RT Dissertation/Thesis T1 Design of breeding strategies for energy maize in Central Europe A1 Grieder,Christoph WP 2012/09/27 AB The area of maize (Zea mays L.) grown for production of biogas has tremendously increased in Germany during the past decade. Thus, breeding companies have a keen interest to develop special varieties for this new market segment. A high methane yield per area (MY), which depends multiplicatively on dry matter yield (DMY) and methane fermentation yield (MFY), is required to ensure the efficiency of biogas maize cultivation. However, information on the targeted biogas maize ideotype is still missing and estimates of relevant quantitative genetic parameters for representative material are required to design optimum breeding strategies. We conducted a large field experiment to assess the relevant traits in biogas maize, their variation, and associations among them. In detail, our objectives were to (1) determine MFY and its production kinetics as well as the chemical composition, (2) examine the relationship of MFY and traits related to its kinetics with plant chemical composition and silage quality traits like in vitro digestible organic matter (IVDOM) and metabolizable energy concentration (MEC); (3) examine the potential of near infrared spectroscopy (NIRS) for prediction of traits related to methane production; (4) evaluate a large population of inbred lines and their testcrosses under field conditions for agronomic and quality traits; (5) estimate variance components and heritabilities (h2) of traits relevant to biogas production; (6) study correlations among traits as well as between inbred line per se (LP) and testcross performance (TP); and (7) draw conclusions for breeding maize as a substrate for biogas production. For this purpose, a representative set of 285 dent inbred lines from diverse origins and their 570 testcross progenies with two adapted flint testers was produced. Both material groups were evaluated in field experiments conducted in six environments (three locations, two years) in Germany. For analysis of MFY, samples of a diverse core set of 16 inbred lines and their 32 testcrosses were analyzed using the Hohenheim Biogas Yield Test, a discontinuous, laboratory fermentation assay. The kinetics of methane production was assessed by non-linear regression. Estimates of h2 for MFY measured after short fermentation time (3 days) were high, but genotypic variance and, therefore, also h2 decreased towards the end of the fermentation period (35 days). This was presumably the consequence of a nearly complete degradation of all chemical components during the long fermentation period. This interpretation was supported by strong correlations of MFY with chemical components, IVDOM and MEC for the early, but not the late fermentation stages. Based on the samples in the core set, NIRS calibrations were developed for MFY, parameters related to the kinetics of methane production, and chemical composition. With a coefficient of determination from validation (R2V) of 0.82, accuracy of prediction was sufficiently high for the maximum methane production rate, which is related to the early fermentation phase, but not satisfactory for the time needed to reach 95% of a sample?s final MFY (R2V = 0.51). In agreement with the trend of h2, performance of NIRS to predict MFY on day 35 (R2V = 0.77) was lower than for MFY on day 3 (R2V = 0.85), but still at a satisfactory level, as was the case for concentrations of different chemical components. Hence, NIRS proved to be a powerful tool for prediction of MFY and chemical composition in the main experiment. For TP, estimates of variance components from the main experiments revealed that general combining ability (GCA) was the major source of variation. The very tight correlation of MY with DMY but not with MFY indicated that variation in MY was primarily attributable to differences in DMY. Compared to MEC, MFY showed a weaker association with chemical composition. Genotypic correlation (rg) of MFY was strongest with non-degradable lignin (-0.58). Correlation of MFY with starch was not significant and indicated a lower importance of high cob proportions for biogas maize than for forage maize. Hence, to improve MY, selection should primarily focus on increasing DMY. Results for LP in the main experiment largely confirmed results from testcrosses and favor selection for high dry matter yielding genotypes with less emphasis on ear proportion. Estimates of rg between LP and GCA were highest (> 0.94) for maturity traits (days to silking, dry matter concentration) and moderate (> 0.65) for DMY and MY. Indirect selection for GCA on basis of LP looks promising for maturity traits, plant height, and to some extent also for DMY. K1 Mais K1 Biogas K1 Züchtung PP Hohenheim PB Kommunikations-, Informations- und Medienzentrum der Universität Hohenheim UL http://opus.uni-hohenheim.de/volltexte/2012/748