RT Dissertation/Thesis T1 The role of serotonin and gap junctions in left-right development of Xenopus laevis A1 Beyer,Tina WP 2011/11/09 AB In vertebrates, the correct determination of the left-right (LR) axis is essential for accurate placement of the inner organs, such that the heart points to the left, lung lobation differs between left and right side, spleen and stomach are located on the left,liver on the right body side and the gut coils asymmetrically. Disturbance of this organization can lead to severe impairments of organ function. In the African clawed frog Xenopus laevis, already in four-day old tadpoles asymmetric organ arrangement is visible. This coordinated organ development strictly requires prior Nodal cascade activity in the left lateral plate mesoderm (LPM) in all model organisms examined so far. The initial symmetry breaking event necessary for unilateral induction of Nodal signaling is still under debate. In X. laevis, two models, namely 'ion-flux' and 'cilia-driven leftward fluid flow', were discussed in this context. Leftward flow was first described in the mouse model and later on in fish and rabbit, whereas the 'ion-flux' hypothesis is supported by data derived from chick development. In the present work it was intended to enlighten this putative discrepancy by re-investigating the function of two 'ion-flux' components in context of leftward flow in the model organism X. laevis. First, a link between cell-cell communication via gap junctional communication (GJC)and LR axis establishment was analyzed by using heptanol for general inhibition of channel conductance on the one hand, and single knock-down (KD) of specific subunits on the other hand. Both treatments resulted in absence of the left-sided Nodal cascade. The KD led to shorter GRP cilia when compared to wildtype embryos and loss of bilateral Nodal expression at the GRP margin, respectively. Furthermore, heptanol treatments of stages in which the GRP already has been fully developed also resulted in laterality defects, thus implying a second function of GJC most likely for the signal transfer to the left side. These results indicated a role of GJC in leftward flow establishment and/or post-flow in neurula stages rather than a function in early cleavage stages for LR determination. Second, the early signaling function of the neurotransmitter serotonin (5-HT) was inhibited by over-expression of either a frog or a human receptor ligand binding domain(LBD). In addition, specific KD of a receptor class 3 subunit was performed. Both applications resulted in impaired left-sided marker gene expression and disturbed GRP morphogenesis. Remarkably, marker gene expression of the superficial mesoderm(SM) which gives rise to the GRP during development, was reduced in 5-HT signaling impaired embryos. Very importantly, receptor 3 specific 5-HT signaling was shown to represent a necessary competence factor required for Wnt-dependent axis development in the frog double axis induction assay. Besides the new function of 5-HT during early development, it was further shown that the expression of the SM marker Foxj1 (a master regulator of motile cilia) depended on maternal factors. Based on the work presented here, the following model is proposed: (1) Foxj1 expression is induced maternally, followed by (2) zygotic refinement in post-MBT stages, i.e. inhibition on the ventral and maintenance on the dorsal side. In the organizer region, an interplay of Wnt and 5-HT signaling is required for dorsal development.(3) Cilia driven leftward flow initiate an unknown downstream signal which is transferred to the left LPM. Both events, leftward flow and transfer, require active GJC. (4) A to date unknown signal gets transferred towards the left LPM in a GJC-dependent process and induces the Nodal cascade activity, a prerequisite for proper organ arrangement. Taken together, the data presented in this study indicate that the directed fluid flow in neurula embryos represent the decisive step for symmetry breakage with the 'ion-flux' components being involved in correct flow function. K1 Glatter Krallenfrosch K1 Asymmetrie K1 Serotonin K1 Embryonalentwicklung K1 Gap junction PP Hohenheim PB Kommunikations-, Informations- und Medienzentrum der Universität Hohenheim UL http://opus.uni-hohenheim.de/volltexte/2011/636