TY - THES T1 - Stressful environments : motility and catecholamine response in Vibrio cholerae A1 - Halang,Petra Y1 - 2014/08/06 N2 - The human pathogen Vibrio cholerae is able to inhabit a variety of environments. These include especially aquatic ecosystems, but the human intestine as well. V. cholerae is thus tolerant to a wide range of salinity and pH. Motility is achieved by a sodium driven polar flagellum. The affinity for Na+ to run the flagellum is determined by the stator complex PomAB, which is embedded in the cell membrane within the flagellar motor. A critical aminoacid residue for the binding of Na+ is aspartate 23 within the transmembrane helix of PomB. A mutation of this aminoacid residue leads to an immotile phenotype of V. cholerae. It was thus of interest to investigate if other polar or acidic aminoacid residues within PomB are important for the passage of Na+. Two potential candidates are serine at position 26 and aspartate at position 42 of PomB, both aminoacid residues are conserved within sodium driven flagellar stator complexes. To characterize the pathway of Na+ through the PomAB channel, the influence of chloride salts (Na+ and K+) and the pH on the motility of V. cholerae was studied. Motility decreased at elevated pH but increased if a chaotropic chloride salt was added, which excludes a direct Na+ and H+ competition in the process of binding to the conserved PomB D23 residue. Cells expressing the PomB S26A/T or D42N variants lost motility at low Na+ concentrations but regained motility in the presence of 170mM chloride. The swimming speeds of individual cells were also analyzed and revealed that S26 located within the membrane helix of PomB is required to promote very fast swimming of V. cholerae. Loss of hypermotility was observed with the S26T variant of PomB which was partially restored by lowering the pH of the external medium. Modification of PomA and PomB by N,N’-dicyclohexylcarbodiimide indicates the presence of protonated carboxyl groups in the hydrophobic regions of the two proteins. Na+ did not protect PomA and PomB from this modification. It could be demonstrated that the motility of V. cholerae is influenced by the pH and osmolality of the medium and thus, the aminoacid residues – S26 and D42 together with D23 – of PomB have a function in the passage of Na+ into the cell. The H+ rather than the Na+ concentration determines the efficiency of the motor, indicating the presence of a catalytical important hydrogen bond network in the motor channel. It is proposed that D23, S26 and D42 of PomB are part of an ion-conducting pathway formed by the PomAB stator complex. As mentioned above, V. cholerae is a pathogen which settles the human intestine. As other pathogens are able to respond specifically to the stress associated mammalian hormones epinephrine and norepinephrine it was of an interest to investigate the influence of these hormones on growth and motility of V. cholerae. The response to epinephrine and norepinephrine is mediated by the QseC sensor protein. The genome of V. cholerae comprises a gene which is homolog to qseC from E. coli. Growth and swarming of V. cholerae was enhanced in the presence of 0.1mM epinephrine or norepinephrine. qRT-PCR experiments revealed increased expression of the genes encoding the putative sensor kinase qseC and pomB, a component of the flagellar motor complex under the influence of catecholates. HPLC measurements of bacterial supernatant revealed that norepinephrine is completely degraded or metabolized after 48 h in the presence of V. cholerae, concomitant with the appearance of another, unidentified compound. On the other hand, V. cholerae seemed to stabilize epinephrine. After 48 h, 0.46% of the epinephrine added at the beginning of the growth experiment was retained. Again, a yet unidentified compound was detected. The experiments conducted in this work strongly indicate the presence of a catecholate receptor in V. cholerae. KW - Vibrio cholerae KW - Flagella KW - Adrenalin KW - Noradrenalin KW - Motilität CY - Hohenheim PB - Kommunikations-, Informations- und Medienzentrum der Universität Hohenheim AD - Garbenstr. 15, 70593 Stuttgart UR - http://opus.uni-hohenheim.de/volltexte/2014/992 ER -