TY - THES T1 - Identification of regulatory factors determining nutrient acquisition in Arabidopsis A1 - Giehl,Ricardo Fabiano Hettwer Y1 - 2012/05/31 N2 - The acquisition and translocation of mineral nutrients involves the orchestrated action of a series of physiological and biochemical mechanisms, which are, in turn, regulated by nutrient availability and demand. Furthermore, root morphological changes play an outstanding role for nutrient acquisition, especially when the availability of a certain nutrient is low. Although for most nutrients the molecular mechanisms involved in their acquisition from soils have been described, much less is known about the regulatory pathways underlying the uptake and translocation of nutrients in plants. Thus, the main aim of the present study was to characterize root morphological responses to nutrient supply and to identify novel regulatory components. The first part of the present thesis describes the morphological response of Arabidopsis roots to the essential element iron (Fe), which has a particularly low solubility in soils. Relative to a homogenous supply of Fe, localized Fe supply to horizontally-separated agar plates doubled lateral root length without a particular effect on lateral root number. The internal tissue Fe rather than external Fe triggered the local elongation of lateral roots. In addition, the Fe-stimulated emergence of lateral root primordia and root cell elongation was accompanied by a higher activity of the auxin reporter DR5:GUS in lateral root apices. A crucial role of the auxin transporter AUX1 in Fe-triggered lateral root elongation was indicated by Fe-regulated AUX1 promoter activities in lateral root apices and by the failure of aux-1 mutants to elongate lateral roots into Fe-enriched agar patches. Furthermore, a screening was designed to identify novel regulatory components involved in the Fe-dependent stimulation of lateral roots. One member of the GATA family of transcription factors was found to play a role in the local, root-endogenous regulation of lateral root development in response to local supplies of Fe. It was concluded that a Fe sensing mechanism in roots regulates lateral root development by modulating auxin transport. The second part of the thesis describes the use of multi-elemental analyses to identify novel regulators of nutrient accumulation in Arabidopsis. Firstly, it is shown that the disruption of transcription factors expression can lead to significant alterations in the accumulation of one or more nutrients in shoots. In addition, this approach allowed the identification of a so-far uncharacterized transcription factor ? NGAL1 ? that regulates primary root elongation in response to phosphorus (P) supply. The loss of NGAL1 resulted in hypersensitive inhibition of primary root growth under low P and a P-independent increase in lateral root elongation. The results presented here indicate that NGAL1 participates in a signaling pathway that modulates meristematic activity by controlling the expression of important root patterning regulators according to the local availability of P. KW - Ackerschmalwand KW - Eisen KW - Phosphor CY - Hohenheim PB - Kommunikations-, Informations- und Medienzentrum der Universität Hohenheim AD - Garbenstr. 15, 70593 Stuttgart UR - http://opus.uni-hohenheim.de/volltexte/2012/704 ER -