TY - THES T1 - Untersuchungen zur Aufbereitung und Umwandlung von Energiepflanzen in Biogas und Bioethanol A1 - Schumacher,Britt Y1 - 2008/12/17 N2 - Da die fossilen Ressourcen endlich sind, ist eine Option für die Zukunft den Energiebedarf verstärkt aus erneuerbaren Energiequellen zu decken. Eine Möglichkeit ist die Biomassenutzung, die durch eine Vielzahl von Kombinationen aus unterschiedlichen Biomassearten, Nutzungspfaden und Konversionstechniken flexibel an die natürlichen lokalen bzw. regionalen Gegebenheiten sowie die anthropogenen Bedürfnisse angepasst werden kann. Um die begrenzten landwirtschaftlichen Flächen möglichst effizient zur Bioenergieträgerbereitstellung nutzen zu können, werden aktuelle und belastbare Daten zu den spezifischen Energieerträgen und den Hektarenergieerträgen von Energiepflanzen benötigt. Ziel der vorliegenden Arbeit war es, diese Daten für die Bereiche Biogas und Bioethanol bereitzustellen. Dazu wurden anhand von Untersuchungen in Laborfermentern im Batch-Betrieb spezifische Biogas- bzw. Bioethanolerträge ermittelt. Zusätzlich stand die Erprobung von verschiedenen Aufbereitungsverfahren für Energiepflanzen und deren Einfluss auf die Biogasertragshöhe und auf den Verlauf der Methanbildung im Fokus dieser Arbeit. Eine Energie- und Ökobilanz für Silomais und reife Triticale stellt die Konversionspfade Biogas- und Bioethanolgewinnung vergleichend gegenüber. Dabei wurde auch das Steam-Explosion-Verfahren zur Aufbereitung von Biomasse berücksichtigt. Aufbereitung von Energiepflanzen Die Aufbereitung von Biomasse mit dem Steam-Explosion-Verfahren beschleunigt die Methanbildung und steigert sie zum Teil. Die Effekte sind, abhängig von der Art der Biomasse und dem Reifestadium, unterschiedlich stark. Weitere Aufbereitungsverfahren wie Mikrowellenbehandlung und Kochen zeigten meist keine signifikante Änderung oder teilweise negative Wirkung. Eine Variation der Versuchsparameter könnte aber ggf. interessant sein. Den positiven Wirkungen des Steam-Explosion-Verfahrens stehen aber auch Argumente wie die zusätzlichen Investitionskosten und der Verdünnungseffekt durch die Wasserzugabe bzw. die Erhöhung des Massenstroms entgegen. Der zusätzliche Energiebedarf, der hauptsächlich in thermischer Energie besteht, kann aus der Abwärme des BHKW gedeckt werden. Forschungsbedarf besteht weiterhin beim Screening und der Produktion technischer Enzyme zum effizienten Voraufschluss lignozellulosehaltiger Rohstoffe sowie bei der Kombination biologischer (enzymatisch), chemischer, thermischer oder mechanischer Aufschlussverfahren unter Berücksichtigung der Energieeffizienz. Methanerträge von Energiepflanzen und Schlempen Anhand der Biogasuntersuchungen eines breiten Spektrums an Maissorten konnte festgestellt werden, dass die spezifischen Methanerträge je nach Sorte unterschiedlich stark über die Erntezeitpunkte variierten, wobei die Sorten mit niedrigerer Reifezahl höhere spezifische Methanerträge erreichten. Der dominierende Faktor für den Energiehektarertrag war aber der Trockenmasseertrag und nicht der spezifische Methanertrag. Allgemein empfehlenswert sind standortgerechte Sorten mit hohem Trockenmasseertrag bei gleichzeitig guter Silierfähigkeit zum optimalen Erntezeitpunkt. Die Zwischenfrüchte trugen nur zum Teil zur deutlichen Erhöhung der Methanhektarerträge bei. Aus Gründen des Bodenschutzes ist der Anbau aber zu empfehlen. Die Stickstoffdüngung beeinflusst die Trockenmasseerträge und damit die Energiehektarerträge meist positiv. Mit Mais konnten deutlich höhere Energiehektarerträge als mit Rutenhirse erzielt werden. Durch die Nutzung der Schlempen aus der Ethanolproduktion aus Maisganzpflanzen oder aus Triticalekorn sowie durch die Nutzung der Nebenprodukte wie Stroh in der Biogasgewinnung kann der Energieoutput pro Hektar mindestens verdoppelt werden verglichen mit der ?reinen? Ethanolproduktion. Weitere Optimierungsmöglichkeiten für die Biogasgewinnung unter Praxisbedingungen liegen im substratangepassten Aufbau der Fermentersysteme sowie im Einsatz mehrphasiger Verfahren sowie der Entwicklung schneller Analyseverfahren zur besseren Prozesssteuerung. Korrelation Inhaltsstoffe / gemessene Methanerträge Die anhand der über NIRS bestimmten Inhaltsstoffe neutrale Detergentien-Faser (NDF), Stärke (XS), Zucker (XZ) und Rohprotein (XP) sowie der substrattypischen Faktoren errechneten spezifischen Methanerträge für Maisproben zu den vier Erntezeitpunkten lagen sehr nah an den tatsächlich gemessenen Methanerträgen. Eine Korrelation zwischen den gemessenen und errechneten Werten lag aber nicht vor. Ob eine andere Inhaltsstoffanalysetechnik und die Bestimmung weiterer Einzelbestandteile die Biogasertragstests zur Potenzialabschätzung gerade von neuen Sorten ersetzen können, sollte Gegenstand weiterer Untersuchungen sein. Bioethanolausbeuten Die Energieausbeuten über den Konversionspfad Bioethanol liegen ohne die Nutzung der Nebenprodukte Schlempe oder Stroh deutlich unter denen des Konversionspfads Biogas, da nur Stoffe, die verzuckert werden können, in Ethanol umgesetzt werden können. Der Vorteil der Ethanolproduktion liegt in dem flüssigen Kraftstoff, der gewonnen wird. Durch die Kombination mit einer Biogasanlage können auch die Nebenprodukte energetisch genutzt werden und liefern einen gasförmigen Energieträger. Im Bioethanolbereich liegen sicher noch hohe bioverfahrenstechnische Optimierungspotenziale z.B. die Züchtung geeigneter Mikroorganismen zum Abbau lignozellulosehaltiger Rohstoffe sowie von C5-Zucker-Verwertern. Des Weiteren sind Prozessoptimierungen bei Wasser- und Energieeinsatz anzustreben. Energie- und Ökobilanzierung Sowohl Biogas als auch Bioethanol, letzteres bei optimaler Kombination mit Biogas, sind nach den hier untersuchten Szenarien unter den erläuterten Rahmenbedingungen dazu geeignet, den Einsatz nicht regenerativer Energieträger und damit Emissionen zu senken. Eine Aufgabe für die Zukunft wird es sein, differenzierte standortgerechte Nutzungskonzepte zu entwickeln auf der Basis einer Entscheidung, in welchem Maß eine (Flüssig-)Kraftstofferzeugung oder eine stationäre Bereitstellung thermischer und elektrischer Energie aus Biomasse zu bevorzugen sind. Ziel muss es sein, durch eine sinnvolle Kombination aus Biomasse, Nutzungspfad und Konversionstechnik, in Abhängigkeit von den lokalen und regionalen natürlichen Gegebenheiten sowie den anthropogenen Anforderungen, die land- und forstwirtschaftliche Fläche (als dem limitierten Faktor) höchst effizient zur Bioenergieträgerbereitstellung zu nutzen. KW - Biogas KW - Bioalkohol KW - Energiepflanzen KW - Mais KW - Triticale KW - Strohaufschluss KW - Lebenszyklus CY - Hohenheim PB - Kommunikations-, Informations- und Medienzentrum der Universität Hohenheim SN - 978-3-86664-492-2 AD - Garbenstr. 15, 70593 Stuttgart UR - http://opus.uni-hohenheim.de/volltexte/2008/316 ER -