Universität Hohenheim
 

Eingang zum Volltext

Koch, Oliver

Carbon and nitrogen transformations in alpine ecosystems of the Eastern Alps, Austria

Kohlenstoff- und Stickstoffumsetzungen in alpinen Ökosystemen der österreichischen Ostalpen

(Übersetzungstitel)

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgende
URN: urn:nbn:de:bsz:100-opus-2207
URL: http://opus.uni-hohenheim.de/volltexte/2008/220/


pdf-Format:
Dokument 1.pdf (1.317 KB)
Dokument in Google Scholar suchen:
Social Media:
Delicious Diese Seite zu Mister Wong hinzufügen Studi/Schüler/Mein VZ Twitter Facebook Connect
Export:
Abrufstatistik:
SWD-Schlagwörter: Ostalpen , Methanemission , Kohlendioxidemission , Bodenmikrobiologie , Temperaturabhängigkeit
Freie Schlagwörter (Deutsch): Bodenenzyme
Freie Schlagwörter (Englisch): Eastern Alps, methane emission, NEE, temperature sensitivity, soil enzymes
Institut: Institut für Botanik
Fakultät: Fakultät Naturwissenschaften
DDC-Sachgruppe: Geowissenschaften
Dokumentart: Dissertation
Hauptberichter: Kandeler, Ellen Prof. Dr.
Sprache: Englisch
Tag der mündlichen Prüfung: 06.11.2007
Erstellungsjahr: 2007
Publikationsdatum: 11.02.2008
 
Lizenz: Hohenheimer Lizenzvertrag Veröffentlichungsvertrag mit der Universitätsbibliothek Hohenheim ohne Print-on-Demand
 
Kurzfassung auf Englisch: This thesis investigated net CH4 and net CO2 emissions from sites in the alpine region of the Eastern Alps, Austria. Four mature alpine sites (one dry meadow and three fen sites) were selected and the influence of abiotic (radiation, temperature, soil water conditions) and biotic (above-ground standing plant biomass) environmental controls on diurnal and seasonal emission patterns were studied. For a better understanding of the response of soil C- and N pools to global warming, the temperature sensitivity of activities involved in C- and N cycling were determined. The first part of the thesis dealt with net methane fluxes measured over a period of 24 months. During snow-free periods, average methane emissions of the fen sites ranged between 19 and 116 mg CH4 m-2 d-1. Mean emissions during snow periods were much lower, being 18 to 59% of annual fluxes. The alpine dry meadow functioned as a small methane sink during snow-free periods (-2.1 mg CH4 m-2 d-1 (2003); -1.0 mg CH4 m-2 d-1 (2004)). The diurnal and seasonal methane uptake of the dry meadow was positively related to soil temperature and negatively related to water-filled pore space (wfps). In the fen, the seasonal methane fluxes were related to soil temperature and groundwater table. The live above-ground standing plant biomass contributed to net methane fluxes only at those sites with higher water table positions. This study provided evidence that alpine fens acted as methane sources throughout the year, whereas an alpine meadow site acted as a net methane sink during snow-free periods. In the second part of the thesis the CO2 balance was estimated based on diurnal flux measurements and on the influence of photosynthetic active radiation (PAR), plant green area index (GAI), soil temperature and wfps. The daylight net ecosystem CO2 emission rate was influenced by PAR and GAI throughout snow-free seasons. The seasonal net CO2 emission rate at night was positively related to soil temperature, while low wfps reduced flux rates at the meadow and at the driest fen study site but reinforced carbon loss at the wetter fen sites. The daily average ecosystem net CO2 gain during snow-free periods at the meadow was 3.5 g CO2 m-2 d-1 and at the fen sites between 1.5 and 3.4 g CO2 m-2 d-1. The mean average daily CO2 emission during snow periods was low, being -0.9 g CO2 m-2 d-1 for the meadow and between -0.2 and -0.7 g CO2 m-2 d-1 for all fen sites. All sites function as significant annual net carbon sinks, with a net carbon gain from 50 to 121 g C m-2 a-1 (averaged over both years), irrespective of water balance. The results indicate that alpine fen sites, that have built up a large carbon stock in the past, are not expected to gain a further carbon surplus compared with meadows under the current climate.
Temperature is important for regulating biological activities. The third part of the thesis focused on temperature sensitivity of soil C mineralization, N mineralization and potential enzyme activities involved in the C- and N cycle (ß-glucosidase, ß-xylosidase, N-acetyl-ß-glucosaminidase, tyrosine aminopeptidase, leucine aminopeptidase) over a temperature range of 0-30°C. The objective was to calculate Q10 values and relative temperature sensitivities (RTS) and to quantify seasonal (summer, autumn, winter) and site-specific factors. The Q10 values of C mineralization were significantly higher (average 2.0) than for N mineralization (average 1.7). The Q10 values of both activities were significantly negatively related to soil organic matter quality. In contrast, the chemical soil properties, microbial biomass and sampling date did not influence Q10 values. Analysis of RTS showed that the temperature sensitivity increased with decreasing temperature. The C- and N mineralization and potential aminopeptidase activities (tyrosine, leucine) showed an almost constant temperature dependence over 0-30°C. In contrast, ß-glucosidase, ß-xylosidase and N-acetyl-ß-glucosaminidase showed a distinctive increase in temperature sensitivity with decreasing temperature. Low temperature at the winter sampling date caused a greater increase in the RTS of all activities than in autumn and summer. Our results indicate a disproportion of the RTS for potential enzyme activities of the C- and N cycle and a disproportion of the RTS for easily degradable C compounds (ß-glucose, ß-xylose) compared with the C mineralization of soil organic matter. Thus, temperature may play an important role in regulating the decay of different soil organic matter fractions.


 
Kurzfassung auf Deutsch: In der vorliegenden Arbeit wurden Netto-CH4- und Netto-CO2-Emissionen alpiner Standorte der österreichischen Ostalpen untersucht. Vier Standorte (ein Trockenrasen, drei Moorstandorte) wurden ausgewählt und der Einfluss abiotischer (Strahlung, Temperatur, Bodenwassergehalt) und biotischer (oberirdische Pflanzenbiomasse) Umwelteinflüsse auf das tägliche und saisonale Emissionsmuster untersucht. Um den Einfluss der Temperatur auf die Kohlenstoff- und Stickstoff-Vorkommen im Boden zu untersuchen, wurden die Temperaturabhängigkeiten von C- und N-Umsätzen bestimmt. Der erste Teil der Arbeit befasst sich mit Netto-Methanflüssen, gemessen über einen Zeitraum von 24 Monaten. Während der schneefreien Zeit wurden 19-116 mg CH4 m-2 d-1 für die Moorstandorte ermittelt. Während der schneebedeckten Zeit waren diese Flüsse viel geringer und betrugen 18-59% der jährlichen Gesamtemissionen. Der Trockenrasen stellte während der schneefreien Zeit eine kleine Senke für Methan (-2.1 mg CH4 m-2 d-1 (2003); -1.0 mg CH4 m-2 d-1(2004)) dar. Diese Netto-Methanaufnahme des Trockenrasens korrelierte positiv mit der Bodentemperatur und negativ mit dem wassergefüllten Porenvolumen des Bodens (wfps). Im Moor ließ sich eine Beziehung des saisonalen Methanflusses mit der Bodentemperatur und dem Grundwasserstand finden. Die oberirdische grüne Pflanzenbiomasse korrelierte nur mit dem Netto-Methanfluss der Moorstandorte mit hohen Grundwasserständen. Diese Untersuchung belegt, dass alpine Moore ganzjährige Methanquellen sind, während ein alpiner Trockenrasen eine Methansenke innerhalb der schneefreien Zeit darstellt. Gegenstand des zweiten Teiles der Arbeit war die Berechnung einer CO2-Bilanz basierend auf Tagesgängen von Gasflussmessungen. Berücksichtigt wurden dabei der Einfluss von photosynthetisch aktiver Strahlung (PAR), der grüne Pflanzenflächenindex (GAI), die Bodentemperatur und das wfps. Bei Tageslicht wurden die Netto-Emissionsraten innerhalb der schneefreien Zeit von PAR und GAI gesteuert. Die Netto-Emissionsraten während der Nachtzeit korrelierten positiv mit der Bodentemperatur. Niedrige wfps-Werte führten dabei zur Verringerung der Flussraten auf dem Trockenrasen und der trockenen Moorfläche, wohingegen die Kohlenstoffverluste auf den vernässten Moorstandorten zunahmen. Während der schneefreien Zeit betrug der durchschnittliche Netto-CO2-Gewinn des Trockenrasens 3.5 g CO2 m-2 d-1 und für die Moorstandorte 1.5 bis 3.4 g CO2 m-2 d-1. Die durchschnittliche Atmung der Standorte während der schneebedeckten Periode war niedrig: -0.9 g CO2 m-2 d-1 für den Trockenrasen und -0.2 bis -0.7 g CO2 m-2 d-1 für die Moorstandorte. Unabhängig vom Wasserhaushalt waren alle Standorte, gemittelt über beide Untersuchungsjahre, signifikante Netto-C-Senken (50 bis 121 g C m-2 a-1). Die Ergebnisse zeigen, dass bei heutigen Klimaverhältnissen alpine Moore mit ihrem großen Kohlenstoffvorrat keine weitere Kohlenstofffestlegung im Vergleich zu alpinen Trockenrasen erwarten lassen. Im dritten Teil der Arbeit wurde die Temperaturabhängigkeit der bodenbürtigen C-Mineralisation, N-Mineralisation und der potentiellen Enzymreaktionen des C- und N-Kreislaufes (ß-Glucosidase, ß-Xylosidase, N-acetyl-ß-Glucosaminidase, Tyrosin-Aminopeptidase, Leucin-Aminopeptidase) für einen Temperaturbereich von 0-30°C ermittelt. Das Ziel war es, Q10-Werte und die relative Temperaturabhängigkeit (RTS) zu berechnen sowie den Einfluss verschiedener Jahreszeiten (Sommer, Herbst, Winter) und standortsspezifischer Faktoren zu ermitteln. Die Q10-Werte der C-Mineralisation (2.0) waren signifikant höher als die der N-Mineralisation (1.7). Die Q10-Werte beider Aktivitäten korrelierten negativ mit der Substratqualität. Die chemischen Bodeneigenschaften, der mikrobielle Kohlenstoffgehalt und der Zeitpunkt der Probenahme zeigten keinen Einfluss auf die Q10-Werte. Die berechneten RTS-Werte machten deutlich, dass die Temperaturabhängigkeit mit abnehmender Temperatur zunahm. Die C- und N-Mineralisation und die potentiellen Aminopeptidaseaktivitäten (Tyrosin, Leucin) wiesen eine fast konstante Temperaturabhängigkeit über den Temperaturbereich von 0-30°C auf. Im Gegensatz dazu zeigten ß-Glucosidase, ß-Xylosidase und N-acetyl-ß-Glucosaminidase einen ausgeprägten Anstieg der Temperaturabhängigkeit mit abnehmender Temperatur. Die vorherrschende tiefe Temperatur der Probenahme im Winter verursachte einen stärkeren Anstieg der RTS als dies für die Probenahme im Herbst und Sommer der Fall war. Diese Ergebnisse deuten zum einen auf eine Disproportionalität der RTS von potentiellen C-Enzymaktivitäten und N-Enzymaktivitäten hin und zum anderen auf eine Disproportionalität der Mineralisation von leicht verfügbaren C-Verbindungen (ß-Glucose, ß-Xylose) im Vergleich zur C -Mineralisation der bodenbürtigen organischen Substanz in alpinen Böden. Daher könnte die Temperatur eine wichtige Rolle bei der Regulierung des Abbaus unterschiedlicher Fraktionen der organischen, bodenbürtigen Substanz darstellen.

    © 1996 - 2016 Universität Hohenheim. Alle Rechte vorbehalten.  15.04.15