
V  Discussion

A. Milkfish

1. Sampling

The milkfish were collected by means of gillnetting on all sampling days, a fishing

method normally associated with a certain measure of size selection.  In spite of this, it is

unlikely that the mean size of the fish caught on a particular sampling day deviated

significantly from the true average of the fishpen population.  This was because it was

observed that the fish were observed to become not only gilled but also entangled in the net

so that a very wide size spectrum was caught.  This was particularly true on those sampling

days which were timed a considerable period after stocking when the size of the faster

growing fish would have been expected to have diverged most from that of the slower

growing individuals.  When the fact that all fish were stocked at the same size on the same

day is also taken into account, it is likely that the sampling method extracted fish randomly.

2. Growth, Condition & Body Composition

The growth rates, condition factors and body composition of milkfish reflect the

annual cycle of clear and turbid water conditions in Laguna de Bay.  During the dry season,

intruding saltwater clears the lake, giving rise to algal blooms which improve the feeding

conditions for phytoplanktivorous filter-feeders.  Milkfish growth rates speed up, condition

improves and considerable fat reserves are laid down.  At the same time, the differences

observed for the same time of year between 1995 and 1997 are probably related to

differences in the precise timing of saltwater intrusion and the biomass and digestibility of

the dominant algal species at times of clear water (Anabaena spiroides in 1995; Oscillatoria

sp. in 1997).  After the return of turbid water conditions, the situation is reversed: growth

rates and condition decline and fat reserves are used up.  From the data obtained here, it

seems that these parameters reach a low point around April, just before the next occurrence

of saltwater intrusion.  On the basis of the fat content, it appears that in April, just before

saltwater intrusion, these fish are approaching the limit of their reserves.

The growth rates calculated for milkfish in Laguna de Bay can evidently match or

even exceed those in most other environments when conditions are favourable in the lake.

Both Sumagaysay (1993) and Kühlmann (1998) did not record higher SGR and MGR values
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for this species in pond culture even when given feed while Agbayani et al. (1989) obtained

comparable values in modular pond culture without feeding.  This suggests that, given the

proper management, this species can be grown quite adequately without supplemental feed.

In the modular pond system, no feed is given but fertiliser is used.  This is both impractical in

such a large system as Laguna Lake as well as unnecessary, since the lake is well supplied

with nutrients from agricultural run-off and domestic and industrial waste.  When nitrogen

supplies become depleted in the latter half of the season of clear water, nitrogen-fixing

blue-green algae such as A. spiroides or Oscillatoria sp. dominate the phytoplankton to

compensate for this.  The high growth rates of milkfish at that time of year, which match or

exceed those found in most other systems, suggest that throughout this three-month period,

fish growth is not affected by nitrogen limitation.

When the body composition of milkfish is analysed on a wet matter basis, it is clear

that the deposition of fat takes place mainly at the expense of body water rather than other

components.  In this respect, milkfish resemble the common carp, Cyprinus carpio L. which

also has a fairly constant protein and ash content in the wet matter (Focken & Becker 1993).

These authors analysed an extensive data set spanning practically the entire range of body

composition likely to be encountered in that species.  The range of fat contents determined

here for milkfish comes close to that calculated for common carp and rather exceeds the

values given by other authors for C. chanos (Coloso et al. 1988, Shiau et al. 1988) who tested

the effect of a variety of feeding levels and dietary components in this species.  Even those

fish reared by Kühlmann (1998), which were offered a combination of natural and

supplemental feed, only reached 6.9% body fat (wet matter basis) at the end of their rearing

period.  These comparisons demonstrate that the feeding conditions for milkfish in Laguna de

Bay reach both extremes: abundant, high quality food in the period following saltwater

intrusion but a prolonged phase in which natural food is either scarce, of bad quality or both

when the water is turbid.

3. Daily Ration

The daily rations calculated by Sumagaysay (1993) for milkfish given pelleted feed

are rather higher than those determined here, whereas those of her milkfish kept on natural

food alone consumed slightly less.  These differences reflect the fact that filter-feeders such

as milkfish ingest small particles so that their ingestion rates, and therefore also the overall

food consumption, are low.  Therefore, when this species is given pelleted feed, irrespective
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of any improvement in dietary quality, this can help to raise the quantity of ingested matter to

a considerable degree.  Kühlmann's (1998) fish were also given supplemental feed, which

made up between about 30% and 75% of total ingested matter.  Consequently, the daily

rations calculated by Kühlmann (1998) were also rather in excess of those determined here.

However, when one takes into account that the highest growth rates recorded here for fish

living only on natural food exceed those of Kühlmann (1998), this demonstrates the

enormous potential of Laguna de Bay for fish production which is nowadays only realised in

the season of clear water.

With the marked exception of the August 1997 sample, the consumption estimates

calculated here for this species with the aid of the MAXIMS model do not differ greatly

between sampling days.  The results for the February, April and June 1997 samples are very

similar and certainly do not suffice to explain the great discrepancies between the growth

rates for February-April on the one hand and April-June on the other.  The maintenance

requirement for this species has been calculated to be 4.63g kg-0.8 day-1 at 27.5°C (Schröder

1997), which is typical of the water temperature found in Laguna de Bay for most of the year.

Providing that no other limiting factors are at work, the consumption levels of this species

should have sufficed for growth at all times other than in August 1997.  It therefore seems

that the growth of this species in Laguna de Bay is not limited so much by food availability at

times of turbid water conditions as by some other factor.

4. Food Composition

The results of the stomach content composition analysis suggest that the principal

limitation on milkfish growth in Laguna de Bay is food quality rather than quantity.  Several

authors have reported that unsupplemented milkfish ingest large quantities of detritus with

their food (Trino & Fortes 1989, Sumagaysay 1993, Kühlmann 1998) including those in

Laguna Lake (Kumagay & Bagarinao 1981) and this material has repeatedly been shown to

be a poor quality food (Persson 1983, Bowen 1987, Bowen et al. 1995, Larson & Shanks

1996).  Some fish species feeding mainly or wholly on detritus have been found to have high

growth rates (Mundahl & Wissing 1987, Yossa & Araujo-Lima 1998) but these are able to

select its nutritionally better fractions.  Filter-feeding fish such as milkfish have repeatedly

been shown to be unable to select their food on any basis other than size (Drenner et al.

1984a,b 1987) so that it is unlikely that this species would grow well in Laguna de Bay or

other environments when consuming mainly detritus.  This contradicts the theory of Trino &
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Fortes (1989) that milkfish select detritus for consumption and that other material is ingested

incidentally.  It also leads to the conclusion that detritus in milkfish stomachs should be

regarded more as a useless filler which prevents the animal from ingesting more material of

higher nutritional quality.

If the rapid growth of milkfish cannot be attributed to an increase in food intake at the

time of clear water, it seems reasonable to assume that this phenomenon is linked to greater

food quality at that time of the year.  Although differences in stomach content composition

were found between sampling days, however, the sampling times during which the fish were

found to feed more on algae than detritus were October 1996 and February 1997, i.e. those

times during which growth was slow.  It also seems highly paradoxial that the cultured fish

(including tilapia) on the whole unselectively ingested any particle suspended in the water,

the only exception being June 1997 when Oscillatoria sp. was in bloom but this alga was

almost absent from the stomachs of the milkfish analysed.

Xie investigated the gut contents of silver carp (Xie 1999), generally considered a

phytoplanktivore, and bighead carp (Xie 2001), generally considered a zooplanktivore, in

relation to their environment with the use of Ivlev's electivity index.  Although, for some

unspecified reason, two different versions of this index were used for the comparison (indices

of -1 to +1 for bighead, negative and positive values respectively indicating avoidance or

selection; indices of 0 to ∞ for silver carp, values below or above 1.0 respectively indicating

avoidance or selection), his results are of importance to the present investigation.  The

phytoplankton was usually dominated by the diatom Cyclotella sp. and the cryptomonad

Cryptomonas sp., nevertheless both carp species were found to ingest a large variety of algal

taxa belonging to a wide range of size classes and did so in most cases apparently

unselectively.  However, the low electivity indices observed for Cryptomonas (0.56 in silver

carp, 0.14 in bighead) and the closely related Chroomonas sp. (0.04 in silver carp, -0.82 in

bighead) as well as the chrysophyte Ochromonas sp. (0.09 in silver carp, -0.63 in bighead)

were attributed to the fragile nature of the cells of these algae which was seen to result in

very rapid digestion and their consequent underestimation in the stomach contents.  Strangely

enough, the even lower electivity indices for Oscillatoria sp. (0.03 in silver carp, -0.98 in

bighead) were considered indicative of true avoidance since the filaments of this species were

only about 1-2µm in thickness.  Nevertheless, the filamental colonies of this species were

longer (26µm) than the diameter of some algal species with higher indices suggesting neither

selection or avoidance (e.g. Chlorella: cell diameter 5-10µm, Ivlev's electivity index 0.80 for
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silver carp; Melosira varians: colony length 16µm, Ivlev's electivity index 1.03 in silver and

0.56 in bighead carp) so that it seems unlikely that Oscillatoria sp. could have evaded

ingestion to such a large extent.  Since this species has a high surface are: volume ratio and

also lacks the cellulose cell wall of green algae or siliceous shell of diatoms, it is probable

that this alga is almost completely digestible.  This is supported by the comparison between

the stomach and rectal contents of milkfish made here and, in view of the evidence, it appears

likely that the contribution of Oscillatoria sp. to the diet of filter-feeding fish is generally

underestimated.

The overall results for the stomach content analysis of milkfish therefore offer some

solutions to the question of why growth is so rapid only when the water is clear.  The

Microcystis bloom in October 1996 was not conducive to fish production since this alga was

ingested but not digested very well.  In addition, the Microcystis strain found in Laguna de

Bay is capable of producing microcystin toxins (Cuvin-Aralar et al. 2002) so that the full

digestion of this alga may well not be desirable for the cultured fish in the lake.  The

Coscinodiscus bloom in February 1997 probably sustained fish growth somewhat better but,

judging from the results of the weekly water quality sampling done in 1997, such diatom

blooms are probably short-lived and the overall effect would have been small.  The

Oscillatoria bloom in June was probably available and highly digestible to the milkfish and,

as shown by the results of the SEAFDEC phytoplankton monitoring, lasted for two to three

months, so that it would have been the most likely to sustain fish growth.  Nevertheless, it

should be stressed that these conclusions are somewhat tentative and can only be drawn in

the light of an overall picture.

B. Nile Tilapia

1. Growth, Condition & Body Composition

Despite the fact that the growth rates, condition and body composition data for Nile

tilapia were obtained from more than one set of fish which were, moreover, analysed at

different times of the study period, these results also match the general pattern of fluctuating

water quality.  The data obtained from the fish collected primarily for stomach content

analysis, however, also show clear differences in both condition and body fat content for the

same time of year in the 12-month period after May 1995, when saltwater intrusion did take
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place, and the remainder of the study period after May 1996, when no backflow of saline

water was observed.  In both of these periods, there is clearly a cycle of maximum fat content

and highest condition around July and August, but the values for the first phase are higher

than those which were recorded or might be expected for around the respective times of year

in the second period.  This shows the beneficial effect which the backflow of saline water has

at least on Nile tilapia, if not also on milkfish, and lends support to the fears of the fish

farmers that the artificial prevention of saltwater intrusion by the closure of the NHCS would

have a detrimental effect on the production of cultured fish in Laguna de Bay (Santiago 1988,

1991).

The growth rates recorded for tilapia in 1997 partly confirm the results of Basiao &

San Antonio (1986) insofar that the maximum MGRs are around 10.0g kg-0.8 day-1.  In fact,

the MGR at the beginning of the time of clear water was even rather in excess of this figure,

suggesting that the diatom Coscinodiscus sp. dominating at the time was a better source of

food for Nile tilapia than the blue-green alga Oscillatoria sp. which followed.  It is also clear,

however, that the situation in the season of turbid water has if anything deteriorated since the

early 1980s.  Whereas Basiao & San Antonio (1986) observed MGRs of 7.46g kg-0.8 day-1

from August-November, the fish kept here in the same period fell well short of this value.

Nevertheless, condition declined only slowly, suggesting that the fish were either able to

obtain nearly but not quite enough to cover their maintenance requirement or that the food

available at the time had a sufficiently high energy content, but practically no protein to

support growth.  This is supported by the summary of Bowen (1987) who quoted protein

content and energy values for detritus from a variety of sources.  Of these, the types with the

highest share of amorphous detritus were probably epilithic detritus from an English lake

(protein content: 0.0-8.6%, energy content: 14.3-19.7 kJ g-1 ash-free dry matter [AFDM])

and periphytic detrital aggregate from lake Valencia, Venezuela (protein content: 0.5-5.8%,

energy content not determined).  The relatively low condition factors recorded in the first

phase may perhaps be partly attributed to the infestation of Alitrophus typus and it is possible

that those fish which were in worst condition were the ones that died off, so that the recorded

average only reflects the relatively better condition of the survivors.

2. Daily Ration

The results of the MAXIMS modelling for Nile tilapia do not conform to those

obtained for milkfish.  Although the food composition of unsupplemented tilapia is rather
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similar to that for milkfish, which suggests that Nile tilapia are also limited by food quality,

the daily rations calculated for the tilapia match the changing pattern of water quality in the

lake rather more closely than those for milkfish.  Food consumption in March and May 1996

as well as that of unsupplemented fish in January 1997, all of them months in which

phytoplankton contributed little towards the diet, was significantly lower than in May 1995

(small fish) and July 1996 when the fish also or mainly consumed algae.  The only set of fish

for which the daily ration determined is unexpectedly low is the large fish collected in May

1995.  At the same time, the importance of supplementation to the diet of Nile tilapia is

obvious: all those fish given supplemental feed consumed significantly more than fish kept

without feed in months without algal bloom.  Nevertheless, this was evidently achieved at

some expense to the farmer since by far not all the supplemental feed provided was actually

ingested.  On the three sampling occasions when the fish were given feed, the predicted daily

rations never exceeded 60% of the supplementation level.  On top of that, it should be

remembered that natural food still made up a considerable portion of ingested matter when

feed was given so it is clear that far less than 50% of the feed given was actually consumed.

Since it is clear that the supplementation levels maintained by fishfarmers in the lake

are horrendously wasteful and it is certain that food must go to waste, it might be worth

comparing the quantity of food given with the maximum possible consumption level of this

species on pelleted food.  Toguyeni et al. (1997) kept juvenile Nile tilapia in concrete tanks

on a demand feeding regime and observed feeding levels of between 3.6 and 4.1% BME with

practically no unconsumed feed recorded.  Of the three occasions when feed was given, only

once (September 1996, supplemented fish) did the total food consumption reach such a level.

If one assumes that supplemental feed is provided to make up the difference between the

amount of natural food available to unsupplemented fish and the maximum which they could

possibly consume, then the August 1995 and January 1997 samplings demonstrate that the

fish are not even achieving this physiological maximum value when supplemented despite

being presented with a vast excess of food.  The August 1995 and, to a lesser extent, the

January 1997 samplings suggest that large doses of feed can be utilised over an extended

period of several hours.  This is probably because uneaten food drops to the bottom which

can be reached by the fish because of the shallow nature of the lake and the depth of the

netting.  Nevertheless, it is likely that the fact that a large amount of feed is given in few

doses throughout the day (normally not more than three and sometimes as little as one

according to personal communication with the cooperating fishfarmer) contributes towards
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this level of wastage.  In consequence, it seems advisable to lower the supplementation level

and spread the feed provision evenly over the course of the day, possibly with the use of

more or less sophisticated automatic feeding systems.

Although previous data on the daily ration of tilapia is available (Moriarty & Moriarty

1973, Harbott 1975, Getachew 1989), it is difficult to make comparisons between them and

the present work since the former authors used a different method for their analysis.  The

original data obtained in the African lakes were re-examined with the aid of the MAXIMS

model by Palomares & Pauly (1996); these authors, however, did not explicitly state whether

Model 1.1 or 1.2 was used, nor is it clear what units their daily ration estimates were given in.

Furthermore, the associated figures suggest that the data used for their analysis does not

relate well to that of the original publications.  In order to facilitate a comparison, the original

data of Moriarty & Moriarty (1973), Harbott (1975) and Getachew (1989) were reanalysed

here with the MAXIMS Model 1.1.  For the sake of comparison, all data were converted to

the same units used for tilapia in Laguna de Bay (% BME) and the results of this analysis are

presented in Table 10.

The MAXIMS model evidently gives slightly lower estimates than the method of

Moriarty & Moriarty (1973); nevertheless, there is generally a fair match between the two.  A

comparison with the daily ration estimates obtained here also suggests that tilapia in other

lakes are more severely limited by food availability than those in Laguna de Bay at any time

of the year.  Only the fish in Lake George consumed as much as those sampled here at times

of turbid water and the provision of supplemental feed or the occurrence of an algal bloom

usually sufficed to raise the daily ration above that recorded in the African lakes.

3. Food Composition

There were greater similarities between the food composition of milkfish and Nile

tilapia than in the seasonal pattern of their daily rations.  Although the latter were given

supplemental feed on some occasions, the main stomach content component was detritus,

accompanied by the dominant algal species.  The main difference was the nature and origin

of benthic items, which highlight the different methods used to culture the two fish species.

The fact that tilapia ingested significant quantities of Aufwuchs was probably due to their

being cultured in small cages with a far greater net area in relation to the volume of the

enclosure than the huge netpens which milkfish are kept in.  The presence of sediment and

Ostracods  in the  stomachs  of milkfish  demonstrates  that these also ingest  their food  other
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Table 10.  MAXIMS Model 1.1 results (± St. Dev.) for wild tilapia in various East African Rift
Valley lakes.  Data for Lake George from Moriarty & Moriarty (1973), for Lake Rudolf from
Harbott (1975) and for Lake Awasa from Getachew (1989).

0.590.941.04
Daily Ration calculated
by Original Author
   (%BME)

0.485 ± 0.0410.635 ± 0.0920.945 ± 0.246Daily Ration, Rd

   (%BME)

16:21 ± 27mins16:14 ± 7mins19:00 ± 42minsStop Feeding, Fs

   (time of day)

5:44 ± 19mins8:34 ± 17mins7:53 ± 31minsBegin Feeding, Fb

   (time of day)

0.064 ± 0.0060.755 ± 0.1320.343 ± 0.104Evacuation Rate E
   (hour-1)

0.0457 ± 0.0030.414 ± 0.0670.085 ± 0.021Ingestion Rate J1
   (%BME hour-1)

Lake AwasaLake RudolfLake GeorgeLocality

All figures in %BME given as dry weight food/wet weight fish.  Original data for Moriarty & Moriarty (1973) was given as
dry weights and were transformed to %BMEs.  Original data in Harbott (1975) was given as dry weight/dry weight %BMEs;
in transforming the data points, a proportion of 20% dry matter in wet fish weight was used.  Original data in Getachew
(1989) was given as wet/wet weight %BMEs; data points were transformed on the basis of the regression equation in the
original publication (Dry weight food = 0.05 + 0.05 x Wet weight food).  Original daily ration estimates given by all authors
have been transformed from g fish-1 basis to %BMEs (dry/wet) basis.

than by filter-feeding and it is possible that, given a greater relative area of netting, they

would also consume Aufwuchs.

Apart from this additional source of food available to tilapia, the relatively confined

space which they are cultured in also seems to affect the quality and quantity of their diet.

The consumption pattern of the dinoflagellate Ceratium hirundinella in July 1996 can only

be explained by the assumption that a localised bloom of this alga must have drifted through

the culture area for a short time between mid-morning and just after midday.  This bloom

certainly helped boost the food consumption of these fish on that particular sampling day, as

shown by the higher ingestion rate for the period of Ceratium consumption, and it seems

likely that the daily ration would have been even higher if the tilapia had been able to feed on

it for a longer period.  If such a bloom had drifted through a large fishpen, the milkfish could

have followed it to a greater extent than was possible for the tilapia in their comparatively
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small fishcage and this may be a reason why no great differences in stomach composition at

different times of day were found for milkfish on any particular sampling day.

C. Comparison between Fish Growth in the 1970s & the Present

Although the growth rates of cultured fish were not recorded for the entire annual

cycle, using the results obtained here, we can make some comparison with the situation in the

early seventies.  At that time it was reportedly possible to obtain two harvests per year which

it will be assumed here to have been spread over four months (May-August inclusive) and

eight months (September-April inclusive) respectively.  For fish to grow from fingerling (ca.

10g) to harvestable size (at least 200g), mean standard and metabolic growth rates of 2.5%

and 10.4 g kg-1 day-1 respectively would be necessary.  These rates were attained by both

species in 1997 and even exceeded by milkfish in 1995, so we can conclude that fishfarmers

would have no problem producing the first crop in the period of clear water conditions.  On

the other hand, in order to achieve a second harvest per year, the system would under the

present conditions be stretched beyond its limits.  On the basis of the growth rates recorded

for milkfish for October 1996 to April 1997, the standard and metabolic growth rates for

September would have to be 6.7% and 32.2 g kg-1 day-1 respectively for a second harvest to

be achieved.  It appears highly unlikely that this should be possible, even considering that

during this month, the fish would be small and therefore at the developmental stage when at

least the SGR is usually at its highest.  The belief that a second harvest would not be feasible

even assuming favourable conditions in September is supported by the results obtained for

tilapia in 1997, which ceased growing by the middle of August, as well as the findings of

other workers (Basiao & San Antonio 1986).

Although Delmendo (1974) did not give precise details of stocking size and culture

period, we can make some comparisons using her data.  Assuming that fish are stocked at

10g, that one month is equal to 30 days and basing the data of Delmendo (1974) on full

months (e.g. "five months" is exactly equal to 150 days), her data reveal SGRs of 1.64-2.60%

or MGRs of 6.97-10.93g kg-0.8 day-1.  Since the study period extended over a part of the year

in which the water was cooler than from June-August, the period on which the high growth

rates in the present study are based, it is reasonable to conclude that the growth rates in 1974
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were even higher in the favourable part of the growing season and probably closer to those

obtained here for milkfish in 1995.

The data of LLDA (1978) provide an even better comparison between the mid-1970s

and the present study since sampling was conducted at regular intervals and more precise

information on dates and sizes is given.  The SGRs and MGRs for various parts of the year

are summarised in Table 11, together with the values derived from Delmendo (1974).  It is

clear that in 1976, growth was rapid and relatively constant from mid-April to mid-August.

When one compares the results of LLDA (1978) with those of Delmendo (1974), there seems

to be a decline in fish growth in as little as two years between the respective study periods.

This difference is even more marked when one remembers that the values derived from

Delmendo's (1974) study refer to a more extended part of the year which includes part of the

season of cold water.  It is difficult to determine if these differences are attributable to

sampling error, annual variation (such as those found between 1995 and 1997 in the present

work) or reflect a real deterioration over such a short period.

Irrespective of whether the differences between the studies of Delmendo (1974) and

LLDA (1978) reflect such a real deterioration or simply fluctuations between years or

sampling uncertainties, the most notable differences in milkfish growth are between

October-April  in the mid-seventies  and the same period  in the present study.   They confirm

that even in 1976, it was still possible to grow two crops per annum but that this is certainly

no longer possible. 

Tab. 11.  Growth rates of milkfish calculated for fish from twelve fishpens in 1974 and three
pens in 1976 (respective sources: Delmendo 1974, LLDA 1978).  Data for LLDA Fishpen II also
split into two time periods for comparison

7.131.0856 daysApril-JuneIII

4.89
4.56
7.70

0.97
0.90
1.11

266 days
176 days
90 days

Oct.-Aug.
Oct.-April
April-Aug.

II

7.620.9357 daysJune-Aug.ILLDA (1978)

6.97 - 10.93
(range)

1.64 - 2.60
(range)

120-180 days
(range)

Not givenAll fishpensDelmendo
(1974)

MGR
(g kg-0.8 day-1)

SGR
(%)

Length of
Study Period

Time of yearFishpen No.Source
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D. Water Quality Sampling

1. General

The relationship between Chl-a and algal dry biomass is in good agreement with that

found generally.  Prescott (1969) quotes a maximum of around 6% Chl-a content in the dry

biomass but states that values of 0.5-1.5% are more usually observed.  A rearrangement of

Eqn. 34 suggests a figure of 0.73% for phytoplankton in Laguna de Bay.  Some workers have

criticised the estimation of algal biomass from Chl-a levels on account of species differences

in Chl-a content as well as differences between algae cultured at different light intensities

(Schwoerbel 1980).  This is inconsistent with the relatively close relationship found for algae

in Laguna de Bay.  It is possible that the fact that the phytoplankton was dominated by so few

taxa throughout the study period, presumably with similar Chl-a content, would have

eliminated species differences.  There is some indication that algae in Phases 1 & 3 have a

slightly higher Chl-a content than in Phase 2 (Fig. 18; lower mass of POM per mg Chl-a) but

the difference is not great.  It is possible that due to the turbulent water conditions in the lake,

the algae are mixed so much throughout the water column that the average light intensity

which any given algal cell is exposed to does not vary much over extended periods of time.

This would have minimised differences in Chl-a level due to different light conditions.

The water quality samples collected in 1997 show that almost all PIOM is found in

the small size fraction.  This confirms that most clay particles are of a minute size and helps

to explain why these rarely settle from the water column unless flocculated by cations in the

water.  It also demonstrates why these particles were not found to any extent in the stomachs

of the cultured fish: it is unlikely that they were large enough to be filtered from the water.

The dominant item in the suspended matter of the lake at most times of the year was detritus,

probably in amorphous form.  It might be thought that this material would also be settled

from the water column by the intrusion of saline water but the 1997 water sampling

confirmed this not to be the case.  As pointed out by Santiago (1991), the clearing of Laguna

de Bay is caused by the negatively charged clay particles making up PIOM being bound

together by the positively charged cations in the seawater, causing them to flocculate and

settle more rapidly.  It is unlikely that organic detritus also carries an ionic charge which

would help in its removal from the water in a similar manner.  The level of detritus in the

water did decrease towards the end of Phase 1 but this was before the arrival of saltwater

intrusion.  It is likely that the reduction of detritus in the water column was associated more
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with the seasonal reduction in wind speed and helps to explain why some of the phenomena

associated with saltwater intrusion (better condition, higher body lipid levels) were observed

in tilapia in 1996 despite the fact that no backflow of seawater took place that year.

2. Limitation of Suspended Matter Composition on Fish Growth

The explanation generally put forward for the reduction in fish growth and per-

hectare production is that the lake is overstocked so that the cultured fish are competing with

each other as well as the wild fish for the available primary production (Nielsen 1983).  From

the results of the water quality sampling, however, it seems as if the comparative abundance

of detritus represents the root of this problem rather more than competition for food.

Milkfish and tilapia are forced to ingest this material if they are to ingest anything at all

because their filter-feeding method of food intake does not permit them to select against it.

The truly limiting factor is therefore not the absolute quantities of either algae or detritus but

their relative contributions to the POM.  A large biomass of phytoplankton is of little use to

milkfish and tilapia if the accompanying levels of detritus far exceed this.

In the light of this, it seems surprising that the cultured fish are able to grow rapidly at

any time of the year, namely after saltwater intrusion, since the ratio of

detritus:phytoplankton does not decrease markedly at that time.  In the water quality

experiments conducted in 1997, however, the most obvious difference between Phase 2 and

the other two phases was not in the total algal biomass but in the fact that at times of clear

water, the algae were bigger.  In conjunction with precise knowledge on the feeding

mechanism of filter-feeding fish, specifically Nile tilapia, this fact gives us an explanation for

the discrepancy in the growth rates of these fish at different times of the year.  As mentioned

previously, tilapia have small, stubby gillrakers which are only useful for filtering the larger

suspended particles from the water.  Small items are trapped by the secretion of mucus,

allowing the retention of particles as small as suspended bacteria (Beveridge et al. 1989).  It

has even been shown that this aerosol mechanism can be turned on or off at will by

controlling mucus secretion, thus giving the fish a certain degree of control over the size of

particles it consumes (Sanderson 1996).  Nevertheless, inside a certain size class, no such

choice can be exercised.  In view of this information, it appears that when the phytoplankton

is dominated by large algae, such as the colonial blue-greens prevailing after saltwater

intrusion, the fish are able to select these in favour of smaller organic particles such as

detritus.
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Rather less is known about the filtration mechanism of the milkfish than that of the

Nile tilapia.  The gillrakers of milkfish are rather longer than those of tilapia so that it is

possible that they are capable of straining finer particles from the water than tilapia using this

mechanism and might not be able to avoid doing so.  Nevertheless, the crucial question here

is not so much the size of the gillrakers but whether or not milkfish also use mucus to trap the

finest particles so that a certain degree of control over the size of the particles ingested may

be exercised.  This question has not been satisfactorily answered up to date; however, T.

Bagarinao (pers. comm.) considers it probable that mucus is also involved in this species.

Xie (2001) noted that the gillrakers of bighead carp were too widely spaced to entrap some of

the algal species found in the guts of these fish and mentioned the possibility of such an

aerosol mechanism in this species too.  It is possible that many more filter-feeding fish rely

on this method of particle retention and that its importance in the feeding ecology of these

fish has been generally underestimated.
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VI Conclusions

The overall conclusion to be drawn from these results is that the growth rates of Nile

tilapia and milkfish in Laguna de Bay is not limited by the biomass of the phytoplankton

which represents their preferred food category.  Since none of the native wild fish species is a

filter-feeder, the general assumption that the cultured fish are competing with each other as

well as with the wild fish as a result of gross overstocking is clearly wrong, at least when the

water is turbid.  This also implies that the primary production at times of turbid water,

however large or small this figure may be, is either going to waste or being utilised indirectly

(via zooplankton and possibly secondary consumers) by the wild fish.  In view of this, it is

hardly surprising that the production of cultured fish per unit area has never again reached

that recorded in the early days of fishpen culture, despite the fact that the total area of the

lake devoted to aquaculture in the eighties and nineties has at times been reduced to the

levels recommended to be the optimum for exploiting the primary production of the lake

(9,000ha or 10% of the lake area).  For as long as the concentrations of phytoplankton in the

lake remains overshadowed by vast quantities of detritus and the algal cell or colony size

remains small, even a reduction of the overall lake aquaculture to only one small fishpen

would not raise the per hectare production of cultured fish in the lake.

In the light of the present results, there are two possible explanations, working either

singly or in combination, for the deterioration in the feeding conditions for the cultured fish.

The first is that the production of phytoplankton in the lake, at least that of the large algal

species, has gone down, probably as a result of the increased turbidity.  This is supported by

the fact that large-scale phytoplankton blooms resulting in lake-wide fishkills no longer occur

(Sly 1993).  It is also known that the lake has been shallowing at a considerable rate for at

least half a century as a result of erosion in the watershed (Sly 1993, University of Hamburg

1998) and the loss of rooted aquatic vegetation (Pancho 1972, Aguilar et al. 1990) further

eases the resuspension of sediment by wind action.  The water quality experiments carried

out in 1997 demonstrate that, although algal biomass can be high under turbid water

conditions, large blue-green algal species promoting fish growth require clearer water in

order to proliferate.

The second possible cause for the decline in fish productivity is that the levels of

detritus in the lake may have risen over the years to a point where this material overshadows

the phytoplankton biomass.  While nothing is known about the concentrations of detritus in
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the early seventies, it is certainly true that the numbers of all of the potential contributors

have gone up.  Domestic waste, especially faeces, is very likely one of the biggest sources,

particularly as even today, up to 30% of households in some of the most densely populated

areas close to the lake lack a septic tank in their toilet (University of Hamburg 1998).  A

comparison between the study of SOGREAH (1974) and the latest population statistics (NSO

1995) shows that the population of those municipalities whose waste enters the lake rather

than being flushed directly to the sea via the Pasig and lower Marikina Rivers more than

trebled between 1970 and 1995.  The number of industrial establishments has increased by

nearly an order of magnitude from 115 in 1974 (SOGREAH 1974) to 1,075 in 1990, 444 of

these generating wastewater for which only half (51%) had any sort of treatment facility

(Santos-Borja 1993).

Apart from these long-standing sources of solid organic waste, there is, of course, a

more recent contributor whose precise input has never been quantified but must be quite

considerable: the aquaculture industry itself.  The netpens used to culture milkfish are

constructed from bamboo (Bambusa spinosa Roxb. 1814) and anahaw palm (Livistonia

rotundifolia (Lam.) Mart. 1838) stems which have a useful life of only 1-2 years (Beveridge

1984), after which most are left to rot in the lake.  Cariaso (1983, cited in Beveridge 1984)

estimated that a one-hectare fishpen can consume as much as 2,000 bamboo and 100 anahaw

poles and, although larger fishpens require less wood because of their reduced

perimeter:surface ratio, this gives an idea of the vast quantities of structural material needed

to produce 10,000ha of fishpens which, in addition, have to be replaced at least every other

year.  Another significant input is the pelleted feed used to supplement tilapia, most of which,

as the present results have shown, are not consumed by the fish but contribute towards

detrital matter.  Although lake-wide fishkills are a phenomenon of the past, local kills still

occur towards the end of the dry season and in such cases, the dead fish are not removed from

the lake but in most cases simply transferred from inside the fishpen to the open water where

they are left to rot (pers. observ.)

In view of the above, there is a serious need to reduce the input of sediment from

erosion on the one hand and trace and quantify the sources of detrital matter in the lake on the

other if the fishpen industry based on milkfish and tilapia is to be revived.  The fact that the

retention period of the lake water is only about one year (Santos-Borja 1993) suggests that if

these inputs were to be cut significantly, the removal of material by flushing may lower the

equilibrium concentrations.  This would have two beneficial effects.  Firstly, the relative
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biomass of phytoplankton would rise, thus allowing the cultured fish to filter more of this

material rather than detritus.  Secondly, the lower suspended sediment and detritus levels

would reduce the turbidity to at least some extent, thereby increasing primary production and

resulting in a higher absolute algal biomass.  Conversely, in view of the large self-flushing

capacity of the lake, it also seems as if the situation must have deteriorated very rapidly in the

mid-seventies for the growth rates of the cultured fish to have been reduced so drastically

over such a short space of time.  This seems to implicate the aquaculture industry more than

the other sources since it represents the biggest and most sudden change at that time.

Regardless of whether the fishpen industry is the main culprit in raising detritus levels

over the years, thereby, in a sense, cutting its own throat, or whether it is merely the victim of

the expanding population and industry, putting ever more pressure on the lake and its water

quality, there is a lesson for aquaculture to be learnt from the example given by Laguna de

Bay.  Filter-feeding fish that operate at the lower trophic levels of the food web are some of

the most important fish used in extensive aquaculture worldwide where they are mainly

represented by the milkfish, Nile tilapia, bighead and silver carp.  Evidently, such fish not

only require a high concentration of particles of their preferred food in the water in order to

be cultured successfully but also that these preferred food particles are not contaminated by

other particulate matter of the same size.  If such water quality demands cannot be met, these

fish cannot be cultured on an extensive basis and if semi-intensive or even intensive culture

has to be resorted to, it may be more favourable to grow other, more valuable species

anyway.  Either way, semi-intensive culture is obviously not the way to exploit the natural

resources of a large water body such as Laguna de Bay and this case clearly demonstrates the

necessity for good management before aquaculture is introduced or, at least before things get

so badly out of hand.
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