.g., with the background of 

ecological sustainability the EEI may be related to existing threshold values. This implies 

giving quantitative information to the agents about the toxicity of a substance or potential 

effects. It is possible to relate the EEI to current threshold ranges. Present databases 

contain results from toxicity tests of risk hazard assessments. For instance, for 
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carbendazim and the corresponding EEI of the transformation function quantitative toxicity 

data can be found as follows: (1) for litter decomposition by Enchytraeids the NOEC50 

(field) is 0.24 mg ⋅ kg-1 (Römbke and Federschmidt, 1995). (2) The production of fertile 

cocoons (earthworm) as EEI of the habitat function has an EC50 of 1.92 mg a.i. kg-1 (dry 

soil; van Gestel et al., 1992). Threshold values for cadmium have to include soil properties. 

These properties may partly exert an influence on feasible effects of cadmium, e.g., clay 

soils may absorb more cadmium. Precaution values derived on the basis of 

ecotoxicological data (pH > 6) for the habitat function in clay of 1.5 mg ⋅ kg-1, in loam of 1 

mg ⋅ kg-1 and in sand of 0.4 mg ⋅ kg-1 are found in the literature (Schütze, 1998). Such data 

may provide the basis for threshold values. At present, however, laboratory data are 

frequently employed to give statements concerning limits. Such laboratory data should be 

supplemented with field examinations on a larger scale. Another possibility may be a 

simulation, e.g., the model based deduction of limits, for instance, critical loads (Gregor et 

al., 1996). However, such values only are available for nutrifying and acidifying substances 

and often are rough (Zak et al., 1997). Basic approaches to derive critical limits for 

ecosystems are available for heavy metals (Umweltbundesamt, 1998). Quantitative 

thresholds will enable a final evaluation and facilitate the implementation of sustainable 

agriculture. However, further research is needed that focuses on methods to deduce 

guidelines for scientifically based threshold limits. When these become available on a 

large scale the EEI can be related to these limits and ultimately evaluated. 

 

Further, from this investigation it can be deduced that EEI provide the basis for aiding 

decisions regarding the application facilities with respect to farmers. Indicators for the 

evaluation of environmental impacts resulting from agricultural production are rarely 

available (von Wirén-Lehr, 2000, in press.). In this approach, special focus of the 

assessment is laid on ecological aspects. The EEI integrate ecosystemic knowledge and 

thus the deduction of helping make recommendations that are ecologically based is 

supported. Such recommendations may be to avoid carbendazim applications at times 

when the earthworms are most active in their reproduction process. Another suggestion 

may be to use Thomas phosphate with small traces of cadmium instead of Triple 

superphosphate. Considering such recommendations allows farmers to produce on a long-

term scale and to maintain the sustainability of their agroecosystem. 
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Drawbacks of the approach 

As to an ecological impact assessment based on EEI the following drawbacks appeared: 

Firstly, it is critical to specifically assign effects to specific inputs. On the one hand 

interactions and/or antagonistic effects between various inputs may occur. For example, 

antagonistic interactions of cadmium with zinc are documented (Lepp, 1981; 

Umweltbundesamt, 1999). The addition of zinc degrades the absorption of cadmium by the 

flora (Grant et al. 1998; McLaughlin et al. 1995). On the other hand exact cause-effect 

relations cannot be assigned because of time delays of effects caused by accumulations 

or a high background noise. This coincides with effects for whom the initiator could not 

unambiguously be determined, e.g., certain effects may be caused due to natural 

oscillations as well as due to human impacts. Regarding cadmium the input specificity of 

the EEI is sometimes difficult to assign. Moreover, the indicator selection may be difficult in 

cases where both a high sensitivity for a specific input and the meaningfulness for 

ecological functioning on the other hand should be complied (Gentile and Slimak, 1992). 

Secondly, sustainability assessment with an approach only based on indicators remains 

incomplete. Quantitative statements are needed for an evaluation and subsequent 

implementation of agroecosystems. However, the current research gaps concern two 

different issues: (1) Available limits or threshold values are often derived on the level of 

elements. The higher the hierarchical level the more difficult the deduction of the threshold 

value will be and the depending force of expression gets more imprecise. (2) If, up to now 

an effect of a substance is incompletely documented or the receptor most suitable is not 

detected, no thresholds can be determined. 

 

CONCLUSIONS AND FUTURE TASKS 

The EEI identified with the derivation procedure supply information for scientists as well as 

for planners. If the relation to threshold values succeeds the EEI will espouse quantitative 

impact assessments within the frame of sustainable agriculture. The application revealed 

that the EEI approach can be deemed to be a powerful tool to enable an ecological impact 

assessment of agricultural production. The methodological approach for the derivation of 

indicators gathers effects which are already known. Thus at the present time no 

statements can be given with respect to effects not yet documented. In principal, however, 

new research results may easily be integrated into the approach. 
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Further the application of the EEI derivation method showed that an estimation of 

relevance of emissions and inputs depending upon defined criteria is a suitable 

prerequisite to facilitate the derivation of EEI. 

 

The study demonstrated that the indicator derivation approach may be reasonably 

enlarged by integrating time aspects. Examining the material inputs cadmium and 

carbendazim was suited to temporal features. 

 

One has to consider that in systems on large scales mono-causal connections between 

cause and effect may rarely be identified in applying the method on adjacent ecosystems 

as a next step (Kümmerer and Held, 1997b). The off-site effects which emerge at 

endpoints spatially away from the agroecosystem need further research. Temporal delays 

play an important role for adjacent ecosystems, e.g., lakes. Clear endpoints of effects 

depending on one input are rarely expected the larger the examined systems are in time 

and space. These effects have not yet been quantified because of the transition of diverse 

temporal and spatial scales including transformation processes. An aquatic ecosystem 

may be strongly influenced by agricultural emissions if surface flow directly occurs after the 

fungicide application which means on a short-term scale. Threatening danger for adjacent 

ecosystems might also result through leaching or erosion of cadmium accumulated in the 

soil. 

 

Society sets preferences and priorities. Nowadays one of the most essential requirements 

emphasises that sustainability means precaution (Hofmeister, 1997). This demand should 

be integrated in deriving EEI and associated threshold ranges.  
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SUMMARY 

Agricultural production and its material and non-material emissions may cause side-effects 
in ecosystems. These effects have to be assessed and evaluated. Due to the high 
complexity of ecosystems and the diverse temporal and spatial scale transitions direct 
cause-effect relations cannot clearly be recognised. Therefore, an assessment is difficult. 
 
The aim of the present study is to provide a tool that relates emissions of agricultural 
production and affected ecosystems. This tool represents an indicator approach. The 
needed indicators are defined as ecosystemic effect indicators (EEI). Subordinate 
objectives of the work are (1) to develop a plausible, transparent and comprehensible 
method to derive EEI and (2) to test the developed method for non-material and material 
inputs for affected agroecosystems in a case study. In combination with examinations 
done by colleagues at institutes of the University of Hohenheim and the University of 
Stuttgart the results of the present study aim to support efforts to enable and assess 
sustainable agriculture in the frame of an interdisciplinary project. 
 
A literature review revealed that various indicators and indicator models are already 
available. Most environmental indicators can be assigned to the categories simple and 
systemic indicators. In spite of the variety of existing indicators those suitable for analysing 
ecosystems affected by emissions from agricultural production processes could not be 
identified. Further the application of current indicators is restricted to the spatial scales the 
indicator models were developed for, e.g., the national or global scale. 
 
A multistage procedure is developed within this study which should be pursued in 
identifying indicators. To assess which emissions must be regarded in detail an estimation 
of relevance by means of an emission and input classification preceeds the indicator 
development. The classification follows a set of criteria. According to these criteria the 
emissions and the respective inputs are qualitatively and, as far as possible, quantitatively 
classified. 
 
When deriving indicators either a top-down or a bottom-up approach is usually used. Top-
down a main objective is stepwise broken down. Bottom-up each potential receptor for the 
impacts is compiled in detail. Following, the receptors are assigned and aggregated with 
regard to a main objective. It is shown In the present work that both approaches should be 
combined to overcome the shortcomings of each single one to deduce EEI. The derivation 
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of EEI is carried out by the following steps: 1) One starts top-down at the target 
"maintaining the ecosystem functioning", in this work depicted by the utility functions. A list 
with characteristics which are dependent on hierarchical levels is compiled for each 
relevant function. 2) Starting at one specific input a list of potential receptors is compiled 
bottom-up. These represent potential effect indicators. 3) By overlapping the lists of the 
steps 1 and 2 one yields EEI specific for the utility function and the input under 
consideration. The step 3 is performed by means of expert knowledge. The advantage of 
the indicator approach is its operativeness which is site-independent. In case of a concrete 
implementation different expressions of EEI are expected. 
 
The application of the methodological approach for non-material and material emissions in 
a case study obtains distinct EEI with regard to the diverse inputs and utility functions 
considered. In some cases one joint aggregated EEI for various functions may be 
identified. For instance, the transformation function plays an essential role in nutrient 
cycling and hence represents an important prerequisite for the production function of an 
agroecosystem. One yields the following EEI for the transformation function: The 
respiratory intensity and the metabolic quotient ensue for the input of soil pressure, the 
biomass of earthworms ensue for the input of the fungicide carbendazim, the activity of the 
enzymes urease and amydase ensue for the input of nitrogen and the reproduction of 
earthworms and the biological activity of microorganisms ensue for the input of cadmium. 
 
Temporal features are found to be of great importance for the presented indicator 
approach. The work demonstrates the importance of detecting consistencies between time 
frequencies of emerging stress factors and the varying sensitivity of receptors, e.g., during 
the seasons of a year. 
 
In conclusion, the study demonstrates that the methodological approach connects 
undesired effects in ecosystems with causing emissions which result from agricultural land 
use. The results of the study show that EEI may be deemed to be promising tools to 
picture human influences in particular of agricultural production on ecosystems. The 
results of the case study provide the basis to assess effects on ecosystems for some 
major stressors. In cases where critical values are available site specific quantitative 
statements concerning ecological effects within the frame of sustainable agriculture are 
enabled by the present comprehensive method for the derivation of indicators. 
Subsequently, necessary measures can be deduced. 
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ZUSAMMENFASSUNG 

Die landwirtschaftliche Produktion und ihre stofflichen und nicht-stofflichen Emissionen 

können umweltrelevante Nebeneffekte in Ökosystemen verursachen. Aufgrund der Kom-

plexität von Ökosystemen und der verschiedenen zeitlichen und räumlichen Skalenüber-

gänge ist die Kausalität von Ursache-Wirkungsbeziehungen jedoch oft nicht klar zu erken-

nen. Dadurch wird eine Bewertung erschwert. 

 

Das Ziel der vorliegenden Arbeit ist die Bereitstellung eines Instrumentes, mit dem Emis-

sionen aus der landwirtschaftlichen Produktion zu tangierten Ökosystemen in Beziehung 

gesetzt werden können. Dieses Instrument stellt ein Indikatoransatz dar. Die benötigten 

Indikatoren werden als ökosystemare Wirkungsindikatoren (ÖWI) bezeichnet. Folgende 

Teilziele ergeben sich für die Arbeit: (1) die Entwicklung einer klaren und nachvollzieh-

baren Methode zur Herleitung von ÖWI und (2) die Prüfung der entwickelten Methode in 

einer Fallstudie für nicht-stoffliche und stoffliche Einträge in tangierte Agrarökosysteme. Im 

Rahmen eines interdisziplinären Projektes, das an verschiedenen Instituten der Univer-

sitäten Hohenheim und Stuttgart durchgeführt wird, sollen die in dieser Arbeit gewonnenen 

Erkenntnisse dazu beitragen, eine nachhaltige Landwirtschaft zu ermöglichen und zu 

bewerten. 

 

Eine Literaturanalyse zeigte, dass zahlreiche Umweltindikatoren und Indikatorenmodelle 

verfügbar sind. Die meisten Umweltindikatoren lassen sich den Kategorien einfache oder 

systemische Indikatoren zuordnen. Trotz der Vielfalt der verfügbaren Indikatoren war es 

jedoch nicht möglich, Indikatoren zu finden, die sich für eine Analyse von Ökosystemen 

eignen, die von landwirtschaftlichen Emissionen beeinflusst werden. Eine weitere Restrik-

tion in der Anwendung ergibt sich dadurch, dass Indikatorenmodelle häufig für andere 

räumliche Skalen, z.B. für die nationale oder globale Skale, entwickelt wurden. 

 

Im Rahmen dieser Untersuchung wurde ein mehrstufiges Vorgehen entwickelt, nach dem 

die Bildung von Indikatoren erfolgen sollte. Um einzuschätzen, welche der zahlreichen 

Emissionen genauer zu betrachten sind, wird in der vorliegenden Arbeit vorgeschlagen, 

der Indikatorenableitung eine Relevanzanalyse anhand einer Emissions- und Eintrags-

klassifizierung voranzustellen. Diese Klassifizierung enthält eine Reihe von Kriterien, nach 
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denen die Emissionen und späteren Einträge qualitativ und soweit möglich auch quantita-

tiv eingeordnet werden. 

 

Bei der Ableitung von Indikatoren wird aktuell üblicherweise entweder ein Top-down- oder 

ein Bottom-up-Ansatz angewendet. Top-down wird ein Hauptziel immer weiter in bestim-

mende Parameter aufgeschlüsselt. Bottom-up werden detailliert potenzielle Rezeptoren 

zusammengestellt und anschliessend einem Hauptziel zugeordnet. Diese Arbeit demons-

triert, dass die beiden Ansätze bei der Ableitung der ÖWI kombiniert werden sollten. Die 

Indikatoren sollen - unabhängig auf welcher hierarchischen Ebene im Ökosystem sie 

gefunden werden - eine Verbindung zwischen Wirkung und Ursache verfolgen lassen. Die 

Ableitung von ÖWI erfolgt in folgenden Schritten: 1) Top-down wird vom Schutzgut 

"Erhaltung der Ökosystemfunktionen", hier der ”Utility“-Funktionen, ausgegangen. Für jede 

betrachtete Funktion wird eine Liste mit Charakteristika, die auf verschiedenen ökolo-

gischen Ebenen angesiedelt sind, erstellt. 2) Bottom-up wird vom Emittenten ausgehend 

für eine ausgewählte Emission bzw. den zugehörigen Eintrag eine Liste mit möglichen 

Rezeptoren erstellt. Diese repräsentieren potenzielle Wirkungsindikatoren. 3) Durch Über-

schneiden der Listen aus Schritt 1 und 2 erhält man den für die gewählte Funktion und den 

betrachteten Eintrag spezifischen ÖWI. Dieser Schritt erfolgt mit Hilfe von Expertenwissen. 

Ein großer Vorteil des methodischen Ansatzes ist seine standortunabhängige Funktions-

fähigkeit. Bei der konkreten Anwendung ist eine je nach Standort unterschiedliche Aus-

prägung der ÖWI zu erwarten. 

 

Die Anwendung der Methode in einer Fallstudie für nicht-stoffliche und stoffliche Einträge 

in ein Agrarökosystem erzielt je nach Eintrag und betrachteter Utility Funktion verschie-

dene ÖWI. In manchen Fällen kann ein gemeinsamer aggregierter ÖWI für verschiedene 

Funktionen identifiziert werden. Betrachtet man z.B. die Transformationsfunktion, die im 

Nährstoffkreislauf und damit auch als Voraussetzung für die Produktionsfunktion eines 

Agrarökosystems von Bedeutung ist, werden folgende ÖWI identifiziert: Für den Eintrag 

Bodendruck ergibt sich als ÖWI die Atmungsintensität und der metabolische Quotient, für 

das Fungizid Carbendazim die Regenwurmbiomasse, für Stickstoff die Urease- und 

Amydaseaktivität und für Cadmium die Regenwurmreproduktion und die biologische 

Aktivität von Mikroorganismen. 
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Der Faktor Zeit spielt im hier vorgestellten Indikatoransatz eine große Rolle. Es wird 

nachgewiesen, dass es für die Auswahl von ÖWI entscheidend ist, Übereinstimmungen 

zwischen der zeitlichen Frequenz einer Störung und der variierenden Empfindlichkeit des 

Rezeptors, z.B. im Jahresverlauf, zu identifizieren.  

 

Mit dieser Arbeit wird gezeigt, dass ÖWI unerwünschte Wirkungen in Ökosystemen mit 

den sie verursachenden, aus der landwirtschaftlichen Produktion resultierenden, 

Emissionen verbinden. Die Methode zur Ableitung von ÖWI ist daher ein 

erfolgversprechendes Instrument, um menschliche Einflüsse, v.a. landwirtschaftlicher 

Produktionsprozesse, auf Ökosysteme abzubilden. Die Ergebnisse der Fallstudie bilden 

die Basis, um Wirkungen von potentiellen Stressoren für Ökosysteme zu bewerten. Für 

den Fall, dass kritische Werte für die ÖWI vorhanden sind, ist es möglich, standort-

spezifische quantitative Aussagen über ökologische Effekte der landwirtschaftlichen 

Produktion zu treffen. Anschließend können notwendige Maßnahmen abgeleitet werden, 

um die Nachhaltigkeit der Produktion zu unterstützen. 

 



References  111 

REFERENCES 

 

Arndt, U. (1987): Bioindikatoren: Möglichkeiten, Grenzen und neue Erkenntnisse. Ulmer 

Verlag, Stuttgart. 

Arndt, U., Fomin, A. and Lorenz , S. (eds) (1996): Bioindikation. Neue Entwicklungen, 

Nomenklatur, synökologische Aspekte. G. Heimbach, Ostfildern. 

Bakkes, J. A., van den Born, G. A., Helder, J. C., Swart, R. J., Hope, C. W. and Parker, J. 

D. E. (1994): An overview of environmental indicators: state of the art and 

perspectives. Rep. No. UNEP/EATR/94-01 RIVM/402001001. UNEP/RIVM, 

Nairobi. 

Beese, F. (1996): Indikatoren für eine multifunktionelle Waldnutzung. Forstwissenschaft-

liches Zentralbatt 115, 65-79. 

Beck, R. (1998): Kopplung von Wirtschaftskreislauf und Inanspruchnahme der Umwelt. 

Wasser, Luft und Boden 9, 27-29. 

Belaoussouff, S. and Kevan, P. G. (1998): Toward an ecological approach for the 

assessment of ecosystem health. Ecosystem Health 4, 4-8. 

Benough, A.G. and Mulllins, C.E. (1990): Mechanical impedance to root growth: a review 

of experimental techniques and root growth responses. Journal of Soil Science 41, 

341-358. 

Biomasse (Projektgemeinschaft "Externe Effekte der Biomasse") (1998): 

Gesamtwirtschaftliche Bewertung der Energiegewinnung aus Biomasse unter 

Berücksichtigung externer und makroöknomischer Effekte - 3. Zwischenbericht, 

Rep. No. unpublished. Institut für Energiewirtschaft und Rationelle Energiean-

wendung, Universität Stuttgart Institut für Betriebswirtschaftslehre, FAL 

Braunschweig Institut für Agrarpolitik und Landwirtschaftliche Marktlehre, Univ. 

Hohenheim, Stuttgart. 

Blume, H.-P. (ed) (1992): Handbuch des Bodenschutzes. Ecomed, Landsberg/Lech. 

Bockstaller, C. and Girardin, P. (1999): Agro-ecological indicators - instrument to assess 

sustainability in agriculture. In: Härdtlein, M., Kaltschmitt, M., Lewandowski, I. and 

Wurl, H. (eds): Nachhaltigkeit in der Landwirtschaft. Erich Schmidt Verlag, Berlin 

Bielefeld München. Pp. 69-82. 



References  112 

Bockstaller, C., Girardin, P. and van der Werf, H. M. G. (1997): Use of agro-ecological 

indicators for the evaluation of farming systems. European Journal of Agronomy 7, 

261-270. 

Braat, L. (1991): The predictive meaning of sustainability indicators. In: Kuik, O. and 

Verbruggen, H. (eds): In search of indicators of sustainable development, Kluwer 

Academic Publishers, Dordrecht. Pp. 57-70. 

Breckling, B. and Müller, F. (1997): Der Ökosystembegriff aus heutiger Sicht - Grund-

strukturen und Grundfunktionen von Ökosystemen. In: Fränzle, O., Müller, F., 

Schröder, W. (eds): Handbuch der Umweltwissenschaften. Vol. II-2.2. Ecomed, 

Landsberg/Lech. Pp. 21. 

Brussaard, L. et al. (1997): Biodiversity and ecosystem functioning in soils. Ambio 26, 563-

570. 

Brussaard, L. and van Faassen, H. G. (1994): Effects of compaction on soil biota and soil 

biological processes. In: B. D. Soane and C. van Ouwerkerk (eds): Soil 

compaction in crop production. Elsevier Publishers, Amsterdam. Pp. 215-235. 

Cairns, J. J. (1998): Ecological risk assessment: a predictive approach to assessing 

ecosystem health. In: D. Rapport, R. Costanza, P. R. Epstein, C. Gaudet and R. 

Levins (eds): Ecosystem health. Blackwell Science, Oxford. Pp. 216-228. 

Cairns, J., Jr., McCormick, P., Niederlehner, B. (1993): A proposed framework for 

developing indicators of ecosystem health. Hydrobiologia 263, 1-44. 

Chemistry, Royal Society of (ed) (1994): The agrochemicals handbook - Carbendazim. 

Royal Society of Chemistry, Cambridge. 

Cieslinski, Z., Miatkowski, Z. und Soltysik, A. (1989): The effect of bulk density on water-air 

properties of soil. Soil compaction as a factor determining plant productivity, 43-44. 

Abstracts of the International Conference in Lublin. 

Coleman, D. C. and Hendrix, P. F. (1988): Agroecosystem processes. In: L. R. Pomeroy 

and J. J. Alberts (eds): Concepts of Ecosystem Ecology. Vol. 67. Springer Verlag, 

New York Berlin Heidelberg London Paris Tokyo. Pp. 149-170 

Costanza, R. (1994): Supplementary comments on the concept of ecosystem health. In: 

N.O. Nielsen (ed): The utility of the concept of ecosystem health for the CGIAR 

and other development research agencies. University of Guelph, Ottawa. Pp. 29-

30. 

Danfors, B. (1994): Changes in subsoil porosity caused by heavy vehicles. Soil and Tillage 

Research 29, 135-144. 



References  113 

de Groot, R. (1992): Functions of nature: evaluation of nature in environmental planning, 

management and decision making. Wolters-Noordhoff, Groningen. 

Doube, B. M. and Schmidt, O. (1997): Can the abundance or activity of soil microfauna be 

used to indicate the biological health of soils. In: C.E. Pankhurst, B.M. Doube and 

V.V.S.R. Gupta (eds): Biological indicators of soil health. CAB International, 

Wallingford. Pp. 265-295. 

de Haes, H. A. U., Jolliet, O., Finnveden, G., Hauschild, M., Krewitt, W., Müller-Wenk, R. 

(1999): Best available practice regarding impact categories and category 

indicators in life cycle impact assessment. In: Second working group on LCIA of 

SETAC Europe (WIA-2), Brüssel. Unpublished. 

de Kruijf, H. A. M. (1991): Extrapolation through hierarchical levels. Comparative 

Biochemistry and Physiology 100C, 291-299. 

Dexter, A. R. (1988): Advances in characterization of soil structure. Soil and Tillage 

Research 11, 199-238. 

Dexter, A. R. (1986): Model experiment on the behaviour of roots at the interface between 

tilled seed bed and a compacted subsoil. Plant and Soil 95, 123-139. 

Dick, R. P. (1997): Soil enzyme activities as integrative indicators of soil health. In: C.E. 

Pankhurst, B.M. Doube, V.V.S.R. Gupta (eds): Biological indicators of soil health. 

CAB International, Wallingford. Pp. 125-156.  

Dilly, O. and Blume, H.-P. (1998): Indicators to assess sustainable land use with reference 

to soil microbiology. Advances in GeoEcology 31, 29-36. 

Domsch, K. H. (1992): Pestizide im Boden, VCH, Weinheim.  

Domsch, K. H. (1985): Funktionen und Belastbarkeit des Bodens aus der Sicht der Mikro-

biologie, W. Kohlhammer GmbH, Stuttgart und Mainz. 

Doppler, S. (2000): Ökosystem-Funktionen als Kriterium einer Operationalisierung ökolo-

gischer Aspekte von Nachhaltigkeit? Diss. Univ. Hohenheim, Stuttgart. In press. 

Doppler, S. (1998): Definition und Charakterisierung tangierter Ökosysteme. In: 

Methodenpapier. Univ. Hohenheim, Stuttgart. Pp. 48-53. Unpublished. 

Doppler, S. and Böcker, R. (1999): Skalenabhängigkeit von Belastungsgrenzen für Öko-

systeme. In: R. Böcker and A. Kohler (eds): Umweltforschung im Dialog - aktuelle 

Beiträge aus dem mittleren Neckarraum. Vol. 31. Verlag Günther Heimbach, 

Ostfildern. Pp. 227-230. 

Doppler, S. and Böcker, R. (1999): Schutzziele und Belastungsgrenzen für Ökosysteme. 

In: R. Böcker and A. Kohler (eds): Berichte des Institutes für Landschafts- und 



References  114 

Pflanzenökologie der Universität Hohenheim, Heft 8. Verlag Günther Heimbach, 

Ostfildern. Pp. 75-81. 

Doppler, S. and Vandré, R. (1999): Prevailing nature conservation versus ecosystem 

integrity in managed landscapes. In: W. Windhorst, P. H. Enckell (eds): 

Sustainable landuse management - The challenge of ecosystem protection. 

Salzau, Germany. Pp. 39-48. 

Doran, J. W. and Safely, M. (1997): Defining and assessing soil health and sustainable 

productivity. In: C.E. Pankhurst, B.M. Doube, V.V.S.R. Gupta (eds): Biological 

indicators of soil health. CAB International, Wallingford. Pp. 1-28. 

Doran, J. W., Sarrantino, M. and Liebig, M. A. (1996): Soil health and sustainability. 

Advances in Agronomy 56, 1-54. 

Doran, J.W. and Parkin, T.B. (1994): Defining and assessing soil quality. In: Doran J.W., 

Coleman, D.C., Bezdicek, D.F., Stewart, B.A. (eds): Defining soil quality for a 

sustainable environment. Vol. 35. Soil Science Society of America, Madison, 

Wisconsin. Pp. 3-21. 

Doube, B.M. and Schmidt, O. (1997): Can the abundance or activity of soil microfauna be 

used to indicate the biological health of soils. In: C.E. Pankhurst, B.M. Doube, 

V.V.S.R. Gupta (eds): Biological indicators of soil health. CAB International, 

Wallingford. Pp. 265-295.  

Dubsky, G., Heine, M., Hülsbergen, K.-J., Diepenbrock, W. (1998): Informationssystem 

Agrar-Umweltindikatoren für Sachsen-Anhalt. Mitteilungen Gesellschaft für 

Pflanzenbauwissenschaften 11, 31-34. 

Düring, R. and Hummel, E. (1992): Wechselwirkungen von Bodenbearbeitungssystemen 

auf das Ökosystem Boden. In: B. Friebe (ed): Beiträge zum 3. Symposium von 

12.-13. Mai 1992 in Gießen. Wissenschaftlicher Fachverlag Dr. Fleck, Justus-

Liebig-Universität Gießen. 

Dürr, H. J., Petelkau, H. and Sommer, C. (1995): Literaturstudie "Bodenverdichtung". 

Umweltbundesamt, Berlin. 

DVWK (1997): Gefügestabilität ackerbaulich genutzter Mineralböden - Teil II: Auflastab-

hängige Veränderung von bodenphysikalischen Kennwerten. Deutscher Verband 

für Wasserwirtschaft und Kulturbau, Bonn. 

Eder, M., Knacker, T. and Römbke, J. (1992): Effects of pesticides on the decomposition 

process and the carboxymethylcellulase-activity in terrestrial ecosystems. In: A. 



References  115 

Anderson, Lewis, Torstensson (ed): Environmental aspects of pesticide 

microbiology. Swedish University of Agriculture, Uppsala. Pp. 74-81 

Edwards, C. A. and Bohlen, P. J. (1996): Biology and ecology of earthworms, Chapman 

and Hall, London. 

Elliott, E.T. (1997): Rationale for developping bioindicators of soil health. In: C.E. 

Pankhurst, B.M. Doube, V.V.S.R. Gupta (eds): Biological indicators of soil health. 

CAB International, Wallingford. Pp. 49-78.  

Filser, J. (1995): Collembolas as indicators for long-term effects of intensive management. 

Acta zoologica fennica 196, 326-328. 

Förster, B., Eder, M., Morgan, E. and Knacker, T. (1996): A microcosm study of the effects 

of chemical stress, earthworms and microorganisms and their interactions upon 

litter decomposition. European Soil Journal 32, 25-33. 

Fränzle, O. (1999): Ökotoxikologie im Spannungsfeld von Ökologie und Toxikologie. In: J. 

Öhlmann and B. Markert (eds): Ökotoxikologie - Ökosystemare Ansätze und 

Methoden. Ecomed, Landsberg/Lech. Pp. 23-48. 

Fränzle, O. (1998): Sensitivity of ecosystems and ecotones. In: G. Schüürmann and B. 

Markert (eds): Ecotoxicology. John Wiley and Sons, Spektrum Akademischer 

Verlag, New York Heidelberg. Pp.75-115. 

Fränzle, O., Jensen-Huss, K., Daschkeit, A., Hertling, T., Lüschow, R. and Schröder, W., 

(1993): Grundlagen zur Bewertung der Belastung und Belastbarkeit von Böden als 

Teilen von Ökosystemen, Umweltbundesamt, Berlin. 

Frede, H.-G. and Bach, M. (1997): Landschaftsstoffhaushalt. In: H.-P. Blume, P. Felix-

Henningsen, W. R. Fischer, H.-G. Frede, R. Horn and K. Stahr (eds): Handbuch 

der Bodenkunde, Vol. 4.4.2. Ecomed, Landsberg/Lech. 

Frede, H.-G., Beisecker, R. and Gäth, S. (1994): Long-term impacts of tillage on the soil 

ecosystem. Zeitschrift für Pflanzenernährung und Bodenkunde 157, 197-203. 

Freyenberger, S., Janke, R. and Norman, D. (1997): Indicators of sustainability in whole-

farm planning: literature review. Kansas State University, Manhattan, Kansas. 

Friend, A. M. and Rapport, D. J. (1991): Evolution of macro-information systems for 

sustainable development. Ecological Economics 3, 59-76. 

Gallopin, G.C. (1997): Indicators and their use: information for decision-making. In: 

Moldan, B., Billharz, S. and Matravers, R. (eds): Sustainability indicators - a report 

on the project on indicators of sustainable development. John Wiley and Sons, 

Chichester New York Weinheim Brisbane Toronto Singapore. Pp. 13-27. 



References  116 

Gallopin, G.C. (1994): Agroecosystem health: a guiding concept for agricultural research? 

In: N.O. Nielsen (ed): The utility of the concept of ecosystem health for the CGIAR 

and other development research agencies. University of Guelph, Ottawa. Pp. 51-

65. 

Gentile, J.H. and Slimak, M.W. (1992): Endpoints and indicators in ecological risk 

assessments. In: McKenzie, D.H., Hyatt, D.E., McDonald, J.V. (eds): Ecological 

indicators. Vol. 2. Elsevier Science Publishers, Essex England. Pp. 1385-1397.  

Giampetro, M. (1997): Socioeconomic pressure, demographic pressure, environmental 

loading and technological changes in agriculture. Agriculture, Ecosystems and 

Environment 65, 201-229. 

Gilbert, A. J. and Janssen, R. (1998): Use of environmental functions to communicate the 

values of a mangrove ecosystem under different management regimes. Ecological 

Economics 25, 323-346 

Gilbert, A. (1996): Criteria for sustainability in the development of indicators for sustainable 

development. Chemosphere 33, 1739- 1748. 

Girardin, P., Bockstaller, C. and van der Werf, H. (1999a): Indicators: tools to evaluate the 

environmental impact of farming systems. Journal of Sustainable Agriculture 13, 5-

21. 

Girardin, P., Bockstaller, C. and van der Werf, H. (1999b): A method to assess the 

environmental impact of farming systems by means of agri-ecological indicators. 

In: Y.A. Pykh, D.E. Hyatt and R.J.M. Lenz (eds): Environmental indices - system 

analysis approach. EOLSS Publishers, Oxford. Pp. 297-312.  

Girardin, P. and Bockstaller, C. (1997): Les indicateurs agro-écologiques, outils pour 

évaluer des systèmes de culture. OCL 4, 418-426. 

Grant, C. A., Buckely, W. T., Bailey, L. D. and Selles, F. (1998): Cadmium accumulation in 

crops. Canadian Journal of Plant Science 78, 1-18. 

Gregor, H.-D., Werner, B. and Spranger, T. (eds) (1996): Mapping critical levels/loads. 

Umweltbundesamt, Berlin. 

Griffith, J.A. (1998): Connecting ecological monitoring and ecological indicators: a review 

of the literature. Journal of Environmental Systems 26, 325-363. 

Gunkel, G. (1994): Bioindikation in aquatischen Ökosystemen. G. Fischer, Jena, Stuttgart. 

Gupta, V.V.S.R. and Yeates, G.W. (1997): Soil microfauna as bioindicators of soil health. 

In: C.E. Pankhurst, B.M. Doube, V.V.S.R. Gupta (eds): Biological indicators of soil 

health. CAB International, Wallingford. Pp. 201-233. 



References  117 

Gunnarson, O. (1983): Heavy metals in fertilisers. Do they cause environmental and health 

problems? Fertilisers and Agriculture 85, 27-42. 

Guttormsen, G., Singh, B. R. and Jeng, A. S. (1995): Cadmium concentration in vegetable 

crops grown in a sandy soil as affected by Cd levels in fertiliser and soil pH. 

Fertiliser Research 41, 27-32. 

Haber, W. and Salzwedel, J. (1992): Umweltprobleme der Landwirtschaft - Sachbuch 

Ökologie. Carl Ernst Poeschel Verlag, Wiesbaden. 

Härdtlein, M., Kaltschmitt, M. and Lewandowski, I. (1998): Nachhaltigkeit in der Pflanzen-

produktion. Zeitschrift für Umweltchemie und Ökotoxikologie 10, 135-140. 

Haila, Y. (1998): Assessing ecosystem health across spatial scales. In: D. Rapport, R. 

Costanza, P. R. Epstein, C. Gaudet and R. Levins (eds): Ecosystem health. 

Blackwell Science, London. Pp. 81-102.  

Hakansson, I. (1994): Subsoil compaction caused by heavy vehicles - a long-term threat to 

soil productivity. Soil and Tillage Research 29: 105-110. 

Hakansson, I. and Medvedev, V. W. (1995): Protection of soils from mechanical 

overloading by establishing limits for stresses caused by heavy vehicles. Soil and 

Tillage Research 35, 85-97. 

Hakansson, I. and Petelkau, H. (1994): Benefits of limited axle load. In: B. D. Soane and 

C. van Ouwerkerk (eds): Soil compaction in crop production. Elsevier Publishers, 

Amsterdam. Pp. 479-499. 

Hakansson, I. and Reeder, R. C. (1994): Subsoil compaction by vehicles with high axle 

load - extent, persistence and crop response. Soil and Tillage Research 29, 277-

304. 

Halberg, N. (1998): Researching farmers' possibilities of and motivation for including 

environmental aspects in their management. In: 3 rd AFSRE Symposium: Rural 

and farming systems analyses: environmental perspectives. Hohenheim. 

http://www.sp.dk/~jph/Publications/Environmental_issues/AFSRE98_Researching

_farmers_po/afsre98_researching_farmers_po.htm 

Hansen, J.P. and Oestergard, V. (1996): Indicators - a method to describe sustainability of 

farming systems. In: Second European symposium on rural and farming systems 

research. Granada, Spain. 

Hansen, J.W. (1996): Is agricultural sustainability a useful concept? Agricultural Systems 

50, 117-143. 



References  118 

Harris, R.F., Karlen, D.L., Mulla, D.J. (1996): A conceptual framework for assessment and 

management of soil quality and health. In: J.D. Doran and A. Jones (eds): 

Methods for assessing soil quality. Vol. 49. Soil Science Society of America, 

Madison. Pp. 61-82. 

Haworth, L., Brunk, C., Jennex, D. and Arai, S. (1996): A dual-perspective model of 

agroecosystem health: system functions and system goals. Rep. No. 34. 

University of Guelph, Guelph, Ontario. 

Harris, R. F., Karlen, D. L. and Mulla, D. J. (1996): A conceptual framework for 

assessment and management of soil quality and health. In: J. D. Doran and A. 

Jones (eds): Methods for assessing soil quality. Vol. 49. Soil Science Society of 

America, Madison. Pp. 61-82. 

Herrick, J.E. (2000): Soil quality: an indicator of sustainable land management? Applied 

Soil Ecology 15, 75-83. 

Hickie, D. and Wade, M. (1998): Development of guidelines for improving the effectiveness 

of environmental assessment. Environmental Impact Assessment Review 18, 267-

287. 

Hoffmann-Kroll, R., Schäfer, D., Seibel, S. (1995): Indikatorensystem für den Umwelt-

zustand in Deutschland. Wirtschaft und Statistik 8, 589-597. 

Hofmeister, S. (1997): Die Bedeutung der Zeit. Zeitschrift für Umweltchemie und 

Ökotoxikologie 9, 407-408. 

Holling, C. S. (1986): The resilience of terrestrial ecosystems: local surprise and global 

change. In: W. C. Clark and R. E. Munn (eds): Sustainable development of the 

biosphere. Cambridge University Press, Cambridge. Pp. 292-317.  

Horn, R. (1999):. Verdichtung von Böden - Überlegungen zum Prozess und zur Prognose 

der mechanischen Belastbarkeit. Wasser and Boden 51, 9-13. 

Horton, R., Ankeny, M. D. and Allmaras, R. R. (1994): Effects of compaction on soil 

hydraulic properties. In: B. D. Soane and C. van Ouwerkerk (eds): Soil compaction 

in crop production. Elsevier Publishers, Amsterdam. Pp. 141-165. 

Hülsbergen, K.J. and Diepenbrock, W. (1997): Das Modell REPRO zur Analyse und 

Bewertung von Stoff- und Energieflüssen in Landwirtschaftsbetrieben. In: 

Deutsche Bundesstiftung Umwelt (ed): Umweltverträgliche Pflanzenproduktion - 

Indikatoren, Bilanzierungsansätze und ihre Einbindung in Ökobilanzen. Zeller 

Verlag, Osnabrück. Pp. 159-183.  



References  119 

Hulpke, H., Koch, H. A. and Wagner, R. (eds) (1993): RÖMPP Chemie Lexikon - Band 

Umwelt. Thieme, Stuttgart. 

Hunsaker, C., Graham, R., Turner, R.S., Ringlod, P.L., Holdren, G.R., Strickland, T.C. 

(1993): A national critical loads framework for atmospheric deposition effects 

assessment - II. Defining assessment end points, indicators and functional 

subregions. Environmental Management 17, 335-341. 

Hunsaker, C.T. and Carpenter, D.E. (1990): Environmental monitoring and assessment 

program ecological indicators. Rep. No. EPA/600/3-90/060. EPA, Research 

Triangle Park, North Carolina. 

Hunsaker, C., Graham, R., Turner, R. S., Ringlod, P. L., Holdren, G. R. and Strickland, T. 

C. (1993): A national critical loads framework for atmospheric deposition effects 

assessment - II. Defining assessment end points, indicators and functional 

subregions. Environmental Management 17, 335-341. 

ISO (1998): ISO/DIS 14042: Environmental management - life cycle assessment - life 

cycle impact assessment. International Organization for Standardization. 

Joergensen, S. E. (1998): Ecotoxicological research - historical development and 

perspectives. In: G. Schüürmann and B. Markert (eds): Ecotoxicology. John Wiley 

and Sons, Spektrum Akademischer Verlag, New York Heidelberg. Pp. 3-15.  

Kalk, W.-D., Biermann, S., Hülsbergen, K.-J. (1995): Standort- und betriebsbezogene 

Stoff- und Energiebilanzen zur Charakterisierung der Landnutzungsintensität. 

Institut für Agrartechnik Bornim e.V, Halle. 

Kaiser, E.-A. (1992): Auswirkungen von Bodenverdichtungen durch landwirtschaftliche 

Bodennutzung auf die mikrobielle Biomasse. FAL Selbstverlag, Braunschweig. 

Karlen, D.L., Mausbach, M.J., Doran, J.W., Cline, R.G., Harris, R.F., Schuman, G.E. 

(1997): Soil quality: a concept, definition and framework for evaluation. Soil 

Science of America Journal 61, 4-10. 

Karlen, D.L. and Stott, D.E. (1994): A framework for evaluating physical and chemical 

indicators of soil quality. In: J.W. Doran, D.C. Coleman, D.F. Bezdicek, B.A. 

Stewart (eds): Defining soil quality for a sustainable environment. Vol. 35. Soil 

Science Society of America, Madison, Wisconsin. Pp. 53-72.  

Kay, J. (1993): On the name of ecological integrity: some closing comments. In: S.J. 

Woodley, J. Kay, G. Francis (eds): Ecological integrity and the management of 

ecosystems. University of Waterloo and Canadian Park Service, Ottawa. Pp. 201-

214. 



References  120 

Khan, S., Khan, N. and A., K. F. (1987): The influence of Bastvin and Calixin on the CO2-

Evolution and the major nutrient status (NPK) of the soil. Environmental Pollution 

47, 115-122. 

Klein, A.W. and Klein, W. (1990): Approaches for environmental hazards and risk 

assessment of pesticides. In: Fraunhofer-Institut für Umweltchemie und 

Ökotoxikologie (ed) International Workshop. Selbstverlag. 

Klir, G.J. (1985): Architecture of systems problem solving. Plenum Press, New York. 

Klöpfer, W. (1994): Environmental hazard assessment of chemicals and products. Part II: 

persistence and degradability of organic chemicals. Environmental Sciences and 

Pollution Research 1, 108-116. 

Kooistra, M. J. and Tovey, N. K. (1994): Effects of compaction on soil microstructure. In: B. 

D. Soane and C. van Ouwerkerk (eds): Soil compaction in crop production. 

Elsevier Publishers, Amsterdam. Pp. 91-111.  

Kowarik, I. (1988): Zum menschlichen Einfluss auf Flora und Vegetation. Technische Univ. 

Berlin, Berlin. 

Kümmerer, K. (1997): Die Bedeutung der Zeit - Teil I: Die Vernachlässigung der Zeit in 

den Umweltwissenschaften. Zeitschrift für Umweltchemie und Ökotoxikologie 9, 

49-54. 

Kümmerer, K. and Held, M. (1997a): Die Bedeutung der Zeit - Teil II: Die Umweltwissen-

schaften im Kontext von Zeit: Begriffe unter dem Aspekt der Zeit. Zeitschrift für 

Umweltchemie und Ökotoxikologie 9, 169-178. 

Kümmerer, K. and Held, M. (1997b): Die Bedeutung der Zeit - Teil III: Die Vielfalt der 

Zeiten in den Umweltwissenschaften: Herausforderung und Hilfe. Zeitschrift für 

Umweltchemie und Ökotoxikologie 9, 283-290. 

Lampe, D. and Aldag, R. (1979): Ureaseaktivität verschiedener Böden und ihre Beein-

flussung durch Herbizide. Mitteilungen der Deutschen Bodenkundlichen Gesell-

schaft 29, 433-442. 

Lee, K. E. (1985): Earthworms - Their ecology and relationships with soils and land use. 

Academic Press, Sydney Orlando San Diego New York London Toronto Montreal 

Tokyo. 

Lenz, R.J.M. (1995): Kritische Stoffeinträge: neue Beurteilungsgrundlagen für Ökosystem-

belastungen? In: 27. Hohenheimer Umwelttagung. Verlag Günther Heimbach, 

Hohenheim - Stuttgart. Pp. 121-132.  



References  121 

Lenz, R.M. (1999): Landscape health indicators for regional eco-balances. In: Y.A. Pykh, 

D.E. Hyatt, R.J.M. Lenz (eds): Environmental indices - system analysis approach. 

EOLSS Publishers, Oxford. Pp. 12-23. 

Lepp, N. W. (1981): Effect of heavy metal pollution on plants: Effects of trace metals on 

plant function. Applied Science Publishers, London and New Jersey. 

Levine, E. R. and Knox, R. G. (1994): A comprehensive framework for modelling soil 

genesis. In: Society of Soil Science of America (ed): Quantitative modelling of soil 

forming processes. Vol. 39. SSSA, Madison. Pp. 77-89. 

Lewandowski, I., Härdtlein, M. and Kaltschmitt, M. (1999): Sustainable crop production: 

definition and methodological approach for assessing and implementing 

sustainability. Crop Science 39, 184-193. 

Lipiec, J. and Simota, C. (1994): Role of soil and climate factors in influencing crop 

responses to soil compaction in Central and Eastern Europe. In: B. D. Soane and 

C. van Ouwerkerk (eds): Soil compaction in crop production. Elsevier Publishers, 

Amsterdam. Pp. 365-390. 

Liu, L. and Hsiang, T. (1994): Bioassays for Benomyl adsorption and persistence in soil. 

Soil Biology and Biochemistry 26, 317-324. 

Lorenz, G. (1992): Stickstoff-Dynamik in Catenen einer erosionsgeprägten Lößlandschaft. 

Diss. Univ. Hohenheim, Stuttgart. 

Lorenz, C. M., Gilbert, A. J. and Cofino, W. P. (1998): Development and application of 

indicators for a more sustainable transboundary river basin management. In: 

R.J.M. Lenz (ed): INDEX-1998 Proceedings, Soelk Valley, p. 21. 

Lorenz, C.M., van Dijk, G.M., van Hattum, A.G.M., Cofino, W.P. (1997): Concepts in river 

ecology: implications for indicator development. Regulated Rivers: Research and 

Management 13, 501-516. 

Lavelle, P. 1996. Diversity of soil fauna and ecosystem function. Biology International 33, 

3-16. 

Luxem, M. and Bryld, B. (1997): The CSD work program on indicators of sustainable 

development. In: B. Moldan, S. Billharz, R. Matravers (eds): Sustainability 

indicators - a report on the project on indicators of sustainable development. John 

Wiley and Sons, Chichester New York Weinheim Brisbane Toronto Singpore. Pp. 

6-12. 

Mathes, K., Weidemann, G., Beck, L. (1991): Indikatoren zur Bewertung der Belastbarkeit 

von Ökosystemen. Forschungszentrum Jülich, Jülich. 



References  122 

McCullum, J., Rapport, D. and Miller, M. (1995): Assessing agroecosystem health via the 

soil sub-system: a functional approach. Rep. No. 25. 16 Pp. University of Guelph, 

Guelph, Ontario. 

McLaughlin, M. J., Maier, N. A., Freemen, K., Tiller, K. G., Williams, C. M. J. and Smart, M. 

K. (1995): Effect of potassic and phosphatic fertiliser type, fertiliser cadmium 

concentration and zinc rate on cadmium uptake by potatoes. Fertiliser Research 

40, 63-70. 

McQueen, D. and Noack, H. (1988): Health promotion indicators: current status, issues 

and problems. Health Promotion 3, 117-125. 

Merkle, A. and Kaupenjohann, M. (2000a): Derivation of ecosystemic effect indicators - 

method. Ecological Modelling 130, 39-46. 

Merkle, A. and Kaupenjohann, M. (2000b): Ecosystemic effect indicators for 

agroecosystems. In: Y. A. Pykh, D. E. Hyatt and R. J. M. Lenz (eds): Indices and 

indicators of sustainable development: systems analysis approach EOLSS 

Publishers, Oxford. In press. 

Merkle, A. and Kaupenjohann, M. (1998): State of the art of environmental indicators - 

usability for the derivation of ecosystemic effect indicators. Ecosystem health. 

Submitted. 

Merkle, A. and von Wirén-Lehr, S. (2000): Application of ecosystemic effect indicators with 

regard to cadmium and carbendazim in agricultural systems - focussing the 

temporal scale. Agriculture, Ecosystems and Environment, submitted. 

Merkle, A., von Wirén-Lehr, S. and Kaupenjohann, M. (1999): Einflüsse landwirtschaft-

licher Produktion auf Ökosysteme - Einschätzung mittels ökosystemarer 

Wirkungsindikatoren. In: M. Flake, R. Seppelt and D. Söndgerath (eds): Umwelt-

systemanalyse - Dynamik natürlicher und anthropogener Systeme und ihre 

Wechselwirkungen. Vol. 33. Selbstverlag Institut für Geografie und Geoökologie, 

Braunschweig. Pp. 117-121. 

Mitchell, G., May, A. and McDonald, A. (1995): PICABUE: a methodological framework for 

the development of sustainable development. International Journal of Sustainable 

Development and World Ecology 2, 104-123. 

Mortvedt, J. J. (1996): Heavy metal contaminations in inorganic and organic fertilisers. 

Fertiliser Research 43. Pp. 55-61. 

Mortvedt, J. J. and Beaton, J. D. (1995): Heavy metal and radionucleide contaminants in 

phosphate fertilisers. In: H. Tiessen (ed): Phosphorus in the global environment. 



References  123 

John Wiley and Sons, Chichester New York Weinheim Brisbane Toronto 

Singapore. Pp. 93.  

Müller, F. (1992): Hierarchical approach to ecosystems theory. Ecological Modelling 63, 

215-242. 

Müller, F. (1998): Ableitung von integrativen Indikatoren zur Bewertung von Ökosystem-

Zuständen für die Umweltökonomischen Gesamtrechnungen. Metzler-Poeschel, 

Stuttgart. 

Müller, F. (1992): Hierarchical approach to ecosystems theory. Ecological Modelling 63, 

215-242. 

Müller, F. and Wiggering, H. (1999): Environmental indicators determined to depict 

ecosystem functionality. In: Y.A. Pykh, D.E. Hyatt and R.J.M. Lenz (eds): 

Environmental indices - system analysis approach. EOLSS Publishers, Oxford. 

Pp. 64-82.  

Müller, F., Hoffmann-Kroll, R. and Wiggering, H. (1998): Indicating eocsystem integrity - a 

theoretical walk from eco-targets to models, ecosystem indicators and variables. 

In: R.J.M. Lenz (ed): INDEX-1998. Proceedings, Soelk Valley, Austria. p. 14. 

Mühle, H. and Claus, S. (eds) (1996): Reaktionsverhalten von agrarischen Ökosystemen 

homogener Areale. B. G. Teubner Verlagsgesellschaft, Leipzig. 

Münchhausen, H., von and Nieberg, H. (1997): Agrar-Umweltindikatoren: Grundlagen, 

Verwendungsmöglichkeiten und Ergebnisse einer Expertenbefragung. In: 

Deutsche Bundesstiftung Umwelt (ed): Umweltverträgliche Pflanzenproduktion - 

Indikatoren, Bilanzierungsansätze und ihre Einbindung in Ökobilanzen. Zeller 

Verlag, Osnabrück. Pp. 13-29.  

Munkittrick, K. R. and McCarty, L. S. (1995). An integrated approach to aquatic ecosystem 

health: top-down, bottom-up or middle-out? Journal of aquatic ecosystem health 4, 

77-90. 

Nieberg, H. and Isermeyer, F. (1994): The use of agro-environmental indicators in 

agricultural policy, OECD, Paris. 

Norton, B.G. (1993): A new paradigm for environmental management. In: R. Costanza, 

B.G. Norton, B.D. Haskell (eds): Ecosystem health, Washington. Pp. 23-41. 

Nowak, A. and Hurle, K. (1984): Beurteilung der Wirkung von Pestiziden und Pestizid-

kombinationen auf die Bodenmikroflora mit Hilfe von Bodenatmungsmessungen. 

Zeitschrift Pflanzenkrankheit and Pflanzenschutz Sonderheft X, 211-217. 



References  124 

Odum, E.P. (1991): Prinzipien der Ökologie, Spektrum der Wissenschaft Verlagsgesell-

schaft, Heidelberg. 

Odum, E.P. (1985): Trends expected in stressed ecosystems. BioScience 35, 419-422. 

OECD (1997): Environmental indicators for agriculture. OECD, Paris. 

OECD (1993): OECD Core set of indicators for environmental performance reviews. 

OECD, Paris. 

Okey, B. W. (1996):  Systems approaches and properties and agroecosystem health. 

Journal of Environmental Management 48, 187-199. 

O'Neill, R. V., DeAngelis, D. L., Waide, J. B. and Allen, T. F. H. (1986): A hierarchical 

concept of ecosystems, Princeton University Press, Princeton, New Jersey. 

Opschoor, H. and Reijnders, L. (1991): Towards sustainable development indicators. In: 

O. Kuik, H. Verbruggen (eds): In search of indicators of sustainable development, 

Kluwer, Dordrecht Boston London. Pp. 7-27. 

Pankhurst, C.E., Doube, B.M., Gupta, V.V.S.R. (1997): Biological indicators of soil health: 

synthesis. In: C.E. Pankhurst, B.M. Doube, V.V.S.R. Gupta (eds): Biological 

indicators of soil health. CAB International, Wallingford. Pp. 419-435. 

Paoletti, M. G. (1999): The role of earthworms for assessment of sustainability and as 

bioindicators. Agriculture, Ecosystems and Environment 74, 137-155. 

Parlar, H. and Angerhöfer, D. (1991): Chemische Ökotoxikologie. Springer Verlag, Berlin 

Heidelberg New York. 

Perkow, W. and Ploss, H. (1999): Wirksubstanzen der Pflanzenschutz- und Schädlings-

bekämpfungsmittel - Carbendazim. 3/Ed. Parey Buchverlag, Berlin. 

Petelkau, H. (1998) Bodenbearbeitung und Bodenverdichtung. In: Kuratorium für Technik 

und Bauwesen in der Landwirtschaft (ed): Bodenbearbeitung und Bodenschutz. 

KTBL, Darmstadt. Pp. 56-79.  

Petelkau, H. and Dannowski, M. (1990): Effect of repeated vehicle traffic in traffic lanes in 

soil physical properties, nutrient uptake and yield of oats. Soil and Tillage 

Research 15, 217-225. 

Peterson, G., Allen, C.R. and Holling, C.S. (1998): Ecological resilience, biodiversity and 

scale. Ecosystems 1, 6-18. 

Radermacher, W., Zieschank, R., Hoffmann-Kroll, R., van Nouhys, J., Schäfer, D., Seibel, 

S. (1998): Entwicklung eines Indikatorensystems für den Zustand der Umwelt in 

der Bundesrepublik Deutschland mit Praxistest für ausgewählte Indikatoren und 

Bezugsräume. Metzler-Poeschel, Stuttgart. 



References  125 

Rapport, D. J. (1998): Ecosystem health and its relationship to the health of the soil 

subsystem: a conceptual and management perspective. In: P.M. Huang (ed.): Soil 

chemistry and ecosystem health. Vol. No. 52. Soil Science Society of America, 

Madison, Wisconsin, USA. Pp. 341-359.  

Rapport, D.J. (1994): The concept of ecosystem health and its application to agriculture. 

In: N.O. Nielsen (ed): The utility of the concept of ecosystem health for the CGIAR 

and other development research agencies. University of Guelph, Ottawa. Pp. 25-

28. 

Rapport, D. J. (1992): Evolution of indicators of ecosystem health. In: D.H. McKenzie, D.E. 

Hyatt, J.V. McDonald (eds): Ecological indicators. Vol. 1. Elsevier Science 

Publishers, Essex England. Pp. 121-134.  

Rapport, D.J. (1990): Criteria for ecological indicators. Environmental Monitoring and 

Assessment 15, 273-275. 

Rapport, D. J. and Friend, A. (1979): Towards a comprehensive framework for 

environmental statistics - a stress-response approach. Statistics Canada, Ottawa. 

Reagan, D. P. and Foldham, C. L. (1992): An approach for selecting and using indicator 

species to monitor ecological effects resulting from chemical changes in soil and 

water. In: D.H. McKenzie, D.E. Hyatt and J.V. Mc Donald (eds): Ecological 

indicators. Vol. 2. Elsevier Science Publishers, Essex England. Pp. 1319-1339.  

Rennings, K. (1994): Indikatoren für eine dauerhaft - umweltgerechte Entwicklung, 

Metzler-Poeschel Verlag, Stuttgart. 

Richards, I. R., Clayton, C. J. and Reeve, A. J. K. (1998): Effects of long-term fertiliser 

phosphorus application on soil and crop phosphorus and cadmium contents. 

Journal of Agricultural Science 131, 187-195. 

Richter, O., Diekkrüger, B. and Nörtersheuser, P. (1996): Environmental fate modelling of 

pesticides. VCH Verlagsgesellschaft, Weinheim. 

Römbke, J. and Federschmidt, A. (1995): Effects of the fungicide Carbendazim on 

Enchytraeidae. Newsletter on Enchytraeidae 4, 79-96. 

Roper, M.M. and Ophel-Keller, K.M. (1997): Soil microflora as bioindicators of soil health. 

In: C.E. Pankhurst, B.M. Doube, V.V.S.R. Gupta (eds): Biological indicators of soil 

health. CAB International, Wallingford. Pp. 157-177. 

Rusanov, V. A. (1991): Effects of wheel and track traffic on the soil and on crop growth 

and yield. Soil Tillage Research 19, 131-143. 



References  126 

Scheringer, M. (1999): Persistenz und Reichweite von Umweltchemikalien. Wiley-VCH, 

Weinheim New York Chichester Brisbane Singapore Toronto. 

Schindler, D.W. (1990): Experimental perturbations of whole lakes as test of hyotheses 

concerning ecosystem structure and function. OIKOS 57, 25-41. 

Schneider, E.D. and Kay, J. (1994a): Complexity and thermodynamics: towards a new 

ecology. Futures 26, 626-647. 

Schneider, E.D. and Kay, J. (1994b): Life as a manifestation of the second law of 

thermodynamics. Mathematical Computer Modelling 19, 25-48. 

Schubert, R. (1991). Bioindikation in terrestrischen Ökosystemen, 2.Ed. Gustav Fischer 

Verlag, Jena. 

Schütze, G. (1998): Kriterien für die Erarbeitung von Immissionsminderungszielen zum 

Schutz der Böden und Abschätzung der langfristigen räumlichen Auswirkungen 

anthropogener Stoffeinträge auf die Bodenfunktion, Umweltbundesamt, Berlin. 

Schüürmann, G. and Markert, B. (eds) (1998): Ecotoxicology: ecological fundamentals, 

chemical exposure and biological effects. John Wiley and Sons, Spektrum 

Akademischer Verlag, New York Chichester Heidelberg Berlin. 

Semmel, H. (1993): Auswirkungen kontrollierter Bodenbelastungen auf das Druck-

fortpflanzungsverhalten und physikalisch-mechanische Kenngrößen von Acker-

böden. Selbstverlag Universität Kiel, Kiel. 

Semu, E. and Singh, B. R. (1996): Accumulation of heavy metals in soil and plants after 

long-term use of fertilisers and fungicides in Tanzania. Fertiliser research 44, 241-

248. 

SETAC (1992): Life cycle assessment - Inventory classification valuation data bases. 

Society of Environmental Toxicology and Chemistry - Europe, Brüssel. 

SETAC (1993): Guidelines for life-cycle assessment: "A code of practice". Society of 

Environmental Toxicology and Chemistry, Brüssel. 

Soane, B. D. (ed) (1983): Compaction by agricultural vehicles: a review. Vol. 5. Scottish 

Institute of Agricultural Engineering, Midlothian, Scotland. 

Soane, B. D. and van Ouwerkerk, C. (eds) (1994): Soil compaction in crop production. 

Elsevier Publishers, Amsterdam. 

Sparling, G. P. (1997): Soil microbial biomass activity and nutrient cycling as indicators of 

soil health. In: C.E. Pankhurst, B.M. Doube, V.V.S.R. Gupta (eds): Biological 

indicators of soil health. CAB International, Wallingford. Pp. 97-119.  



References  127 

Sparks, D. L. (2000): Kinetics and mechanisms of soil chemical reactions. In: M. E. 

Sumner (ed): Handbook of soil science. CRC Press, Boca Raton London New 

York Washington. Pp. B-123-B-167. 

Spurgeon, D. J., Hopkin, S. P. and Jones, D. T. (1995): Effects of cadmium, copper, lead 

and zinc on growth, reproduction and survival of the earthworm Eisenia fetida. 

Environmental Pollution 84, 123-130. 

SRU, Rat von Sachverständigen für Umweltfragen (1998): Umweltgutachten 1998, 

Metzler-Poeschel, Stuttgart. 

SRU, Rat von Sachverständigen für Umweltfragen (1996): Umweltgutachten 1996, 

Metzler-Poeschel, Stuttgart. 

SRU, Rat von Sachverständigen für Umweltfragen (1994): Umweltgutachten 1994. 

Metzler-Poeschel, Stuttgart. 

Stahr, K. and Stasch, D. (1996): Einfluß der Landbewirtschaftung auf die Ressource 

Boden. In: G. Linck (ed): Nachhaltige Land- und Forstwirtschaft, Springer-Verlag, 

Berlin, Heidelberg, New York. Pp. 77-119.  

Stepniewski, W., Glinski, J. and Ball, B. C. (1994): Effects of compaction on soil aeration 

properties. In: B.D. Soane and C. van Ouwerkerk (eds): Soil compaction in crop 

production. Elsevier Publishers, Amsterdam. Pp. 167-189.  

Syers, J.K., Hamblin, A., Pushparajah, E. (1995): Indicators and thresholds for the 

evaluation of sustainable land management. Canadian Journal of Soil Science 75, 

423-428. 

ten Brink, B. (1991): The AMOEBA approach as a useful tool for establishing sustainable 

development. In: O. Kuik and H. Verbruggen (eds): In search of indicators of 

sustainable development. Kluwer, Academic Publishers, Dordrecht. Pp. 71-87. 

Thornton, I. (1992): Sources and pathways of cadmium in the environment. In: G.F. 

Nordberg, R.F.M. Herber and L. Alessio (eds): Cadmium in the human 

environment. Vol. 118. International Agency for Research on Cancer, Lyon. Pp. 

149-162. 

Thorstensson, L. and Castillo, M. d. P. (1997). Use of biobeds in Sweden to minimise 

environmental spillages from agricultural spraying equipment. Pesticide Outlook 8, 

24-27. 

Turco, R.F., Kennedey, A.C., Jawson, M.D. (1994): Microbial indicators of soil quality. In: 

J.W. Doran, D.C. Coleman, D.F. Bezdicek, B.A. Stewart (eds): Defining soil quality 



References  128 

for a sustainable environment Vol. 35. Soil Science Society of America, Madison, 

Wisconsin. Pp. 73-90. 

Ulrich, B. (1993): Prozesshierarchie in Waldökosystemen. Biologie in unserer Zeit 23, 322-

329. 

Ulrich, B. (1994): Process hierarchy in forest ecosystems: an integrative ecosystem theory. 

In: D. L. Gobold and A. Hüttermann (eds): Effects of acid rain on forest processes. 

Wiley, New York Chichester Brisbane Toronto Singapore. Pp. 353-397.  

Umweltbundesamt (1998): Critical limits and effect based approaches for heavy metals 

and persistent organic pollutants. In: Federal Environmental Agency (ed): Critical 

limits and effect based approaches for heavy metals and persistent organic 

pollutants. Umweltbundesamt, Bad Harzburg, Germany. Pp. 352. 

Umweltbundesamt (ed) (1999): Pflanzenbelastung auf kontaminierten Standorten, Erich 

Schmidt Verlag, Berlin. 

Umweltbundesamt (ed) (1993): Mapping critical levels/loads, Vol. 25/93, Federal 

Environmental Agency, Berlin. 

UN, United Nations (1995): Work program on indicators of sustainable development of the 

commission on sustainable development, Rep. No. ID:2129634260. United 

Nations Department for Policy Coordination and Sustainable Development, New 

York. 

van der Werf, H. (1996): Assessing the impact of pesticides on the environment. 

Agriculture, Ecosystems and Environment 60, 81-96. 

van Gestel, C. A. M. (1992): Validation of earthworm toxicity tests by comparison with field 

studies: a review of Benomyl, Carbendazim, Carbofuran and Carbaryl. 

Ecotoxicology and Environmental Safety 23, 221-236. 

van Gestel, C. A. M., Driven-van Breemen, E. M., Baerselman, R., Emans, H. J. B., 

Janssen, J. A. M., Postuma, R. and van Vliet, P. J. M. (1992): Comparison of 

sublethal and lethal criteria for nine different chemicals in standardised toxicity 

tests using the earthworm Eisenia andrei. Ecotoxicology and Environmental Safety 

23, 206-220. 

van Harten, H.A.J., van Dijk, G.M., de Kruijf, H.A.M. (1995): Waterkwaliteitsindicatoren 

overzicht, methode-ontwikkeling en toepassing, Rep. No. 733004001. 

Rijksinstituut voor Volksgezonheid en Milieu, Bilthoven. 



References  129 

van Ittersum, M. K. and Rabbinge, R. (1997): Concepts in production ecology for analysis 

and quantification of agricultural input-output combinations. Field Crops Research 

52, 197-208. 

van Ouwerkerk, C. and Soane, B. D. (1994): Conclusions and recommendations for further 

research on soil compaction in crop production. In: B.D. Soane and C. van 

Ouwerkerk (eds): Soil compaction in crop production. Elsevier Publishers, 

Amsterdam. Pp. 627-642. 

van Straalen, N.M. (1997): Community structure of soil arthropods as a bioindicator of soil 

health. In: C.E. Pankhurst, B.M. Doube, V.V.S.R. Gupta (eds): Biological indicators 

of soil health. CAB International, Wallingford. Pp. 235-264.  

Verbruggen, H., Kuik, O. (1991): Indicators of sustainable development: an overview. In: 

O. Kuik and H. Verbruggen (eds): In search of indicators of sustainable 

development. Kluwer Academic Publishers, Dordrecht Boston London. Pp. 1-6.  

von der Wiesche, M. and Werner, D. (1998): Langfristigkeit ökosystemarer Forschung. 

Zeitschrift für Umweltchemie und Ökotoxikologie 10, 179-187. 

von Wirén-Lehr, S. (2000): Sustainability in agriculture - the principal strategy to close the 

gap between theory and practice? Agriculture, Ecosystems and Environment. In 

press. 

Wagenet, R. J. (1998): Scale issues in agroecological research chains. Nutrient Cycling in 

Agroecosystems 50: 23-34. 

Waltner-Toews, D. (1996): Ecosystem health - a framework for implementing sustainability 

in agriculture. BioScience 46, 686-689. 

Waltner-Toews, D. (1994): Ecosystem health: a framework for implementing sustainability 

in agriculture. In: N.O. Nielsen (ed): The utility of the concept of ecosystem health 

for the CGIAR and other development research agencies, University of Guelph, 

Ontario. Pp. 8-23. 

Walz, R., et al., (1997): Grundlagen für ein nationales Umweltindikatorensystem. Umwelt-

bundesamt, Berlin. 

Ward, R.C. (1992): Indicator selection: a key element in monitoring system design. In: D.H. 

McKenzie, D.E. Hyatt, J.V. McDonald (eds): Ecological indicators. Vol. 1. Elsevier 

Science Publishers, Essex England. Pp. 147-156. 

Weeks, J. M. (1998): Effects of pollutants on soil invertebrates: links between levels. In: G. 

Schüürmann and B. Markert (eds): Ecotoxicology. John Wiley and Sons Spektrum 

Akademischer Verlag, New York Heidelberg. Pp. 645-662.  



References  130 

Wiens, J. A. (1989): Spatial scaling in ecology. Functional Ecology 3, 385-397. 

Wilcke, W. and Döhler, H. (1995): Schwermetalle in der Landwirtschaft, Landwirtschafts-

verlag GmbH, Münster-Hiltrup. 

Williams, C. H. and David, D. J. (1973): The effect of superphosphate on the cadmium 

content of soils and plants. Australian Journal of Soil Research 11, 43-56. 

Williams, S. E. and Wollum, A. G. (1981): Effect of cadmium on soil bacteria and 

actinomycetes. Journal of the Environmental Quality 10, 142-144 

White, R. (1997): Principles and practice of soil science. 3/Ed. Blackwell, Carlton, Victoria. 

Xu, F.-L., Joergensen, S.E., Tao, S. (1999): Ecological indicators for assessing freshwater 

ecosystem health. Ecological Modelling 116, 77-106. 

Young, J.W.S. (1997): A framework for the ultimate environmental index - putting 

atmospheric change into context with sustainability. Environmental Monitoring and 

Assessment 46, 135-149. 

Zak, S. K., Beven, K. and Reynolds, B. (1997): Uncertainty in the estimation of critical 

loads: a practical methodology. Water, Air and Soil Pollution 98, 297-316. 

Zeddies, J. (ed) (1995): Umweltgerechte Nutzung von Agrarlandschaften/Sonderfor-

schungsbereich 183 - Abschlußbericht. Vol. 3. Univ. Hohenheim, Stuttgart. 

Zierdt, M. (1997): Umweltmonitoring mit natürlichen Indikatoren, Springer-Verlag, Berlin 

Heidelberg New York. 

Zieschank, R. and van Nouhys, J. (1995): Umweltindikatoren als politisches und geo-

ökologisches Optimierungsproblem. Geowissenschaften 13, 73-80. 

Zieschank, R., van Nouhys, J., Ranneberg, T. and Mulot, J. (1993): Vorstudie Umwelt-

indikatorensysteme. Statistisches Bundesamt, Wiesbaden. 

 



X Appendix 131 

X APPENDIX 

 
No. Title Page 

X1 Example of a classification for emissions of agricultural production and inputs in 

ecosystems (with a focus on production of Triticale)  

I-1 

X2 Cadmium contents of phosphate and inorganic nitrogen fertilisers  I-3 

X3 Level-dependent abiotic characteristics of the buffer function I-4 

X4 Level-dependent biotic characteristics of the buffer function I-6 

X5 Level-dependent abiotic characteristics of the filter function I-7 

X6 Level-dependent abiotic characteristics of the habitat function I-8 

X7 Level-dependent biotic characteristics of the habitat function I-10 

X8 Level-dependent abiotic characteristics of the production function I-11 

X9 Level-dependent biotic characteristics of the production function I-13 

X10 Level-dependent abiotic characteristics of the transformation function I-14 

X11 Level-dependent biotic characteristics of the transformation function I-15 

X12 Level-dependent characteristics of the storage function I-16 

X13 List of abiotic receptors and effects with regard to the input soil pressure I-17 

X14 List of biotic receptors and effects with regard to the input soil tillage I-19 

X15 List of abiotic receptors and effects with regard to the input Carbendazim I-21 

X16 List of biotic receptors and effects with regard to the input Carbendazim I-22 

X17 List of abiotic receptors and effects and environmental consequences with regard to the 

input Cadmium 

I-23 

X18 List of biotic receptors and effects with regard to the input Cadmium I-24 

X19 List of abiotic receptors and effects with regard to the input inorganic Nitrogen I-26 

X20 List of biotic receptors and effects with regard to the input inorganic Nitrogen I-28 

X21 Ecosystemic effect indicators for an agroecosystem regarding the utility functions habitat, 

transformation, filter, buffer, production and storage and the inputs soil pressure, 

carbendazim, inorganic nitrogen and cadmium 

I-30 

X22 Examples of threshold values as available in literature, exemplary shown for the material 

input carbendazim faced to the EEI proposed 

I-31 

X23 Examples of critical loads proposed in literature with respect to physical characteristics and 

depending organisms 

I-31 

REFERENCES I-32 
 



X Appendix I-1 

Table X1: Example of a classification for emissions of agricultural production and inputs in ecosystems (with a focus on production of 

Triticale). Primarly dominant sources of an emission are portrayed. In parenthesis shown are these of secondary importance 

 
Emission 

Category 
 

Soil 
pressure

* 

Cadmium* PO4- NO3- NOx NH3 N2O CO2 SO2 IPU Fluroxy Carbend
* 

Flusilaz CCC Etheph 

                 
Preprocessing 
chains (covers 
e.g. fertiliser 
production) 

 X   X X X X X       

Production 
(covers 
production and 
utilisation of 
Triticale) 

Xa Xc Xc Xc Xa, b, d Xc Xb, d Xa, b X X X (X) X X X 

Source  

Product 
application (on 
the field) 

X Xc Xc X X X X Xa  X X X X X X 

                 
Point     Xd  Xd  Xd (X)e (X)e (X)e (X)e (X)e (X)e 
Band X    Xa       (X)    

Spatial 
kind of 
source 

Area  X X X Xa, b X Xb X  X X X X X X 
                 

Unique #          (X)e (X)e (X)e (X)e (X)e (X)e 
Periodical X (~ 17 

times/a) 
X (P-

fertilisation) 
X 

Sep
tem
ber 

X X X X (X)  X X X 
June 

X X X 
Temporal 
aspects of 
emission 

Continuos  X   Xd  Xd X X       
                 

Volatile      X X X   low medium medium extremly 
high 

 low 

Water soluble    X    X  medium medium low medium-
low 

high extremly 
high 

Mobile    X  X          
Persistent X X     X   lowf lowf mediumf nt lowf very lowf 

Properties 
of 
emissions 

Toxic  X   X (X)   X   X    
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Emission 

Category 
 

Soil 
pressure* 

Cadmium* PO4- NO3- NOx NH3 N2O CO2 SO2 IPU Fluroxy Carbend* Flusila
z 

CCC Etheph 

                 
Water/soil 
Solution 
Particle 
bounded 

X X 
X 
X 

X 
X 
X 

X 
X 

 X 
X 

 X 
X 

 X 
X (SF) 

X X 
X 
X 

X X X 
X (SF) 

Exposition 
Transport 
process 

Air 
Gaseous 
Particle 
bounded 

 X 
 

X 

  X 
X 
X 

X 
X 
X 

X 
X 

X 
X 

X 
X 

(X) 
X 

X X 
X 

(X) 
X 

X X 

                 
Local X X X X X X    X X X  X X 
Regional X X X X X X   X X  X   X 

Radius of 
effect  

Global    (X)   X X X       
                 

Short-term X (X) X X X X  X  X X X X X X 
Middle-term  X X X X X X X X  (X) (X)    

Time scale 
of effect 

Long-term X X X  X X X X X       
                 

Terrestrial 
ecosystem 

X X  X X X (X) (X)  (X) X X X (X) X Site of 
effect  

Aquatic 
ecosystem 

(X by 
erosion) 

 

X X X X X (X) (X) X (X)  X 
RP 

X  X 
RP 

*: Exact effect cf. to lists of receptors and effects (X13 - X20) 
# Dependent on duration of observance 
 
a Use of machinery 
b Soils (biotic) 
c Inorganic fertiliser (chem.-phys.) 
d Heating plant (technique) 
e Point emission occurring at filling or cleaning of plant protection equipment 
f Very low = DT50 < 20 d, low = DT50 < 50 d, middle = DT50 < 365 d, high = DT50 > 365 d 
 
nt Not traceable 
SF Surface flow 
RP Mentioned in the regulation for prevention of water  
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Table X2: Cadmium contents of phosphate and inorganic nitrogen fertilisers (Biomasse, 1998; 

Wilcke and Döhler, 1995) 

 
 
Fertiliser Cadmium in mg · kg-1 

 
P Fertiliser 
Triple superphosphate 
Thomas phosphate 
Superphosphate 
Hyperphosphate 
Alkalisintersphosphate 
Rhenania phosphate rock 
Partly digested phosphate rock 
Soft phosphate rock 

 
 
25 – 30,6 
0,1 - < 2 
1,4 – 21 
16,1 
0,84 
< 2 
7,2 
11,4 

 
N Fertiliser 
Calcium ammonium nitrate 
Ammonium urea solution 
Urea 
Ammonium sulphate 
Calcium nitrate 

 
 
0,24 – 0,38 
0,003 
< 0,1 – 0,2 
< 0,1 
0,1 

 
Multinutrient Fertiliser 
NP Fertiliser 
PK Fertiliser 
NPK Fertiliser 
 

 
 
7 – 15 
2 – 3,6 
0,2 – 4,9 
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Table X3: Level-dependent abiotic characteristics of the buffer function 
 
 

Abiotic characteristics of FUNCTION 
Level II Level I * Level 0 * 

 
BUFFER 
FUNCTION+ 

 
Soil structure# 

 
Infiltration 
Percolation 
Preferential flow 
Evaporation 

 
Distribution and amount of 

fissures 
cracks 
cavities 
burrows 
root channels 
macropores 

Frequency of macropores 
Pore continuity 
Kind of structure 
Water content 
Kind of texture 
Useful field capacity 
Particle size and surface 
Total surface of active particles 
Field capacity 
Aggregate stability 
Peds 

size 
shape  

 

 
Soil texture 
 
 

 
Mineral weathering 
 
 

 
Amount of 

clay 
loam 
silt 
sand 

Clay minerals 
Formation of secondary silicates 
Carbonates 
Hydrogen carbonates 
Calcium saturation 
Sulphates 
Silicates 
Particle surface  

charge 
valence 
kind of charge (permanent/variable) 

Functional groups 
Humus content 
Kind of humus 
Degree of humification 
Content and distribution of  

humin substances 
iron oxides 
aluminium oxides 
silicium oxides 
hydroxides 
fine clay 
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Abiotic characteristics of FUNCTION 
Level II Level I * Level 0 * 

 
BUFFER 
FUNCTION+ 

 
 

 
Ion exchange 
Exchange capacity  
 
 
 

 
Anion exchange capacity 
Cation exchange capacity 
Ion fixation 
Coagulation 
Attractive forces 
Hydrolysis reactions 
Hydratation 
Protolysis 
Complexation 
Chelation 
Precipitation 
Adsorption  

specific  
unspecific 

Base saturation 
  

Acidification 
Redox conditions 

 
Soil pH 
Acid neutralisation capacity  
Proton concentration 
Acidity 
Electrical conductivity 
Sulfurication 
Oxidation of iron sulphides 

 

   

+ Further external factors effect the buffer function: 
Precipitation: distribution, kind and rate 
Insolation: temperature 

 
* A clear separation of characteristics is often not possible. Partly the characteristics of level I (subsystems) or 0 
(elements, single processes) might be also assigned to other characteristics of the respective higher level. Nevertheless 
they are only once mentioned in the table, namely where they have been thought to be strongly important 
 
# Soil structure is in so far important as it determines the transport pathway of the substances 
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Table X4: Level-dependent biotic characteristics of the buffer function 
 

 

Biotic characteristics of 
FUNCTION 

 
Level II Level I Level 0 

 

BUFFER 

FUNCTION 

  
Decomposition 

 
Microbial activity 
Enzymatic activity 
Assimilation 
Content of carbon dioxide 
Break-down of fresh litter by soil biota 
Mineralisation 
Fixation 
Humus form 
Degree of humification 
Burrowing animals 
Shreddering of organic substance 
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Table X5: Level-dependent abiotic characteristics of the filter function 
 
 

Abiotic characteristics of 
FUNCTION 

Level II Level I * Level 0 * 

 
Soil structure 

 
Structuring 
Porosity 
Preferential flow 
Evaporation 
Infiltration 
Percolation 
Peloturbation 

 
Shrinking and cracking of clay 
Pore volume 
Pore size distribution 

macropores 
fissures 
burrows 
lenses 
root channels 

Order of soil particles 
Particle size 
Aggregates 

internal organisation 
stability 
size distribution 

Pore permeability 
Pore continuity 
Infiltration capacity 
Rate of percolation 
Hydraulic conductivity 
Field capacity 
Water-filled porosity 
Diffusion 
Convection 

 
Soil texture 

 
Mineral weathering 

 
Amount of 

clay 
silt 
sand 
loam 

Clay-humus complexes 
Fine clay fraction 
Calcium-saturation 

 
FILTER 
FUNCTION+ 
 
 

 
 

 
 

Ion valence 
Ion radius 
Ion concentration 
Ion content  

anions 
cations  

Metal oxide content 
Hydrophilic groups 
Repulsive forces 
Attractive forces 
Dispersion 
Peptisation 
Flocculation 
Suffusion 
 

+ Further external factors effect the filter function: 
Precipitation: distribution, kind and rate 
Insolation: temperature 
Groundwater influence 
Surface runoff, interflow 

 
* A clear separation of characteristics is often not possible. Partly the characteristics of level I (subsystems) or 0 
(elements, single processes) might be also assigned to other characteristics of the respective higher level. Nevertheless 
they are only once mentioned in the table, namely where they have been thought to be strongly important 
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Table X6: Level-dependent abiotic characteristics of the habitat function 
 
 

Abiotic characteristics of 
FUNCTION 

 
Level II Level I * Level 0 * 

 
Soil texture 

  
Distribution of  

clay 
loam 
silt 
sand 

Particle size  
Particle size distribution 
Stone content 
Humus content 

 
HABITAT 
FUNCTION+ 
 

 
Soil structure 

 
Porosity 
Structuring 

 
Distribution, size and kind of pores  

fissures  
cracks 
channels 
macropores 

Pore volume 
Pore continuity 
Pore permeability 
Penetration resistance 
Bulk density 
Aggregate stability  
Mechanical barriers 
Surface seals, crusts 
Hard-, claypans 

  
Soil air 

 
Porosity 
Structuring 
Aeration 

 
Air-filled porosity 
Air capacity 
Oxygen content 
Carbon dioxide content 
Methane content 
Diffusion 
Convection 

  
Soil water  

 
Infiltration  
Percolation 
Preferential flow 
Evapotranspiration 

 
Water-filled porosity 
Water content 
Useful water 
Water retention 
Pore size distribution  
Pore continuity 
Hydraulic conductivity 

  
Energy balance  

 
 
 
 
 
 
Photosynthesis 

 
Heat capacity 
Heat conductivity 
Soil colour 
Soil temperature 
Soil respiration 
Flux of energy/carbon to higher levels  
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Abiotic characteristics of 
FUNCTION 

 
Level II Level I * Level 0 * 

 
Nutrient cycling 

 
Ion exchange 
Ion transport 

 
Ion  

availability 
fixation 
exchange capacity 

Ion content 
anions 
cations 

Nutrient content 
Mineralisation 
Immobilisation 

  
Milieu 
Redox conditions 

 
Soil acidity  
Soil pH 
Electrical conductivity  
Oxygen content 
Methane content 
Redox potential 

 
HABITAT 
FUNCTION+ 

 
Pollutant cycling 

  
Pollutant content  
Kind of pollutant 
Mobility  
Toxicity 
Persistence 
 

+ Further external factors effect the habitat function 
Precipitation: distribution, kind and amount 
Water table 

Insolation: temperature 
 
* A clear separation of characteristics is often not possible. Partly the characteristics of level I (subsystems) or 0 
(elements, single processes) might be also assigned to other characteristics of the respective higher level. Nevertheless 
they are only once mentioned in the table, namely where they have been thought to be strongly important 
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Table X7: Level-dependent biotic characteristics of the habitat function: concerning flora (fungi, 

plants, crops) and fauna (micro-, meso-, macro-fauna) 

 
 

Biotic characteristics of 
FUNCTION 

Level II Level I * Level 0 * 

 
Species  

diversity 
distribution 
abundance 

Population dynamic 

 
Weeds 
Migration 

larks  
rabbits 
moles 
mice 
rodents 

 
Rate, abundance and 
distribution of  

Producers 
Decomposers 
Consumers 
Reducers 

 
Earthworms 
Snails 
Enchytraeids 
Isopods 
Diptera 
Ants 
Beetles 
Spiders 
Bees  
Butterflies 
Moths 
Collembola 
Protozoa 
Nematodes 
Mites 
Bacteria 
Algae 
Kind and amount of enzymes 

 
Rhizosphere 

 
Fungi 
Mycorrhizal-fungi 
Rhizobium bacteria 
Root exudates 

 
Biodiversity 
Biomass production 
Nutrient cycling 

 
Food net/ -chain 

 
Predator-prey-ratio 

 
HABITAT 
FUNCTION 

  
Assimilation 
Decomposition  
 

 
Microorganism activity 
Enzymatic acitivity (e.g. CMCase) 
 

*A clear separation of characteristics is often not possible. Partly the characteristics of level I (subsystems) or 0 
(elements, single processes) might be also assigned to other characteristics of the respective higher level. Nevertheless 
they are only once mentioned in the table, namely where they have been thought to be strongly important  
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Table X8: Level-dependent abiotic characteristics of the production function 
 
 

Abiotic characteristics of 
FUNCTION 

Level II Level I * Level 0 * 

 

PRODUCTION 
FUNCTION+ 

 
Soil texture 

 
 

 
Distribution and content of 

clay 
loess 
sand 
loam 

Humus  
content 
form 

Adsorption  
specific  
non-specific 

  
Soil structure 

 
Peloturbation 
Structuring 

 
Pore size 

fissures 
cracks 
channels 

Pore volume 
Pore distribution 
Aggregate shape 
Interparticle forces 
Bulk density 
Penetration resistance 
Accessibility for roots 

  
Soil water  

 
Infiltration 
Percolation 
Evaporation 

 
Field capacity 
Useful field capacity 
Non-useful water  
Water retention capacity 
Water table 

  
Soil air 

 
Porosity 
Aeration 

 
Content of  

oxygen 
methane 

Pore size 
Pore volume 
Air-filled pores 
Pore distribution  
Niches for organisms 

  
Energy balance 

 
Heat flux 
Porosity 

 
Soil colour 
Humus content 
Heat capacity 
Transpiration 
Respiration intensity 
Metabolic quotient 
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Abiotic characteristics of 
FUNCTION 

Level II Level I * Level 0 * 

 
PRODUCTION 
FUNCTION+ 

 
Nutrient cycling 

 
Nutrient turnover 
Nutrient pool 
Ion exchange 
 

 
Nutrient  

content 
availability 
delivery 

Ion content 
Cation exchange capacity 
Anion exchange capacity 
Clay content 
Humus 

content  
composition 

Availability of trace elements 
Pollutants 

content 
availability 
toxicity 

 

 
 

 
Milieu 
Redox conditions 

 
Soil pH 
Redoximorphy 
Sesquioxides 
Electrical conductivity 
 

+Further external factors effect the production function:  
Fertiliser application, kind, distribution 
Pesticide application, time moment, frequency of use, concentration, kind 
Mechanical treatment 
Irrigation 
Precipitation: distribution, kind and amount 

Insolation: temperature, transpiration 
 
* A clear separation of characteristics is often not possible. Partly the characteristics of level I (subsystems) or 0 
(elements, single processes) might be also assigned to other characteristics of the respective higher level. Nevertheless 
they are only once mentioned in the table, namely where they have been thought to be strongly important 
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Table X9: Level-dependent biotic characteristics of the production function 

 
 

Biotic characteristics of 
FUNCTION 

Level II Level I * Level 0 * 

 
Nutrient cycling 
Biomass production 

 
Rate, abundance and 
distribution of plant and 
weed populations 
 
Rate, abundance and 
distribution of  

producers 
decomposers 
consumers 

-      phytophages 
-      zoophages 

reducers 
Photosynthesis 
 
 
 
Bioturbation 

 
Floral species and their individuals 
Faunal species and their individuals 
Enzymatic activity  
Microbial activity 
Species diversity of 

earthworms 
microorganisms 
fungi 
algae 
mycorrhizae 

Content of burrowing animals 
Transpiration 
Ammonification 
Ammonifying bacteria 
Nitrification 
Nitrifying bacteria 

 

PRODUCTION 
FUNCTION 

 
Biocoenosis 

 
Food web 
Food chain 
Species 

distribution 
number 
kind 

 
Predator-prey-ratio 
Individuals of 

producers 
consumers 
decomposers 
reproducers 

Number of individuals 
Rate of reproduction 
 

* A clear separation of characteristics is often not possible. Partly the characteristics of level I (subsystems) or 0 
(elements, single processes) might be also assigned to other characteristics of the respective higher level. Nevertheless 
they are only once mentioned in the table, namely where they have been thought to be strongly important 
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Table X10: Level-dependent abiotic characteristics of the transformation function 

 
Abiotic characteristics of 

FUNCTION 
Level II Level I * Level 0 * 

 
Soil structure 

 
Porosity 

 
Pore size 
Pore volume 
Pore size distribution 
Pore frequency 

 
Soil air 

 
Aeration 

 
Oxygen content 
Carbon dioxide content 

 
Soil water  

  
Water content 
Useful water 
Percolation rate 

 
Nutrient cycling 

 
Nutrient  

mobilisation 
immobilisation 

Nutrient  
sorption 
desorption 
resorption 

Humus decomposition 
Humus transformation 

 
Mineral transformation 
Fermentation 
Ammonification  
Mineralisation 
Sulfurication 
Ion binding 
Nitrate reduction 
Hydrolysis 
Proton  

production 
consumption 

Humin acids 
Humin substances 
Litter 

break down 
mineralisation 

 Photochemical processes  

 

TRANSFORMATION 
FUNCTION + 

  
Milieu 
Redox conditions 

 
Soil pH 
Electrical conductivity 
Hydrolysis (Catalase) 
Oxidation 
Reduction  

  
Heat flux 

 
Porosity 

 
Soil temperature  
Soil colour 
Humus content 
Heat 

capacity 
conductivity 

  
Energy balance 
 

 
Photosynthesis 

 
Flux of energy and carbon 
Uptake of carbon dioxide 
Assimilation 
Respiration intensity 
Metabolic quotient 
 

+ Further external factors effect the transformation function:  
Water table and groundwater influence 

Insolation: temperature 
Moisture 

 
* A clear separation of characteristics is often not possible. Partly the characteristics of level I (subsystems) or 0 
(elements, single processes) might be also assigned to other characteristics of the respective higher level. Nevertheless 
they are only once mentioned in the table, namely where they have been thought to be most appropriate 
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Table X11: Level-dependent biotic characteristics of the transformation function which depends 

strongly on the habitat function 

 
Biotic characteristics of 

FUNCTION 
Level II Level I Level 0 

 

TRANSFORMATION 
FUNCTION 

  
Decomposers 
Bioturbation 

 
Number and kind of  

Enchytraeids 
Earthworms 
Snails 
Isopods 
Ants  
Arthopods 
Diptera 
Rhizobium 
Actinomycetes 
Rodents 

Fermentation 
Break down of organic matter 
Decay  
Humus degradation  
Humification 

  Consumers  Phytophages  
bacteria 
fungi 
algae 

Zoophages  
collembola  
protozoa 
nematodes 
mites 

   
Reducers 
Microbial community: 

Density  
Composition 

 
Kind/ density of microorganisms, above all 
bacteria  
Denitrification 
Nitrification 

Nitrobacter 
Nitrosamonas 

Azotobacter 
Metabolisation  
Enzymes 

species  
activity  
concentration 

- glucoscidase 
- thiosulphate 
- S-Transferase 
- asparginase 
- glutaminase 
- amidase 
- proteinase 
- peptidase 
- phosphatase 
- sulphatase 
- urease 

   
Rhizosphere 

 
Fungi 
Mycorrhizal bacteria 
Rhizobial bacteria 
Root exudates 

   
Photosynthesis 

 
Assimilation 
Production rate of carbon dioxide 
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Table X12: Level-dependent characteristics of the storage function with regard to water and 

nutrient storage 

 
Abiotic characteristics of 

FUNCTION 
Level II Level I * Level 0 * 

 
Soil structure 

 
Porosity 
Peloturbation 

 
Pore volume 
Pore size 
Pore distribution 
Pore size distribution 
Content of  

fissures 
macropores 

Order of soil particles 
Interparticle forces 
Kind of binding 
Adhesion 
Cohesion 
Aggregates 

stability 
size distribution 

Particle aggregation 
Bulk density 

 
Soil texture 

 
Ion exchange 
 

 
Amount of 

clay 
sand 
loam 
silt 
fine earth 

Ratio of fine earth/coarse earth 
Stone content 
Fine clay fraction 
Cation exchange capacity 
Anion exchange capacity 
Kind of attractive forces 
Ion charge 
Free exchange sites 
Content and kind of  

humus 
humic substances  

 
Soil water 

 
Water cycling 

 
Pore permeability 
Pore continuity 
Infiltration capacity 
Hydraulic conductivity 
Rate of percolation 
Field capacity 
Water table 

 
STORAGE 
FUNCTION+ 
 

 
Soil biota 

 
Bioturbation 

 
Creation of pores 
Creation of aggregates 
Root activity 

+ Further external factors effect the storage function: 
Precipitation: distribution, kind and rate 
Insolation: temperature, evaporation 
Groundwater influence 
Surface runoff, interflow, preferential flow 

 
*A clear separation of characteristics is often not possible. Partly the characteristics of level I (subsystems) or II 
(elements, single processes) might be also assigned to other characteristics of the respective higher level. Nevertheless 
they are only once mentioned in the table, namely where they have been thought to be strongly important 
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Table X13: List of abiotic receptors and effects with regard to the input soil pressure. Analysed was 

the literature which can be taken from the references of section X  

 
 

Receptors and Effects* 

Abiotic SOIL PRESSURE 

Level 0 

Level I 

Level II 

Environmental 
consequences 

  
Pore size distribution 
Pore volume⇓ 
Macropores⇓ 
➘ Air capacity⇓ 
Micropores⇑ 
⇒ useful water⇓ 

 
Porosity⇓ 

 
Soil structure+ 

 
Seed rise retarded 

 Soil density 
in the short run⇓ 
with increasing 
compression⇑ 

  Compaction ⇑ 
Structural change under 
the plough zone 
⇒ plough sole  
⇒ root barrier 
⇒ long-term persistent 

compaction 
⇒ Yield ⇓ 

 Change of the 
macrostructure 

  Accessibility for roots⇓ 

 Change in  
aggregation 
aggregate stability 

   

 Soil substance in a three-
dimensional 
compartiment⇑ 
Contact area between soil 
particles ⇑ 
➘ Shear resistance⇑ 
Shear strength ⇑ linear 
with number of 
overrunning 
➘ load capacity⇑ (in the 
short run, in renewed 
loading: load capacity⇓)  
Soil resistance⇑ (⇒ cost 
of energy ⇑) 
Partly formation of a 
plough layer  

  ⇒Runoff and soil 
erosion⇑ 

 
 
 
Erosion 
⇒ loss of nutrients 
⇒ inhibited biomass 
production 

 Cohesion 
Penetration resistance⇑ 
Earthworm channels⇓ 

  Less surface area  
⇒ chemical processes 

influenced 
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Receptors and Effects* 

Abiotic SOIL PRESSURE 

Level 0 

Level I 

Level II 

Environmental 
consequences 

 Pore size 
macopores⇓ 
micropores⇑ 

Pore size distribution 
Soil aeration 
Soil air capacity ⇓ 
Aerated pore volume ⇓ 
Air permeability ⇓ 
Diffusion ⇓ 
Oxygen deficiency ⇑ 
Partly reductive conditions 

Porosity Soil air Silting up 
Erosion⇑ 
Wind erosion ⇑ 
(a short period after 
harvest) 
Soil volume⇓ 
Nutrient loss 

Eutrophication 
Pollutant 
accumulation  

Surface sealing  
High compaction 
⇒ Gas transport⇓⇓ 
⇒ Denitrification⇑ 
⇒ Unproductive 

nitrogen-loss⇑  
⇒ Oxygen deficiency  
➘ reduced nitrogen 
uptake 
Soil decompaction via 
fauna ⇓ 
Biological 
transformations ⇓ 
➘ Microbial activity ⇓ 
Silting up of surface soil 
High water content 

  
Water retention ⇓ 
Infiltration ⇓ 
Run-off ⇑  
Evapotranspiration⇓ 
Hydraulic conductivity ⇓ 
Saturated conductivity ⇓ 
Water transport ⇓ 
(soil moisture influenced 
up to 2m depth) 
Degree of water saturation 
⇑ 

  
Soil water 

 
Chemical and biological 
processes influenced 

Plant growth ⇓ 
Groundwater 
formation ⇓ 

Surface runoff ⇑ 
Danger of erosion ⇑ 
Later warming up of the 
soil surface 
Differences in 
temperature ⇓ 

  
Heat capacity ⇓ 
Heat efficiency ⇓ 
Potential of warming up ⇓ 
Heat conduction ⇓ 

 
 

 
Soil temperature 

 
Soils less able to warm 
up 
Influence on chemical 
and biological processes 
Plant growth ⇓  
Nutrient cycling slower  
Activity of organisms⇓ 

 Humus decomposition 
Nitrogen availability ⇓ 
 

Nutrient 
mobilisation ⇓ 
Nutrient transport ⇓ 

Nutrient cycling  
 

*: Soil pressure effects may be influenced by moisture 
+:Main destruction in the first year 
⇑ increases 
⇓ decreases 
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Table X14: List of biotic receptors and effects with regard to the input soil tillage. Analysed was the 

literature which can be taken from the references of section X  

 
 

Receptors and effects 
Biotic SOIL TILLAGE 

Level 0 Level I Level II 

  
Disturbance of the soil fauna 
(breeding) (mechanical herb 
control) 
Promotion of less competitive 
species  
Biomass ⇓ 
Death of animals (Harvest) 

 
Food chain /web 

 
Biodiversity 
 
 

 destruction of ecological valuable 
plant species before the ripening of 
the seeds (stubble treatment) 

 Change of habitat 

  
Oppression of the herbicides 
Death/violation of organisms of 
different states of development 
Transfer (bury) of soil organisms, 
seeds, plants 

 
Producer  
Shift in species composition 
Vegetation 

composition 
society 

 
Biodiversity  
Phytocoenosis  
Biocoenosis 
Nutrient cycling 
Biomass production 

 
Earthworms  
Enchytraeids  
Snails  
Isopods  
Ants  
Diptera 
Transfer and burrowing of soil 
organisms 
Soil organisms ⇓ 

 
Decomposer species 
Population ⇓ 
Bioturbation ⇓ 

  

 
Soil macrofauna individuals ⇓ 
Soil mesofauna individuals⇓ 
Number of earthworms ⇓ (directly 
killed or injured) 

  

 Especially smaller species of the 
upper soil influenced 
Movement of soil fauna ⇓ 
Nutrient decomposition ⇓ 
Nutrient transformation ⇓ 

  

  
Oxygen content 
Enchytraeids⇓ 
Collemboles⇓ 
Mites⇓ 

 
Consumer species  
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Receptors and effects 
Biotic SOIL TILLAGE 

Level 0 Level I Level II 

  
Phytophages 

bacteria  
fungi 
algae 

Zoophages 
collembola 
protozoa 
nematodes 
mites 

Transfer (bury) of soil organisms 
Death and violation of  

soil organisms 
birds 
small mammals at different 
states of development 

reptiles 

 
Consumer  

 
Nutrient cycling 
Biomass production 
Change of the  

phytocoenosis  
biocoenosis 

 

  
Bacteria  
Fungi  
Algae  
Enzymes  
Microorganisms ⇑ 

better distribution of the organic 
nutrients  

⇒ Mineralisation ⇑ 

 
Reducer  

 

⇑increases 
⇓decreases 
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Table X15: List of abiotic receptors and effects with regard to the input carbendazim. Analysed was 

the literature which can be taken from the references of section X 

 
 

Receptors and effects* 
Abiotic CARBENDAZIM 

Level 0 Level I Level II 

  
Phosphorus availability⇑ (at low 
Carbendazim doses) 

 
Phosphorus cycling 

 

  
Aggregates 
Macropores 

 
 

 
Soil air 

   
Preferential flow  
Infiltration rate 

 
Soil water 

  
Aggregate stability 

 
 

 
Soil structure 
 

* Carbendazim effects may be influenced by pH values and the clay content 
⇑ increases 
⇓ decreases 
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Table X16: List of biotic receptors and effects with regard to the input carbendazim. Analysed was 

the literature which can be taken from the references of section X  

 
 

Receptors and effects* 
Biotic CARBENDAZIM 

Level 0 Level I Level II 
  

Ammonification NH4-N ⇑  
Nitrification NO3-N ⇓ 
Litter decomposition⇓ 

 
Nitrogen cycling 
 
 

  
Bacteria  

ammonifying⇑ (at low dose) 
nitrifying  

  - Nitrosomas ⇓ 
  - Nitrobacter ⇓  

 
 

  
Lumbricus terrestris 

feeding activity ⇓ 
dry weight of earthworm 
excrements⇓ 

Enchytraeids ⇓ 
CMCase-Activity ⇓ 
Break down of litter ⇓ 

 
Decomposers ⇓ 

 
Nutrient cycling 
 

  
Lumbricus terrestris⇓ 
 
Eisenia andrei: reproduction ⇓ 

cocoon production⇓ 
fertile cocoons⇓ 
number of juveniles⇓ 

 
Eisenia fetida: cocoon production ⇓ 
 
Eisenia caliginosa: Reproduction ⇓ as 
a function of 

juveniles  
adults 
organic carbon content 
kind of minerals 

 
Enchytraeids: Reproduction ⇓ 
 
Growth conditions of 

Microorganisms  
Microflora  

 

 
Earthworm population ⇓ 
 
Decomposers 
Decomposition⇓ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Population⇓ 

 
Biomass production 
Biocoenosis 
Faunal biomass ⇓ 
 

Carbendazim effects may be influenced by pH values and the clay content 
⇑ increases 
⇓ decreases 
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Table X17: List of abiotic receptors and effects and environmental consequences with regard to 

the input cadmium. Analysed was the literature which can be taken from the references 

of section X  

 
 

Receptors and Effects* 

Abiotic CADMIUM 

Level 0 Level I Level II 

Environmental 
consequences 

 
Occupation of ion exchange 
sites 
Adsorption on exchangers, 
e.g. humus and 
sesquioxides at pH >6 (not 
in acid soils), less on clay 
Cd(OH)2 
Cd(OH)- 
CdCO3 (at pH>7) 

 
Cadmium – accumulation in the 
upper soil horizons 
(0-30cm)  

 
Formation of stable chloride 
complexes with Cd  
 
 
 
 
Formation of Cd-hydroxo-
complexes  

 
Diffusion of Cd-Chloro-
complexes towards the root 
surfaces, direct transpassing 
trough the plasma membranes, 
plant availability⇑  

 
Diffusion into oxide particles  
Strong adsorption on iron 
oxides 

 
Cation exchange 
capacity 
Availability for plants 
 

 
Nutrient cycling/ 
pollutant cycling  
 

 
Heavy metal availability ⇓  

 
Accumulation of soil 
Cadmium during the period 
of fertilisation with 
phosphorus 

 
Cadmium-supply⇑ 
Plant availability 
 

  
Accumulation of Cadmium in 
the soil, 
in the plants 

 

 
Leaching or free availability 
of Cd2+ in acid soil pH 
values (pH<5.5)  

   
Leaching of Cadmium into the 
groundwater 
 
Accumulation of Cadmium in 
the food chain via Cd2+ - 
accumulation by plants and 
consumers 
 

Cadmium effects may be influenced by pH values, the humus and clay content 
⇑ increases 
⇓ decreases 
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Table X18: List of biotic receptors and effects with regard to the input cadmium. Analysed was the 

literature which can be taken from the references of section X 

 
 

Receptors and effects 

Biotic CADMIUM 

Level 0 Level I Level II 
 
 

 
Accumulation in the flora individuals (in leaf 
tissue and roots more than in blooms, fruits 
and seeds)  

  
Uptake of Cadmium in grain seeds⇑ 

  
Accumulation of Cadmium in  

tobacco leaves 
sun flower seeds (0.79-1.17mg Cd · kg-1)  
carrots  

Cadmium uptake highly correlated with 
NH4NO3 – Cd-concentration and 
exchangeable Cd  

  
Stigma sensitive reacting on low Cd-
concentrations  
Pollen growth⇓  

 
Cycling of trace elements 

  
Earthworms 
Reproducton ⇓ 
Growth ⇓ 
Eisenia andrei:  

descendants/worm ⇓ 
cocoon production ⇓ 

 
Decomposition  
 
 

  
Influx: soil-plant: high, uptake of 1-5% of the 
cadmium soluted 
 
Distribution factor of root:shoot for Cadmium 
on average: 4  
 
Translocation factor: shoot:seed for Cadmium 
on average: 0,27  

 
Trace element leaching 

  
Soil microorganisms: 

Metabolic capacity⇓  
Respiration  rate⇓ 
CO2 ⇓ 

 
Nutrient turnover  

 
Nutrient cycling 

  
Activity of 

Cellulase⇓  
Phosphatase⇓ 
Amylase⇓ 
Nitrogenase⇓  

  

 High nitrogen accumulation ⇒ nitrifying 
bacteria affected  

  

 Nitrifying bacteria more tolerant than 
microflora 
Immobilisation of mineral nitrogen⇓  
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Receptors and effects 

Biotic CADMIUM 

Level 0 Level I Level II 
  

Biological activity ⇓ (e.g.mineralisation, air 
nitrogen fixation)  

  

  
Nodule formation of beans⇓ 

  

 
Resistance at high Cadmium concentration:  

bacteria⇑ 
actinomycetes⇓  

 
Change in distribution of 
species spectrum 

 

 
Lumbricus: accumulation factor: 11-22  
Bioaccumulation ⇑ 
Cadmium in earthworms⇑ (with inorganic 
fertilisation stronger than with organic 
fertilisation) 
 
Cadmium content of earthworm tissue⇑ 
 
Cadmium concentration in Dendrobaena 
veneta ⇑ 
 
Eisenia fetida:  

growth⇓ 
cocoon production⇓  

 
Earthworm population 
Accumulation in the food 
chain ⇒ biocycling of 
Cadmium  
 
 
 
 
Bioavailability 
 

 
Biodiversity 
 
 

  
Content in producer individuals ⇑ (e.g. in 
spinach shoot) 
Content in consumer individuals⇑ (flora)  
Accumulation in herbivores higher than in 
carnivores 
Accumulation factor Herbivores/Producers ca. 
15µg ⋅ g–1 (dry weight) 

 
Food chain 

 
Food web 

  
Degradation of Thylakoid membrane ⇒ 
Photosynthesis II-activity inhibited 
Effect on Calvin-cycle  

Excess of ATP and NADPH  
Photosynthesis II-activity inhibited 

 
Photosynthesis ⇓  
 
 
 
 

 
Biomass production 
Plant growth⇓  
 
 
 
 

  
Interactions with Zinc: Zinc addition: uptake of 
Cd in wheat grains up to 50% ⇓: Decay of the 
membrane 
uptake of cadmium in tomatoes⇓  
at the state of zinc-deficiency: mobilisation of 
cadmium with the excretion of 
phytosiderophores 

 
Plant physiology 

 

  
Root growth ⇓  

 
Plant nutrition⇓  

 

  
Bioavailability ⇑ if pH value ⇓  

 
Agricultural plant and crop 
species and populations 

 
Yield ⇓ depending on 
plant species and soil 
properties  

⇑ increases 
⇓ decreases 
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Table X19: List of abiotic receptors and effects with regard to the input inorganic Nitrogen. 

Analysed was the literature which can be taken from the references of section X  

 
 

Receptors and Effects 
Abiotic NITROGEN  

Level 0 Level I Level II 

Environmental  
consequences 

 
NO3

-, NH4
+; Nmin  

 
Plant nutrition deficiencies of  

N  
Mg  
K 
Ca 

 Resistance problems 
 
Nitrogen-bindings 
Ammonia, NH4

+ 

 
NO3

- 

 
Nanorg (NH4

+, ammonia, 
NO3

-, NO2
-) 

Nitrogen-immobilisation 
 
NH4

+ 

Nitrogen-fixation 

Humic substances 
Clay minerals 
Clay-humus-complexes 
Iron-oxides or hydroxides 
Aluminium-oxides or 
hydroxides 
 
Denitrification  
 
 
 
NH4

+ 

Ammonium-fixation 

 
Nitrogen pool ⇑ 

 
Nitrogen cycling 

 
Nitrogen  

adsorbed 
plant available 

 
Soil acidification 
Leaching into the groundwater 
 
 
NH4

+ -fixation in interlayers of clay 
minerals 
 
 
 
 
 
 
 
In groundwater- or stagnant water- 
influenced soils loss of nitrogen in 
agricultural systems  

 
NO3

-, NH4
+ 

Humus content 
Clay coatings 
Iron-oxides or hydroxides 
Aluminium-oxides or 
hydroxides 
Pore distribution 

 
Adsorption 
capacity 
Buffer 
capacity 
Porosity 

 
Soil structure 
 

 
Leaching of NO3

- with the 
percolation water, because of weak 
bindings with soil colloids 
negatively charged 

 

 
Gas diffusion coefficient 
 
 
 
Gas diffusion coefficient 

 
Ammonia 
volatility (up 
to 70%) 
 
N2O-
formation 

 
Soil air 

 
Loss of nitrogen 
Greenhouse gas 

  
Aerobic and anaerobic 
protein decomposing  

 
Exothermal 
processes 

 
Heat flux 

 

  
NO3

- 
(NH4

+) 

 
Nitrogen 
leaching 

 
Soil water 

 
Nitrogen removal from the root 
zone, consequently plant 
availability reduced  
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Receptors and Effects 
Abiotic NITROGEN  

Level 0 Level I Level II 

Environmental  
consequences 

  
Ammonia, NH4

+ 
 
Soil 
acidification 

  
Acidification potential of nitrogen⇑ 
Plant available Mg, Ca, K ⇓ 
Release of ecotoxical Al3+, Fe3+ 

Reduction of cation exchange 
capacity 
Nutrition deficiencies 
 

⇑ increases 
⇓ decreases 
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Table X20: List of biotic receptors and effects with regard to the input inorganic Nitrogen. Analysed 

was the literature which can be taken from the references of section X 

 
 

Receptors and Effects 
Biotic NITROGEN  

Level 0 Level I Level II 

  
Activity of urease ⇓ 
Activity of amydase ⇓ 
 
Nitrosomonas 
Nitrobacter  
Nitrification ⇑ 
 
Achromobacter  
Pseudomonas 
Denitrification  
 
Ammonia formation  
Ammonification ⇑ 
 
Nitrogen fixing microorganisms with 
nitrogenase 
Nitrogen-fixation ⇓ 
VA-mycorrhiza of agricultural plants 
 
Lumbricus terrestris 
(optimum 12-24) 

 
 
 
 
 
Nitrogen pool 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
C/N ratio 

 
Nitrogen cycling 

  
pH value ⇓, influence on: 

Earthworms  
Nematodes  
Collembola  
Mites  

 
Number of individuals: Lumbricus 
terrestris ⇓ 

 
Change of species 
Change in population size 
Change in population 

 
Soil structure 
Nutrient cycling 

  
pH value⇑ ⇒ activity of microorganisms⇑ 

 
Qualitative change of species 
spectrum  
 

 
 

    
  

Soil organisms 
 
Appearance of Urtica, Sambucus 

 
Kind of species 
 
Shift in species spectrum 

 
Biodiversity  

  
Fungi  
Bacteria  
Higher plants 

 
Shift in kind and number of 
species 

 
Biocoenosis  

   
Competition between 
agricultural plants and natural 
vegetation  
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Receptors and Effects 
Biotic NITROGEN  

Level 0 Level I Level II 

 
N anorg⇑ 
⇒ Root growth ⇑ 
- depth 
- area of growth 
drought/dryness resistance⇑ 
(e.g. grass) 
Root exudates⇑ 
Bacteria⇑ 
Fungi⇑ 
Actinomycetes⇑ 
(with regard to NPK-fertiliser) 
Heterotrophic microorganisms 

 
Biomass activity⇑ 
 

 
Proteins⇑ 
Competition⇑ 
 
in a surplus: weakening of the plant fibres, 
saccharides⇓  

 
Plant contents 

 

 
Later blooming  
Later ripeness  
Less resistance towards illness and pests 
 

 
Growth 
Plant Health 

 
(Plant) biomass 
production⇑ 

⇑ increases 
⇓ decreases 
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Table X21: Ecosystemic effect indicators for an agroecosystem regarding the utility functions 

habitat, transformation, filter, buffer, production and storage and the inputs soil 

pressure, carbendazim, inorganic nitrogen and cadmium 

 
 
Function Soil pressure Carbendazim Inorganic nitrogen* Cadmium 

 
Habitat 

 
Macro porosity 

 
Number of juvenile 
earthworms or 
reproduction rate of 
earthworms or 
cocoon production of 
earthworms 

 
Shift in species of 
weeds 
Shift in species 
spectrum of soil 
organisms 

 
Ratio of actinomycetes/bacteria 
Cocoon production of 
earthworms 
Respiration of microorganisms 

 
Transformation 

 
Respiration 
intensity and 
metabolic quotient 

 
Biomass of 
earthworms and 
enchytraeids 

 
Urease activity 
Amydase activity 

Biomass of earthworms 
(especially of Dendrobaena 
veneta, Lumbricus terrestris) 

 
Filter 

 
Pore spectrum, 
especially pore 
volume between 1 
and 100 µm 

 
Number and 
distribution of 
macropores 

 
- 

 
- 

 
Buffer 

 
- 

 
Humus composition 

 
N-min content 

 
With Cd occupied ion exchange 
sites 

 
Production 

 
Penetration 
resistance or 
macro porosity 

 
Biomass of 
earthworms and 
enchytraeids 

 
Urease activity 
Amydase activity 

 
Biological activity of 
microorganisms (activity of 
cellulase, phosphatase, 
amylase, nitrogenase in 
microorganisms) 
Reproduction rate of earthworms 

 
Storage 

 
Field capacity+ 

 
Humus composition# 
 

 
- 

 
With Cadmium occupied ion 
exchange sites 
 

*: For nitrogen it is difficult to identify EEI because nitrogen exerts minor negative effects on the function characteristics 
-: No direct ecosystemic effect indicator identified with regard to this input and utility function 
+: Regarding water storage 
#: Regarding nutrient storage 
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Table X22: Examples of threshold values as available in literature exemplary shown for the 

material input Carbendazim faced to the EEI proposed 

 
 
Ecosystemic effect indicator Threshold ranges Reference 

 

Number of juvenile earthworms 
 

LC50: (Lumbricus terrestris): 2.6 mg 

kg-1; 

LC50: (Eisenia fetida): 5.5/5.7 mg kg-1 

LC50 (Field, Apporectadea 

caliginosa): < 1 mg kg-1 

 

(van Gestel et al., 1992), (van Gestel, 

1992) 

(Lofs-Holmin, 1981) 

Biomass of earthworms 1800 g carb/ha (10 x recommended 

application rate) 

6.0 mg a.i. kg-1 (dry soil) 

(Förster et al., 1996) 

 

(van Gestel et al., 1992)  

Reproduction rate of earthworms >1.92 mg kg-1  (van Gestel et al., 1992), (van Gestel, 

1992) 

Cocoon production (fertile 
cocoons) 

EC50 (Eisenia fetida): 2.9 mg kg-1 

>1.92 mg a.i. kg-1 (dry soil) 

NOEC: 2.0 mg kg-1 (dry soil) 

(van Gestel et al., 1992) 

Litter decomposition 1800 g carb/ha (10 x recommended 

application rate) 

18 mg m2  

NOEC50(Field): 0.24 mg kg-1 

(Enchytraeids) 

(Förster et al., 1996) 

 

(Eder et al., 1992) 

(Römbke and Federschmidt, 1995) 

 

 

 

 

Table X23: Examples of critical loads proposed in literature with respect to physical characteristics 

and depending organisms (Horn, 1999) 

 

Receptor Critical load 

Erosion < 1 – 7 t · ha-1 · a-1 (specific or soil types) 
Gas aeration > 10 % ; 103 mg / m²h, O2-depletion 
Penetration resistance < 1,5 - 3 MPa = 15 – 30 bar 
Root growth > 5 km · m-3 for sufficient H2O-uptake 

Apporectodea rosea 72,8 kPa axial,  230 kPa radial 
Lumbricus terrestris up to dB = 1,66 g · cm-3 
Apporectodea longa up to dB = 1,50 g · cm-3 
Nematodes < 1,20 g · cm-3 
Protozoa < 1,55 g · cm-3 
Bacteria < 1,70 g · cm-3 
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