TY - THES T1 - Verbesserung der Energie-, Stoff- und Emissionsbilanzen bei der Bioethanolproduktion aus nachwachsenden Rohstoffen A1 - Fleischer,Sven Y1 - 2011/03/24 N2 - In dieser Dissertation wurde ein Prozess realisiert, in dem stärkehaltige (Tritikale) und lignocellulosehaltige (Maissilage) Biomasse in einem Prozess zur Bioethanolerzeugung genutzt werden. Im Unterschied zu sonstigen so genannten 2. Generation Ethanolprozessen, welche nur lignocellulosehaltige Biomasse nutzen, wurde hier die Problematik der potenziell sehr geringen Ethanolkonzentrationen (< maximal 6%mas) in den erzeugten Maischen umgangen. Durch die zusätzliche Zugabe von stärkehaltigem Rohstoff zum bereits vorbehandelten und vorhydrolysierten lignocellulosehaltigen Material konnten in einer 144stündigen Fermentation Maischen mit bis zu 96g Ethanol/l mit einer Ethanolausbeute bis zu 84% erzeugt werden. Würde ein solcher Prozess länger geführt, wäre eine Erhöhung der Ethanolausbeute auf ein vergleichbares Niveau zu heutigen stärkebasierten Industrieprozessen möglich. Neben dem sehr erfreulichen Effekt, dass die im dargestellten Prozess erzeugten Maischen mit profitabel zu destillierenden Alkoholkonzentrationen erzeugt werden können, lässt sich mit solch einem Prozess auch eine sehr positive Ökobilanz erzielen. Wird die im Prozess bei der Destillation erhaltene Schlempe zur Biogasproduktion eingesetzt und ein Teilstrom des erzeugten Biogases mittels eines BHKW zur Erzeugung von Prozesswärme und Strom für die Brennerei genutzt, ist es möglich einen autark versorgten Brennereibetrieb zu verwirklichen. Wird solch ein autark versorgter Ethanolprozess genutzt, so ergibt sich dadurch im Vergleich zur Nutzung fossiler Energieträger ein CO2-Vermeidungspotential (CO2-Equivalente) von ca. 83%, welches mit der Erzeugung von überschüssiger Energie in Form der Energieprodukte Ethanol [ca. 65,14GJ/(ha ? a)] und noch unaufgereinigtem Biogas [ca. 88.49GJ/(ha ? a)] gekoppelt ist. Wird dieser Prozess mit fossilen Ressourcen zur Erzeugung der Prozessenergie wie Strom (Deutscher-Strommix) und Prozesswärme versorgt, so kann ein CO2-Vermeidungspotential (CO2-Equivalente) von ca. 48% erzielt werden. Prozesse wie diese erfüllen bereits die Erfordernisse der Biomassenachhaltigkeitsverordnung (BioNachV), welche 2010 in Kraft tritt und sofort eine 30%ige CO2-Reduktion und ab 1. Januar 2011 eine Mindestreduktion von 40% fordert. Neben diesen Prozessen wurden in dieser Arbeit aber auch sogenannte Prozesse der 1. Generation, welche nur stärkehaltige Materialien zur Ethanolerzeugung nutzen bilanziert. Wird bei diesen Prozessen sowohl eine fossile Energieerzeugung angenommen und aus der Schlempe als auch aus allem nachhaltig bergbaren Getreidestroh und der Maissilage Biogas erzeugt, so kann eine CO2-Reduktion (CO2-Equivallente) von ca. 71% erzielt werden. Wird dieses Vermeidungspotenzial als CO2-Äquivalente ausgedrückt, so können ca. 8,8t CO2/(ha ? a) vermieden werden. Dies wird durch die Erzeugung von 50,55GJ/(ha ? a) an Ethanol und 145,92GJ/(ha ? a) an unaufgereinigtem Biogas möglich. Wird solch ein Prozess autark versorgt, was bedeutet, dass ein Teilstrom vom erzeugten Biogas den Brennereiprozess mit Prozesswärme und Strom versorgt, so kann eine deutlich höhere CO2-Vermeidung von ca. 81% erzielt werden. Dieses exzellente Ergebnis korrespondiert mit einer CO2-Vermeidung von ca. 13,2t CO2(ha ? a) und einer Erzeugung von 50,55GJ/(ha ? a) an Ethanol und 116.29GJ/(ha ? a) unaufgereinigtem Biogas als Energieprodukte. Die oben diskutierten Daten basieren alle auf Untersuchungen im Labormaßstab sowie Messungen in der Versuchsbrennerei, welche ohne Energierückgewinnung arbeiten. Würde solche Prozesse jedoch im industriellen Maßstab genutzt, wo Energierückgewinnungssysteme wirtschaftlich eingesetzt werden, ließe sich der CO2-Ausstoß weiter verringern und würde der Bedarf an Betriebsmitteln (Dampf, Strom, Druckluft, usw.) weiter sinken. Durch Einsatz kürzlich kommerziell verfügbarer Fermentationsorganismen, wie xylose- und arabinosefermentierende Hefen oder dem neuen Genobakterium TM 242 (der Firma TMO Renewables) kann der Ethanolerzeugungsprozess weiter verbessert werden. Neben der Ethanolerzeugung aus stärke- und cellulosehaltigen Rohmaterialien wurden auch Versuche zur Verbesserung sogenannter Ethanolprozesse der 1. Generation durchgeführt. Um diese zu optimieren, wurden sowohl Strategien basierend auf einer verbesserten Stickstoffversorgung der Hefe als auch einer durch Temperaturerhöhung forcierten biochemischen Reaktionsgeschwindigkeit der Hefe, untersucht. Jedoch erzielten diese Techniken im Unterschied zu den Ergebnissen anderer Studien keine positiven Effekte auf die Fermentationsgeschwindigkeit. Als vorteilhaft erwies sich jedoch die Verwendung des ?StargenTM?-Enzymsystems, welches die Möglichkeit bietet granuläre Stärke ohne vorherige Verkleisterung zu hydrolysieren. Mit diesem System lässt sich der Energiebedarf beim Maischen deutlich senken. Dieses System besitzt jedoch den Nachteil, dass der Fermentationsprozess länger als bei herkömmlichen Systemen dauert und ein höherer Enzymeinsatz erforderlich ist. KW - Bioalkohol KW - Umweltbilanz KW - Biomasse KW - Lignocellulose KW - Maissilage KW - Triticale CY - Hohenheim PB - Kommunikations-, Informations- und Medienzentrum der Universität Hohenheim AD - Garbenstr. 15, 70593 Stuttgart UR - http://opus.uni-hohenheim.de/volltexte/2011/579 ER -