RT Book, Whole T1 Entwicklung und Applikation eines instationären Reifenmodells zur Fahrdynamiksimulation von Ackerschleppern A1 Ferhadbegovic,Bojan WP 2012/01/24 AB Die Fahrgeschwindigkeit moderner Ackerschlepper nimmt in den letzten Jahren stetig zu. Mittlerweile sind 50 km/h für Standardschlepper in Deutschland üblich. Um diese Geschwindigkeiten sicher erreichen zu können, werden die Ackerschlepper mit einer hydropneumatischen Vorderachsfederung ausgestattet. Eine Hinterachsfederung für Standardschlepper hat sich bisher aus Kostengründen nicht durchgesetzt. Die steigenden Transportanteile und das Bestreben nach weiteren Produktivitätserhöhungen erzeugen einen Bedarf an noch schnelleren Ackerschleppern. So wurde 2005 der erste Standardschlepper mit einer Höchstgeschwindigkeit von 60 km/h vorgestellt. Dieser Wert war ohne einen größeren Eingriff in das Konzept des Standardschleppers erreichbar. Höhere Fahrgeschwindigkeiten werden auf Grund der momentanen Gesetzeslage gravierende Eingriffe in das Fahrzeugkonzept mit sich bringen und sind daher bei Standardschleppern nicht so schnell zu erwarten. Da die Ackerschlepper im Hinblick auf den Feldeinsatz konstruiert werden, sind ihre fahrdynamischen Eigenschaften bei Straßenfahrt nicht immer optimal. Die hohen Massen der Fahrzeuge und unter Umständen ungenügende Abstimmung einzelner Bauteile aufeinander können zusammen mit fehlender Hinterachsfederung der Standardschlepper insbesondere bei schneller Kurvenfahrt zu kritischen Fahrsituationen führen. Die gesamte Federungs- und Dämpfungsarbeit an der Hinterachse wird von den Reifen übernommen. Ackerschlepperreifen sind hauptsächlich zum Tragen hoher Lasten und zum Erzeugen hoher Zugkräfte auf nachgiebigem Boden ausgelegt und haben eher schlechte fahrdynamische Eigenschaften. Sie weisen eine Unrundheit mit einer Amplitude von ca. 1-2 mm auf. Obwohl diese gering ist, reicht sie auf Grund schlechter Dämpfungseigenschaften aus, das Fahrzeug im Bereich seiner Eigenfrequenzen zu unangenehmen Schwingungen anzuregen. Darüber hinaus werden die Reifen mit Innendrücken zwischen 0,8 und 2,0 bar betrieben, was eine relativ große Spanne darstellt und eine optimale Fahrzeugauslegung hinsichtlich der Fahrdynamik erschwert Um die Fahrdynamik von Ackerschleppern zu untersuchen und Unzulänglichkeiten im Fahrverhalten möglichst früh zu erkennen, können Simulationsmodelle eingesetzt werden. Eine besonders wichtige Komponente eines solchen Fahrzeugmodells ist das Reifenmodell. Als Verbindungsglied zwischen dem Fahrzeug und dem Boden bestimmt der Reifen maßgeblich das Fahrzeugverhalten. Daher ist es wichtig, ein möglichst genaues Reifenmodell zu verwenden. Auch wenn auf dem Markt einige verschiedene Reifenmodelle zur Verfügung stehen, sind sie im Wesentlichen für Pkw-Reifen ausgelegt. Daher sind sie für die Modellierung von weichen, großvolumigen Ackerschlepperreifen nur eingeschränkt einsetzbar. Deswegen wurde im Rahmen dieser Arbeit an der Universität Hohenheim ein dynamisches Modell für landwirtschaftliche Reifen auf fester Fahrbahn entwickelt ? das Hohenheimer Reifenmodell. Das Hohenheimer Reifenmodell ist ein hybrides Modell, denn es benötigt neben Feder- und Dämpferkennlinien auch empirisch ermittelte Reifen-Boden-Kennlinien als Parameter. Das Reifenmodell berechnet aus den Geschwindigkeiten des Rades und des Reifenlatsches die Verformungsgeschwindigkeit und die Verformung des Reifens, die als Eingangsgrößen für Feder-Dämpfer-Elemente eingesetzt werden. Die in diesen so genannten Voigt- Kelvin-Elementen berechnete Kraft dient anschließend zur Berechnung des vorherrschenden Schlupfes und Schräglaufwinkels. Das Hohenheimer Reifenmodell wurde in MATLAB/Simulink entworfen und kann an jede beliebige Mehrkörpersimulationssoftware angebunden werden. Es ist in der Lage, das instationäre Reifenverhalten dreidimensional zu beschreiben und eignet sich auf Grund sehr kurzer Rechenzeiten gut für Fahrdynamiksimulationen. Das Hohenheimer Reifenmodell berücksichtigt die Nichtlinearitäten der Reifen und kann die Kräfte und Momente sowohl bei reinem Längs- und Querschlupf als auch bei überlagertem Schlupf wiedergeben. K1 Schlepper K1 Reifen K1 Simulation K1 Fahrdynamik PP Hohenheim PB Kommunikations-, Informations- und Medienzentrum der Universität Hohenheim UL http://opus.uni-hohenheim.de/volltexte/2012/651